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Abstract— This paper studies safe driving interactions between
Human-Driven Vehicles (HDVs) and Connected and Automated
Vehicles (CAVs) in mixed traffic where the dynamics and control
policies of HDVs are unknown and hard to predict. In order
to address this challenge, we employ event-triggered Control
Barrier Functions (CBFs) to estimate the HDV model online,
construct data-driven and state-feedback safety controllers, and
transform constrained optimal control problems for CAVs into
a sequence of event-triggered quadratic programs. We show
that we can ensure collision-free interactions between HDVs
and CAVs and demonstrate the robustness and flexibility of
our framework on different types of human drivers in lane-
changing scenarios while guaranteeing the satisfaction of safety
constraints.

I. INTRODUCTION

Connected and Automated Vehicles (CAVs), also known
as “self-driving cars”, promise to significantly transform
the operation of transportation networks and improve their
performance by assisting drivers in making decisions so as to
reduce accidents, as well as travel times, energy consumption,
air pollution, and traffic congestion [1]–[3]. The cooperative
control of CAVs has attracted a surge of interest in providing
opportunities for vehicles to travel safely and optimally while
enhancing the efficient operation of traffic networks [4], [5].

However, 100% CAV penetration is not likely in the
near future, raising the question of how to benefit from the
presence of at least some CAVs in mixed traffic and to still
guarantee safety when CAVs must interact with uncontrollable
Human-Driven Vehicles (HDVs) [6]–[9]. To address this
challenge, efforts have concentrated on developing accurate
car-following models, as in [10], aiming at a deterministic
quantification of HDV states, while [11] considers vehicle
interactions, employs a prediction model to estimate HDV
behaviors in real-time and directly controls CAVs to force
HDVs to form platoons. In an effort to accurately model
human driver behavior, a concept of social value orientation
is defined in [12] to characterize an agent’s proclivity for
social behavior or individualism and further predict human
behavior. Considering vehicle interactions, a game-theoretic
approach is used in [13] to assist CAVs in evaluating the best
possible response to an opponent’s actions. While existing
approaches have often shown impressive performance in
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managing vehicle interactions in mixed traffic, they assume
known dynamics for HDVs. However, uncontrollable human
behavior under real-world conditions makes HDV models
difficult to rely on for accurate predictions, which further
increases the collision risk for CAVs and compromises their
ability to guarantee safety. Moreover, most of the methods
used are computationally expensive. The high complexity
of obtaining accurate solutions motivates the use of Control
Barrier Functions (CBFs) [14], [15] to improve computation
efficiency without compromising safety guarantees.

In recent years, CBFs have been frequently used to enforce
system safety, and Control Lyapunov Functions (CLFs) are
employed to make the system state converge to desired values,
e.g., see [14], [16]–[20]. In general, constrained optimal
control problems (with quadratic cost) can be solved by
discretizing time and transforming them into a sequence
of Quadratic Programs (QPs) at each time step with the
assumption that control is a constant during each such time
interval. This assumption gives rise to the problem that each
time discretization interval needs to be sufficiently small
to ensure the feasibility of each QP at any one time step.
One way to solve this problem is to adopt event-triggered
approaches as proposed in [21] and further in [22] to deal with
unknown system dynamics. However, there has been little
consideration of human factors in conjunction with CBFs.

In this paper, we study safe driving interactions between
CAVs and HDVs in a mixed-traffic environment, in which
case the dynamics and human control policies of HDVs
are unknown. We adopt the event-triggered CBF method
proposed in [22] for CAVs to ensure the safety between
CAVs and HDVs, and implement it in highway lane-changing
maneuvers. This work provides enhanced robustness of the
optimal policies for uncontrollable HDVs in mixed traffic. The
main contributions of this paper are summarized as follows

• We propose a safe and robust human interaction frame-
work in mixed traffic using event-triggered CBFs under
the case of unknown (generally nonlinear, but affine in
the control) HDV dynamics and unpredictable human-
in-the-loop control policies.

• Both longitudinal and lateral maneuvers are combined
together in a lane-changing maneuver with an ellipsoidal
safety region determined for vehicles so as to guarantee
safety in a 2D manner during the entire maneuver.

• The optimal pair for the lane-changing CAV to merge
in between is determined in real time, depending on the
aggressiveness of HDVs.

• We demonstrate safe human interactions on different
types of human drivers (e.g., aggressive, hesitant, con-
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servative) in mixed traffic highway lane merging.

II. PROBLEM FORMULATION
The highway lane-changing scenario is shown in Fig.

1, where the green vehicles 1 and C are assumed to be
cooperating CAVs, the red vehicle H is an uncontrollable
HDV, and the gray vehicle U is considered as a dynamic
obstacle moving at a slower speed than CAVs. A lane-
changing maneuver is triggered by C when an obstacle ahead
is detected. In general, such a maneuver can be initiated at
any arbitrary time set by C. The framework proposed in
this paper can be used in any conflict area involving vehicle
interactions, but we limit ourselves to this lane-changing
setting which we view as the most challenging among them.
We aim to minimize the maneuver time and energy expended,
while alleviating any disruption to the fast lane traffic flow.
Moreover, considering the presence of HDVs, C also needs
to be aware of the behavior of its surrounding HDVs in order
to guarantee safety.

1H

l

C
ϕ

θ v(t)

Lw

Uy = 0

Fig. 1: The basic lane-changing maneuver process. The red vehicle
is an HDV, green vehicles are CAVs, and the grey vehicle is a
slow-moving and uncontrollable vehicle.

Vehicle Dynamics. The dynamics and control policy of
the HDV are unknown in this case. Assume the slow vehicle
U keeps traveling in the slow lane with a constant speed vU .
For each CAV in Fig. 1, indexed by i ∈ {1, C}, its dynamics
take the form, as defined in [23]:

ẋi

ẏi
θ̇i
v̇i


︸ ︷︷ ︸

ẋi

=


vi cos θi
vi sin θi

0
0


︸ ︷︷ ︸

f(xi(t))

+


0 −vi sin θi
0 vi cos θi
0 vi/Lw

1 0


︸ ︷︷ ︸

g(xi(t))

ï
ui

ϕi

ò
︸ ︷︷ ︸
ui(t)

(1)

where xi(t), yi(t), θi(t), vi(t) represent the current longitu-
dinal position, lateral position, heading angle, and speed,
respectively. ui(t) and ϕi(t) are the acceleration and steering
angle (controls) of vehicle i at time t, respectively, g(xi(t)) =
[gu(xi(t)), gϕ(xi(t))]. The maneuver starts at time t0 and
ends at time tf when C has completely switched to the
target lane. The control input and speed for all vehicles are
constrained as follows:

uimin ≤ ui(t) ≤ uimax , vimin ≤ vi(t) ≤ vimax , i ∈ {1, C}, (2)

where uimin ,uimax ∈ R2 denote the minimum and maximum
control bounds for vehicle i, respectively. vimin > 0 and
vimax

> 0 are vehicle i’s allowable minimum and maximum
speed. Setting l as the width of the road, y = 0 axis is the
center of the slow lane in Fig. 1, we have yC(t0) = 0, and
the lateral positions of vehicles satisfy

− l

2
≤ yi(t) ≤

3

2
l, i ∈ {1, C}. (3)

Safety Constraints. Similar to the longitudinal safe
distance described in [15], we define an ellipsoidal safe region
bi,j(xi,xj) for vehicles i and j during the entire maneuver:

bi,j :=
(xj(t)− xi(t))

2

(aivi(t))2
+

(yj(t)− yi(t))
2

(bivi(t))2
− 1 ≥ 0, (4)

where j is i’s neighboring vehicle, ai, bi are weights adjusting
the length of the major and minor axes of the ellipse, and
the size of the safe region depends on speed. Note that bi,j
is specified from the center of vehicle i to the center of
j. Defining an elliptical safe region considers the 2D safe
distance between two vehicles. Since (4) depends on speed,
its CBF constraint only has relative degree one, implying
lower complexity in CBF design.

Remark 1: Other than the elliptical format, a circle or
multiple disks can also be adopted to describe the safe region
between vehicles as long as the equation is differentiable
with respect to time and system states.

Optimal Control Problem Formulation. Our goal is
to determine the optimal control policy for CAV C to
perform a safe lane change maneuver. The objective is to
jointly minimize C’s energy consumption and speed deviation
from traffic flow while guaranteeing safety. Considering
cooperations between C and 1, the joint cooperative optimal
control problem (OCP) for both CAVs is given by:

min
uC(t),u1(t),tf

∫ tf

t0

αu

2
(u2

C(t) + u2
1(t))dt+ αl(yC(tf )− l)2

+ αv[(vC(tf )− vd)
2 + (v1(tf )− vd)

2] (5)
s.t. (1), (2), (3), (4)

where vd denotes the desired speed of CAVs in the fast lane,
αu, αl, αv are adjustable non-negative (properly normalized)
weights for energy, desired lateral position, and desired speed,
respectively. The CAV dynamics are given in (1) with state
and control limits as in (2) and (3). Safety distances between
all vehicle pairs in Fig. 1 are constrained through (4), requiring
state knowledge of all vehicles. However, since HDVs are
uncontrollable and unknown to CAVs in actuality, coupling
the unknown HDV states with CAVs in the safety constraint
between C and H makes (5) directly unsolvable.

Therefore, in this paper, we employ event-triggered CBFs
[22] to solve (5). The CBF method replaces the safety
constraints in the OCP with new CBF-based constraints which
are linear in the control and imply the original constraints.
In particular, for any state constraint b(x), the general form
of the associated CBF constraint is (see [15]):

sup
u∈U

[Lfb(x) + Lgb(x)u+ α(b(x))] ≥ 0, ∀x ∈ C, (6)

where Lf , Lg denote the Lie derivatives of b(x) along f and
g, respectively. It is assumed that Lgb(x) ̸= 0 when b(x) = 0.
The critical step to solve OCP (5) using event-triggered CBFs
is to first estimate HDV dynamics, then, at each time step,
CAVs can proceed with their maneuvers based on HDV state
estimates, and replace the safety constraints with the CBF
constraints to enforce their satisfaction. Then, the problem
(5) can be transformed into a sequence of QPs similar to
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[14]. Finally, we implement an event-driven approach in the
CBF-based QPs to find the next triggering time to solve the
QP. The details of the overall framework are described in the
following section.

III. HUMAN-IN-THE-LOOP SAFE
LANE-CHANGING MANEUVER

A. CBFs with Adaptive Dynamics for HDVs

In this section, we introduce adaptive dynamics for the
HDV based on real-time measurements so as to approximate
its actual dynamics. We begin by assuming adaptive nonlinear
dynamics for the HDV:

˙̄xH = fa(x̄H) + ga(x̄H)uH , (7)

where fa : Rn → R, ga : Rn → Rn×q are adaptive functions
to accommodate the real unknown HDV dynamics, uH ∈ Rq

is the control input of HDV, and x̄H ∈ X ⊂ Rn is the
estimated state vector corresponding to the real HDV states
xH . Let e := xH − x̄H be the direct measurement error
between the real HDV states xH and estimated states x̄H .
Then for any safety function bi,H(xi,xH) defined in (4)
between vehicles i and H , it has to satisfy

bi,H(xi,xH) = bi,H(xi, x̄H + e) ≥ 0. (8)

Equivalent to the CBF constraint defined in (6), we have the
CBF constraint to enforce safety for the unknown-dynamics
HDV in the form

∂bi,H(xi, x̄H + e)

∂xi
ẋi +

∂bi,H(xi, x̄H + e)

∂x̄H

˙̄xH

+
∂bi,H(xi, x̄H + e)

∂e
ė+ α(bi,H(xi, x̄H + e)) ≥ 0. (9)

where ẋi, ˙̄xH are described by dynamics (1) and (7), re-
spectively, and bi,H(xi, x̄H + e) is given by (4). The only
unknown terms left in (9) are e and ė, which can be
evaluated by direct measurements online. Therefore, the
satisfaction of (9) implies the satisfaction of safety constraint
bi,H(xi,xH) ≥ 0 even if the dynamics of xH is unknown
to CAVs, as shown in [22]. Then, we transform (5) into
a sequence of QPs, and update fa(x̄H) of the adaptive
dynamics (7) at each time step tk, k = 1, 2, ... with

fa(x̄(t
+
k )) = fa(x̄(t

−
k )) + ė(tk), (10)

where t+k , t
−
k denote the instants right after and before tk.

In this way, we always have the measurements such that
e(tk) = 0 and ė(t+k ) close to 0 at tk by setting x̄H(tk) =
xH(tk). This reduces the number of events (introduced later)
to solve the QP and reduce the conservativeness of CAVs.

B. Transform OCP to CBF-based QPs

In a lane-changing maneuver, we define adaptively updated
dynamics for the HDV traveling in the fast lane in the form:

˙̄xH

˙̄yH
˙̄θH
˙̄vH


︸ ︷︷ ︸

˙̄xH(t)

=


v̄H cos θ̄H + hx(t)
v̄H sin θ̄H + hy(t)
v̄H/Lw + hθ(t)

hv(t)


︸ ︷︷ ︸

fa(x̄H(t))

(11)

where x̄H = [x̄H(t), ȳH(t), θ̄H(t), v̄H(t)]T represent the
estimated longitudinal position, lateral position, heading angle,
and speed of the HDV, respectively. Note that hx,y,θ,v(t) ∈
Rn denote the adaptive terms to approximate the real HDV
dynamics, where we set hj(t0) = 0 for all j ∈ {x, y, θ, v}.

Derive CBF Constraints: Firstly, we derive the CBF
constraints to make sure the speed and control constraint
(2), position constraint (3), and safety constraints (4) in OCP
(5) are satisfied at all times. Each of the constraints above
can be written in the form bn(x), n ∈ {1, 2, ..., N},x =
{x1,xC ,xH ,xU}, where N is the number of constraints,
and we can always apply the CBF method to map a constraint
bn(x) to a new CBF constraint for vehicles i ∈ {1, C,H,U}
by using the general expression (6)

Lfbn(x) + Lgbn(x)u+ αn(bn(x)) ≥ 0, (12)

with u = {u1,uC}. We omit further details here.
Derive CLF Constraints: In addition to CBFs used for

hard constraints, we use Control Lyapunov Functions (CLFs)
(see [14]) associated with the terminal costs in (5) to achieve
lane-keeping and to minimize speed deviations from the
desired speed vd for CAVs. Setting V1(xC(t)) = (vC(t) −
vd)

2, V2(x1(t)) = (v1(t)− vd)
2, V3(xC(t)) = (yC(t)− l)2,

and V4(x1(t)) = (y1(t) − l)2, the CLF constraints can be
calculated accordingly based on the general expression:

LfV (x) + LgV (x)u+ c3V (x) ≤ δ, (13)

where δ is denoted as the controllable variable to treat (13)
as a soft constraint.

Time Discretization: Finally, we discretize time and let tk,
k = 1, 2, ... be the time instants when C solves the QPs. A
common way is to adopt the time-driven approach and select
a fixed length ∆ for each time interval such that tk = t0+k∆.
The OCP (5) can be transformed into a sequence of QPs
(each solved at the kth time step) as follows:

min
ui(tk),δj(tk)

∑
i=1,C

αuiu
2
i (tk) +

4∑
j=1

pjδ
2
j (tk) (14)

subject to CBF constraints (12) corresponding to constraints
(2), (3), (4), and CLF constraints (13) corresponding to
the Lyapunov function Vj(x), j ∈ {1, 2, 3, 4}. The weights
αui

, i ∈ {1, C} and pj , j ∈ {1, 2, 3, 4} are adjustable, used
to provide a relative importance to each corresponding term
in the objective function.

C. Event-driven Control

Following the time-driven approach to solving (14) at each
time step tk, k = 1, 2, ..., we cannot guarantee the satisfaction
of CBF constraints because the state error e and its derivative
ė are generally unknown to the solver right after tk. As
introduced in [22], the key idea of the event-driven approach
is to properly define events depending on state errors and
their derivatives so that the QPs will be solved at each event-
triggered time tk while the safety CBF constraints remain
satisfied during the time interval [tk, tk+1).

Set Bounds for Error: In order to find a condition
to guarantee the satisfaction of CBF constraints for t ∈
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[tk, tk+1), we first assume that the state error and its derivative
satisfy

|ex| ≤ wx, |ey| ≤ wy, |eθ| ≤ wθ, |ev| ≤ wv, (15a)
|ėx| ≤ νx, |ėy| ≤ νy, |ėθ| ≤ νθ, |ėv| ≤ νv, (15b)

where w := [wx, wy, wθ, wv]
T ∈ R4

≥0, and ν :=
[νx, νy, νθ, νv]

T ∈ R4
≥0 are chosen bounds that determine

the conservativeness of the framework. Specifically, small
bounds introduce less conservativeness with more events, and
vice versa. Similarly, we consider the state vector xi for
all vehicles i ∈ {1, C,H,U} at time tk, which satisfies the
following bounds xi(tk)− si ≤ xi(t) ≤ xi(tk) + si, where
si ∈ R4

≥0 is a parameter vector similar to error bounds. We
denote a set for states of vehicle i at time tk as

Si(tk) = {zi ∈ X : xi(tk)− si ≤ zi ≤ xi(tk) + si} (16)

Besides, we define a feasible set Ci,1 for vehicle i ∈
{1, C,H,U} as Ci,1 := {xi ∈ X : bn(x) ≥ 0, n ∈
1, 2, ..., N} such that all original constraints (1), (2), (3), (4)
are satisfied: Based on these settings, we can proceed to
find a condition that guarantees the satisfaction of all CBF
constraints in the time interval [tk, tk+1), which can be done
by minimizing each component in (12). We take the CBF
constraint between vehicles C and H as an example to
illustrate the detailed process.

Find Robust CBFs: In (12), assume α(·) is
linear with scalar ki,j for each constraint bi,j .
Let Lfmin

bC,H(tk) ∈ R be the minimum value
of LfbC,H(xC ,xH) + kC,HbC,H(xC ,xH) for the
proceeding time interval that satisfies r ∈ R(tk) where
r := [zC , zH , e, ė]T , R(tk) := {r : zC ∈ SC(tk), zH ∈
SH(tk), |e| ≤ w, |ė| ≤ ν, zH + e ∈ CH,1}, at time tk:

LfminbC,H(tk) = min
r∈R(tk)

Lf bC,H(zC , zH) + kC,HbC,H(zC , zH)

(17)
The remaining term LgbC,H(xC ,xH)uC in (12) contains
the control input uC = [uC , ϕC ]

T , which complicates the
minimization process. To minimize this term, we need to
consider the sign of ϕC , uC at time tk. Similar to (17), set

Lgmin
bC,H(tk) = [Lgumin

bC,H(tk), Lgϕmin
bC,H(tk)]

as the vector of minimum values of LgbC,H(xC ,xH) for the
proceeding time interval. Then, we have

Lgϕmin
bC,H(tk) =

 min
r∈R(tk)

LgϕbC,H(zC , zH), if ϕC(tk) ≥ 0,

max
r∈R(tk)

LgϕbC,H(zC , zH), otherwise.

(18)
and

Lgumin
bC,H(tk) =

 min
r∈R(tk)

LgubC,H(zC , zH), if uC(tk) ≥ 0,

max
r∈R(tk)

LgubC,H(zC , zH), otherwise.

(19)
where the sign of ϕC , uC can be obtained by simply solving
(14) at time tk. Therefore, the condition that guarantees the
satisfaction of (12) during [tk, tk+1) is given by

Lfmin
bC,H(tk) + Lgmin

bC,H(tk)uC ≥ 0. (20)

Similarly, for all CBF constraints with the form (12), they
have to satisfy the condition

Lfmin
bn(tk) + Lgmin

bn(tk)u ≥ 0, (21)

where Lfminbn(tk) is the minimum value of Lfbn(x) +
αn(bn(x)), and Lgmin

bn(tk)u is the minimum value of
Lgbn(x)u during [tk, tk+1).

In order to apply the above conditions to the QP (14), we
just replace all the CBF constraints (12) by (21), i.e.,

min
ui(tk),δj(tk)

∑
i=1,C

αui
u2
i (tk) +

4∑
j=1

pjδ
2
j (tk) (22)

subject to the CAV dynamics (1), CBF conditions (21), and
CLF constraints (13) corresponding to Vj(x), j ∈ {1, 2, 3, 4}.

Determine Triggering Events: Based on the above
settings, we define three events that specify the conditions
for triggering an instance of solving QP (22):
Event 1: The measured HDV state error e exceeds its bounds
w, i.e., any one inequality in (15a) is about to be violated.
Event 2: The measured derivative of the HDV state error
ė exceeds its bounds ν, i.e., any one inequality in (15b) is
about to be violated.
Event 3: The state measurement of vehicle i, i ∈
{1, C,H,U} reaches the boundaries of Si(tk).

The first two events can be detected by directly measuring
the state error and its derivative, and the third event is detected
by monitoring the dynamics of (1) and (11). Therefore, the
next event-triggered time tk+1, k = 0, 1, 2, ... is given by

tk+1 = min{t > tk :|e| = w or |ė| = ν or |xi(t)−xi(tk)| = si

or |x̄H(t)− x̄H(tk)| = sH}, (23)

where i ∈ {1, C, U} in (23). Recalling that the real HDV
dynamics are unknown, we apply its estimated states x̄H

from (11) to check the next triggered time tk+1. The choice
of each component of si in (16) captures the tradeoff between
the time complexity and the conservativeness of the approach.

In summary, to solve OCP (5), the first step is to estimate
HDV dynamics at each time step tk and transform the problem
into a series of QPs. Then, at each tk, CAVs can proceed
with their maneuvers based on HDV state estimates, and
replace the safety constraints with the event-triggered CBF
constraints to enforce their satisfaction. Finally, we implement
an event-driven control to find the next triggering time. The
details of the overall framework are described in [24].

IV. SIMULATION RESULTS

This section provides simulation results illustrating the
optimal lane-changing trajectories for each CAV with safety
guarantees in mixed traffic, even though the HDV dynamics
are unknown to CAVs. We emphasize that the controller
can be implemented to monitor the HDV’s behavior and
respond to HDVs in real-time. We test our framework by
allowing human drivers to manually operate virtual vehicles
through a MATLAB interface, and the results show that
CAV C can always update its control to avoid collisions
and successfully perform a safe maneuver. Our simulation
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(a) Case 1: Time-driven approach with
known HDV dynamics
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(b) Case 2: Time-driven approach with
unknown HDV dynamics
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(c) Case 3: Event-driven approach with
unknown HDV dynamics

Fig. 2: Safety with time-driven and event-driven CBFs. bi,j(xi,xj) denotes the value of the CBF between vehicles i and j, where
(i, j) ∈ {(C,H), (1, C), (1, H), (C,U)}. bi,j(xi,xj) ≥ 0 denotes safety guarantees (Case 3, not Cases 1 and 2).

setting is that of Fig. 1. Vehicle U is assumed to travel
with constant speed vU = 20 m/s all the time (this is not
needed in the overall approach). The dynamics of vehicle C
and 1 are followed by (1). The allowable speed range for
CAVs is v ∈ [15, 35]m/s, and the acceleration of vehicles
is limited to u ∈ [(−7,−π/4), (3.3, π/4)]m/s2. The desired
speed vd for the CAVs is considered as the traffic flow speed,
which is set to 30 m/s. To guarantee safety, in designing
the size of the ellipse in (4) as a safe region, we set the
parameters aC = a1 = 0.6 as the reaction time of CAVs, and
b1 = bC = 0.1 to let the minor axis approximate the lane
width l = 4 m. The maximum allowable maneuver time is
set at Tf = 15 s. The real HDV dynamics are unknown to
the controller and expressed as:

ẋH

ẏH
θ̇H
v̇H

 =


vH cos θH · σ1

vH sin θH · σ2

0
0

+


0 −vH sin θH
0 vH cos θH
0 vH/Lw

1 0

 ï uH

ϕH

ò
+


ε1
ε2
ε3
ε4


(24)

where uH is either a random policy or controlled by a human
player. σ1, σ2 denote two random processes with uniform
pdfs over the interval [0.9, 1.1], and ε1 ∈ [−0.7, 0.7], ε2 ∈
[−0.5, 0.5], ε3 ∈ [−0.5, 0.5], ε4 ∈ [−0.7, 0.7] are distur-
bances. The initial states of vehicles at time t0 = 0
are given as xC(t0) = [20 m, 0 m, 0 rad, 25 m/s]T ,
x1(t0) = [50 m, 4 m, 0 rad, 29 m/s]T , xH(t0) =
[10 m, 4 m, 0 rad, 28 m/s]T,xU (t0)=[60 m, 0 m, 0 rad,
20 m/s]T . The weights in QP (22) are set as αu1

= αuC
= 1,

p1 = p2 = p4 = 1, p3 = 100. The initial states of the adaptive
HDV dynamics (11) are set as x̄H(t0) = xH(t0), and the
adaptive terms at t0 satisfy hx(t0) = hy(t0) = hθ(t0) =
hv(t0) = 0.

The parameters si in the feasible set Si are si =
[0.01 m, 0.005 m, 0.01 rad, 1 m/s] for all vehicles i ∈
{1, C,H,U}. The bound for state error e and its derivative
ė are given as w = [0.2 m, 0.1 m, 0.1 rad, 1 m/s], ν =
[0.5 m/s, 0.2 m/s, 0.1 rad/s, 1 m/s2]. The allowable error
to terminate the maneuver is ϵ = 0.3 m. The numerical
solutions to the QPs are obtained using an interior point
optimizer (IPOPT) on an Intel(R) Core(TM) i7-8700 3.20GHz.
The computation times for time-driven and event-driven
approaches are 1.5 ms and 24.0 ms, respectively.

A. Comparison between Time and Event Driven Approach
Based on the above settings, we compare our event-

triggered approach in solving CBF-based QPs (22) with
unknown HDV dynamics to a time-driven approach. Set
the discretized time interval ∆ = 0.05 s. Due to inter-
sampling effects on system performance when applying a
time-driven approach, we consider three cases to test the
effectiveness of the event-driven approach in implementing
the lane-changing problem. The HDV policy is set to be
random, satisfying uH(tk) ∈ [−1.7, 1.7]m/s2, ϕH(tk) ∈
[−0.2π, 0.2π]rad, k = 0, 1, 2, ....
Case 1: Time-driven approach with known HDV dynamics.
Case 2: Time-driven approach with unknown HDV dynamics.
Case 3: Event-driven approach with unknown HDV dynamics.

The simulation results are shown in Fig. 2, where the x-axis
denotes the simulation time and the y-axis denotes the value
of safety constraint bi,j in (4). bi,j < 0 represents a violation
of the safety constraint between vehicles i and j. In Fig. 2,
the distances between vehicles 1 and C (red curve), vehicles
1 and H (yellow curve) keep increasing. The two constraints
about to be violated are bC,U (purple curve) and bC,H (blue
curve). From Fig. 2a, even if the HDV dynamics are assumed
to be known to CAV C, we still have bC,H < 0 at some
points, which means the distance between vehicles C and H
is less than the safe distance. Similar results occur in Fig. 2b,
where bC,H (blue curve) is below 0 at some points, violating
safety during the maneuver. Safety is not guaranteed even
with state synchronization under the time-driven approach.
In Fig. 2c, all curves are above 0, implying safety guarantees
for all vehicles during the lane-changing maneuver.

B. Human Driver Case Studies
In this section, we further introduce human control in

the framework through which the human driver’s aggressive-
ness will affect CAV responses. We have drivers perform
aggressive, hesitant, and conservative driving behaviors to
test the proposed approach through the merging point, safety
satisfaction, maneuver time, and energy consumption. The
simulation results for three types of driving players are
summarized in Table. I. Given the safety constraint that is
about to be violated is bC,H between vehicles C and H
(from the results in Fig. 2), the column “Safety” in Table. I
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Human
Driver Type

Times Safety Terminal
Time tf [s]

EnergyA-HDV B-HDV

Aggressive 0 10 627.7 3.4±0.3 27.1±25.9
Hesitant 5 5 521.2 8.8±1.4 63.2±46.2

Conservative 10 0 575.6 3.8±0.7 18.8±17.0

TABLE I: Performance of CAV C under different human driver
types. “A-HDV” and “B-HDV” represent merging ahead of HDV
and behind HDV, respectively. “Safety” denotes the minimum value
of bC,H during the entire maneuver in the repeated 10 times.

is defined as the minimum value of bC,H(tk), k = 0, 1, 2, ...
during the entire maneuver.

Table I shows that if the human driver is aggressive, C is
always conservative and chooses to merge behind the HDV.
On the contrary, if the human driver is conservative, then it
is safe for C to behave aggressively and merge ahead of the
HDV. If the human driver is hesitant, the merging point varies
and depends on the real-time traffic conditions. Note that all
values in the Safety column are positive, which indicates no
safety constraint is ever violated under the proposed event-
driven approach. Moreover, considering the maneuver time
tf in view of energy consumption, we notice that when
the driver’s intention is explicit, i.e., the human driver is
aggressive or conservative, C can respond and merge quickly
by adapting to the HDV’s behavior: the average maneuver
time is 3.4 s and 3.8 s, respectively, with corresponding
energy consumptions 27.1 and 18.8. However, if the human
driver performs hesitantly, the driver intention is not clear to
CAV C, so that it always travels in a conservative manner with
a longer average maneuver time of 8.8 s, and higher energy
consumption of 63.2. This motivates exploring an optimal
way to evaluate human characteristics in advance so that C
can make decisions earlier, hence improving its performance.
The videos for three types of drivers (human players) can be
found in https://drive.google.com/drive/folders/

1JQQ0mRMX35bEV6wsbPHmoM6UdOLMW2Dv?usp=sharing.

V. CONCLUSIONS
This paper proposes a robust framework for safe human

interactions in mixed traffic, in which case the connected and
automated vehicles can always guarantee safety with respect
to human driven vehicles. This framework is mainly based on
the real-time estimation of the human driven vehicle dynamics
and control policy and the incorporation of such estimations
into the event-triggered control barrier functions. Simulation
results in mixed traffic highway merging with different types
of human drivers have demonstrated the effectiveness and
robustness of the proposed framework in guaranteeing the
safety of all the vehicles. Future work will focus on estimating
the characteristics of human drivers and seeking more efficient
performance for CAV maneuvers.
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