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Quantum circuits with gates (local unitaries) respecting a global symmetry have broad applications in quantum
information science and related fields, such as condensed-matter theory and quantum thermodynamics. However,
despite their widespread use, fundamental properties of such circuits are not well understood. Recently, it was
found that generic unitaries respecting a global symmetry cannot be realized, even approximately, using gates
that respect the same symmetry. This observation raises important open questions: What unitary transformations
can be realized with k-local gates that respect a global symmetry? In other words, in the presence of a global
symmetry, how does the locality of interactions constrain the possible time evolution of a composite system? In
this work, we address these questions for the case of Abelian (commutative) symmetries and develop constructive
methods for synthesizing circuits with such symmetries. Remarkably, as a corollary, we find that, while the
locality of interactions still imposes additional constraints on realizable unitaries, certain restrictions observed
in the case of non-Abelian symmetries do not apply to circuits with Abelian symmetries. For instance, in
circuits with a general non-Abelian symmetry such as SU(d ), the unitary realized in a subspace with one
irreducible representation (charge) of the symmetry dictates the realized unitaries in multiple other sectors with
inequivalent representations of the symmetry. Furthermore, in certain sectors, rather than all unitaries respecting
the symmetry, the realizable unitaries are the symplectic or orthogonal subgroups of this group. We prove that
none of these restrictions appears in the case of Abelian symmetries. This result suggests that global non-Abelian
symmetries may affect the thermalization of quantum systems in ways not possible under Abelian symmetries.
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I. INTRODUCTION

The quantum circuit model [1–6] was originally developed
in the context of quantum computing, inspired by (classical)
digital logic circuits. This model provides a framework for
formulating quantum algorithms and can be directly trans-
lated into instructions that can be implemented on quantum
computers. Over time, the applications of this model have
extended well beyond quantum computing. Quantum circuits
have now become a standard framework for describing the dy-
namics and phases of many-body quantum systems (see, e.g.,
Refs. [7–11]). Hence, given the wide range of motivations
and applications of quantum circuits, understanding how the
standard framework of quantum circuits should be modified
in the presence of symmetries is also crucial and has broad
applications.

For instance, suppose certain native gates on a quan-
tum computer respect the U(1) symmetry corresponding to
rotations around the z axis or respect its Z2 subgroup cor-
responding to π rotation around z. What sort of unitary
transformations can be realized with such gates? Recently,
it was observed that in the presence of symmetries, the lo-
cality of unitaries in the circuit further restricts the set of
realizable unitaries [12,13]. That is, there is no fixed k such
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that symmetric unitaries that are k-local (i.e., act nontrivially
on at most k qudits) generate all symmetric unitaries on
systems with n > k qudits. This is in sharp contrast to the
well-known universality of 2-local unitaries in the absence of
symmetries [3,4].

What is the nature of the constraints imposed by the local-
ity of the gates, and how do they depend on the properties
of the symmetry group? In particular, are there any funda-
mental distinctions between the restrictions imposed by the
locality in the case of Abelian and non-Abelian symmetries?
This question can be equivalently formulated in the language
of the dynamics of composite systems with local Hamilto-
nians. The presence of symmetries implies certain standard
conservation laws, a fact often referred to as Noether’s theo-
rem [14,15]. These standard conservation laws apply to both
Abelian and non-Abelian symmetries. For systems with local
interactions, does the presence of non-Abelian global symme-
tries impose any additional constraints (beyond the standard
conservation laws) that do not appear in the case of Abelian
symmetries? Answering this question will be a step toward
understanding the special features of non-Abelian symme-
tries in the dynamics and thermalization of quantum systems,
which have recently attracted significant attention (see, e.g.,
Refs. [16–22]).

A. Overview of main results

In this work we develop the theory of quantum circuits
with Abelian symmetries. Our main results in Theorems 2, 3,
and 4 characterize the group of unitaries generated by k-local
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unitaries that respect an Abelian global symmetry. The proofs
of these results are constructive. Indeed, we develop new
techniques for synthesizing circuits with Abelian symmetries.
Interestingly, our results imply that certain constraints that
have been previously observed in the case of non-Abelian
symmetries [24], never appear in circuits with Abelian sym-
metries. In the following, we present an informal overview of
these results.

To explain this, first recall that the unitary representation
of any global symmetry group G decomposes the total Hilbert
space of n qudits, as (Cd )⊗n ∼= ⊕

μ Hμ, where the summa-
tion is over inequivalent irreducible representations (irreps) of
group G, and Hμ is the subspace of states with irrep μ. Then
a unitary transformation on this system respects the Abelian
symmetry G, i.e., is G-invariant, if, and only if, it is block-
diagonal with respect to this decomposition, which means
it conserves the charge (irrep) associated to the symmetry.
However, it turns out that a general unitary with this property
cannot be realized with k-local unitaries that respect the same
symmetry. In particular, as shown in Ref. [12],

(I) Locality imposes certain constraints on the relative
phases between sectors with different charges {Hμ} (see
Theorem 1 and the discussion below it).

Motivated by the presence of these constraints, in this
paper we propose a weaker notion of universality, which
will be called semi-universality.1 Namely, k-local symmet-
ric unitaries are called semi-universal if they generate all
symmetric unitaries, up to constraints on the relative phases
between sectors with different charges. More precisely, if for
any desired symmetric unitary V there exists a set of phases
φμ ∈ (−π, π ], such thatV

∑
μ eiφμ�μ is realizable by k-local

symmetric unitaries, then we say k-local symmetric unitaries
are semi-universal, where�μ is the projector toHμ, the sector
with charge μ. (See Sec. II C for the formal definitions.)

Then the next natural question is whether k-local symmet-
ric unitaries are semi-universal. It turns out that the answer
is not positive in general. That is, the locality of interactions
impose a different type of constraints, namely

(II) There are observables commuting with all k-local
symmetric unitaries that do not commute with some
other symmetric unitaries. Equivalently, under the action of
k-local symmetric unitaries a charge sector Hμ splits into
multiple irreducible invariant subspaces, as

Hμ =
⊕

α

Hμ,α, (1)

such that all k-local symmetric unitaries are block-diagonal
with respect to this decomposition.

In particular, projectors to the invariant subspaces {Hμ,α}
are conserved under k-local symmetric unitaries, whereas they
do not remain conserved under general symmetric unitaries.
Hence, they are independent of the standard (Noether’s) ob-
servables associated to the symmetry. Interestingly, we find
that in the case of Abelian symmetries, the only obstacle

1This name refers to universality on the semisimple part of the Lie
algebra of symmetric Hamiltonians.

FIG. 1. Relations between three fundamental concepts: We say
k-local symmetric unitaries are semi-universal if they can realize all
symmetric unitaries, up to possible constraints on the relative phases
between sectors with different irreps (charges). This property im-
plies that the only observables that commute with k-local symmetric
unitaries are those that commute with all symmetric unitaries. Our
previous work in Ref. [24] shows that the reverse implication does
not hold for general non-Abelian symmetries, such as SU(d ) with
d � 3. However, as we show in this paper, the reverse implication
does hold in the case of Abelian symmetries (see Theorem 4 for a
formal statement of this result). Indeed, in this case the two afore-
mentioned properties are both equivalent to a third property, namely
transitivity over basis elements with equal total irrep (charge), where
the basis is chosen such that in each basis element each subsystem
has a definite charge. Roughly speaking, this transitivity property
means that k-local charge-conserving operations can redistribute the
charge in the system.

for semi-universality is the presence of these extra conserved
observables.

Theorem (informal version)

For circuits with k-local G-invariant unitaries, if G is an
Abelian group and k � 2, then following three properties are
equivalent:

(i) Semi-universality
(ii) No extra conserved observables (equality of

commutants)
(iii) Transitivity over basis elements with equal total

charge (irrep).

In the following we define and discuss the third property.
See Theorem 4 for the formal statement and Fig. 1 for an
illustration of this result.

B. Transitivity: The key to understand Abelian circuits

For Abelian symmetries each qudit has a basis in which the
action of the symmetry transformations are diagonal, i.e., each
basis element has a definite charge (irrep). Furthermore, the n-
fold tensor product of such states defines a basis for the entire
system, and since the group is Abelian, each tensor product
state also has a definite charge, i.e., is restricted to a single
charge sector Hμ. For instance, in the case of U(1) symmetry
corresponding to rotations around the z axis of a qubit, this
basis is the so-called computational basis {|0〉, |1〉}⊗n.

Two elements of this global basis belong to the same
charge sector Hμ if, and only if, they can be converted to
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TABLE I. Conditions for semi-universality and universality for circuits with k-local symmetric unitaries. The results on general Abelian
symmetries, and, in particular, Zp group and finite Abelian groups, are established in this paper. The case of U(1) group was studied in
Ref. [12], SU(2) group in Ref. [23] and SU(d ) for d > 2, was established in Refs. [24] and [25] (see also Ref. [26]).

Locality of gates Number of ancilla
Representation of symmetry needed for qudits needed for

Symmetry on each local subsystem semi-universality universality

U(1) exp(iθA) θ ∈ [0, 2π ) for a Hermitian operator A
with equidistant integer eigenvalues

k = 2 1

Zp p � 2 exp( i2πap |1〉〈1|) a = 0, . . . , p− 1 k = p 1
Finite Abelian group G Regular representation k = 2 1
Finite Abelian group G Arbitrary 2 � k � |G| 1
All Abelian groups Arbitrary See Theorem 4 1
SU(2) Defining rep on C2 k = 2 2
SU(d ): d � 3 Defining rep on Cd k = 3 �3

each other using a symmetric unitary, which can be interpreted
as “charge redistribution” in the system. That is, symmetric
unitaries act transitively on the basis elements in the same
sector Hμ.2 On the other hand, in general, k-local symmetric
unitaries with k < n may not act transitively on such basis
elements. According to Theorem 4, if they do act transi-
tively, then they are also semi-universal. In Sec. V we go
one step further and show that a subset of k-local symmetric
Hamiltonians are semi-universal if they can achieve transitiv-
ity (see Corollary 2).

These results significantly simplify the study of semi-
universality and universality in Abelian circuits; transitivity
over basis elements has a simple (classical) interpretation as
the charge redistribution in the system and is generally a prop-
erty that is easier to check.3 For instance, the semi-universality
of 2-local U(1)-invariant unitaries, which was established in
Ref. [12] using a lengthy Lie-algebraic argument specific to
U(1) symmetry, can now be simply understood as a conse-
quence of the fact that 2-qubit swap unitaries, which clearly
respect the U(1) symmetry, act transitively on bit strings with
equal Hamming weights (see Sec. IVD).

Remarkably, a very similar argument can now be applied
for other Abelian groups. For example, in the case of Z2

subgroup of this U(1) symmetry, a similar argument shows
that 2-local unitaries that commute with σz ⊗ σz are semi-
universal. More generally, for any finite Abelian group G with
order |G| � 2, k-local symmetric unitaries with k � |G| are
semi-universal, i.e., generate all symmetric unitaries, up to
type I constraints (see Corollary 1). It is also worth noting
that, in general, depending on the symmetry and its represen-
tation, universality may or may not be achievable with finite
k < n. For instance, in the example of qubit systems with the
cyclic group Zp symmetry with even p, unless k = n, k-local
Zp-symmetric unitaries are not universal. In the case of odd

2In the above example of U(1) symmetry, the total charge (irrep)
is determined by the Hamming weight of the bit string associated to
each element of the computational basis, i.e., the number of 1’s in
that element.

3It is worth noting that the concept of transitivity can also be
defined in classical logic circuits in a similar fashion. However, inter-
estingly, in the classical case transitivity does not imply universality.

p, on the other hand, k-local Zp-symmetric unitaries become
universal for k � p � 3 (see Table I and Sec. IVD).

Our results also allow us to characterize the realizable
unitaries even when semi-universality, or, other equivalent
properties, does not hold. Recall that when this condition is
not satisfied some charge sectors Hμ may further decompose
into invariant subspaces {Hμ,α}, as in Eq. (1). Then Theorem 3
implies that any unitary V that is block-diagonal with respect
to the invariant subspaces {Hμ,α} can be realized with k-local
symmetric unitaries with k � 2, provided that in all these
invariant subspaces, the determinants of the realized unitaries
are one. The latter condition guarantees that type I constraints
are satisfied.

C. Elevating semi-universality to universality
using a single ancilla

We show that, in the case of Abelian symmetries using a
single ancilla qudit one can always elevate semi-universality
to universality. Indeed, in Sec. VI we introduce a general
mechanism for implementing unitary transformations that
are diagonal relative to the aforementioned basis using only
2-local symmetric unitaries and a single ancilla. This, in par-
ticular, implies that one can circumvent type I constraints
using a single ancilla qudit.

D. More restrictions for circuits with non-Abelian symmetries

Remarkably, it turns out that in the case of non-Abelian
symmetries, the locality of interactions can impose other types
of constraints, namely

(III) In certain sectors {Hμ} the realized unitaries are the
orthogonal, the symplectic, or other (irreducible) subgroups
of the symmetric unitaries.

(IV) The realized unitaries in certain sectors {Hμ} dictate
the unitaries in one or multiple other sectors. In other words,
in general, the time evolution of different sectors cannot be
independent of each other.

Indeed, both of these restrictions exist in the case of SU(d )
symmetry with d > 2 [24]. In particular, Ref. [24] shows that
even when the state of system is restricted to a sectorHμ with
an irreducible representation of SU(d ), certain functions of
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FIG. 2. Example of a quantum circuit with 3-local gates: Each
gate is a unitary transformation that acts on, at most, three qudits.

state, which are not conserved under general SU(d )-invariant
Hamiltonians, do remain conserved if the SU(d )-invariant
Hamiltonian can be decomposed as a sum of 2-local terms. It
is also worth noting that, in the special case of qubit systems
with SU(2) symmetry, the above constraints do not exist, and
the locality of interactions only imposes type I constraints
[23]. However, unlike the case of Abelian symmetries, in the
case of SU(2) symmetry, a single ancilla qubit is not sufficient
to elevate semi-universality to universality. Instead, universal-
ity can be achieved with two ancilla qubits [23].

We proceed by first formally defining the framework of
symmetric quantum circuits in Sec. II, defining the no extra
conserved observable condition in Sec. III, and presenting our
main results in Sec. IV. In Sec. V we show that if k-local sym-
metric unitaries are semi-universal, then only certain specific
families of k-local symmetric gates are sufficient to achieve
semi-universality. In Sec. VI we present a general mechanism
for elevating semi-universality to universality using an ancilla
qudit. In Sec. VII we present further discussions on the ap-
plications and the implications of symmetric quantum circuits
with Abelian symmetries in the context of the resource theory
of quantum thermodynamics [17,19,27–32], thermalization of
quantum systems with conserved charges, quantum reference
frames [33], and universal quantum computing. The proofs of
the main results are presented in Sec. VIII.

II. PRELIMINARIES

A. The framework of symmetric quantum circuits

We first briefly review the framework of symmetric quan-
tum circuits (see Ref. [12] for further details). Consider a
system of n qudits with the total Hilbert space (Cd )⊗n. We
say an operator A on this system is k-local, if, up to a permu-
tation of qudits, it can be decomposed as A = Aloc ⊗ I⊗(n−k)

d ,
where Aloc acts on k qudits and Id is the identity operator
on a single qudit (see Fig. 2). Consider a group G with a
given unitary representation u(g) : g ∈ G on a single qudit.
On n qudits we consider the tensor product representation
U (g) = u(g)⊗n. We say an operator A is G-invariant, or sym-
metric, if [A,U (g)] = 0 for all g ∈ G. Define VG

n,k to be the set
of all unitary transformations that can be implemented with
k-local G-invariant unitaries. More precisely, VG

n,k is the set of
unitaries V = ∏m

i=1Vi, generated by composing G-invariant
k-local unitaries Vi : i = 1 · · ·m, for a finite m [12]. Equiva-
lently, VG

n,k is the set of unitary time evolutionsV (t ) : t � 0 of

a system evolving under the Schrödinger equation,

dV (t )

dt
= −iH (t )V (t ) ,

with the initial condition V (0) = I⊗n
d , for Hamiltonians H (t )

that are (i) G-invariant, and (ii) can be decomposed as a sum
of k-local terms. When the system has a given geometry, one
may impose the stronger requirement of geometric locality,
i.e., k-local interactions should be restricted to k nearest-
neighbor qudits. However, if the qudits lie on a connected
graph, such as a spin chain, then this additional constraint
does not change the group VG

n,k [12]. It is well known that in
the absence of symmetries, i.e., when G is the trivial group,
2-local unitaries are universal [3,4], i.e., Vn,2 = Vn,n for all n.

B. A no-go theorem: Type I constraints

Does the universality of 2-local unitaries in the absence of
symmetries remain valid in the presence of symmetries? That
is, does there exist a fixed k such that VG

n,k = VG
n,n for all n?

The following result addresses this question.

Theorem 1. [12] For any integer k � n, the group gen-
erated by k-local G-invariant unitaries on n qudits, denoted
by VG

n,k, is a compact connected Lie group. The difference
between the dimensions of this Lie group and the group of
all G-invariant unitaries is lower bounded by

dim
(
VG
n,n

) − dim
(
VG
n,k

)
� |IrrepsG(n)| − |IrrepsG(k)| , (2)

where |IrrepsG(k)| is the number of inequivalent irreps of
group G appearing in the representation u(g)⊗k : g ∈ G.

In the case of Abelian groups, the right-hand side of Eq. (2)
can be interpreted as the difference between the total charge
in the system and the charge that participates in k-local inter-
actions. For a Lie group G, the number of inequivalent irreps
|IrrepsG(n)| can grow unboundedly with the system size n, in
which case the universality cannot be achieved with any finite
k. The bound in Eq. (2) is a consequence of certain constraints
on the relative phases between sectors with different charges
(type I constraints), which are characterized in Ref. [12] in
terms of the Lie algebra associated to VG

n,k (namely, they
appear because local symmetric interactions cannot generate
certain elements of the center of the Lie algebra of all sym-
metric Hamiltonians). In particular, these constraints imply
that only for certain combinations of the phases {exp(iφμ)}μ
the unitaries

∑
μ exp(iφμ)�μ are in VG

n,k , where �μ is the
projector to the sector Hμ with charge μ. In Appendix we
present further discussions and a summary of the derivation
of Eq. (2).

C. Definition: Semi-universality

In addition to type I constraints highlighted in the above
theorem, which appear for general symmetries, for some sym-
metries the locality of interactions imposes further restrictions
on the realizable unitaries. To focus on these additional con-
straints and ignore the type I constraints, in the following we
define the notion of semi-universality, which is weaker than
universality: For a general group G (Abelian, or non-Abelian)
k-local G-invariant unitaries are called semi-universal if for
any G-invariant unitary V ∈ VG

n,n, there exists a set of phases
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φμ ∈ (−π, π ], such that the unitary (
∑

μ eiφμ�μ)V ∈ VG
n,k ,

which means it is realizable with k-localG-invariant unitaries.
In words, this condition means that k-local G-invariant uni-
taries generate all G-invariant unitaries, up to constraints on
the relative phases between sectors with different charges.
This condition can be equivalently stated as4

SVG
n,k ≡ [

VG
n,k ,VG

n,k

] = [
VG
n,n ,VG

n,n

]
, (3)

where [VG
n,k,VG

n,k] denotes the commutator subgroup of group
VG
n,k , i.e., the subgroup generated by the unitaries in the form

V1V2V
†
1 V

†
2 for arbitrary V1,V2 ∈ VG

n,k . It is worth noting that,
from a Lie-algebraic perspective, Eq. (3) implies that the
semisimple parts of the Lie algebras associated with VG

n,k and
VG
n,n are identical. However, in general, the centers of these Lie

algebras may differ, which will result in constraints of type I
(see Appendix and Ref. [12] for further discussions).

In the special case of Abelian groups, which is the main
focus of this paper, we have

VG
n,k ⊆ VG

n,n =
⊕

μ∈IrrepsG(n)
U(Hμ), (4)

where the summation is over inequivalent irreps of group G
appearing in the representation of the symmetry on n qudits,
and U(Hμ) is the group of all unitaries on space Hμ. In
this case, semi-universality in Eq. (3) can be equivalently
rephrased as

SVG
n,n =

⊕
μ∈IrrepsG(n)

SU(Hμ) ⊂ VG
n,k, (5)

where SU(Hμ) is the group of special unitaries on Hμ, i.e.,
unitaries with determinant 1.

III. EXTRA CONSERVED OBSERVABLES

Besides the constraint on the relative phases, there can
be another obstruction to the universality of local symmetric
unitaries, namely the presence of extra conserved observables.

A. Example: Qubit systems with cyclic symmetry

For any integer p, the single-qubit unitary transformations

u(a) = exp

(
i2πa

p
|1〉〈1|

)
=

(
1

e
i2πa
p

)
,

define a representation of the cyclic group Zp, corresponding
to integers a = 0, 1, . . . , p− 1 with addition mod p. The ac-
tion of this symmetry on n qubits is given by unitaries u(a)⊗n.
For n < p the set of Zp-invariant unitaries coincides with the
set of unitaries respecting the stronger U(1) symmetry, corre-
sponding to rotations around the z axis, which is represented
by unitaries (exp(iθσz/2))⊗n for θ ∈ [0, 2π ) (see Sec. IVD).
On the other hand, for n � p there are unitaries that respect
the Zp symmetry, but not this U(1) symmetry. This is a con-
sequence of the fact that both states |1〉⊗p and |0〉⊗p remain
invariant under the action of Zp group and, therefore, can

4Note that the Lie algebra associated to SVG
n,k ≡ [VG

n,k ,VG
n,k] is the

semisimple part of the Lie algebra associated to VG
n,k .

be interconverted into each other by unitaries that respect
this symmetry (in other words, p copies of “excitation” |1〉
annihilate each other into the “vacuum”). It follows that for
n � p the observableO = |1〉〈1|⊗n does not remain conserved
under general Zp-invariant unitaries, whereas it does remain
conserved under k-local Zp-invariant unitaries for k < p. In
this example, it is clear that to achieve semi-universality, k-
local Zp-invariant unitaries with k � p are needed.

B. No extraconserved observables condition
(the equality of commutants)

The above example clearly shows that in the presence of
a symmetry the locality of interactions can impose additional
conservation laws, independent of the standard conservation
laws associated to the symmetry. In the following, we say
there are no extra conserved observables under k-local sym-
metric unitaries if

Comm
{
VG
n,k

} ?= Comm
{
VG
n,n

} = SpanC{U (g) : g ∈ G}, (6)

where the left-hand side is the space of operators commuting
with all unitaries in VG

n,k , and the second equality always holds
by the bicommutant theorem. Observables that belong to the
linear space in the right-hand side are the standard (Noether’s)
conserved observables associated to the symmetry. That is,
they are conserved under all symmetric unitaries (it is also
worth mentioning that any unitary that commutes with all such
observables is a symmetric unitary, i.e., belongs to VG

n,n).
As we saw before in Eq. (4), for an Abelian group G, sym-

metric unitaries are those that are block-diagonal with respect
to subspaces with different charges. Then, the right-hand side
of Eq. (6) is equal to the span of projectors to {Hμ}, and
therefore has dimension |IrrepsG(n)|. Hence, the condition in
Eq. (6) can be equivalently stated as

dim
(
Comm

{
VG
n,k

}) ?= |IrrepsG(n)| . (7)

IV. (NON-)UNIVERSALITY IN ABELIAN CIRCUITS

According to our first main result, in the case of Abelian
symmetries if there are no extra conserved observables then
all symmetric unitaries are realizable, up to constraints on the
relative phases (type I constraints).

Theorem 2. For an Abelian group G, the no-extra-
conserved-observable condition in Eq. (6) [or equivalently in
Eq. (7)] holds for k � 2 if, and only if,⊕

μ∈IrrepsG(n)
SU(Hμ) ⊂ VG

n,k . (8)

This equation means that k-local G-invariant unitaries are
semi-universal. Note that the celebrated universality of 2-local
unitaries in the absence of symmetries [3,4], corresponds to a
special case of this theorem, when the representation of group
G on the system is trivial.

The proof of this theorem is presented in Sec. VIII. To
establish this result, first we show the following more gen-
eral theorem, which does not rely on the no extra conserved
observable condition.
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Theorem 3. For an Abelian group G, under the action of k-
local G-invariant unitaries with k � 2, the total Hilbert space
of n qudits decomposes into orthogonal subspaces {Hμ,α} as

(Cd )⊗n ∼=
⊕

μ∈IrrepsG(n)
Hμ =

⊕
μ∈IrrepsG(n)

⊕
α

Hμ,α, (9)

such that VG
n,k is block-diagonal with respect to this decompo-

sition and ⊕
μ,α

SU(Hμ,α ) ⊂ VG
n,k ⊆

⊕
μ,α

U(Hμ,α ). (10)

Equivalently, Eq. (10) can be restated as

SVG
n,k ≡ [

VG
n,k ,VG

n,k

] =
⊕
μ,α

SU(Hμ,α ), (11)

which fully characterizes the commutator subgroup of VG
n,k ,

denoted by SVG
n,k .

In summary, in the case of Abelian symmetries the locality
of interactions only imposes constraints of types I and II (i.e.,
no types III and IV constraints). Furthermore, the no extra
conserved observable condition rules out type II constraints,
which means the only constraints on the realizable unitaries
are of type I.

A. Transitivity implies semi-universality

In the example of the cyclic symmetry we saw that the extra
conserved observables are related to the fact that, due to the
locality of interactions, the charge associated to the symmetry
cannot be arbitrarily redistributed in the system. In the follow-
ing, we show that this interpretation can be generalized to all
Abelian symmetries.

An important property of Abelian symmetries, which plays
a crucial role in all the arguments in this paper, is the addi-
tivity of the charge associated to the symmetry. In particular,
the charges (irreps) of the subsystems uniquely determine
the total charge in the system. Let |r〉 : r = 0, . . . , d − 1 be
an orthonormal basis for Cd , with the property that single-
qudit unitaries {u(g) : g ∈ G} are simultaneously diagonal in
this basis (Note that such basis exists because the group is
Abelian). The n-fold tensor product of these states define an
orthonormal basis for the total Hilbert space (Cd )⊗n, denoted
as

BBBn = {|rrr〉 = |r1〉 ⊗ · · · ⊗ |rn〉 : r j = 0, . . . , d − 1}, (12)

where rrr = r1 · · · rn. Each basis element is an eigenvector of
unitaries U (g) = u(g)⊗n, and therefore is a vector in a single
charge sector Hμ. In the following, the Hamming distance
between rrr = r1 · · · rn, and rrr′ = r′

1 · · · r′
n, denoted by d (rrr, rrr′),

is the number of qudits which are assigned different re-
duced states by |rrr〉 and |rrr′〉. The following result extends
Theorem 2 by including an equivalent condition.

Theorem 4. For an Abelian group G, let
⊕

μ Hμ be the
decomposition of the total Hilbert space of n qudits into
subspaces with inequivalent irreps (charges) of group G. For
k � 2, the following statements are equivalent:

(1) Semi-universality:⊕
μ∈IrrepsG(n)

SU(Hμ) ⊂ VG
n,k .

(2) No-extra-conserved-observable condition: Equa-
tion (6), or, equivalently, Eq. (7) holds.

(3) Transitivity over the basis elements with equal charge
(irrep): For any pair of basis elements |rrr〉, |rrr′〉 ∈ BBBn that belong
to the same charge sector Hμ, there exists a sequence of
elements of BBBn connecting |rrr〉 to |rrr′〉 as

|rrr〉 = |sss1〉 −→ |sss2〉 −→ · · · · · · −→ |ssst 〉 = |rrr′〉 ,

such that (i) all states |sss j〉 are in the same charge sector Hμ,
and (ii) the Hamming distance between any consecutive pair
sss j and sss j+1 is d (sss j, sss j+1) � k.

The condition in Statement 3 has a simple (classical) inter-
pretation: it means that the charge associated to the symmetry
can be arbitrarily redistributed in the system via a sequence of
k-local charge-conserving operations. According to the theo-
rem, if this property holds, then there are no extra conserved
observables and all the symmetric unitaries are realizable by
k-local symmetric unitaries, up to relative phases between
sectors with different charges (type I constraints).

It is also worth noting that using swap unitaries, which
are 2-local and G-invariant, any state |rrr〉 ∈ BBBn can be mapped
to an arbitrary permuted version of this state. Therefore, for
testing the condition in Statement 3, the only relevant prop-
erty of |rrr〉 and |rrr′〉 is the number of qudits in each irrep
μ ∈ IrrepsG(1) (That is, the order of qudits does not matter).
In the rest of this section, we discuss the implications of these
theorems.

B. Finite Abelian groups

In the case of finite groups, |IrrepsG(n)| is bounded by the
order of the group, denoted by |G|. Let lmin be the smallest
positive integer satisfying

|IrrepsG(lmin)| = |IrrepsG(n)| � |G| . (13)

Roughly speaking, this means that the total charge in the
system with n qudits can be compressed into lmin qudits. Then,
it can be easily seen that Statement 3 of Theorem 4 holds
for k = lmin + 1: One can use lmin qudits as a charge reser-
voir and by coupling them sequentially to all other qudits in
the system via (lmin + 1)-local G-invariant unitaries, one can
transform any basis element |rrr〉 to |rrr′〉, provided that they have
equal total charges. We conclude that the three statements in
Theorem 4 hold for k � lmin + 1. For instance, if each qudit
carries the regular representation of the group, then lmin = 1,
independent of n, which means 2-local G-invariant unitaries
are semi-universal.

Next, we note that for all l < lmin, |IrrepsG(l )| monoton-
ically increases with l . More precisely, |IrrepsG(l + 1)| >

|IrrepsG(l )| (see Appendix). Furthermore, assuming each qu-
dit has more than a single charge sector, which means for
some group element g ∈ G the unitary u(g) is not a global
phase, then |IrrepsG(1)| � 2. Together with Eq. (13) this
means

lmin � |G| − 1 . (14)
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Then, applying Theorem 4, we arrive at

Corollary 1. Let G be an arbitrary finite Abelian group
with order |G|. For k � min(|G|, 2), k-local G-invariant uni-
taries are semi-universal, i.e., Eq. (5) holds.

C. Type I constraints

Combining Theorem 4 with the results of [12] discussed
in Appendix, it can be shown that for a connected Abelian
group G, such as U(1), if any/all of the equivalent conditions
in Theorem 4 are satisfied, then the bound in Eq. (2) holds as
equality, i.e.,

dim
(
VG
n,n

) − dim
(
VG
n,k

) = |IrrepsG(n)| − |IrrepsG(k)| . (15)

Furthermore, this equation holds even if G is not connected,
but Tr(u(g)) �= 0 for all g ∈ G (see Appendix).

It is also worth noting that when G is a connected Abelian
group, if each qudit has more than a single charge sector, such
that for some group elements g ∈ G, u(g) is not a global phase,
then, |IrrepsG(k)| < |IrrepsG(n)| for k < n (see Appendix).
This implies that, unless k = n, general symmetric unitaries
cannot be realized with k-local symmetric unitaries.5 The
latter statement also holds even if G is not connected but
Tr(u(g)) = 0 for a group element g ∈ G (see Appendix).

D. Examples

1. U(1) group

For a system of n qubits, consider the U(1) symmetry
corresponding to rotations around the z axis, exp(iθσz/2) :
θ ∈ [0, 2π ). Then, the basis BBBn = {|0〉, |1〉}⊗n is the standard
(computational) basis for n qubits. Any pair of bit strings with
equal Hamming weights (i.e., the same number of 1’s) can
be converted to each other by a sequence of swaps, which
are 2-local and respect the U(1) symmetry. Then, Theorem
4 immediately implies that 2-local U(1)-invariant unitaries
are semi-universal. Furthermore, because U(1) is a connected
group, Eq. (15) implies that for k � 2,

dim
(
VU (1)
n,n

) − dim
(
VU (1)
n,k

) = n − k.

These results were previously obtained in Ref. [12], using
Lie-algebraic arguments that are specific to U(1) symmetry
on qubits (namely, by considering the nested commutators of
the Hamiltonian σx ⊗ σx + σy ⊗ σy).

2. Cyclic groups

Recall the example of qubit systems with the cyclic group
Zp in Sec. III A. This group has p distinct one-dimensional
(1D) irreps

fs(a) = exp

(
i2πas

p

)
: s = 0, . . . , p− 1,

for arbitrary group element a ∈ {0, . . . , p− 1}. The total Zp

charge of the n-qubit state |rrr〉 = |r1〉 · · · |rn〉 ∈ {|0〉, |1〉}⊗n is

5On the other hand, in the case of non-Abelian groups such
as SU(2), it is possible to achieve |IrrepsG(k)| = |IrrepsG(n)|
for k < n [23].

determined by

stot =
n∑
j=1

r j (mod p) .

For a system with n qubits, if n < p, then the value of this
charge uniquely determines the Hamming weight of r1 · · · rn.
This means that under Zp-invariant gates acting on k < p
qubits, the Hamming weight

∑n
j=1 r j is conserved. On the

other hand, since |0〉⊗p and |1〉⊗p have equal total Zp charges,
using k-local Zp-invariant unitaries with k � p, one can
transform any basis element |rrr〉 to a “standard” form with
Hamming weight in the range 0, . . . , p− 1. It follows that
condition 3 in Theorem 4 is satisfied for k � p. Therefore,
k-local Zp-invariant unitaries are semi-universal, which can
also be seen using Corollary 1.

Interestingly, in this case type I constraints depend on
whether p is odd or even. For even p, we have Tr(u(p/2)) = 0,
whereas for odd p, Tr(u(a)) �= 0 for all a ∈ {0, . . . , p− 1}.
Then the results of Sec. IVC imply

p is odd 
⇒ Vn,k = Vn,n k � p

p is even 
⇒ Vn,k �= Vn,n, k < n,

where we have omitted the superscript Zp (We note that inde-
pendent of and after the present work, Ref. [34] discusses this
example and reports similar results).

V. WHICH k-LOCAL G-INVARIANT GATES ARE NEEDED?

So far, our focus has been on the group generated by all
k-local G-invariant unitaries, denoted as VG

n,k . However, on
closer examination of the constructive proof of Theorem 3
presented in Sec. VIII (which also implies Theorems 2 and
4), it becomes clear that only specific families of k-local
G-invariant unitaries are required. These restricted families
may not necessarily generate all elements of VG

n,k . But, they
still generate its commutator subgroup SVG

n,k in Eq. (11). The
following corollary presents a list of all k-local G-invariant
gates that are needed in this construction, to generate SVG

n,k

(note that since VG
n,k itself is contained in

⊕
μ,α U(Hμ,α ),

the extra k-local G-invariant gates that are not included in
the following list can only affect the relative phases between
sectors {Hμ,α}).

In the following, for any pair of basis elements |r〉, |r′〉 ∈
BBBk , we say |r〉 and |r′〉 have the same total charge if

〈rrr|u(g)⊗k|rrr〉 = 〈rrr′|u(g)⊗k|rrr′〉 : ∀g ∈ G, (16)

which means they carry the same irrep of group G.

Corollary 2. Any unitary in the group SVG
n,k can be re-

alized using the following three families of G-invariant
unitaries:

(1) Single-qudit unitaries exp( iπ2 |r〉〈r|), for all |r〉 ∈ BBB1.
(2) Two-qudit Hermitian unitaries C12 = I⊗2

d −
2|r1〉〈r1|1 ⊗ |r2〉〈r2|2, for all |r1〉, |r2〉 ∈ BBB1.

(3) The family of unitaries exp(iθX(t; t′)) for θ ∈ [0, 2π )
and X(t; t′) ∈ Hredist, where Hredist is any set of G-invariant
Hermitian operators in the form X(t; t′) = |t〉〈t′| + |t′〉〈t|
with |t〉, |t′〉 ∈ BBBl for some l � k satisfying the following
property: Hredist acts transitively on the elements of BBBk that
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have the same total charge, i.e., for any |r〉, |r′〉 ∈ BBBk , if
Eq. (16) holds, then there exists a sequence of elements
X(tw+1; tw ), . . . ,X(t2; t1) ∈ Hredist such that

|rrr′〉 = XAw
(tw+1; tw ) · · ·XA1 (t

2; t1)|rrr〉 , (17)

where XAj (t
j+1; t j ) acts as X(t j+1; t j ) on the subset Aj of

qudits and acts trivially on the rest of qudits.

Note that the first two families of unitaries are independent
of parameter k and the structure of group G. For instance,
for the above examples of U(1) and its cyclic subgroup Zp,
these families are identical. Furthermore, the property that
is required for the third family is that Hredist should act
transitively on the elements ofBBBk that have the same charge. In
general, for k < n,Hredist does not act transitively on elements
of BBBn that belong to the same charge sector. If it does, then
Corollary 2 implies that SVG

n,k = SVG
n,n, which means semi-

universality can be achieved with the above three gate sets
(this, in particular, implies Theorem 2).

It is also worth noting that under the first two families
of gates the charge of each qudit is conserved. That is, such
unitaries commute with

⊗n
i=1 u(gi ) for all gi ∈ G. On the

other hand, the third family of unitaries, which correspond to
Hamiltonians in Hredist, redistribute the charge in the system,
which is crucial for semi-universality.

Examples

1. No symmetries

A special case of this framework is a system of qubits
with no symmetries, or, equivalently, with the trivial repre-
sentation of the symmetry. In this case we can choose BBBn =
{|0〉, |1〉}⊗n, which is the computational basis. Then, up to a
global phase, the first family of unitaries in the above gate sets
is generated by the single-qubit gate S = exp(i π2 |1〉〈1|) (Note
that exp(i π2 |0〉〈0|) = iS3). The second family is the two-qubit
Controlled-Z gate, also denoted as CZ12 = I⊗2 − 2|1〉〈1|1 ⊗
|1〉〈1|2, and three other two-qubit gates obtained from this gate
by sandwiching it between Pauli x operators, namely(

σ r1
x ⊗ σ r2

x

)
CZ12

(
σ r1
x ⊗ σ r2

x

)
: r1, r2 = 0, 1. (18)

The third family can be chosen to be the single-qubit
gates exp(iθσx ) : θ ∈ [0, 2π ), which corresponds to Hredist =
{X(0; 1) = σx}. In this context the transitivity condition in
Eq. (17) is satisfied trivially for k = n because all basis ele-
ments have equal charge, i.e., Eq. (16) holds trivially, and one
can go from any element of the computational basis to another
via a sequence of Pauli x operators. Using single-qubit gates
exp(i π2 σx ) = iσx one also obtains all unitaries in Eq. (18) from
CZ gate.

In summary, in this special case our result implies that S
and CZ gates together with single-qubit rotations around the
x axis are universal, i.e., generate all n-qubit unitaries, up to
a global phase (this, of course, also follows from the well-
known universality of CNOT and single-qubit gates). This
example also demonstrates that, for general groups and rep-
resentations, semi-universality cannot be achieved with any
combination of two among the three families of gates listed in
Corollary 3.

2. U(1) group

In the example of qubit systems with U(1) symmetry dis-
cussed in Sec. IVD, Hredist = {X(01; 10)} with
X(01; 10) = |01〉〈10| + |10〉〈01| = 1

2 (σx ⊗ σx + σy ⊗ σy),
(19)

satisfies the transitivity condition in Eq. (17) for all k � n.
That is, by applying a sequence of this two-qubit operator
on different pairs of qubits we can go from any element of
the computational basis BBBn to any other element with equal
Hamming weight. Then, Corollary 2 implies that the semi-
universality can be achieved using S gate, two-qubit gates in
Eq. (18), and the family of unitaries exp(iθ (σx ⊗ σx + σy ⊗
σy)) : θ ∈ [0, 2π ).

3. Cyclic group

The above three gate sets that are semi-universal for U(1)
symmetry are not sufficient to achieve semi-universality in the
case of Zp symmetry discussed in Sec. III A. In particular,
with such gates the transitivity condition in Eq. (17) is not
satisfied. To achieve transitivity, and hence semi-universality,
we amend these gate sets with the gates exp(iθX(0p; 1p)) :
θ ∈ [0, 2π ), where

X(0p; 1p) = |0〉〈1|⊗p + |1〉〈0|⊗p .

It can be easily seen thatX(0p; 1p) together withX(01; 10) act
transitively on the elements of BBBn with equal charge: Recall
that for Zp symmetry the charge (irrep) is uniquely deter-
mined by the Hamming weight mode p. Using a sequence of
operators X(01; 10) it is possible to convert any basis element
in BBBn to another basis element with equal Hamming weight.
Furthermore, applying X(0p; 1p) on p qubits which are all
in state |0〉 (or, all in state |1〉) increases (or, decreases) the
Hamming weight by p. Combining these operations together
one can achieve transitivity on the basis elements with equal
Hamming weights mode p.

For instance, in the special case of bit-parity Z2 symmetry,
we have

X(00; 11) = 1
2 (σx ⊗ σx − σy ⊗ σy) . (20)

Furthermore, since SσxS† = σy, using the S gates together
with the family of unitaries exp(iθσx ⊗ σx ) : θ ∈ [0, 2π )
we obtain both families of unitaries exp(iθX(01, 10)) and
exp(iθX(00, 11)). For instance, exp(i2θX(00, 11)) can be re-
alized as (S ⊗ S) exp(−iθσx ⊗ σx )(S† ⊗ S†) exp(iθσx ⊗ σx ).

In this example, the elements of SVZ2
n,k are n-qubit unitaries

V satisfying the conditions

σ⊗n
z Vσ⊗n

z = V, (21)

and

det(V0) = det(V1) = 1, (22)

where V0 and V1 are the components of V in the subspaces
with even and odd Hamming weights, respectively, such that
V = V0 ⊕V1 and det(Vb) denotes the determinant of Vb on its
support. In summary, we conclude that

Corollary 3. Any n-qubit unitary V satisfying conditions
in Eq. (21) and Eq. (22) can be implemented using S gates, 2-
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qubit gates in Eq. (18), and the family of unitaries exp(iθσx ⊗
σx ) : θ ∈ [0, 2π ).

VI. FROM SEMI-UNIVERSALITY TO UNIVERSALITY
VIA AN ANCILLA QUDIT

Reference [12] proves that any U(1)-invariant unitary on
qubit systems can be realized with 2-local U(1)-invariant uni-
taries and a single ancillary qubit. Here we show how this
method can be generalized to other Abelian symmetries to cir-
cumvent type I constraints. It is worth noting that, in general,
type II constraints cannot be removed with ancillary qudits of
the same size (For instance, in the example of the cyclic group
Zp, it is impossible to convert state |1〉⊗p to |0〉⊗p with k-local
symmetric unitaries with k < p, even if one is allowed to use
ancillary qubits).

Indeed, we establish a more general result demonstrating
the power of a single ancillary qudit. First, we show

Lemma 1. For an Abelian group G, any unitary transfor-
mation V that is diagonal in the basis BBBn in Eq. (12) can be
realized with 2-local G-invariant unitaries and a single ancilla
qudit. That is, there exists Ṽ ∈ VG

n+1,2, such that for any state
|ψ〉 ∈ (Cd )⊗n, it holds that

Ṽ (|ψ〉 ⊗ |0〉anc) = (V |ψ〉) ⊗ |0〉anc,
where |0〉 ∈ Cd can be any state that belongs to a single irrep
of G, i.e., has a definite charge.

Note that even in the presence of type II constraints, all
diagonal unitaries can be still implemented with two-qudit
gates and a single ancilla qudit. This is expected from the
intuition that type II constraints are related to restrictions on
how the conserved charge associated to the symmetry can be
redistributed in the system and implementing diagonal uni-
taries does not require such charge redistributions.

As we argue in Sec. VIII, each basis element |rrr〉 ∈ BBBn

belongs to a single irreducible invariant subspaceHμ,α . Then,
it is straightforward to see that combining these diagonal
unitaries with unitaries in

⊕
μ,α SU(Hμ,α ) ⊂ VG

n,k in Eq. (10),
one obtains all the unitaries that are block-diagonal with re-
spect to the irreducible invariant subspaces {Hμ,α}. In other
words, for k � 2, a single ancillary qudit allows us to extend
the group VG

n,k to

VG
n,k

one ancillary qudit−−−−−−−−−→
⊕
μ,α

U(Hμ,α ).

If there are no extra conserved observables, i.e., Eq. (7) holds,
then one obtains VG

n,n, i.e., the set of all G-invariant unitaries
on the system.

In the following we show that Lemma 1 follows from
Theorem 3. To simplify the notation and without loss of gen-
erality, we assume the state |0〉 of ancilla is an element of BBB1,
the qudit basis that was used in the definition of in Eq. (12).
Consider the family of unitaries exp(iθ |rrr〉〈rrr|) : θ ∈ [0, 2π ),
where |rrr〉 is an arbitrary element of the basis BBBn, other than
|0〉⊗n. Note that these unitaries are not in

⊕
μ,α SU(Hμ,α ),

and therefore, in general, they are not realizable with k-local
G-invariant unitaries with k < n [this is the case, for instance,
for U(1) symmetry]. Since |rrr〉 �= |0〉⊗n, there exists, at least,

one qudit with the reduced state |s〉, which is orthogonal to
|0〉. Let |rrr′〉 ∈ BBBn be the state obtained from |rrr〉 by changing
the state of this qudit from |s〉 to |0〉. This means that the two
states

|rrr〉 ⊗ |0〉anc swap←→ |rrr′〉 ⊗ |s〉anc
are related by swapping the ancilla qudit and the qudit in
state |s〉. Since swap is 2-local and G-invariant, this implies
that, relative to the group VG

n+1,2, these states live in the same
irreducible invariant subspace of (Cd )⊗(n+1), as defined in
Theorem 3. It follows that the support of the Hamiltonian

H̃rrr = |rrr〉〈rrr| ⊗ |0〉〈0|anc − |rrr′〉〈rrr′| ⊗ |s〉〈s|anc
is restricted to a single irreducible invariant subspace. Since
this Hamiltonian is also traceless, Theorem 3 implies that

∀θ ∈ [0, 2π ) : exp(iθH̃rrr ) ∈ VG
n+1,2.

Furthermore, we have

exp(iθH̃rrr )(|ψ〉 ⊗ |0〉anc) = [exp(iθ |rrr〉〈rrr|)|ψ〉] ⊗ |0〉anc.
Since the state of ancilla has remained unchanged, we can
reuse it again. Using this method, we can implement unitaries
exp(iθ |rrr〉〈rrr|) for all |rrr〉 ∈ BBBn, except |rrr〉 = |0〉⊗n. Combining
these unitaries we obtain any unitary in the form

V = |0〉〈0|⊗n +
∑
rrr �=0n

exp(iθrrr ) |rrr〉〈rrr|,

for arbitrary phases {exp(iθrrr )}. This is the set of all unitaries
diagonal in BBBn basis, up to a global phase. Adding a global
phase, which by definition is k-local for all k, we obtain all
unitaries that are diagonal in this basis. This proves Lemma 1.

VII. DISCUSSION

Since the early works of Deutsch [1], DiVincenzo [3], and
Lloyd [4], the theory of quantum circuits has significantly
advanced. However, despite their diverse applications, sym-
metric quantum circuits are not yet well understood. In this
work we developed the theory of Abelian symmetric quan-
tum circuits and showed that certain constraints that restrict
realizable unitaries in circuits with non-Abelian symmetries
do not exist in the case of circuits with Abelian symme-
tries (namely, constraints of types III and IV). In particular,
according to Theorem 3, the realized unitaries in different
irreducible invariant subspaces {Hμ,α} are, in general, inde-
pendent of each other, and all the unitaries with determinant
one are realizable inside each subspace. It is also worth noting
that the constraints of types III and IV, do not always appear
in systems with non-Abelian symmetries. This is the case for
qubit systems with SU(2) symmetry [23]. On the other hand,
these constraints exist for qudit circuits with SU(d ) symmetry
with d � 3 [24].

Type I constraints can be characterized using the methods
developed in Ref. [12], which are briefly reviewed in Ap-
pendix. As it can be seen from Theorem 4 and Lemma 2,
type II constraints are related to the fact that the locality of
interactions restrict redistribution of the total charge in the
system. In particular, these constraints are determined by the
set of irreps (charges) carried by a single qudit and those
appearing in the total system. The irreps of any Abelian group
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G themselves form an Abelian group, called the Pontryagin
dual group Ĝ [35]. When G is a finite or compact Lie group,
which is the case of interest in this paper, Ĝ is a discrete group.
Furthermore, if G is connected, then Ĝ is torsion free, which
means that, unlike the case of Zp example, copies of the same
charge cannot annihilate each other.

We saw that in the case of finite Abelian groups, there is a
finite k � |G|, independent of system size n, such that k-local
symmetric unitaries can arbitrarily redistribute the charge in
the system, which by Theorem 4 implies semi-universality.
For many other groups of interest in physics, the dual Pon-
tryagin group is finitely generated, which essentially means
there are a finite type of independent charges in the system.
In this situation again one can show that there is a finite k,
independent of the system size, such that k-local G-invariant
unitaries become semi-universal.

An interesting future direction is exploring the connection
between Abelian circuits and their classical counterparts in
terms of reversible logic circuits. In general, from the point
of view of universality, there is no immediate relation among
the classical and quantum circuits. For example, while in the
absence of symmetries 2-local gates are universal for quantum
circuits, in classical reversible circuits universality requires
3-local gates (e.g., the Toffoli gate). Nevertheless, given that
type II constraints in Abelian circuits have a simple classical
interpretation, it will be interesting to further study possible
connections of these circuits with classical reversible circuits
with conservation laws (see, e.g., Ref. [36]).

A. Applications and implications

Symmetric unitaries are ubiquitous across quantum in-
formation science. Many protocols and algorithms involve
symmetric unitaries. Symmetric quantum circuits have been
shown to be useful useful in the context of variational
quantum machine learning [25,37,38], variational quan-
tum eigensolvers [39–41], and quantum gravity [42]. Be-
sides, symmetric quantum circuits have become a standard
framework for understanding the phases and dynamics of
many-body systems, e.g., in the context of classification of
symmetry-protected topological phases [7,8] and quantum
chaos in the presence of symmetries [9].

Hence, understanding what class of unitary transforma-
tions can be realized with such circuits is a basic question with
broad relevance. Here, we briefly discuss some implications
and applications of our results.

1. Thermalization in the presence
of non-Abelian conserved charges

In the recent years scrambling and thermalization of closed
quantum systems in the presence of conserved charges have
been extensively studied. Researchers have also considered
possible implications of the presence of non-Abelian con-
served charges in this context (see, e.g., Refs. [18,43,44]). In
particular, it has been conjectured that the noncommutativity
of conserved charges hinders the thermalization of quantum
systems [20].

We observed that, in the presence of non-Abelian charges,
the locality of interactions can obstruct the dynamics of the
system in a way that cannot happen for Abelian symmetries
(Note that although our theorems are phrased in the language
of quantum circuits, as explained in Sec. II, they can be

equivalently understood in terms of continuous Hamiltonian
time evolution of a closed system with a global symmetry).
In particular, we showed that due to the additivity of Abelian
charges, the time evolution in different charge sectors can be
independent (decoupled) from each other, whereas in gen-
eral this cannot happen in the case of non-Abelian charges.
Therefore, our result supports the intuition that noncommuta-
tivity of conserved charges may, in some sense, slow down
the thermalization process. A better understanding of this
phenomenon and establishing the connections with thermal-
ization requires further investigation.

2. Quantum thermodynamics and the resource
theory of asymmetry

Symmetric unitaries play a central role in quantum thermo-
dynamics [17,19,27–31], the resource theory of asymmetry
[45–47], and the closely related topic of covariant error cor-
recting codes [48–50]. In thermodynamics it is often assumed
that energy-conserving unitaries can be realized with negligi-
ble thermodynamic costs. The same assumption is made when
there are additional conserved charges. Similarly, the resource
theory of asymmetry focuses on operations that are realizable
with symmetric unitaries and symmetric ancillary systems.

But, how can we implement a general symmetric unitary
on a composite system? Fundamental laws of nature as well
as practical restrictions limit us to local interactions, i.e.,
those that couple a few subsystems together. Can we realize
a general symmetric unitary by combining local symmetric
unitaries? Or, perhaps, realizing a general symmetric unitary
on a composite system requires symmetry-breaking interac-
tions. Our results in this paper show that, at least, in the case of
Abelian symmetries, all symmetric unitaries are resizable with
local symmetric unitaries, and a single ancilla qudit, which
justifies the fundamental assumptions of the resource theories
of thermodynamics and asymmetry for such symmetries.

3. Subspace controllability and quantum computing
in decoherence-free subspaces

The problem of realizing symmetric unitaries in a single
charge sector has been previously considered in the context of
universal quantum computing in decoherence-free subspaces.
In particular, researchers have studied implementing certain
U(1)-invariant unitaries with XX + YY interaction, as well
as implementing certain SU(2)-invariant unitaries with the
Heisenberg exchange interaction in a subspace with one irrep
of the symmetry [51–60]. It should be noted that here the
focus is often on demonstrating the computational universal-
ity, also known as the encoded universality, which does not
require implementing all symmetric unitaries in the subspace.

Another closely related topic is subspace controllabil-
ity, which requires that all unitary transformations on a
subspace of the Hilbert space should be realizable (see,
e.g., Refs. [61,62]). In this context, it has been shown that
Hamiltonians XX + YY , ZZ , and local Z generate all unitaries
in a single irrep of U(1) symmetry [61].

In this work, on the other hand, we studied a stronger
notion of controllability, namely, semi-universality. Unlike
subspace controllability, which focuses on a single charge
subspace, semi-universality requires implementing the de-
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sired symmetric unitaries in all charge sectors, with possible
constraints on the relative phases between sectors. Of course,
this stronger notion implies subspace controllability on a sin-
gle charge sector Hμ of a global symmetry. In particular,
Theorem 4 implies that in the case of Abelian symmetries,
the only possible obstruction to subspace controllability is
the existence of irreducible invariant subspaces. These can be
easily identified either by characterizing the commutant of the
control Hamiltonians in the subspace under consideration or,
alternatively, by using the notion of transitivity in Statement 3
of Theorem 4 (see also Lemma 2). More generally, Theorem 3
implies that on each irreducible invariant subspace Hμ,α the
subspace controllability can be achieved with k-local symmet-
ric Hamiltonians. In summary, this approach reveals a deeper
understanding of the subspace controllability, connecting it to
the symmetries and locality of the control Hamiltonians.

VIII. METHODS

In the following, first we prove Theorem 3 and then, using
this theorem, in Sec. VIII C we prove Theorem 4, which also
implies Theorem 2.

A. Proof of Theorem 3

The subspaces {Hμ,α} in the statement of Theorem 3 can be
defined and characterized based on Comm(VG

n,k ). First, using
the fact that

VG
n,1 ⊆ VG

n,k ⊆ VG
n,n, (23)

we have

Comm
(
VG
n,1

) ⊇ Comm
(
VG
n,k

) ⊇ Comm
(
VG
n,n

)
. (24)

Applying Schur’s lemma, or the bicommutant theorem, one
can easily see that the only operators commuting with all
symmetric unitaries are projectors to subspaces {Hμ} and their
linear combinations, i.e.,

Comm
(
VG
n,n

) = SpanC{�μ}. (25)

Next, we focus on Comm(VG
n,1). Since VG

n,1 contains single-
qudit unitary exp(iθ |r〉〈r|) tensor product with the identity
operators on the other n − 1 qudits, for arbitrary |r〉 ∈ BBB1

and θ ∈ [0, 2π ), any operator in Comm(VG
n,1) commutes with

|r〉〈r| on this qudit. It follows that all operators in Comm(VG
n,1)

are diagonal in basis BBBn. Combining this with Eq. (24), we
conclude that for all k � 1 it holds that

SpanC{�μ} ⊆ Comm
(
VG
n,k

) ⊆ SpanC{|rrr〉〈rrr| : |rrr〉 ∈ BBBn}.
(26)

This, in particular, means that all operators in Comm(VG
n,k )

commute with each other. The common eigen-subspaces of
operators in Comm(VG

n,k ) decompose the total Hilbert space
into orthogonal subspaces {Hμ,α}, as in Eq. (3), with the prop-
erty that on each subspace Hμ,α any operator in Comm(VG

n,k )
takes a constant value. In other words,

Comm
(
VG
n,k

) = SpanC{�μ,α} ⊆ SpanC{|rrr〉〈rrr| : |rrr〉 ∈ BBBn},
(27)

where �μ,α is the projector to Hμ,α . Note that because
projectors {�μ} are in Comm(VG

n,k ), each subspace Hμ,α is
contained in a single charge sector Hμ, which justifies the

label μ, α of subspace Hμ,α . That is,

Hμ =
⊕

α

Hμ,α. (28)

We conclude that under the action of VG
n,k the orthogonal

subspaces {Hμ,α} are invariant, which means

VG
n,k ⊆

⊕
μ,α

U(Hμ,α ). (29)

In the rest of this proof we show that VG
n,k contains the sub-

group
⊕

μ,α SU(Hμ,α ).
First, note that VG

n,k acts irreducibly on each subspaceHμ,α .
Otherwise, by Schur’s lemma, there exists an operator com-
muting with VG

n,k , with support restricted to Hμ,α which is
not proportional to the projector �μ,α . But, this contradicts
Eq. (27).

Next, recall that each projector �μ,α is diagonal in basis
BBBn, which means state |rrr〉 ∈ BBBn is a vector in a single subspace
Hμ,α . Furthermore,

Lemma 2. A pair of basis elements |rrr〉, |rrr′〉 ∈ BBBn belong to
the same irreducible invariant subspace Hμ,α if, and only if,
there exists a sequence of elements ofBBBn connecting |rrr〉 to |rrr′〉
as

|rrr〉 = |sss1〉 −→ |sss2〉 −→ · · · · · · · · · −→ |ssst 〉 = |rrr′〉, (30)

such that (i) all states |sss j〉 are in the same irreducible subspace
Hμ,α and (ii) the Hamming distance between any consecutive
pair is d (sss j, sss j+1) � k.

Proof. If |rrr〉 and |rrr′〉 are in the same irreducible invariant
subspace, then there exists V ∈ VG

n,k such that 〈rrr′|V |rrr〉 �= 0.
Then, since group VG

n,k is generated by k-local G-invariant
unitaries and is compact, this unitary has a decomposition as
V = Vt−1 · · ·V1, whereV1,V2, · · · ,Vt−1 is a finite sequence of
k-local G-invariant unitaries (Recall that compact groups are
uniformly finitely generated [63]). This implies

〈rrr′|V |rrr〉 = 〈rrr′|Vt−1 · · ·V2V1|rrr〉 �= 0.

Since BBBn is an orthonormal basis,
∑

|sss〉∈BBBn
|sss〉〈sss| is the identity

operator. Inserting this resolution of the identity in the above
equation, we find that there exists a sequence of basis elements
|sss2〉, |sss3〉, · · · , |ssst−1〉 such that

〈rrr′|Vt−1|ssst−1〉〈ssst−1| · · · · · · |sss3〉〈sss3|V2|sss2〉〈sss2|V1|rrr〉 �= 0.

Defining |sss1〉 = |rrr〉 and |ssst 〉 = |rrr′〉, this implies

〈sss j+1|Vj |sss j〉 �= 0 : j = 1, · · · , t − 1. (31)

Unitary Vj is k-local and therefore acts nontrivially on, at
most, k qudits. Then, on the rest of n − k qudits two states |sss j〉
and |sss j+1〉 should be identical, because otherwise the left-hand
of Eq. (31) will be zero. This implies that the Hamming dis-
tance d (sss j, sss j+1) � k. Finally, note that because each element
of basis BBBn is restricted to a single irreducible invariant sub-
space, and k-local unitaries are block-diagonal with respect to
these subspaces, then all states |sss1〉, |sss2〉, |sss3〉, . . . , |ssst−1〉, |ssst 〉
are in the same irreducible invariant subspace. This proves
one direction of the lemma. The proof of the other direction
is straightforward and can be found in the proof Lemma 3
below. �

043292-11



IMAN MARVIAN PHYSICAL REVIEW RESEARCH 6, 043292 (2024)

Next, we apply Lemma 2 to show that for any pair of
distinct basis elements

|rrr〉, |rrr′〉 ∈ Hμ,α,

in the same irreducible invariant subspace Hμ,α , the unitary
time evolutions generated by Hamiltonians

X(rrr; rrr′) = |rrr〉〈rrr′| + |rrr′〉〈rrr|,
Y (rrr; rrr′) = i(|rrr〉〈rrr′| − |rrr′〉〈rrr|),

Z(rrr; rrr′) = i

2
[X(rrr; rrr′),Y (rrr, rrr′)] = |rrr〉〈rrr| − |rrr′〉〈rrr′|,

can be realized with k-local G-invariant unitaries. That is

∀θ ∈ [0, 2π ) :

exp[iθX(rrr; rrr′)], exp[iθY (rrr; rrr′)], exp[iθZ(rrr; rrr′)] ∈ VG
n,k .

(32)

The first step is to show that this holds for the special case
where the Hamming distance d (rrr, rrr′) � k.

Lemma 3. Suppose two distinct basis elements |rrr〉, |rrr′〉 ∈
BBBn belong to the same charge sector Hμ and their Hamming
distance is d (rrr, rrr′) � k. Then, the statement in Eq. (32) holds
for k � 2.

We present the proof of this lemma at the end. Next, we use
the unitaries in Lemma 3 as building blocks to realize unitaries
in Eq. (32) in the general case, where the Hamming distance
d (rrr, rrr′) is not bounded by k. To this end, we note that for any
three distinct states |sss〉, |sss′〉, |sss′′〉 in basis BBBn,

[X(sss ; sss′) , Y (sss′ ; sss′′)] = iX(sss ; sss′′). (33)

This identity implies that if exp(iθX(sss; sss′)) and
exp(iθY (sss′; sss′′)) are in the group VG

n,k for all θ ∈ [0, 2π ),
then unitaries exp(iθX(sss; sss′′)) are also in this group for all θ .
Similar constructions work for Y (sss; sss′′) and Z(sss; sss′′) (Recall
that the set of realizable Hamiltonians are closed under the
commutator operation and, hence, form a Lie algebra [63]).

Next, we apply this result recursively to the sequence of
states obtained in Eq. (30). Since any consecutive pair of
states |sss j〉 and |sss j+1〉 belong to the same irreducible invariant
subspace and d (sss j, sss j+1) � k, applying Lemma 3, we find that
Hamiltonians

X(sss j ; sss j+1) , Y (sss j ; sss j+1) , and Z(sss j ; sss j+1)

can be realized with k-local G-invariant unitaries. Then, ap-
plying Eq. (33) together with Lemma 2, we conclude that for
all pair of basis elements |rrr〉 and |rrr′〉 in the same irreducible
invariant subspace Hμ,α , Eq. (32) holds. Such unitaries that
act nontrivially only in a subspace spanned by two basis
elements are called 2-level unitaries [6] (also known as Givens
rotations) and they generate the full special unitary group
on the space [6]. Since X(rrr; rrr′), Y (rrr; rrr′), and Z(rrr; rrr′) are
traceless, it follows that the group generated by these unitaries
is SU(Hμ,α ) on Hμ,α (This can also be seen using the fact
that operatorsX(rrr ; rrr′), Y (rrr; rrr′), andZ(rrr; rrr′) with rrr, rrr′ ∈ Hμ,α

span the space of traceless Hermitian operators on Hμ,α).
We emphasize that these unitaries act nontrivially only in
a single irreducible invariant subspace Hμ,α . Therefore, the
unitary transformations realized in different sectors remain

FIG. 3. The arguments used in the proof of Lemmas 3 and 4
are a generalization of the standard circuit identity in this figure,
where R = exp(iθσx ) for θ ∈ [0, 2π ), and the 2-qubit gate in the
right circuit is the controlled-Z gate.

independent of each other. This proves that VG
n,k contains the

subgroup
⊕

μ,α SU(Hμ,α ). To finish the proof of Theorem 3,
in the following we prove Lemma 3.

Proof. (Lemma 3) For k = n, the statement holds trivially.
Hence, we assume k < n in the following. We partition the
qudits in the system into two subsystems A and B, where A is
the set of qudits whose assigned reduced states are identical
for states |rrr〉 and |rrr′〉, and B contains the rest of qudits. By
assumption, the Hamming distance d (rrr, rrr′) � k, which means
the number of qudits in B is |B| � k. Relative to this partition,
the two states are decomposed as

|rrr〉 = |rrrA〉A ⊗ |rrrB〉B , and |rrr′〉 = |rrrA〉A ⊗ |rrr′
B〉B.

Then,

X(rrr, rrr′) = |rrrA〉〈rrrA|A ⊗ XB(rrrB, rrr
′
B), (34)

where XB(rrrB, rrr′
B) = |rrrB〉〈rrr′

B|B + |rrr′
B〉〈rrrB|B is an operator act-

ing on qudits in B.
Next, we focus on the Hamiltonian IA ⊗ XB(rrrB, rrr′

B), where
IA is the identity operator on A. Since |B| � k, this Hermitian
operator is k-local. Furthermore, it is G-invariant. Roughly
speaking, this holds because by the assumption of the lemma,
in states |rrr〉 and |rrr′〉 the total charge in the system is equal,
and also the total charge in subsystem A is equal, which in
turn implies the total charge in subsystem B is equal. More
formally, we have

∀g ∈ G : 〈rrr|U (g)|rrr〉 = 〈rrr′|U (g)|rrr′〉 = eiμ(g),

whereU (g) = u(g)⊗n, and the phase eiμ(g) is an irrep of group
G. This immediately implies

∀g ∈ G : 〈rrrB|u(g)⊗|B||rrrB〉 = 〈rrr′
B|u(g)⊗|B||rrr′

B〉 = eiμB (g),

where the phase eiμB (g) is also an irrep of group G. This, in
turn, impliesXB(rrrB, rrr′

B) commutes with u(g)⊗|B| for all g ∈ G.
The fact that IA ⊗ XB(rrrB, rrr′

B) is k-local andG-invariant means
that the unitaries IA ⊗ exp(iθXB(rrrB, rrr′

B)) are in VG
n,k for all

θ ∈ [0, 2π ).
Next, using the family of unitaries exp(iθXB(rrrB, rrr′

B)), we
construct the desired unitary exp(iθX(rrr, rrr′)) and show that it
is also in VG

n,k . We use a construction which is analogous to the
circuit identity in Fig. 3, where the unitary exp(iθXB(rrrB, rrr′

B))
plays the role of R = exp(iθσx ) in this circuit.

Suppose we label all qubits in A as l = 1, . . . , |A|. Then,
define F0 = XB(rrrB, rrr′

B), and

Fl = 2l [|r1〉〈r1|1 ⊗ · · · ⊗ |rl〉〈rl |l ] ⊗ XB(rrrB, rrr
′
B), (35)

where we have suppressed the tensor products with the iden-
tity operators on other qudits. Comparing this definition with
Eq. (34), we find that F|A| = 2|A|X(rrr, rrr′). For any pair of dis-
tinct qudits a and b, and any pair of basis elements |ra〉, |rb〉 ∈
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BBB1, define the Hermitian unitary operator

Ca,b =I⊗n
d − 2|ra〉〈ra|a ⊗ |rb〉〈rb|b. (36)

Note that this unitary is 2-local and G-invariant (This unitary
is a generalization of the controlled-Z unitary in Fig. 3).
Choosing b to be any qudit in subsystem B, and using the fact
that 〈rb|Fl |rb〉b = 0, one can easily check the recursive relation

Fl+1 = Fl −Cl+1,b Fl Cl+1,b. (37)

Clearly, all operators Fl : l = 1, . . . , |A| commute with each
other. Furthermore, since Cl+1,b Fl Cl+1,b = Fl − Fl+1, this
operator also commutes with all Fl . Then, Eq. (37) implies
that for all θ ∈ [0, 2π ) it holds that

exp(iθFl+1) = exp(iθFl ) Cl+1,b exp(−iθFl ) Cl+1,b, (38)

which is analogous to the circuit in Fig. 3. This implies
that by combining unitaries Clb : l = 1, . . . , |A| and unitaries
exp(iθXB(rrrB, rrr′

B)), which all belong to VG
n,k , one can ob-

tain unitaries exp(iθFl ) : l = 1, . . . , |A|, and in particular,
exp(iθX(rrr, rrr′)), for all θ ∈ [0, 2π ). Finally, since

Y (rrr, rrr′) = exp

(
iπ

2
|rb〉〈rb|

)
X(rrr, rrr′) exp

(−iπ

2
|rb〉〈rb|

)
,

(39)
by combining exp(iθX(rrr, rrr′)) with single-qudit G-invariant
unitaries, we obtain exp(iθY (rrr, rrr′)). Furthermore, since three
operators X(rrr, rrr′), Y (rrr, rrr′), and Z(rrr, rrr′) satisfy the standard
commutation relations of su(2) satisfied by Pauli operators, by
sandwiching exp(iθX(rrr, rrr′)) between exp(iπ/4Y (rrr, rrr′)) and
its inverse we obtain exp(iθZ(rrr, rrr′)). This completes the proof
of Lemma 3, and hence Theorem 3.

For future use, we summarize the main step of the above
argument in the following lemma.

Lemma 4. Consider a pair of distinct basis elements
|rrr〉, |rrr′〉 ∈ BBBn with the property that

|rrr′〉 = [XC (sss, sss
′) ⊗ IC]|rrr〉, (40)

where C is a subset of qudits containing c � n qudits,
|sss〉, |sss′〉 ∈ BBBc, and XC (sss; sss′) = |sss〉〈sss′| + |sss′〉〈sss| acts on qudits in
C, and IC is the identity operator on the rest of qudits. Then,
the family of unitaries exp(iθX(rrr; rrr′)) : θ ∈ [0, 2π ) can be
realized using c-local unitaries exp(iθXC (sss; sss′)) : θ ∈ [0, 2π )
and two-qudit gates Ca,b in Eq. (36).

The proof follows from the above argument. In particular,
to apply this construction first we determine which qudits in
C are associated with different reduced states in states |sss〉 and
|sss′〉. This subset of qudits, which contains d (sss, sss′) � 1 qudits,
is denoted by B ⊆ C, and the rest of n − d (sss, sss′) qudits, are
denoted by A ⊇ C. Then, we can apply the exact same recur-
sive construction as before. In particular, by properly labeling
qudits in A we obtain XC (sss; sss′) = 2−lCFlC , where Fl is defined
in Eq. (35) and lC = c − d (sss, sss′) is the number of qudits in C
with the same reduced state in states |sss〉 and |sss′〉 (This means
we label qudits in A such that the qudits in A ∩C are labeled as
1, . . . , lC). Then, applying Eq. (38) recursively, we can obtain
the family of unitaries exp(iθX(rrr; rrr′)) : θ ∈ [0, 2π ), which
proves Lemma 4.

B. Proof of Corollary 2

We saw how general elements of SVG
n,k can be constructed

from k-local G-invariant unitaries. Next, we prove Corollary
2, which highlights the fact that this construction only requires
specific type of k-local G-invariant unitaries.

To see this first recall that we obtained general unitaries in
SVG

n,k by combining two families of unitaries
(i) Single-qudit unitaries exp( iπ2 |r〉〈r|) with |r〉 ∈ BBB1.
(ii) Unitaries exp(iθX(r; r′)) for all pairs basis elements

|r〉, |r′〉 ∈ BBBn that live in the same irreducible invariant sub-
space Hμ,α .
In particular, combing these families we obtain
exp(iθY (r; r′)) and exp(iθZ(r; r′)). Therefore, in the
following we focus on realizing exp(iθX(r; r′)) for arbitrary
|r〉, |r′〉 ∈ BBBn that belong to the same irreducible invariant
subspace Hμ,α . First, we show that for any such pair of
basis elements, there exists a sequence of basis elements
|rv〉 ∈ BBBn : v = 1, . . . ,w, defined as

|rv+1〉 = XCv
(tttv+1; tttv )|rv〉 (41a)

= XCv
(tttv+1; tttv ) · · · · · ·XC1 (ttt

2; ttt1)|rrr〉, (41b)

such that
(1) |r1〉 = |r〉 and |rw〉 = |r′〉.
(2) XCv

(tttv+1; tttv ) acts as X(tttv+1; tttv ) = |tttv〉〈tttv+1| +
|tttv+1〉〈tttv| on qudits in Cv and acts trivially on the rest of
qudits, where X(tttv+1; tttv ) ∈ Hredist.
To show the existence of such sequences, first recall that
because |r〉, |r′〉 ∈ BBBn belong to the same irreducible invari-
ant subspace Hμ,α , according to Lemma 2, there exists a
sequence in the form of Eq. (30) such that any consecutive
pair |sss j〉 and |sss j+1〉 have equal charges and Hamming distance
d (sss j, sss j+1) � k. The latter property means that to transform
|sss j〉 to |sss j+1〉 it suffices to act on, at most, k qudits, and
convert an element of BBBk to another element of BBBk with equal
total charge. But, according to the assumption of Corollary
2, operators in Hredist act transitively on elements of BBBk that
have the same charge. That is, we can convert |sss j〉 to |sss j+1〉 by
applying a sequence of elements of Hredist. This implies the
existence of the sequence defined in Eq. (41) with the claimed
properties.

Next, applying Lemma 4, Eq. (41) implies that for each
v = 1, . . . ,w − 1, the unitaries

exp(iθX(rv+1; rv )) : θ ∈ [0, 2π ) , (42)

can be realized with by combining two-qudit gates
Ca,b in Eq. (36) with unitaries exp(iθX(tttv+1; tttv )), where
X(tttv+1; tttv ) ∈ Hredist.

Finally, we note that because of the argument presented
in Eq. (33), by combining unitaries in Eq. (42) with single-
qudit unitaries exp( iπ2 |r〉〈r|) with |r〉 ∈ BBB1, we can realize the
desired unitaries exp(iθX(r; r′)) : θ ∈ [0, 2π ). Note that this
can be achieved for all pair |r〉, |r′〉 ∈ BBBn that belong to the
same irreducible invariant subspace.

In summary, we conclude that combining (i) single-qudit
unitaries exp( iπ2 |r〉〈r|) with |r〉 ∈ BBB1, (ii) two-qudit gates Ca,b

in Eq. (36), and (iii) unitaries exp(iθX(ttt ; ttt ′)) with X(ttt ; ttt ′) ∈
Hredist, we can realize any unitary in SVG

n,k . This completes
the proof of Corollary 2.
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C. Proof of Theorem 4

Next, we show how Theorem 4 follows from Theorem 3.
1 ⇐⇒ 2: Statement 1 in Theorem 4 implies that the group
VG
n,k acts irreducibly on subspaces {Hμ}. This fact together

with Schur’s lemmas immediately imply Statement 2. Con-
versely, Statement 2 implies that VG

n,k acts irreducibly on
subspaces {Hμ}. This fact together with our Theorem 3, which
is proved above, implies Statement 1. Therefore, statements 1
and 2 are equivalent, which, in particular, prove Theorem 2.

2 
⇒ 3: Statement 2 implies that group VG
n,k acts irre-

ducibly on subspaces {Hμ}, which means each subspace Hμ

contains only a single irreducible invariant subspace. This,
in particular, means any pair of basis elements |rrr〉, |rrr′〉 ∈ BBBn

that belong to the same charge sector Hμ, are in the same
irreducible invariant subspace, and therefore the assumption
of Lemma 2 holds. Then, the lemma implies Statement 3 of
Theorem 4.

3 
⇒ 2: Finally, we show that Statement 3 implies State-
ment 2, and, hence Statement 1. According to Statement 3,
for any pair of basis elements |rrr〉 and |rrr′〉 in the same charge
sector Hμ, there exists a sequence of basis elements |rrr〉 =
|sss1〉, · · · , |ssst 〉 = |rrr′〉, such that any consecutive pairs |sss j〉 and
|sss j+1〉 are in the same charge sector Hμ and have Hamming
distance d (sss j, sss j+1) � k. Then, it is obvious that there exists
a k-local symmetric unitary that converts |sss j〉 and |sss j+1〉, and
therefore they are in the same irreducible invariant subspace
(recall that any basis element lives in a single irreducible
invariant subspace Hμ,α). It follows that the basis elements
|rrr〉 and |rrr′〉 also live in the same irreducible invariant sub-
space Hμ,α . Since |rrr〉 and |rrr′〉 are arbitrary basis elements
in Hμ, this means Hμ does not contain any proper nontriv-
ial irreducible invariant subspace. Therefore, Comm(VG

n,k ) =
SpanC{�μ} which is the Statement 2. This completes the
proof of Theorem 4.

ACKNOWLEDGMENTS

I am grateful to Hanqing Liu for reading the paper and pro-
viding useful comments. Also, I thank Nicole Yunger Halpern
for introducing me to her papers on thermalization in the
presence of non-Abelian conserved charges [18,43,44] and
specifically the conjecture in Ref. [20].

This work is supported by a collaboration between the
U.S. DOE and other agencies. This material is based on
work supported by the U.S. Department of Energy, Office
of Science, National Quantum Information Science Research
Centers, Quantum Systems Accelerator. Additional support is
acknowledged from NSF Phy-2046195, NSF QLCI Grant No.
OMA-2120757, and ARL-ARO QCISS Grant No. W911NF-
21-1-0005.

APPENDIX: CONSTRAINTS ON THE RELATIVE PHASES
BETWEEN SECTORS WITH DIFFERENT CHARGES

Here we briefly review some relevant results in Ref. [12]
that allows us to characterize the constraints on the relative
phases between sectors with different charges, and prove the
results in Sec. IVC. Unless otherwise specified, in the follow-
ing discussion the group G can be any finite or compact Lie
group, which can be Abelian or non-Abelian.

For any Hamiltonian H consider the function

χH (g) = Tr(HU (g)) : g ∈ G, (A1)

where U (g) = u(g)⊗n : g ∈ G is the representation of group
G on the system. If H is G-invariant, i.e., if [H,U (g)] = 0 :
∀g ∈ G, then this function is uniquely determined by the real
numbers

Tr(H�μ) : μ ∈ IrrepsG(n), (A2)

which can be thought of as a vector in R|IrrepsG(n)|, and in
Ref. [12] is called the charge vector of H . In particular,

χH (g) =
∑

μ∈IrrepsG(n)

1

dμ

Tr(�μH ) fμ(g), (A3)

where fμ is the character of irrep μ and dμ is its dimension,
which is equal to 1 in the case of Abelian groups (recall that
the character of a representation of G is a complex function
over group, defined as the trace of the representation).

Equation (A3) is indeed the Fourier transform of the vector
Tr(H�μ) : μ ∈ IrrepsG(n), and is invertible via the inverse
Fourier transform, namely

Tr(�μH ) = dμ

|G|
∑
g∈G

χH (g) f
∗
μ (g), (A4)

which follows from the orthogonality of characters (a similar
relation holds for compact Lie groups, where the summation is
replaced by the integral with the Haar measure). In summary,
function χH determines {Tr(�μH )}μ, hence the component
of H in the subspace spanned by projectors {�μ}. This sub-
space is indeed the center of the Lie algebra of symmetric
Hamiltonians, i.e., the Lie algebra associated to VG

n,n. Note
that the coefficients {Tr(�μH )}μ determine the relative phases
of the unitaries realized by Hamiltonian H . In particular, for
unitary

V = exp(itH ) =
⊕

μ∈IrrepsG(n)
Vμ, (A5)

the determinant of the component ofV in the sector with irrep
μ is

det(Vμ) = exp[it Tr(�μH )]. (A6)

It can be shown that if Hamiltonian H is realizable with
k-local G-invariant unitaries, such that

∀t ∈ R : exp(iHt ) ∈ VG
n,k, (A7)

then

χH = rn−k ×
∑

μ∈IrrepsG(k)
cμ fμ, (A8)

for some real coefficients cμ ∈ R, where r(g) = Tr(u(g)).
Therefore, for such Hamiltonians we have

χH ∈ SpanR{rn−k fν : ν ∈ IrrepsG(k)}
⊆ SpanR{ fν : ν ∈ IrrepsG(n)}, (A9)

where the second inclusion follows from Eq. (A3). We con-
clude that for Hamiltonians that are realizable with k-local
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G-invariant unitaries, the vector Tr(H�μ) : μ ∈ IrrepsG(n)
can be any real vector in R|IrrepsG(n)| if, and only if

SpanR{rn−k fν : ν ∈ IrrepsG(k)}
= SpanR{ fν : ν ∈ IrrepsG(n)}. (A10)

More generally, the difference between the dimensions of
these spaces, gives a lower bound on the difference between
the dimensions of the Lie algebras associated to VG

n,n and VG
n,k ,

i.e.,

dim
(
VG
n,n

) − dim
(
VG
n,k

)
� dim(SpanR{ fν : ν ∈ IrrepsG(n)})

−dim(SpanR{rn−k fν : ν ∈ IrrepsG(k)}), (A11a)

= |IrrepsG(n)| − dim(SpanR{rn−k fν : ν ∈ IrrepsG(k)}),
(A11b)

� |IrrepsG(n)| − |IrrepsG(k)| . (A11c)

In certain cases of interest, the dimension of
SpanR{rn−k fν : ν ∈ IrrepsG(k)} is guaranteed to be
equal to |IrrepsG(k)|, which implies Eq. (A11c) holds as
equality. In particular, suppose r(g) = Tr(u(g)) �= 0 for
all g ∈ G. Then, for real coefficients cν ∈ R, the function
rn−k

∑
ν∈IrrepsG(k) cν fν is equal to zero for all g ∈ G if, and

only if,
∑

ν∈IrrepsG(k) cν fν is equal to zero for all g ∈ G. But,
the orthogonality of characters implies that this is possible
only if all coefficients cν = 0. It follows that under this
assumption, Eq. (A11c) holds as equality. Moreover, when
G is a connected Lie group, even if r(g) = 0 for some group
element g ∈ G, a similar argument can be made based on the
continuity of r(g) around the identity element of the group.

On the other hand, if there exists a group element g0 ∈ G
such that

r(g0) = Tr(u(g0)) = 0, (A12)

then, unless k = n, all functions in SpanR{rn−k fν : ν ∈
IrrepsG(k)}, vanish at g0. But if IrrepsG(n) contains a 1D irrep,
which is always the case for Abelian groups where all irreps
are 1D, SpanR{ fν : ν ∈ IrrepsG(n)} contains functions that
are nonzero at g0. This means for k < n,

dim(SpanR{rn−k fν : ν ∈ IrrepsG(k)})
< dim(SpanR{ fν : ν ∈ IrrepsG(n)}) = |IrrepsG(n)|,

(A13)

which, in turn, implies the universality cannot be achieved
with k < n. In particular, if μ ∈ IrrepsG(n) is a 1D irrep of
G, then unless k = n, the family of unitaries exp(iθ�μ) : θ ∈
[0, 2π ) cannot be realized with k-local G-invariant unitaries
(except, for specific values of θ ).

In the following theorem, the commutator subgroup of
VG
n,k , is the subgroup generated byV1V2V

†
1 V

†
2 forV1,V2 ∈ VG

n,k ,
i.e., [

VG
n,k,VG

n,k

] = 〈
V1V2V

†
1 V

†
2 : V1,V2 ∈ VG

n,k

〉
. (A14)

A general G-invariant unitary V ∈ VG
n,n can be written as

an element of the commutator subgroup [VG
n,n,VG

n,n] times a

unitary in the subgroup{ ∑
μ∈IrrepsG(n)

exp(iφμ)�μ : φμ ∈ [0, 2π )

}
. (A15)

This subgroup corresponds to the center of the Lie algebra
associated to the Lie group VG

n,n (see [12] for more detailed
discussion). Furthermore,

dim
(
VG
n,n

) = dim
([
VG
n,n,VG

n,n

]) + |IrrepsG(n)| . (A16)

Based on the above arguments, Ref. [12] shows

Theorem 5. [12] For any finite or compact Lie group G, it
holds that

dim
(
VG
n,n

) − dim
(
VG
n,k

)
� |IrrepsG(n)| − dim(SpanR{rn−k fν : ν ∈ IrrepsG(k)})

(A17)

� |IrrepsG(n)| − |IrrepsG(k)|, (A18)

where r(g) = Tr(u(g)). Furthermore,
i. If the commutator subgroups of VG

n,n and VG
n,k are equal,

i.e., [VG
n,n,VG

n,n] = [VG
n,k,VG

n,k], then Eq. (A17) holds as
equality.

ii. If G is a connected Lie group, or r(g) = Tr(u(g)) �= 0
for all g ∈ G, then Eq. (A18) holds as equality.

iii. Suppose there exists a group element g0 ∈ G such that
Tr(u(g0)) = 0. If IrrepsG(n) contains a 1D irrep of
G, which is always the case for Abelian groups, then
for k < n the right-hand side of Eq. (A17) is positive
implying VG

n,k �= VG
n,n.

For an Abelian group G, the group of all symmetric uni-
taries can be decomposed as

VG
n,n =

⊕
μ∈IrrepsG(n)

U(Hμ). (A19)

Then, using fact that the commutator subgroup of the uni-
tary group U(d ) is the special unitary group SU(d ), i.e.,
[U(d ),U(d )] = SU(d ), we find that the commutator subgroup
of the group of all symmetric unitaries is[

VG
n,n,VG

n,n

] =
⊕

μ∈IrrepsG(n)
SU(Hμ). (A20)

Therefore, Theorem 2 implies that if there are no extra con-
served observables, then[

VG
n,k,VG

n,k

] = [
VG
n,n,VG

n,n

] =
⊕

μ∈IrrepsG(n)
SU(Hμ) . (A21)

In this case Theorem 5 implies that

dim
(
VG
n,n

) − dim
(
VG
n,k

)
= |IrrepsG(n)| − dim(SpanR{rn−k fν : ν ∈ IrrepsG(k)})

(A22)

� |IrrepsG(n)| − |IrrepsG(k)| , (A23)
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where Eq. (A23) holds as equality ifG is connected, or r(g) �=
0 for all g ∈ G. On the other hand, if r(g) = 0 for some g ∈ G,
then, unless k = n, the right-hand side of Eq. (A22) is strictly
positive. This proves the results in Sec. IVC.

Finally, we remark on the properties of IrrepsG(l ), i.e.,
the set of irreps of G appearing in u(g)⊗l : g ∈ G. Clearly,
IrrepsG(l + 1) can be obtained by combining all irreps in
IrrepsG(l ) with irreps in IrrepsG(1).

In the case of Abelian groups, the irreps are 1D, i.e.,
phases. Then, it is convenient to assume IrrepsG(1) contains
the trivial representation. This is always possible by multi-
plying u(g) in the inverse of a 1D irrep of G that appear
in IrrepsG(1) (since this is a global phase, this modification
does not change the set of G-invariant operators). With this
convention, we find that for an Abelian group G,

IrrepsG(l ) ⊆ IrrepsG(l + 1), (A24)

and the elements of IrrepsG(l + 1) can be obtained by multi-
plying each element of IrrepsG(l ) in an element of IrrepsG(1).
This immediately implies that if for an integer l ,

IrrepsG(l + 1) = IrrepsG(l ) 
⇒
∀r > l : IrrepsG(r) = IrrepsG(l ). (A25)

For connected compact Abelian groups, such integer l exists
only if the representation of the symmetry on each qudit is
trivial, i.e., u(g) = Id for all g ∈ G (This can be seen,
for instance, by noting that if IrrepsG(r) = IrrepsG(l ), then
for any irrep fμ ∈ Irreps(1) and arbitrary r > l , it holds
that f rμ ∈ IrrepsG(l ). For a connected Lie group G, con-
sider the first derivative(s) of f rμ in different directions over
group G, at the identity element of the group. The magni-
tude(s) of these derivatives grow linearly with r. Since f rμ ∈
IrrepsG(l ) for all r � l , this is possible only if the deriva-
tive(s) of fμ are zero at the identity element. For connected
compact Lie groups, because the exponential map is sur-
jective, this implies that fμ is constant, i.e., it is the trivial
representation).

In summary, we showed that

Proposition 1. For any compact Abelian group G

|IrrepsG(l + 1)| � |IrrepsG(l )| . (A26)

Furthermore, in the case of compact connected Abelian
groups if |IrrepsG(1)| > 1, which means the representation of
group is nontrivial on each subsystem, then Eq. (A26) is a
strict inequality.
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