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Decentralized Optimal Merging Control for Mixed Traffic
with Vehicle Inference
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Abstract— This paper addresses the optimal control of vehi-
cles arriving from two curved roads at a merging point where
the objective is to jointly minimize the travel time, energy con-
sumption, and passenger discomfort. Unlike prior work where
traffic consists entirely of Connected and Automated Vehicles
(CAVs), we consider optimal controls for CAVs in mixed traffic
including Human-Driven Vehicles (HDVs) behaving according
to some car-following model that includes random actions. The
control applied to CAVs is based on partial information about
the presence and states of HDVs which is inferred from local
observations available to the CAVs. The passing order of HDVs
at the merging point is determined and assisted by CAVs using
a proposed Minimum-Effort Merging Contract (MEMC) that
uses Control Barrier Functions (CBFs) to guarantee safety. A
coordinator is used to manage both the CAV information and
inferred HDV information such that the problem can still be
solved in a decentralized way. Our approach first determines
an analytically tractable unconstrained optimal solution. We
then use the joint Optimal Control and Barrier Function
(OCBF) method to obtain a controller which optimally tracks
such a solution while also guaranteeing all safety and control
constraints, including a safe merging contract between CAVs
and HDVs. Simulation examples are included to compare the
performance under different CAV penetration rates.

I. INTRODUCTION

Traffic management at merging points (usually, highway
on-ramps) is one of the most challenging problems within a
transportation system in terms of safety, congestion, and en-
ergy consumption, in addition to being a source of stress for
many drivers [1], [2], [3]. Advancements in next-generation
transportation system technologies and the emergence of
CAVs have the potential to drastically improve a transporta-
tion network’s performance by better assisting drivers in
making decisions, ultimately reducing energy consumption,
air pollution, congestion and accidents.

A number of decentralized merging control mechanisms
have been proposed [4], [5], [6], [7], [8]. In this case, all
computation is performed on-board each vehicle and shared
only with a small number of other vehicles which are affected
by it. Optimal control problem formulations are used in
some of these approaches, while Model Predictive Control
(MPC) techniques are employed as an alternative, primarily
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to account for additional constraints and to compensate for
disturbances by re-evaluating optimal actions [9], [10]. An
alternative to MPC is provided in [11] by the use of Control
Barrier Functions (CBFs).

Most works for traffic merging control mentioned above
are based on the assumption that all traffic consists of
CAVs. Clearly, in the foreseeable future, CAVs will coexist
with Human-Driven Vehicles (HDVs), and such a mixed
traffic setting presents a new challenge for optimizing system
performance. Most existing works assume some models for
HDVs [12] [13] [14]; however, this can be unrealistic as
human driving behaviors are usually unknown and hard to
accurately predict. On-board CAV sensors can be used to
detect HDVs [15], but this is not possible when some HDVs
are hidden by other vehicles making them hard to detect.
Reinforcement/machine learning can be used for mixed traf-
fic without the HDV model information [16] [17], but there
are no safety guarantees. Moreover, the works mentioned
above ignore the curvature of the roads which is often the
case, especially in highway interchanges. Such curvature
induces additional nonlinear safety constraints making it
important to take into account centrifugal comfort and lateral
rollover avoidance. A joint framework for travel time, energy
consumption, and comfort in optimal merging control has
been studied in [18], but it is based on the assumption of an
all-CAV setting.

In this paper, we consider the traffic merging optimal
control problem in a mixed traffic setting, in which case
the driving policies of all HDVs are random and unknown.
In order to account for “aggressive” HDVs, we infer the
existence of HDVs and their states based on whatever
information is available to CAVs, assuming that a rear-
end safety constraint is satisfied among all vehicles. We
show that in this setting we can still solve the problem
in a decentralized way, as in [18], for all CAVs. We also
propose a Minimum-Effort Merging Contract (MEMC) for
the HDV passing order at the merging point using CBFs.
This contract is enforced by CAVs so that the merging of
HDVs is assisted by CAVs. Our simulation studies show that,
with HDV inference, CAVs can guarantee safety in a mixed
traffic setting, while HDVs tend to get close to each other
when crossing the merging point. A simulation study of an
actual curved road merging problem that arises in a Boston
area segment of the Massachusetts Turnpike is included. Our
results show that significant improvements in both CAV and
HDV performance metrics can be achieved with the proposed
framework, under different CAV penetration rates, compared
to a baseline consisting exclusively of HDVs.
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II. PROBLEM FORMULATION

The merging problem arises when traffic must be joined
from two different roads, usually associated with a main road
and a merging road as shown in Fig. 1. We consider the case
where the traffic consists of both CAVs and HDVs randomly
arriving at the two curved roads joined at the Merging Point
(MP) M where a lateral collision may occur. We assume
all CAVs and HDVs are equipped with on-board sensors
to detect local vehicle information (however, this cannot be
communicated by HDVs). The segment from the origin O
or O’ to the merging point M has a length L for both roads
and radii 7main > 0,7merg > 0 for the main and merging
lanes, respectively, and is called the Control Zone (CZ).
A coordinator is associated with the MP whose function
is to maintain a First-In-First-Out (FIFO) queue of CAVs
based on their arrival time at the CZ and enable real-time
communication with the CAVs in the CZ including the last
one leaving it. The coordinator is also employed in managing
the inferred information regarding all HDVs. Thus, there are
some HDVs whose presence is directly detected, as well as
some “inferred” HDVs.

Ao mMergmg Point

Main road CAVs
€  Merging road CAVs

€® HDVs

CAVs exit

Coordinator
index info.  lane
0 | Xo, Vo, Yo | main

2 | x2, vy, ua [emEing
3 | x3, v, 4y perging

FIFO queue

Fig. 1. Mixed traffic merging problem for roads with curvature without
vehicle inference. Some HDVs are hard to be detected by CAVs. However,
as all vehicles approach the MP, they can detect each other.

Let S(t) be the set of FIFO-ordered (acccording to arrival
times at O or O’) indices of all CAVs located in the CZ at
time ¢ along with the CAV (whose index is 0 as shown in
Fig.1) that has just left the CZ. Let N(¢) be the cardinality
of S(t). Thus, if a CAV arrives at O or O’ at time ¢, it is
assigned the index N (t). All CAV indices in S(t) decrease
by one when a CAV passes over the MP and the vehicle
whose index is —1 is dropped.

The vehicle dynamics for each CAV i € S(t) along the
lane to which it belongs take the form

where z;(t) denotes the distance to the origin O (O’) along
the main (merging) lane if the vehicle ¢ is located in the main
(merging) lane, v;(t) denotes the velocity, and u;(t) denotes
the control input (acceleration). &; = (z;,v;). We consider

three objectives for each CAV subject to four constraints, as
detailed next.

Objective 1 (Minimizing travel time): Let ¢ and t™
denote the time that CAV ¢ € S(t) arrives at the origin O
or O and the merging point M, respectively. We wish to
minimize the travel time ¢ — 0 for CAV i.

Objective 2 (Minimizing energy consumption): We also
wish to minimize energy consumption for each CAV i €
S(t):

min C;(u;(t))dt, 2
wi(t) J40

where C;(-) is a strictly increasing function of the norm

of its argument, and it usually takes the quadratic form:

Cilus(1)) = u2(1).

Objective 3 (Maximizing centrifugal comfort): In order
to minimize the centrifugal discomfort (or maximize the
comfort) for each CAV, we wish to minimize the centrifugal
acceleration

U4 (t)

i
min / (s (802 (D) dt, 3)
%

where & : R — RZ0 is the curvature of the road at position
z;. The curvature usually has a sign but we assume it is
always positive. It is determined by where r : R - R
is the radius of the road at x;.

Constraint 1 (Safety constraints): Let 7,, denote the index
of the vehicle which physically immediately precedes 7 in the
CZ (if one is present). We require that the distance z; ;, (t) :=
x;,(t) — x;(t) be constrained by the speed v;(t) of vehicle
i € S(t) so that

zia, () = oui(t) + 6, Vt € 1), 17", 4)

r(x )’

where ¢ denotes the reaction time (as a rule, ¢ = 1.8 is
used, e.g., [19]).

Constraint 2 (Safe merging): There should be enough
safe space at the MP M for a vehicle (which eventually
becomes CAV 1, as shown in Fig. 1) to cut in, i.e.,

21,0(t7") = ui(t1") + 4. )

Constraint 3 (Vehicle limitations): There are constraints
on the speed and acceleration for each CAV i € S(t):
Vi, min < Ui(t) < Vi mazx, vVt € [t(z)vt:n]a
Umin < Ui(t) < Umaz, VEE [1], 1],

1771

(6)

where v; mee > 0 and v; 4, > 0 denote the maximum
and minimum speed allowed in the CZ, while u;,;, < 0
and . > 0 denote the minimum and maximum control,
respectively.

Constraint 4 (Lateral safety constraint): Finally, there is
a constraint on the centrifugal acceleration to avoid lateral
rollover for each CAV ¢ € S(t):

‘“:“ \/

(i (8))v7 () < hfg, vt € [t 4], 0

where w > 0 denotes the half-width of the vehicle, h; > 0
denotes the height of the center of gravity with respect to

1469
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 24,2025 at 21:49:33 UTC from IEEE Xplore. Restrictions apply.



the ground, and ¢ is the gravity constant. The above lateral
safety constraint is obtained through the Zero Moment Point
(ZMP) [20] method (assuming the road lateral slope is zero)
that balances the CAV considering both gravity and inertia.

Problem Formulation. Our goal is to determine a control
law to achieve objectives 1-3 subject to constraints 1-4 for
each CAV i € S(t) governed by the dynamics (1). We can
formulate a joint optimal control problem based on the three
objectives and normalize each term, as shown in [18].

Note that this problem is formulated only for CAVs, since
they are the only ones subject to control. Nonetheless, the
performance of HDVs may also be improved with the partial
penetration of CAVs (as illustrated in our simulation results).
However, to ensure that the problem is well-posed, we need
to make some assumptions regarding the behavior of HDVs,
starting with the following.

Assumption 1: All HDVs always satisfy the rear-end

safety constraint (4) with their preceding vehicle in the CZ
under the same conditions as CAVs (i.e., ¢,  in (4) are the
same for all vehicles).
The above assumption may affect the performance of CAVs
if it is violated, but it will not affect safety guarantees as
this assumption is only used to infer the number of HDVs
between CAVs.

HDV types. Regarding the overall behavior of HDVs,
there are three types one can consider. (i) Smart HDVs
without communication capabilities, in which case the HDVs
have on-board sensors to assist them in determining the
passing order at the MP. (i7) Communication-enabled HDVs,
so that they can read and follow signals from CAVs (such as
who should go first when reaching the MP) through V2V or
V2I/12V links. (ii%) Non-cooperative HDVs, in which case
HDVs make their own decisions, and all CAVs have to ensure
the safe merging constraint (5) with no HDV cooperation. We
also assume that HDVs are operated by human drivers using
some random policies which are unknown to CAVs.

III. OPTIMAL CONTROL FRAMEWORK WITH INFERENCE

If all the vehicles in the CZ are CAVs, then the problem
can be locally solved by each CAV 1 (see [18]). However, if
there are any HDVs in the CZ, we cannot solve the merging
problem using the above framework as some information
from vehicles which are HDVs (and correspond to i, or
i — 1 above) may be missing. In order to address this,
we proceed by using local information to infer all (global)
vehicle information, as shown in the next section.

A. HDV Information Inference

In a mixed traffic merging problem, we must rely on
local CAV information to infer the presence and states of
all vehicles in the CZ. Although it is possible to have
infrastructure at the MP capable of sensing vehicles, we will
not rely on any such assumption, especially since the road
curvatures would limit this anyway. For any CAV i € S(t), it
will share its own information with the coordinator. However,
as the CAV has on-board sensors, it can also detect the
presence and estimate the state of its preceding vehicle

(possibly a HDV, e.g., the one before CAV 4 in Fig. 1), as
well as detect the presence and estimate the state of vehicles
from the other road when they are both close to the MP
(e.g., CAV 1 can detect vehicle 2, even if it were a HDV, in
Fig. 1). Therefore, each CAV i can share its own information
and local information (such as its 7,, and information on some
vehicles in the other road when CAV 1 is close to the MP)
with the coordinator. In this way, the coordinator can include
some HDV information in its queue, but not all since some
HDVs (such as the preceding vehicle of HDV i, if it too is
a HDV) may be hidden by other vehicles or obstacles.

In order to figure out hidden HDVs that cannot be directly
detected, we proceed by inferring HDV information based on
the local CAV information present in the coordinator table.
First, at time ¢, we can get existing known information from
all CAVs in the CZ, and then update the ordered set S(t).
This set includes information from CAVs and their preceding
vehicles which may be HDVs. Therefore, there may already
be some HDVs entered in S(¢).

After obtaining the preliminary ordered set S(t), we can
conduct information inference consistent with Assumption
1. For any vehicle ¢ € S(t), there may be some HDVs that
cannot be detected ahead of it (e.g., the vehicle behind CAV
1 in Fig. 1). However, as long as these HDVs maintain some
safe distance following Assumption 1, then we can estimate
the speed of some HDV j between ¢ and i, by:

@j (t) =P, (:Bi(t)v Li, (t))a 3

where P, : R?xR? — R is some prediction function (such as
from a machine learning model). A simple choice for P, (-, -)
is the average function of v;(t) and v;,(t). An example of
this process in Fig. 1 arises with ¢ = 4 and 7, = 1: the
HDV ahead of i is directly detected, but not the HDV ahead
of it. The index j applies to either HDV for which a speed
estimate is obtained through (8). If there is no i, for ¢, then
we simply remove the dependence on i, in (8).

Following Assumption 1, the number of possible HDVs
N;(t) at time ¢ between ¢ and i, can then be predicted by:

Ni(t) = max (ﬂoor <Z”‘" (ZA}]—(Z;ZZ(? — 6) ,0) )

where floor(-) takes the maximum integer that is smaller than
or equal to its input.

After predicting the number of HDVs between ¢ and
i, We can also estimate the positions of these HDVs that
satisfy the rear-end safety constraint (4) through some P, :
R? x R? — R using a similar approach as (8) based on
the state information of ¢ and %,. Once this is done, we
incorporate the inferred HDVs into S(t), update all indices,
and resequence all vehicles in S(¢). This results in an inferred
queue table. As an example, the original queue table shown
in Fig. 1 results in the updated table shown in Fig. 2. Due
to the information inference, the queue table shown in Fig.
1 is updated at each time step ¢ in addition to times when
a CAV arriving or exiting the CZ event occurs (the only
required update time in a full-CAV traffic setting). At each
time step, we get an inferred queue table that allows us to
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derive optimal controls for all CAVs as detailed in the next
few sections.

Inferred Table
index info.  lane type source
0 | Xo, Vo, Yo | main |CAV|Wireless

2 | X2, V2, Us [METBIECAV|Wireless

4 Xa, V4, Ua i AV |Wireless

FIFO queue

Fig. 2. Information inferred queue table. All HDVs have random control
policies that are unknown. HDVs 3 and 7 may not actually exist. Z;, 0;
denote estimated HDV states. “Wireless” denotes wireless communication
with the coordinator.

Merging Zone. It is important to point out that the uncer-
tainty regarding the existence of inferred HDVs is eliminated
as all vehicles approach the MP, since their relative physical
distance becomes limited and on-board sensors can detect the
existence of other vehicles, as long as at least one CAV is
present. We define this as a Merging Zone (MZ), denoted by
the dotted circle shown in Fig. 1. If there is no CAV present
in the MZ, then HDVs are left to deal with safe merging
constraints as in current practice.

B. Safe Merging Contract between HDVs and CAVs

When HDVs and CAVs approach the MZ (defined above),
all vehicles must follow the same safe merging contract in
order to guarantee collision avoidance. Within the MZ, on-
board sensors can detect the existence of other vehicles,
as well as their state values. We start with the case where
sensors can accurately measure the states of other vehicles,
and then discuss how to deal with measurement uncertainty.

1) Perfect Information case: There are three cases to
consider: (i) The first two vehicles approaching the MP from
the main and merging roads, respectively, are CAVs. In this
case, there is no need to formulate another safe merging
contract between them as these two CAVs will consider the
safe merging constraint (5) upon arriving at the origins (as in
our full CAV setting in [18]). Note that even if there are some
HDVs between these two CAVs, their passing order can still
be the same. (i) The first two vehicles are HDVs. Then, we
have no choice but to let the human drivers figure out the
safe merging contract. (¢i7) One vehicle is a HDV and the
other is a CAV. This is the only case of interest, considered in
what follows. Let their indices be ¢, j, observing that whether
i or j is a HDV makes no difference.

The “safe merging contract” could be any agreement
between CAVs and HDVs, such as a priority-based contract
(e.g., main road vehicle goes first), or a nearest-vehicle-to-
MP contract (the one who is closer to the MP goes first).
This is the same as any traffic rule agreed upon and honored
by HDVs in today’s transportation network (e.g., “vehicle
from the right has priority in crossing an unsignalized
intersection”). In this paper, we propose a Minimum-Effort

Merging Contract (MEMC) that is based on u?(t) at time
t (a similar formulation as the energy consumption in (2)).
A MEMC considers the merging effort from the perspective
of CBFs, as we will employ the joint optimal control and
barrier function (OCBF) method to solve the problem online,
as shown in the sequel.

Let t; be the time when vehicles ¢ and j can recognize
each other upon entering the MZ. We define two CBFs
bi; and bj; corresponding to whether j or 7 goes first,
respectively, for the safe merging constraint (5):

bij(i(t), (1)) = 2i,5(t) — pui(t) — 9,
bji(ai(t), ®;(t)) = 2j.:(t) — v (t) =6,
where z; ; = v; — x;, 2z;; = x; — v;. Using the standard
CBF approach [21], each constraint above of the general

form b(x(t)) > 0 is mapped onto a new constraint which is
linear in the control input w;(t) and takes the general form

Lpb(a(t)) + Lob(x(t))ui(t) +v(b(z(t))) = 0, (1)

where L, L, denote the Lie derivatives of b(x(t)) along
f and g respectively for any control-affine dynamic system
@ = f(x)+ g(x)u and ~(-) stands for any class-/C function.
It has been established that satisfaction of (11) implies the
satisfaction of the original problem constraint b(xz(t)) > 0
because of the forward invariance property [21].

Applying (11) to (10) with the system dynamics (1) and
a linear y(b(x(t))) = kb(x(t)), the control w;(t) or w;(t)
should satisfy the following constraints:

ui(t) < i (@i(t), z;(t)),
ui(t) < Pji(xi(t), z; (1)),

where () = (1/@)vy(t) — vi(t) + kbyy(ai(t), 25 (1),
Vi) = (1/9)[vi(t) — vy(t) + kbyi(i(t), (1)), k > 0.
The 1;; or 1);; functions can actually be viewed as “risk
functions” for a merging collision, and they include all the
necessary system state information. We will show how these
may be used to determine the passing order between CAVs
and HDVs in the sequel. Note that the right hand sides of
the above equations are usually negative at time ¢, as the
following vehicle has to decelerate in order to satisfy the safe
merging constraint which may be violated at ¢,. We assume
the CBF constraints (12) do not conflict with the control
bound in (6); otherwise, we have to relax either (12) or (6)
in order to guarantee safety. The CBFs (10) are very likely
to be negative at ¢, without vehicle inference as both i, j
would be aggressive towards the MP. However, with vehicle
inference, a CAV will always consider making space before
reaching the MP with inferred vehicles (even though they
may not exist). Thus, we adopt a more conservative guarantee
for the safe merging constraint (5), which demonstrates the
importance of vehicle inference.

Proposition 1: The MEMC at ¢, is to let vehicle k(¢5)
go first at the MP, where

(10)

(12)

k() = g i (@i, @) |e=e, > Vji(@i, )=,
* i, if i (xs, @)=, < Vji(xs, 25) 1=, (’13)
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In the corner case when ;;(x;(t),x;(t))]i=¢, =
Yji(2i(t), z;(t))|i=¢,, the minimum control effort is the
same whether 7 or j goes first at the MP. In this case, we can
apply any other merging contract, such as the aforementioned
priority-based contract.

In order to apply (13), it is important to consider which
vehicle should evaluate the MEMC in Proposition 1. This
depends on the type of HDV involved, recalling the three
HDV types presented at the end of Section II. A type-
(1) HDV has sensing capability so that both CAVs and
HDVs can evaluate the MEMC in Proposition 1, and make
a mutually consistent decision. A type-(ii) HDV can receive
and follow signals from the CAV regarding who should go
first at the MP. Thus, only the CAV can evaluate the MEMC
in Proposition 1 and inform the HDV it shares the MZ with.
A type-(iii) HDV ignores CAVs and will cross the MP by
making its own decision. Thus, the CAV is the only one
evaluating the MEMC in Proposition 1 and must also make a
determination regarding the decision associated with HDVs.

While the first two cases are readily implementable, in
case (iii) above the CAVs are also responsible for the
potentially reckless decisions of HDVs (which can actually
relieve the stress of human drivers). In order to consider the
decision of HDVs, we propose the following approach.

Recurrent safe merging contract: The CAV (say i)
makes an initial evaluation of the MEMC in Proposition 1
at t; and makes a decision. If k(t;) = j, then the CAV
can simply let the HDV j cross the MP before it and this
decision would remain unchanged as long as the HDV does
not decide to decelerate. Thus, in general, the CAV will
re-evaluate the condition (12) after some time At > 0. In
either case, (the CAV or the HDV goes first at the MP),
if b1](ml(tg + At),.’l)j(ts + At)) < bw(mz(ts),mj(tg)) or
bji(a:i(ts + At),:l?j(ts + At)) < bji((l?i(ts),ilij(ts)), then
the CAV reverses the merging order (between itself and
the HDV) determined at t; otherwise, the CAV keeps its
decision unchanged. As a HDV may change its mind at any
time after ¢, the merging contract should evolve based on
the real-time state and history trajectory of the HDV. If the
order recursively changes, the CAV could yield to the HDV
for safety, although this comes at the cost of performance.
This is a problem that remains to be further studied.

The case of imperfect information can be considered
similarly, and this is left for future work. Finally, we can
solve the problem using the joint optimal control and barrier
function (OCBF) method proposed in [11].

IV. SIMULATION EXAMPLES

We have used the Vissim microscopic multi-model traffic
flow simulation tool as a baseline to compare with the
optimal control approach we have developed. The car follow-
ing model in Vissim simulates human psycho-physiological
driving behavior. We have chosen a merging configuration
that arises in highway [-90 (the Massachusetts Turnpike)
in the Boston, USA, area, as shown in Fig. 3. All CAVs
start to communicate with a coordinator (at the MP) in the
resequencing/connection zone as shown in the figure.

~

resequencing/connection zone * origin
Mic
main road
*
*
a
origin
8 contrgl%zone
) ) p y HDV
merging point *

* .
merging road

CAVs

a

ke (Toll road)
fusetts Turnp
Massac

Fig. 3. A merging scenario of the I-90 Masschussets Turnpike, USA.

The parameters of the map are as follows: L = 200m,

i = 555 in the main lane, and 4 = Z5 in the merging
lane. v;mex = 20m/s,A = 0.1s,¢o = 1.85,Vmin =
0m/s, Umaz = —Umin = 0.4g,g = 9.81m/s* a1 =
0.3,a2 = 0.1. The simulation under optimal control is

conducted in MATLAB with the same arrival process input
and initial conditions as in Vissim. Vehicles enter the CZ
under a Poisson arrival process with initial speed in the
range 6.5 — 12.5m/s at the origins, and whether a new
arriving vehicle is a HDV or a CAV is randomly determined
in accordance with the given CAV penetration rate. The
MATLAB computation for the proposed framework is very
efficient, i.e., less than 0.01s for each QP of the OCBF
controller (Intel(R) Core(TM) i7-8700 CPU @ 3.2GHzx2).
The simulation results under two HDV driving policies
compared to that in Vissim are summarized in Tables I-
II. The traffic arriving rates in the main and merging lanes
are 500 vehicles/h and 800 vehicles/h, respectively. We
assume the HDVss can follow the merging signals from CAVs
determined by the proposed MEMC in Prop. 1 with perfect
information (i.e., type (i¢) HDVs, and type (i) HDVs are
similar in terms of the safe merging contract. We leave type
(#i1) for on-going work). The HDVs maintain a safe distance
with their preceding vehicles with a random desired speed
that uniformly takes value between 10m/s and 20m/s.
When two HDVs compete at the MP and follow the FIFO
rule, we set § = Om as vehicles will not stop at the MP.
When a CAV competes with a HDV, the proposed MEMC
is used. CAVs use a sensing range of 30m. The overall
objective of CAVs improves about 50% with the proposed
vehicle inference approach compared with Vissim, as shown
in Table I. The travel time and energy consumption of CAVs
are improved as the CAV penetration rate becomes larger.
The energy consumption is a little worse than that of HDVs
in Vissim. This is due to the random driving policies of
HDVs. In this case, all CAVs can maintain a safe distance at
the MP due to the vehicle inference, while the HDVs might
stay very close to each other at the MP (see videos'). This
demonstrates the advantage of vehicle inference at the cost

Ihttps://sites.google.com/view/xiaowei2021/cav?
authuser=0
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TABLE 1
COMPARISONS OF DIFFERENT CAV PENETRATION RATES; HDV'S USE
FIFO WITH RESPECT TO EACH OTHER
[ CAV fraction | Time(s) | | Comfort | [ ZuZ(t) [ | Obj. | |

1.0 (prior™) 13.3404 442197 7.0785 68.3482
1.0 13.4248 43.8288 8.9633 70.4897

0.9 13.6568 43.5499 9.9823 72.2417

0.7 13.6411 42.8777 10.9780 73.1853

0.5 14.0733 42.5459 12.9866 76.5549

0.3 14.5235 448731 12.2254 77.2189

0.1 14.7556 32.6932 11.7607 77.4383
VISSIM 32.7797 22.4928 8.7537 140.1650

With prior information that all vehicles are CAVs such that no
inference is needed
Note: only counting for CAVs performance

TABLE II
COMPARISONS (CAV) OF DIFFERENT CAV PENETRATION RATES; HDVS
ON MAIN ROAD HAVE PRIORITY OVER HDV'S ON MERGING ROAD

[ CAV fraction | Time(s) | | Comfort | [ ZuZ(t) [ | Obj. | |
1.0 (prior™) 13.3404 44.2197 7.0785 68.3482
1.0 13.0505 44.8097 17.3266 77.6417

0.9 13.8918 43.4173 20.5457 83.7673
0.7 15.6416 40.7137 25.7666 95.2678
0.5 16.4640 40.4495 28.8703 101.2967
0.3 16.7129 39.5317 29.4822 102.8022
0.1 17.1452 38.6328 30.8907 105.7633
VISSIM 32.7797 22.4928 8.7537 140.1650
With prior information that all vehicles are CAVs such that no

inference is needed
Note: only counting for CAVs performance

of some performance loss (shown by the rows “1.0 (prior)”
and “1.0” in Table I).

When two HDVs compete at the MP and follow the
priority rule, the one from the merging road yields to the
HDV from the main road (assume the HDV observation
distance is 50m) and it may stop at the MP. Thus, we set
0 = 2m. Once again, when a CAV competes with a HDV,
the proposed MEMC is used. The performance of CAVs is
worse than the one under the FIFO rule, as shown in Table II.
Since randomness (hence congestion) is much higher under
the priority rule than under the FIFO rule, we average the
results of 20 simulations. When the CAV penetration rate is
0.1, the objective of CAVs is close to that of Vissim. The
energy consumption is worse than the one in Vissim; this is
due to the randomness of HDVs. Nonetheless, the throughput
(travel time) of HDVs in our setting is significantly improved
(about 50%) compared to the one in Vissim.

V. CONCLUSIONS

We have derived a vehicle inference approach for the
mixed traffic merging problem that jointly minimizes the
travel time and energy consumption, as well as the centrifu-
gal discomfort of each CAV and guarantees that a speed-
dependent safety constraint and a lateral rollover avoidance
constraint are always satisfied. Ongoing research is extending
the proposed framework to the “non-cooperative” HDV case
through an interactive way and exploring the feasibility
guarantee of the proposed framework under control bounds.
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