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Abstract

We study quantum circuits constructed from v/ iSWAP gates and, more generally, from the
entangling gates that can be realized with the XX + YY interaction alone. Such gates preserve the
Hamming weight of states in the computational basis, which means they respect the global U(1)
symmetry corresponding to rotations around the z axis. Equivalently, assuming that the intrinsic
Hamiltonian of each qubit in the system is the Pauli Z operator, they conserve the total energy of
the system. We develop efficient methods for synthesizing circuits realizing any desired
energy-conserving unitary using XX + YY interaction with or without single-qubit rotations
around the z axis. Interestingly, implementing generic energy-conserving unitaries, such as CCZ
and Fredkin gates, with two-local energy-conserving gates requires the use of ancilla qubits. When
single-qubit rotations around the z-axis are permitted, our scheme requires only a single ancilla
qubit, whereas with the XX+YY interaction alone, it requires two ancilla qubits. In addition to
exact realizations, we also consider approximate realizations and show how a general
energy-conserving unitary can be synthesized using only a sequence of vViSWAP gates and two
ancillary qubits, with arbitrarily small error, which can be bounded via the Solovay—Kitaev
theorem. Our methods are also applicable for synthesizing energy-conserving unitaries when,
rather than the XX + YY interaction, one has access to any other energy-conserving two-body
interaction that is not diagonal in the computational basis, such as the Heisenberg exchange
interaction. We briefly discuss the applications of these circuits in the context of quantum
computing, quantum thermodynamics, and quantum clocks.

1. Introduction

In the field of quantum computing and other related areas, such as quantum control and quantum
thermodynamics, one is often interested in implementing desired unitary transformations on a quantum
system, e.g., on a finite number of qubits. Inspired by the classical circuit model, researchers in this field have
developed circuit synthesis techniques to implement any desired unitary using elementary gate sets acting on
a few qubits in the system [1-7]. For instance, it has been shown that any unitary transformation on # qubits
can be implemented exactly with O(4") single-qubit and 2-qubit gates, such as Controlled-NOT
(CNOT)gate [8]. However, these general circuit synthesis techniques do not take into account the specific
properties of the desired unitaries, such as their symmetries. Such considerations can significantly reduce the
number of required gates and also enable circuit realizations that are more noise-resilient. Additionally, the
general circuit synthesis techniques do not distinguish between generic gates and the gates that can be

© 2024 IOP Publishing Ltd. All rights, including for text and data mining, Al training, and similar technologies, are reserved.
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Figure 1. SWAP from iSWAP. The top circuit is the standard way of implementing the SWAP gate using three iSWAP =
exp(iRm/2) gates, also denoted as iSw, where R = (X ® X 4+ Y® Y) /2 is the XY interaction [22]. (Note that SWAP and iSWAP
are indeed equal, up to a global phase in the sector with Hamming weight 1.) This circuit requires three /X gates, which are not
energy-conserving. Interestingly, it turns out that even though SWAP is energy-conserving, unless one uses ancilla qubits, such
non-energy-conserving gates are unavoidable (see [23] and theorem 5). The bottom circuit realizes SWAP using three iSWAP
gates together with two energy-conserving single-qubit gates, namely St and Z, and with one ancillary qubit. The lack of
non-energy-conserving unitaries makes the bottom circuit more resilient against certain types of noise, such as the fluctuations of
the master clock that controls the timing of pulses [23, 24].

realized with native interactions on a particular platform—an important property that makes the gates easier
to implement and more robust against noise.

In this work, we study energy-conserving quantum circuits, which are circuits formed from single-qubit
rotations around the z-axis and 2-qubit unitary gates U that conserve the sum of Pauli Z operators, such that

[U,Z1+1®2)=0. (1)

Assuming the qubits have identical intrinsic Hamiltonian, with eigenstates |0) and |1), such gates conserve
the total intrinsic energy of the system. Hence, in this paper, we refer to such unitary transformations as
energy-conserving unitaries (see section 2 for further details and definitions). Note that this condition can be
equivalently understood as a global U(1) symmetry, where the representation of symmetry on each qubit is
e%2:0 € (—m, 7).

A canonical example of such an energy-conserving gate family, extensively discussed in this paper, is one
that can be realized with the Hamiltonian X ® X + Y ® Y, also known as the XY interaction. Besides its
fundamental importance in the condensed matter theory, this interaction also plays a crucial role in
quantum computing. Namely, it is the native interaction in various solid-state qubits, including quantum dot
spins [9-11], as well as some superconducting qubits [12—17]. We also consider quantum circuits that
contain other 2-qubit energy-conserving interactions, such as the Heisenberg exchange interaction
XRX+YRY+Z®Z

It turns out that many useful gates and subroutines in quantum computing are energy-conserving
unitaries. This includes the SWAP and controlled-SWAP gates (also know as the Fredkin gate), the
controlled-Z (CZ) gate with arbitrary number of control qubits, and the family of unitaries generated by the
multi-qubit swap Hamiltonian [18-21]. The standard approaches [2] for implementing such unitaries ignore
this conservation law and decomposes the desired unitary to elementary gates that do not conserve the
intrinsic energy of qubits, such as CNOT and Hadamard.

In this work, on the other hand, we are interested in the synthesis of energy-conserving unitaries with
energy-conserving gates alone. In such circuits, the total energy of the qubits in the system remains
conserved throughout the execution of the circuit. As argued in [23], this makes the circuit more resilient
against certain types of noise, such as those induced by the instability of the master clock that controls the
timing of pulses [24]. As a simple example, in figure 1 we compare two different realizations of a useful and
common energy-conserving gate in quantum computing, namely the SWAP gate.

Indeed, even in the cases when the target unitary is not energy-conserving, still, it might be desirable to
minimize the use of non-energy-conserving gates. For instance, instead of the standard implementation of
the 3-qubit Toffoli gate that requires multiple single and two-qubit non-energy-conserving gates (namely, 6
CNOTs and 2 Hadamards [2, 25, 26]), one can implement this useful gate by sandwiching the
energy-conserving controlled-controlled-Z (CCZ) gate between two Hadamards, as shown in figure 2. Then,
by realizing CCZ gate with energy-conserving gates, one obtains an implementation of Toffoli, which is more
robust against certain fluctuations of the master clock.
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Figure 2. Two different implementations of the Toffoli gate. The top circuit is the standard way of implementing the Toffoli gate
[2, 25, 26], which is one of the most useful gates in quantum computing. This circuit contains eight non-energy-conserving gates,
namely six CNOTs and two Hadamards. (Indeed, this can be reduced to seven single-qubit non-energy-conserving gates, if one
replace each CNOT with a CZ gate sanwhiched with two Hadamards.) The bottom circuit requires a CCZ gate, which is
energy-conserving, and two non-energy-conserving gates, namely two Hadamard. Using the techniques developed in this paper,
CCZ gate can be realized with XY interaction and local Z with one ancilla qubit, or XY interaction alone with two ancilla qubits.
Therefore, in total, it requires only two single-qubit non-energy-conserving gates.

We note that using energy-conserving quantum circuits for suppressing noise has been previously
considered in the context of decoherence-free subspaces (DFS) [27-32]. For instance, using the dual-rail
encoding, a logical qubit can be encoded in the 2D subspace of a pair of qubits spanned by |01) and |10)
states. Then, an encoded version of any desired quantum circuit can be performed in a DFS, i.e., an
eigen-subspace of the total intrinsic Hamiltonian >/, Z;. Indeed, it has been shown that using XY
interaction, it is possible to achieve such encoded universality [31, 33, 34]. However, a clear downside of this
approach is that the encoding reduces the number of logical qubits (e.g., by a factor of 2 in the case of
dual-rail encoding), which is undesirable, especially in the NISQ era [35].

On the other hand, in this paper, we do not assume that the global state is restricted to a DFS. Instead, the
state of the qubits can be arbitrary. Furthermore, we are interested in a stronger notion of universality, which
requires implementing all energy-conserving unitaries. Of course, this notion of universality also implies the
encoded universality of XY interaction. In particular, one can use the synthesis techniques developed in this
work to find an efficient implementation of the exact gate sequences that are needed to perform an encoded
version of a desired circuit in DFS.

Besides quantum computing, the notion of energy-conserving unitaries appears in many broad areas of
quantum information science and, therefore, it is crucial to understand how they can be realized with
energy-conserving circuits. For instance, in quantum thermodynamics one often assumes energy-conserving
unitaries are ‘free), i.e. can be realized with negligible cost [36—40]. However, prior to this work, it was not
known how a general energy-conserving unitary can be realized, and in particular, how it can be
decomposed to a finite sequence of local energy-conserving unitaries. Other areas of applications include
quantum clocks, quantum reference frames and the resource theory of asymmetry (see section 8 and [23] for
further discussion).

1.1. Summary of the main results: circuit synthesis techniques

It was shown in [23] that it is impossible to implement a generic energy-conserving unitary by applying local
energy-conserving gates on the subsystems that form the system (In section 2.2 and theorem 5 we briefly
review this result). This is in sharp contrast with the standard universality of 2-qubit gates in the absence of
energy conservation [6, 41]. In addition to this result, [23] also shows that this no-go theorem can be
circumvented using a single ancilla qubit. In particular, [23] proves that for any desired energy-conserving
unitary V on 1 qubits, there exists an energy-conserving unitary V on 1+ 1 qubits, such that V can be
realized by Hamiltonians X ® X 4+ Y® Y and single-qubit Z and

V(%) ® [0)anc) = (V1)) © 0)anc , (2)

for all states |1)) of n qubit system (see the example in figure 1). Subsequently, [42] simplified and generalized
this result, to symmetric quantum circuits with arbitrary Abelian symmetries.
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Building on the ideas developed in [23] and [42], in this work we go beyond these results and develop
various circuit synthesis techniques for constructing explicit circuits with energy-conserving gates. (This is
analogous to the development of the theory of quantum circuits: first, the universality of 2-local gates was
established mostly using Lie-algebraic arguments [6, 41], and then, building on those results, explicit and
efficient circuit synthesis techniques were developed. See, e.g. [3, 43].)

Using these circuit synthesis methods we show that

Theorem 1 (Exactimplementation). Any energy-conserving unitary transformation on n qubits, i.e., a unitary
transformation that commutes with Z]'-;l Z;, can be realized exactly, up to a possible global phase, using

O(4"n/?) gates from any one of the following universal gate sets

1. ViSWAP = exp(ifR) , and exp(ip Z) : ¢ € (—m, 7| gates, with one ancilla qubit, where
1
RZE(X®X+Y®Y). (3)

2. exp(iaH,): o € R, and S = é™/*exp(—ir Z/4) gates, with one ancilla qubit, where Hj,,, is any
energy-conserving 2-qubit Hamiltonian that is not diagonal in the computational basis, such that

[Hint7Z® H] = - [I—Iinn]I ®Z] 7é 0 ) (4)
3. exp(iaR) : «a € (—7, 7] gates, with two ancilla qubits.

Two canonical examples of non-diagonal energy-conserving Hamiltonians are the XY interaction and the
Heisenberg interaction Ryejs := (X® X+ Y® Y+ Z® Z)/2. Then, part 2 of the theorem implies that the
following sets are universal:

e exp(iaR) : € (—m, 7], and S gates, with one ancilla qubit,
o exp(iaRyeis) : @ € (—m, 7] , and S gates, with one ancilla qubit.

A few remarks are in order: first, as we show in section 2.1, general energy-conserving unitary
transformations on n qubits are smoothly parameterized by & 4" /\/7 n real parameters. Therefore, a simple
parameter counting implies that for generic energy-conserving unitaries, the above constructions are close to
optimal, by a factor of n*°.

Second, note that in part 2 of the theorem the condition that Hiy, is not diagonal is necessary, because
otherwise qubits cannot exchange energy with each other, i.e., the overall n-qubit unitary will be also
diagonal in the computational basis.

Finally, note that in all the three cases in theorem 1 one needs, at least, one ancilla qubit, which by the
argument [23] is unavoidable. However, for the last gate set an extra ancilla is used. This is because XY
Hamiltonian has an additional Z, symmetry, namely

X®2RX®? =R. (5)

As we further explain in section 6, this Z, symmetry can be broken with the extra ancilla qubit. In this case,
the ancilla can be interpreted as a quantum reference frame, or asymmetry catalyst [44, 45]°.

In addition to exact implementation, we also investigate the approximate implementation of
energy-conserving unitaries using finite gate sets, e.g., v iSWAP and S gates. Applying the Solovay—Kitaev
theorem [1, 50, 51], one can bound the number of such gates that are needed to implement a desired
energy-conserving unitary, with any error € > 0 as quantified in terms of the operator norm distance between
the desired unitary and the realized unitary (see section 7 for the formal statements). In particular, we show
that

Corollary 2 (Approximate implementation). Any energy-conserving unitary on n > 2 qubits can be realized
with an error bounded by ¢ > 0, using O(4"n>/%(n +loge™")") number of gates from either of the following gate
sets:

> More generally, we will show in section 5 step 3 that if an energy-conserving unitary acts non-trivially only on a subspace spanned by D
elements of the computational basis then it can be realized using O(n* x D?) gates from any one of the above gate sets.

6 It is worth noting that with any finite number of ancilla qubits, it is impossible to implement non-energy-conserving unitaries, using
energy-conserving interactions alone. This can be understood as a consequence of the Wigner—Araki—Yanase theorem [46, 47], or equi-
valently, a consequence of the no-programming theorem [48] (see [49] for the connection).
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1. ViSWAP gate alone with 2 ancilla qubits.
2. iSWAP and S gates with 1 ancilla qubit.

Here, v is the exponent for the complexity of Solovay—Kitaev algorithm, and can be chosen as any number greater
thanlog /5,2 ~ 1.44042.

In the above discussions, we did not specify any geometry for the system of qubits and assumed gates can
be applied between any pair of qubits. What happens if we assume the qubits form an open chain and gates
are allowed only between nearest-neighbor qubits?

As it was noted in [23], this additional restriction does not affect the set of realizable unitaries, provided
that the ancilla can be coupled to all the qubits in the chain. This is because interacting two qubits with the
ancilla using X ® X 4+ Y® Y and Z Hamiltonians, allows us to perform the SWAP gate that exchanges the
state of two qubits (see figure 1). Then, applying SWAPs between nearest-neighbor qubits, one can arbitrarily
change the order of qubits. On the other hand, if one requires that the ancilla should also be part of the chain
and only interact with its nearest neighbors, then the above universality result does not hold anymore.
Indeed, in this case, using the Jordan—Wigner transformation [52-54] this system can be mapped to a free
fermionic system, which implies that the group of realizable unitaries is significantly smaller than the group
of energy-conserving unitaries (namely, it has dimension n?). Of course, if one is allowed to use the SWAP
gate, this restriction can be avoided. That is

Corollary 3 (Approximate implementation with nearest-neighbor gates). Consider an open chain of n+ 1
qubits, where one of the qubits is designated as the ancilla qubit and is initially prepared in state |0). Any
energy-conserving unitary on the rest of qubits can be realized using O(4"n>/*(n+loge")") number of gates S,
SWAP, and v/ iSWAP with two-qubit gates restricted to nearest-neighbor qubits, for any v > log, | s 122

Finally, in section 6 we develop circuit synthesis techniques using XY interaction alone and, in particular,
without single-qubit Z Hamiltonian and ancilla qubits. It follows that all realizable unitaries should satisfy
the Z, symmetry of XY interaction in equation (5). However, as the following theorem states, there are more
constraints on the realizable unitaries (see section 6 for further details).

Theorem 4 (Circuits with XY interaction alone). On a system with n > 3 qubits, any unitary V can be
realized with interaction R = (X® X+ Y® Y) /2 alone (without any ancilla qubits) if, and only if,

1. Vis energy-conserving, i.e. [V,> 1 Z] =0.

2. It satisfies the Z, symmetry X®"VX®" =V,

3. det(V")=1:m=0,--- ,n, where det(V\"™)) is the determinant of V"), the component of
V=, _, V") in the subspace with Hamming weight m, that is the eigensubspace ofz;;l Z; with
eigenvalue n — 2m.

4. When n is even, det(V("/>%)) = 1, where V(*/2%) is the component of V in the joint eigensubspaces onij
and X®", with eigenvalues 0 and +1, respectively, such that

v(n/2) — yn/2,4) @y y(n/2,-) (6)

Furthermore, any unitary satisfying the above conditions can be realized with O(4"n*/?) gates
exp(ifR) : 6 € (—m, 7).

This means that the group of unitaries that can be realized with XY interaction alone on n > 3 qubits,
denoted by G,, is isomorphic to

5]
QW%HSU<<Z>> :nis odd
m=1

() )

where we have used the fact that the dimension of the subspace with Hamming weight m is (). Note that in
the special case of n = 2, the constraint in condition 4 does not hold and’
G,=U(1) .

7 In this case, the eigen-subspaces of X®? in the subspace with Hamming weight 1 correspond to vectors |01) & |10), which are also
eigenvectors of exp(ifR) with eigenvalues e+1¢,
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It is also worth emphasizing that while the additional constraint in the case of even n > 4, i.e., condition 4, is
related to the aforementioned Z, symmetry of XY interaction in equation (5), it is not necessarily satisfied by
all unitaries that respect the Z, symmetry (Namely, it is of the type of constraints discussed in [23] which are
the consequence of both locality and symmetry of Hamiltonian). For instance, for a system with n = 4 qubits,
consider the family of unitaries

exp (i0[|0011)(1100] + [1100)(0011]])  : 6 € (—m, 7],

i.e. unitaries generated by Hamiltonian H = |0011)(1100| 4 |1100)(0011|. While these unitaries respect
conditions 1-3 of theorem 4, unless § = 0, they do not satisfy condition 4 of this theorem and therefore they
are not realizable with XY interaction alone®. Finally, we note that our results on approximate universality
imply that the group generated by viSWAP gates on n > 3 qubits is a dense subgroup of G,,.

The rest of this paper is organized as follows:

e Section 2 formulates our goal by introducing energy-conserving unitaries and the notion of
(semi-)universality. It contains a collection of elementary gates useful for subsequent circuit constructions.
In section 2.5, circuits with iSWAP and single-qubit z-rotations are characterized.

e Section 3 discusses the structure of 2-qubit energy-conserving unitaries. It shows the semi-universality of
(and thus the equivalence between) the gate sets 1 and 2 in theorem 1 for 2 qubits.

e Section 4 is focused on 3-qubit energy-conserving unitaries. It contains the implementation of controlled-
Z and SWAP gates using a single ancilla qubit, as well as circuit identities that are useful afterwards. The
construction of 3-qubit 2-level special unitary energy-conserving gates is presented in section 4.2, which
serves as a basis for the construction of general n-qubit energy-conserving unitaries.

e Section 5 is dedicated to the construction of n-qubit energy-conserving unitaries, and concludes the proof
of theorem 1, for gate sets 1 and 2.

e Section 6 is focused on the set of unitaries that are realizable with XY interaction alone, contains the proof
of theorem 4 and completes the proof of theorem 1 for gate set 3.

e Section 7 introduces approximate universality and provides approximate constructions of aforementioned
circuits in sections 4—6. It combines a Lie algebraic characterization of unitaries generated by vViSWAP gates
with the Solovay—Kitaev theorem, and proves corollary 2.

e Section 8 contains a short discussion on applications of energy-conserving quantum circuits, in areas such
as quantum computing, quantum thermodynamics, and quantum clocks.

2. Preliminaries

2.1. Energy-conserving unitaries

Consider a system with n qubits, each with the intrinsic Hamiltonian —AE Z/2, where AE > 0 is the energy
difference between the ground state |0) and the excited state |1) of the qubit. Then, the total intrinsic
Hamiltonian of this system is

AE nooo
Hintrinsic = _7 ZZ] =AE _E =+ Z m H(m) ’ (7)
j=1 m=0

where Z; denotes the Pauli Z operator on qubit j tensor product with the identity operator on the rest of
qubits, and 1™ is the projector to the eigen-subspace H of Hipgrinsic with energy (2m —n) x AE/2.
Then, the total Hilbert space decomposes as

n

((C2)®n ) EDH(m) ) (8)

m=0

Let {|0),|1) }®" be the computational basis for n qubits. We will label a vector in this basis with a bit string
b=0b,---b, € {0,1}" as |b). Then, H(") is the subspace spanned by the elements of this basis with
Hamming weight m (Recall that the Hamming weight of a bit string is the number of bits with value 1).

We are interested in energy-conserving unitaries on this systems, i.e., those that conserve the total
intrinsic Hamiltonian of the qubits in the system. A unitary V on n qubits is energy-conserving if, and only

8 In particular, in this case, V(»®) = exp(£if|1)+ ) (1p+|) where [¢h+) = (|0011) % [1100))/+/2 are the eigenvectors of H with eigen-
values £1. Then, det(V(z’i)) = ¢T19 which implies, unless 8 = 0, this unitary is not realizable with XY interactions alone.
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if, it is block-diagonal with respect to the decomposition in equation (8), such that

V= EB yim 9)
m=0

Following the notation in [23], we denote the set of such unitaries as

V#(l) = {V [VaHintrinsic} = 07 VVT = H®n}
n
=Pu(Hm), (10)
Pu ()

where I denotes the identity operator on a single qubit, and U(H (™)) denotes the group of all unitaries acting
on H(™_ Here, the superscript U(1) refers to the fact that V,l,j ™ is the set of unitaries that commute with

unitaries
(exp(i02)) " =exp [ 107 | : 0 (—mn], (11)
j=1

which is a representation of the group U(1) = {¢" : § € (—, 7]} that describes the time evolution of a
periodic system ([23] studies circuits with general symmetries).

Decomposition in equation (10) implies that energy-conserving unitaries can be smoothly
parameterized using

n 2 n
an(5) -5 0) - (2) =

m=0

real parameters, where by ~ we mean the ratio of two sides goes to 1, in the limit n — oo, which can be
established using the Stirling’s approximation for factorials.

As we discuss in the following, it is also useful to consider the subgroup of this group, formed from
energy-conserving unitaries V=, V(") where in each sector we have det(V(") = 1, i.e.

Syy = {Vz é vim - v e sy (H<m>) }
m=0

:ésu (m) . (13)
m=0

where SU(H (™)) denotes the group of special unitaries acting on (™).
With this definition, any element of VV!) has a decomposition as

V=QD=DQ, (14)

where unitary Q € SVYV, unitary

n —1
n
D= i6, e, 15
is diagonal in the computational basis, and
0, = arg (det (V(m)>) , (16)

is the phase of the determinant of V"), and for convenience we assume ,, € (—, 7]. We note that, in
general, the decomposition in equation (14) is not unique.
In the following, for any unitary V, A°(V) denotes its controlled-version with control string
ce{0,1}K ie.
A (V) = Yol | @+ le)el @ V. (17)
c’#c
If Ve SVYW, then its controlled version A€(V) is in SVEJ(FIIB.
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2.2. Semi-universality and universality with XY interaction and local Z

Marvian [23] shows that any energy-conserving unitary V = " _, V" can be realized using XY
interaction and local Z, up to certain constraints on the relative phases between sectors with different
energies. Following [42], we say a set of gates are semi-universal for energy-conserving unitaries, if they
generate SYYW for all integer 7. Using the notion of semi-universality, the result of [23] can be rephrased as

Theorem 5 (Based on [23]). For a system with n qubits, the group Gxxyy,z generated by 2-qubit gates
exp(ia[XX + YY), single-qubit gates exp(i3Z), and global phase ¢ for o, B, ¢ € (—m, | is equal to the

subgroup of all energy-conserving unitaries V € YW satisfying the extra constraint

9, — (") x [T x (en—90)+90} : mod 2m (18)
m n

forallm=0,--- ,n, where 0, = arg(det(V(™)) and V(™ is the component of V in the sector with Hamming
weight m. In particular, Gxx 1 yy 7 contains SVY () defined in equation (13) and, therefore, the aformentioned
gates are semi-universal.

We note that the circuit synthesis techniques presented in this paper provide an independent proof of the
second part of this theorem. In particular, the semi-universality of this gate set is demonstrated in
proposition 13. For completeness, in appendix A, we also establish the first part; that is, we show that
equation (18) along with the energy conservation condition fully characterizes the group Gxx+yyz -

Equation (18) imposes n — 1 independent constraints on the set of unitaries in Gxxyy,z. Then, it follows
from this theorem that the difference between the dimensions of the Lie group of all energy-conserving
unitaries and the subgroup Gxxyy,z is equal to

dim (Vbj(l)) - dim(GX)H_yyz) =n—1. (19)

Marvian [23] also shows that using a single ancilla qubit, it is possible to circumvent these constraints. That is

Corollary 6 ([23]). Any energy-conserving unitary can be realized with a single ancillary qubit, and gates
exp(i¢ Z) and 2-local gates exp (i [XX + YY]).

The proof of this result in Marvian [23] is Lie algebraic. In this work, on the other hand, we give explicit
circuit construction methods for realizing general energy-conserving unitaries with a single ancilla qubit.

2.3. 2-level energy-conserving unitaries
A key notion in the quantum circuit theory is the concept of 2-level unitaries, also known as Givens rotations
[2]. We say a unitary transformation is 2-level with respect to the computational basis {|0), |1)}©", if it acts
trivially (i.e., as the identity operator) on all the basis elements, except, at most 2.

In the following, for any pair of bit strings b,b’ € {0,1}", U(b,b") denotes a 2-level unitary acting as
U € U(2) on the subspace spanned by |b) and |b’), and acting trivially on the orthogonal complement of this
subspace. More precisely, for a 2 x 2 unitary

u
U= < 11 M12>7 (20)
Uz Uz
its corresponding 2-level unitary is

U(b,b’) := 11 [b)(b] + ura[b) (b'| + 121 [b')(b] + una[b")(b'[ + > [e)(c]. (21)
c#b,b’

A 2-level unitary U(b,b") is in SVY! if, and only if det(U) = 1 and w(b) = w(b"), where for any bit
stringb="b,---b, € {0,1}",

w(b)=> b, (22)
j=1
denotes the Hamming weight of b.

9 It is also worth noting that in the context of control theory, using a Lie algebraic argument, [55] shows that in any individual Hamming-
weight sector, Hamiltonians XX + YY, ZZ, and local Z together generate all unitaries in that sector; a property known as subspace
controllability.
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2.4. Elementary gates
We mainly study quantum circuits formed from two types of gates. First, single-qubit rotations around z,
i.e., unitaries

No) ¢
R, (¢) = exp(lzZ) = & c¢ € (—m,m]. (23)

T:e‘%RZ<_ﬁ) _ ( ! i3 ):\ﬁ (24)
and
s:eT&(—ﬂ>:<l i>::VZ:T? (25)

The second type of gates used in our circuits are in the form

exp(iaR) : a € (—m, 7], (26)
where
1
Ri=J(X®X+Y®Y) . (27)

Two important special cases are the iSWAP gate

1
ISWAP = iSw = exp (i=R) = ! : (28)
p B i
1
and the square root of iSWAP gate
1
i
ISWAP = /iSw = exp (ifR) - VioV2 : (29)
4 ViV

where the matrices are written in the computational basis {|00),]01),|10),|11) }. Note that \/@T =
(\/@)7 See, e.g., [22, 56] for further discussions about the properties and applications of ViSw and iSw
gates for circuit synthesis.

We also consider the SWAP gate

SWAP = Sw = = , (30)
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and the Controlled-Z (CZ) gate

CZ = 0)(0| @I+ |1){(1|® Z = _

2.5. Circuits with iSWAP and single-qubit z rotations

In this paper, we show how a general energy-conserving unitary can be realized with the exp(iaR) gate and
single-qubit rotations around z. However, it is useful to first consider a more restricted family of circuits
generated by the single-qubit rotations around z together with iSWAP gate. To analyze such circuits, we
consider the useful circuit identity

T 5

iSw = (31)

- El

Note that the S gate commutes with the controlled-Z gate. Then, using this identity it can be easily seen that

Proposition 7. Suppose unitary V is realized by a circuit formed from iSWAP gates. Then, V has a
decomposition as V.= V3V, V1, where V7 is a permutation, i.e., is a composition of SWAP gates, V; is a
composition of controlled-Z gates, and V5 is a composition of single-qubit S gates. More generally, if in addition
t0 iISWAP, the circuit also contains the single-qubit rotations around z, denoted by R,(9) : ¢ € (—m, |, then the
realized unitary V has a similar decomposition, where V3 is now a product of arbitrary single-qubit rotations
around the z axis.

In particular, note that while iSWAP is an entangling gate, the family of energy-conserving unitaries that
can be realized by combining this gate with single-qubit z-rotations, are very limited. Namely, the set of
realizable unitaries is specified by # real parameters and they map any element of the computational basis to
an element of the computational basis, up to a global phase.

Using this property of iSWAP circuits one can establish several other useful circuit identities, which are
summarized in figure 3. Such identities will play a key role for constructions in the following sections.

3. 2-qubit energy-conserving unitaries

3.1. The structure and realization of V)’ =

For n =2 qubits, the energy levels of the intrinsic Hamiltonian Hiyinsic in equation (7) decomposes the
Hilbert space into 3 eigen-subspaces corresponding to Hamming weights 0, 1, and 2. Then, a general 2-qubit
energy-conserving unitary is specified by 1+ 2% + 1 = 6 real parameters and is in the form

el

V= v =QD=DQ. (32)
eiez

Here, V(1) is an arbitrary 2 x 2 unitary in the sector with Hamming weight 1 spanned by |01) and |10).
Furthermore, D is diagonal in the computational basis and satisfies [D, V] = 0, whereas

1
Q= QM esYIW (33)
1

i.e., has determinant 1 in all sectors with Hamming weights 0, 1, and 2. QW can be written in the basis of
|01) and |10) as a single-qubit gate. For example,

Q = exp (iaR) — QW = exp (iaX)
Q= ViSWAP — QW =exp (ir X/4)
Q=exp(ia[Z; — Z]) — QW =exp(2inZ) . (34)

10



10P Publishing Quantum Sci. Technol. 9 (2024) 045049 G Bai and I Marvian

In particular, using the Euler decomposition for QM) as Q1) = ¢"4¢i#Yel*Z for some o, 3,7 € (—m, 7],
we find that Q has a decomposition as

Q= eig(zl—zz)mlzeié(zl—zz)m;fzei%(zl—zz) . (35)

Furthermore,
D = %110 4 0/211() 4 (i 11(2) (36a)
_ 002 f01(242) gt (36b)

where 6 = arg(det(V;)) and

4o =0y + 01 + 0, =: @, (37a)
8¢1 = 290 — 292 = (bl 5 (37b)
4¢, =0y — 0,4+ 0, =: &, : mod 27 . (37¢)

The phases ®;: [ =0, 1,2 are called the I-body phase associated to the unitary V [23]. It is worth noting
that while neither of phases 6y,6,6,, or ¢g, $1, @, are physically observable, all the I-body phases, except ®,
are observable. For instance, when V is the identity operator, equation (36b) holds for all

km
¢0:¢l:¢2:7 :k:07"'737
whereas for all four cases we have
@0:@1:@2:0 : mod 27 .

Note that &g = 4¢ corresponds to a global phase. Furthermore, ®; = 4¢, can be changed arbitrarily by
applying the unitary exp(i¢;(Z; + Z,)), which can be realized with local Z interactions. On the other hand,
as it follows immediately from equation (18) in theorem 5, a general U(1)-invariant unitary V on a pair of
qubits can be realized by XY interaction and local Z if, and only if its 2-body phase is zero, i.e.

(132:90—91+92:0:m0d27r. (38)

This constraint, for instance, excludes the SWAP and CZ gates, because for both of these operators 2-body
phase is &, = 7.

It is also worth mentioning that the matrices Q and D in decomposition in equation (32) are unique up
to a freedom in choosing 6; or #; 4 7. This freedom is related to the fact that both matrices

() ()

are in SU(2). Therefore, the component of Q in the sector with Hamming weight 1 is fixed up to a
plus/minus sign.

3.2. 2-qubit semi-universality of the gate sets in theorem 1

As we will explain in the following, the above characterization of 2-qubit energy-conserving unitaries
immediately implies the semi-universality of gate sets 1 and 2 in theorem 1, for the special case of n =2
qubits. This, in particular, means that using any of these gate sets one can realize the family of unitaries

exp(iaR) : o = (—m, 7],

where R= (X®@X+Y®Y)/2.

Then, in the rest of the paper, we consider circuits that only contain this family of unitaries as well as the
S gate and prove theorem 1 for this gate set, which is a special case of gate set 2 (In other words, we show how
a general energy-conserving unitary can be realized with these elementary gates and a single ancilla qubit).
This result combined with the following discussion proves theorem 1 for gate sets 1 and 2. Crucially, as we
will show below, the gates in each set can be constructed using the other gate set exactly, using a finite O(1)
number of gates. Therefore, to implement a general energy-conserving unitary, the number of required gates
from each gate set is the same for all gate sets, up to an O(1) constant.

Note that, due to Z, symmetry of XY interaction in equation (5), the gate set 3, which only includes
exp(iaR) : @« = (—m, 7] without single-qubit rotations around z, is not semi-universal. However, as we will
explain in section 6.6, this Z, symmetry can be broken using a single ancilla qubit. It follows that in this case
semi-universality is achievable with one extra qubit.

11
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3.2.1. Semi-universality of gate set 1
First, consider the gate set

ViISWAP,and exp(ip2) : ¢ € (—m,7]. (39)

Equation (35) already shows that any unitaryin S Vg(l) can be realized exactly with this gate set, using the
following circuit:

£isZ By BEY/
- —t
iSw _ Visw
y =
671§Z

where «, 5 and v come from the Euler decomposition. It is also worth noting that one can save the number
of gates at the cost of introducing relative phases between sectors with different Hamming weights,

i.e. ,constructing an energy-conserving unitary outside & V;] () Note that in the decomposition of matrix Q
in equation (35) dolli=2) — g2aZig—iaZi+2) and the unitary e~ ia(Z1+2) commutes with all other unitaries
in this decomposition and can be absorbed in the diagonal matrix D. Similar argument works for ¢/#(#1=%)
and €7 (“1=%) We conclude that, up to relative phases between sectors with different Hamming weights, any
2-qubit energy-conserving circuit has a decomposition as

For future applications, it is also useful to consider the following realization of the unitary
exp(iaR) = exp(ia[XX + YY]/2):

1
gk | = iSw Visw'

T e

Therefore, any circuit that involves gates exp(iaR) for arbitrary values of & € (—m, |, can be
transformed to a circuit that only involves gates vViSWAP and single-qubit rotations around z, and this
increases the number of entangling gates by, at most, a factor of 2.

3.2.2. Variation of gate set 1: Heisenberg interaction
A variant of the gate set in equation (39) is

exp(im Ryeis/4),and exp(ip Z) : ¢ € (—m, 7], (40)

where Rypis := (X® X+ Y® Y+ Z® Z)/2 is the Heisenberg interaction. We observe that

exp (i Ryeis/4) = ViSWAPexp (ir Z12,/8) (41a)

Since exp (i Z1Z,/8) commutes with the single-qubit rotations around z, in the above circuit we can
replace v/iSWAP with exp(im Ryeis/4). That is, any Q € SVY" can be realized with the following circuit

iX
izZ

el Hueis e~ 17 Heis

Hence, the gate set in equation (40) is semi-universal.

12
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3.2.3. Semi-universality with gate set 2
Recall the map defined in equation (34), which gives the matrix representation of the component of 2-qubit
operators in the sector with Hamming weight 1, relative to |01),|10) basis. Applying this map we find

Hipe — H.) (42a)
SiHineST — sHV st (42b)

nt
where H;, (1) is a 2 X 2 Hermitian matrix and S; = S ® I denotes the S gate on the first qubit. The fact that H;y,
(1) .

is not dlagonal in the computational basis implies that H, .

lemma which is shown in appendix B.

is not diagonal. Then, we apply the following

Lemma 8. Suppose H is a 2 x 2 non-diagonal Hermitian matrix. Then, any unitary U € SU(2) has a
decomposition as

!
U= H exp 1041 Sexp(lﬁj ) ], (43)

j=1
where o, B € R, and the length of this sequence, |, is bounded by a constant independent of U.

This lemma together with the correspondence in equation (42) imply that any 2-qubit energy-conserving
. u(n) .
unitary Q € SV, ", has a decomposition as

I
Q= H[exp ioyH ,m 51 exp (1,8] mt) S}L] (44)

j=1

where I, the length of this sequence, does not depend on Q. We conclude thatany Q € S Vg ™ can be realized
with Hamiltonian Hj, and S gates, which means gate set 2 is semi-universal on n = 2 qubits.

3.2.4. Example of gate set 2: XY interaction

For XY interaction, the realization of a general 2-qubit energy-conserving unitary Q € S V2 ) hasa simple
form. Applying the Euler decomposition to Q(!) defined in equation (33), this time for the x and y axes, we
obtain

Q(l) — ei'yXeiﬁYeiaX _ ei'yXSeiBXS’[eiozX , (45)

for v, 5, € (—m, 7). Recall that by the correspondence in equation (34), in the subspace with Hamming
weight 1 the action of exp(iarR) relative to the basis [01) and |10) is described by the unitary exp(icX) and
the action of S gate on the first qubit is S = et exp(—im Z/4). It follows that an arbitrary unitary Q € S VU(l

can be realized as by the circuit

— o HsH  HSH

exp(iaR) exp(iBR) exp(iyR)

3.2.5. Example of gate set 2: Heisenberg interaction

Another canonical example of non-diagonal energy-conserving Hamiltonians is the Heisenberg interaction
Ryeis = (X®@X+Y® Y+ Z® Z)/2. In this case, again the decomposition in equation (44) finds a simple
form, which can be seen by noting that

Zy exp (—iaRyeis) Z1 exp (iaRpeis) = Z; exp (—iaR) Z exp (iaR)
= exp (i2aR) , (46)

where we have used the facts that Rygeis = R+Z® Z/2, [R,Z® Z] = 0, and (Z®I)R(Z®1) = —R. The
circuit diagram is shown as follows:

Terer [ = T sotms

—io Ryeis

Therefore, gates exp(iaRyeis) : « € (—, 7] together with S gate generate all gates in the previous example,
which are semi-universal for n =2.

13
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3.3. Single-qubit rotations around z (proof of theorem 1 for the special case of n =1)

Using the above results, it can be easily shown that any single-qubit rotation around z axis can be realized
using the gate set 2 in theorem 1, i.e., S gates and exp(iaH;nt) : @ € R, and a single ancilla qubit. To see this
note that the family of diagonal unitaries

é*?@e % . pe(—m ], (47)

arein S Vg(l) and therefore are realizable by the aforementioned gate set. Then, for any single-qubit state
|v) € C2, we have

(6% @ ¢7%%) ) ©[0)anc = €42 1)) @ [0)anc (49

which means that, up to a global phase, unitary ¢'*# can be realized on a system with n = 1 qubit, using a
single ancilla qubit. This proves theorem 1 for gate set 2 in the special case of n =1 qubit.

It is worth noting that in the case of XY interaction the following circuit realizes unitaries in
equation (47)

Ty _ st L
= | Visw' (2i0R ' Sw

f :

4. 3-qubit energy-conserving unitaries

Next, we study 3-qubit energy-conserving unitaries and show how they can be realized with gates

exp(iaR) : € (—m, 7] and S gate. These methods can then be generalized to implement energy-conserving
unitaries on an arbitrary number of qubits. We start by constructing a useful 2-level 3-qubit
energy-conserving unitary, using only combinations of iSWAP and iSWAP' gates.

4.1. A useful 2-level unitary: two controlled-Z gates
Using equation (31) one can easily show the identities

iSwys iSwly iSwi; iSwas = exp (i%Zz 2 — zl]) (49a)

iSW13 iSW23 iSW12 iSW23 = —iexp (1%22 [Zl +Z3}) 5 (49b)

where iSw;; denotes iISWAP gate on qubits i and j, defined in equation (28). The second identity and similar
other identities can be obtained by replacing iSw;; with iSwlTj, or vice versa. It is worth noting that the specific
combination of unitaries iSw;; appearing in these identities has a nice interpretation in terms of the
permutation group: applying equation (31) to all iSw;; in the left-hand side of equation (49), the left-hand
side becomes Sw3Sw;3Sw1,Sw,3, up to a diagonal unitary in the computational basis, where Sw;; denotes the
SWAP unitary. However, this combination of swaps is equal to the identity operator, which can be seen from
the basic properties of the permutation group. We conclude that iSw;31Sw,31Sw1,iSw3 is equal to a unitary
diagonal in the computational basis, that is determined by the right-hand side of equation (49).

The first identity implies that

. . . . LT
1Sw1315w;318w1215wz35153 = exp(lz (Zs —Z1)(Z, = 1))

=10){0), ®I13 + [1)(1 ® Z:1Z5 (50a)
= CZ1,CZss . (50b)

See figure 3 for the corresponding circuit identity. This unitary is diagonal in the computational basis and
is 2-level, i.e. it acts non-trivially only on states |011) and |110), and it gives —1 sign to both of these states.
Note that using the second identity in equation (49) we can obtain a similar construction of this unitary
using four iSWAP gates.

For future applications, we also note that equation (49) implies

F123 = iSW13iSW;3iSW12 = (Sl X SZ X Z3) CZ125w23. (51)

14
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T 5}
iSw = Eq. (31)
L 5
———
iSw
— . iSw = Eq. (50b)
B iSw iSw' | | . -
T s - e BE B
1IDW
drpL = 4 s = STF = —Z] Eq. (51)
iS
1L b ez s
Tt Hg
4G+ = - PSw - = Eq. (101a)
iSw iSw'

Figure 3. Summary of useful circuit identities involving iSWAP and S gates.

See figure 3 for the corresponding circuit identity. Also, note that changing each iSw gate to iSw', or, vice
versa, in the circuit on the left-hand side is equivalent to changing S gate to St and vice versa in the right-hand
side. (This can be seen by considering the complex conjugate of both sides in the computational basis.)

4.1.1. The SWAP and controlled-Z gates with an ancilla qubit
Equation (500) immediately gives a method for realizing the controlled-Z gate: Suppose we prepare qubit 1 in
state |0). Then, the overall action of this circuit on qubits 2 and 3 will be CZ gate. Another important unitary
transformation that can be realized in this way is the SWAP gate. In figure 1 we compare the circuit obtained
in this way (the bottom circuit) with the standard way of implementing the SWAP unitary with 3 iSWAP
gates, which is originally presented in [22]. As explained in the caption of figure 1, the realization of the
SWAP gate with ancilla is more robust against certain types of errors, such as the fluctuations of the master
clock. (It is also worth noting that the use of an ancilla has another advantage: by measuring the ancilla qubit
at the end of the process in the z basis, it is possible to detect the presence of certain X errors in the circuit.)
In appendix C we present other examples of identities similar to equation (49). Such identities, for
instance, imply that the gate controlled-R,(—7 ) can be realized using 3 iSWAP, 3 v/iSWAP gates and an
ancilla qubit.

4.2. General 2-level energy-conserving unitaries on 3 qubits

Next, we show how general 2-level energy-conserving unitaries in S V;J () can be realized. Here, we adapt the
approach developed in [42] for quantum circuits with general Abelian symmetries to the case of U(1)
symmetry. To achieve this we use the gate F1,3 defined in equation (51).

First, note that sandwiching exp(ifR/2) on qubits 2 and 3 with Fi,; and Fl,, and using the facts that
St ® S and SWAP commute with R, we obtain

0 0 0
Fl,,STexp (12R23) S3F153 = 0)(0]; ® exp <12R23) +[1)(1]; ® exp (—12R23) , (52)

or, equivalently, the circuit identity

15
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iSw ) iSw'
o U ISw . iSw' ) 4
clOR iSwi eEiOR/2 iSw el0R/2

g o I & B -

Figure 4. The circuit corresponding to equation (53): Assuming the gate in the middle (the fifth gate) is exp(—iR6/2) with
R=(X®X+ Y®Y)/2, this circuit implements controlled-exp(ifR), i.e. the 2-level 3-qubit unitary U; defined in equation (53).
This family includes useful unitaries, such as controlled-iISWAP (corresponding to 6 = 7 /2, which means the fifth gate is

% SWAP' and the tenth gate is vV ISWAP) as well as the controlled-v/iSWAP (corresponding to § = 7 /4, which means the fifth
gate is exp(—im R/8) and the tenth gate is exp(im R/8)). On the other hand, when the gate in the middle is exp(+iR6/2), the
circuit realizes Uy in equation (53), which applies exp(i@R/2) when the control qubit is in state |0) rather than |1). As we explain
in the next section, using this construction recursively, we can obtain all energy-conserving 2-level unitaries with determinant 1.

T P
i ] He

This implies

0 (—=1)"0 - ,
exp (12R23> FJer3S§ CXp (1( 2) R23> S3F123 = |b><b|1 ®H23 + |b><b|1 ® exp (19R23) = Ub . b = 0,1 y

(53)

which corresponds to the circuit in figure 4, where b denotes the negation of b. This unitary is 2-level: it acts
as exp(i6X) in the 2D subspace

spanc{|6> = |b01) , \T>z|b10>} :b=0,1, (54)

whereas it acts as the identity operator elsewhere. By sandwiching the second (or, third) qubit between S
and S, we obtain the 2-level unitary

S, UpSt =S1U,Ss = |b)(b| @ 1+ ) (b| @ exp (ifLy3) : b=0,1, (55)

which acts as exp(ifY) in the same 2D subspace, where we have defined

L=-(Y®X-X®Y)=(I®S)R(I®S) (56a)

N | —

—i(]10)(01| — [01)(10]) . (56b)

Therefore, we can realize both x and y rotations in the 2D subspace in equation (54). Furthermore,
applying the Euler decomposition in equation (45) for SU(2) unitaries, we can obtain a general SU(2)
unitary in this 2D subspace.

In conclusion, this way we can realize any 2-level 3-qubit energy-conserving unitary in the form of

AP (V) = |b)(b| @ T+ |b)(b| @V : V= v , (57)

for any V() € SU(2), with any of the sets 1 and 2 in theorem 1. Here, A’(V) denotes a controlled gate that
applies V, when the control qubit is b, namely a controlled-V gate for b= 1 or an anti-controlled-V gate for
b=0. The number of gates used in this construction is:

1. 32 gates in set 2 (choosing Hiy; = R), if we also allow the application of S, or 40 gates if we implement S
as $° in set 2;
. . - T . . .
2. 80 gates in set 1, allowing v/iSWAP  (one needs 6 gates to implement exp(+ifR); see section 3.2.1), or
152 if one implement iSWAP' as v/iSWAP® and v/iSWAP' as v/iSWAP .
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1T
B B

L | LI L | LI A
u(1)
3

Figure 5. The circuit for implementing arbitrary unitaries in SV5 ", i.e. all 3-qubit energy-conserving unitaries with the property
that the determinant of the component of unitary in each Hamming weight sector is 1. Here, each gate is in the form of
equation (57) and hence can be realized by composing 3 circuits in the form of figure 4.

4.2.1. Example: controlled-iISWAP gate
A useful unitary, which plays a crucial role in our construction, is the 3-qubit gate controlled-iSWAP
denoted as

A" (iSWAP) = |0)(0] ® T + |1) (1| ® iISWAP . (58)

This unitary can be realized by the circuit in figure 4. In particular, this unitary corresponds to 8 = /2, in

which case the fifth and tenth gates in the circuit are v/ SWAP and ViSWAP gates, respectively.
In summary, controlled-iSWAP can be realized with

3iSWAP -+ 3 iSWAP! + 1 ViSWAP + 1 ViSWAP + 1S+ 15T,

4.3. Semi-universality on 3 qubits
By composing the above 2-level unitaries one can obtain any unitary Q € § V;J(l). Recall that any such
unitary has a decomposition as

Q= ) (59)

where Q") Q1) € SU(3) act on the subspaces with Hamming weights 1 and 2, respectively. According to
lemma 12 to be shown later, any unitary in SU(3) can be decomposed into 3 2-level unitaries in SU(3). We
conclude that any 3-qubit energy-conserving unitary Q € S Vg(l) has a decomposition in the form of
figure 5, where each gate in this circuit is a 2-level energy-conserving unitary in the form of equation (57).

5. Synthesis of general energy-conserving unitaries with XY and Z interactions

In this section, we explain how general energy-conserving unitaries can be obtained from 2-level 3-qubit
unitaries constructed in section 4.2. In the following, for any pair of bit strings b,b" € {0,1}",
d(b,b’) := Z};l |bj — b;| denotes their Hamming distance, i.e., the number of bits taking different values in
bandb’.

Our construction, which is illustrated in figure 6, is based on the following steps:

1. Synthesizing 2-level special unitaries acting on any two basis elements |b) and |b’), with Hamming
weights w(b) = w(b’), and Hamming distance d(b,b’) = 2 (see lemma 9).

2. Generalizing the previous step to the case of arbitrary Hamming distance d(b,b") (see corollary 11).

Synthesizing the subgroup SVY", defined in equation (13).

4. Synthesizing the group of all energy-conserving unitaries, denoted by YW,

»

Note that only in the last step, one needs to use a single ancilla qubit. It is also worth noting that some of
the techniques that are used in the proofs of steps 1-3 follow similar constructions that have been developed
previously in the quantum circuit theory for circuits without symmetry constraints (see [1, 2]). In step 4,
where we use an ancilla qubit, we apply a technique that was developed previously in [42].

Step 1: basis elements with equal Hamming weights and Hamming distance 2

First, we show that by applying the construction in figure 4 recursively, we can realize any unitary in the form
V= U1 (b,b"), defined in equation (21), where d(b,b’) = 2, w(b) = w(b’), and UM (b,b’) acts unitarily
on the 2-dimensional subspace spanned by |b) and |b’) and satisfies

det(V) = det (U (b,b")) =1 (60)
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w(b) = w(b") SVHU) ’E(l)

Figure 6. Overview of the method for synthesizing general energy-conserving unitaries. The number on the arrow pointing from
one box A to another box B indicates the number of uses of A in the construction of B. C-exp(ifR) denotes controlled-exp(ifR)
which can be realized with the circuit in figure 4.

Here, we denote the 2 x 2 unitary as UM since, as we will see below in equation (62), we will think of it as the
component of a 2-qubit unitary U in the sector with Hamming weight 1.

For simplicity of presentation, we relabel the qubits such that the common bits of b and b” are labeled
from 1 to k = n — 2, and the two different bits of b and b’ are labeled 7 — 1 and n. Rearranging the qubits in
this way, noting that b and b” have equal Hamming weights and Hamming distance 2, we can write

[b) =[c)[0)[1), [b") =Ie)[1)]0), (61)

where ¢ € {0,1}"~? contains the common bits of b and b’. With this definition the target gate U (b,b")
can be written as a multi-controlled S Vg(l) gate as

U (b,b") =A°(U), U= u® , (62)

where
AS(U) := ) Je') e | @T+e)(c| @ U, (63)
c’#c

is a controlled-unitary with control string c.

Now we use a recursive construction of the circuit for A¢(U). (Here, we are applying a technique that was
originally used in [1, 2] for general quantum circuits.) We decompose ¢ as ¢ = c;¢,, where ¢; has length
|k/2] and ¢, has length [k/2]. Since U") € SU(2), there exists operators A(), B(") € SU(2) such that
AMWBMAMTBMT = () (To see this note that a general SU(2) unitary U(!) is equal to exp(i6Z), up to a
change of basis, as U(") = Wexp(i6Z) WT. Then, one can choose A(!) = Wexp(i#Z/2) W' and
B =iwxwt.)

Let A:=1®AM @ 1and B:= 1@ B @ 1 be the extensions of A) and B(!) to 2-qubit unitaries, in the
same way U extends U to a 2-qubit unitary. Then ABATBT = U. We can therefore decompose A¢(U) as

A(U) = A% (A) A= (B) A% (AT) A= (BY) , (64)

with the first |k/2| qubits being the control qubits for A (A) and A (AT), and the next [k/2] qubits being
the control qubits for A% (B) and A%(B"), as shown in figure 7.

With this decomposition, we realize A¢(U) with 4 controlled-unitaries, namely A (A), A%(B), A%t (AT)
and A (B"), each of which has |k/2| or [k/2] number of control qubits. We can recursively decompose each
of the 4 unitaries into gates with less number of control qubits, and finally reach the k=1 case. Note that
when k=1, the single-controlled gate A°(U) is a 2-level S VI;(I) gate whose implementation has been
addressed in section 4.2. This gives the base case of the recursion.

The number of 2-level S V;Jm gates in this recursive construction is given by the following lemma, which
applies an argument previously used in the quantum circuit theory '°.

Lemma 9. For any pair of bit strings b,b’ € {0, 1}" with equal Hamming weights and Hamming distance 2,
any 2-level unitary with determinant 1, which acts non-trivially only in the subspace spanned by |b) and |b")
can be realized with no more than 9n? /8 number of 3-qubit controlled gates in equation (53 ), which all belong to

SV? ) and can be realized with the circuit in figure 4.

10 See chapter 8.1.3 of [1], or exercise 4.30 of [2] .
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Figure 7. Circuit of a controlled gate with k control qubits (see equation (64)).

Proof. Let T(k) be the number of 3-qubit controlled gates used to implement a gate in the form of A¢(U) with
|c| = k control qubits. Based on the circuit in figure 7, we obtain the recursive relation:

r-a((3) (] 2o

T(1) = 1. (65b)
We will prove by induction that

9k* —1) /8 kisodd

(

66
(9k* —4) /8 kis even. (66)
>

T(1) = 1, T(2) = 4 satisfy the inequality. For k > 3, assuming the inequality holds for all smaller k,

1. Ifkiseven, T(k) =4T(k/2) < M 9k2 oK -4,
2. Ifkis odd, then one of [k/ ZJ = and [k/2] = k“ is even, and the other one is odd. In either case,

k—1 mz 5
T(k)zzT(le)-sz(%)gz ((8) ! —%—§>=9k81.

Therefore, equation (66) holds for every k > 1.
To implement an n-qubit 2-level gate on the subspace spanned by |b) and |b’), we need to implement a
controlled gate with n — 2 control qubits. The number of 3-qubit gates used is therefore T(n — 2) < 9n*/8. [

Step 2: basis elements with equal Hamming weights

Next, using the construction developed in step 1, we show how one can implement general 2-level unitaries
that preserve the Hamming weight of states in the computational basis. The technique used here is a
variation of a similar technique that has been previously used for general quantum circuits [1].

Lemma 10. For a system with n qubits, consider a 2-level unitary transformation V that acts trivially on the
subspace orthogonal to |b),|b"), where b,b" € {0,1}" are a pair of bit strings with equal Hamming weights. Any
such unitary can be decomposed as

V=KWK, (67)

where W is also a 2-level unitary that acts on the subspace spanned by |b') and |b""), where b’,b"" € {0,1}"
have equal Hamming weights and have Hamming distance d(b’,b’") = 2, and unitary K can be realized as a
sequence of d(b,b") /2 — 1 controlled-iSWAP gates.

We conclude that

Corollary 11. Any 2-level unitary with determinant 1, acting on a pair of basis elements |b) and |b') with equal
Hamming weights can be realized with d(b,b") /2 — 1 controlled-iSWAP, d(b,b")/2 — 1 controlled-iSWAP!
gates, plus one 2-level gate of the type constructed in step 1. In total this requires O(n* +d(b,b")) = O(n?) of
gates in any of the gate sets 1 and 2 in theorem 1.
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Proof. (Lemma 10) For any pair of bit strings b and b’, there exists a sequence of n-bit strings as
b=by—b —---—=b=b", (68)

such that (i) all bit strings in this sequence have equal Hamming weights, (ii) For any pair of consecutive
bit strings b; and b;;, the Hamming distance is 2, and (iii) The length of this sequence is ¢ + 1, where ¢ =
d(b,b")/2.

This sequence of bit strings is realized by applying ¢ + 1 swaps that can be determined as follows: Suppose
we specify each bit by its label (i.e., its location) which is an integeri € {1, ,n}, such thatb="b,---b;--- b,.
Consider the bits in which b and b’ take different values. There are d(b,b") such bits, where d(b,b’) is the
Hamming distance of b and b’, which is an even integer because they have equal Hamming weights. These
bits can be partitioned into two subsets, each having size ¢ := d(b,b") /2 with the following property: bits in
the first subset take value 0 in b and take value 1in b’. And, the bits in the second subset take value 1 in b and
take value 0 in b’. More precisely, let

ZI,ZZa"' ,lt
be ¢ distinct integers in {1,--- ,n} where b, = 1 and bl; =0forj=1,...,t Similarly, let
F1,12, 0 51t
be ¢ distinct integers in {1,--- ,n} where b, = 0and b; = 1forj =1,...,t Then, define
|b]> = SWAPIJ,rj|bj71> ) (69)

where |by) = |b), and SWAP;, ,. is the SWAP unitary acting on qubits /; and ;. In this way, we obtain a sequence
of bit strings in the form of equation (68) satisfying the desired properties.

In general, the gate SWAP, ;. acts non-trivially on state |b’). Now, suppose rather than this gate, we use
controlled-iSWAP, with the control qubit chosen to differentiate |b’) and |b;_;). Namely, we choose

Allj+1 (iSwli,,j) |b]‘_1> = i‘b]‘> (70a)
Allj+1 (iSWlﬁr}.) ‘bl> = ‘bl> , (70b)

where the unitary in the left-hand side is controlled-iSWAP, i.e.
Allj+1 (iSle,,) = [0) <0|lj+1 ®Hlj~,7j + ‘1><1|lj+l ® iswlj;"j ) (71)

where [ is the control qubit, and J; and r; are the target qubits. This gate acts trivially on state b’ since by the
above definition, bz;+1 =0foreveryj=0,...,t— 1.
Then, defining

K= A,lt (iSWl,_l,r,_l) ------ All3 (iSwy,.r,) Allz (iSwy, 1) (72)
we find
Kby =i""'b,_;) (73a)
Kby =b’). (73D)
Therefore, by defining
W=KVK', (74)

we find that W is a 2-level unitary acting on the subspace spanned by [b"’) =|b,_;) and |b’), where
d(b’,b"") = 2. More explicitly, if V= U(b,b") with

a b
U= (C d), (75)

U= (iH 1> U(il_t 1) - (ilic it_dlb) . (76)

This completes the proof of lemma 10. O

then W= U(b"’,b") with
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Step 3: semi-universality

As defined in equation (13), we call a gate set semi-universal if it generates all unitaries in SVY™V for all ,
i.e. all energy-conserving unitaries V= . _, V(" satisfying the additional constraint

det(VI™) =1:m=0,---,n. It can be easily shown that any such unitary can be decomposed into a
sequence of 2-level energy-conserving unitaries that satisfy the same constraint. To show this we use the
following result.

Lemma 12 ([57]). Given any basis for C%, any unitary in SU(d) can be decomposed into a product of no more
than d(d — 1) /2 unitaries in SU(d) that are 2-level with respect to this basis.

This lemma is a slight variation of a similar result in [57], which does not impose any constraints on the
determinant of 2-level unitaries (see also [1, 2]). For completeness, we present the proof in appendix D.

Recall that in the decomposition V = D" _, V™), unitary V(™ acts on the subspace with Hamming
weight m, which has dimension (). Then, applying this lemma, we find that V(") can be realized with

(o) <[(0)

2-level energy-conserving unitaries, each of which acts on two computational basis vectors in the subspace of
Hamming weight m, has determinant 1, and can be constructed with the method in step 2.
In conclusion, the total number of 2-level gates needed to implement V is

MHIRIRE

where &~ means the ratio of two sides goes to 1, in the limit n — oo.
Combining this with corollary 11 we conclude that

Proposition 13. Any energy-conserving unitary in SVUV) can be realized with O (4"n/?) gates in any of the
gate sets 1 and 2 in theorem 1, without ancillary qubits.

Here, to count the number of gates, one can use the diagram in figure 6: Recall that controlled-iISWAP
can be realized using the circuit in figure 4, which requires O(1) gates in one of the aforementioned gate sets.
Therefore, the total required number of elementary gates is

477
[0 () +0(n)] x0 (\/ﬁ> —0(4mwh?) . (78)

Note that, in general, if the desired unitary acts non-trivially only on a subspace spanned by D < 2" basis
elements, then from lemma 12 it can be decomposed into no more than D(D — 1) = O(D?) 2-level unitaries.
Hence, any such unitary can be implemented with [O(n?) + O(n)] x O(D?) = O(n*D?) elementary gates in
theorem 1.

Step 4: universality
Finally, applying a mechanism developed in [42], we show how one can achieve universality using a single
ancillary qubit. It is worth noting that this technique can be applied to symmetric circuit with any arbitrary
Abelian symmetry (see lemma 5 of [42]).

Let |b) be an arbitrary element of the computational basis {|0), 1) }®", other than |0)®". Then, there is
(at least) one qubit with reduced state |1). Let |b") be the n-qubit state obtained from |b) by changing the
state of this qubit from |1) to |0). Define the Hamiltonian

Hy = [b)(b] © [0) (0]anc — [b")(b'| @ [1){1ane - (79)

Note that (1 + 1)-qubit states [b)|0)4nc and |b")|1),nc have equal Hamming weights and their Hamming
distance is 2. Furthermore, this Hamiltonian is traceless, which means exp(iHy#) has determinant 1. It
follows from step 1 that this 2-level energy-conserving unitary can be implemented without ancilla.
Implementing this unitary on the system and ancilla we obtain state

exp [iHy0] (1)  [0)anc) = (exp [i0]b) (bl] 1)) © [0)anc (80)

where |1) € (C*)®" is the initial state of 7 qubits in the system. Since the state of ancilla qubit remains
unchanged, we can reuse again in a similar fashion. Therefore, in this way we can realize the unitary
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exp(i|b)(b|6). We can apply this procedure to any sector, except the sector with Hamming weight m = 0,
which corresponds to state |0)®". It follows that using (n — 1) 2-level unitaries we can realize any unitary in
the form

D= 0)(0|®" +> " exp (i) [b) (b , (81)
m=1
for any arbitrary 6y,...,6, € (—, |, where |b,,) is an arbitrarily selected basis element in the sector with

Hamming weight m.

Finally, recall that any energy-conserving unitary V can be decomposed as V = €% DQ, where
é?% = V(0 = (0|®"V|0)®", D is in the form of equation (81), with ,, = arg(det(V("™))) — @, for 1 <m < n,
andQe S V}f(l). As mentioned above, D can be implemented with an ancillary qubit. Furthermore, in the
previous section we saw how Q € S VH(I) can be implemented without ancillary qubits.

Note that the unitary generated by Hamiltonian in equation (79) is of the type we studied in step 1 of this
construction, and therefore can be realized with no more than 9(n + 1)?/8 gates (1 + 1 qubits including one
ancilla qubit) in S V;J(l). In total, this step requires O(n?*) elementary gates.

In conclusion, any energy-conserving unitary can be realized, up to a global phase, with one ancillary
qubit. Furthermore, using the diagram in figure 6 and equation (78), we find that this construction requires

9] (4”n3/2) +0 () (n—1)=0 (4”113/2) ) (82)

gates in one of these elementary gate sets, which completes the proof of theorem 1 for sets 1 and 2.

6. Realizing all energy-conserving unitaries with XY interaction alone

So far in this paper, we have considered circuits that contain both XY interaction as well as single-qubit
rotations around the z axis. In this section, we focus on synthesizing quantum circuits that only contain XY
interaction. In this case, the overall realized unitary V on the system respects the Z, symmetry
corresponding to flipping all the qubits in the system. That is,

Xy Xon = v | (83)

which follows from the fact that unitary exp(ifR;) satisfies this symmetry for all qubit pairs i and j and all
6 € (—m, 7. Interestingly, theorem 4, which is proven below, implies that this Z, symmetry together with the
U(1) symmetry corresponding to energy conservation, namely

[V,ZZ]-] =0, (84)
j=1

characterize the set of realizable unitaries, up to additional constraints on the overall phases in each invariant
subspace: First, for any realizable unitary V,

det(V(’”)>:1 :m=0,---,n, (85)

where V(") is the component of V = D, _, V(™ in the sector with Hamming weight . Second, in the case
of even n,

det (VW“E)) =1, (86)

where, as defined in theorem 4, V("/2%) is the component of V("/2) in the eigensubspace of X®" with
eigenvalue £1. In the following, G, denotes the group of n-qubit unitaries satisfying these four conditions,
i.e., equations (83)—(86).
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The necessity of conditions in equations (85) and (86) are discussed in [23, 42] and for completeness is
also explained in appendix A and lemma 16. (Briefly, they follow from the fact that Tr(H(’")Rij) =0 forall
m=0,---,n where II") is the projector to the sector with Hamming weight . Furthermore, for n > 3, it
holds that Tr(X®"R;;) = 0.)

In the following, we present explicit circuit synthesis methods for implementing general unitary V
satisfying the above 4 conditions using XY interaction. This, in particular, completes the proofs of theorem 4
and the main part of theorem 1 for the case of gate set 3.

6.1. Overview of the synthesis method: 4-level unitaries

Recall that the method we used in section 5 decomposes a general energy-conserving unitary to a sequence of
2-level energy-conserving unitaries, which in general do not respect the Z, symmetry in equation (83) and
hence cannot be realized with XY interaction alone. Hence, we consider a natural extension of 2-level
unitaries that satisfy the Z, symmetry, namely 4-level unitaries. In the following, for any pair of distinct bit
strings b,b’ € {0,1}", define the Pauli X and Y operators in the subspace spanned by |b) and |b’) as

X(b,b") := [b)(b’[ +[b")(b], (87a)
Y(b,b") :=i([b")(b] - [b)(b']) . (87b)

Let b be the bitwise negation of bit b, which means

b) = X*"]b) . (88)

Then, for all b,b” € {0,1}" with b’ # b,b and § € (—, 7], consider the following 4-level unitaries
R (6,b,b") := exp [i0X (b,b") ] exp |i6X (b,b) (89a)
R, (6,b,b") := exp [i67 (b,b")] exp [i6Y (b,b7) | . (89b)

They clearly respect the Z, symmetry in equation (83), and if b and b" have equal Hamming weights, i.e.
w(b)=w(b) , (90)

then they are also energy-conserving.

Note that we have excluded the case of b’ = b. In general, w(b) = 1 — w(b), which means unitaries in
equation (89) corresponding to the case of b’ = b are not energy-conserving, unless # is even and
w(b) = w(b) = n/2. We call the special case of Hamming weight 7 = /2 the ‘half-filled sector’ and study it
separately in section 6.4. In this case, indeed there exists a family of 2-level energy-conserving unitaries that
respect the Z, symmetry, as well as the condition det(V("/?)) = 1, namely

exp 16X (b.5)] = R, (z,b,b) , 01)

which corresponds to the special case of b’ = b in equation (89a). Is this family of unitaries realizable using
XY interaction alone?

Interestingly, the answer is no! While the unitary in equation (91) respects the 3 conditions in
equations (83)—(85), since det(V(”/zvi)) = %9 unless @ = 0 it does not respect the condition in
equation (86). (Note that this is indeed the generalization of the example we discussed in the introduction,
below theorem 4.) It is also worth noting that, unitaries in equation (91) are the only 2-level unitaries that
satisfy the 3 conditions in equations (83)—(85). In conclusion, in the following we always restrict our
attention to 4-level unitaries in equation (89), i.e.,we impose the condition b’ # b.

In the following, we first show how the unitaries in equation (89) can be realized with XY interaction
alone, and then use them to construct all unitaries respecting the four conditions in theorem 4. In particular,
in section 6.2 we show that the circuits for 4-level unitaries in equation (89) can be obtained based on the
circuits for 2-level unitaries exp[i#X(b,b")] and exp[ifY(b,b")], which were found in section 4.

The restriction to XY interactions alone makes the constructions in this section more complicated and
slightly different from the constructions in section 5. However, the presence of Z, symmetry also leads to a
simplification, which can be understood in terms of the following lemma.

Lemma 14. Suppose a pair of n-qubit energy-conserving unitaries V.= _, Vi) and W= D, _, W both
respect the Z, symmetry in equation (83). Then V= W if, and only if

vim) = pym) :mzo,-~~7L§J. (92)
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Figure 8. Overview of the method for synthesizing general energy-conserving unitaries with XY interaction alone. The number
on the arrow pointing from one box A to another box B indicates the number of uses of A in the construction of B.

Proof. If W= X®"WX®" and V = X®"VX®", then for m > [n/2] it holds that

I wrr(m = 110m x@npwx©n(m)
— X®nH(n7m) Vm(nfm)X(@n
— X®nH(n—m) VH(n—m)X®n

=Myt |

(93a)
(93b)
(93¢)
(93d)

where the third line follows from equation (92) since n — m < | /2], and we have used the fact that IT(") X®" —=
X®@"1(=m) Therefore, equation (92) implies V = W. The other direction is trivial.

O

As we further discuss in section 6.4, when # is even, the sector with Hamming weight m = n/2 requires
special treatment. But, for the rest of the Hilbert space, the above lemma implies a useful simplification.
Namely, we can restrict our attention to the subspace

H(<n/2) . —

L(n—1)/2]

m=

H
0

(94)

Inside this subspace, the unitaries in equation (89) are 2-level and energy-conserving. This fact allows us to
use the strategies developed in section 5 based on 2-level unitaries. Figure 8 presents an overview of the

workflow in this section.

6.2. A useful family of 4-qubit 4-level energy-conserving Z,-invariant gates
In this section, we construct a useful family of 4-level unitaries that can be realized using XY interaction
alone, namely the following sequences of two controlled unitaries

where

V=

v

and

, V*

=(X0X)V(X®X),

95)

(96)

where V() is in SU(2) and acts in the subspace spanned by |01) and |10). The particular pairing of these two
controlled unitaries guarantees that this composition respects the Z, symmetry of XY interaction. These

unitaries then will be used as the building blocks for constructing general unitaries in G,,.

Recall that in the circuit synthesis method developed in section 5, the main building block was the 3-qubit
2-level energy-conserving unitaries in equation (52) (see figure 4). However, this gate does not respect the Z,
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Figure 9. The circuits for implementing R,(6,0101,0110) and R,(6,0001,0010), based on equations (100) and (102). The
unitary R(6,0101,0110) applies ¢% on the third and fourth qubits, when the parity of the first two qubits is odd, whereas
R,(6,0001,0010) applies ¢i% when the parity is even. In the circuit in the right-hand side, these unitaries correspond to choosing
the minus sign (odd parity) and plus sign (even parity) in the e=%/2 gate, respectively.

symmetry in equation (83), which explains why the single-qubit gates S and ST appear in this circuit and they
cannot be avoided. To construct a gate that respects this symmetry, one may consider a modification of this
circuit, obtained by removing S and ST gates from equation (52). Then, we obtain the 3-qubit gate

i 0 .0 0
F123 eXp 15R23 F123 = |0> <0‘1 ®€Xp 15L23 + ‘1><1‘1 ®€Xp —15L23 y (97)

acting on qubits 1,2, 3, where Ly, := (VX — X;Yx)/2 = i(]10)(01]jx — [01)(10[jx) and Fj := iSwikiSijkiSwij as
defined in equation (51). While this is a useful unitary, since it always acts non-trivially on qubits 2 and 3,
regardless of the state of qubit 1, it can not be easily used in composition with other unitaries.

To overcome this problem, we construct the 4-qubit unitary

R, (#,0101,0110) (98)
:= exp [0/ (|0101)(0110] + [0110)(0101)]

x exp [if (]1010)(1001] 4 [1001)(1010])] ,

(100){00}12 +[11)(11]12) @ L34

+ (101){01]12 +[10)(10]12) ® exp (i0Rs4)
1

E |b1b2> <b1b2|12 (4 exp (1 [b] ) bz] 9R34)

b1,b,=0

0 0
= exp <12R34> CZ23 CZ]3 exp (—i2R34> CZ13 C223 (99)

which is obtained from equation (89) by choosing b = 0101 and b’ =0110,and b, ® b, € {0,1} denotes the
parity of the bits b; and b,. This unitary applies exp(ifRs4) on qubits 3 and 4, when the parity of qubits 1 and
2 is odd. Note that, using equation (50b), this unitary can be rewritten as

0 0
Rx (0,0101,0110) = exp (12R34) GJ{23 exp (—i2R34> G123 y (100)
where
G123 = iSWZSiSWBiSWB (].0].(1)
= lewlz CZ12 CZ]3 CZ23 5 (101b)

and in equation (100) its effect is equivalent to CZ;3CZ,; (see figure 3 for a diagram of the circuit identity
in equation (101a)). Furthermore, by applying exp(i%RM) instead of exp(—i%RM) one obtains the gate

0 6
Rx (0,0001,0010) = exp (12R34) Gifz3 exp <12R34> G123 . (102)

The circuits for unitaries R,(#,0101,0110) and R,(6,0001,0010) are presented in figure 9.

Next, we obtain R, gates defined in equation (89) from R, gates. Note that R, (¢,0001,0010) can be
obtained from R,(#,0001,0010) by sandwiching the third (or the fourth) qubit between S and ST. However,
our goal in this section is to avoid single-qubit rotations around the z-axis and realize everything with XY
interaction alone.

Hence, to overcome this challenge we use a different approach. Namely, we utilize a 3-qubit sequence
introduced by Lidar and Wu in [34, 58] to establish the possibility of universal quantum computing with XY

25



10P Publishing

Quantum Sci. Technol. 9 (2024) 045049 G Bai and I Marvian

interaction in a DFS. (It is worth noting that Kempe and Whaley adapt this sequence in [31] to obtain the
exact gate sequences for universal quantum computation using the XY interaction alone.) The sequence is
given by
- . . . vl
Pios (¢) = V/iSwas iSwiy exp (i¢Ry3) iSwl, ViSw,, .
This gate is diagonal in the computational basis. Indeed, one can show that

P12 (¢) = 10)(0]; ® exp (—iqzbZz) ® exp <i(§Z3) +1)(1]; ® exp (i(§22> ® exp (—ist) , (103)

for arbitrary ¢ € (—m,7]. Then, by sandwiching the unitary R,(¢,0001,0010) in equation (100) between

Py (g) = mmiSwlziSngiSwL\/@; (104a)
=10)(0; ® S, @ 8! + 1) (1], © S} @ S5 (104b)
= CZ,,CZ55,S! (104c)

and its inverse we show that
Pps Gg) R, (0,0101,0110) P12 (g) =R, (A,0101,0110) . (105)

To see this, first recall that R,(6,0101,0110) is defined as
exp [i0X (0101,0110)] exp [i0X (1010, 1001)] .
Similarly, R, (#,0101,0110) is defined as
exp[i0Y (0101,0110)] exp [i9Y (1010, 1001)] .
Then, we note that

Pix (—g) exp [i0X (0101,0110)] Py (g) .

= CZ;5S; exp[i0X(0101,0110)] SICZy5
— exp[i#Y(0101,0110)] (106)

where we have applied equation (104c). Furthermore, by sandwiching both sides of this equation between
X®* and using the fact that Pj,3(¢) commutes with X®*, we obtain

Pixs (—g) exp [i0X (1010,1001)] Py (g) — exp[i0Y(1010,1001)] . (107)

Then, multiplying the above two equations, we arrive at equation (105).
In summary, in this way we can obtain four families of unitaries

R, (6,0101,0110) , (108a)
R, (6,0001,0010) = R, (6,1110,1101) , (108b)
R, (6,0101,0110) , (108¢)
R, (6,0001,0010) =R, (6,1110,1101) , (108d)

and their permuted versions, which can all be realized with O(1) number of exp(iaR) gates alone.

As a useful observation, any 4-bit strings b and b’ satisfying w(b) = w(b") and b’ # b, b necessarily have
two common bits and two distinct bits, and fit into either equations (108a) and (108¢) or equations (108b)
and (108) by permuting the qubits. This means that we can implement R,(6,b,b") and R, (6, b,b") for all
b,b’ € {0,1}* which satisfy the conditions w(b) = w(b") and b’ # b, b.

Furthermore, combining these unitaries we can obtain unitaries that act as arbitrary V() € SU(2) on the
subspace spaned by {|b), |b’)}. In particular, suppose V() has the Euler decomposition

V() — (7 XiBY giaX (109)
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Then, for b’ # b the following sequence of unitaries
R, (7,b,b") R, (3,b,b") Ry (a,b,b’) = VI (b,b") VIV (E,W) , (110)

realize two copies of V(!), namely V() (b, b") which acts in the subspace spanned by |b) and |b"), and
V(D (b,b") which acts in the subspace spanned by |b) and |b’).

Choosing b and b’ to be bit strings in {0, 1}* with Hamming weight 1, we can obtain 4-level unitaries
that act as 2-level ones in the sectors with Hamming weights 1 and 3, either of which has dimension 4.
Combining such 2-level unitaries, we can realize an arbitrary unitary in SU(4) in the sector with Hamming
weight 1. Then, the realized unitary in the sector with Hamming weight 3 is dictated by the Z, symmetry. In
section 6.4, where we focus on the half-filled sector m = n/2, we come back to this example and explain how,
in the sector with Hamming weight 2, a general unitary satisfying the condition in equations (83)—(86) can
be realized.

We finish this section by rewriting equation (110) in terms of controlled unitaries in the form of equation
(95), which will be useful for applications in the next section. Recall that here we consider b,b" € {0,1}*
satisfying the constraints w(b) = w(b’), and b’ # b, b. As mentioned above, any such b and b” have two
common bits and two distinct bits, which means up to a permutation, they can be written as

b=c0l and b’'=cl0,

where ¢ contains the common bits. Then, we can interpret the unitary in equation (110) as a controlled
unitary that acts only when the first two qubits are in c or c. To see this, recall that, as we have seen before in
equation (62), the 2-level unitary V() (b,b’) can be written as the controlled gate

1
VD (b,b') =A°(V), V= v (111)
1

where A€(V) is a controlled-V gate with control string ¢ defined in equation (63). Similarly,
%0 (E,?) SAF(V) V= (X@X) V(X@X) . (112)
We conclude that the 4-level gate in equation (110) can be rewritten as
VO (b,b") VIV (b,b7) = A () A° (V) . (113)
which corresponds to the circuit in equation (95).

6.3. From 4-qubit 4-level gates to n-qubit 4-level gates
Next, we use these 4-qubit unitaries to construct general 4-level n-qubit unitaries in the form

U (b,b") U (E,?) .UM esu(2), (114)
where, UV (b, b’) as defined in equation (21) is a 2-level unitary acting on |b) and |b’), and we assume
b’ #b,b, (115)
and b and b’ have equal Hamming weights, i.e.
w(b)=w(b’) . (116)

The assumption that b’ # b in equation (115) implies that b and b have, at least, one common bit. Without
loss of generality, we assume this common bit is the first bit of b and b’ and the value of this bit is 1;
otherwise, we proceed with b and b’ instead. This means

[b) =[1)lc), [b") =[1)|c"), (117)

where c,c’ € {0,1}"~! are the remaining bits of b and b’, which have equal Hamming weights, i.e.
w(c) = w(c’). With this definition we have

U (b,b") =1[0)(0; @ T+ [1)(1]; ® UV (e,c”), (118)

Lnt
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Now consider the 7 — 1 energy-conserving unitary U (c,c’ )2,....n- Using the techniques of section 5
steps 1 and 2, we can decompose this unitary as

v (e,¢)y =V Vi, (119)

where T'= O(n*), and each V; is a gate in the form of A'(W) (or A°(W)). In other words, it is a gate in the
form of the left-hand side of the figure below. Note that these gates are not realizable with XY interaction
alone, because, in general, they do not commute with X®?, i.e. they break the Z, symmetry of this
interaction. However, we can extend these 3-qubit gates to 4-qubit gates acting on the original 3 qubits and
qubit 1 (i.e. the control qubit in equation (118)) using the following rule:

—
1
R
wx|lw

V=AW) — A WA V) (120)
:AII(W)AOO(WX)

where the highlighted qubit is qubit 1. In other words, we replace each 3-qubit gate V; in equation (119) with
4-qubit gates

AL (V) A% (V) = [loy(ol @ T+ 11 @ vi] [ @ T+]0) ol o v7] (121)

where V]X = X®?V;X®?, and the subscript 1 in the right-hand side means the control qubit is qubit 1. Notice

that similar to V;, VjX is also a 2-level 3-qubit unitary. Then, the 4-qubit unitary in equation (121) is in the
form of equation (95), which can be realized using XY interaction alone with the methods developed in the
previous section. In figure 10 we present an example of this circuit conversion, which is further discussed
below (In this figure, we have highlighted qubit 1).

It can be easily shown that the resulting circuit realizes the desired unitary U") (b, b")U!) (E,?): To see
this note the resulting circuit has two types of gates: A'(V;}), which are activated when the first qubsit is [1),
and AO(VJ-X ), which are activated when it is |0). Clearly, every pair of gates from different types commute with

each other. Then, using equation (118) it can be seen that the first family realizes unitary U (b,b’), namely
U (b,b) = A (U (c.¢"))

= A (Vp---V))
=A" (V) AN (V) (122)

and the second family realizes the unitary
u® (b,b7) = x="U (b,b') X"
=X®"A (Vp) - AT (V) X®"
=A% (Vy)-- A% (V) (123)

Therefore, we conclude that

Lemma 15. Forany b, b’ € {0,1}" with equal Hamming weights, if b’ # b, b, then the 4-level unitary
UM (b,b"YUD (b,b") can be realized with O(n*) gates exp(iaR) : o € (—, 7], without any ancilla qubits.

6.3.1. Example: a 5-qubit 4-level unitary
Figure 10 shows an example of this circuit conversion where the top is a circuit for the 2-level unitary
U (1101,1110) = AN (U) (124)

obtained using the techniques of section 5 step 1, and the bottom is the circuit obtained by applying the
transformation in equation (120). It can be easily seen that the bottom circuit realizes

U™ (11101,11110) UM (00010,00001) = A (U) A™ (U) (125)
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Figure 10. The transformation from the circuit for A!'(U) (upper) to A} (U)A%°(U*) (lower) using the mapping in equation
(120). The highlighted qubit is the extra control qubit.
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which corresponds to the unitary in equation (114) with
b=11101, b’ =11110, (126)

where

U= U , U= XoX)UX®X) . (127)
1

6.4. The special case of half-filled sector (m = n/2)

Next, we focus on the special case of the sector with Hamming weight m = n/2 when n the number of qubits
is even. This sector, which can be called the ‘half-filled’ sector, splits into two equal-sized subspaces
corresponding to +1 eigenvalues of X®", denoted as

/2 — g (n/24) gy gy (n/2.-) (128)

The fact XY interaction commutes with X®”, means that this Hamiltonian is block-diagonal with respect to
the above decomposition. This in turn implies all realizable unitaries with XY interaction are also
block-diagonal. That is

VD) Z /208 g yin/2io) (129)
where V("/2%) is the component of V("/2) that acts in the subspace with Hamming weight /2 and
eigenvalue +1 of X®". We show that

Lemma 16. For n > 4, consider the unitary V= V\"/2) @1, where 1 is the identity operator on the subspace
orthogonal to H"/?). This unitary can be realized with XY interaction alone (without any ancillary qubit) if,
and only if

det(V("/2’+)) = det(VWz»*)) =1, (130)
where V("/2%) is the component of V("/?) in the subspace H"/>%), as defined in equation (129). Furthermore,

any such unitary can be realized with O(n x 4") 2-qubit unitaries exp(ifR).

Proof. The necessity of this condition follows from the arguments in [23]: For any pair of qubits i and j and
n> 2 we have

Tr (X®nR,‘j) =Tr (R,‘j) =0 5 (131)
where Rjj = (X;X; + Y;Y;) /2 is the XY interaction. This, in turn, implies

Tr (R,'j) +Tr (X®nRij)
2
29

=Tr(P4R;) =0, (132)
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where Py = (14 X®")/2 are the projectors to the subspace with eigenvalue +1 of X®". For any unitary W
that commutes with X®", let W= W, @& W_ be the decomposition of W relative to the eigensubspaces of
X®". Then, for any unitary W which is decomposable as W = [], exp(ifR;j,), equation (132) implies that
det[P4 exp(ifxR;;, )P+ ]| = 1 for every k, where the determinant is calculated over the support of P.... Therefore,

noting that R;;, and P4 commute,

det(W) = det | | [ P+ exp (i6cRy,) P
k

= Hdet [P exp (i0kRyj ) P<] = 1. (133)
k

This proves the necessity of the condition. In the following, we prove the sufficiency of this condition.

First, for convenience we choose a basis for H("/2) which is consistent with the decomposition in
equation (128) such that any basis element is either in H (/%) or #("/2:7)_ To achieve this we define the
basis

“’>\2|b> wb)=—, b<b, (134)

E )

forb=1b,---b, € {0,1}", where the first condition means the Hamming weight of b is /2, and in b < b we
are interpreting b and b as the binary representations of integers (In other words, this condition means the
left-most bit of b is 0). This condition is imposed to obtain a complete orthonormal basis; otherwise we will
consider |b, +) and |b,+) as two separate vectors, whereas according to the definition in equation (134) they
are indeed equal. (Note that any total order on binary strings can be used here.) Then, it is clear that the set of
vectors |b, =) with b defined in equation (134) form a complete orthonormal basis for #("/>%).

Next, we show how one can implement unitaries that are 2-level with respect to this basis. Namely, for
b < b and ¢ < €, we consider the unitaries

|b7:|:> =

exp (20 [|b,£) (¢, £| + |c,£)(b,£][])
exp (26 [ilc, £) (b, £| — i|b,£)(c,%£]])

R, (0,b,c) R, (£0,b,c) (135a)
R, (6,b,c) R, (+6,b,c) (135b)

where the identities are proven below. Here, R, and R, are defined in equation (89), namely

R, (0,b,c) :=exp [if (X (b,c) + X (b,c))] (136a)
R, (6,b,c) :=exp[if (Y (b,c) + Y (b,c))] , (136b)

where we have used the fact that X(b, ¢) and X(b, <) commute, and the same fact holds for Y(b, ¢) and Y(b, ).
Note that b < b and ¢ < ¢ together imply that b # €, because the left-most bit of b is 0, whereas the left-most
bitofcis 1.

To show the identities in equation (135), we note that for b < b and ¢ < G, it holds that

[b) (c| + [b) (€] = b, +) (e, +| + [b, —) {c, | (137)
[b){c| + [b){c| = [b, +) (¢, +| — [b, =) (¢, —, (138)
which, in turn, implies
X(b,c)+X(b,c) = [b,+){c,+| +|c,+)(b,+|+ [b,—)(c,—| + |c,—) (b, — ], (139)
and
X(b,©)+X(b,c) =|b,+){c,+|+[c,+)(b,+| — [b,—){c,—| — |c,—) (b,—] . (140)

Note that the right-hand sides of equations (139) and (140) commute, which using equation (136), implies
R.(601,b,c) and R,(6,,b,€) commute and equation (135a) holds. Equation (135b) can be shown similarly.

Finally, recall that under the assumption that b #c,€¢ and w(b) =w(c), the 4-level unitaries in
equation (136) can be realized using the method developed previously in section 6.3. We conclude that unitar-
ies in equation (135) can be realized with XY interaction alone. Next, we use these unitaries to construct other
unitaries in the half-filled sectors.

Unitaries in equation (135) are 2-level with respect to the basis in equation (134), namely they act
non-trivially on the 2D subspace spanned by |b,+) and |c,+) (or |b,—) and |c,—)), which is restricted to
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the subspace H(*/>%) (or #("/27)). Furthermore, relative to the basis |b,£) and |c, %), the unitaries in
equation (135) act as exp(i26X) and exp(i20Y), i.e. rotations around x and y axes, respectively.

Using the Euler decomposition, one obtains arbitrary 2-level special unitaries (i.e. unitaries with determ-
inant 1) in the subspace spanned by |b, &) and |c, ). Therefore, using lemma 12, by combining such unitaries
we obtain all unitaries acting on H(*/2%) and #("/2=) that satisfy the condition in equation (130) of lemma
16. In particular, this requires O(D?) = O(4"n~!) unitaries of the type in equation (135), where

1/ n 2"
—_— 1 (7[/2, ) f— % _—
D =dim ("H ) =3 (n/2> T (141)

As we have seen in section 6.3, each 4-level unitary R,(6,b,c) and R,(6,b,<) can be realized with O(n?) gates
exp(ifR). Therefore, we conclude that a general unitary V("/2) satisfying the condition in equation (130) can
be realized with O(n?D?) = O(4"n) gates exp(ifR). This completes the proof of lemma 16. O

6.4.1. Example: the sector with Hamming weight 2 of 4 qubits
In section 6.2, we discussed the implementation of unitaries in sectors with Hamming weights 1 and 3 of 4
qubits. Here, we focus on the sector with Hamming weight 2, and complete the construction of unitaries
in g4.
In this example, the basis defined in equation (134) is the set of vectors
0011, 4) - 10011 £ [1100). (142a)
V2

0101) + |1010

0101, +) := |>ﬁ> (142b)
0110) = 1001

0110, +) := |>\/§> , (142¢)

which spans the six-dimensional subspace
HO =P o) 233 .

Following the above construction, using the XY interaction alone, we can implement any unitary inside each
of these three-dimensional subspaces, provided that it has determinant 1 and is 2-level with respect to the
above basis.

For example, consider U € SU(2) with the Euler decomposition

U= ei’yXeiﬁYeiaX ]
Suppose we want to implement this unitary as a 2-level unitary on the basis vectors |0011,+) and [0101,+),
which we denote as unitary U(0011,+;0101,+). Then, using equation (135) we obtain the decomposition

U(0011,+;0101,+) = R, (%,0011,0101) R, (%,0011, 1010)

xR, <§,0011,0101> R, (f,oou, 1010)
(6% «Q
x Ry (5,0011,0101)]& (5,0011,1010). (143)

Note that applying equations (100) and (105) and their permuted versions, one can implement each
unitary in this decomposition using XY interaction alone. Finally, combining such 2-level unitaries on
subspace (> 1), we obtain the full SU(3) unitary group on this subspace. A similar construction works for
H@) In summary, combined with the results of section 6.2, we obtain the group of all 4-qubit unitaries
satisfying conditions in equations (83)—(86), which is isomorphic to the group

G, = SU(4) x SU(3) xSU(3) .

6.4.2. Example: a family of 6-qubit 2-level unitaries
As an example, let us consider the 6-qubit unitary

V=exp (i [|b,+)(b',+|+ [b',+)(b,+]]) , (144)
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Figure 11. The circuit for realizing the 6-qubit unitary V = exp(i0[|b, +)(b’, 4| + |b’, +) (b, +])|, where |b, +) and [b”, +)
are defined in equation (145) . The first six gates in the circuit implement Ry( % ,b,b’), and the last two gates implement

Ry ( g , b,p). Each of the 4-level gates, namely the pair of controlled-U and U* and the pair of controlled—eigR, can be
implemented with 10 (T(3) = 10 in lemma 9) 4-qubit 4-level gates using the construction in section 6.3.

where
010101) + |101010)
b, +) = , (145a)
V2
|100101) 4 011010)
b’ +) = , (145b)
V2
and

b=010101, b’ =011010.

Applying equation (135), the unitary V can be decomposed as

V=R, Q,b,b’ R, Q,b,? . (146)
2 2

Then, as we further explain below, applying the above methods we obtain the circuit in figure 11 for
implementing the unitary V, where the first part of the circuit, i.e.,the first six unitaries, realizes the unitary

Rx<6,b,b’> =R, (H,b,b’), (147)
2 2
and, the second part, i.e. the last two unitaries realizes
0. — 0 —
Rx (27b,bl) :Rx (2,b,b/> . (148)

Note that each consecutive pair of unitaries in figure 11 is an energy-conserving unitary that is 4-level in the
computational basis, which can be itself decomposed into a sequence of gates exp(iaR) : o € (—, 7| using
the methods of section 6.3 (In particular, for each of these 4-level unitaries the conditions in equations (115)
and (116) hold).

Both parts of this circuit are obtained by applying the method in section 6.3. In particular, the first part
of the circuit, which realizes the unitary in equation (147), is obtained by applying the conversion rule in
section 6.3 to the 5-qubit circuit in figure 12. This 5-qubit circuit realizes the unitary exp (igX(c, c’)) , where

¢=01010 and ¢’ = 00101, which are obtained by removing the first bit ofbandb’, i.e.
b=1c=101010, b’ = 1c’ = 100101 .

The 5-qubit circuit in figure 12 itself is obtained by the construction in the proof of lemma 10. In
particular, this construction gives the decomposition

0 0
exp <i2X(c,c')) = exp (izX(01010,00101))
=Al (iSwL) U™ (00110,00101) Al (iSwss) (149)
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Figure 12. The circuit for realizing the 5-qubit unitary exp (i%X(c, c’)), where ¢ = 01010 and ¢’ = 00101. The qubits shown
here correspond to the qubits 2 to 6 in figure 11. Based on this circuit, we construct the first part of the circuit in figure 11,

which realizes the unitary Rx(% ,b,b") =Ry ( g ,b,b’) on 6 qubsits.

which corresponds to the circuit in figure 12'". Here, U(") and U are defined through equation (76) as

1
U= UM , (150a)

1
Ut = <i 1) J2X (_i 1) = exp [iz (_i ‘)} (150b)
U* = (X@X) UX®X), (150c)

where the matrix representation for U is written in the computational basis of qubits 5 and 6 with the
ordering |[00)¢s,[01)6s,]10)65, |11)65, with qubit 6 first.

6.5. The full set of realizable unitaries with XY interactions (completing the proof of theorem 4)

Putting everything together, we obtain a method for implementing a general unitary satisfying the
conditions in theorem 4, using the XY interaction alone. As emphasized in lemma 14, the additional Z,
symmetry of XY interaction allows us to restrict our attention to the subspace with Hamming weight < n/2;
if the implemented unitary coincides with the desired unitary in this subspace, then it is equal to the desired
unitary. In section 6.3, we constructed the 4-level unitary U") (b,b”")U") (b, b"), which assuming

w(b) < n/2 acts as a 2-level unitary in this subspace.

Now, suppose one wants to implement a unitary V satisfying equations (83)—(86), namely V&€ S V}f(l)
that satisfies the Z, symmetry as well as the corresponding determinant constraint in equation (86). Using
the techniques of section 5 step 3, we obtain a circuit C containing O (4" //n) number of gates U'") (b,b")
with w(b) < 1/2 that realizes V in the subspace H(<"/2). Notice that the resulting unitary acts trivially on
the subspace orthogonal to H(<"/2),

Then, replacing each unitary U (b,b’) in this circuit with 4-level unitaries U") (b,b") U (b,b"), we
obtain a circuit C’ that respects the Z, symmetry, and behaves identical to C in H(<1/2) and hence realize
the desired unitary V' in subspace #(<"/?). From section 6.3, each unitary U)) (b,b") U (b,b’) with
w(b) = w(b") can be implemented with O(n?) gates exp(iaR) : a € (—,7].

Additionally, if n is even, using the techniques developed in section 6.4, we can construct a circuit with
gates exp(iaR) : a € (—m, 7] to implement V{("/2), the component of V" in the sector with Hamming weight
1n/2. Combining this circuit with C’, the resulting circuit implements V in the sectors of Hamming weights
0,...,[n/2]. By lemma 14, the resulting circuit realizes V in the full n-qubit Hilbert space.

The total number of gates exp(iaR) : « € (—,7] in this circuit is

n

O(n*)x0 (%) +0(@4"n) =0 (4“n3/2) : (151)

6.6. Breaking the 7, symmetry of XY interaction with a single ancilla qubit
We have fully characterized G,, the set of realizable unitary transformations with XY interaction alone
(without ancilla qubits). Namely, this is the set of unitaries satisfying all constraints equations (83)—(86),

W In particular, the sequence of bit strings in equation (68), which gives the above circuit, is

b=01010 — 00110 — 00101 =b’.

Lirlr

The controlled-iSWAP circuit in equation (72) reads K = All2 (iSwy, r, ) = AL(iSwss), which is the controlled-iSWAP gate acting on qubits
3 and 4 with the control qubit being qubit 5, the second last qubit in figure 11 and in figure 12.
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where equation (86) is relevant only in the case of even n. Next, we show that how one can lift the two
constraints related to the Z, symmetry, i.e. equations (83) and (86), using a single ancilla qubit in the initial
state |0) or |1), which fully breaks the symmetry (In this case the ancilla can be interpreted as a quantum
reference frame or asymmetry catalyst [45]).

In particular, for any unitary V€ S V}f“) , the unitary

V' =V@[0)(0] + (X" VX®") @ [1)(1], (152)
satisfies
Vi (lY) @10)) = (VIy)) @|0) , (153)

for all n-qubit states |) € (C*)®". In the following, we show that this unitary satisfies all the constraints in
equations (83)—(86), and therefore is realizable with XY interaction alone.
First, it is straightforward to see that

X2y x@ (D) _ 7 (154)
and

n+1 n+1

sz V=V sz ) (155)
i=1 i=1
Next, to verify the constraints in equations (85) and (86), note that the component of V' in the sector with
Hamming weight m =0,--- ,n+ 11is
V' = v @ |0) (0] + XE V=M XE1 @ |1)(1] (156)

where V(") = TI(") VITI(") is the component of V in the sector with Hamming weight 1, and V’(") and
V{n+l=m) are defined in a similar fashion. Then,

det (V’(’”)) — det (v<m>) x det (v<"+1—"’>) —1, (157)

which implies condition in equation (85) is satisfied. Finally, we show that when n 4 1 is even, V” also
satisfies the condition in equation (86). To see this note that

V) = v @ [0)(0] + XE" VT X @ 1)/(1] . (158)
Suppose V{("+1)/2) has the eigendecompostion

VEE) = 3" el gy (159)
j

where {[t;)} is an orthonormal basis for the subspace of (C?)®" with Hamming weight (n + 1) /2. Then,

one can easily see from equations (152) and (159) that V' (*3') has the eigen-decomposition

n+

VIR =37 () (] @10) (0] + X2 apy) | X" @ [1)(1 )
j

=) (|x1/j+><xlfj+| + |\I/;><\I/]f|) , (160)
j

where

_ [ ®10) £ X5"¢) @ 1)
\/E I

is an orthonormal basis for the eigen-subspace of (C?)®("+1) with Hamming weight (n + 1) /2, and satisfies

N5 (161)

®(n+1) |ty — +
xew \\Ifj >_j:|\I!j ). (162)

This immediately implies that

VIR — R ) gy ) (163)
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where

VIEEE = N0 w (wE (164)
j

is the component of V’ ("3 in the eigen-subspace of X®("+1) with eigenvalue +1. We conclude that

det (V/(%’i)) = Heief = det (V("T)) =1, (165)
j

where here the determinant is the product of non-zero eigenvalues.
We conclude that the condition in equation (86) is also satisfied. In summary, we showed that

Corollary 17. Any unitary transformation in SV D) can be realized using 2-qubit gates
exp(iaR) : o € (—m, 7] and a single ancilla qubit.

6.7. All energy-conserving unitaries with 2 ancilla qubits
Finally, combining this with the result of section 5 step 4 that allows us to circumvent the constraints in
equation (85) with an ancilla qubit, we can implement a general energy-conserving unitary (up to a global
phase) using only XY interaction and 2 ancilla qubits.

In particular, in section 5 step 4 we showed that for any n-qubit energy-conserving unitary V € VY,
there exists a unitary in V € S ng_ll) , such that

V(1) @ [0)anat) = (V1)) @ [0)ancr (166)
for all ) € (C?)®". Furthermore, from section 6.6,
V' = V@ [0)(0] + XEHDyx®0HD @ 1) (1] (167)
satisfies

V(19)© 0)anc) = (V1)) © 0)anc (168)

for all |¥) € C®("+1), Moreover, since V € S V,%_ll), the argument in the previous section implies that V" is
realizable with XY interaction alone. Choosing |¥) = |4/} ® |0) we conclude that

AVI (|¢> & |O>anc1 & ‘O>anc2) = (V|1/J>) & |O>anc1 & |0>anc2 9 (169)

for all n qubit state |¢)). This completes the proof of the last part of theorem 1.
7. Approximate universality

For some applications, e.g. in the context of quantum computing, we are interested in the notion of
approximate universality, where the desired unitary can be implemented using gates from a finite elementary
gate set, for instance, S gate and v/ iSWAP. Clearly, with finite number of gates from this finite gate set,
generic energy-conserving unitary V can only be realized with a non-zero error, which can be quantified by
the operator norm distance

IV=Vlec:=sup  [(V=V)[¥)], (170)
)il =1

where V' is the realized unitary.

In the following we show that for n =2 qubits, any desired energy-conserving unitary in & V;J M) can be
realized with arbitrary small error using T and v/iSWAP gates whereas this is not possible if one uses S = T*
instead of T. In the latter case, the generated group is finite, and hence is not dense in S Vg () On the other
hand, in the case of n > 3 qubits T gates are not needed: Any desired element of SYY () can be realized with
single-qubit S gate and v/ iSWAP gate, with arbitrary small error.

The results in this section rely on the Solovay—Kitaev theorem [1, 50]. In particular, we use a recent
variant of this result [51], which states that, for any gate set that generates a dense subgroup of SU(d), if the
inverse of each gate is contained in the gate set, then any V € SU(d) can be approximated to precision e with

N=0(log" (")), (171)
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number of gates in the gate set, where

V> log(H\/g)/zz /2 1.44042 . (172)

Furthermore, the sequences that achieve this bound can be found efficiently.

7.1. Approximate semi-universality of T 4 +/iSWAP for 2 qubits
Here, we show how a general 2-qubit unitary in S V;] M iea unitary in the form

1
V= v vV esu(2),

can be realized with arbitrary small error using T and viSWAP gates.

Recall that in the case of 2 qubits, any element of S Vg () can be realized with S gate and
exp(iaR) : a € (—m, 7] gate (see the circuit below equation (45)). Luckily equation (32) indicates that the
approximate implementation of the gate exp(iaR) can be fully characterized using the same techniques and
results that have been previously developed in the case of approximate single-qubit unitaries. To see this,
recall the correspondence in equation (34) which implies vV iSWAP and exp(iaZ) gates acts as exp(im X/4)
and rotation around z in the subspace spanned by |01) and |10). Using the standard results in quantum
computing, one can show that exp(im X/4) and exp(ir Z/8) generate a dense subgroup of SU(2). To see this
note that

STexp(in/4)ST:\2( i _11 >:H, (173)

which is the Hadamard gate. But, it is well-known that T and H gates together generate a dense subgroup of
SU(2) [1, 59]. Combined with the above equation and the fact that St = T, this implies that T and
exp(im X/4) generate a dense subgroup of SU(2).

We conclude that any V(1) € SU(2) can be approximately implemented with T and exp (i X/4) gates. By
the correspondence in equation (34), this further implies that any V€ S Vg M) can be approximated with the
same number of T and v/iSWAP gates. In particular, there exists V, such that ||V — V]|, < e and V can be
realized with O(log” (e !)) of T and viSWAP gates, for any v > log(; /), 2. Indeed, the above observation
implies that one can use the standard existing softwares for approximate implementation of single-qubit
gates with H and T gates, to find the sequence of vViSWAP and T gates that realize any 2-qubit
energy-conserving unitary V in the above form.

7.2. Approximate semi-universality of S 4+ v/ iSWAP for 3 qubits

Next, we study the case of n =3 qubits. As the first setp, we characterize the group generated by viSWAP
gates alone. Consider the subgroup of 3-qubit unitaries S Vg(l) satisfying the additional Z, symmetry in
equation (83), i.e.,the group

gS:{Ue SYYW . x®3yx® = U} . (174)
Relative to the computational basis with the following (unconventional) ordering
|000); 001),]010),]100); |[110),]101),]011); |111) , (175)

elements of G5 are represented as

m
U= v - UM esu(3). (176)

The symmetries of XY interaction imply that any unitary generated by this interaction on 3 qubits, including
ViISWAP on any pair of qubits, is inside Gs. Conversely, we show that the unitaries generated by v/ iSWAP on
all pairs of qubits generate a dense subgroup of Gs.
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Theorem 18. Consider the group of 3-qubit unitaries generated by gates

VISWAP;, . ViSWAP,; , ViSWAP; . (177)

This group is a dense subgroup of G defined in equation (174) (or, equivalently, equation (176)). Hence, by the
Solovay—Kitaev theorem, for any unitary U € Gs and any € > 0, there exists a sequence V1,--- , Vi of length
N=0(log" (e ')) of these gates such that ||U— Vi - Vi||oo < € where v is given in equation (172).
Furthermore, this sequence can be found efficiently.

The proof of this theorem is presented in section 7.4. Before proving this theorem, we discuss two of its
important implications. First, combined with theorem 4, this theorem implies that the group generated by
ViISWAP gates on n > 3 qubits is a dense subgroup of the group G,,.

Second, note that by combining G5 with a generic energy-conserving unitary, one obtains the group
S V;j(l), i.e. the group of all unitaries in the form

1

V= ve) v VD v esu(3) (178)

with respect to the basis in equation (175).

Lemma 19. Suppose a 3-qubit energy-conserving unitary ] with respect to the basis in equation (175) has the
decomposition

¢io
Ji)

¢t

IfJ@ £ JD e for some phase e, or equivalently, if | Tr(JV1]2))| < 3, then the group generated by ] and G5
contains a dense subgroup ofSVg(l), i.e. all unitaries in the form of equation (178). In particular, this is the case

for]zS@]I@]LwhereS:einRz(—’zT):( ! . )

We prove this lemma in appendix E. Note that the assumption that J2) # J() ¢!, holds for generic
energy-conserving unitary J. It is also worth noting that if instead of S gate, one uses Z gate, e, [ =Z®I® 1,
then this assumption is not satisfied, i.e. | Tr(](l)T ](2))| = 3. Indeed, it turns out that in this case, even though
Z gate breaks the Z, symmetry, i.e., does not commute with X®3 it cannot extend G5 to S Vg(l).
Combing this lemma with theorem 18 we conclude that

Corollary 20. The group generated by unitaries \/iSWAP),, ViSWAP,3,/iSWAP, 3 and the single-qubit S gates

contains a dense subgroup ofSVg(l).

7.3. Approximate semi-universality of S 4+ v/iSWAP for n > 3 qubits (proof of corollary 2)

Recall that in proposition 13 and theorem 4 we studied unitaries that can be realized with

exp(iRa) : o € (—, 7] gates, with and without S gates, respectively. The above observation in theorem 18
implies that on a system with n > 3 qubits, and for any pair of qubits i and j, the 2-qubit unitary

exp(iaRjj) : o € (—m, 7| can be realized with arbitrary small error using gates v/iSWAP that act on qubits 7,
and a third different qubit. Therefore, by combining these results we arrive at

Corollary 21. For any system with n > 3 qubits:

o The group generated by v/ iSWAP and single-qubit S gates contains a dense subgroup ofSV;](l).
o The group generated by \/iSWAP gate is a dense subgroup of G, i.e., the group of unitaries satisfying the 4
conditions in theorem 4.

As we have seen in theorem 1 and its proof in sections 5 and 6, any energy-conserving unitary on n qubits
can be implemented using a unitary in S v}ﬁrﬂ) and one ancilla qubit or a unitary in G, 4, and 2 ancilla qubits.
In both cases we need O(4"n/2) gates exp(iRa) : o € (—,7]. Then, to guarantee that the total error in
implementing the desired n-qubit unitary is less than e, it suffices to have the error in implementing each
single gate exp(iRa) : o € (—, 7], less than or equal to €’ = ¢/O(4"1n%/?). Then, according to our
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theorem 18 this can be achieved with O(log” (¢/~1)) = O(log” (4"n*/?¢ ")) = O((n — loge)”) number of
ViISWAP gates. Therefore, in total, to achieve the overall error € in implementing the desired n-qubit unitary
we need, at most, O (4"13/%(n — loge)”) number of v/iSWAP. This completes the proof of corollary 2.

7.4. Proof of theorem 18

Here, we explain the main steps in the proof of theorem 18. Further details and the proof of lemmas can be
found in appendices E and F. The first step in the proof of theorem 18 is the following lemma, which fully
characterizes the eigen-decomposition of operator

W123 =V ISWAP23 \ ISWAP13 . (180)

Lemma 22. The unitary Wiy := \/iSw,3V1Swy3 has 3 distinct eigenvalues, namely {1, eiig}, where

4 2 _ L1 (181)
cos— =cos” — = — —
2 ) Vv2)’

and 0 ~ 0.348886 is an irrational multiple of 7. Each eigenvalue e*'% has multiplicity two with eigenvectors
[1g) and X®|1)g), where

[640) = — e (J001) + C|010) + C* 100)) (182)
5—-2v2

1

|Y_g) := \/ﬁ

(|o01) — ¢*|010) — ¢|100)) , (183)

and

_ \/572\/54_\/5—11
5 .

q: 2 (184)
In summary,
Wias := ViSwysViSwys = exp (0A13) | (185)
where Ayp3 :=i(Py. — P_) and
Py = [Yig) (Vio| + XZ0s0) (1o | XZ°. (186)

See appendix F for the proof of this lemma. The fact that 6 /7 is an irrational number, i.e., € is an

irrational rotation, follows from the same argument that previously established [59] the universality of H
and T gates for a single qubit (see appendix F).

For the following applications, we present the explicit form of A,3 in the computational basis relative to
the order in equation (175):

0 ) )
(1) 0 io 1«
A )
Az = 12 A0 ) A%)S =lia 0 =31,
123 IOé 0
0 B
-4
a= (5 - 2\/5) ~ 0.678598
_1
B= (7+4ﬂ) " ~0.281085. (187)

The significance of an irrational rotation is that its repeated application generates a dense subgroup of U(1)
(see, e.g. chapter 4.5 of [2]). Applying this result to Wi,3 = ¢4 we conclude that for any t € R and any
§ > 0, there exists an integer k such that ||(e?4122 )k — e#h12|| , < §. In other words, any gate in the form of
A1 can be approximated with repeated application of W, to arbitrary precision.

Therefore, applying lemma 22 we know that the group generated by W3, W13, and W3y, is a dense
subgroup of the Lie group generated by unitaries exp(tA;»3), exp(tAz13), exp(tAs12), i.e. the group

(exp (tA123) ,exp (tAz13) ,exp (tAsz2) :tE€R) . (188)
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Clearly, because AS% and its permuted versions, Ag% and Agg, are traceless and skew-Hermitian, this group
is a subgroup of Gs. In the following, we prove that this group is indeed equal to Gs. Since G5 is a compact
connected Lie group, isomorphic to SU(3), it suffices to show that the real Lie algebra generated by Ag;,

Ag;, and Agg, denoted by
by = algz { AR} AL AL (189)

is equal to the Lie algebra su(3). First, note that Ag% can be obtained from AS; by exchanging qubits 1 and 2,

which results in swapping the last two rows and columns of Ag% (since the basis vectors are ordered as
|001),|010), |100)) and gives

1 0 0 O
B=55 (Ag; ngg) =[0o 0o —1]ens. (190)
0 1 0
Similarly, the permuted versions of this matrix are also in b, i.e.
0 -1 0 0 0 -1
1 0 0|ebs, [0 0 0 |eps.
0O 0 O 1 0 O

These matrices generate the Lie algebra so(3), i.e. the Lie algebra of real skew-symmetric matrices. Therefore,
50(3) Chs Csu(3) . (191)

As we explain below, 3 has other elements that are still in s1(3) and not in s0(3). But, it is well-known that
there is no Lie algebra in between s0(d) and su(d), which immediately implies h5 = su(3). To show this
explicitly, note that

1 0 i i
c:a(Ag;;Mgp): i 0 0|ehs (192)
i 00
This, in particular, implies
0 0 1
B,C]|+C
[B.C+C =|0 0 0)€bh;s. (193)
2
i 00

It is straightforward to show that this matrix and its permuted versions, together with matrices in 50(3)
generate the Lie algebra su(3).

We conclude that 3 = su(3), which in turn implies the group defined in equation (188) is equal to Gs.
Combined with lemma 22 this implies that the group generated by W53, W31, and W3, is a dense subgroup
of G3, which proves the first part of theorem 18.

The second part of the theorem, which bounds the number of the required gates, follows from the
Solovay—Kitaev theorem, as stated in equations (171) and (172).

8. Discussion

Building on the previous ideas in the quantum circuit theory [1-3], and, specifically, recent works on
symmetric quantum circuits [23, 42], we introduced new circuit synthesis techniques for implementing all
energy-conserving unitaries, or, equivalently, all U(1)-invariant unitaries, using XY interaction. We also
showed how these techniques can be generalized beyond XY interaction, to all energy conserving interactions
that allow qubits to exchange energy (i.e. ,interactions that are not diagonal in the computational basis).

In the introduction, we briefly discussed applications of energy-conserving quantum circuits for
suppressing noise in quantum computers. Another important area of application of our results is quantum
thermodynamics. In this field, one is often interested in implementing energy-conserving unitaries. Indeed,
the resource-theoretic approach to quantum thermodynamics starts with the assumption that all
energy-conserving unitaries are free, i.e. ,can be implemented with negligible cost [36—40]. In the context of
this resource theory, researchers have developed various protocols utilizing energy-conserving unitaries.
However, the problem of implementing energy-conserving unitaries themselves has not been studied much.
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In particular, prior to this work, it was not known how a general desired energy-conserving unitary on n
qubits can be realized using 2-qubit energy-conserving unitaries.

In addition to quantum thermodynamics, energy-conserving unitaries also play a crucial role in the
context of quantum clocks and quantum reference frames [60], covariant error correcting codes [61-63],
and the resource theory of asymmetry. (In particular, energy-conserving unitaries are the only unitaries that
can be implemented without having access to synchronized clocks.) Other examples of applications of
energy-conserving unitaries, or, equivalently circuits with U(1) symmetry, include variational quantum
machine learning [64—67], variational quantum eigensolvers for quantum chemistry [68—73], and quantum
gravity [74].
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Appendix A. Constraints on the relative phases (proof of equation (18))

In this appendix, we review the argument of [23] that shows how locality restricts realizable unitaries and, in
particular, imposes constraints on the relative phases between sectors with different energies. See [23] for
further details.

In particular, we show that any unitary V that can be realized with XY interaction local Z Hamiltonian
satisfies the constraint

9, = (”) x [T x (9,1—90)+90} : mod 27 , (18)
m n

forallm=0,---,n.
We also show that any energy-conserving unitary V satisfying this constraint has a decomposition as

V=eé%exp(iBZ) V', (A1)
where a, 8 € (—m, 7], j € {1,--- ,n} is any arbitrary qubit, and V' € SVY)), Recall that according to the first
part of theorem 5, which was originally proved in [23] and is also proved using a constructive approach in
this paper, we have

Sy Gxx+vv,7 » (A2)

i.e., any unitary in SVY(!) can be realized with XY and localsingle-qubit Z Hamiltonians. In conclusion, we
find that Gxxyy,z is the subgroup of V,? ) satisfying equation (18), as stated in theorem 5.

A.1. Proof of equation (18)
Suppose unitary V can be realized with Hamiltonians Hy, - - - , Hr which all satisfy

n
[Hj,ZZr} =0. (A3)
r=1
More precisely, assume
V = rhr . gmHn (A4)
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Then, V is energy-conserving, i.e. decomposes as

V= EB yim (A5)
m=0
where V(") is the component of V in the sector with Hamming weight . Defining
0,, = arg (det (V(”’)>) , (A6)
one can easily show that [23]
0, = zn:'yj x Tr (H(”‘)Hj) : mod 27 . (A7)

j=1

Suppose each Hamiltonian Hy,--- ,Hr, is either I, Z; : j = 1,---n, or R;;. Then, Tr(H(m)Hj) is equal to one of
the followings

Tr (H(m)) = <n> (A8a)
m
Tr (szU")) _noam (”) (A8D)
n m
Tr (Rijn<m>) —0. (A8¢c)
Here, the second equality follows from
Tr (1) = %ETr (zm) (A9)
=1
_nmamn (H<m>> (A10)
n
:n—me<n)’ (ALD)
n m

where in the first line we use the permutational symmetry of II("), and the second line follows from

izf = i(n—Zm) e (A12)

j'=1 m=0

Finally, note that Tr(R;II(™)) = 0 follows from the fact that (b|R;|b) = 0 for all elements of the
computational basis.

Then, assuming in decomposition in equation (A4) each Hamiltonian is one of the 3 types I,
Z.:r=1,---n, or Rj;, we conclude that

0, = zn:'yj x Tr (H("’)Hj)

j=1

= (;) > i+ n—an x <:1) >

jeA jeB

= <:1> [aJrﬂx (1—27’”)] :mod 27 , (A13)

where A and B are subsets of {1,---, T} corresponding to all j € {1,---, T}, for which H; = I, and H; = Z,,
respectively, and we have defined

o= Z*yj (Al4a)
JEA

B= Zyj . (A14b)
jEB
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Considering m = 0 and m = n, we find

=0+«
Op=—-L+a,
which implies
a:w—i—bw :mod 27 ,
and
B = 90;9" +br :mod 27T,

where b = 0, 1 is unspecified.
Putting these values of o and § in equation (A13) we arrive at

e SN )
m 2 2 n
= (n) X [Go—zm (909" +b7r)] :mod 27
m n 2
n m m m
= (m> oo (1-5) + o - v52m]
where b = 0, 1. Finally, we note that for all m = 1,--- | n, it holds that

(:a) erhzmmzo : mod 2r .

We conclude that

0, = (”) X [Tx(an—eo)wo} . mod 27,
n

m

which proves equation (18).

G Bai and I Marvian

(A15)
(Al6)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

Finally, note that multiplying the unitary V with e~ exp(—i3Z;), where j = 1,--- ,n is an arbitrary

qubit, we obtain the energy-conserving unitary

V'i=e“exp(—iBZ;) V,

with the property that det(V’(")) = 1, which can be seen by applying equation (A13) to

0] = arg(det(V'(™)). Therefore, V' € SVY(), which proves equation (A1).

Appendix B. Proof of lemma 8

(A24)

First, we show the result for the special case where H is traceless and then extend the result to the general

case. Any traceless Hermitian 2 X 2 matrix can be written as
H=m-0 =myo.+myo,+m,0,,
where 71 € R, Then,

SHS' = M0y — My0x + M0, =H-0 ,

(B1)

(B2)

where 7 is obtained by rotating 77 around the z axis by angle 7 /2. Then, unless x and y components of 77 are
zero, # # +mi, which in turn implies H does not commute with SHST. Explicitly, one can check that

Tr ([H,SHS'] o) = 4i (m2 + m2) |

which implies the commutator is non-zero, unless m, = m, = 0.
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Therefore, exp(iccH) and exp(iaSHS') are rotations around different axes. Then, by Euler
decomposition, any special unitary U € SU(2) can be realized with a finite sequence of such rotations as

1
U= H exp 104] Sexp(lﬂ] ) ], (B4)

j=1

where o, 5; € R, and the length of this sequence, /, is a constant that does not depend on U € SU(2).
This proves the lemma when H is traceless. In general, when H is not traceless, the above result implies
that for any U € SU(2) there exists a sequence in the form of equation (B4) such that

I
U=éU= H [exp (iajH) exp (iﬁjSHST)] . (B5)
j=1

Now recall that any V € SU(2) can be decomposed as V = ABAT BT, for A, B € SU(2). Then, from the above
result we know that there exists phases ¢ and ¢ such that

A=¢"A ,B=¢"B, (B6)
have decomposition in the form of equation (B4). Then,
ABA'B' = ABATBt = V. (B7)

This implies that when H is not traceless, any element of V € SU(2) has a decomposition in the form
equation (B4) with 4 x I elements. This completes the proof of the lemma.

Appendix C. Controlled-R.(— 7 ) using a single ancilla qubit

We saw how based on equation (49) one can obtain a circuit for implementing controlled-Z gate. Other
useful unitaries can be obtained in a similar fashion. For instance, one can check the identity

V iSwlziSw13 V iSW23iSW12 V iSW13iSW23
= (—i) exp (i%zlzz) exp (1%23 (Z —i—Zz)) 7 1)
where 1/iSw;; denotes v/iSWAP gate on qubits 7 and j. Setting qubsit 1 to be |0), and assuming qubits 2 and 3
are in an arbitrary state |1)), we obtain
. LT
(—i) exp (112122> eXP( <4 (2 +ZZ)> (10)1]¢)23)

= (10)1) @ (=1) exp (5.2:) exp (17100012 © 25 ) [0): (C2)
Then, one can cancel the unitary exp(i% Z,) term by applying its inverse. In conclusion, we find that the
unitary

exp (—IEZZ) \% iSW]ziSW13 V iSW23iSW12 V iSW13iSW23 (C3)

implements (up to a global phase) exp(i§[0) (0], ® Z3), the anti-controlled R;(% ) gate on qubits 2 and 3,
when qubit 1 is |0). Furthermore, concatenatmg the above gates with exp(—1”Z3) one obtain controlled
R,(—7%) on qubits 2 and 3.

Appendix D. Proof of lemma 12

Proof. For completeness we include the proof of lemma 12, which follows exactly the proof of a similar result
for general unitary transformations (not special unitaries), presented originally in [57] (see also [1, 2]).

The proof is by induction. For d = 2, the proposition trivially holds since U itself is in SU(2). For d > 2,
assume the proposition holds for any unitary in SU(d — 1). Then, for any U € SU(d), leta = (ay,...,a4)" be
its first column of matrix in the basis |1),...,|d).
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For any a # 0 or b+ 0, define V(a,b) := (|a|> + |b]*)~!/2 <ab bg), which is an element of SU(2). We
define V(0,0) as the identity matrix. This unitary satisfies that

vias (2) = (V) o

0

Let V(a,b), x be the 2-level unitary of V(a,b) acting on the subspace spanned by |1) and |k). If we apply
V(ay,a,) on the first two components of a, we get

Vi +aa?

0
V(ai,a), ,a= as . (D2)

aq

This sets the second component of a to zero. Further left-multiplying with V (\ /lai? + |az|?, a3> , We can
1,3

set the third component to zero. Repeating this for every other components, we get

Va=(1,0,...,0)" (D3)

d—1
Z|a,~|2,ad - Viana), , (D4)

i=1 1,d

noting that 4/ E?Zl |ai|> = 1. Since U has a as its first column, VU will be a matrix whose first column is
(1,0,...,0)". Since VU € SU(d), its first row must be a unit vector, and thus must be (1,0, ...,0). VU therefore
has the following block-diagonal form:

1
VU = ( W) (D5)

where W € SU(d — 1). By assumption, W can be written as a product of (d — 1)(d — 2)/2 2-level gates, and
V is a product of d — 1 2-level gates by definition, thus U= V(1 @ W) can be written as a product of (d —
1)(d—2)/2+d—1=d(d—1)/2 2-level unitares in SU(d). This completes the proof. O

Appendix E. Proof of lemma 19

Recall that

Gy = {Ue SV x®3yx®s = U} , (E1)
and the elements of G3 have matrix representation

1
m
U= v e UM esu(3). (E2)

1

Let G be the group generated by G; and the unitary J. G; contains an element U in the form of
equation (E1), with UM = ], where ¢ is a properly chosen phase such that U(") has determinant 1. It
follows that G, being generated by J and Gs, contains U], which has the form of

¢io
el
U= Fe i) : (E3)
¢i®>

Furthermore, the assumption of the lemma implies that T2 is not a global phase, i.e. is not in the
center of U(3), which means it does not commute with some elements of SU(3). Based on this observation,
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we show that the group Gs generated by J and G5 contains S Vg M) (The argument is similar to the proof of
Goursat’s lemma.) N
Consider the elements G5 that are in the following form

o8
B () ~
V= e :Vegs, (E4)

Ples

where I(!) is the identity operator on the 3D subspace with Hamming weight 1 and V(?) € U(3) is an
arbitrary unitary on the subspace with Hamming weight 2, and %015 are phases. All such unitaries V in the
form of equation (E4) constitutes a subgroup of 93, denoted as N Let A" be the subgroup of U(3) formed
from all unitaries V® € U(3) such that there exists V related to V(?) by equation (E4) and V € A. With this
definition, equation (E3) implies that

gt e A (E5)

Furthermore, it can be easily shown that with this definition, AV is a normal subgroup of U(3). To see this,
note that if V € AV, then for any U € G, the unitary UVU' is also in the form given in equation (E4), which
means A/ is a normal subgroup of Gs. Moreover, for any U() € SU(3) one can choose U € G5 C G5 with
decomposition in the form of equation (E2), and UVU' € N implies U V) UMT € A, Finally, we note
that any element of U(3) can be written as a global phase times an element of SU(3). In summary, we
conclude that if V() € NV, then for any U € U(3), it holds that U) VR UMT € A/, which means NV is a
normal subgroup of U(3).

Next, note that since SU(3) is a simple Lie group, any normal subgroup of U(3) either contains SU(3) or
only contains global phases, i.e. is in the center of U(3). But, we just showed that A contains o J1T1(2) and
the assumption of lemma implies that this unitary is not in the center of U(3). It follows that A/ contains

U(3).

This means that for any V(2) € SU(3), there exists V € Gs with decomposition in the form of
equation (E4). Furthermore, because SU(3) is a simple Lie group, it is equal to its commutator subgroup.
The commutator subgroup generated by elements of G5 in the form of equation (E4), contains all elements
in the following form

e 2)
v Vv esu(3) . (E6)

1

Therefore, we find that for any v e SU(3), there exists an element of Q~3 with the decomposition in
equation (E6). Composing these unitaries with elements of Gs, which are in the form given in equation (E2)
one obtains the entire S Vg (1), i.e. all unitaries in the form given in equation (178). This completes the proof
of the lemma.

Appendix F. Eigenvalues of W3 = +/iSWAP,3v/iSWAP,; (proof of lemma 22)

In this section, we study the eigen-decomposition of operator
Wi = ViSWAP,3 ViSWAP;5 . (F1)

The fact that W3 is energy-conserving and respect the Z, symetry X®3W;,3X®* = W),; implies that with
the ordering in equation (175), it has a decomposition as

1 . .
1) 1 1 12 1
W= Wi e , where W)= AR V2 -1, (F2)
123

X W2 0 V2

The eigenvalues of Wg% are {1,e* 9}, where

o 1 V2 VT+4V2,
e ——Z‘FT‘FfI, (F3)
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and 0 satisfies equation (181). The eigenvalues of W23 are thus the same as Wg;, ignoring multiplicity.

To show that 6/ is an irrational number, i.e. € is a irrational rotation, we use an argument that was
previously used in [59] to show the universality of H and T gates. To link W,3 with H and T, we compute
the characteristic polynomial of Wﬁg as

det ()\]I— 1?3) =(A—1) (AZ - \f2A+%>\+ 1) . (F4)

On the other hand, in the proof of universality of H and T gates, it is shown that the gate sequence HTHT
generates an irrational rotation [2]. More specifically, the characteristic polynomial of &2 (HTHT)? (where
the global phase €™ is added to make the resulting gate in SU(2)) is

det (NI — &3 (HTHT)?) = 3>~ VA + %)\ 41, (F5)

which is a factor of the polynomial in equation (F4). The roots of this polynomial are exactly et
This shows that the two complex eigenvalues of Wg% (and thus W), e*1%, are exactly the eigenvalues of
¢l2™(HTHT)?2. The result that HTHT gives an irrational rotation indicates that e=¢ is an irrational rotation.
The original proof of e being an irrational rotation uses the following lemma:

Lemma 23 ([59]). Let ¢ be the root of a minimum monic polynomial p(x) over the field of rational numbers.
Then €' is rational rotation if and only if p(x) is a cyclotomic polynomial.

The minimum monic polynomial for € is x* + x> + 1x* 4+ x + 1, which is not cyclotomic [59].
Therefore, by lemma 23, ¥ is an irrational rotation.
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