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Ion-chain sympathetic cooling and gate dynamics
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Sympathetic cooling is a technique often employed to mitigate motional heating in trapped-ion quantum
computers. However, choosing system parameters such as number of coolants and cooling duty cycle for
optimal gate performance requires evaluating trade-offs between motional errors and other slower errors
such as qubit dephasing. The optimal parameters depend on cooling power, heating rate, and ion spacing
in a particular system. In this study, we aim to analyze best practices for sympathetic cooling of long
chains of trapped ions using analytical and computational methods. We use a case study to show that
optimal cooling performance is achieved when coolants are placed at the center of the chain and provide
a perturbative upper bound on the cooling limit of a mode given a particular set of cooling parameters. In
addition, using computational tools, we analyze the trade-off between the number of coolant ions in a chain
and the center-of-mass mode heating rate. We also show that cooling as often as possible when running
a circuit is optimal when the qubit coherence time is otherwise long. These results provide a roadmap for
how to choose sympathetic cooling parameters to maximize circuit performance in trapped-ion quantum

computers using long chains of ions.
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I. INTRODUCTION

Trapped-ion quantum computers are one near-term
implementation of quantum computing, where ions
trapped in electric fields form chains along the electric
potential’s weakest axis [1,2]. A significant challenge to
high-fidelity entangling gate operations in trapped ions is
motional heating that causes significant gate errors and
decoherence in long chains of ions [3—5]. One proposed
method to combat this heating is with sympathetic cool-
ing [6-9]. Introducing ancillary coolant ions into the chain
interspersed between the qubit ions, the Coulomb coupling
between the ions can be used to cool the qubits indirectly
by laser cooling the coolants. Thus, the electronic state of
the qubits is not destroyed while the chain is being cooled.
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However, this strategy comes with trade-offs: Firstly,
adding too many coolant ions can increase the length of the
chain, making it more susceptible to thermal noise due to
the reduction in motional mode frequency [3,10]. In addi-
tion, gates cannot be run while ions are being cooled due to
the use of ion motion to execute the gate; thus, if the chain
is cooled for too long, other errors can dominate the noise
budget, such as dephasing effects.

In this paper, we present an analysis of the various
parameters taken into account when cooling an ion chain
using sympathetic cooling. By simulating and analyzing
sympathetic cooling for trapped ions, we find optimums
for coolant placement and cooling duty cycle, and weigh
the effects of system improvements on sympathetic cooling
performance for long sequences of gates.

II. MODELING CHAIN DYNAMICS

We define a dimensionless potential ¥(u) normalized to
MHz frequency units [11], i.e., ¥ = U/Ep and u = x/dp,
where

1/3
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Eﬂ = 3 dﬂ = ez
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lons are often trapped in an equally spaced chain, allowing
a single optical device with equally spaced channels such
as an acousto-optic modulator or array of fibers to optically
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address all ions easily [12,13]. To create an equispaced
chain, a quadratic potential is insufficient. We compen-
sate by adding in a quartic term to our potential. Thus,
in the direction of the chain, ions can be trapped at nor-
malized positions #; in a symmetric quartic potential of
the form

(1

1 1
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The last term represents the Coulomb interaction between

ions. Approximate equispacing of 15 ions at 4.4 pm is
achieved by setting X = 0.00188 and X3 = 0.00177.

A. Semiclassical model

At equilibrium, the ions are cold enough that the poten-
tial can be linearized, allowing the dynamics of the ions
in the chain to be well approximated as a set of coupled
oscillators [11,14] (see Fig. 1). We use Eq. (1) to gen-
erate an equation of motion for this coupled oscillator
system by taking the Hessian K of F(u), a set of effec-
tive spring constants and coupling coefficients between the
ions. The solutions to such a system are well known and
form the normal modes of this chain. The lowest frequency
of these modes in the axial direction is the center-of-
mass (COM) mode. In this mode, all the ions move in
phase with each other. The COM mode is generally the
largest contributor to axial heating in ion chains, as low-
frequency electric field noise can be approximated as a
dc electric field displacing the entire chain in the same
direction.

We can model cooling by extending the semiclassical
model to include a damping force [14-16]. The attenua-
tion of a particular mode scales with the mode amplitude,
yielding exponential decay of the mode amplitude over
time. The damping matrix, I', represents the damping force
imparted upon the ions by the cooling light.

When undamped, chains heat linearly in time, which
places a bound on the number of quanta that can be cooled
out of a mode. This heating is analogous to a constant forc-
ing term in the semiclassical model. The cooling limit,
ng, is the ratio between a mode’s heating and cooling
rates.

Thus, our final model takes the form of coupled,
damped, and forced harmonic oscillators, and can be given
as follows:

x'(f) = Kx(®) + Tx'(p). (2)

By using an ansatz x(f) = ve’!, we can derive the eigen-
values {—a)f} of K and its corresponding eigenvectors {v;}.
These eigenvectors represent the modes of this oscillator
system, while the eigenvalues represent their frequencies.
These dynamics can be seen in Fig. 2, with linear increase
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FIG. 1. Semiclassical model for trapped ions. (a) lons trapped

in a quadratic potential can be approximated as a simple coupled
oscillator system. (b) Participation factors for an equally spaced
chain of 15 ions in a potential with both a quadratic and a quar-
tic term. Participation factors for a purely quadratic potential are
equal across the chain (dashed line).

in mode amplitude when heating and exponential decay of
the mode when cooling.

B. Coolant placement—perturbative approach

To find the eigenvalues of this system, we can use a per-
turbative approach for two reasons. Firstly, the damping
force present on single ions is small relative to the mode
frequencies. The timescale for COM mode cooling is on
the order of milliseconds, which corresponds to a cooling
rate of 10> Hz, in comparison to the mode frequency of
10°Hz [11,17]. Secondly, I' is a sparse, diagonal matrix,
with only N¢ nonzero entries for N¢ coolants in the chain,
each at indices C. As such, the eigenvalues and eigenvec-
tors of the damped system will be close enough to those
of the unperturbed system, and thus we can approximate
the new eigenvectors and eigenvalues based on the original
modes and frequencies of the system.

Because the cooling rate is constant for all coolant
ions, we can rewrite I' = y P, where P is some projec-
tor matrix with 1s at specific coolant positions along the
diagonal. Next, we use a similar ansatz to find our eigen-
values and eigenvectors. By using x(f) = we”, we will get
eigenvectors w; and complex eigenvalues zf. Thus Im{z;}
corresponds to the oscillation frequency of the ith damped
mode, while Re{z;} corresponds to the cooling rate of the
ith damped mode. Because we can solve this system per-
turbatively with respect to y, we set w; = Ziio y"wgk)
and 22 =5, = Y 10, y"s,@. In addition, wl(.o) =v;, while
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FIG. 2. Cooling dynamics. (a) Simulated COM mode ampli-
tude (with analytical cooling limit described in Sec. II illus-
trated), and (b) simulated mean XX gate fidelity with a 60% duty
cycle (60% of each cycle is spent cooling the chain) over three
cooling cycles. Shaded sections correspond to sympathetic cool-
ing intervals, while unshaded sections represent intervals where
gates are being run. Parameters used in this simulation include
a chain length of 23 ions with 3.7-pm spacing and 640-kHz
cooling Rabi frequency.

(OJ —w?. We substitute the ansatz into Eq. (2) to give

d
wi =K +yP—
SiW ( +y at)“

We can see here that the relevant perturbation is the P 9/9¢
term. Using this, we can find the first-order eigenvalue
correction for z2 = s;:

M _ x ﬂ) ‘
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As such, our first-order approximation of s; gives us a
similar approximation for z;:

[ 2 -
i & [—w; + Yiw; Z lvil?,
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and its real part Re{z;}:

2
Re{z;} ~ —% o} + y2w? (Z |U1‘k|2) —o] (3)

keC

In the case that the modes hybridize, the mode partici-
pation vectors would be different. As such, we can per-
turbatively expand those in y as well, which we do as

follows:

1
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A point of note here is that the mode vectors are, by con-
struction of K, orthogonal. As such, in this perturbative
approximation, the only mode to which the ith mode would
hybridize would be the v; = WEO) term.

To examine the dependence of the ith mode’s cooling
rate ¢; = Re{z;} on its frequency, we define a variable g; =
v /w;. Redefining Re{z;} in terms of g;,

Re{z;} ~ ——=

w+g |U1|2)_ 2
f\\ (; '
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To check the validity of this solution, we compare it to
the computed eigenvalues of the damped system given in
Eq. (2). The perturbative approximation was accurate to
the computed eigenvalues within ~10~%y for values of
y corresponding to the range of cooling Rabi frequencies
employed for Doppler cooling of trapped ions.

Furthermore, we can verify that the linear approxima-
tion of the cooling rate holds for small g; by applying the
binomial expansion:

2
Re{z;} ~ —% 1+%g? (Z|Ur‘k|2) +0@Eh | -1

keC

=-7 (Z mﬁ) +007). )

keC

This shows that the dependence of the cooling rate on y is
small enough that we need only use the linear approxima-
tion of Re{z;} in y.

Numerically as well, the perturbation in y is generally
small enough that the undamped COM mode does not
hybridize into other damped modes significantly. In other
words, the lowest-frequency damped mode has participa-
tion factors close enough to the undamped COM mode,
and, as such, cooling the damped COM mode will also
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cool the undamped COM mode. However, in the presence
of higher-frequency undamped modes or larger damping
parameters y, this regime may not hold, and thus warrants
further investigation.

C. Cooling limit

We can characterize the performance of a cooling
scheme using the cooling limit. Because the decay rate of
a mode being cooled scales with the number of quanta in
the mode, the mode eventually reaches equilibrium when
the heating rate 4 is equal to the cooling rate c, establishing
a cooling limit at a number of quanta ny = h/c.

To compute the cooling limit for a particular mode, we
use our previous approximation for the COM mode cool-
ing rate in conjunction with results from Ref. [3], which
show empirically that the mode heating rate A is related to
axial mode frequency by a power law of the form

dn
h = — = Dog(dowy” ™ + By) (6)

= Awy' ™™ + Bay. (7)

In Eq. (6), D is a normalization factor derived from Ref.
[3] and is dependent on chain parameters such as trapping
potential and cooling Rabi frequency. Thus, in this work,
we fix 4g and By as chain-independent parameters when
modeling heating dynamics. In long chains, COM frequen-
cies are generally on the order of 10° Hz [3]. As such, so
long as the axial COM frequency remains in this regime,
the contribution of the Bewy term is relatively small.
Combining these results with Eq. (3), we get

hh
"= T T Re(zo)
—l—a
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s (Xkec lvocl?)
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B Y (ZkecWﬂkP) .

(1)

One observation from the above expression is that our
cooling performance becomes much better as we increase
our COM mode frequency, as this decreases our heating
rate while increasing our cooling rate. In contrast, increas-

ing the individual ion damping parameter will increase
our cooling capabilities linearly, while not affecting our
heating rate at all.

Secondly, we observe that the cooling rate is maximized
when the coolants are placed at positions that maximize the
sum of the coolants’ mode participation factors, i.e., max-
imize the sum ), _p |vi|?. Because the ions at the center
of the chain have the highest mode participation factors in
the COM mode, for any potential, it is always optimal to
place coolants at the center of the chain to cool the COM
mode.

Although we do not have an analytical expression for wy
or vg in a quartic potential, the highest mode participation
factors for the COM mode in a quartic potential come from
the ions at the center of the chain (see Fig. 1), and thus we
know that the optimal ion positions must be at the center
of the chain.

We also use computational methods to verify the accu-
racy of our analytical observations by examining the cor-
respondence between the perturbative definitions of the
cooling and the computationally simulated cooling limit.
Figure 2(a) shows the accuracy of the cooling limit. Our
analytical results show good agreement with the simulated
dynamics, accurately estimating the limit of a particular
cooling scheme given its geometry. In addition, we also
found that the perturbative approximation of the cooling
rate only had a relative error of less than 2.5 x 10~* for all
y < 1073,

We computationally verify our observation that optimal
coolant placement is at the center of a chain by simulat-
ing every possible configuration of two coolant ions in a
15-ion chain, seen in Fig. 3(b). Cooling performance was
maximized with centrally placed coolants [i.e., at positions
(—1,0) or (0,1)], yielding a cooling limit of 29 quanta.
This is in good agreement with our theoretical observa-
tions, as configurations that perform best (i.e., minimize
the cooling limit) are centrally placed, while configurations
that perform worse place coolant ions toward the edge of
the chain.

However, this perturbative approximation will likely not
hold at higher values of y due to hybridization of the
undamped COM mode into other higher-order modes of
damped motion that arise in long ion chains. In the small-
y regime, the perturbation does not significantly change
the modes of the damped system when compared to those
of the undamped system. As such, each undamped mode
largely couples to its damped counterpart, including the
undamped COM mode.

Finally, we observe that many of the quantities in the
above expression can be determined analytically for a
quadratic potential. For a normalized quadratic poten-
tial given by V(u;) = Xguf, our normalization gives wp =
(27 x 1 MHz)4/X;, while vo; = N~1/2 for all positions in
an N-ion chain [16]. The latter reduces the sum ) ; [vi|?
to Nc/N. This provides an analytical cooling limit for
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FIG. 3. Computational verification of theoretical observations.
(a) Cooling limit with respect to coolant proportion and COM
frequency. The increase in cooling limit in the vertical direc-
tion corresponds to an increase in heating rate due to a lower
COM frequency, while the decrease in cooling limit in the right-
ward direction corresponds to a larger number of coolants in
the chain. The cooling limit plateaus as the chain fills with
coolants. (b) Simulated COM mode cooling rates for all possi-
ble configurations of two coolants in a 15-ion chain. Optimal
placement is found with ions placed at positions (0, 1) or (—1,0),
in good agreement with our theoretical observation that opti-
mal cooling performance occurs with ions placed at the center
of the chain.

any configuration of an ion chain trapped in a quadratic
potential.

However, this also provides us with an analytical upper
bound for a quartic potential. In the limit where a few
coolants are placed optimally at the center of a chain
trapped in a quartic potential, the higher mode participa-
tion factors at the center of the chain ensure that the sum
Y iep Vi[> > Nc/N, while the inclusion of a nonzero X3

term will only make the potential tighter, thus causing a
higher COM frequency. As such, because we can show that
the analytical quadratic heating rate is higher than its quar-
tic counterpart, and the analytical quadratic cooling rate is
lower than the quartic cooling rate, the quadratic cooling
rate can act as a soft upper bound on the cooling limit of a
corresponding quartic chain.

III. SIMULATION AND ANALYSIS

Now we apply the above theoretical model to find opti-
mal cooling parameters for long-chain trapped-ion quan-
tum computers through computational simulation by max-
imizing mean gate fidelity over time. We first compute
the eigenfrequencies and eigenmodes of the system given
in Eq. (2) in both the undamped (I' = 0) and damped
(I' = yP) regimes for a particular cooling configuration.
We then use the eigenvalues of Eq. (2) to compute the cool-
ing rate of the COM mode, while using Eq. (6) to compute
the COM heating rate. These rates are subsequently used
to simulate COM mode dynamics, as shown in Fig. 2(a).
Finally, we use results found in Ref. [3] to compute XX
gate fidelity from the resultant mode dynamics, seen in
Fig. 2(b).

Cooling trade-offs are evaluated by analyzing the num-
ber of gates run per cooling cycle and the amount of time
used for cooling per cycle. Using these ideas, we define a
“cooling duty cycle,” characterized by the fraction of the
cycle used for cooling.

To evaluate cooling performance, we examine mean XX
gate fidelity and total circuit fidelity. Mean XX gate fidelity
examines the average gate fidelity over the circuit, while
total circuit fidelity establishes a worst-case performance
bound. In particular, for a circuit with M gates, where
the kth gate is run on the interval [tégn, tgfgp], mean XX
gate fidelity (F') and total gate fidelity Fioa are defined as
follows [18]:

M
1
(F) = > F . (12)
k=1
M
Fiow = [ | F80)- (13)
k=1

Gate fidelity depends on the shape of the individual
addressing beams used in the specific system, in addition
to the COM mode frequency. For these properties, we uti-
lize parameters used in situ in Ref. [3]. We examine two
separate sets of parameters to optimize: chain parameters
such as the number of coolants, and cooling parameters
such as cooling duty cycle.

As a proof of concept, the simulation was used to find
optimal coolant ion configurations and cooling schedules
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FIG. 4. Chain parameter dynamics. (a) Mean gate fidelity for an XX gate for different duty-cycle parameters as the number of
coolants in the chain is increased. The trade-off between cooling and heating rates is shown here, with fewer coolants yielding too
low cooling rate and too many coolants increasing heating rates. (b) Optimal gate fidelity with respect to gates per cycle, cooling duty
cycle, and number of coolants in the chain. (c) The corresponding number of coolants required to achieve the maximal fidelities found

in panel (b).

for a quantum algorithm given in Ref. [19] run on the
trapped-ion quantum computer specified in Ref. [3].

A. Parameters

The parameters for the initial simulation were largely
derived from Ref. [3]. Heating rates for the ion chain
were derived using the relation in Eq. (6) with a = 0.8,
Ay ~ 8.2 x 107 57! x (1 rad/s)?>*®, and By = 0.9 s, as
these parameters yielded good agreement with experi-
mental data. We conduct simulations using cooling Rabi
frequencies of 180, 275, and 640 kHz. The correspond-
ing cooling rates were also determined to be y = 1.387 x
1075, 3.468 x 10>, and 5.328 x 107>, respectively, as
these parameters also gave good agreement with the cool-
ing dynamics described in Ref. [3].

Because single-qubit gates are faster than two-qubit
gates and their fidelities are not as dependent on axial heat-
ing, we exclude them from analysis. For this case study, we
optimize 500 two-qubit entangling gates. Each gate has a
duration of 250 ps, yielding a minimum circuit time of
125 ms without any cooling. The gates are run sequentially
on 14 qubits. Each simulated ion chain has N = N¢ +
Np + 2 ions, where the number of Typ+ qubits, N,
remains fixed at 14, while the number of '72Yb* coolants,
Nc, is varied, and the performance of each configuration is
analyzed. In this optimization, two extra “endcap” ions are
assumed to maintain equal spacing of the inner ions.

B. Chain optimization

To optimize the chain parameters, we run the same cool-
ing simulation while varying the number of coolants in the
chain, and thus the frequency of the axial center-of-mass
mode. All coolant ions in the simulation are placed in the
center, as we showed in Sec. II that ion placement in the
center of the chain is optimal for all cooling configurations.

The impact of COM mode frequency in a fixed potential
(and, by proxy, chain length) has been examined at length
in Ref. [3]. Thus, in this study, we examine cooling per-
formance through the lens of mean XX gate fidelity and
how it is impacted by the number of coolants and chain
length. Because these parameters are determined by the
physical characteristics of the trapped-ion system, these
results are largely dependent on the number of ions used
to run a circuit, and are independent of circuit length and
gate type.

We first compute the mean gate fidelity of a circuit
run on the chain as we increase the number of coolants
in the chain with a fixed number of qubits. As seen in
Fig. 4(a), the optimal number of coolants depends on the
cooling duty cycle. Having fewer than the optimal number
of coolants in the chain causes the coolants to not couple
strongly enough to the COM mode, leading to insuffi-
cient cooling of the mode, lowering gate fidelity. However,
more than six coolants causes the COM mode frequency
to decrease due to chain length (as shown in Ref. [3]), and

044033-6



ION-CHAIN SYMPATHETIC COOLING AND GATE DYNAMICS

PHYS. REV. APPLIED 22, 044033 (2024)

12.25 1.00
_ 0.98
W 10.25
E
@
o 825 g (c)
= 1)
) =
= o
o 625 &
o &
g 5
E 3
= 4.25 = o
3 £
L =
o @
2.25
o 2
=
o M v T g
025 072 1.2 167 215 262 31 357 G
Cooling time per cycle (ms) ]
(b) £
12.25 a
o]
W 10.25
E
) Zz
T 825 S
oy 2
T =
g 625 ]
w =
g =
= 4.25 ’2
@
©
& 22

0.25 i
025 072 1.2 167 215 262 31 3.57

Cooling time per cycle (ms)

FIG. 5.

o
~

o
=)

=4
i

o
s

o
w

o
]

=4
-

e
o

ng = 32 quanta
—— ng = 49 guanta
— np = 121 quanta

0 10 20 30 40 50
Number of gates per cycle

Cooling parameter dynamics. (a) Mean gate fidelity for various choices of gate time per cycle and cooling time per cycle.

(b) Total circuit fidelity for various choices of gate time per cycle and cooling time per cycle. (c) Optimal circuit fidelity for each exam-
ined Rabi frequency (¢ = 640, 275, and 180 kHz) as the number of gates per cooling cycle is increased. The optimal configuration
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thus increases the overall heating rate of the COM mode,
making the chain harder to cool. As the cooling time for
each cooling cycle is increased, the optimal number of
coolants varies. Thus, the optimal chain configuration is
largely dependent on the cooling parameters, and may be
determined computationally for fixed cooling cycle param-
eters. For the purposes of this study, it is sufficient to
assume a fixed electric potential for ion trapping. However,
below, we also briefly examine how changing aspects of
the trap potential (in particular, the COM mode frequency)
impacts cooling performance.

Rather than adding coolants to the chain for a fixed num-
ber of qubits, we examine the ratio of coolants to total
ions in the chain. In so doing, we examine the effect of
increasing the cooling rate of the mode by maximizing
the total mode participation over all coolants [i.e., max-
imizing ZkeP|U0k|2 in Eq. (3)]. We test 21-ion chains
with differing COM frequencies as we add coolants start-
ing at the center of the chain, subsequently assessing their
cooling performance. Figure 3(a) shows the correspond-
ing cooling limit of a chain for a fixed COM frequency
and coolant filling fraction. The theoretical prediction for
our cooling limit holds well here, with the cooling limit
decreasing as the COM frequency increases. In addition,

the cooling performance plateaus as the coolant filling
fraction approaches 1. This is indicative of the trends
observed in Fig. 4, in which cooling performance plateaus
and eventually decreases as chain length increases.

C. Cooling optimization

Next, we optimize the cooling time and duty cycle.
Increasing the total duration of the circuit by increasing
the cooling time can mitigate motional errors, but can
incur errors dominant at longer timescales, such as dephas-
ing and depolarizing noise. On the other hand, cooling
infrequently and for short times allows for circuits to run
quickly (avoiding dephasing errors), but runs into motional
noise, which is dominant at shorter timescales. Thus, we
present an analysis of cooling cycle frequency and duration
as they pertain to circuit performance. For cooling opti-
mization, we examine gate fidelity while varying cooling
time per cooling cycle and number of gates per cooling
cycle. Incorporating a dephasing T2 time of 0.5 s into the
simulation, we aim to find a balance in the cooling duty
cycle that optimizes circuit fidelity.

For a cooling Rabi frequency of 640 kHz, we find that
an optimal cooling duty cycle consists of one gate and a
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~75% cooling duty cycle. This results in a total circuit
fidelity of 0.73 and a mean gate fidelity of 0.9993. As
seen in Fig. 5, as cooling duration is increased, average
gate fidelity increases quickly when the duty cycle is short
enough to address motional errors before slowly dropping
off due to T2 times. In addition, the fidelity decreases as the
number of gates per cycle is increased, as increasing the
number of gates per cycle leads to more time for motional
error to accrue. In all cases, we observed that optimal
fidelity was achieved when cooling after every gate run
in the circuit, as seen in Fig. 5. This corresponds to the
fact that F o< 1/4/1 + n? [3]. Thus, for small n (n ~ 0),
dF /dn = 0, meaning that, by running only one gate at a
time, the errors due to heating do not have time to manifest.

However, the exact cooling parameters found through
optimization vary. At a Rabi frequency of 180 kHz, opti-
mal fidelity is achieved at a cooling duty cycle of 88.14%
(1673 s cooling time per gate), while at 275 kHz, we get
a duty cycle of 76.31% (724 s cooling time per gate), and
at 640 kHz, we get a duty cycle of 68.41% (487 s cool-
ing time per gate). Thus, although our optimal mean gate
fidelity does not change significantly, our system becomes
much more efficient with hardware improvements.

It is important also to note that in this analysis we do
not account for photon recoil heating of the radial modes.
It was shown in Ref. [3] that these modes could also be
cooled using the same methods as the COM mode, and
in a similar amount of time. Therefore, we can assume
that cooling the radial modes would add overhead to the
cooling process, although the exact optimal scheme for
cooling all modes is outside the scope of this paper. Dur-
ing this added cooling overhead, we neither run gates nor
cool. We assume that an optimal cooling scheme could be
constructed empirically to ensure all modes are close to
the cooling limit at the end of the cooling time, such as
alternating which mode is cooled over time.

When accounting for photon recoil, optimal fidelity
was still achieved when cooling as often as possible. The
amount of time required for optimal performance changed
slightly: a Rabi frequency of 180 kHz yielded optimal
results at a duty cycle of 84.82% (1258 ps of cooling time
per cycle), a 275 kHz Rabi frequency yielded an optimal
duty cycle of 70.84% (547 ws of cooling time per cycle),
while at 640 kHz, a duty cycle of 65.54% was found to be
optimal (428 ws of cooling time per cycle). Each of these
optimal duty cycles was found to be slightly lower than
the corresponding results that do not account for radial
cooling time. This decrease is most likely due to the fact
that extra radial cooling leads to longer circuits, which
causes dephasing errors to become more prevalent in the
circuit error budget. Reducing the cooling time slightly can
trade off heating performance for a shorter circuit, and thus
smaller dephasing errors. This leads to generally increased
performance for configurations with smaller cooling duty
cycles.

IV. OUTLOOK

As discussed in Ref. [3], the operation of long ion chains
for quantum computation is primarily limited by motional
heating along the axis of the chain. A solution is pro-
posed to use sympathetic coolants, and in this study we
expand that idea and optimize coolant placement and num-
ber to maximize circuit fidelity given certain experimental
parameters. We have formulated a first-order approxima-
tion of cooling dynamics to analytically show that coolant
placement at the center of the chain is optimal, plac-
ing an upper bound on the cooling limit of the COM
mode of an ion chain. Our theoretical findings show that
improvements in heating rate allow for a much more sig-
nificant decrease in cooling limit, and therefore optimal
circuit fidelity. Unsurprisingly, we find that the number of
coolants needed for a chain must strike a balance between
increasing axial heating due to a decrease in COM mode
frequency and increasing cooling rate due to stronger
coupling to the COM mode.

We have also examined these results through computa-
tional simulation, showing that these theoretical findings
are consistent with numerical models. Our numerical stud-
ies have allowed us to formulate a set of best practices
for cooling optimization, showing that cooling as often
as possible is optimal for any choice of cooling duty
cycle. In addition, we demonstrate with a case study how
to numerically find the best parameters for ideal perfor-
mance of a particular quantum circuit. We aim to use these
results to computationally optimize coolant configuration
and cooling duty cycle depending on circuit specifications.

This study examines the influence of system improve-
ments on the performance of various cooling schemes. In
particular, this study examines how improvements in cool-
ing power and cooling rate can lead to improvements in
circuit fidelity. However, further study is required regard-
ing improvements of other aspects of the device, such as
decreasing heating rates [20,21] or using open-loop con-
trol methods such as dynamical decoupling to achieve a
longer T2 time [22,23].
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