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Highly excited Rydberg states and their interactions play an important role in quantum computing
and simulation. These properties can be predicted accurately for alkali atoms with simple Rydberg level
structures. However, an extension of these methods to more complex atoms such as alkaline-earth atoms has
not been demonstrated or experimentally validated. Here, we present multichannel quantum defect models for
highly excited 174Yb and 171Yb Rydberg states with L ≤ 2. The models are developed using a combination of
existing literature data and new, high-precision laser and microwave spectroscopy in an atomic beam, and
validated by detailed comparison with experimentally measured Stark shifts and magnetic moments. We then
use these models to compute interaction potentials between two Yb atoms, and find excellent agreement with
direct measurements in an optical tweezer array. From the computed interaction potential, we identify an
anomalous Förster resonance that likely degraded the fidelity of previous entangling gates in 171Yb using
F ¼ 3=2 Rydberg states. We then identify a more suitable F ¼ 1=2 state, and achieve a state-of-the-art
controlled-Z gate fidelity of F ¼ 0.994ð1Þ, with the remaining error fully explained by known sources. This
work establishes a solid foundation for the continued development of quantum computing, simulation, and
entanglement-enhanced metrology with Yb neutral atom arrays.
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I. INTRODUCTION

Rydberg-mediated interactions between neutral atoms
in optical tweezer arrays are enabling for quantum
computing, simulation, and quantum-enhanced metrol-
ogy [1–4]. To realize high-fidelity operations, a detailed
understanding of the properties of the Rydberg states and
their interactions is required. Alkali atoms such as Rb
or Cs can be described by simple quantum defect models,
which have been validated by extensive spectroscopy
[5–11]. This allows the wave functions, and in turn,
matrix elements, interaction potentials, and decay rates to

be computed [12–14]. Experimental studies have con-
firmed the predicted interaction potentials [15–17] and
decay rates [18–20]. A particularly stringent test of the
interaction model comes from spectroscopy of so-called
macrodimer states [21–24].
Many recent experiments have focused on divalent

alkaline-earth-like atoms, in particular, Sr [25–28] and
Yb [29–32]. Tweezer arrays of 88Sr Rydberg atoms have
been used to study many-body dynamics [33,34] and
entanglement-enhanced optical clocks [35,36]. On the
other hand, 171Yb is ideal for use as a qubit for quantum
computing, with demonstrated long coherence times for the
pure nuclear spin qubit with I ¼ 1=2 [30–32], midcircuit
measurement and atom reloading [37,38], and hardware-
efficient error-correction strategies [39,40].
A challenge to the continued development of divalent

atomic qubits, particularly those based on 171Yb, is the
relative lack of spectroscopic information and models for
the behavior of the Rydberg states. The Rydberg states of
divalent atoms are more complex than alkali atoms because
of the presence of singlet and triplet Rydberg series,
interactions between series converging to other ionization
thresholds (i.e., series perturbers), and hyperfine coupling
(in the case of isotopes with nuclear spin I > 0, such as 87Sr
and 171Yb). These states can be described in the framework
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of multichannel quantum defect theory (MQDT) [41,42],
which in turn allows the computation of matrix elements,
interaction potentials, and decay rates [43,44].
Single-channel approximations have been used to predict

interaction potentials in both 174Yb and 88Sr, which both
have no nuclear spin (I ¼ 0) [43,45]. Moreover, relatively
complete MQDT descriptions of 88Sr have been developed
and used to study lifetimes and branching ratios [43], and
MQDT models have been developed to fit spectroscopic
data for certain Rydberg series in 174Yb [46–50]. The
energies of certain Rydberg series in 87Sr (I ¼ 9=2) have
also been determined [51] and used to predict C6 coef-
ficients using an MDQT formalism [52]. However, to the
best of our knowledge, there is no comprehensive spec-
troscopy or MQDT model of the Rydberg states of 171Yb,
and no MQDT interaction models for divalent atoms have
been experimentally verified at a level approaching the
precision of alkali atom models.
In this article, we present four main results. First, we

present refined MQDT models for the Rydberg states of
174Yb with L ≤ 2 (Sec. II). This set of states is sufficient to
accurately predict the interactions and polarizability of the
L ¼ 0 states that are most frequently used in experiments.
This extends prior work [46,49,50,53–61] by incorporating
new spectroscopic measurements and refitting all of the
MQDTmodels simultaneouslywithaglobal fit for improved
consistency and accuracy. Furthermore, we determine
singlet-triplet mixing angles by comparison to experimen-
tal measurements of the static dipole polarizability, which
are undetermined by the state energies alone [62]. We
find excellent agreement with measured Rydberg state
energies, polarizabilities, and magnetic moments.
Next, we extend these models to describe 171Yb states

with L ≤ 2 by including the hyperfine interaction (Sec. III).
The models are refined and validated by comparison to
extensive laser and microwave spectroscopy of 171Yb
Rydberg states from an atomic beam apparatus. We also
test the MQDT model matrix elements by comparison to
measured static dipole polarizabilities and magnetic
moments, finding excellent agreement.
Third, we use the 171Yb MQDT models to compute the

interaction potential for Rydberg atom pairs, which we
verify against direct measurements using pairs of atoms in
an optical tweezer array (Sec. IV). We show that the 171Yb
F ¼ 3=2 Rydberg state that was previously used to imple-
ment entangling gates [31,40] has a surprisingly small
Förster defect (< 10 MHz) over a large range of effective
principal quantum number ν. The small Förster defect gives
rise to an imperfect blockade, and we conjecture that it is
responsible for the discrepancy between the measured
[F ¼ 0.980ð1Þ] and predicted (F th ¼ 0.989) gate error
in Ref. [40].
Finally, in Sec. V we leverage these models to predict

that certain F ¼ 1=2 states should have a larger Förster
defect, giving rise to a cleaner blockade and improved gate

fidelity. We then experimentally demonstrate improved
gates with F ¼ 0.994ð1Þ. Importantly, the dominant
remaining errors are well understood (arising from Rydberg
state decay and Doppler shifts), which is promising for
future improvements in gate fidelity with increased
laser power.
This work solidifies the foundation for future quantum

computing, simulation, and quantum-enhanced metrology
applications of 171Yb Rydberg atoms. The developed
MQDT models not only reproduce the energies of
ytterbium Rydberg states, but also enable an accurate
prediction of matrix elements, polarizabilities, and
Rydberg interactions within a self-consistent framework.
This comprehensive approach also establishes the basis for
treating other complex atomic systems including 87Sr [63]
and lanthanide atoms such as Ho [64] or Er [65].

II. MULTICHANNEL QUANTUM DEFECT
MODEL OF 174Yb

Figure 1(a) illustrates the basic principle of MQDT,
in the context of 174Yb (the most abundant isotope, with
nuclear spin I ¼ 0). The ground state of 174Yb has the
electronic configuration ½Xe�4f146s2, and the states of
primary interest are singly excited states ½Xe�4f146snl,
where n, l are the principal quantum number and orbital
angular momentum of the excited electron (the Xe core and
4f14 electrons are omitted henceforth, unless otherwise
noted). These states are approximately described in LS
coupling by the term symbol 2Sþ1LJ with total electron spin
S ¼ f0; 1g, L ¼ l, and total electronic angular momentum
J. In single-channel quantum defect theory, these states
form isolated series converging to the ground state of the
174Ybþ ion with the electron configuration 6s1. The energy
of the states in this series is En ¼ I6s − R=ν26s, where
ν6s ¼ n − μ is the effective quantum number, and
μðn; L; JÞ is the quantum defect that captures the inter-
action with the core for that series, with only weak
dependence on n.
Compared to lighter divalent atoms such as Sr, this

picture is complicated for Yb by a relatively high density of
low-lying excited states in Ybþ, which give rise to doubly
excited states in the energy range of interest (e.g.,
½Xe�4f146pnl). These doubly excited states are part of
additional Rydberg series converging to higher thresholds
[Fig. 1(a)] and couple to the singly excited Rydberg states
of interest through configuration interactions, which mix
series with the same J and parity. This interaction alters the
energy spectrum through level repulsion (i.e., series per-
turbers), which gives rise to sharp variations in μ with n,
and correspondingly modifies the wave functions needed to
compute quantities of interest such as matrix elements,
interactions, and lifetimes. This effect can be described
quantitatively using MQDT, treating the interacting series
as a set of coupled channels and parametrizing the
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interactions with a small number of mixing angles or a K
matrix [66,67]. We give a pedagogical introduction of the
MQDT approach in Appendix A.
Previous work in 174Yb has reported spectroscopic

measurements of certain S, P, D, and F states, along with
MQDT models that adequately reproduce their energy
spectrum [29,46–49] (a comprehensive summary can be
found in Ref. [50]). We improved these models by perform-
ing additional microwave spectroscopy of some P Rydberg
states between n ¼ 30 and 50 (using an atomic beam
apparatus; Appendix B). The resulting MQDT model is
summarized in Fig. 1(b).
However, mixing between channels converging to the

same threshold (i.e., singlet-triplet mixing) does not alter
the state energies [62] but can significantly alter wave
functions and matrix elements [68]. To develop an MQDT
model with accurate wave functions, we augment the
traditional approach of fitting the energy levels with addi-
tional measurements of the static dipole polarizability of
the atomic states, which depend directly on the matrix
elements and wave functions.

In Fig. 1(c), we present measurements of the static dipole
polarizability (red dots) for the 1S0 series near its crossing
with 3P1. By adjusting the single-triplet mixing angle in the
1;3P1 MQDT model, we can accurately capture the reso-
nancelike feature, which deviates strongly from the usual ν7

polarizability trend [69]. The final model predicts a triplet
character of the 1P1 Rydberg series that varies between 6.30
(3)% for n ¼ 40 and 2.96(16)% for n ¼ 100, which is
consistent with previous estimates based on measurements
of diamagnetic shifts [57] but considerably more precise
(Appendix D 2). As an additional check of the predicted
MQDT wave functions, we characterize the scalar and
tensor polarizability of the n 3S1 Rydberg series near its
crossing with 3P0, finding excellent agreement [Fig. 1(d)].
The measured polarizabilities of the 6sns 1S0 and 6sns 3S1
states are summarized in Supplemental Material [70].
Through a similar analysis of the 1;3D2 using literature

data for the magnetic moments of these states [59], we find
a triplet character of n 1D2 Rydberg states of approximately
15% (details in Appendix D 5).

FIG. 1. (a) Schematic diagram of several Rydberg series 174Yb illustrating the principle of MQDT. Both singly excited (6s1=2nl) and
doubly excited (e.g., 6pnl) series are included, converging to different thresholds corresponding to excited states of the 174Ybþ ion
(note that in this schematic diagram, the energy-level spacings are not to scale, and only the subset of channels most relevant for the
presented MQDT models are included). The Rydberg series are sorted by total angular momentum J and parity (even and odd denoted
by e and o superscripts, respectively). LS coupling term symbols are written where possible (i.e., 1S0). Configuration interactions mix
series with the same J and parity, as indicated by the horizontal arrows. (b) Lu-Fano-like plot of the L ¼ 0 and L ¼ 1 Rydberg series of
174Yb, showing the fractional part of the quantum defect ðν6s mod 1Þ as a function of the effective principal quantum number ν6s. The
open circles show the eigenstates predicted by the MQDT model, while the filled circles show experimentally determined energies.
(c) Static dipole polarizability α0 [see Eq. (B1)] of the n 1S0 series close to a level crossing with the n 3P1 series (red points, experiment;
bars, MQDT prediction). The gray dashed line indicates the expected ν7 scaling in the absence of singlet-triplet mixing. (d) Static dipole
polarizability α0 of the n 3S1 series near a crossing with n 3P0. The experimental data for the polarizability of the mJ ¼ 0 (red) and
mJ ¼ 1 (blue) states agree well with the theoretical predictions from the MQDT model. The error bars on the experimental data points in
panels (c) and (d) represent the standard error from fitting the observed Stark shifts to Eq. (B1).
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Other details of the spectroscopy are presented in
Appendix B. A complete tabulation of the model param-
eters and the compiled spectroscopic data are presented in
Supplemental Material [70]. A more detailed description of
the developed MQDT models is presented in Appendix D.

III. MQDT MODEL OF 171Yb

In contrast to 174Yb, 171Yb has a nonzero nuclear spin of
I ¼ 1=2. The absence of hyperfine coupling in low-lying
J ¼ 0 manifolds (i.e., 1S0 or 3P0) results in an ideal nuclear
spin qubit [30,31,63]. Counterintuitively, the Rydberg
states of 171Yb have a fairly strong hyperfine coupling,
which arises from the interplay of hyperfine coupling in the
Ybþ core and the exchange interaction between the core
and Rydberg electrons. This coupling is necessary to
implement entangling gate operations on the pure nuclear
spin qubit [31,40], but also significantly complicates the
description of the Rydberg series [51,75–77]. We note that
the role of hyperfine coupling in 171Yb qubits is almost
opposite to alkali atoms, where the ground state has strong
hyperfine coupling, while direct hyperfine coupling of the
Rydberg state can be largely neglected [78].
In the context of MQDT, hyperfine effects can be

represented as a coupling between multiple Rydberg series
with the same parity and total angular momentum F
converging to different thresholds corresponding to the
hyperfine-split ion-core states (Fig. 2). In the case of
171Ybþ, the 6s 2S1=2 ground state is split into two hyperfine
states with total angular momentum Fc ¼ 0 and Fc ¼ 1,
separated by AHF ¼ 12.642 812 GHz [79]. For the range of
ν relevant for quantum information applications (40≲
ν≲ 100), the hyperfine interaction energy is comparable

to the spacing between principal quantum levels, resulting
in strong channel mixing when there is more than one series
with the same F and parity [80]. For example, the 6sns
states in 171Yb give rise to two coupled F ¼ 1=2 series
converging to Fc ¼ 0 and Fc ¼ 1, and a single F ¼ 3=2
series converging to the Fc ¼ 1 threshold.
The effect of hyperfine-induced channel mixing has

been experimentally studied previously in several species,
including 87Sr [51,76,81,82] and 135;137Ba [47,83].
However, only a small number of measurements of
171Yb Rydberg states have been reported [31,71,84,85].

A. L= 0 states

There are three Rydberg series with L ¼ 0 in 171Yb
(Fig. 2). At low ν, where hyperfine coupling is a small
perturbation compared to the singlet-triplet splitting, these
series are described in the LS basis as a single 1S0 series
with F ¼ 1=2, and two 3S1 series with F ¼ f1=2; 3=2g.
Very close to the threshold, jj coupling is more appro-
priate: One F ¼ 1=2 series results from adding the outer
electron spin (s ¼ 1=2) to the Fc ¼ 0 ion core, while the
other F ¼ 1=2 and F ¼ 3=2 series are connected to
Fc ¼ 1. While these descriptions are equivalent for the
F ¼ 3=2 series, the F ¼ 1=2 eigenstates cannot be simply
described in either basis in between these limits, neces-
sitating an MQDT model for these states.
We have experimentally measured the energy of most

L ¼ 0, F ¼ 1=2 states with 25 < ν < 120 using laser
spectroscopy as described in Appendix B. The measured
L ¼ 0 Rydberg state energies and associated MQDTmodel
predictions are shown in Fig. 3(a). The agreement is
excellent: The F ¼ 1=2 states have a root-mean-squared

FIG. 2. Schematic energy-level diagram of the L ¼ 0 and L ¼ 1 Rydberg states of 171Yb, indicating Rydberg series converging to
the two hyperfine states of the 171Ybþ ground state. Channels converging to electronically excited states of the ion core are not shown,
but are included in the MQDT models. The series are labeled by their good quantum numbers F and parity (denoted by superscript e,
for even, and o for odd).
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deviation of 2.3 MHz from the model, consistent with the
3σ uncertainty of 10 MHz of the wavelength meter used to
determine the laser frequencies.
In analogy to the Stark shift measurements for 174Yb

in Figs. 1(c) and 1(d), we test the wave functions by
comparing the measured and predicted magnetic moments
of a subset of states shown in Fig. 3(c). For low ν,
the magnetic moments are close to the Landé g factors
for LS-coupled states, but they deviate significantly
above ν ¼ 40.

The primary characteristic of the F ¼ 1=2 series is the
avoided crossings in the energy spectrum. These can be
understood from the channel structure of Fig. 2: Strong
channel mixing and level repulsion occur when the sep-
aration between Rydberg levels is comparable to the ion-
core hyperfine splitting. For 171Yb, the Δn ¼ 1, 2, and 3
level crossings occur at ν ≈ 80, 100, and 115, respectively,
though we note that the wave-function character is already
affected far below the first avoided crossing at ν ¼ 80. The
physical mechanism for this mixing is the exchange
interaction between the inner and outer electrons.
The coloring of the curves in Fig. 3 is a guide to the eye.

The transition from LS- to jj-coupled states makes it
challenging to introduce an unambiguous partition of all
of the F ¼ 1=2 states into two series. Throughout this
paper, we identify specific states by F, l, and the effective
principal quantum number ν specified to two decimal
places (e.g., jν ¼ 54.28; L ¼ 0; F ¼ 1=2; mF ¼ 1=2i).
In this description, L is the Rydberg electron angular
momentum in the 6snl channels. In the specific case of
the F ¼ 1=2 S states, we also find it convenient to refer to
the states with ν < 70 as being “triplet connected” or
“singlet connected” based on their dominant character in
LS coupling.
Hyperfine coupling does not affect the F ¼ 3=2 series,

which follows the same behavior as the 3S1 series in 174Yb,
converging to the Fc ¼ 1 ionization limit. We have
measured the energies of several F ¼ 3=2 states to confirm
this behavior [Fig. 3(a)].
The MQDT model parameters, tables of measured

energy levels for S F ¼ 1=2 and S F ¼ 3=2, as well as
Landé g factors and values of dc polarizabilities of S
F ¼ 1=2 Rydberg states are presented in Supplemental
Material [70].

B. L= 1 states

There are seven L ¼ 1 series in 171Yb. In LS coupling,
they can be described as 3P0ðF ¼ 1=2Þ, 1P1ðF ¼ f1=2;
3=2gÞ, 3P1ðF ¼ f1=2; 3=2gÞ, and 3P2ðF ¼ f3=2; 5=2gÞ. In
174Yb, spin-orbit coupling mixes the two J ¼ 1 series
as discussed in Sec. II; in 171Yb, hyperfine coupling
additionally mixes the three F ¼ 1=2 series and the three
F ¼ 3=2 series (Fig. 2).
We have experimentally measured the energies of a

number of jν; L ¼ 1; F ¼ 1=2i and jν; L ¼ 1; F ¼ 3=2i
states using microwave transitions from jν;L¼0;F¼1=2i
states (for details, refer to Appendix B). The results are
shown in Fig. 4, along with previously published mea-
surements of low-ν states from three-photon laser spec-
troscopy [71,85].
As in the case of the jν; L ¼ 0; F ¼ 1=2i series, we

begin with the 174Yb MQDT models of 1;3P1 and 3P0 (for
F ¼ 1=2) and 1;3P1 and 3P2 (for F ¼ 3=2) presented in
Appendix D and refine the model by a global fit to the

FIG. 3. (a) Lu-Fano-type plot of 171Yb jν; L ¼ 0; F ¼ 1=2i
Rydberg states (red, blue) and jν; L ¼ 0; F ¼ 3=2i states (gray).
The black points correspond to experimentally observed states,
whereas the colored points denote bound states in the MDQT
model. For ν < 70, we refer to the red states as triplet connected
and the blue states as singlet connected based on their dominant
character in LS coupling. This description breaks down at higher
principal quantum numbers. (b) Deviation between measured and
modeled bound-state energies (red and blue for F ¼ 1=2 and
black for F ¼ 3=2). (c) Measured [filled circles, color code as in
(b)] and predicted (empty circles) g factors. The gray dashed lines
indicate the Landé g factors in pure LS coupling. The error bars
on the experimental data points represent the standard error from
fitting the observed Zeeman shifts to Eq. (B2).
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observed state energies of the jν; L ¼ 1; F ¼ 1=2i and
jν; L ¼ 1; F ¼ 3=2i Rydberg states. A comparison of the
experimental state energies and the MQDT model energies
is presented in Lu-Fano-type plots in Figs. 4(a) and 4(b) for
F ¼ 1=2 and F ¼ 3=2, respectively.

The behavior of the L ¼ 1 states is considerably more
complex than the L ¼ 0 states, because the hyperfine
coupling acts on states that were already strongly perturbed
in 174Yb.
We observe systematic deviations between the exper-

imental and modeled energies. The high accuracy of the
microwave measurements (100 kHz) makes it clear that
the deviations are systematic as opposed to random.
Particularly, the dispersionlike feature in the fit residuals
observed near ν ≈ 43 for F ¼ 3=2 suggests the existence of
an additional perturbing Rydberg series. The perturbing
Rydberg state could come from unaccounted hyperfine
splitting of excited states of the ion core or from

interactions with odd-parity L ¼ 3 Rydberg channels.
Based on dc polarizabilities of the measured P Rydberg
states with ν < 70 and our ability to resolve Rydberg states
with much larger dc polarizability, we conclude that the
observed systematic deviations are not due to uncompen-
sated stray electric fields. The significant deviations for
states with ν < 16 suggest an additional perturber in that
energy range as well.
To confirm the accuracy of the MQDT wave functions,

we also compare the predicted magnetic moments to
experimental measurements [Figs. 4(e) and 4(f)]. As with
the L ¼ 0 series, the moments align with the Landé g
factors for LS coupling at low principal quantum number,
and deviate significantly at large ν because of the combi-
nation of singlet-triplet mixing and hyperfine interaction.
We have not directly measured any 171Yb L ¼ 1,

F ¼ 5=2 states. In LS coupling, this series can be described
as 3P2ðF ¼ 5=2Þ converging to the upper Fc ¼ 1 hyperfine

FIG. 4. (a),(b) Lu-Fano-type plot of 171Yb jν; L ¼ 1; F ¼ 1=2i, and jν; L ¼ 1; F ¼ 3=2i Rydberg states, respectively. The black
points correspond to experimentally observed states by microwave spectroscopy, as described in Appendix B. The gray crosses are
three-photon laser spectroscopy data from Ref. [71]. The colored points denote the MQDT model bound states (the colors are chosen to
guide the eye). (c),(d) Deviation between measured and modeled bound-state energies. The deviations of the laser spectroscopy
measurements are divided by a factor of 20 000 and are not shown for states that were also observed by microwave spectroscopy. (e),(f)
Measured (filled circles) and predicted (empty circles) g factors. The gray dashed lines indicate the Landé g factors in pure LS coupling.
The error bars on the experimental data points represent the standard error from fitting the observed Zeeman shifts to Eq. (B2).
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threshold. We therefore model this series using the MQDT
model for the 3P2 series presented for 174Yb in the previous
section. To account for isotope-dependent effects, we use
the MQDT model parameters as optimized from a fit to the
observed jν; L ¼ 1; F ¼ 3=2i Rydberg states, which con-
tain a contribution from the 3P2ðF ¼ 3=2Þ states.
A summary of all measured L ¼ 1 state energies, Landé

g factors, and MQDT model parameters is presented in
Supplemental Material [70].

C. Verification of MQDT models with Stark shifts

As with 174Yb, we probe the accuracy of Rydberg
state energies and matrix elements obtained from our
MQDT models by measuring the dc Stark shift of
the jν; L ¼ 0; F ¼ 1=2i states near degeneracies with

jν; L ¼ 1; F ¼ 1=2i and jν; L ¼ 1; F ¼ 3=2i Rydberg
states [Fig. 5(a)]. The measured Stark shifts are in excellent
agreement with the theoretical predictions [Figs. 5(b)–5(e)]
indicating good MQDT models for all relevant states,
producing both accurate energies and channel contribu-
tions. Certain states with near-degenerate opposite parity
states do not have quadratic Stark shifts even at very small
electric fields, so we make the comparison between experi-
ment and theory using the magnitude of the Stark shift
at a particular field, instead of the usual static dipole
polarizability. For these states, we also compare the
measured field-dependent Stark shift with a nonperturba-
tive calculation and find excellent agreement (Fig. 17 in
Appenxdix E 1). The experimentally determined static
dipole polarizabilities and Stark shifts are presented in
Supplemental Material [70]. Predicted polarizability trends

FIG. 5. (a) Combined plot summarizing the MQDT model energies for all L ¼ 0 and L ¼ 1 Rydberg series in 171Yb. (b)–(e) Measured
(red) and predicted (black bars) Stark shifts of selected L ¼ 0, F ¼ 1=2 series in the vicinity of crossings with L ¼ 1 Rydberg series at
locations indicated by markers in panel (a). The Stark shift is reported at the electric field strength indicated in each panel. The gray
shaded states correspond to near degeneracies with significantly nonquadratic Stark shifts. A detailed comparison of the shifts of these
states to a nonperturbative model is shown in Fig. 17. The error bars on the experimental data points in panels (b)–(e) represent the
standard error from fitting the observed Stark shifts to Eq. (B1). In the case of gray shaded states, the error bars correspond to the
standard error from fitting a Gaussian line profile to the Stark spectra recorded at the corresponding electric fields.
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of the L ¼ 0 Rydberg states of both 171Yb and 174Yb
Rydberg states are presented in Appendix F.

IV. RYDBERG-RYDBERG INTERACTIONS
IN 171Yb

A precise understanding of the interaction potential is
important to realize high-fidelity gate operations. In this
section, we use the developed MQDT model to predict the
interaction potential for a pair of 171Yb atoms, then validate
the model using direct experimental measurements in
an optical tweezer array. The calculation builds on estab-
lished techniques for performing similar calculations in
alkali atoms based on numerically diagonalizing the
multipolar interaction Hamiltonian in a large basis of pair
states [86,87]. In the context of alkali atoms, this approach
has been experimentally validated by spectroscopic
measurements in optical tweezers [15,16] and optical
lattices [24]. We follow the formalism extending these
techniques to states described by MQDT that was intro-
duced previously in Refs. [44,52].
We first consider the interaction potential between a pair

of atoms in a jν; L ¼ 0; F ¼ 1=2; mFi state. For concrete-
ness, we focus on the triplet-connected j54.28; L ¼ 0;
F ¼ 1=2; mFi states. The calculated pair potentials
for the four combinations of mF sublevels is shown in
Fig. 6. The predicted pair potential closely follows the
expected van der Waals form VðRÞ ¼ C6=R6, with
C6 ≈ h × 34 GHzðμmÞ6. For comparison, we note that

the C6 coefficient for the n 2S1=2 state with the most similar
ν (n ¼ 57) is C6 ≈ h × 76 GHzðμmÞ6 [87].
We test the theoretical prediction by directly measuring

the van der Waals shift using a pair of atoms in optical
tweezers with separations from 3.3 to 4.5 μm. The mea-
sured energy shift is in excellent agreement with the
predicted pair potential after scaling the experimental
interatomic separation by a factor of 0.97 relative to the
predicted separation (Fig. 6), which we attribute to imper-
fect focusing of the optical system used to project the
tweezer array. Additional details about the measurement
technique are described in Appendix C.
We note that there is a nearby F ¼ 3=2 D state with a

detuning of only 68 MHz at zero magnetic field. As this
state is also laser accessible from 3P0, it could cause
problems for blockade gates if its van der Waals interaction
has the opposite sign from the target state, pushing it into
resonance. We are unable to predict the D state interactions
because we do not yet have an MQDT model for the F
states. However, we note that this problem can be avoided
by using the next lowest triplet-connected S state with
ν ¼ 53.30, where the nearest D state is detuned by more
than 600 MHz.
The predicted interaction strength is anisotropic, where

the C6 coefficient is approximately 46% larger when the
internuclear axis is aligned perpendicular to the magnetic
field compared to a parallel alignment to the magnetic field
(Fig. 6, inset). In contrast, the van der Waals interaction
between alkali atoms in S states is usually highly isotropic
because of the small spin-orbit coupling in the P states
participating in the interaction [88]. For example, the C6

coefficient for the 50 2S1=2 state in Rb has an anisotropy of
approximately 1%. The large anisotropy in this 171Yb state
is attributed to the large spin-orbit coupling in Yb (scaling
as Z4) and series perturbers that lift the degeneracy between
J manifolds [as shown in Fig. 1(b) for the 174Yb P series],
which has the same effect as spin-orbit coupling. The
anisotropy also results in off-diagonal C6 interactions that
mix different mF levels. As seen from the color scale in
Fig. 6, the jmF ¼ 1=2; mF ¼ 1=2i state acquires a signifi-
cant jmF ¼ −1=2; mF ¼ −1=2i character once the van der
Waals shift becomes comparable to the Zeeman splitting.
This effect is suppressed if the interatomic spacing is
parallel to the magnetic field, as a consequence of the
dipole-dipole selection rules [88].
We have computed the C6 coefficient for all of the

F ¼ 1=2 series, and summarized the results in Fig. 22. The
C6 coefficient for the triplet-connected F ¼ 1=2 series
follows the expected ν11 scaling in the range ν≲ 65.
The singlet-connected F ¼ 1=2 series has a much
smaller C6 coefficient in this range, with the exception
of isolated states with accidental hyperfine-induced Förster
resonances. This is consistent with previous estimates of a
small C6 for the 174Yb 1S0 series using a single-channel
approximation [89].

FIG. 6. Predicted pair-interaction potentials for a target Ryd-
berg state jti ¼ j54.28; L ¼ 0; F ¼ 1=2; mF ¼ −1=2i together
with measured energy shifts (white circles). The magnetic field
strength is 4.88(6) G corresponding to a Zeeman splitting of
16.1 MHz, and is oriented at θ ¼ π=2 to the interatomic axis. The
color of the curves denotes the overlap of each eigenstate with the
target pair state jti⊗2. The gray dashed line shows the asymptotic
1=R6 scaling. Inset: predicted angle dependence of the C6

coefficient. θ is the angle between the magnetic field and the
interatomic axis.
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Next, we consider an F ¼ 3=2 target state. Specifically,
we consider the state j54.56;L¼0;F¼3=2;mF¼þ3=2i,
which was used to implement two-qubit gates in Ref. [40].
The computed pair potential is shown in Fig. 7(a). Unlike
the F ¼ 1=2 state shown in Fig. 6, the pair potential for this
F ¼ 3=2 state deviates strongly from the idealized C6=R6

van der Waals scaling because of a previously unknown
Förster resonance with a pair state made up of L ¼ 1 states
with F ¼ 3=2 and F ¼ 5=2. At zero magnetic field, this
pair state is detuned by only approximately 3 MHz from the
j54.56; L ¼ 0; F ¼ 3=2i⊗2 pair state. The complex series
of crossings results from different magnetic sublevels being
pushed into exact resonance by the interaction in a finite
magnetic field of B ≈ 5 G. Similar behavior is observed for
the mF ¼ −3=2 states, though the resulting spectrum is
slightly less complex as the Zeeman shift has the same sign
as the van der Waals interaction.
We have also experimentally measured the interaction

shifts for this state. We are able to identify all pair states
from this complex spectrum with an overlap of more than
10% with the target state and find good agreement for both
mF ¼ þ3=2 and mF ¼ −3=2 using the same rescaling
factor of the interatomic separation (0.97) used in Fig. 6. In
the case ofmF ¼ þ3=2, we observe deviations of 1–2MHz
for one of the eigenstates. This is comparable in magnitude
to the fit residuals in the F ¼ 3=2 P series MQDT model
(Fig. 4; the F ¼ 3=2 state that contributes to the Förster
resonance is in the blue colored series in that figure).
A quantitative analysis of Rydberg interaction strengths

of S F ¼ 1=2 and S F ¼ 3=2 Rydberg states is presented in
Appendix G.

V. IMPROVED TWO-QUBIT GATES

The Förster resonance observed for the j54.56; L ¼ 0;
F ¼ 3=2i state is not accidental, but rather a systematic

trend: Almost all jν; L ¼ 0; F ¼ 3=2i states with ν > 30
have a Förster defect less than 10 MHz (Fig. 23). While
Förster resonances are sometimes sought to increase the
strength of the Rydberg-Rydberg interaction at long range
[90,91], such a near-degenerate resonance is problematic
for two-qubit gates because it results in a large number of
weakly allowed transitions near zero energy at short
separations, allowing Rydberg excitation within the block-
ade radius [92]. This effect is sometimes referred to as
Rydberg spaghetti. At the same time, Förster resonances
increase the long-range tail of the interactions, preventing
parallel implementation of gates in a qubit array [93].
Understanding the existence of this Förster resonance
resolves several observations from Ref. [40], including
an unknown contribution to the error budget of about 1%
and the need to use a large separation (43 μm) between
adjacent dimers to achieve the highest gate fidelity.
We now demonstrate improved gate performance using

the j54.28; L ¼ 0; F ¼ 1=2i state. Previous demonstrations
of entangling gates in 171Yb used F ¼ 3=2 states [31,40].
The highest reported fidelity is F ¼ 0.980ð1Þ, which is
approximately 1% lower than the predicted fidelity of
F ¼ 0.989 based on error sources that were understood
at the time [40]. We conjecture the additional errors were
the result of unwanted Rydberg excitation to nearby pair
states (Fig. 7), and that the F ¼ 1=2 state with a cleaner
interaction potential will lead to higher fidelity.
We implement a two-qubit gate using the same approach

as Ref. [40]. Briefly, we prepare an array of four pairs of
atoms (with a spacing of d ¼ 2.4 μm between atoms within
a pair, and D ¼ 24 μm between pairs) and implement
controlled-Z (CZ) gates in parallel using a variant of the
time-optimal two-qubit gate [94]. The gate is driven using a
UV laser at 302 nm, with a power of 20 mW in a beam with
a 1=e2 radius of 12 μm to achieve a Rabi frequency of

FIG. 7. Predicted pair-interaction potentials for a target state j54.56; L ¼ 0; F ¼ 3=2; mFiwith (a)mF ¼ 3=2 and (b)mF ¼ −3=2 at a
magnetic field of 5.03(6) G (θ ¼ π=2). The color of the curves denotes the overlap with the target pair state. The white circles indicate
experimentally observed resonances as described in the text. The gray dashed line in panel (a) shows the asymptotic 1=R6 scaling.
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Ω ¼ 2π × 2.5 MHz between 3P0 mF ¼ þ1=2 and a
Rydberg state with mF ¼ −1=2. Because of geometric
constraints, the laser is linearly polarized perpendicular
to the magnetic field, such that only half of the power
contributes to the σ− transition that drives the gate. We
estimate the fidelity using the randomized circuit charac-
terization approach of Refs. [40,95], with interleaved
global single-qubit gates. With these parameters, we
observe a CZ gate fidelity of F ¼ 0.994ð1Þ (Fig. 8).

The randomized circuit characterization involves varying
the number of two-qubit gates d while keeping the number
of single-qubit gates and the overall sequence duration
constant. This approach allows us to isolate errors specific
to two-qubit operations from other sources of error in the
circuit. Each randomized circuit is designed to bring the
system to the final state j00i. As a function of the circuit
depth d, we experimentally characterize the success rate

P00 of the circuit. The experimental success rates are fitted
to an exponential decay model P00 ¼ Að1 − ϵÞd. Only two-
qubit gate errors will contribute to ϵ, while the offset at zero
circuit depth A ≈ 0.87 captures other sources of error in the
circuit, including state preparation and measurement errors,
and single-qubit gate errors [40,95,96].
This result improves on the previous best gate in 171Yb

by a factor of 3.3. Importantly, the error budget for the
gate in Fig. 8(a) is now in excellent agreement with a
model based on independently measured sources of error
[Fig. 8(b)] [40]. The dominant contributions are the
finite lifetime of the Rydberg state [measured to be Tr ¼
56ð4Þ μs contributing an error of ϵ ¼ 3.3 × 10−3] and
Doppler shifts (ϵ ¼ 1.4 × 10−3 at an atomic temperature
during the gate of T ¼ 2.9 μK). We also estimate the
impact of other sources of error, including unwanted
excitation of the other mF sublevel of the Rydberg state
(ϵ ¼ 4.8 × 10−4), site-to-site and shot-to-shot laser inten-
sity variation (ϵ ¼ 2.0 × 10−4), a finite Rydberg blockade
strength (ϵ ¼ 1.7 × 10−4; the pulse is not compensated for
the finite blockade [93,94]), and fast laser phase noise
(ϵPM ¼ 3.1 × 10−4). Since the dominant errors can be
suppressed by increasing the gate speed (i.e., with addi-
tional laser power), these results suggest that significantly
higher gate fidelities are within reach for 171Yb.

VI. DISCUSSION AND CONCLUSION

We have presented detailed spectroscopy and modeling
of the Rydberg states of both 174Yb and 171Yb with L ≤ 2.
The models are validated with experimental measurements
of Stark shifts, magnetic moments, and Rydberg inter-
actions. To the best of our knowledge, this is the most
comprehensive validation of an MQDT model for a
complex atom, and allows key properties for Rydberg
atom quantum computing and simulation to be predicted
with the level of accuracy that is routine for alkali atoms.
This will provide vital input for future experiments
in quantum computing and simulation with Yb or with
Yb-alkali mixtures. Moreover, the calculation technique is
a template for exploring other atoms in the lanthanide
group, such as Ho or Er [64,65].
We used this model to identify the likely cause of

previously unattributed errors in entangling gates using
F ¼ 3=2 Rydberg states. We also predicted a more suitable
Rydberg state with F ¼ 1=2, leading to an improved gate
fidelity of F ¼ 0.994ð1Þ, with errors reduced by a factor
of 3.3 compared to the previous best gate demonstration
using 171Yb [40].
We identify several avenues for future work. The first is

including states with L ≥ 3, which are needed to accurately
predict the interactions of D states, which can create
blockade violations for S states. The second is to extend
the model to predict Rydberg state lifetimes and decay
branching ratios, which will involve more careful fitting of

FIG. 8. (a) Randomized circuit characterization of the time-
optimal cz gate using a variable depth d. The error bars represent
the standard deviation of the measured values observed across
repeated iterations of the experiment. The fitted error rate is
ϵ ¼ 5.6ð1.1Þ × 10−3 per two-qubit gate. (b) Numerical simulation
of contributions to the gate error, including the finite Rydberg
state lifetime, Doppler shifts from atomic motion, off-resonant
excitation of neighboring mF sublevels in finite magnetic fields,
shot-to-shot and site-to-site laser amplitude variations, finite
Rydberg blockade, and fast laser phase noise (PM). The total
simulated error rate with all sources applied simultaneously is
ϵ ¼ 5.9 × 10−3 (black dashed line), in good agreement with the
experimentally measured error rate (red point).
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MQDT models to low-n perturbers and including matrix
elements between different core electron states [43]. While
low-n perturbers have little effect on the Rydberg character
of high-n states, they can have a large impact on the lifetime
and decay branching ratio by providing a new decay
pathway via the population of the perturbing state [20,43].
Another area of interest is the behavior of autoionizing

states of the form 6p1=2nl. These states have found use for
Rydberg atom detection [97,98], coherent control [99,100],
and in quantum error correction [39]. To our knowledge,
only the 174Yb 3S1 autoionizing series has been charac-
terized [99]. A systematic study, including 171Yb, would be
beneficial for applications relying on use of these states.
Finally, we note that these models may have applications

beyond quantum computing. Ytterbium clocks are among
the most precise in the world [101], and Rydberg states can
be used for generating entanglement to enhance precision
[35,36]. It has also been proposed to use Rydberg states for
in situ absolute calibration of the temperature through the
blackbody radiation spectrum [102], which would warrant
more precise validation of the modeled matrix elements.
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APPENDIX A: MQDT FORMALISM

Energies and wave functions of Rydberg states are crucial
for evaluating state properties (e.g., Stark shifts [12]).
Several open-source programs have been developed for
nonperturbative calculations of Stark shifts and interaction
potentials for alkali metal atoms [86,87] or alkaline-earth
atoms within a single-channel quantum defect approxima-
tion [45]. However, for divalent atoms, an MQDT treatment
is necessary to obtain accurate Rydberg state energies and
wave functions.
MQDTwas introduced by Seaton [41] and reformulated

with the concept of frame transformations by Fano [42] and
is established as a powerful framework for analyzing the
Rydberg states of atoms [43,62,64,65,77,83,103–109] and
molecules [42,110,111] with low-lying core-excited states.
Calculations based on MQDT models predicting dc

polarizabilities and Rydberg-Rydberg interaction for com-
plex atoms have been presented previously [44,52,68],
but the conceptual complexity and lack of comprehensive

MQDT characterization of atomic species has limited the
broad adoption of this approach.
This appendix is intended to serve as a comprehensive

introduction and overview to this approach, which will be
useful beyond the specific case of Yb atoms. We have also
made the software used to perform the computations in this
work available as an open-source package RYDCALC [112].

1. MQDT model

MQDT treats the short- and long-range interactions of a
single active electron with different configurations of the
ion core. Each unique combination of angular quantum
numbers of the electron–ion-core system is referred to as a
channel. When the active electron is far away from the ion
core, the system is well described by “collision” channels
indexed by i. In this region, the interaction between the
ion core and the active electron is dominated by the
Coulomb interaction, and the system is appropriately
described in jj coupling.
The energy E can be expressed with respect to the

ionization limit of the ith collision channel Ii as

E ¼ Ii − ðhcRMÞ=ν2i ; ðA1Þ

where νi is the effective principal quantum number with
respect to Ii, and RM ¼ R∞ð1 −me=MÞ is the mass-
reduced Rydberg constant, where me is the mass of the
electron and M is the atomic mass.
When the active electron is close to the ion core, their

interaction is dominated by non-Coulombic electrostatic
interactions. Channels describing the angular momentum
coupling (typically LS coupling) in this regime more
appropriately are called “close-coupling” channels indexed
by α. In this region, scattering between the electron and the
ion core mixes i channels with the same total angular
momentum J (or F in the presence of a nonzero nuclear
spin) and parity. The wave function of channel i can
therefore be expressed as a superposition of α channel
wave functions with amplitude Ãα. At large electron–ion-
core separations, the wave function at energy E can be
written as [62]

jΨi ¼
X
i

jΦii
�
fðνi; rÞ

X
α

Uiα cos ðπμαÞÃα

− gðνi; rÞ
X
α

Uiα sin ðπμαÞÃα

�
; ðA2Þ

where the terms in the square brackets correspond to the
radial part of the active electron’s wave function, and the
spin and orbital angular momentum couplings of the outer
electron and the ion-core wave function are given by jΦii.
fðνi; rÞ and gðνi; rÞ correspond to the regular and irregular
Coulomb wave functions [42]. The short-range, non-
Coulombic interaction of the Rydberg electron and the
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ion core are encoded in eigenchannel quantum defects μα,
and the channels are coupled by the unitary transformation
matrix Uiα.
For discrete bound states, the wave function Eq. (A2)

must remain finite at large separation, resulting in the
boundary condition [42,62]X

α

ÃαUiα sin ½πðνi þ μαÞ� ¼ 0: ðA3Þ

This gives nontrivial solutions for the bound-state energies
νi when det jFiαj ¼ 0 is zero, where Fiα is given by

Fiα ¼ Uiα sin ½πðμα þ νiÞ�: ðA4Þ

Bound states are found at the intersection of the surface
spanned by Eq. (A4) and the curve:

νi ¼
�
Ii − Ij
RM

þ 1

ν2j

�
−1=2

; ðA5Þ

where νi and νj are effective principal quantum numbers
relative to the ith and jth ionization limit Ii and Ij,
respectively.
The MQDT model is fully specified by the unitary

transformation matrix Uiα and the eigenchannel quantum
defects μα. The task in determining accurate MQDTmodels
therefore reduces to finding values of Uiα and μα, which
reproduce experimental observables such as state energies,
Landé g factors, or dc polarizabilities.

2. MQDT model parameters

The transformation matrix Uiα is orthogonal and can
therefore be constructed from at most NðN − 1Þ=2 rotation
matrices, in the case of an N-channel model [103]. In
practice, the mixing between channels is small, and a
suitable approximation can be made by composing signifi-
cantly fewer rotation matrices. As noted above, the natural
basis at long range is jj coupled, while at short range it is LS
coupled. We can therefore simplify Uiα by introducing an
intermediate basis ᾱ of purely LS-coupled channels, and
writing Uiα as the product of the jj-LS transformation
matrix Uiᾱ and a second matrix V ᾱα representing mixing
between LS-coupled channels [103,113]:

Uiα ¼ UiᾱV ᾱα; ðA6Þ

where Uiᾱ corresponds to the LS-jj frame transformation

Uiᾱ ¼ h½ðScLcÞJcðslÞj�Jj½ðScsÞSðLclÞL�Ji

¼ ½S; L; Jc; j�1=2

8>><
>>:

Sc Lc Jc
s l j

S L J

9>>=
>>; ðA7Þ

from Eq. (6.4.2) of Ref. [114] and ½a; b;…�1=2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2aþ 1Þð2bþ 1Þ…p
.

The second matrix V ᾱα accounts for configuration
interaction by introducing couplings between the ᾱ chan-
nels. V ᾱα is typically expressed as a series of rotations by
Euler angles θij around channels i and j [see Eq. (15) of
Ref. [115]]

V ᾱα ¼
Y

RðθijÞ: ðA8Þ

If the θij are small, the sequence of the rotations in
Eq. (A8) is not critical; however, in general, Uiα will be
sensitive to the chosen order.
In general, even in the absence of multichannel inter-

actions, the eigenchannel quantum defect is energy depen-
dent. The energy dependence originates, for example, from
a polarization of the ion core by the outer electron [116].
In practice, the eigenchannel quantum defect slowly varies
only with energy, and we treat the energy dependence of the
eigenchannel quantum defects as

μαðϵÞ ¼ μð0Þα þ ϵμð2Þα þ ϵ2μð4Þα …; ðA9Þ

and similarly, we treat the energy dependence of θij by

θijðϵÞ ¼ θð0Þij þ ϵθð2Þij …; ðA10Þ

where ϵ ¼ 1=ν2 [103].

3. MQDT models for hyperfine isotopes

For isotopes with nonzero nuclear spin, the hyperfine
interaction in the ion core has to be considered. Here,
we follow a similar formalism introduced in earlier
work [77,81,82].
In the close-coupling region, the hyperfine interaction

in the ion core is small compared to the exchange
interaction and can be treated as perturbation to the fine
structure. The close-coupling α channels are split into
αF¼jf½ðScsÞSðLclÞL�JIgFi channels, where the MQDT
parameters μα ≈ μαF and Uiα ≈ UiαF are only slightly
affected. Therefore, we can construct the MQDT models
for isotopes with nonzero nuclear spin fromMQDT models
obtained from even isotopes with nuclear spin I ¼ 0. In
this work, we use the MQDT models and parameters
obtained for 174Yb and introduce hyperfine coupling of
the ion core with

UiF;αF ¼ UiF;iUi;αF ; ðA11Þ

where

Ui;αF ¼ UiᾱV ᾱαF ; ðA12Þ
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and UiF;i is the frame transformation

UiF;i ¼ hf½ðJcIÞFcj�FjðJcjÞJIgFi

¼ ð−1ÞIþjþFcþJ½J; Fc�1=2
�
I Jc Fc

j F J

�
; ðA13Þ

where J corresponds to the total electronic angular momen-
tum, I is the nuclear spin, F is the total angular momentum
including nuclear spin, which uses Eq. (6.4.2) of
Ref. [114].
We find that directly applying the 174Yb MQDT param-

eters (i.e., eigenchannel quantum defects μα and rotations
θij) to the 171Yb energies generally gives good agreement,
but we find that a slight reoptimization of the model
parameters is necessary for an improved modeling. We
attribute this variation to three main reasons. First, a small
isotope dependence [52] and hyperfine-induced mixing of
channels can yield variations in the close-coupling param-
eters. Second, while we do not explicitly include direct
coupling of the outer electron with the nucleus, this
interaction can be expressed through the matrix elements
of V ᾱα and μα. Therefore, to the extent that this interaction
is significant, it can be incorporated into the model.
We note that the magnitude of this direct coupling scales
as ν−3 [69] and is at the scale of 1 MHz at ν ¼ 30, which is
smaller than the current disagreement between the MQDT
model and the experimentally measured state energies
(i.e., Fig. 4). Therefore, attempting to predict this inter-
action strength and including it by hand would not
significantly improve the model prediction. Third, we
consider only the hyperfine splitting in the 6s 2S1=2 ground
state of the 171Ybþ ion. We neglect the hyperfine splitting
of excited states of the 171Ybþ-ion core. This is likely a
good approximation because the excited states are ener-
getically far above the channels converging to the 171Ybþ
ground state considered in this work, but could lead to
changes in the MQDT parameters.

4. MQDT wave functions

Once a bound state b has been found with Eqs. (A4)
and (A5), its wave functions are conveniently expressed in
the jj basis, and Eq. (A2) is rewritten as

jψbi ¼ jΨbi=Nb ¼
X
i

jΦiiPνi;bliðrÞAi;b; ðA14Þ

where Pνi;b;liðrÞ is the radial Coulomb function of the active
electron, Ai;b are the normalized channel contributions in
terms of collision channels i in jj coupling [103]

Ai;b ¼ ð−1Þliþ1ðνi;bÞ3=2
X
α

Uiα cos ½πðνi;b þ μαÞ�Ãα;b=Nb;

ðA15Þ

and Nb ensures the normalization [41] of the wave function
and is given by [103]

N2
b¼
X
i;α

ν3i;bUiαcos ½πðνi;bþμαÞ�Ãα;bþ
X
α

�
dμα
dE

�
Ã2
α;b

þ1

π

X
i;α;β

�
dUi;α

dE

�
Ui;β sin ½πðμα−μβÞ�Ãα;bÃβ;b: ðA16Þ

The wave-function coefficients Ãα;b of Eq. (A2) are
obtained by evaluating

Ãα;b ¼ Ciα=

�X
α
C2
iα

�
1=2

; ðA17Þ

where Ciα is the cofactor of the ith row and αth column of
the matrix Fiα [see Eq. (A4)], and in the evaluation of
Eq. (A17), channel i can be chosen for convenience [103].

The close-coupling α channel fractions (LS coupling)
can be obtained from Ai as

Aᾱ;b ¼
X
i

UiᾱAi;b: ðA18Þ

5. Evaluation of matrix elements

We evaluate the matrix elements following the proce-
dures introduced in Ref. [44], which are summarized in the
following.
Single-atom matrix elements between states b and b0 of

operator ζ̂ acting on the channel function jΦii in Eq. (A14)
that leaving the orbital angular momentum l of the Rydberg
electron unchanged are evaluated by

ζb;b0 ¼
X
i;i0

ðATÞb;i hΦijζ̂jΦi0 iOib;i0b0Ai0;b0 ; ðA19Þ

where

Oib;i0b0 ¼
Z

∞

0

Pνi;b;liðrÞPνi0 ;b0 ;li0 ðrÞdr ðA20Þ

is a radial overlap integral. The overlap integral can either
be evaluated using analytic approximations [44,117]
or numerical wave functions obtained from the Numerov
algorithm [12,117].
This form of matrix elements is used in the evaluation of

magnetic moments in the paramagnetic interaction
Hamiltonian

HPM ¼ −  μ ·  B ¼ fμB½  Lc þ l
!þ gsð  Sc þ  sÞ� − μI  Ig ·  B

ðA21Þ
using the expressions presented in Ref. [44] for the general
case of Rydberg states with hyperfine interaction in the ion
core, where μB is the Bohr magneton, μI is the nuclear
magnetic moment, and gs is the electron spin g factor.
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For the case of the multipole operator Q̂ðkqÞ ¼
rkYk;qðΩÞ, the contribution of the core electrons is neglected,
and only the contribution of the Rydberg electron is
considered (because of its much larger spatial extent):

QðkqÞ
b;b0 ¼

X
i;i0

ðATÞb;i hΦijYkqjΦi0 iRðkÞ
ib;i0b0Ai0;b0 ; ðA22Þ

where RðkÞ
ib;i0b0 is the radial integral

RðkÞ
ib;i0b0 ¼

Z
rkPνi;b;liðrÞPνi0 ;b0 ;li0 ðrÞdr: ðA23Þ

Matrix elements of the form presented in Eq. (A22) are
used in the calculation of Stark shifts [12], Rydberg-
Rydberg interactions [14], and the diamagnetic shift.
The diamagnetic interaction Hamiltonian [118] is

given by

HDM ¼ 1

8me
j  d ×  Bj2; ðA24Þ

and can be expressed in terms of spherical harmonics
(compare, e.g., Ref. [86])

HDM ¼ e2

12me
r2

ffiffiffiffiffiffi
4π

p  
Y0;0 −

ffiffiffi
1

5

r
Y2;0

!
B2: ðA25Þ

Because of the multichannel nature of MQDT eigen-
states, calculating matrix elements between two MQDT
eigenstates as presented in Eqs. (A19) and (A22) requires
calculating radial and angular integrals for all combinations
of the electronic configurations encoded in the channel
wave functions. We note that if a state has contributions
from channels with significantly different ionization limits,
the radial Coulomb functions Pνi;b;liðrÞ of each channel will
vary significantly in spatial extent because of the ν2i;b
scaling of the orbital radius of the active electron. In
practice, we neglect the contribution of channels with
ionization limits significantly larger than the first ionization
limit, since the associated wave functions are much more
compact than those belonging to the lower limit and have
comparatively small contributions to matrix elements of the
form rk. The only case in which radial wave functions
corresponding to different thresholds are considered is in
the case of the hyperfine-split thresholds in 171Yb.

6. Numerical evaluation

We compute state polarizabilities and interaction poten-
tials following numerical techniques established for alkali
atoms [12,86,87,119] but adapted to compute matrix
elements of MQDT eigenstates as described in the previous
section. We review the approach here to highlight the
important features.
The energy of an atom in electric and magnetic fields F

and B is given by

H ¼ H0 þ FerþHPM þHDM; ðA26Þ

where H0 encodes the energy in the absence of the field,
and HPM and HDM are defined in Eqs. (A21) and (A24),
respectively. To determine the energy shift for a target state
jψ0i, we numerically evaluate the matrix elements of
Eq. (A26) in a large basis of states fjψ iig, and then
diagonalize [12].
The matrix elements hψ ijrjψ 0

ii and hψ ijr2jψ 0
ii (in HDM)

are evaluated using Eq. (A22). Computing the radial integral
in Eq. (A23) requires numerical wave functions, which we
compute using the Numerov method [12], following the
implementation in the Alkali Rydberg Calculator [87]. The
Numerov method computes the radial wave function of a
bound state from its energy, relative to the ionization limit.
We note that MQDT states do not have a unique radial wave
function: Each channel may have a distinct ionization limit.
Therefore, the matrix element in Eq. (A22) involves sum-
ming over several different wave functions.
The energy shift in small magnetic fields can be estimated

from the diagonal elements of Eq. (A26). The Stark shift in a
small electric field can be estimated from diagonalizing
Eq. (A26) in a small basis consisting of the several closest
states with opposite parity. However, evaluating a full Stark
map with multiple level crossings, or evaluating the dia-
magnetic shift in large fields resulting in level crossings,
requires a larger basis of hundreds or thousands of states.
The Hamiltonian of two interacting Rydberg atoms in

the Born-Oppenheimer approximation can be written as

H ¼ Hð1Þ þHð2Þ þHint; ðA27Þ

where Hð1Þ and Hð2Þ are the Hamiltonians of the two
isolated Rydberg atoms [Eq. (A26)]. The interaction
Hamiltonian Hint is evaluated through an expansion over
multipole terms k1 and k2 [120,121]

Hint ¼
X∞
k1;k2

ð−1Þk2
Rk1þk2þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ3ð2k1 þ 2k2Þ!

ð2k1 þ 1Þ!ð2k2 þ 1Þ!ð2k1 þ 2k2 þ 1Þ

s

×
Xk1þk2

p¼−ðk1þk2Þ

Xk1
p1¼−k1

Xk2
p2¼−k2

Ck1þk2;p
k1;p1;k2;p2

rk11 r
k2
2 Yk1;p1

ðr̂1ÞYk2;p2
ðr̂2ÞYk1þk2;pðR̂Þ; ðA28Þ

MICHAEL PEPER et al. PHYS. REV. X 15, 011009 (2025)

011009-14



where R̂ is a vector representing the internuclear axis,
Ck1þk2;p
k1;p1;k2;p2

¼hk1;p1;k2;p2jk1þk2;pi is a Clebsch-Gordan
coefficient, and Yκ;pðr̂Þ are unit-normalized spherical
harmonics.
The calculations presented in this work are restricted

to dipole-dipole interactions (k1 ¼ k2 ¼ 1), though
we note that higher-order multipoles can become
important at short separations [24], and the R−5 term
from k1 ¼ k2 ¼ 1 can also dominate the asymptotically
long-range interaction [89].
As with the case of the field shift, the matrix elements are

evaluated numerically using Eq. (A22) at fixed internuclear
separations R. The size of the required basis for computing
pair interactions is much larger than for evaluating single-
atom energy-level shifts. Moreover, compared to alkali
atoms, 174Yb has twice the number of Rydberg states
(S ¼ 0 and S ¼ 1), while 171Yb has 4 times as many when
including the nuclear spin.
We therefore restrict the size of the Rydberg-pair basis

by including only pair states with significant contribution
to the interaction potential in an energy range close to a
target pair state [14]. The Rydberg-pair basis is formed in
two steps. First, we build the pair basis from a set of
single-atom states with similar effective principal quan-
tum number ν and orbital angular momentum L as the
target state. The resulting pair basis is then further
truncated to pair states with a small pair-energy defect
ΔE to the target pair state. Depending on the orientation of
the internuclear axis with respect to external fields and the
included orders of the multipole expansion, the basis size
can be additionally restricted by making use of selection
rules of the spherical harmonics under the conservation of
certain symmetries [86].
ΔE, Δν, and ΔL are then increased until convergence is

observed. Typically, values of Δν≲ 3 are sufficient to
produce accurate interaction potentials [14,86]. To give a
sense of scale, the computations in Fig. 7 included the
Rydberg-pair state withΔν<3, ΔL¼1, andΔE<10GHz,
yielding a basis of approximately 2000 pair states.

APPENDIX B: ATOMIC BEAM SPECTROSCOPY
APPARATUS

The spectroscopic data presented in this article are
obtained by laser and radio-frequency (rf) spectroscopy
on an atomic beam of 174Yb or 171Yb atoms [see Figs. 9(a)
and 9(b)]. The atomic beam is generated by heating a
sample of ytterbium to a temperature of 310 °C in an oven
with a collimator opening of approximately 1 cm. The
atomic beam is further collimated by a pinhole with a
diameter of 3 mm, approximately 12 cm after the oven
collimator and 9 cm before the spectroscopy region.
Transitions to S and D Rydberg states are driven by a

two-photon laser transition through the intermediate
6s6p 1P1 state. The laser light needed for the transition

with wavelengths of 399 nm (6s2 1S0 → 6s6p 1P1) and
394–399 nm (6s6p 1P1 → Rydberg state) is generated by
frequency doubling the output of tunable titanium-sapphire
(Ti:sapphire) lasers in a resonantly enhanced frequency-
doubling cavity. The isotope shifts on the 6s2 1S0 →
6s6p 1P1 transition [122] are used for an isotope selective
excitation into the Rydberg state. To minimize Doppler
shifts on the two-photon laser transitions, counterpropa-
gating laser beams are applied at a 90° angle relative to
the atomic beam (along the y axis in Fig. 9). Laser pulses
with length of 1 − 3 μs are generated by acousto-optic
modulators. The laser frequencies are monitored by
measuring the frequency of the fundamental output
of the Ti:sapphire laser using a HighFinesse WS8-10
wavelength meter with a specified 3σ uncertainty of
10 MHz. At regular intervals, the wavelength meter is
calibrated to a 399-nm laser that is frequency locked to a
ultralow-expansion cavity with known offset from the
1S0 → 1P1ðF ¼ 3=2Þ transition in 171Yb.
The population in Rydberg states is detected by state-

selective pulsed-field ionization (see, e.g., Ref. [69]). High-
voltage (HV) ramps with a maximum voltage of 2.5 kV
are generated by switching between a low-voltage (during
Rydberg spectroscopy) and an HV input using HV
MOSFET switches (Behlke HTS 31-03-GSM) and are
applied to a set of electrodes (on the right side of the atomic
beam in Fig. 9) through an RC low-pass filter (τ ¼ 1 μs).
The resulting maximum field of approximately 833 Vcm−1
limits the lowest detectable Rydberg states in our setup to
an effective principal quantum number ν ≈ 26. The result-
ing Ybþ ions are accelerated toward and detected on a
time-resolved microchannel-plate (MCP) ion detector
(Hamamatsu F13446-11) and recorded on an oscillo-
scope. To reduce electric field inhomogeneities caused
by the high voltage (typically −1.9 kV) applied to the
front surface of the MCP, we place a grounded grid mesh
about halfway in between the spectroscopy region and the
MCP. The experiment is operated at a repetition rate of
1 kHz, limited by the current drawn at the HV supply
generating the HV field-ionization ramps.
An exemplary laser spectrum of the j40.70; S; F ¼ 1=2i

Rydberg state of 171Yb is presented in Fig. 9(c). Transition
frequencies to the Rydberg state are determined by a least-
squares fit of the data to a Gaussian line-shape model.
Transition between Rydberg states are driven using rf

with frequencies in the range of 10–175 GHz. The rf
radiation is obtained from a Windfreak Techn., LLC
SynthHD PRO (up to 24 GHz) dual-channel microwave
generator or by using a combination of active ×4 (Marki
Microwave AQA-2156, 21–56 GHz, 20 dBm) and/or passive
×4 (MarkiMicrowaveMMQ-40125H, 40–175GHz, 0 dBm)
frequencymultipliers. Themicrowave generator is referenced
to a stable 10-MHz reference signal obtained from a Global-
Positioning-System-disciplined Rb atomic clock (Stanford
Research Systems FS725). rf pulses with duration of 1–8 μs
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are obtained by amplitude modulating the output of the
microwave generator before frequency multiplication
using absorptive modulators (Hewlett Packard 33008C
or 11720A). The obtained rf radiation is coupled into the
vacuum chamber through vacuum viewports using suitable
horn antennas. All laser radiation is switched off for the
duration of the rf pulses. The power of the rf radiation is
controlled using either a digital step attenuator (Analog
Devices ADRF5740) or aWR-10 direct-reading attenuator
(Mi-Wave 510W/387). A microwave spectrum of the
33 1S0 → 33 1P1 transition in 174Yb is presented in
Fig. 9(d). Transition frequencies between Rydberg states
are determined by a least-squares fit of the data to either a
sinc2 or Lorentzian line-shape model. All stated Rydberg-
Rydberg transitions have been measured at varying rf
powers and extrapolated to “zero” rf power to remove
frequency shifts caused by ac Stark shifts.

To control the electric field in the spectroscopy region, we
apply voltages to two segmented circular electrodes (four
segments each) separated by 3 cm. Stray electric fields are
compensated at the beginning of each day by minimizing the
quadratic Stark shift of the 6s130s 130 1S0 Rydberg state of
174Yb. We observe day-to-day fluctuations of the required
electric compensation fields of less than 3 mV=cm.

We determine values for the static dipole polarizabilities
α0 of Rydberg states by measuring a shift in the transition
frequencies caused by applying electric fields F between
the two segmented circular electrodes and subsequent
fitting to

ΔEStark ¼ −ð1=2Þα0F2: ðB1Þ

When possible, we ensured that the static dipole
polarizabilities were determined in a range of quadratic

FIG. 9. (a) Schematic of the atomic beam apparatus used for spectroscopy on Yb Rydberg state. See text for details. (b) Typical laser
excitation spectrum showing the 171Yb, j40.70; S; F ¼ 1=2i Rydberg state. Each black point corresponds to the integrated time-resolved
ion signal averaged over 1000 repetitions of the experiment. The obtained data are fit to a Gaussian line-shape model (red line) with a
full width at half maximum of 2.1 MHz. (c) Typical microwave spectrum of a j50.69; S; F ¼ 1=2i → j52.36; P; 3 ¼ 1=2i transition in
171Yb. Each black point corresponds to the integrated time-resolved ion signal averaged over 1000 repetitions of the experiment. The
obtained data are fit to a sinc2 line-shape model (red line) for a 2 − μs rectangular microwave pulse. Inset: extrapolation of the transition
frequency to zero microwave power. (d) Typical polarizability measurement of the j62.14; S; F ¼ 1=2i Rydberg state obtained by
recording laser spectra in a range of electric fields Fz. The transition frequencies (red dots) are obtained by a least-squares fit of a
Gaussian line-shape model to the experimental data. The static dipole polarizability of the state is obtained by a least-squared fit of
Eq. (B1) (dashed red line) to observed Stark shifts. (e) Zeeman splittings between the j50.69; S; F ¼ 1=2; mF ¼ �1=2i magnetic
sublevels obtained by laser spectroscopy in a magnetic field Bz. g factors of the Rydberg states are obtained by a least-squares fit of the
experimental data to Eq. (B2).
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Stark shifts. For some cases, the Stark shift deviates from
a quadratic scaling even at very small electric fields, and
we report values for the Stark shift at a given electric
field instead.
Magnetic fields in all three spatial directions are con-

trolled by three pairs of coils placed outside the vacuum
chamber, arranged in Helmholtz configuration. The mag-
netic fields generated by the coils are calibrated by rf
spectroscopy of the Zeeman splittings on an n0 3S1 ← n 1S0
transition, and assuming a g factor of the mostly unper-
turbed n3S1 Rydberg series to be gð3S1Þ ¼ gs ≈ 2.0023. We
obtain values for Landé g factors of Rydberg states by
measuring Zeeman shifts caused by applying calibrated
magnetic fields B and a subsequent linear fit to

ΔEZeeman ¼ mgμBB; ðB2Þ

where we measured the Zeeman shifts at sufficiently small
magnetic fields to avoid the effect of nonlinear diamagnetic
shifts.

APPENDIX C: MEASURING RYDBERG
INTERACTIONS IN OPTICAL TWEEZERS

Wemeasure the distance-dependent interactions between
single 171Yb Rydberg atoms trapped in optical tweezer
arrays using the setup described in Ref. [40]. Similar
approaches have been previously used to measure C6

coefficients of Rydberg-pair states in Rb [15] and angle-
dependent dipole-dipole interaction strengths [16]. We
initialize pairs of atoms in the j1i≡ jmF ¼ þ1=2i sublevel
of the 6s6p 3P0 metastable state. Static magnetic fields are
applied at 90° (θ ¼ π=2) with respect to the internuclear
separation. Transitions into Rydberg-pair states are sub-
sequently driven by a two-photon transition detuned by ΔE
from the asymptotic case of two isolated Rydberg atoms.
Pairs of atoms transferred to Rydberg states are blown out
of the optical tweezers by driving a transition (369 nm) into
an autoionizing state [99]. Remaining atoms in the j1i state
are depumped into the 1S0 ground state for fluorescence
imaging. The excitation of a Rydberg-pair state is inferred
by conditioning the remaining atom population after a
given experimental sequence on pairwise atom loss. An
exemplary pair-state spectrum close to the j54.28; L ¼ 0;
F ¼ 1=2;−1=2i⊗2 asymptotic pair state is given in
Fig. 10(c). For a given optical tweezer separation, we
observe an increase in pairwise atom loss when tuning the
two-photon transition over a Rydberg-pair state. The pair-
state resonance shifts to larger two-photon detuning when
reducing the tweezer separation, indicating a larger
interaction between the two Rydberg atoms. We fit the
observed pair-state spectra using a Gaussian line-shape
model. The resulting center frequency of the fits are
presented in Figs. 6 and 7.

On top of the shift of the pair-state resonance, we also
observe a broadening. We attribute the observed broad-
ening to the spatial fluctuations of the single atoms in the
optical tweezers (T ≈ 3 μK). Because of the spatial fluc-
tuations of the atoms, the linewidth of the pair-state
resonance is affected by the gradient of the interaction
potential, which increases toward shorter internuclear
separations. To model the effect of fluctuating internuclear
separations in the optical tweezers, we simulate the pair-
state spectra SðEÞ,

SðEÞ∝
X
Φ
G(E−EΦðRÞ;σE)T ðR− R̃;σRÞOΦ;Φ0 ðRÞ; ðC1Þ

where the sum runs over all relevant pair state Φ coupled to
the target state Φ0, EΦðRÞ is the internuclear-separation-
dependent pair-state energy, R̃ is the mean internuclear

FIG. 10. (a) Single-atom transition scheme for measuring
interactions between pairs of Rydberg atoms in an optical tweezer
setup [40]. The 171Yb atoms are prepared states in the j1i sublevel
of the 3P0 metastable state. Transitions to the jν; L ¼ 0; Fi
Rydberg state are driven by a single-photon transition (302 nm).
For rearrangement and readout, the atoms are imaged by
collecting the fluorescence on the j1S0i ↔ j3P1i transition.
(b) Scheme for measuring Rydberg-Rydberg interactions be-
tween pairs of single atoms trapped in optical tweezer arrays.
(c) Experimental pair-state spectra (solid dots) obtained by
recording the probability of pairwise loss from tweezers in
fluorescence image as a function of the two-photon detuning
and tweezer separation. The error bars represent the standard
deviation of the measured values observed across repeated
iterations of the experiment. The experimental spectra are
compared to simulated pair spectra SðEÞ (solid lines) obtained
from Eq. (C1), as explained in the text.
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separation, G(E − EΦðRÞ; σE) is a function describing the
experimental linewidth of the spectrum in the absence of
any broadening, T ðR − R̃; σRÞ is a function describing the
distribution of internuclear separation around a mean
separation R̃, and OΦ;Φ0 ðRÞ is the overlap coefficient.
For the case presented in Fig. 10(c), the line broadening

can be reproduced by assuming a normal distribution in the
internuclear separations with standard deviation of 100 nm.
This is close to the expected distance fluctuations of
approximately 50 nm between two atoms confined in
optical tweezers with radial and axial trap frequencies of
ωr ¼ 60 kHz and ωz ¼ 10 kHz, respectively.

APPENDIX D: ADDITIONAL SPECTROSCOPIC
DATA AND MODELS FOR 174Yb

In this appendix, we give additional details of the
spectroscopic measurements and MQDT model develop-
ment for 174Yb. We also make comparisons between the
MQDT model and previously measured quantities, includ-
ing singlet-triplet mixing in the 1;3P1 and 1;3D2 series, and
diamagnetic shifts in the P series.

1. 3S1 and 1S0
For the n 1S0 Rydberg series of 174Yb, we adapt the six-

channel MQDTmodel presented in previous work [49]. We
refit the MQDT model parameters of the 1S0, 1;3D2, 1;3P1

Rydberg series in a simultaneous, 42-parameter fit to
the previously measured [46,49,50,53–56,58] and newly
measured data presented in Supplemental Material [70],
leveraging the higher-precision microwave measurements
between S, D, and P Rydberg states. The resulting
MQDT models are presented in Supplemental Material
Tables S1–S3 [70].
For the n 3S1 with n > 28, we adapt the single-channel

quantum defect model with a Rydberg-Ritz expansion
for the energy-dependent quantum defect presented in
Ref. [29].

2. 1P1 and 3P1

Here we introduce a six-channel MQDT model for the
1;3P1 Rydberg series of 174Yb. Compared to the five-
channel model presented in Ref. [50], we introduce a sixth
perturbing channel, which lies energetically above the first
ionization limit of 174Yb. The addition of the sixth channel
was necessary to accurately describe the energies of the
high-n states of this series. In addition, we introduce
singlet-triplet mixing between the 1P1 and 3P1 explicitly,
by introducing a rotation to theUiα matrix, θ12 whose value
is constrained by the Stark shift of the 1S0 state, as
explained in Sec. II.
We extend the previously measured state energies of

1;3P1 [50,56] by measuring microwave transition frequen-
cies between n 1;3P1 and n0 1;3D2 or n0 1S0 Rydberg states

in the range of 31 ≤ n ≤ 43, as summarized in
Supplemental Material Tables S18 and S19 [70]. We
cross-checked several transition frequencies reported
in Ref. [50] and generally found good agreement within
the stated error bars, with the exception of the
6s45p 3P1 ← 6s44s 1S0, which deviated from our new
measurement and the final theoretical prediction from
the MQDT model by nearly 10 MHz. We therefore do not
include this data point in our analysis. In the fitting
procedure, we optimize the 42 parameters of the 1S0,
1;3D2, 1;3P1 MQDT models in a simultaneous fit to the
data presented in Supplemental Material [70]. The result-
ing MQDT models are presented in Supplemental
Material Tables S1–S3 [70].
The presented MQDT model correctly predicts the

energies of the highly excited n 1;3P1 Rydberg states
(Fig. 11). However, below ν < 15, significant deviations
between the experimental and theoretical energies occur.
This could be due to unaccounted perturbing channels,
either directly in the low-ν regime, or in the high-ν regime,
with the current MQDT model parameters overcompensat-
ing trends in the quantum defects for the more accurately
determined Rydberg states at high ν.
The breakdown of pure LS coupling in the 1;3P1 Rydberg

channels is quantified by measuring the static dipole
polarizabilities of n 1S0 Rydberg states in the vicinity of
a near degeneracy with dominantly n 3P1 Rydberg states, as
discussed in the main text. To obtain the best agreement
between the experimental and theoretical static polariz-
abilities of the n 1S0 Rydberg states, an energy-dependent
singlet-triplet mixing angle [refer to Eq. (A10)] had to be
introduced. The resulting MQDT parameters are presented
in Supplemental Material [70].
With the obtained J ¼ 1 (odd parity) MQDT model for

174Yb and using Eq. (A18), we can estimate the 6snp 3P1

channel contribution into the nominally n 1P1 Rydberg
states. The resulting values are presented in Fig. 12 and
compared to values obtained from previous measurements
of diamagnetic shifts, as presented in Ref. [57] and from
previous hyperfine-structure measurements in 171Yb and
173Yb, as presented in Ref. [71]. The theoretically obtained
values for the triplet contribution to the n 1P1 Rydberg
states agree well with the previously reported values
between 20 ≤ n ≤ 100, but with significantly reduced
uncertainties, highlighting the sensitivity of measuring
matrix elements through Stark shifts close to near
degeneracies.
As an additional check of the validity of the model, we

compare the predicted Zeeman and diamagnetic shifts in
very large magnetic fields to a previous experimental
measurement from Ref. [57]. In that work, the measured
energies were fit with a phenomenological model to extract
the singlet-triplet splitting for that n. In Fig. 13, we show
the prediction of the MQDTmodel with no free parameters,
finding excellent agreement.
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3. 3P2

Here, we introduce a four-channel MQDT model for 3P2

Rydberg states of 174Yb. In comparison to the previously
presented three-channel MQDT model from Ref. [48], we
introduce an additional channel with a perturbing state
above the first ionization limit. The addition of the fourth
channel was necessary to accurately describe the energies
of the high-n states of this series.
The MQDT model parameters are optimized in a

weighted least-squares procedure. The Rydberg state

FIG. 12. 6snp 3P1 character (A2
3P1

) in 6snp 1P1 Rydberg states
of 174Yb. The open black squares correspond to experimental
values obtained by measurements of the hyperfine structure of
171Yb and 173Yb 1;3P1 Rydberg states from Ref. [71]. The open
black circles correspond to experimental values obtained by
measuring diamagnetic shifts taken from Ref. [57]. The error bars
are directly taken from Refs. [57,71]. The full red circles
correspond to theoretical values of A2

3P1
as obtained from the

MQDT model presented in Supplemental Material Table S3 [70].

FIG. 11. (a) Lu-Fano-type plot of the 174Yb 1;3P1 Rydberg
series. The theoretical bound states with dominant singlet and
triplet character are indicated by light and dark blue dots,
respectively. Experimentally observed states are indicated by
black crosses (Refs. [50,56]) and black dots (this work). The error
bars correspond to the respective measurement uncertainties.
(b) Deviation between experimental and theoretical state ener-
gies. The energy deviations and error bars in the gray shaded area
are scaled by a factor of 50 000 to improve visibility of the much
smaller errors observed on the microwave transitions. (c) Per-
turbing channel fraction

P
6
i¼3 A

2
i of the dominantly singlet (light

blue) and triplet (dark blue) Rydberg states.
FIG. 13. Zeeman shifts of 174Yb Rydberg states near the 55 3P1

state. The red and gray curves correspond to Zeeman shift
calculations with and without diamagnetism, respectively. The
near degeneracy of the 55 3P0 and 55 3P1 states leads to a strong
interaction between the 55 3P1ðmJ ¼ 0Þ and 55 3P0ðmJ ¼ 0Þ
sublevels. The black circles and squares correspond to exper-
imentally observed Zeeman shifts extracted from Fig. 3 of
Ref. [57] for the mJ ¼ 0 and mJ ¼ �1 sublevels, respectively.
The experimental Zeeman shifts from Fig. 3 of Ref. [57] are
plotted directly for the mJ ¼ 0 states, whereas the values for the
mJ � 1 states are obtained from the mean experimental diamag-
netic shifts and theoretical predictions for the paramagnetic
contribution to the Zeeman shift.
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energies includes in the fitting procedure include previ-
ously measured state energies of 3P2 by laser [56] and
microwave spectroscopy [50], as well as newly measured
microwave transition frequencies between n 3P2 and n0 3D2

Rydberg states in the range of 31 ≤ n ≤ 43. The included
Rydberg state energies and the resulting MQDT model
parameters are presented in Supplemental Material [70].
As depicted in Figs. 14(a) and 14(b), the newly intro-

duced MQDT model for 3P2 captures the energies of the
highly excited n 3P2 Rydberg state quantitatively, but
qualitatively captures only the energies of the states in
the strongly perturbed range below ν ≈ 15.
Figure 14(c) depicts the contribution of the core-excited

channels, which are below 10−3 for states with ν > 20,
confirming a mostly unperturbed 3P2 Rydberg series.

Series perturbers can shorten the lifetime of Rydberg
states even at high n by introducing an additional decay
channel proportional to

P
AiΓi, where Γi is the decay rate

of the perturbing states. Since Γi for low-lying atomic
states can be substantially faster than for Rydberg states,
even a small admixture can significantly alter the lifetime.
We note that Ref. [29] measured the lifetime of the 74 3P2

state to be 83ð5Þ μs, which is close to but slightly shorter
than the lifetime predicted for a P state of 87Rb with a
similar quantum number (approximately 200 μs at
T ¼ 300 K [123]). This is qualitatively consistent with
the modeled small but nonzero perturbation of this series.
A quantitative assessment will require predictions for
matrix elements and decay rates of the perturbing states,
which is a subject for future work.

4. 3P0

Here, we present a two-channel MQDT model for the
n 3P0 Rydberg states of 174Yb. A two-channel model
suffices to reproduce the observed states at high n, though
we believe additional channels will eventually be necessary
to explain the full series. We have no direct information
about the nature of the perturbing series and follow
Ref. [56] by assigning a perturbing channel with character
4 f135d6snd 3P0 (labeled Q). The MQDT model parame-
ters are optimized in a weighted least-squares fit to
both previously measured state energies by laser spectros-
copy [56] and newly measured state energies from micro-
wave spectroscopy summarized in Supplemental Material
Tables S24 and S23 [70], respectively.
The n 3P0 Rydberg states are inaccessible by direct one-

photon microwave transitions from laser-accessible n 1S0
and n 1;3D2 Rydberg states. Instead, we perform spectros-
copy on n 3P0 Rydberg states of 174Yb by utilizing the
Autler-Townes splitting on a probe transition. To this
extent, we monitor the resonant population transfer on
the two-photon n 3D2 → n0 3S1 microwave transition as a
function of the frequency of a simultaneously applied
microwave pulse coupling the n 3S1 → n00 3P0 transition.
The observed n 3P0 ↔ n0 3D2 intervals are summarized in
Supplemental Material Table S23 [70]. We recorded a total
of six transitions to n 3P0 Rydberg states in the range of
31 ≤ n ≤ 49, which were particularly necessary to deter-
mine the energy dependence of the strongly perturbed 3P0

series. The results of this measurement, together with
previous three-photon laser spectroscopy [56], are pre-
sented in Supplemental Material [70].
The obtained MQDT model is summarized in

Supplemental Material Table S5 [70] and presented in a
Lu-Fano-like plot in Fig. 15. The MQDT model represents
the experimental data well within the experimental uncer-
tainties over a range of 18 ≤ n ≤ 50.
The contributions of perturbing channel Q into the n 3P0

Rydberg states is presented in Fig. 15(c). The channel

FIG. 14. (a) Lu-Fano-type plot of the 174Yb 3P2 Rydberg series.
The theoretical bound states are indicated by green dots.
Experimentally observed states are indicated by black dots
(Refs. [50,56]) and dots (this work). The error bars correspond
to the respective measurement uncertainties. (b) Deviation be-
tween experimental and theoretical state energies. The energy
deviations and error bars in the light (dark) gray shaded area are
scaled by a factor of 10 000 (700 000) to improve visibility of the
much smaller errors observed on the microwave transitions.
(c) Perturber fraction ð1 − A2

3P2
Þ of the Rydberg states in the

ðJ ¼ 2Þo Rydberg series.
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contribution is spread out over a wide range of principal
quantum numbers and reaches a maximum value of
approximately 3% at n ¼ 26. This is consistent with a
significantly reduced lifetime of the 74 3P0 Rydberg state
[14ð4Þ μs] observed in Ref. [29]. Further refinement of the
MQDT model for this series at low n will be useful to
understand the lifetimes of this series quantitatively.

5. 1D2 and 3D2

Here, we present a five-channel MQDT model for
the n 1;3D2 Rydberg states of 174Yb. We adapt this
model from Ref. [49], but we refit the MQDT model
parameters of the 1S0, 1;3D2, 1;3P1 Rydberg series in a
simultaneous, 42-parameter fit to the previously mea-
sured [46,49,50,53–56,58] and newly measured data

presented in Supplemental Material [70]. The resulting
MQDT models are presented in Supplemental Material
Tables S1–S3 [70].
In addition, to account for singlet-triplet mixing, the

model includes a rotation around the 1D2 and 3D2 channels
in the Uiα matrix. To determine the magnitude of the
singlet-triplet mixing, we use the g factors of the n 1;3D2

Rydberg series and its perturbers measured by Zerne
et al. [59] to obtain a value for the singlet-triplet mixing
angle between the 1D2 and 3D2 channels. To that extent, we
vary the energy-dependent mixing angle θ12 [Eq. (A10)]
and calculate the g factor in using Eq. (22) of Ref. [44]. In
addition, we treat the g factors of the perturbing states with
only partially known electronic configuration as parameters
of our model. To obtain the best agreement between
experiment and theory, we introduce an energy-dependent
mixing angle, as defined in Eq. (A10). The results of the
fit are presented in Fig. 16, and the MQDT model is
summarized in Supplemental Material Table S2 [70]. From
our MQDTmodel, we estimate a triplet character in the 1D2

series between 14.0% and 15.5% for 30 ≤ n ≤ 100. This is
in agreement with an estimated triplet admixture into the
361D2 state of 19(6)% presented in Ref. [58].

6. 3D1 and 3D3

The 3D1 and 3D3 Rydberg states of 174Yb are not directly
laser accessible by two-photon laser spectroscopy through
the 6s6p 1P1 intermediate state. A few 3D1 and 3D3

Rydberg states have been observed in Refs. [61,124].
For the purposes of this work, we infer the quantum
defects of the 3D1 and 3D3 from laser-accessible D

FIG. 15. (a) Lu-Fano-type plot of the 174Yb 3P0 Rydberg series.
The theoretical bound states are indicated by red dots. Exper-
imentally observed states are indicated by black crosses
(Ref. [56]) and dots (this work). The error bars correspond to
the respective measurement uncertainties. (b) Deviation between
experimental and theoretical state energies. The energy devia-
tions and error bars in the gray shaded area are scaled by a factor
of 1000 to improve visibility of the much smaller errors observed
on the microwave transitions. (c) Q-channel contribution A2

Q to
the n 3P0 Rydberg states.

FIG. 16. g factors of the 1;3D2 and its perturbers as taken from
Ref. [59] and calculated with the MQDT presented in Supple-
mental Material Table S2 [70]. The error bars of the experimental
data are taken directly from Ref. [59] indicating the combined
uncertainties from statistical variations, magnetic field calibra-
tion, and residual systematic errors. The gray dashed lines
indicate the values for g factors in pure LS coupling.
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F ¼ 3=2 and D F ¼ 5=2 Rydberg states in 171Yb, as
discussed in Appendix E 3.
The quantum defects of the two series are well described

by a Rydberg-Ritz model

μðnÞ ¼ μ0 þ
μ2

ðn − μ0Þ2
þ μ4
ðn − μ0Þ4

ðD1Þ

for the states studied in this work with ν > 30. The
obtained expansion coefficients for the two series are
presented in Table I.
The inferred quantum defects for the n 3D3 Rydberg

series are consistent with the assignment of measurements
in 174Yb presented in Ref. [61] to within the stated
measurement uncertainties of 10 MHz. The inferred quan-
tum defects for the n 3D1 Rydberg series are consistent
with the assignment of measurements in 174Yb presented in
Refs. [61,124], but the Rydberg state energies deviate up to
40 MHz from the values presented in Ref. [61], which
could be due to the limited number of D F ¼ 3=2 states
with dominant 3D1 character observed in this work.

APPENDIX E: ADDITIONAL SPECTROSCOPIC
DATA AND MODELS FOR 171Yb

In this appendix, we give additional details about the
spectroscopic measurements and MQDT model develop-
ment for 171Yb.

1. S F= 1=2 and F= 3=2 states

There is only a single F ¼ 3=2 series with L ¼ 0, which
converges to the Fc ¼ 1 threshold and has 3S1 character.
We have measured the energy spacing between several S
F ¼ 3=2 Rydberg states and S F ¼ 1=2 or D F ¼ 5=2
Rydberg states using microwave spectroscopy in an atomic
beam. The experimental transition frequencies are pre-
sented in Supplemental Material Table S29 [70]. Because
of the small number of measured transitions to S F ¼ 3=2
Rydberg states, we model this series using the Rydberg-
Ritz model introduced for 174Yb [29] with parameters
optimized in the fit to the S F ¼ 1=2 Rydberg states
(presented in Supplemental Material Table S6 [70]). The
experimental and theoretical energies of the S F ¼ 3=2
Rydberg series agree to within the uncertainty of the initial
state energy used in the microwave spectroscopy.

In Fig. 5, we presented measurements of Stark shifts of S
F ¼ 1=2 Rydberg states. Most Rydberg states exhibit a
quadratic Stark shift at small electric fields, common for
nondegenerate Rydberg states, and we extract a static
polarizability by a quadratic fit to the observed Stark shift.
However, for cases in which the Rydberg state of interest is
very nearly degenerate with other Rydberg states (shaded
gray in Fig. 5), the Stark shift is not quadratic even at very
small electric fields. In Fig. 17, we present a field-
dependent shift measurement together with a nonperturba-
tive calculation, finding excellent agreement, highlighting
the accuracy of the obtained Rydberg state energies and
wave functions obtained by our MQDT treatment.
Figure 18 illustrates calculated transition dipole matrix

elements from the 6s6p 3P0 metastable state into S
(F ¼ f1=2; 3=2g) Rydberg states of 171Yb, which are
computed using the single active electron approximation.
The matrix elements to S ðF ¼ 1=2Þ Rydberg states are
generally smaller than the matrix elements to S ðF ¼ 3=2Þ
Rydberg states. However, at low effective principal quan-
tum numbers, the transition dipole matrix element to one of
the two S (F ¼ 1=2) Rydberg series is still comparable to
the S ðF ¼ 3=2Þ case, due to a dominant triplet character.
At larger effective principal quantum numbers, particularly
close to near degeneracies between the two S (F ¼ 1=2)
channels, the matrix elements vary strongly with the
effective principal quantum number, indicating strong
hyperfine-induced singlet-triplet mixing.

TABLE I. Rydberg-Ritz expansion coefficients of the n 3D1

and n 3D3 Rydberg states of Yb inferred from laser spectroscopy
of D F ¼ 3=2 and F ¼ 5=2 Rydberg states of 171Yb.

n 3D1 n 3D3

μ0 2.752 580 93 2.728 953 15
μ2 0.3826 −0.2065
μ4 −483.1 220.5

FIG. 17. Experimental Stark shifts (red dots) of 171Yb
jνFc¼1; L ¼ 0; F ¼ 1=2i Rydberg states with (a) νFc¼1 ≈ 65.68,
(b) νFc¼1 ≈ 66.68, (c) νFc¼1 ≈ 67.68, (d) νFc¼1 ≈ 64.09 compared
with theoretical Stark shifts (solid black line). The extracted
experimental Stark shifts at low electric field are presented in
subpanels of Figs. 5(d) and 5(e) as indicated by labels 1 to 4.
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2. P F= 1=2, F= 3=2, and F= 5=2 states

Here, we introduce MQDT models for P F ¼ 1=2,
F ¼ 3=2, and F ¼ 5=2 Rydberg states of 171Yb. There
are seven L ¼ 1 series in 171Yb. In LS coupling, they can
be described as 3P0ðF ¼ 1=2Þ, 1P1ðF ¼ f1=2; 3=2gÞ,
3P1ðF ¼ f1=2; 3=2gÞ, and 3P2ðF ¼ f3=2; 5=2gÞ. As in
the case of the jν; L ¼ 0; F ¼ 1=2i, we use the 174Yb
MQDT models of 1;3P1 and 3P0 (for F ¼ 1=2) and 1;3P1

and 3P2 (for F ¼ 3=2) as a basis for the 171Yb MQDT
model and introduce the hyperfine coupling in the ion-core
using a frame transformation (see Appendix A 2).
We optimize the MQDT model parameters for both the

F ¼ 1=2 and F ¼ 3=2 series using a weighted, least-
squares fitting procedure to a dataset containing Rydberg
state energies obtained in this work from microwave
spectroscopy (Supplemental Material Tables S30 and
S33 [70]) and from previous laser spectroscopy reported
Ref. [71] (Supplemental Material Tables S31 and S34 [70]).
In our fitting procedure, we treat all 171Yb MQDT model
parameters originating from the same 174YbMQDT models
as a single parameter. For example, both the 171Yb P
F ¼ 1=2 and P F ¼ 3=2 MQDT models contain a con-
tribution from the 1;3P1 MQDT model developed for 174Yb
in Appendix D 2. The resulting MQDT parameters for
F ¼ 1=2 and F ¼ 3=2 are presented in Supplemental
Material [70].
The state energies reported in Supplemental Material

Tables S31 and S34 [70] are obtained from isotope shift and
hyperfine-splitting measurements of the n 1P1 and n 3P0;1;2

Rydberg states using three-photon laser spectroscopy,
as presented in previous work [71] (reproduced in
Supplemental Material Tables S36 and S37 [70]). The
isotope shift and hyperfine splittings in Ref. [71] are
given with respect to 6 snp 1P1 and 6snp 3P1 Rydberg
states of 176Yb (reproduced in Supplemental Material

Table S38 [70]). The absolute uncertainty of the 176Yb
Rydberg state energies presented in Ref. [71] is stated to be
4 GHz, but we find that the stated (relative) hyperfine
splittings are more precise. To remove systematic errors on
the inferred absolute energies of the 171Yb P F ¼ 1=2 and
F ¼ 3=2 Rydberg states, we introduce the following
treatment.
For Rydberg states with principal quantum number

n > 20, Ref. [71] reports a nearly constant isotope shift
between 1;3P1 Rydberg states of 174Yb and 176Yb. For
n > 20, we therefore choose to reference the hyperfine
splittings against the accurate energies obtained from the
174Yb 1;3P1 MQDT model presented in Appendix D 2. The
remaining isotope shift between 171Yb and 174Yb Rydberg
states is accounted for by introducing a constant shift to
inferred absolute energies in order to minimize the devia-
tions to absolute energies inferred from microwave inter-
vals to the jν; L ¼ 0; F ¼ 1=2i Rydberg states.

For low-lying states 1;3P1 of 174Yb, we observe signifi-
cant deviations between experimental and predicted ener-
gies for 174Yb (Appendix D 2). For n ≤ 20, we therefore
choose to infer absolute energies of the observed P
Rydberg states in 171Yb by referencing the hyperfine-
splitting measurements to the observed absolute energies
of 176Yb, as presented in Ref. [71] (reproduced in
Supplemental Material Table S38 [70]). When applying
this treatment to the Rydberg state with n > 20, we observe
a systematic shift of the inferred energies compared to the
more accurate absolute state energies obtained from micro-
wave intervals to the jν; L ¼ 0; F ¼ 1=2i Rydberg states.
The mean deviation is approximately 1.4 GHz and is well
within the 4-GHz uncertainty stated for the 176Yb term
values reported in Ref. [71]. In an attempt to remove this
systematic shift, we add a constant energy offset to all 171Yb
P Rydberg states that were referenced to the 176Yb energies.
The resulting inferred absolute energies of jν; L ¼ 1;

F ¼ 1=2i and jν;L¼1;F¼3=2i Rydberg states are pre-
sented in Supplemental Material Tables S31 and S34 [70].

3. D F= 1=2, F= 3=2, F= 5=2, and F= 7=2

There are eight L ¼ 2 series in 171Yb. In LS coupling,
they can be described as 3D1ðF ¼ f1=2; 3=2gÞ, 1D2ðF ¼
f3=2; 5=2gÞ, 3D2ðF ¼ f3=2; 5=2gÞ, and 3D3ðF ¼ f5=2;
7=2gÞ. In 174Yb, spin-orbit coupling mixes the two
J ¼ 2 series as discussed in Sec. II; in 171Yb, hyperfine
coupling additionally mixes the three F ¼ 3=2 series and
the three F ¼ 5=2 series.
As in the case of the jν; L ¼ 0; F ¼ 1=2i Rydberg states,

we measure the energies of jν; L ¼ 2; F ¼ 3=2i and
jν; L ¼ 2; F ¼ 5=2i Rydberg states by laser spectroscopy
by a two-photon transition via the 6s6p 1P1ðF ¼ 3=2Þ
intermediate state. Transition frequencies to all measured
jν; L ¼ 2; F ¼ 3=2i and jν; L ¼ 2; F ¼ 5=2i states are

FIG. 18. Transition dipole matrix elements Qr;63P0
between the

6s6p 3P0ðmF ¼ þ1=2Þ metastable and Rydberg state r, where
r ¼ jν; L ¼ 0; F ¼ 3=2; mF ¼ þ3=2i (gray) and r ¼ jν; L ¼ 0;
F ¼ 1=2; mF ¼ −1=2i (red and blue, color code as in Fig. 3).
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summarized in Supplemental Material [70] and plotted on a
Lu-Fano-type plot in Fig. 19(a).
We use a least-squares procedure to obtain the MQDT

parameters for the F ¼ 3=2 and F ¼ 5=2 series. As in the
case of the P Rydberg states, we treat the MQDT
parameters that originate from the 174Yb models and occur
in both the F ¼ 3=2 and F ¼ 5=2 MQDT models as a
single parameter. The developed MQDT models describe
both the Rydberg state energies and the measured g factors
(summarized in Supplemental Material [70]) well over
nearly the entire energy range. Significant deviations for
both F ¼ 3=2 and F ¼ 5=2 occur toward low effective
principal quantum numbers. These deviations could arise
from unaccounted perturbers in the MQDTor from channel
interactions with additional ðF ¼ 3=2Þe Rydberg series.
In the case of F ¼ 5=2, we additionally observe slight
deviations between experiment and theory that could be
caused by uncompensated stray electric fields.

There is only a single D Rydberg series with F ¼ 1=2
(F ¼ 7=2) converging to the Fc ¼ 1 threshold with 3D1

(3D3) character. Because we use the 6s6p 1P1ðF ¼ 3=2Þ
(dominantly singlet character) state as an intermediate state,
the jν; L ¼ 2; F ¼ 1=2i (dominantly triplet character) and
the jν; L ¼ 2; F ¼ 7=2i Rydberg states are inaccessible by
direct laser spectroscopy. However, the fitted F ¼ 3=2 and
F ¼ 5=2 series MQDT models include a Rydberg-Ritz
model for the 3D1 and 3D3 series (Supplemental Material
Tables S9 and S10 [70]). Therefore, we use this model to
predict the positions of the F ¼ 1=2 and F ¼ 7=2 series.

APPENDIX F: POLARIZABILITY TRENDS IN
174Yb AND 171Yb S RYDBERG STATES

In Figs. 20 and 21, we present predicted polarizabilities
for L ¼ 0 states of both 174Yb and 171Yb. We note several
interesting features. First, the 174Yb 3S1 polarizability is

FIG. 19. Lu-Fano-type plot of the 171Yb (a) jν; L ¼ 2; F ¼ 3=2i and (b) jν; L ¼ 2; F ¼ 5=2i Rydberg states. The experimentally
observed Rydberg states are indicated by black dots and compared to theoretically obtained energies from the MQDT model (colored
dots) presented in Supplemental Material Tables S9 and S10 [70]. (c),(d) Deviations between the experimentally observed and
theoretically calculated state energies. (e),(f) Experimentally observed (full circles) and theoretically calculated g factors of the
jν; L ¼ 2; F ¼ 3=2i and jν; L ¼ 2; F ¼ 5=2i Rydberg states, respectively. Color coding as in (a) and (b). The gray dashed lines indicate
the values of Landé g factors in pure LS coupling.
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positive at low n and negative at high n, as the strongly
perturbed 3P0 and 3P1 series cross the 3S1 series in energy.
Second, the 171Yb polarizabilities have a much more
complex behavior, with multiple sign changes resulting
from a number of resonances.

APPENDIX G: RYDBERG-RYDBERG-
INTERACTION TRENDS

The van der Waals coefficientsC6 for the L ¼ 0 Rydberg
states of 174Yb and 171Yb Rydberg states are presented in
Fig. 22. In 174Yb, the C6 coefficients of 6sns 1S0 Rydberg
series are unusually small, consistent with the single-
channel calculations of Ref. [89] (we additionally note a
Förster resonance around ν ≈ 50, which arises from the
inclusion of singlet-triplet mixing in the 1;3P1 Rydberg
series). Similar Förster resonances have also been predicted

for 3D2 and 1;3F3 states of 88Sr [68]. In contrast, the C6

coefficients of 6sns 3S1 Rydberg states of 174Yb are
larger, consistent with previous estimates [29] and obser-
vations [99], but calculated here for the first time. The C6

coefficients of this series are the same magnitude as for the
ns1=2 Rydberg states of rubidium, but with opposite sign
(i.e., attractive).
As in the case for 1S0 Rydberg states of 174Yb, the

singlet-connected jν; L ¼ 0; F ¼ 1=2i Rydberg states of
171Yb (blue dots in Fig. 22) have small C6 coefficients in
the range 40 ≤ ν ≤ 70. The triplet connected jν; L ¼ 0;
F ¼ 1=2; mFi states have C6 coefficients that are approx-
imately half the magnitude of Rb, with the same sign (i.e.,
repulsive).
As pointed out in Sec. IV, jν; L ¼ 0; F ¼ 3=2ijν; L ¼ 0;

F ¼ 3=2i Rydberg-pair states of 171Yb have small Förster
defects over a large range of effective principal quantum

FIG. 20. Predicted absolute static dipole polarizabilities of
Rydberg series of 174Yb for (a) 6sns 1S0 and (b) 6sns 3S1. Circles
indicate positive values of α0, whereas squares indicate negative
values of α0. The gray dashed lines in (a) and (b) serve as a guide
to the eye, indicating a ν76s scaling.

FIG. 21. Predicted absolute static dipole polarizabilities of
Rydberg series of 171Yb with (a) S F ¼ 1=2 (color code as in
Fig. 3) and (b) S F ¼ 3=2. Circles indicate positive values of α0,
whereas squares indicate negative values of α0. The gray dashed
lines in (a) and (b) serve as a guide to the eye, indicating a ν7Fc¼1

scaling.
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number ν (Fig. 23). It is surprising that the Förster defect is
so small over such a large range of ν, which results from a
combination of series perturbers and hyperfine coupling.
To calculate a meaningful asymptotic C6 coefficient, we
calculate the pair potentials under a 30-G magnetic field to
lift the degeneracy somewhat [Fig. 22(c)]. The extracted C6

coefficients are not meaningful at short separations, which
are dominated by resonant dipole-dipole interaction, as
shown in Fig. 7.
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