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We consider additive Schwarz methods for boundary value problems involving the p-Laplacian. While
existing theoretical estimates suggest a sublinear convergence rate for these methods, empirical evidence
from numerical experiments demonstrates a linear convergence rate. In this paper we narrow the gap
between these theoretical and empirical results by presenting a novel convergence analysis. First, we
present a new convergence theory for additive Schwarz methods written in terms of a quasi-norm. This
quasi-norm exhibits behaviour akin to the Bregman distance of the convex energy functional associated
with the problem. Secondly, we provide a quasi-norm version of the Poincaré—Friedrichs inequality, which
plays a crucial role in deriving a quasi-norm stable decomposition for a two-level domain decomposition
setting. By utilizing these key elements we establish the asymptotic linear convergence of additive Schwarz
methods for the p-Laplacian.

Keywords: additive Schwarz method; p-Laplacian; linear convergence; quasi-norm; Poincaré—Friedrichs
inequality; convergence analysis.

1. Introduction

Let Q be a bounded polygonal domain in R? with the Lipschitz boundary 6Q2. Given p € (1,) we
consider the following p-Laplace equation:

-V - |VulPVu

[ inQ,

<
1}

0 onoQ, (1.1)

where f € L7 (@) with p* being from the equation 1/p + 1/p* = 1.

The p-Laplacian is a standard example of nonlinear elliptic problems (Benedikt ez al., 2018). Fur-
thermore, it has a number of application areas, including glaciology, non-Newtonian fluids (Shapovalov,
2017), nonlinear diffusion and nonlinear elasticity; see Diaz (1985) and references therein. Thus, there
has been extensive research on (1.1), especially for numerical solutions of (1.1). Some important early
results can be found in Glowinski & Marrocco (1975); Ciarlet (2002). Finite element methods for the
p-Laplacian were analysed in terms of the quasi-norm in Barrett & Liu (1993, 1994). Further studies
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2 Y.-J. LEE AND J. PARK

on error estimates for the p-Laplacian in terms of the quasi-norm were conducted in Liu & Yan (2001,
2002); Ebmeyer & Liu (2005); Carstensen et al. (2006). Linear convergence of adaptive finite element
methods for (1.1) was shown in Diening & Kreuzer (2008). Numerical homogenization for multiscale
p-Laplacian problems was investigated in Liu ez al. (2021).

It is well known that the boundary value problem (1.1) can be formulated in the following weak form

(Glowinski & Marrocco, 1975; Ciarlet, 2002): find u € W})’”(Q) such that

/ /
[VulP=Vu - Vvdx = fvdy, ve IQ),
Q Q
where W(i)’P(Q) is a usual Sobolev space consisting of the [7(Q)-functions vanishing on 02 with
(L7(Q))*-gradient. Equivalently, it is interpreted as the following convex optimization problem:

Y / / i

in Fw):= VPP dx—= frdx . (1.2)
vl * (@) Q o

" =

That is, one may deal with the convex optimization problem (1.2) to obtain a solution of (1.1). Based on
the convex optimization formulation (1.2) multigrid and preconditioned descent methods were proposed
in Bermejo & Infante (2000) and Huang ef al. (2007), respectively. In particular, the framework of
subspace correction methods (Xu, 1992) for (1.2) were considered in Tai & Xu (2002); Park (2020).

This paper is concerned with numerical solutions of boundary value problems involving the p-
Laplacian by additive Schwarz methods. Additive Schwarz methods, also known as parallel subspace
correction methods, have been broadly used as efficient numerical solvers for large-scale scientific
problems; see Xu (1992); Toselli & Widlund (2005) and references therein for relevant results on
linear problems. In additive Schwarz methods the domain of a target problem is decomposed into a
union of several subdomains, and optimal local corrections on the subdomains with respect a numerical
approximation for the solution are computed in parallel. The numerical approximation for the solution is
iteratively updated by collecting all the local corrections. Due to their parallel structures additive Schwarz
methods are suitable for massively parallel computation using distributed memory computers. In the
past decades there have been a number of results on additive Schwarz methods for large-scale convex
optimization problems. The framework of additive Schwarz methods was first considered for convex
optimization in Tai & Espedal (1998), and subsequently applied to the p-Laplacian in Tai & Xu (2002).
These methods have since been further investigated in several studies, including Badea (2006, 2019);
Park (2020, 2022).

The convergence rate of additive Schwarz methods for the p-Laplacian problem (1.1) was first
_ ppY

analysed in Tai & Xu (2002); the O(n P777V] energy convergence of the methods was proven,

where n denotes the number of iterations, p = min{p, 2}, and p = max{p, 2}. Recently, Park (2020)
- P(p=1)

showed that the methods satisfy the improved O(n 77_) convergence rate (see Proposition 2.3). The

results in both Tai & Xu (2002) and Park (2020) are based on some estimates for the Bregman distance

of the energy functional F in (1.2). Roughly speaking, these estimates are written as

w N = v <D (u,v) <L llu=v e . u,ve WP(Q), (1.3)
b e F po Mm@ °
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 3

where z-and L, are positive constants independent of u and v, and Dg(u, v) is the Bregman distance of
F defined by

Dg(u,v) = F(u) — F(v) — (F(v), u- v}, u,ve WHr(Q). (1.4)

Here, FY(v) stands for the Frechét derivative of F" at v given by

/ /
(F‘(v), w} = [VV[P=2Vy - Vwdx = fwdx, we WFQ). (1.5)
Q Q

One may refer to Tai & Xu (2002, Lemma 2.1) and Park (2020, Section 6.1) for details on the estimate
(1.3).

While both Tai & Xu (2002) and Park (2020) proved the sublinear convergence of additive Schwarz
methods for the p-Laplacian, it was observed numerically in several works that the methods actually
converge linearly; see, e.g., Park (2021, Fig. 2). Indeed, as we will demonstrate in the numerical
experiments presented in Section 5 of this paper, additive Schwarz methods for (1.1) exhibit linear
convergence empirically under various settings on discretization and domain decomposition. More
precisely, each convergence curve of the energy error with respect to the number of iterations seems
linear in the x-linear y-log scale plot when the number of iterations is sufficiently large, which means
that the energy error decays exponentially as the number of iterations increases. This implies that the
existing convergence estimates for additive Schwarz methods for the p-Laplacian may not be optimal.

The main motivation of this paper is to discuss a linear convergence analysis for additive Schwarz
methods to solve the p-Laplacian problem (1.1). As we mentioned above, while the existing theoretical
estimates (Tai & Xu, 2002; Park, 2020) for the convergence rate of additive Schwarz methods for the
p-Laplacian are sublinear, the empirical convergence rate observed by numerical experiments is linear.
This discrepancy between theoretical and empirical results motivates our work, as we aim to bridge
this gap by rigorously proving the asymptotic linear convergence of additive Schwarz methods for the
p-Laplacian.

In (1.3) p and p do not agree if p /= 2, so that the lower and upper bounds for D(u, v) are expressed
in powers of llu = vllyn, o) with different exponents. This discrepancy indicates that a power of norm
is not adequate as a tight two-sided approximation for the Bregman distance; whenever we establish a
bound for Dr(u, v) in terms of llu = vlly1, ) or vice versa we suffer from a kind of looseness. We
claim that the sublinear convergence rates given in the existing works (Tai & Xu, 2002; Park, 2020) are
caused by this looseness. To overcome this issue we propose to use the quasi-norm developed in Liu &
Yan (2001, 2002); Ebmeyer & Liu (2005); Carstensen ef al. (2006), which is relevant to the problem of
consideration and approximates the Bregman distance appropriately, and then to derive the convergence
estimate in terms of the quasi-norm. This approach is similar to obtain the convergence measure of the
iterative method using the energy-like metric relevant to the problem to be solved, as discussed in Lee
etal. (2008, 2009). We denote the quasi-norm by Il Il v, (see (3.1)) and show that

Lp
upllu = Viltwy) < Dp(u,v) < Lllu - vllz(vv), u,ve Wo (Q) (1.6)

for some positive constants 4, and L, (see Lemma 3.3), i.e., llu = vl* o, approximates Dy(u,v) well
up to a multiplicative constant. Meanwhile, we note that the quasi-norm Il - Il y,), along with several
alternative versions described in Diening & Ruizic¢ ka (2007), Diening & Kreuzer (2008), do not induce
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4 Y.-J. LEE AND J. PARK

a norm. As a result existing convergence theories for additive Schwarz methods (Tai & Xu, 2002; Park,
2020) cannot directly utilize the estimate (1.6). A novelty in this paper is that, by extending the idea of
Park (2020), a new convergence theory for additive Schwarz methods is obtained in terms of the quasi-
norm, which utilizes (1.6) to obtain the asymptotic linear convergence rate of additive Schwarz methods
for the p-Laplacian. In our linear convergence analysis a quasi-norm version of the Poincaré—Friedrichs
inequality (see Lemmas 3.4 and 3.5) plays a critical role. We validate this asymptotic linear convergence
result numerically in Section 5.

The rest of this paper is organized as follows. In Section 2 we present finite element approximations,
domain decomposition settings and a two-level additive Schwarz method for the p-Laplacian problem.
An asymptotic linear convergence analysis of the two-level additive Schwarz method is given in
Section 3. In Section 4 we present details of the quasi-norm Poincaré—Friedrichs inequality that is used
in the convergence analysis of the methods. In Section 5 we provide numerical results of the two-level
additive Schwarz method for the p-Laplacian problem across various settings. Finally, we provide a
concluding remark for our paper in Section 6.

2. Additive Schwarz methods

In this section we introduce finite element spaces and domain decomposition settings for the p-Laplacian
problem (1.2). Based on these settings we present a two-level additive Schwarz method for (1.2) and its
convergence theory, which explains the asymptotic linear convergence of the algorithm.

In what follows the notation 4 ;S B means that there exists a constant ¢ > 0 such that 4 < ¢B,
where c is independent of the geometric parameters H, 4 and ¢ relying on discretization and domain
decomposition. We also write 4 = Bif 4 ;S Band B ;S A.

2.1 Discretization and domain decomposition

Let T;, be a quasi-uniform triangulation of Q with / the characteristic element diameter. The collection
of continuous and piecewise linear functions on T}, vanishing on 02 is denoted by V' = S,(Q). Clearly,
we have V' © W})’w(Q). For continuous functions the nodal interpolation operator /; onto S,(Q2) is
well-defined.

In what follows we consider the following conforming finite element approximation of (1.2) defined
on/V:

min F(u). 2.1)

uelV

A unique solution of (2.1) is denoted by u* € V. Convergence properties of (2.1) as 4 - 0 can be found

in Barrett & Liu (1993); Ciarlet (2002).
Next, we describe domain decomposition settings for the problem (2.1). We assume that 2 admits
another quasi-uniform triangulation Ty with H the characteristic element diameter such that T;, is a

refinement of Ty . A finite element space Sy(Q) is defined in the same manner as Sj,(Q). In the two-
level additive Schwarz method for (2.1) T, and Ty will play roles of fine and coarse meshes, respectively.

Let {Q;}V~; be anonoverlapping domain decomposition of Q such that each £ is the union of several
coarse elements in Ty and the number of coarse elements consisting of € is uniformly bounded. For
cach subdomain £y, 1 < k < N we consider an enlarged region &' consisting of the elements 7' € T),

with dist(7, Q) < 6. Then {Q%}%=1 forms an overlapping domain decomposition of Q. We define
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 5

t Lot
Sp() < Wy (€)) as the piecewise linear finite element space on the Tj|ot with the homogeneous
essential boundary condition.
We set

Vo =Su(R), Vi=Sp), 1<k<N.
A two-level domain decomposition for V' is given by

|_N
V=R, 2.2)
k=0
where Rk Vi — V, 1 <k < N is the natural extension-by-zero operator and R*: V; — V is the natural
0

interpolation operator. Let {#;}",_, be the piecewise linear partition of unity for Q subordinate to the

covering {4})_, that was presented in Toselli & Widlund (2005, Eq. (3.7)). It is known that {6;}" _,
satisfies the following properties:

6r=0 onQ\Q, (2.3a)
[
O=1 ongQ, (2.3b)
k=1
1
llvgk”L”’(Qt)k ,S 55 l1<ksN. (23(3)

The following lemma summarizes an important result on stable decomposition for the two-level domain
decomposition (2.2) (see Tai & Xu (2002, Lemma 4.1)).

Lemma 2.1. Forw € V, let wy € ¥} be the L?(Q)-orthogonal projection of w onto ¥, and let wy, € V},
1 < k< N, such that

R*Wk = Ih(Gk(w - R*W()))
k 0

Ly
Fors = 1 we have w = o R"'wy and

=k

{ ¥
Tewd 8 1+ (g
k

) 5 e
=0

Using the usual colouring technique one can prove that the two-level domain decomposition (2.2)
enjoys the strengthened convexity condition (see Park (2020, Assumption 4.2)).

Lemma 2.2. Let N, be the minimum number of colours such that {Qt}Y =1 1s coloured in a way that the
subdomains with the same colour do not intersect with each other, and let 7o = 1/(N, + 1). For any
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6 Y.-J. LEE AND J. PARK

veV,w,eVy,0<k<N,andt € (0,7y], we have

{ ¥
0y
(A=tN+DF@) *T  Fv+Rwy) 2F 41 p
k=0 k=0
Proof. See Park (2020, Section 5.1). For suitable overlaps we have N, =4 (Tai & Xu, 2002). ]

2.2 Two-level additive Schwarz method

The two-level additive Schwarz method for (2.1) based on the space decomposition (2.2) is described
in Algorithm 1. It is worth noting that this algorithm has been investigated in several prior works.
The algorithm for smooth convex optimization was first considered in Tai & Espedal (1998), and then
applied to the p-Laplacian in Tai & Xu (2002). Later, the framework was generalized to constrained
and nonsmooth convex optimization problems in Badea (2006) and Park (2020, 2021), respectively. The
constant 7o in Algorithm 1 was given in Lemma 2.2.

Algorithm 1 Two-level additive Schwarz method for (2.1)

Letu™® € V and 7 € (0, 7).
forn=0,1,2,... do

w™V = argmin,, Fu™ +Rw), 0<k<N

k k€Vk k k
N
Lo

u(n+1) = u(n) +7 R*]i,v 3 )
k=0

end for

The following proposition summarizes the sublinear convergence rate of Algorithm 1 analysed in
Park (2020, Theorem 6.1). It was discussed in Park (2021, Remark 4.2) that the rate presented in
Proposition 2.3 is the sharpest estimate among the existing ones (Tai & Xu, 2002; Badea, 2006; Badea
& Krause, 2012; Park, 2020).

ProposrTioN 2.3. In Algorithm 1, we write ¢, = F(u™)—-F(u*) for n 2 0. There exist positive constants
{* and ¢, depending on u, T and H/5, such that )

T T R

P
* -1
g -ear, G <
where p = min{p, 2} and p = max{p, 2}. Consequently, we have
1
Cn 1S E[E_l)

(c’(n+1) 7*

for sufficiently large n 2 0.
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 7

Proof. See Park (2020, Section A.4). |

While Proposition 2.3 ensures the sublinear convergence of Algorithm 1, as we will see in Section 5,
the actual numerical behaviour indicates linear convergence. This observation motivates us to develop
a new convergence theory for Algorithm 1 that can explain the linear convergence. We summarize our
main result, the asymptotic linear convergence of Algorithm 1, in Theorem 2.4. The proof of Algorithm
1 will be provided in Section 3. We highlight that Theorem 2.4 stands as the first theoretical result that
explains the linear convergence of the additive Schwarz method for the p-Laplacian.

TueoreM 2.4. If the solution u* € V of (2.1) satisfies that |[Vu’| does not vanish on Q then, in Algorithm
1, we have

F@u™V) = F(w) -

lim sup |
- - V >

noo  Fu™) = F(u)

where y is a positive constant depending on p, u*, H, ¢ and t such that

1
(H_pbmin{ 5

N _PF
73S 1+C,, ¥

>

and the constant E‘;;,FM* is given in either Lemma 3.4 or Lemma 3.5.

Regarding the condition in Theorem 2.4 that requires the finite element solution u* to satisfy [Vu| /=

0 on Q, we discuss its validity for extreme values of p, particularly when p is either very large or close to

1. As we will demonstrate in Section 5, for large p, the solution may develop a singularity (see Fig. 2(e,

f)). Fortunately, this singularity does not violate the condition |Vu*| /= 0. However, when p is close to

1 the solution may exhibit a flat region, potentially leading to a vanishing gradient (see Fig. 2(a, b)).
Consequently, the applicability of Theorem 2.4 to cases near p = 1 may be limited.

Despite the potential limitations in applying Theorem 2.4 to such cases it remains practically relevant,
as many real-world applications involving the p-Laplacian typically utilize moderate values of p. For
instance, in modelling nonlinear Darcy law for fluid flows, as discussed in Benedikt ez al. (2018),
physically meaningful values for p are generally greater than 3/2.

We conclude this section by mentioning several acceleration methodologies that can be applied
to Algorithm 1. In Park (2021, 2022) acceleration schemes for additive Schwarz methods for convex
optimization were proposed. As the energy functional F is convex these schemes can be directly
applied to Algorithm 1 to yield accelerated variants. These accelerated methods show faster convergence
behaviours than the vanilla method, while they have essentially the same computational cost per iteration;
see Park (2022) for relevant numerical results. We do not deal with the accelerated methods in detail
because they are beyond the scope of this paper.

3. Convergence analysis

The main objective of this section is to prove Theorem 2.4, which is the asymptotic linear convergence
theorem for the two-level additive Schwarz method for the p-Laplacian. We begin by presenting some
useful properties of the quasi-norm Il ll v, (Liu & Yan, 2001; Ebmeyer & Liu, 2005), which is defined
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8 Y.-J. LEE AND J. PARK

as

/
”W”%VV) = (Vw|+ |[Vv|)P=2 |[Vw|? dx, v,we W(Q). 3.1
Q

Subsequently, we prove Theorem 2.4 by verifying a certain quasi-norm stable decomposition property
(Tai & Xu, 2002; Park, 2020).
3.1 Properties of the quasi-norm

The quasi-norm Il - Il g, given in (3.1) satisfies a scaling property in the sense that the lltwlly,) is

bounded by llwlly,) multiplied by * for some « € R, where v, w € W'*(Q) and ¢ € [0, 1]. Lemma 3.1
summarizes such a property.

Lemma 3.1. For any v,w € W'"(Q) and ¢ € [0, 1], we have

max{p,2} 2 2 < min{p,2} 2
WL, < il < ¢ lwllZ,

Proof. Suppose that p € [2, »). Since the map x i~ x”~2 (x 2 0) is increasing we get

/

iy, < (AVwI+ 9172 eVl dx = Pllwdlg,,
/

Iltwll(zvv) = Y (t|IVw|+ {|Vv)P=2 |tV w|? dx = t”llwllz(vv).

The case p € (1, 2) can be shown by a similar argument using the fact that the map x i~ ¥~ (x 2 0) is
decreasing. m]

The following lemma states that llu=vll g, is bounded by llu=vll v, up to a multiplicative constant
independent of u, v € W'(Q).

Lemma 3.2. For any u, v € W'?(Q), we have

e — vll%vv) < 21P-2ly - vII%VM) .

Proof. Invoking the vector inequality

IE+nl+ISIs 208 +nl+ ), & neR?

we get

/
e =My = AV = )|+ [V Ve = w)P d

< 2lp=2l (VO =Wl Vulr= Vv = dx = 2021l = Wil

which completes the proof. ]
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 9

In Barrett & Liu (1993, 1994) the following vector inequalities were established: there exist two
positive constants C; and C; such that, for any &, # € R?, the following hold:

&3¢ - In)lp‘zn 1< CE = nl A&+ In)P—2, (3.2a)

IE1P2¢ = 1=y - (& =n) 2 Col& = nl? (AE]+ InD" (3.2b)

Using (3.2) and proceeding similarly to Barrett & Liu (1993, Theorem 2.1) we prove Lemma 3.3, which
says that the estimate (1.6) actually holds. Lemma 3.3 will play an important role in proving (3.8); see
also Liu et al. (2021, Lemma 2.3).

Lemma 3.3. There exists positive constants , and L, depending on p such that, for any u, v € W (Q),
we have

upllu = vll(zvv < Dp(u,v) < Lyllu - vIl?vV).

Proof. By the definition of Dg(u, v) given in (1.4) and the fundamental theorem of calculus, we have

/4
Dy, v) = p (FOv+tu=v),u=v)ydt = (F'(v),u-v)
1

l t t
. Z(F (v+tu—v))—F (v),t(u—v))dt.

With u;, = v + t(u — v) we see that

as) fiy/ o« - -
=  Vu TV, = VPTY - Vu, = v) dx dt
o7
) 2 11 1
< - qVul  Vu = |V VvV -v) dxdt
0 t t t

520 /.27 : ¢

DF(ua V)

1 21

12
o 1 o |V |+ [V Viu,—v) dxdt

/o] o )
= t (Vv+tu-v)|+|Vv) [V —v)| dxdt.
0 Q

Now, we invoke the inequality

é(lfl+ lnD < |& + |+ |E]< 2781+ D), <.neR2%2e]0, 1], (3.3)

to obtain that

/1 /
Dp(u,v) S tdt- (IVv[+ [V = )PP [Vu =)l dx =llu =iy, .
0 Q
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10 Y.-J. LEE AND J. PARK

Hence, we proved Dp(u, v) ;S llu = vIP ) - The inequality Dp(u,v) ,2 llu = vllz(VV) can be shown in a
similar manner using (3.2b) and (3.3). ]

3.2 Quasi-norm stable decomposition

The core step in the convergence analysis of additive Schwarz methods typically involves verifying
a stable decomposition property; see, e.g., Tai & Xu (2002, Eq. (13)) and Park (2020, Assumption
4.1). In this section we derive a quasi-norm stable decomposition property associated with the space
decomposition (2.2). A key distinction of the quasi-norm stable decomposition property considered in
this section compared with the existing ones is that we use the quasi-norm Il Il y,), while the existing
ones are written in terms of norms. As (1.3) implies a power of norm cannot approximate the Bregman
distance of F' by a multiplicative constant if p /= 2. Our main insight is that if the quasi-norm can
approximate the Bregman distance of F up to a multiplicative constant, i.e., if it satisfies an estimate
of the form (1.6), then we can derive the asymptotic linear convergence of Algorithm 1 using this
property.

We recall that two key ingredients for the stable decomposition analysis for linear elliptic problems
are the Poincaré—Friedrichs inequality and interpolation error estimate; see Toselli & Widlund (2005,
Chapter 3). Therefore, we need to establish these theories with respect to the quasi-norm for the stable
decomposition analysis of the p-Laplacian.

In Lemmas 3.4 and 3.5 we present quasi-norm Poincaré—Friedrichs inequalities for the cases p €
(2,) and p € (1, 2), respectively, that are suitable for our purposes; more general results are proven in
Section 4.

Lemma 3.4, Letp € (2,) and v € S;,(2). Assume that every maximal polygonal region R € Q with

|[Vv] /= 0 satisfies that RN OQ contains an element edge. Then there exists a positive constant CP,F,’\such
that

/
(Iwl+ [VvDP2lw]? dx < Coiliwlly,), W € WP(Q).
Q

Moreover, if |Vv| does not vanish on € then C** has an upper bound GEF that is continuous at v in
P pv
SH(Q).

Lemma 3.5. Letp € (1,2) and v € S;(Q). Assume that every maximal polygonal region S € Q with

|[Vv|= 0 satisfies that 6SN AL contains an element edge. Then there exists a positive constant C*}, such
that

/
Q(|w|+ Vv |wldx < CBRllwlidy,),  w & WEP(Q).

Moreover, if |Vv| does not vanish on ©Q then C’F has an upper bound CGEF that is continuous at v in
v pv
Sp(Q).

As stated in Lemmas 3.4 and 3.5 the quasi-norm Poincaré—Friedrichs inequality holds for all choices
of v except for certain exceptional cases, which are detailed in Examples 4.8 and 4.15. Moreover, in most
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 11

cases, the constant Clg’,fvdemonstrates only a weak dependence on v. By the quasi-monotone argument
(Galvis & Efendiev, 2010; Pechstein & Scheichl, 2013) presented in Section 4 we can ensure that the
value of CBY, is influenced by the local variation of [Vv| only. Consequently, even if [Vv| exhibits
significant global variation C‘;F’Vhas a moderate value. One may refer to Scheichl ez al. (2012) for relevant
numerical evidences.

REMARK 3.6. As noted in Lemmas 3.4 and 3.5, the quasi-norm Poincare—Friedrichs inequality may
not hold in cases where Vv vanishes in a certain pattern, which makes the convergence analysis of
the algorithm challenging. In order to address this issue one may consider regularization techniques

as described in Diening et al. (2020); Liu ef al. (2021). However, we do not adopt such techniques
since they require a delicate convergence analysis for the case when the regularization parameter
tends to 0.

Next, we establish a quasi-norm error estimate for the nodal interpolation operator /;, onto the finite
element space Sj,(Q), as summarized in Lemma 3.7.

Lemma 3.7. Letw € WB’P(Q) be a continuous, piecewise quadratic function defined on T, and let
v € §,(Q). Then, there exists a positive constant C, independent of w, v and 4, such that

Wl gy < Cliwll gy

Proof. Take any T € T;,. We first prove that I, achieves the local W!!-stability; invoking the inverse

inequality (Ern & Guermond, 2021, Lemma 12.1) and the H'-stability (Toselli & Widlund, 2005, Lemma
3.9) yields

|[hW|W1,1(T) ) hllhlel(D S hllel(T) ;S |I”W|W1’1(T)' (3.4

Now, we proceed similarly as in the proof of Diening & Riizic¢ ka (2007, Theorem 4.5). Recall that |Vv|

is constant on T, say @ = |Vv| 2 0. Since the map x i~ (x + ¢)’~%x* (x 2 0) is increasing and convex,
we have

/
(AVGwl+ Q)P (@w)? dx
T
(i)/ ( _2/ ~p-2 C / 2
S hT Naweldy +a 2 Vaw)ldy &
T
« 7/
(3.4) _ “p=2 ( / )
SH K2 Vwldv+a D k2 [Vwldy
7 T
i /

S (IVwl+ @) [Vwl dy, (3.5)
T
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12 Y.-J. LEE AND J. PARK

where (i) is due to the inverse inequality (cf. Diening & Riizi¢ka (2007, Eq. (2.4)))

[ulprory sS W |ulpragry, — u e SwQ),

and (ii) is due to the Jensen inequality. By summing (3.5) over all elements 7 € T, we arrive at the
conclusion. o

Using Lemmas 3.4, 3.5 and 3.7, we obtain the following quasi-norm stable decomposition result.

Lemma 3.8. Suppose that p € (1, ) and v € V satisfy either the assumptions in Lemma 3.4 or those
in Lemma 3.5. Then there exists a positive constant CSD depending on p and v such that the following
holds: for any w € V there exist w, € V;,0 Sk < N, such that

1
w = R]:Wk,
k=0
v, D, v+ Rw ,v) < CPlwll? |
k k DV W)
k=0
(Ii—p
va S1+ C P

where the constant C}, was given in either Lemma 3.4 or Lemma 3.5.

Proof. Throughout this prooflet an index 4 runs from 1 to N. Take any u,v € V,and letw =u —v. We
define wy € Vy and wy, € V}, as

wo=1 w, Rw=10W),
H k k h k
where I;{ is the Scott—Zhang quasi-interpolation operator onto Sg(Q) (Scott & Zhang, 1990), and w =
L
w = Rgvy. It is clear that w = R'wjy + N 18 wrInvoking Lemma 3.3 and Diening & Ruizic¢ka (2007,

Theorem 4.5), we have

Dp(v+ Rwo,v);SIT wl> Slwl? . (3.6)
0 H (W) (Vv)

Similarly, Lemmas 3.3 and 3.7 imply

N N

L, |—1
Dp(v+Rwiv);S W00 Py S NO0IR g, (3.7)
k=1 k=1
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 13

Note that the map x i~ (x + a)’~%x* (x 2 0) is increasing for any a 2 0. It follows that

/ i ¢y ¢,
II&kv"vllz(vv) < O Vw|+ | w |IVO+ [V P O Vw|+ | w ||VO ~ dx

Q

-/ / .

/o ¢ ¢ i ¢ ¢,

8 vt wl T igvn Cacr T vege o T fvey
Q Q

(ii) / 5 5

S iy + 5, , (DD 2 1l e

! PP

® 1+ CF il , 3.8)

where (i) is because of the triangle inequality-like result presented in Liu & Yan (2001, Lemma 5.4),
(i1) is due to (2.3) and (iii) is due to Lemmas 3.4 and 3.5. Meanwhile, we observe that Diening & Rizi¢ ka
(2007, Theorem 4.6) implies

. _ ~ 2
Ilwllﬁvv) =llw— IHW”(VV) S HPIIwIIZNV) . 3.9
Combining (3.6), (3.7), (3.8) and (3.9) yields the desired result. |

REmARk 3.9. The estimate presented in Lemma 3.8 is not as sharp as the one in the norm-stable
decomposition result given in Lemma 2.1. Specifically, in Lemma 3.8, the power of H/d is p, while
in Lemma 2.1, it is p — 1. The norm-stable decomposition achieves the sharp (H/J)"~!-result using a
trace theorem-type argument introduced in Dryja & Widlund (1994); see also Toselli & Widlund (2005,
Lemma 3.10). Unfortunately, we were unable to make a similar argument in our quasi-norm analysis
because the quasi-norm does not have a notion of trace. To obtain a sharp estimate it will be necessary
to define an appropriate trace for the quasi-norm, which is remained as a topic for future research.

3.3 Proofof Theorem 2.4

The proof of Theorem 2.4 presented here uses a similar argument to Park (2020). However, due to the
nonlinearity of the quasi-norm Il Il ,), we have to make a careful consideration on dealing with Il ll v, .
In Lemma 3.10 we state the generalized additive Schwarz lemma (see Park (2020, Lemma 4.5)) applied
to Algorithm 1 in a form suitable for our purposes.
Lemma 3.10 (generalized additive Schwarz lemma). Let {u”} be the sequence generated by Algorithm
1. Then it satisfies
f
u™V e argmin,.y Fu™)+ (Fu™),u — u™)+ M, (u,u™) ,

where the functional M, : V' x V' — R is given by

ILN N |
M, (u,v) = zinf Dp(v+Rw,,v):u—-v=r Rhwe,w, € V, u,vev.
k=0 k=0 ’
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14 Y.-J. LEE AND J. PARK

Proof. Here, we provide a simple proof that does not rely on convex analysis tools. We define a functional
0,:V—-Ras

O,(u) = Fu™) + (F{(u™), u = u™)+ M, (u, u™), uelV.

For any u € V, invoking (1.4) with some direct computation yields

ij_ i I
0,(u) = (1 —tN)Fu™) + t inf Fu™ +Rwy) cu—u™ =1 Rwp,wi €V,
k=0 k=0
LY
2(1=-tN)Fu™)+7 min Fu™ + Rwy)
=0 wkeVk
)
= (1 - tN)Fu™) +7  Fu™ + Rw)
k=0

= Q,u™V).

That is, #™*" minimizes Q,, which is our desired result. O

In the following text, similar to Park (2020, Lemma 4.6), we prove that M, defined in Lemma 3.10

is bounded below by Dr and above by Il IIZNV , up to a multiplicative constant. We note that Lemma 3.11
can be regarded as a variant of the Lipschitz-like/convexity condition discussed in Teboulle (2018).

Lemma 3.11. Suppose that p € (1,) and v € V satisfy either the assumptions in Lemma 3.4 or those
in Lemma 3.5. Then we have
Y
DF(M,V) SMT(M,V) < m”u_vn%vv), ue I/,

where CSP and M were defined in Lemmas 3.10 and 3.8, respectively.
v T

Proof We defineu € V by the following:

_ 1
u —v=_(u-v).
T

By Lemma 3.8 there exist w; € V;,0 < k< N, such that

Y, _
Dp(v+Rw yv) S Cllu - VIIZ(W) .
=0
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 15

L
Note thatu —v=17¢ 18 Ry 1t follows by Lemma 3.1 that

’ — CSD
T Dp(v+Rpwv) StCNu iy, <
=0

lv —
rmax{p,2}-1 |ue V”&V)'

Meanwhile, invoking Lemma 2.2 yields

N N
I_, I—v
t Dp(v+Rwpv) =t F(v+Rwy —o(N+ 1DF®©v) = (F(v),u=v) 2 Dp(u, v),
k=0 k=0
which completes the proof. mi

By closely following the argument in (Park, 2020, Appendix A.4) and manipulating Il- Il g,)-terms
using the properties of II- Il ,) presented in Lemmas 3.1 to 3.3 we establish the following lemma, which
provides an estimate for the ratio of two consecutive energy errors in Algorithm 1.

LemMma 3.12. In Algorithm 1 suppose that v = u® satisfy either the assumptions in Lemma 3.4 or those
in Lemma 3.5 for some 7 2 0. Then we have

¥{ . ¥
Fu™V) = F(u) I T
S 1 - 1 J— - B N
Fu™) - F(u*) p 20,

where p = min{p, 2}, p = max{p, 2}, p” = |p - 2| and y, and C;]z(w were given in Lemmas 3.3 and 3.8,
respectively. ,

Proof. Fort €0, 1] we write
wu, =u™ + t(w —u™). (3.10)
Then we have

Fu™V) = Fu®™) + (Fu™), u™V — u™)+ DF(u(””), u®™)

(@ (n t @ () (n (n+l) @
SFu )+(F@m )u —u )+ M, (u ,u})
(@)

a néill/l| Fu™)+ (Ftu™),u - u("))+ M, (u, u(n))
u

Fu™) + (Fu™),u —u™)+ CEBW et — u™I1?
t w1 t (Vu®)

@ min
20
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16 Y.-J. LEE AND J. PARK

(iii) . SD(") |
s min F™) + ((Fw™), u — u™)+ pu Alu — l/l()”(Vu(n))
20
[ )
i t
(iv) (n) M) o — (1) 2PCSP m — 2 .
Y oin Fu™) + (™), u = u®)+ py Pl wll |
20 ( T (V)
w : 2 G o )
< min | F(u V) + (P ™), ur = u™)+ p_lﬂ — P Fa) - Fu) )
= P

where (i)—(v) are due to Lemmas 3.11, 3.10, 3.1, 3.2 and 3.3, respectively. By the convexity of F we get

f .
i YD 1 (
Fu™") - F(u*) < min l1 -+ _P“l_ﬁj Fu™) - F(u)
20 T
= L= 1—1 % S Fu™) )
)4 szcp,u(") ’
which completes the proof. m

Finally, we are ready to present our proof of Theorem 2.4.
Proof of Theorem 2.4. Suppose that |Vu*| does not vanish on Q. Take any E > 0. By the continuity of
djf,* stated in Lemmas 3.4 and 3.5 we can find a neighbourhood By of u* in V' such that, for any v € B,
|[Vv| does not vanish on Q and

CPF + E. 3.11)

ot

Meanwhile, by Proposition 2.3 and (1.3) (see Park (2020, Section 6.1) for the precise statement of (1.3))
we deduce that the sequence {u"} converges to u* in V. Hence, there exists 7y such that, if n 2 ng, then

u™ € By. By Lemma 3.8, for n 2 n,, we have

(- (- ( y (-
H 7 ~pF H 734U _PF Hr
p (rl) ’S 1 + Cp um 5 1 + Cp u(n) 5 é 1 + Cp,u" + E 5
It follows by Lemma 3.12 that
¥ [ . \ o
¢ (n+1) . 1 ) p2r P L
F(u )—F(u ) - p,u(n)/ -
1- < — —
F(u) = F(r') p-1 o,
. ¥ -
p t p2p i Cpr ) (ﬂ Po pT
,S; = 1+ C..+E
p—1 1 pu )
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 17

Since E is arbitrary we obtain the desired result with

. ¥ _
{ p2P rl— pp (H PspT
1y * Cour )

This completes the proof. ]

REMARK 3.13. As stated in Lemma 3.3 the squared quasi-norm llu = vII? (v 18 equivalent to the Bregman
distance Dg(u, v) up to multiplicative constants for u, v € W'?(Q). This equivalence allows us to
perform the convergence analysis presented in this section using the Bregman distance instead of the
quasi-norm. Indeed, the Bregman distance is frequently utilized in the analysis of convex optimization
algorithms; see, e.g., Bauschke et al. (2017); Teboulle (2018). Nevertheless, we opted to present the
convergence analysis of Algorithm 1 in terms of the quasi-norm in this paper, because using the quasi-
norm has an advantage that we can simplify our proof by borrowing some useful techniques regarding
the quasi-norm introduced in from the existing literature (Liu & Yan, 2001, 2002; Ebmeyer & Liu, 2005;
Carstensen et al., 2006).

4. Quasi-norm Poincaré—Friedrichs inequality

This section is devoted to the proofs of Lemmas 3.4 and 3.5. Namely, we deal with quasi-norm Poincaré—
Friedrichs inequalities of the form

/
(wl+ [Vv)P2wl? dx < Cliwlig, (4.1)
Q

where p € (1, ) with p /= 2. Unfortunately, the inequality (4.1) does not hold for every v, w € J'*(Q);

see Examples 4.8 and 4.15. Based on a quasi-monotonicity argument introduced in Pechstein & Scheichl
(2013) we characterize the conditions on v such that the inequality (4.1) holds and provide a precise

. - R : : . i

cofhets S AT AR SIS SORRAN Gl 1y Fhroughout this section et () derotg he
. In addition we use the conventions 0

and 1/0 = .

We first observe that a particular case of (4.1), when |Vy| is constant on £, is valid. By the same
argument as in Liu & Yan (2002, Lemma 3.1) and Carstensen ef al. (2006, Lemma. 4.1) we can prove
the following lemma.

Lemma 4.1. Let I” € 0Q have nonvanishing one-dimensional measure. Then, there exists a positive
constant C such that

/ /
(wl+ a)2w|> dx < C (IVw|+ a)’Z|Vw|* dx, we W}(Q),a = 0.
Q Q
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18 Y.-J. LEE AND J. PARK

For a non-negative function a € L=(Q) and a partition Y = {Y}"=; of Q consisting of
nonoverlapping polygonal regions we define two non-negative functions a yTay € L*(Q) as follows:

ay(x) = essinf a, uy(x) =esssupa, xe€Y,l <lsm.
Y Y

In the following text we address the cases p € (2,«) and p € (1, 2) separately. We first focus on the

case p € (2, »). In Definition 4.2 we introduce the concept of quasi-monotone increase. We note that
relevant notions were explored in Galvis & Efendiev (2010); Pechstein & Scheichl (2013).

DermNiTioN 4.2, Let @ € L~(2) be a non-negative function on Q, and let Y = {¥}" _,denote a partition

of ©Q into nonoverlapping polygonal regions.

1. We say that the region P ; = (_Yl] u---u )_/h) ,1 =1,...,I; £ m, is a quasi-monotonically
increasing path from ¥;, to ¥; with respect to a if the following two conditions hold:

a. Foreach 1 i<y~ 1 theregions ¥; and Y;,, share a common edge.

b.ay (Y ) s <ay(Y).
2. We say that o is 0Q2-quasi-monotonically increasing on Y if, for any 1 </ < m, there exist an index

I* and a quasi-monotonically increasing path P;; from Y; to Y, such that 0Yx N0 has nonvanishing
one-dimensional measure.

By a similar argument, as in the proof of Pechstein & Scheichl (2013, Theorem 2.9), we prove the
following lemma.

Lemma 4.3. Assume thatp € (2, ©). Let a € L*(Q) be a non-negative function on Q, and let Y =
{Y}}=1 denote a partition of  into nonoverlapping polygonal regions. If o is 6Q2-quasi-monotonically
increasing on Y then, for each 1 </ < m, there exists a positive constant Y independent of a, such

that
/ {a ¥p2/
(Iw|+ o) |w)?dx < ¢ = (IVw|+ a)?|Vw|? dx, we W'(Q),
o 0
Y, Yl QY(YQ P

where the region P;» was given in Definition 4.2.

Proof. Note that the map x i» x*-2 (x 2 0) is increasing. Take any / such that 1 < [ < m. Since
as a_y(Yl) on Y;and ¥; € Py we get

/ / ( )p—Z
(wl+ aP2wlrdx < i+ a(v) " |wl dx
Y Y1
/| ),
< ) el a “2)

Py
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 19

Since 0P N0 has nonvanishing one-dimensional measure Lemma 4.1 ensures that we have a positive
constant ¢, y , independent of w and «, such that

O OV /| v e
[wlj+a"(Y) [w|* dx < ¢,y . [Vw|+ a’(Y) [Vw|? dx. 4.3)
. r

Ll

Invoking the inequality

a+al(v) _a'(y)

< >
a+ay(¥) ay(¥)’ ’
we have
/| _y )p-2
[Vw|+ a’ (Y1) [Vw|? dx
P
{ ¥,
) s
S oy T ey TP d
< _ ! p2 2
= Vwl|+ \% dx
{gy(Yz)¥_2/ [Vwl+ay = " |Vw|
aYv) " i ¢
Py
{aY(Y)¥p_2/
< (IVw|+ a)?~2 |Vw|? dx, 4.4)
ay(Y) Py

where the penultimate inequality is because ay increases along P . Combining Lemmas 4.2, 4.3 and
4.4 yields the desired result. m]

Due to Lemma 4.3 we are able to define the quasi-monotone increase constant,g?™ for p € (2, ),
as presented in Definition 4.4.

DEFINITION 4.4. Assume that p € (2,). Let a € L=(€2) be a non-negative function on Q. The quasi-

monotone increase constant £2M € [0, ] is defined by 1
! %

i ¥ p2 F
CM =inf max aﬂ . e;;’ e
D0 Y L 1<i€m ﬂY( ﬂ =1 :

where the constants ¢, y ;’s were given in Lemma 4.3 and the infimum is taken over every nonover-
lapping polygonal partition Y = {¥}}",=; of £ such that a is dQ-quasi-monotonically increasing on

Note that the infimum in Definition 4.2 is well-defined because a is 0Q2-quasi-monotonically
increasing on the trivial partition {€}. In terms of the quasi-monotone increase constant C%)%,we present
a quasi-norm Poincaré—Friedrichs inequality for p € (2, ») in Theorem 4.5.
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20 Y.-J. LEE AND J. PARK

THEOREM 4.5. Assume that p € (2, ). Let a € L*(©2) be a non-negative function on Q. Then we have

/ /
Q(le+ @)?2 |wl* dx < QY ROAT )P |\Vw|? dx, we Wi(Q),

where the quasi-monotone increase constant G € [0, =] was given in Definition 4.4.

Proof. We fix any nonoverlapping polygonal partition Y such that o is 6Q2-quasi-monotonically
increasing on Y. By Lemma 4.3, we have

i ¥
/ (X'Y(Y I) p=2 /
(Iw|+ a)?~2w|? dx < ¢ (Vw|+ aP2[Vw|? dx
Y p.Yd ay(Y) Py
i ¥
ay) ’ 2/
= ¢y, max (Vwl+ a2 Vw|> dv.  (4.5)
Yl isism ay(¥) o

Summing (4.5) over all / followed by taking the infimum over all Y completes the proof. o

Let W,,(Q) be the space of piecewise constant functions on the triangulation T;,. Under an additional
assumption that o € W) (Q) we can characterize the condition when the quasi-monotone increase

constant C3y is finite.

4.6, Assume thatp € (2,»). Leta € W, ¢ a pon-negative piecewise constant function o
%en, the quasi-mono one(lnc ease constan]f(g&‘b 1S finite 1%%n(]i OIHy 1fe every maximal polygona
h y2x2

region R € Q with a > 0 satisfies that OR N 02 has nonvanishing one-dimensional measure.

Proof. We first assume that every maximal polygonal region R € Q with o > 0 satisfies that OR N 0Q
has nonvanishing one-dimensional measure. We consider the partition Y * of Q consisting of all maximal

polygonal regions {R;} with & > 0 and all maximal polygonal regions {S;} with a = 0. It is obvious that
each R; forms a quasi-monotonically increasing path with respect to o from R; to itself. For each S;, if
0S; N 02 has nonvanishing one-dimensional measure, then S; forms a quasi-monotonically increasing
path with respect to a from S; to itself. Otherwise, the maximality of S; implies there exists some R; such
that S; and R; share a common edge. Then we readily deduce that (S;U R))* forms a quasi-monotonically
increasing path with respect to a from S; to R;. Meanwhile, since « is piecewise constant, we have

a¥ (R) «V(s) 0
—l < o, i === 1,
ay (R) ay' (S) 0
forevery R and S . Hence, we conclude that C?M < oo,
i i P

Next, we suppose that there exists a maximal polygonal region R* € Q with o > 0 such that 0R* n
0Q is anull set. That is, every edge of R* is shared with a region with & = 0. Take any nonoverlapping
polygonal partition Y of Q. If Y has an element Y such that ¥ € R* then it is impossible to find
any quasi-monotonically increasing path with respect to a starting from Y, since any such path would
necessarily have to pass through a region where a = 0. Otherwise, Y must contain an element Y such
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ADDITIVE SCHWARZ FOR p-LAPLACIAN 21

that both ¥ N R* and Y \ R* are nontrivial, which implies that

'
ay(Y) .
Hence, we conclude that G = », which completes the proof. o

Combining Theorem 4.5 and Lemma 4.6 yields Corollary 4.7, in which Lemma 3.4 is a particular
case a = |Vv| of this result.

CoroLLARY 4.7. Assume that p € (2, ). Let a € W),(2) be a non-negative piecewise constant function

on Tj,. If every maximal polygonal region R € Q with a > 0 satisfies that OR N 022 has nonvanishing
one-dimensional measure, then we have

QHWI+ )2 |l dx < CU! 9wl P2 |\Vw|? dx,  we W),

where CM is a finite constant given in Definition 4.4. Moreover, if a does not vanish on @, then CM
pa . . . X
has an upper bound €M that is continuous at a in W (Q).

o h

Proof. 1t suffices to find a continuous upper bound of CY, under the given condition. We assume that
a does not vanish on Q. By Definition 4.4, we have

CQM < maxg a =: g}M7
o minQa JX{o 8! pa

where the inequality is obtained by taking Y = {Q} = {Y1} in Definition 4.4. As a > 0 in Q it is clear
that TM is continuous at o in Wh(.Q), which completes the proof. O
Do

We show that, under the condition presented in Lemma 4.6 for the quasi-monotone increase constant
C,o to be infinite, the quasi-norm Poincaré-Friedrichs inequality of the form (4.1) is not valid.
For simplicity we provide a counterexample in one-dimension; we note that the construction can be
generalized to higher dimensions.

ExampLE 4.8. Letp € (2,%0) and Q = (0,1) € R. We define w € W}*(Q) and a € L~(Q) as

3x, if0<x<1§, ) e, <2
. , ify < ,
wi)= 1 iff <x < %, afx) = 3 x 3

0, otherwise.

—3x+3, iffsx<l,
We observe that the quasi-monotone increase constant C,, becomes infinite because the interval
(1/3,2/3) where o is nonzero does not touch Q. For any £ > 0 direct calculation yields
Ji t -2 t
B @ 7 Ew) T ds

. —- 0 as E— 0%
o (TEw]+ o)P“[Ew]* dx

which implies that (4.1) does not hold.
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22 Y.-J. LEE AND J. PARK

We now turn to the case p € (1, 2). In contrast to the case p € (2, »), which heavily relies on the

quasi-monotone increase of a, the analysis of the case p € (1, 2) hinges on the quasi-monotone decrease
of a; see Definition 4.9.

DermiTION 4.9. Let a € L*(©) be a non-negative function on Q, and let Y’ = {¥}" _denote a partition
of Q into nonoverlapping polygonal regions.

1. We say that the region P; ; = (_Yl1 u---u I_/l) G, 1 <1,...,I; £ m, is a quasi-monotonically
decreasing path from ¥, to ¥; with respect to « if the following two conditions hold:

a. Foreach 1 i<y~ 1 theregions ¥; and Y;,, share a common edge.

b ay(Y;)z - 2ay(Y).
2. We say that a is 0Q-quasi-monotonically decreasing on Y if, for any 1 < / < m, there exist an

index [* and a quasi-monotonically decreasing path P;; from Y; to Y, such that 0Y, N 02 has
nonvanishing one-dimensional measure.

One can prove the following lemma using the fact that the map x i~ x*=2 (x 2 0) is decreasing and
by following a similar argument to that used in the proof of Lemma 4.3.
Lemma 4.10. Assume that p € (1,2). Let a € L*(Q) be a non-negative function on ©, and let Y =

{Y}}=1 denote a partition of Q into nonoverlapping polygonal regions. If  is 0Q2-quasi-monotonically
decreasing on Y then, for each 1 </ < m, there exists a positive constant ¢, Y » independent of a, such

that / { ¥p_2 /
_ ay(¥) -2 2 1
(Iw|+ o) |w|? dx < ¢ ; (IVw|+ a)?|[Vw|? dx, we W'(Q),
0
Y, »Yl ZYy) P
where the region P, was given in Definition 4.9.
Similar to Definition 4.4 we present the definition of the quasi-monotone decrease constant C!,for
p € (1,2) in the following text.

DermiTion4.11. Assume thatp € (1,2). Let a € L~(€Q) be a non-negative function on Q. The quasi-

monotone decrease constant 2™ € [P, =] is defined by )
! { ¥,, + F
CM=inf max «a y Y) Oy
Py Lissn ooy . )

where the constants ¢, y ;’s were given in Lemma 4.10 and the infimum is taken over every nonoverlap-
ping polygonal partition Y of Q such that a is 0Q-quasi-monotonically decreasing on Y.

In terms of the quasi-monotone decrease constant G2y, we present a quasi-norm Poincaré—Friedrichs
inequality for p € (1,2) in Theorem 4.12, which can be proven in a similar manner to Theorem 4.5.

TueorEM 4.12. Assume that p € (1,2). Let a € L*(Q) be a non-negative function on Q. Then we have
/ /

Q(|w|+ a)? 2wl dx < C! Q(|Vw|+ a2 Vwl> dx, we Wi(Q),
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where the quasi-monotone decrease constant G € [0, ] was given in Definition 4.11.

The following lemma characterizes the condition when the quasi-monotone decrease constant C,, ,
is finite, under an additional assumption that a € W;(Q), i.e., a is a non-negative piecewise constant
function on the triangulation T,

Assume that .Leta e W, on-negative piecewise constant function o;
175% en, the quasi- monotgne (gec ¢ase constant (g&'\? n1te 1%%1 él rHy 1f every maxima po ygona

region S € Q with a = 0 satisfies that 0S N 02 has nonvamshing one-dimensional measure.

Proof. The proofis analogous to that of Lemma 4.6. ]

We obtain Corollary 4.14, in which Lemma 3.5 is a particular case a = |Vu|, as a direct consequence
of Theorem 4.12 and Lemma 4.13.

CoroLLARY 4.14. Assume that p € (1,2). Let a € W),(Q2) be a non-negative piecewise constant function

on T;. If every maximal polygonal region S € Q with a = 0 satisfies that 6S N 6Q has nonvanishing
one-dimensional measure, then we have

/ /
Q(|w|+ )72 i dx < C! Q(|Vw|+ )P |\Vw|? dx,  we W),

where CQM is a finite constant given in Definition 4.11. Moreover, if o does not vanish on 2 then CM
p.o
has an upper bound €M that is continuous at & in W (Q)
o

Finally, we present a counterexample of the quasi-norm Poincaré—Friedrichs inequality (4.1) under
the condition presented in Lemma 4.13 for the quasi-monotone decrease constant G2 to be infinite.

ExampLE 4.15. Letp € (1,2) and Q = (0,1) € R. We define w € WI’F(Q) and a € L~(Q) as

W=
o

3x, if0<x< | X
0, if><x<

W(x) = l lf.ls < x < %, a(x) = 3 -
1, otherwise.

2
3

(]

—3x+3, if¥sx<l,

We observe that the quasi-monotone increase constant G%' becomes infinite because the interval
(1/3,2/3) where o vanishes does not touch 6Q. For E > 0 direct calculation yields

JJ(l(Ew)‘l +0) 72 |(Ew)F dx

. —- 0 as E— 0%
o (1EwW]+ )P4 |Ew]* dx

which implies that (4.1) does not hold.

5. Numerical experiments

In this section we present numerical results of the two-level additive Schwarz method for the p-Laplacian,
which support our theoretical findings. All the algorithms were implemented in MATLAB R2022b. They
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Q a

Ta

(a) (b) (©)

FiG. 1. Discretization and domain decomposition settings when 4 = 12% H = 1/22 and 6 = h. (a) Coarse triangulation Ty and

fine triangulation T;. (b) Nonoverlapping domain decomposition {2¢}%=1. (c) Overlapping domain decomposition {Q!};=;

were executed on a desktop equipped with AMD Ryzen 5 5600X CPU (3.7GHz, 6C), 40GB RAM and
the operating system Windows 10 Pro.

In the model p-Laplacian problem (1.1) we set p € {1.05, 1.1, 1.5, 5,10, 20}, 2 = [0, 1]> € R? and
f = 1. The domain Q is partitioned into 2 X 1/H % 1/H uniform triangles to form a coarse triangulation
Ty of Q. We further refine Ty to obtain a fine triangulation T, which consists of total 2 x 1/4 x 1/h
uniform triangles. Each subdomain Q4,1 <k < N (N = I/H % 1/H) is defined by a rectangular region

consisting of two coarse triangles sharing a dia%onal edge. Then we extend @y by adding its surrounding
layers of fine triangles in T, with the width ¢ to construct £t, so that {Qt} becomes an overlapping

domain decomposition for Q. If § € (0, H/2) then {2} ¥ can be coldufed with four colours in the
k k=1
way described in Lemma 2.2. The discretization and domain decomposition settings described above
are illustrated in Fig. 1.
In Algorithm 1 we set «” = 0 and ¢ = 7y = 1/5. Local problems defined on ¥, 1 < k < N,

and coarse problems defined on ¥} are solved by the adaptive Newton method proposed in Mishchenko
(2023, Algorithm 2.1). We use the stop criterion

LB (W"Y) = Fy(w")1 _

10—12
Lomei) ]

for both local and coarse problems, where F, represents the energy functional corresponding to the local
or coarse problems on V.

ReMaRrk 5.1. As alternatives to the adaptive Newton method used in this paper, which is a second-
order optimization algorithm, first-order optimization algorithms (Teboulle, 2018) can be adopted to
solve the local and coarse problems. These algorithms are generally easier to implement as they do not
require the Hessian information of the energy functional, but known to converge slower than second-
order algorithms. To accelerate the convergence rate of a first-order algorithm several techniques such
as the FISTA momentum (Beck & Teboulle, 2009), restart scheme (O’Donoghue & Candes, 2015) and
backtracking (Scheinberg et al., 2014) can be employed.

A reference solution u* € V for each p and 4 is computed by sufficiently many iterations of the
adaptive Newton method applied to the full-dimension problem (2.1). The computed reference solutions
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dp=5 @©p=10 (H)p=20

Fic. 2. Reference solutions of the p-Laplacian problem (2.1) (p € {1.05,1.1,1.5,5,10,20}) computed by the adaptive Newton
method (Mishchenko, 2023) (h = 275).

forp € {1.05,1.1, 1.5, 5, 10, 20} are plotted in Fig. 2. One can observe that for cases where p is close to
1 the reference solutions exhibit flat regions where the gradient vanishes. This observation implies that
when p is close to 1 the assumption in Theorem 2.4 that Vu* does not vanish may not hold. On the other
hand, for cases where p is large, the reference solutions display peaks, leading to singular behaviour in
the solution.

In Figs 3, 4, 5, 6,7, 8, we depict the relative energy errors

F(u™) = F(u)

- (5.1)
Fu®) - Fu*)

of Algorithm 1 under various settings on p, s, H and J. More precisely, in Figs 5 and 6 we choose p
as moderate values 1.5 and 5, in Figs 3 and 4 p is chosen very close to 1 (p = 1.05, 1.1) and in Figs 7
and 8 p is chosen large (p = 10, 20). In all figures 4 and H vary such that H/h = 23, and § is chosen as
€ {2%, 2'h, 22h}.

In every case we observe that the convergence curve of the relative energy error with respect to the
number of iterations # appears linear in the x-linear y-log scale plot when # is large enough, consistent
with our theoretical result presented in Theorem 2.4. It is noteworthy that even in cases where p is very
close to 1 (see Figs 3 and 4), where Theorem 2.4 cannot be applied due to the flat region in the solution
u* as shown in Fig. 2(a, b), the convergence curve still appears linear. However, a theoretical explanation
for the linear convergence in these cases is currently lacking.

On the other hand, for each p, we observe that the asymptotic convergence rate of Algorithm 1 shown
in Figs 3, 4, 5, 6, 7, 8 remains bounded when 7 decreases keeping H/J constant. This behaviour aligns
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10° 10° 10°
—_—h=27 —h =2
b - = h=2" - = h=2"
=27 k=27 A h=277
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8 8 8
8 8 X 8
I | Sy qpd -~}
g 10 g 10 g 10
2 2 b=
2 & 2
= = €3]
10 10 10
108 10 10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations Iterations
() §=2"h by S=2"h (©)8=2"1

FiG. 3. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian problem
(2.1) (p = 1.05). Parameters /, H and ¢ stand for the characteristic element size, subdomain size and overlapping width among
subdomains, respectively (H/h = 23).

Energy error
Energy error

Energy error

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations Iterations

() S=2"1 hy§=2"h (€)§=2%

FiG. 4. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian problem
(2.1) (p = 1.1). Parameters /, H and 0 stand for the characteristic element size, subdomain size and overlapping width among

subdomains, respectively (H/h = 23).

with the dependence of y to H/d explained in Theorem 2.4. Moreover, this observation implies that
Algorithm 1 is numerically scalable; the asymptotic linear convergence rate is uniformly bounded when
the ratio of the subdomain size to the overlapping width is fixed.

6. Conclusion

In this paper we developed a new convergence theory for additive Schwarz methods for boundary value
problems involving the p-Laplacian. To the best of our knowledge our theory is the first theoretical result
that explains the asymptotic linear convergence of additive Schwarz methods for the p-Laplacian. Our
work successfully bridges the gap between theory and practice by demonstrating that our theoretical
findings align well with numerical results.
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FiG. 5. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian problem
(2.1) (p = 1.5). Parameters /2, H and 0 stand for the characteristic element size, subdomain size and overlapping width among

subdomains, respectively (H/h = 23).

10° 100 100
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FiG. 6. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian
problem (2.1) (p = 5). Parameters /, H and ¢ stand for the characteristic element size, subdomain size and overlapping width

among subdomains, respectively (H/h = 23).

While the convergence theory of subspace correction methods for linear problems appears to be
well-developed (Xu & Zikatanov, 2002; Lee et al., 2008), there remains a need for further research on
the theory of subspace correction methods for nonlinear problems. We believe that our result can serve
as a foundation for the sharp convergence theory of general subspace correction methods for complex
nonlinear problems.
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FiG. 7. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian
problem (2.1) (p = 10). Parameters /4, H and ¢ stand for the characteristic element size, subdomain size and overlapping width

among subdomains, respectively (H/h = 23).
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Fic. 8. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian
problem (2.1) (p = 20). Parameters s, H and J stand for the characteristic element size, subdomain size and overlapping width

among subdomains, respectively (H/h = 23).
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