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We consider additive Schwarz methods for boundary value problems involving the p-Laplacian. While 
existing theoretical estimates suggest a sublinear convergence rate for these methods, empirical evidence 
from numerical experiments demonstrates a linear convergence rate. In this paper we narrow the gap 
between these theoretical and empirical results by presenting a novel convergence analysis. First, we 
present a new convergence theory for additive Schwarz methods written in terms of a quasi-norm. This 
quasi-norm exhibits behaviour akin to the Bregman distance of the convex energy functional associated 
with the problem. Secondly, we provide a quasi-norm version of the Poincaré–Friedrichs inequality, which 
plays a crucial role in deriving a quasi-norm stable decomposition for a two-level domain decomposition 
setting. By utilizing these key elements we establish the asymptotic linear convergence of additive Schwarz 
methods for the p-Laplacian. 

Keywords: additive Schwarz method; p-Laplacian; linear convergence; quasi-norm; Poincaré–Friedrichs 
inequality; convergence analysis. 

 
1. Introduction 

Let Ω be a bounded polygonal domain in R2 with the Lipschitz boundary ∂Ω. Given p ∈ (1, ∞) we 
consider the following p-Laplace equation: 

−∇ · 
(
|∇u|p−2∇u

) 
= f in Ω, 

u = 0 on ∂Ω, (1.1) 

 

where f ∈ Lp
∗ (Ω) with p∗ being from the equation 1/p + 1/p∗ = 1. 

The p-Laplacian is a standard example of nonlinear elliptic problems (Benedikt et al., 2018). Fur- 
thermore, it has a number of application areas, including glaciology, non-Newtonian fluids (Shapovalov, 
2017), nonlinear diffusion and nonlinear elasticity; see Díaz (1985) and references therein. Thus, there 
has been extensive research on (1.1), especially for numerical solutions of (1.1). Some important early 
results can be found in Glowinski & Marrocco (1975); Ciarlet (2002). Finite element methods for the 
p-Laplacian were analysed in terms of the quasi-norm in Barrett & Liu (1993, 1994). Further studies 
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0 

/ 

0 

0 

v∈W
1,p (Ω) p 
0 

 
on error estimates for the p-Laplacian in terms of the quasi-norm were conducted in Liu & Yan (2001, 
2002); Ebmeyer & Liu (2005); Carstensen et al. (2006). Linear convergence of adaptive finite element 
methods for (1.1) was shown in Diening & Kreuzer (2008). Numerical homogenization for multiscale 
p-Laplacian problems was investigated in Liu et al. (2021). 

It is well known that the boundary value problem (1.1) can be formulated in the following weak form 
(Glowinski & Marrocco, 1975; Ciarlet, 2002): find u ∈ W1,p(Ω) such that 

 

|∇u|p−2∇u · ∇v dx = f v dx, v ∈ W1,p(Ω), 
Ω Ω 

where W1,p(Ω) is a usual Sobolev space consisting of the Lp(Ω)-functions vanishing on ∂Ω with 
(Lp(Ω))2-gradient. Equivalently, it is interpreted as the following convex optimization problem: 

min 

½
F(v) := 

1 
/ 

|∇v|p dx − 

/ 

fv dx

i 

. (1.2) 

That is, one may deal with the convex optimization problem (1.2) to obtain a solution of (1.1). Based on 
the convex optimization formulation (1.2) multigrid and preconditioned descent methods were proposed 
in Bermejo & Infante (2000) and Huang et al. (2007), respectively. In particular, the framework of 
subspace correction methods (Xu, 1992) for (1.2) were considered in Tai & Xu (2002); Park (2020). 

This paper is concerned with numerical solutions of boundary value problems involving the p- 
Laplacian by additive Schwarz methods. Additive Schwarz methods, also known as parallel subspace 
correction methods, have been broadly used as efficient numerical solvers for large-scale scientific 
problems; see Xu (1992); Toselli & Widlund (2005) and references therein for relevant results on 
linear problems. In additive Schwarz methods the domain of a target problem is decomposed into a 
union of several subdomains, and optimal local corrections on the subdomains with respect a numerical 
approximation for the solution are computed in parallel. The numerical approximation for the solution is 
iteratively updated by collecting all the local corrections. Due to their parallel structures additive Schwarz 
methods are suitable for massively parallel computation using distributed memory computers. In the 
past decades there have been a number of results on additive Schwarz methods for large-scale convex 
optimization problems. The framework of additive Schwarz methods was first considered for convex 
optimization in Tai & Espedal (1998), and subsequently applied to the p-Laplacian in Tai & Xu (2002). 
These methods have since been further investigated in several studies, including Badea (2006, 2019); 
Park (2020, 2022). 

The convergence rate of additive Schwarz methods for the p-Laplacian problem (1.1) was first 
p(p−1) 

analysed in Tai & Xu (2002); the O(n
− (p−p)(p+p−1) ) energy convergence of the methods was proven, 

where n denotes the number of iterations, p = min{p, 2}, and p = max{p, 2}. Recently, Park (2020) 
p(p−1) 

showed that the methods satisfy the improved O(n
− p−p ) convergence rate (see Proposition 2.3). The 

results in both Tai & Xu (2002) and Park (2020) are based on some estimates for the Bregman distance 
of the energy functional F in (1.2). Roughly speaking, these estimates are written as 

 
μ llu − vllp p ≤ D (u, v) ≤ L llu − v , u, v ∈ W1,p(Ω), (1.3) 

 
 

p W1,p(Ω) F 
p ll

W1,p(Ω) 0 
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0 

0 

(∇v) (∇ 0 

(∇v) 

 
where μp and Lp are positive constants independent of u and v, and DF(u, v) is the Bregman distance of 

F defined by 

DF(u, v) = F(u) − F(v) − 
(
Ft(v), u − v

} 
, u, v ∈ W1,p(Ω). (1.4) 

Here, Ft(v) stands for the Frechét derivative of F at v given by 

(
Ft(v), w

} 
= 

/ 

|∇v|p−2∇v · ∇w dx − 
Ω 

 

fw dx, w ∈ W1,p(Ω). (1.5) 

One may refer to Tai & Xu (2002, Lemma 2.1) and Park (2020, Section 6.1) for details on the estimate 
(1.3). 

While both Tai & Xu (2002) and Park (2020) proved the sublinear convergence of additive Schwarz 
methods for the p-Laplacian, it was observed numerically in several works that the methods actually 
converge linearly; see, e.g., Park (2021, Fig. 2). Indeed, as we will demonstrate in the numerical 
experiments presented in Section 5 of this paper, additive Schwarz methods for (1.1) exhibit linear 
convergence empirically under various settings on discretization and domain decomposition. More 
precisely, each convergence curve of the energy error with respect to the number of iterations seems 
linear in the x-linear y-log scale plot when the number of iterations is sufficiently large, which means 
that the energy error decays exponentially as the number of iterations increases. This implies that the 
existing convergence estimates for additive Schwarz methods for the p-Laplacian may not be optimal. 

The main motivation of this paper is to discuss a linear convergence analysis for additive Schwarz 
methods to solve the p-Laplacian problem (1.1). As we mentioned above, while the existing theoretical 
estimates (Tai & Xu, 2002; Park, 2020) for the convergence rate of additive Schwarz methods for the 
p-Laplacian are sublinear, the empirical convergence rate observed by numerical experiments is linear. 
This discrepancy between theoretical and empirical results motivates our work, as we aim to bridge 
this gap by rigorously proving the asymptotic linear convergence of additive Schwarz methods for the 
p-Laplacian. 

In (1.3) p and p do not agree if p /= 2, so that the lower and upper bounds for DF(u, v) are expressed 
in powers of llu − vllW1,p(Ω) with different exponents. This discrepancy indicates that a power of norm 
is not adequate as a tight two-sided approximation for the Bregman distance; whenever we establish a 
bound for DF(u, v) in terms of llu − vllW1,p(Ω) or vice versa we suffer from a kind of looseness. We 
claim that the sublinear convergence rates given in the existing works (Tai & Xu, 2002; Park, 2020) are 
caused by this looseness. To overcome this issue we propose to use the quasi-norm developed in Liu & 
Yan (2001, 2002); Ebmeyer & Liu (2005); Carstensen et al. (2006), which is relevant to the problem of 
consideration and approximates the Bregman distance appropriately, and then to derive the convergence 
estimate in terms of the quasi-norm. This approach is similar to obtain the convergence measure of the 
iterative method using the energy-like metric relevant to the problem to be solved, as discussed in Lee 
et al. (2008, 2009). We denote the quasi-norm by l l · ll(∇v) (see (3.1)) and show that 

 
1,p 

μpllu − vll2 ≤ DF(u, v) ≤ Lpllu − vll2 v), u, v ∈ W (Ω) (1.6) 

for some positive constants μp and Lp (see Lemma 3.3), i.e., llu − vll2 approximates DF(u, v) well 
up to a multiplicative constant. Meanwhile, we note that the quasi-norm l l  · ll(∇v), along with several 
alternative versions described in Diening & Rů žič ka (2007), Diening & Kreuzer (2008), do not induce 
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0 

k=1 

k 

k k=1 

 
a norm. As a result existing convergence theories for additive Schwarz methods (Tai & Xu, 2002; Park, 
2020) cannot directly utilize the estimate (1.6). A novelty in this paper is that, by extending the idea of 
Park (2020), a new convergence theory for additive Schwarz methods is obtained in terms of the quasi- 
norm, which utilizes (1.6) to obtain the asymptotic linear convergence rate of additive Schwarz methods 
for the p-Laplacian. In our linear convergence analysis a quasi-norm version of the Poincaré–Friedrichs 
inequality (see Lemmas 3.4 and 3.5) plays a critical role. We validate this asymptotic linear convergence 
result numerically in Section 5. 

The rest of this paper is organized as follows. In Section 2 we present finite element approximations, 
domain decomposition settings and a two-level additive Schwarz method for the p-Laplacian problem. 
An asymptotic linear convergence analysis of the two-level additive Schwarz method is given in 
Section 3. In Section 4 we present details of the quasi-norm Poincaré–Friedrichs inequality that is used 
in the convergence analysis of the methods. In Section 5 we provide numerical results of the two-level 
additive Schwarz method for the p-Laplacian problem across various settings. Finally, we provide a 
concluding remark for our paper in Section 6. 

 
2. Additive Schwarz methods 

In this section we introduce finite element spaces and domain decomposition settings for the p-Laplacian 
problem (1.2). Based on these settings we present a two-level additive Schwarz method for (1.2) and its 
convergence theory, which explains the asymptotic linear convergence of the algorithm. 

In what follows the notation A ;S B means that there exists a constant c > 0 such that A ≤ cB, 
where c is independent of the geometric parameters H, h and δ relying on discretization and domain 
decomposition. We also write A ≈ B if A ;S B and B ;S A. 

 
2.1 Discretization and domain decomposition 

Let Th be a quasi-uniform triangulation of Ω with h the characteristic element diameter. The collection 
of continuous and piecewise linear functions on Th vanishing on ∂Ω is denoted by V = Sh(Ω). Clearly, 
we have V ⊂ W1,∞(Ω). For continuous functions the nodal interpolation operator Ih onto Sh(Ω) is 
well-defined. 

In what follows we consider the following conforming finite element approximation of (1.2) defined 
on V: 

 
min F(u). (2.1) 
u∈V 

 

A unique solution of (2.1) is denoted by u∗ ∈ V. Convergence properties of (2.1) as h → 0 can be found 
in Barrett & Liu (1993); Ciarlet (2002). 

Next, we describe domain decomposition settings for the problem (2.1). We assume that Ω admits 
another quasi-uniform triangulation TH with H the characteristic element diameter such that Th is a 
refinement of TH . A finite element space SH(Ω) is defined in the same manner as Sh(Ω). In the two- 
level additive Schwarz method for (2.1) Th and TH will play roles of fine and coarse meshes, respectively. 
Let {Ωk}

N be a nonoverlapping domain decomposition of Ω such that each Ωk is the union of several 
coarse elements in TH and the number of coarse elements consisting of Ωk is uniformly bounded. For 
each subdomain Ωk, 1 ≤ k ≤ N we consider an enlarged region Ωt consisting of the elements T ∈ Th 

with dist(T, Ωk) ≤ δ. Then {Ωt }N forms an overlapping domain decomposition of Ω. We define 
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k 

k 

V = 
L, 

R Vk, (2.2) 

k=1 

k k=1 k=1 

k 

L, 

k 

N 

k k=1 

 
t 1,∞ t 

Sh(Ωk) ⊂ W0 (Ωk) as the piecewise linear finite element space on the Th|Ωt with the homogeneous 
essential boundary condition. 

We set 

V0 = SH(Ω), Vk = Sh(Ωt ), 1 ≤ k ≤ N. 

 
A two-level domain decomposition for V is given by 

 
N 

∗ 
k 

k=0 

where R∗: Vk → V, 1 ≤ k ≤ N is the natural extension-by-zero operator and R∗: V0 → V is the natural 
k 

interpolation operator. Let {θk}
N 

0 

be the piecewise linear partition of unity for Ω subordinate to the 
covering {Ωt }N that was presented in Toselli & Widlund (2005, Eq. (3.7)). It is known that {θk}

N 

satisfies the following properties: 
 

θk = 0 on Ω \ Ωt , (2.3a) 

 
N 

θk = 1 on Ω, (2.3b) 
k=1 

ll∇θkllL∞(Ωt ) ;S 
1 

, 1 ≤ k ≤ N. (2.3c) 
δ 

The following lemma summarizes an important result on stable decomposition for the two-level domain 
decomposition (2.2) (see Tai & Xu (2002, Lemma 4.1)). 

LEMMA 2.1. For w ∈ V, let w0 ∈ V0 be the L2(Ω)-orthogonal projection of w onto V0 and let wk ∈ Vk, 
1 ≤ k ≤ N, such that 

R∗wk = Ih(θk(w − R∗w0)). 
k 0 

For s ≥ 1 we have w = 
LN 

0 R
∗wk and 

k= k 

 L, 
|R∗wk|

s 1,s 

 

;S 

{

1 + ( H 
-s−1

\ 

 

 
|w|s 1,s . 

k 

k=0 
W (Ω) δ W  (Ω) 

 

Using the usual colouring technique one can prove that the two-level domain decomposition (2.2) 
enjoys the strengthened convexity condition (see Park (2020, Assumption 4.2)). 

LEMMA 2.2. Let Nc be the minimum number of colours such that {Ωt }N is coloured in a way that the 

subdomains with the same colour do not intersect with each other, and let τ0 = 1/(Nc + 1). For any 
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N 

p 

n 

F(v + R∗wk) ≥ F v + τ R∗wk 

u(n+1) = u(n) + τ 
L, 

R∗w(n+1) 

 

v ∈ V, wk ∈ Vk ,0  ≤ k ≤ N, and τ ∈ (0, τ0], we have 

L, 
 

 
 

 

 

{ 
L, 

\ 

 

 
 

Proof. See Park (2020, Section 5.1). For suitable overlaps we have Nc = 4 (Tai & Xu, 2002). □ 

 
2.2 Two-level additive Schwarz method 

The two-level additive Schwarz method for (2.1) based on the space decomposition (2.2) is described 
in Algorithm 1. It is worth noting that this algorithm has been investigated in several prior works. 
The algorithm for smooth convex optimization was first considered in Tai & Espedal (1998), and then 
applied to the p-Laplacian in Tai & Xu (2002). Later, the framework was generalized to constrained 
and nonsmooth convex optimization problems in Badea (2006) and Park (2020, 2021), respectively. The 
constant τ0 in Algorithm 1 was given in Lemma 2.2. 

Algorithm 1 Two-level additive Schwarz method for (2.1) 

Let u(0) ∈ V and τ ∈ (0, τ0]. 

for n = 0, 1, 2, . . .  do 

 
w(n+1) = arg minw F(u(n) + R∗w ), 0 ≤ k ≤ N 

k k ∈Vk k  k 

N 

k  k 

k=0 

end for 

 

The following proposition summarizes the sublinear convergence rate of Algorithm 1 analysed in 
Park (2020, Theorem 6.1). It was discussed in Park (2021, Remark 4.2) that the rate presented in 
Proposition 2.3 is the sharpest estimate among the existing ones (Tai & Xu, 2002; Badea, 2006; Badea 
& Krause, 2012; Park, 2020). 

PROPOSITION 2.3. In Algorithm 1, we write ζn = F(u(n))−F(u∗) for n ≥ 0. There exist positive constants 
ζ ∗ and c∗, depending on u(0), τ and H/δ, such that 

⎧
⎪⎨

(
1 − τ 

(
1 − 1 

)) 
ζn, ζn ≥ ζ ∗, 

ζn+1 ≤ ⎪⎩ζn 

p(p−1) 
 

− c∗ζ 
p(p−1) 

, ζ < ζ ∗, 

where p = min{p, 2} and p = max{p, 2}. Consequently, we have 

1 
ζn ;S 

 

 

p(p−1) 

(c∗(n + 1)) p−p 

for sufficiently large n ≥ 0. 

k 

k=0 
k 

k=0 
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( 
H 

-p¸min{  }−1 

p,u∗ 

 
Proof. See Park (2020, Section A.4). □ 

While Proposition 2.3 ensures the sublinear convergence of Algorithm 1, as we will see in Section 5, 
the actual numerical behaviour indicates linear convergence. This observation motivates us to develop 
a new convergence theory for Algorithm 1 that can explain the linear convergence. We summarize our 
main result, the asymptotic linear convergence of Algorithm 1, in Theorem 2.4. The proof of Algorithm 
1 will be provided in Section 3. We highlight that Theorem 2.4 stands as the first theoretical result that 
explains the linear convergence of the additive Schwarz method for the p-Laplacian. 

THEOREM 2.4. If the solution u∗ ∈ V of (2.1) satisfies that |∇u∗| does not vanish on Ω then, in Algorithm 
1, we have 

 

lim sup 
F(u(n+1)) − F(u∗) −1 

n→∞ F(u(n)) − F(u∗)  
≤ 1 − γ , 

where γ is a positive constant depending on p, u∗, H, δ and τ such that 
 

γ ;S 

_  
PF 
p,u∗ 

1 
p,2 

, 
δ 

 
 

and the constant CPF is given in either Lemma 3.4 or Lemma 3.5. 

Regarding the condition in Theorem 2.4 that requires the finite element solution u∗ to satisfy |∇u∗| /= 
0 on Ω, we discuss its validity for extreme values of p, particularly when p is either very large or close to 

1. As we will demonstrate in Section 5, for large p, the solution may develop a singularity (see Fig. 2(e, 
f)). Fortunately, this singularity does not violate the condition |∇u∗| /= 0. However, when p is close to 
1 the solution may exhibit a flat region, potentially leading to a vanishing gradient (see Fig. 2(a, b)). 
Consequently, the applicability of Theorem 2.4 to cases near p = 1 may be limited. 

Despite the potential limitations in applying Theorem 2.4 to such cases it remains practically relevant, 
as many real-world applications involving the p-Laplacian typically utilize moderate values of p. For 
instance, in modelling nonlinear Darcy law for fluid flows, as discussed in Benedikt et al. (2018), 
physically meaningful values for p are generally greater than 3/2. 

We conclude this section by mentioning several acceleration methodologies that can be applied 
to Algorithm 1. In Park (2021, 2022) acceleration schemes for additive Schwarz methods for convex 
optimization were proposed. As the energy functional F is convex these schemes can be directly 
applied to Algorithm 1 to yield accelerated variants. These accelerated methods show faster convergence 
behaviours than the vanilla method, while they have essentially the same computational cost per iteration; 
see Park (2022) for relevant numerical results. We do not deal with the accelerated methods in detail 
because they are beyond the scope of this paper. 

 
3. Convergence analysis 

The main objective of this section is to prove Theorem 2.4, which is the asymptotic linear convergence 
theorem for the two-level additive Schwarz method for the p-Laplacian. We begin by presenting some 
useful properties of the quasi-norm ll· ll(∇v) (Liu & Yan, 2001; Ebmeyer & Liu, 2005), which is defined 
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(∇v) 

/ 

(∇v) (∇v) (∇v) 

(∇v) 

/ 

(∇v) 

(∇v) (∇u) 

(∇v) 

(∇u) 

(∇v) (∇v) 

/ 

 
as 

 

llwll2 = (|∇w|+ |∇v|)p−2 |∇w|2 dx, v, w ∈ W1,p(Ω). (3.1) 
Ω 

Subsequently, we prove Theorem 2.4 by verifying a certain quasi-norm stable decomposition property 
(Tai & Xu, 2002; Park, 2020). 

 
3.1 Properties of the quasi-norm 

The quasi-norm l l  · ll(∇v) given in (3.1) satisfies a scaling property in the sense that the lltwll(∇v) is 

bounded by llwll(∇v) multiplied by tα for some α ∈ R, where v, w ∈ W1,p(Ω) and t ∈ [0, 1]. Lemma 3.1 
summarizes such a property. 

LEMMA 3.1. For any v, w ∈ W1,p(Ω) and t ∈ [0, 1], we have 

tmax{p,2}llwll2 ≤ lltwll2 ≤ tmin{p,2}llwll2 . 

 

Proof. Suppose that p ∈ [2, ∞). Since the map x i→ xp−2 (x ≥ 0) is increasing we get 
 

lltwll2 

lltwll2 

≤ (|∇w|+ |∇v|)p−2 |t∇w|2 dx = t2llwll2 , 
Ω 

≥ 

/  

(t|∇w|+ t|∇v|)p−2 |t∇w|2 dx = tpllwll2 . 

The case p ∈ (1, 2) can be shown by a similar argument using the fact that the map x i→ xp−2 (x ≥ 0) is 
decreasing. □ 

The following lemma states that llu −vll(∇v) is bounded by llu −vll(∇u) up to a multiplicative constant 
independent of u, v ∈ W1,p(Ω). 

LEMMA 3.2. For any u, v ∈ W1,p(Ω), we have 

llu − vll2 ≤ 2|p−2|llu − vll2 . 

 
Proof. Invoking the vector inequality 

|ξ + η |+ |ξ | ≤  2 (|ξ + η |+ |η|) , ξ , η ∈ R2 

we get 

 

llu − vll2 = (|∇(u − v)|+ |∇v|)p−2 |∇(u − v)|2 dx 
Ω 

≤ 2|p−2| 

Ω 
(|∇(v − u)|+ |∇u|)p−2 |∇(v − u)|2 dx = 2|p−2|llu − vll2 , 

which completes the proof. □ 
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1 1 1 

(∇v) (∇ 

(∇v) 

(F (v + t(u − v)), u − v) dt − (F (v), u − v) 

= ∇v 

|∇u | ∇u − |∇v| ∇v ∇(u − v) 

t 

/ 

0 

 
In Barrett & Liu (1993, 1994) the following vector inequalities were established: there exist two 

positive constants C1 and C2 such that, for any ξ , η ∈ R2, the following hold: 

|ξ |p−2ξ − |η|p−2η ≤ C |ξ − η| (|ξ |+  |η|)p−2 , (3.2a) 
(
|ξ |p−2ξ − |η|p−2η

) 
· (ξ − η) ≥ C2|ξ − η|2 (|ξ |+  |η|)p−2 . (3.2b) 

 
Using (3.2) and proceeding similarly to Barrett & Liu (1993, Theorem 2.1) we prove Lemma 3.3, which 
says that the estimate (1.6) actually holds. Lemma 3.3 will play an important role in proving (3.8); see 
also Liu et al. (2021, Lemma 2.3). 

LEMMA 3.3. There exists positive constants μp and Lp depending on p such that, for any u, v ∈ W1,p(Ω), 
we have 

μpllu − vll2 ≤ DF(u, v) ≤ Lpllu − vll2 v). 

 
Proof. By the definition of DF(u, v) given in (1.4) and the fundamental theorem of calculus, we have 

/ 1 
t t 

/ 1 1 t t 

= (F (v + t(u − v)) − F (v), t(u − v)) dt. 
0 

With ut = v + t(u − v) we see that 

(1.5) 
/ 1 1 

/ ( 
 

   

 

p−2 p−2 
) 

/ 1 1 
/  

1 p−2 p−2 1 1 1 

0  t  Ω 
1 t t 1 t 

(3.2a) 
/ 1 1 

/ ¡ ¢p−2 1 1 
;S 

0  t 

/ 1 / 

|∇ut|+ |∇v| 
Ω 

∇(ut − v) 

 
p−2 

dx dt 

 2 

= t (|∇ (v + t(u − v))| + |∇v|) |∇(u − v)| dx dt. 
0 Ω 

 

Now, we invoke the inequality 
 

 
 

 
to obtain that 

t 
(|ξ |+ |η|) ≤ |ξ + tη|+ |ξ | ≤  2 (|ξ |+ |η|) , ξ , η ∈ R2, t ∈ [0, 1], (3.3) 

2 

 
DF(u, v) ;S 

 
1 

t dt · 
0 Ω 

 

(|∇v|+ |∇(u − v)|)p−2 

 

|∇(u − v)|2 

 

dx ≈ llu − vll2 . 

0 t Ω 
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DF(u, v) = 

DF(u, v) |∇ut| ∇ut − |∇v| · ∇(ut − v) dx dt 

≤ dx dt 



10 Y.-J. LEE AND J. PARK 
 

(∇v) (∇v) 

p,v 

p,v 

p,v (∇v) 0 

p,v (∇v) 0 

 

Hence, we proved DF(u, v) ;S llu − vll2 . The inequality DF(u, v) ,2 llu − vll2 can be shown in a 
similar manner using (3.2b) and (3.3). □ 

 
3.2 Quasi-norm stable decomposition 

The core step in the convergence analysis of additive Schwarz methods typically involves verifying 
a stable decomposition property; see, e.g., Tai & Xu (2002, Eq. (13)) and Park (2020, Assumption 
4.1). In this section we derive a quasi-norm stable decomposition property associated with the space 
decomposition (2.2). A key distinction of the quasi-norm stable decomposition property considered in 
this section compared with the existing ones is that we use the quasi-norm l l · ll(∇v), while the existing 
ones are written in terms of norms. As (1.3) implies a power of norm cannot approximate the Bregman 
distance of F by a multiplicative constant if p /= 2. Our main insight is that if the quasi-norm can 
approximate the Bregman distance of F up to a multiplicative constant, i.e., if it satisfies an estimate 
of the form (1.6), then we can derive the asymptotic linear convergence of Algorithm 1 using this 
property. 

We recall that two key ingredients for the stable decomposition analysis for linear elliptic problems 
are the Poincaré–Friedrichs inequality and interpolation error estimate; see Toselli & Widlund (2005, 
Chapter 3). Therefore, we need to establish these theories with respect to the quasi-norm for the stable 
decomposition analysis of the p-Laplacian. 

In Lemmas 3.4 and 3.5 we present quasi-norm Poincaré–Friedrichs inequalities for the cases p ∈ 
(2, ∞) and p ∈ (1, 2), respectively, that are suitable for our purposes; more general results are proven in 
Section 4. 

LEMMA 3.4. Let p ∈ (2, ∞) and v ∈ Sh(Ω). Assume that every maximal polygonal region R ⊂ Ω with 
|∇v| /= 0 satisfies that ∂R ∩ ∂Ω contains an element edge. Then there exists a positive constant CPF such 
that 

 

/ 

(|w|+ |∇v|)p−2|w|2 dx ≤ CPF llwll2 

 

 

, w ∈ W1,p(Ω). 

 
Moreover, if |∇v| does not vanish on Ω then CPF has an upper bound CPF that is continuous at v in 

Sh(Ω). 
p,v p,v 

LEMMA 3.5. Let p ∈ (1, 2) and v ∈ Sh(Ω). Assume that every maximal polygonal region S ⊂ Ω with 
|∇v |= 0 satisfies that ∂S ∩ ∂Ω contains an element edge. Then there exists a positive constant CPF such 
that 

 

/ 

(|w|+ |∇v|)p−2|w|2 dx ≤ CPF llwll2 

 

 

, w ∈ W1,p(Ω). 

 
Moreover, if |∇v| does not vanish on Ω then CPF has an upper bound CPF that is continuous at v in 

Sh(Ω). 
p,v p,v 

As stated in Lemmas 3.4 and 3.5 the quasi-norm Poincaré–Friedrichs inequality holds for all choices 
of v except for certain exceptional cases, which are detailed in Examples 4.8 and 4.15. Moreover, in most 
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p,v 

p,v 

p,v 

0 

h h |∇(Ihw)| dy 

h h |∇w| dy 

 
cases, the constant CPF demonstrates only a weak dependence on v. By the quasi-monotone argument 
(Galvis & Efendiev, 2010; Pechstein & Scheichl, 2013) presented in Section 4 we can ensure that the 

value of CPF is influenced by the local variation of |∇v| only. Consequently, even if |∇v| exhibits 
significant global variation CPF has a moderate value. One may refer to Scheichl et al. (2012) for relevant 
numerical evidences. 

 
REMARK 3.6. As noted in Lemmas 3.4 and 3.5, the quasi-norm Poincare–Friedrichs inequality may 
not hold in cases where ∇v vanishes in a certain pattern, which makes the convergence analysis of 
the algorithm challenging. In order to address this issue one may consider regularization techniques 
as described in Diening et al. (2020); Liu et al. (2021). However, we do not adopt such techniques 
since they require a delicate convergence analysis for the case when the regularization parameter 
tends to 0. 

 
Next, we establish a quasi-norm error estimate for the nodal interpolation operator Ih onto the finite 

element space Sh(Ω), as summarized in Lemma 3.7. 

LEMMA 3.7. Let w ∈ W1,p(Ω) be a continuous, piecewise quadratic function defined on Th and let 

v ∈ Sh(Ω). Then, there exists a positive constant C, independent of w, v and h, such that 
 

llIhwll(∇v) ≤ Cllwll(∇v). 

 

Proof. Take any T ∈ Th. We first prove that Ih achieves the local W1,1-stability; invoking the inverse 
inequality (Ern & Guermond, 2021, Lemma 12.1) and the H1-stability (Toselli & Widlund, 2005, Lemma 
3.9) yields 

|Ihw|W1,1(T) ;S h|Ihw|H1(T) ;S h|w|H1(T) ;S |Ihw|W1,1(T). (3.4) 

Now, we proceed similarly as in the proof of Diening & Růži č ka (2007, Theorem 4.5). Recall that |∇v| 

is constant on T, say a = |∇v| ≥ 0. Since the map x i→ (x + a)p−2x2 (x ≥ 0) is increasing and convex, 
we have 

 

(|∇(Ihw)|+ a)p−2|∇(Ihw)|2 dx 
T 

(i) / 

 
 

( 
−2 

/ -p−2 ( 
−2 

/ -2 

 
 

(3.4) 
2 
( 

−2 
/ -p−2 ( 

−2 
/ -2 

 
 

(ii) 
;S 

T 

(|∇w|+ a)p−2 |∇w|2 dy, (3.5) 

;S 
T 

T 
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T T 
|∇(Ihw)(y)| dy + a dx 

;S h 
T 

|∇w| dy + a 

/ 
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p,v 

w = 
L, 

R wk, 

N 

p,v 

H 

Cp,v ;S 1 + Cp,v 

0 
Theorem 4.5), we have 

0 k= k 

k (∇ (∇ 

δ 

k=1 k=1 

 
where (i) is due to the inverse inequality (cf. Diening & Růžič ka (2007, Eq. (2.4))) 

 

|u|W1,∞(T) ;S h−2|u|W1,1(T), u ∈ Sh(Ω), 

 
and (ii) is due to the Jensen inequality. By summing (3.5) over all elements T ∈ Th we arrive at the 
conclusion. □ 

Using Lemmas 3.4, 3.5 and 3.7, we obtain the following quasi-norm stable decomposition result. 

LEMMA 3.8. Suppose that p ∈ (1, ∞) and v ∈ V satisfy either the assumptions in Lemma 3.4 or those 
in Lemma 3.5. Then there exists a positive constant CSD depending on p and v such that the following 
holds: for any w ∈ V there exist wk ∈ Vk,0 ≤ k ≤ N, such that 

 

 
N 

∗ 
k 

 
L, 

D 

k=0 

 
(v + R∗w , v) ≤ CSDllwll2 , 

F k  k p,v (∇v) 

k=0 

SD PF 
( 

H 
-p 

 

where the constant CPF was given in either Lemma 3.4 or Lemma 3.5. 
 

Proof. Throughout this proof let an index k runs from 1 to N. Take any u, v ∈ V, and let w = u − v. We 
define w0 ∈ V0 and wk ∈ Vk as 

 
w0 = I˜ w, R∗w = I (θ w̃  ), 

H k  k h  k 

 

where I˜ is the Scott–Zhang quasi-interpolation operator onto SH(Ω) (Scott & Zhang, 1990), and w̃  = 

w − R∗w0. It is clear that w = R∗w0 + 
LN 

1 R
∗wk. Invoking Lemma 3.3 and Diening & Rů ži č ka  (2007, 

 
 

DF(v + R∗w0, v) ;S llI˜ wll2 ;S llwll2 . (3.6) 
0 H (∇v) (∇v) 

 

Similarly, Lemmas 3.3 and 3.7 imply 
 

 
N N 

DF(v + R∗wk, v) ;S 
L, 

llIh (θkw̃ )ll2 v) ;S 
L, 

llθkw̃ ll2 v). (3.7) 
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(∇v) 

/ 

(∇v) (∇v) 

I
L, 

k 

N 

k 

;S dx + |w̃ ||∇θk| 

;S ll w̃  ll(∇v) + δp 
|w̃ | 

≤ 1 + 
p,v 

δp 
llw̃ ll(∇v) 

Ω 

 

Note that the map x i→ (x + a)p−2x2 (x ≥ 0) is increasing for any a ≥ 0. It follows that 

llθkw̃ ll2 ≤ 
¡

θk |∇ w̃ |+ | w̃  ||∇θk|+ |∇v|
¢p−2 ¡θk |∇ w̃ |+ | w̃  ||∇θk|

¢2 
dx 

(i) / ¡ 
 

 

¢p−2 ¡ ¢2 
/ ¡ 

 

 

¢p−2 ¡ ¢2 

(ii) 
2 

 1 
/ 

p−2 2 
 

 

(iii) 
{ 

CPF 
\ 

2 

 
where (i) is because of the triangle inequality-like result presented in Liu & Yan (2001, Lemma 5.4), 
(ii) is due to (2.3) and (iii) is due to Lemmas 3.4 and 3.5. Meanwhile, we observe that Diening & Rů žič ka 
(2007, Theorem 4.6) implies 

 

llw̃ ll2 = llw − Ĩ  2 

(∇v) 
;S Hpllwll2 . (3.9) 

Combining (3.6), (3.7), (3.8) and (3.9) yields the desired result. □ 

 
REMARK 3.9. The estimate presented in Lemma 3.8 is not as sharp as the one in the norm-stable 
decomposition result given in Lemma 2.1. Specifically, in Lemma 3.8, the power of H/δ is p, while 
in Lemma 2.1, it is p − 1. The norm-stable decomposition achieves the sharp (H/δ)p−1-result using a 
trace theorem-type argument introduced in Dryja & Widlund (1994); see also Toselli & Widlund (2005, 
Lemma 3.10). Unfortunately, we were unable to make a similar argument in our quasi-norm analysis 
because the quasi-norm does not have a notion of trace. To obtain a sharp estimate it will be necessary 
to define an appropriate trace for the quasi-norm, which is remained as a topic for future research. 

 
3.3 Proof of Theorem 2.4 

The proof of Theorem 2.4 presented here uses a similar argument to Park (2020). However, due to the 
nonlinearity of the quasi-norm ll· ll(∇v), we have to make a careful consideration on dealing with ll· ll(∇v). 
In Lemma 3.10 we state the generalized additive Schwarz lemma (see Park (2020, Lemma 4.5)) applied 
to Algorithm 1 in a form suitable for our purposes. 

LEMMA 3.10 (generalized additive Schwarz lemma). Let {u(n)} be the sequence generated by Algorithm 
1. Then it satisfies 

u(n+1) ∈ arg minu∈V 

f
F(u(n)) + (Ft(u(n)), u − u(n))+ Mτ (u, u(n))

} 
, 

where the functional Mτ : V × V → R is given by 

Mτ (u, v) = τ inf 
N 

 

k=0 

DF(v + R∗wk, v) : u − v = τ 
L,

k=0 
R∗wk, wk ∈ Vk

l 

, u, v ∈ V. 

Ω Ω 

Ω 
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H wll 

θk |∇ w̃ |+ |∇v| θk|∇ w̃ | | w̃  ||∇θk|+ |∇v| dx 

( |w̃ |+ |∇v|) dx 

, (3.8) 
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N 

k k 

(∇v) 

(∇v) 

u¯ − v = 
L, 

R wk, 

N 

≥ (1 − τ N)F(u(n)) + τ 
L, 

min F(u(n) + R∗wk) 

= (1 − τ N)F(u(n)) + τ 
L, 

F(u(n) + R∗w(n+1)) 

k k p,v (∇v) 

k=0 

 
Proof. Here, we provide a simple proof that does not rely on convex analysis tools. We define a functional 

Qn : V → R as 

Qn(u) = F(u(n)) + (Ft(u(n)), u − u(n))+ Mτ (u, u(n)), u ∈ V. 

For any u ∈ V, invoking (1.4) with some direct computation yields 

I
L,N L, 

l 

Qn(u) = (1 − τ N)F(u(n)) + τ inf F(u(n) + R∗wk) : u − u(n) = τ R∗wk, wk ∈ Vk 

k=0 k=0 

N 

 

k=0 

N 

wk ∈Vk 
k 

k  k 

k=0 

≥ Qn(u
(n+1)). 

That is, u(n+1) minimizes Qn, which is our desired result. □ 

In the following text, similar to Park (2020, Lemma 4.6), we prove that Mτ defined in Lemma 3.10 
is bounded below by DF and above by ll· ll2 up to a multiplicative constant. We note that Lemma 3.11 
can be regarded as a variant of the Lipschitz-like/convexity condition discussed in Teboulle (2018). 

LEMMA 3.11. Suppose that p ∈ (1, ∞) and v ∈ V satisfy either the assumptions in Lemma 3.4 or those 
in Lemma 3.5. Then we have 

 

DF(u, v) ≤ Mτ (u, v) ≤ 

SD 
p,v 

τ max{p,2}−1 
llu − vll2 , u ∈ V, 

 
where CSD and M were defined in Lemmas 3.10 and 3.8, respectively. 

p,v τ 
 

Proof. We define u¯ ∈ V by the following:  

 

u¯ − v = 
1 

(u − v). 
τ 

By Lemma 3.8 there exist wk ∈ Vk ,0  ≤ k ≤ N, such that 

 
N 

∗ 
k 

 

L, 
D 

 

k=0 

 

(v + R∗w , v) ≤ CSDllu¯ − vll2 . 
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N 

− 

p2 C 

k= k 

k k p,v (∇v) τ max{p,2}−1 (∇v) 

k k 

= min 
u∈V 

F(u ) + (F (u ), u − u ) 

k=0 

k=0 k=0 

Note that u − v = τ 
LN 

0 R
∗wk. It follows by Lemma 3.1 that 

 

τ 
L, 

D 
 

(v + R∗w , v) ≤ τ CSDllu¯ − vll2 
CSD 

≤  p,v  
|u − vll2 . 

 
Meanwhile, invoking Lemma 2.2 yields 

 
 

N N 

τ 
L, 

DF(v + R∗wk, v) = τ 
L, 

F(v + R∗wk) − τ(N + 1)F(v) − (Ft(v), u − v) ≥ DF(u, v), 

 
which completes the proof. □ 

By closely following the argument in (Park, 2020, Appendix A.4) and manipulating l l · ll(∇v)-terms 
using the properties of ll· ll(∇v) presented in Lemmas 3.1 to 3.3 we establish the following lemma, which 
provides an estimate for the ratio of two consecutive energy errors in Algorithm 1. 

LEMMA 3.12. In Algorithm 1 suppose that v = u(n) satisfy either the assumptions in Lemma 3.4 or those 
in Lemma 3.5 for some n ≥ 0. Then we have 

 

F(u(n+1)) − F(u∗) 
{ 

1 
\{ 

τp−1μp 

\ 
p 

1 
1 

 ≤ 1 − 
F(u(n)) − F(u∗) 

1 − 
p pˆ SD , 

p,u(n) 

 

where p = min{p, 2}, p = max{p, 2}, pˆ = |p − 2| and μp 
SD 
p,u(n) 

were given in Lemmas 3.3 and 3.8, 

respectively. 

Proof. For t ∈ [0, 1] we write 

 

ut = u(n) + t(u∗ − u(n)). (3.10) 

 
Then we have 

 

F(u(n+1)) = F(u(n)) + (Ft(u(n)), u(n+1) − u(n))+ DF(u(n+1), u(n)) 

(i)  (n) t  (n) (n+1)  (n) (n+1)  (n) 

≤ F(u ) + (F (u ), u − u  )+  Mτ (u , u  ) 

(ii) 
f 

(n) t  (n) (n) (n) 
} 

 

 
(i) ≤ min 

I

F(u(n)) + (Ft(u(n)), u − u(n))+  
SD 
p,u(n) 

llu − u(n)ll2 

l 

t≥0 t τp−1 t (∇u(n)) 
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(∇u(n)) 

2 C 

(∇u ) ⎩ ⎭ 

t 

− 

p2 C 

− 

C + E 

≤ min F(u(n)) + t(Ft(u(n)), u∗ − u(n))+  
p,u( 

p−1 
tp F(u(n)) − F(u∗) 

F(u(n+1)) − F(u∗) ≤ min 1 − t + 
p,u(n) p 

p−1 F(u(n)) − F(u∗) 

C
p,u(n) ;S 1 + C

p,u(n) ≤ 1 + Cp,u(n) ≤ 1 + Cp,u∗ + E 

p2 

τp−1μp 

− 

1 + 
PF 
p,u∗ 

H 

δ 

p p−1 

( 

δ δ δ 

 

 
(iii) 
≤ min 

t≥0 

I

F(u(n)) + t(Ft(u(n)), u∗ − u(n))+  

 

SD 
p,u(n) 

τp−1 tpllu∗ − u(n)ll2 

l 

 
(iv) 
≤ min 

⎧
⎨

F(u(n) ) + t(Ft(u(n)), u∗ − u(n))+  
pˆ SD 

p,u(n) 
p−1 

tpllu(n) − u∗ll2  ∗ 

⎫
⎬ 

 

 

(v) 

t≥0 

⎧
⎨ 

τ 

2p  ̂CSD 
n) 

 

 

)
⎫
⎬ 

t≥0 ⎩ τ μp ⎭ 

 

where (i)–(v) are due to Lemmas 3.11, 3.10, 3.1, 3.2 and 3.3, respectively. By the convexity of F we get 

⎧
⎨ 2p̂ CSD 

⎫
⎬ ( ) 

 

t≥0 ⎩ τ μp ⎭ 

⎡ { 
1 
\{ 

τp−1μp 

\ p1 
1 
⎤ 

( 
(n) ∗ 

) 
 

= ⎣1 −  1 − 
p 

 
 

pˆ SD 
p,u(n) 

⎦ F(u ) − F(u ) , 

 
which completes the proof. □ 

Finally, we are ready to present our proof of Theorem 2.4. 

Proof of Theorem 2.4. Suppose that |∇u∗| does not vanish on Ω. Take any E > 0. By the continuity of 
PF 
p,u∗ stated in Lemmas 3.4 and 3.5 we can find a neighbourhood BE of u∗ in V such that, for any v ∈ BE , 

|∇v| does not vanish on Ω and  

 

C
PF ≤ C

PF 
 
+ E. (3.11) 

p,v p,u∗ 

Meanwhile, by Proposition 2.3 and (1.3) (see Park (2020, Section 6.1) for the precise statement of (1.3)) 
we deduce that the sequence {u(n)} converges to u∗ in V. Hence, there exists n0 such that, if n ≥ n0, then 
u(n) ∈ BE . By Lemma 3.8, for n ≥ n0, we have 

SD PF 
( 

H 
-p 

PF 
( 

H 
-p 

(3.11) (
PF 

) ( H 
-p 

It follows by Lemma 3.12 that 

{ 
(n+1) ∗ 

\−1 
p 
⎛ 

p2p  ̂CSD 
⎞ 

p 
1 

1 

F(u ) − F(u )  

 

p,u(n) 

1 −  
F(u(n)) − F(u∗) 

≤ 
p − 1 

⎝ 
τp−1μp 

⎠ 

{ 
pˆ \ 

p 
1 

1 _ ( ) (  - ¸ 1 

 

D
o

w
n

lo
a
d

e
d

 fro
m

 h
ttp

s://a
c
a
d

e
m

ic
.o

u
p
.co

m
/im

a
jn

a
/a

d
va

n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3

/im
a

n
u
m

/d
ra

e
0
6
8

/7
7
8

9
8
7

1
 b

y
 g

u
e
s
t o

n
 2

4
 M

a
y
 2

0
2
5
 

C 

C 

, 

. 

p 
;S 

p − 1 
. 



17 ADDITIVE SCHWARZ FOR p-LAPLACIAN 
 

1 + C 

(∇v) 

(∇v) 

0 

/ 

Γ 

p2 

τp−1μp 

− 
PF 
p,u∗ 

H 

δ 

p p−1 

 
Since E is arbitrary we obtain the desired result with 

 

{ 
pˆ \ 

p 
1 

1 _ (  - ̧  1 

 

 
This completes the proof. □ 

 

REMARK 3.13. As stated in Lemma 3.3 the squared quasi-norm llu − vll2 is equivalent to the Bregman 

distance DF(u, v) up to multiplicative constants for u, v ∈ W1,p(Ω). This equivalence allows us to 
perform the convergence analysis presented in this section using the Bregman distance instead of the 
quasi-norm. Indeed, the Bregman distance is frequently utilized in the analysis of convex optimization 
algorithms; see, e.g., Bauschke et al. (2017); Teboulle (2018). Nevertheless, we opted to present the 
convergence analysis of Algorithm 1 in terms of the quasi-norm in this paper, because using the quasi- 
norm has an advantage that we can simplify our proof by borrowing some useful techniques regarding 
the quasi-norm introduced in from the existing literature (Liu & Yan, 2001, 2002; Ebmeyer & Liu, 2005; 
Carstensen et al., 2006). 

 

 
4. Quasi-norm Poincaré–Friedrichs inequality 

This section is devoted to the proofs of Lemmas 3.4 and 3.5. Namely, we deal with quasi-norm Poincaré– 
Friedrichs inequalities of the form 

 

(|w|+ |∇v|)p−2|w|2 dx ≤ Cllwll2 
Ω 

, (4.1) 

 

where p ∈ (1, ∞) with p /= 2. Unfortunately, the inequality (4.1) does not hold for every v, w ∈ W1,p(Ω); 
see Examples 4.8 and 4.15. Based on a quasi-monotonicity argument introduced in Pechstein & Scheichl 
(2013) we characterize the conditions on v such that the inequality (4.1) holds and provide a precise 
estimate for the Poincaré–Friedrichs constant C in (4.1). Throughout this section let W1,p(Ω) denote the 
collection of all W1,p(Ω)-functions vanishing on Γ ⊂ ∂Ω  Γ /0 = 1 

. In addition we use the conventions 0 
and 1/0 = ∞. 

We first observe that a particular case of (4.1), when |∇v| is constant on Ω, is valid. By the same 
argument as in Liu & Yan (2002, Lemma 3.1) and Carstensen et al. (2006, Lemma. 4.1) we can prove 

the following lemma. 

LEMMA 4.1. Let Γ ⊂ ∂Ω have nonvanishing one-dimensional measure. Then, there exists a positive 
constant C such that 

 

(|w|+ a)p−2|w|2 dx ≤ C 
Ω Ω 

(|∇w|+ a)p−2|∇w|2 dx, w ∈ W1,p(Ω), a ≥ 0. 
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l=1 

l=1 

s 

l 

l 

l 

For a non-negative function α ∈ L∞(Ω) and a partition Y = {Y}m of Ω consisting of 

nonoverlapping polygonal regions we define two non-negative functions αY , α
Y ∈ L∞(Ω) as follows: 

 
αY(x) = ess inf α, αY(x) = ess sup α, x ∈ Yl,1 ≤ l ≤ m. 

Yl Yl 

 

In the following text we address the cases p ∈ (2, ∞) and p ∈ (1, 2) separately. We first focus on the 
case p ∈ (2, ∞). In Definition 4.2 we introduce the concept of quasi-monotone increase. We note that 
relevant notions were explored in Galvis & Efendiev (2010); Pechstein & Scheichl (2013). 

DEFINITION 4.2. Let α ∈ L∞(Ω) be a non-negative function on Ω, and let Y = {Y}m  denote a partition 
of Ω into nonoverlapping polygonal regions. 

◦ 
1. We say that the region Pl1,ls 

= (Yl1 
∪ · · ·  ∪ Yl ) ,  1 ≤ l1, . . .  , ls ≤ m, is a quasi-monotonically 

increasing path from Yl1 
to Yls 

with respect to α if the following two conditions hold: 
 

a. For each 1 ≤ i ≤ s − 1 the regions Yli 
and Yli+1 

share a common edge. 

b. αY (Yl1 
) ≤ · · ·  ≤ αY (Yls 

). 
2. We say that α is ∂Ω-quasi-monotonically increasing on Y if, for any 1 ≤ l ≤ m, there exist an index 

l∗ and a quasi-monotonically increasing path Pl,l∗ from Yl to Yl∗ , such that ∂Yl∗ ∩∂Ω has nonvanishing 
one-dimensional measure. 

By a similar argument, as in the proof of Pechstein & Scheichl (2013, Theorem 2.9), we prove the 
following lemma. 

LEMMA 4.3. Assume that p ∈ (2, ∞). Let α ∈ L∞(Ω) be a non-negative function on Ω, and let Y = 
m 
l=1 denote a partition of Ω into nonoverlapping polygonal regions. If α is ∂Ω-quasi-monotonically 

increasing on Y then, for each 1 ≤ l ≤ m, there exists a positive constant cp,Y ,l, independent of α, such 
that 

/ 

(|w|+ α)p−2|w|2 dx ≤ c 

{ 
αY(Y ) 

\p−2 / 

(|∇w|+ α)p−2|∇w|2 dx, w ∈ W1,p(Ω), 

Yl 
p,Y,l 

 
 

αY(Yl) 
0 

Pl,l∗ 

 

where the region Pl,l∗ was given in Definition 4.2. 

Proof. Note that the map x i→ xp−2 (x ≥ 0) is increasing. Take any l such that 1 ≤ l ≤ m. Since 

α ≤ αY (Yl) on Yl and Yl ⊂ Pl,l∗ we get 

/

Yl 

 

(|w|+ α)p−2|w|2 dx ≤ 
Yl 

(
|w|+ αY(Y )

)p−2 
|w|2 dx 

≤ 
Pl,l∗ 

(
|w|+ αY(Y )

)p−2 
|w|2 dx. (4.2) 
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l 

l 

p,α 

p,α 

p,α 

{ 
α (Y ) 

\ 
m 

l=1 

p,α 

Pl,l∗ 
l p,Y,l 

Pl,l∗ 
l 

l 

αY(Yl) 
|∇w |+ αY(Yl) 

p−2 |∇w|2 dx 

l 

αY(Yl) 
|∇w |+ αY 

p−2 |∇w|2 dx 

 
Since ∂Pl,l∗ ∩∂Ω has nonvanishing one-dimensional measure Lemma 4.1 ensures that we have a positive 
constant cp,Y ,l, independent of w and α, such that 

/ (
|w|+ αY(Y )

)p−2 
|w|2 dx ≤ c 

/ (
|∇w|+ αY(Y )

)p−2 
|∇w|2 dx. (4.3) 

 

Invoking the inequality  

 
a + αY(Yl) ≤ 

αY(Yl) , a ≥ 0, 
 
 

we have 

a + αY(Yl) αY(Yl) 

/

Pl,l∗ 

(
|∇w|+ αY(Y )

)p−2 
|∇w|2 dx 

{ 
αY(Y ) 

\p−2 / ¡ ¢ 
 

 

{ 
αY(Y ) 

\p−2 / ¡ ¢ 
 

 { 
αY(Y ) 

\p−2 / 

(|∇w|+ α)p−2 |∇w|2 dx, (4.4) 

αY(Yl) Pl,l∗ 

where the penultimate inequality is because αY increases along Pl,l∗ . Combining Lemmas 4.2, 4.3 and 
4.4 yields the desired result. □ 

Due to Lemma 4.3 we are able to define the quasi-monotone increase constant CQM for p ∈ (2, ∞), 
as presented in Definition 4.4. 

DEFINITION 4.4. Assume that p ∈ (2, ∞). Let α ∈ L∞(Ω) be a non-negative function on Ω. The quasi- 
monotone increase constant CQM ∈ [0, ∞] is defined by 

CQM = inf 

⎧
⎨ 

max 

 

Y p−2 
l 

 Y 
· 
L, 
c

p,Y,l 

⎫
⎬ 

, 

Y ⎩1≤l≤m  αY( l) l=1 
⎭ 

where the constants cp,Y ,l’s were given in Lemma 4.3 and the infimum is taken over every nonover- 
lapping polygonal partition Y = {Yl}

m of Ω such that α is ∂Ω-quasi-monotonically increasing on 
Y . 

Note that the infimum in Definition 4.2 is well-defined because α is ∂Ω-quasi-monotonically 

increasing on the trivial partition {Ω}. In terms of the quasi-monotone increase constant CQM we present 

a quasi-norm Poincaré–Friedrichs inequality for p ∈ (2, ∞) in Theorem 4.5. 

Pl,l∗ 

Pl,l∗ 
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(|w|+ α) |w| dx ≤ C 

/ 

0 

p,α 

{ 
α (Y ) 

\ / 

p,Y,l 

{ 
α (Y ) 

\ / 

p,α 

THEOREM 4.5. Assume that p ∈ (2, ∞). Let α ∈ L∞(Ω) be a non-negative function on Ω. Then we have 

 

p−2 2 QM 
p,α 

Ω Ω 

(|∇w|+ α)p−2|∇w|2 dx, w ∈ W1,p(Ω), 

where the quasi-monotone increase constant CQM ∈ [0, ∞] was given in Definition 4.4. 

Proof. We fix any nonoverlapping polygonal partition Y such that α is ∂Ω-quasi-monotonically 
increasing on Y . By Lemma 4.3, we have 

 

/

Yl 

 

(|w|+ α)p−2|w|2 dx ≤ cp,Y,l 

Y p−2 

l 
 

αY(Yl) 

 

 
 

 

Pl,l∗ 
(|∇w|+ α)p−2|∇w|2 dx 

 

≤ c max 
1≤l≤m 

Y p−2 

l 
 

αY(Yl) 

 

(|∇w|+ α)p−2|∇w|2 dx. (4.5) 
Ω 

 

Summing (4.5) over all l followed by taking the infimum over all Y completes the proof. □ 

Let Wh(Ω) be the space of piecewise constant functions on the triangulation Th. Under an additional 
assumption that α ∈ Wh(Ω) we can characterize the condition when the quasi-monotone increase 

constant CQM is finite. 

LEMMA 4.6. Assume that p ∈ (2, ∞). Let α ∈ Wh(Ω) be a non-negative piecewise constant function on 
T . Then, the quasi-monotone increase constant CQM is finite if and only if every maximal polygonal 

h p,α 

region R ⊂ Ω with α > 0 satisfies that ∂R ∩ ∂Ω has nonvanishing one-dimensional measure. 

Proof. We first assume that every maximal polygonal region R ⊂ Ω with α > 0 satisfies that ∂R ∩ ∂Ω 
has nonvanishing one-dimensional measure. We consider the partition Y ∗ of Ω consisting of all maximal 
polygonal regions {Ri} with α > 0 and all maximal polygonal regions {Si} with α = 0. It is obvious that 
each Ri forms a quasi-monotonically increasing path with respect to α from Ri to itself. For each Si, if 
∂Si ∩ ∂Ω has nonvanishing one-dimensional measure, then Si forms a quasi-monotonically increasing 
path with respect to α from Si to itself. Otherwise, the maximality of Si implies there exists some Rj such 

that Si and Rj share a common edge. Then we readily deduce that (Si ∪ Rj)◦ forms a quasi-monotonically 
increasing path with respect to α from Si to Rj. Meanwhile, since α is piecewise constant, we have 

 

αY
∗ 
(R ) 

 i  < ∞, 
αY

∗ (Ri) 

αY
∗ 
(S ) 0 

 i  = αY
∗ (Si) 0 

 

= 1, 

for every R and S . Hence, we conclude that CQM < ∞. 
i i p,α 

Next, we suppose that there exists a maximal polygonal region R∗ ⊂ Ω with α > 0 such that ∂R∗ ∩ 

∂Ω is a null set. That is, every edge of R∗ is shared with a region with α = 0. Take any nonoverlapping 
polygonal partition Y of Ω. If Y has an element Y such that Y ⊂ R∗ then it is impossible to find 
any quasi-monotonically increasing path with respect to α starting from Y, since any such path would 
necessarily have to pass through a region where α = 0. Otherwise, Y must contain an element Y such 
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p,α 

(|w|+ α) |w| dx ≤ C 

/ 

0 

p,α 

0 

⎧
⎪⎨ 

3 

3 

J 1 
(|Ew|+ α)p−2|Ew|2 dx 

J 
(|(Ew) | +  α) |(Ew) | dx 

1 
3 ≤ x < 

that both Y ∩ R∗ and Y \ R∗ are nontrivial, which implies that 

αY(Y) 
= ∞. 

αY(Y) 

Hence, we conclude that CQM = ∞, which completes the proof. □ 

Combining Theorem 4.5 and Lemma 4.6 yields Corollary 4.7, in which Lemma 3.4 is a particular 
case α = |∇v| of this result. 

COROLLARY 4.7. Assume that p ∈ (2, ∞). Let α ∈ Wh(Ω) be a non-negative piecewise constant function 
on Th. If every maximal polygonal region R ⊂ Ω with α  > 0 satisfies that ∂R ∩ ∂Ω has nonvanishing 
one-dimensional measure, then we have 

p−2 2 QM 
p,α 

Ω Ω 

(|∇w|+ α)p−2|∇w|2 dx, w ∈ W1,p(Ω), 

 
where CQM is a finite constant given in Definition 4.4. Moreover, if α does not vanish on Ω, then CQM 

p,α 

has an upper bound CQM that is continuous at α in W (Ω). 
p,α 

p,α h 

 

Proof. It suffices to find a continuous upper bound of CQM under the given condition. We assume that 
α does not vanish on Ω. By Definition 4.4, we have 

 
CQM ≤ 

maxΩ α 
c 

 

 
=: CQM, 

p,α 
 

 

minΩ α p,{Ω},1 p,α 

where the inequality is obtained by taking Y = {Ω} = {Y1} in Definition 4.4. As α  > 0 in Ω it is clear 

that CQM is continuous at α in W (Ω), which completes the proof. □ 
p,α h 

We show that, under the condition presented in Lemma 4.6 for the quasi-monotone increase constant 
Cp,α to be infinite, the quasi-norm Poincaré–Friedrichs inequality of the form (4.1) is not valid. 
For simplicity we provide a counterexample in one-dimension; we note that the construction can be 
generalized to higher dimensions. 

EXAMPLE 4.8. Let p ∈ (2, ∞) and Ω = (0, 1) ⊂ R. We define w ∈ W1,p(Ω) and α ∈ L∞(Ω) as 
 

 

w(x) = 

3x, if0 < x < 1 , 
1 if 3 ≤ x < 2 , 

⎪⎩−3x + 3, if 2 ≤ x < 1, 

 

α(x) = 
1 2 

  

3 3 

0, otherwise. 

We observe that the quasi-monotone increase constant Cp,α becomes infinite because the interval 
(1/3, 2/3) where α is nonzero does not touch ∂Ω. For any E > 0 direct calculation yields 

1 t p−2 t 2 

  0  → 0 as  E → 0+, 
0 

 

which implies that (4.1) does not hold. 

D
o

w
n

lo
a
d

e
d

 fro
m

 h
ttp

s://a
c
a
d

e
m

ic
.o

u
p
.co

m
/im

a
jn

a
/a

d
va

n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3

/im
a

n
u
m

/d
ra

e
0
6
8

/7
7
8

9
8
7

1
 b

y
 g

u
e
s
t o

n
 2

4
 M

a
y
 2

0
2
5
 

1, if , 

/ 

I 



22 Y.-J. LEE AND J. PARK 
 

l=1 

s 

l 

p,α 

p,α 

p,α 
l 

m 

(|w|+ α) |w| dx ≤ C 

/ 

0 

{ 

Y 

\ 

 
We now turn to the case p ∈ (1, 2). In contrast to the case p ∈ (2, ∞), which heavily relies on the 

quasi-monotone increase of α, the analysis of the case p ∈ (1, 2) hinges on the quasi-monotone decrease 
of α; see Definition 4.9. 

DEFINITION 4.9. Let α ∈ L∞(Ω) be a non-negative function on Ω, and let Y = {Y}m  denote a partition 
of Ω into nonoverlapping polygonal regions. 

◦ 
1. We say that the region Pl1,ls 

= (Yl1 
∪ · · ·  ∪ Yl ) ,  1 ≤ l1, . . .  , ls ≤ m, is a quasi-monotonically 

decreasing path from Yl1 
to Yls 

with respect to α if the following two conditions hold: 
 

a. For each 1 ≤ i ≤ s − 1 the regions Yli 
and Yli+1 

share a common edge. 

b. αY (Yl1 
) ≥ · · ·  ≥ αY (Yls 

). 
2. We say that α is ∂Ω-quasi-monotonically decreasing on Y if, for any 1 ≤ l ≤ m, there exist an 

index l∗ and a quasi-monotonically decreasing path Pl,l∗ from Yl to Yl∗ , such that ∂Yl∗ ∩ ∂Ω has 
nonvanishing one-dimensional measure. 

One can prove the following lemma using the fact that the map x i→ xp−2 (x ≥ 0) is decreasing and 
by following a similar argument to that used in the proof of Lemma 4.3. 

LEMMA 4.10. Assume that p ∈ (1, 2). Let α ∈ L∞(Ω) be a non-negative function on Ω, and let Y = 
m 
l=1 denote a partition of Ω into nonoverlapping polygonal regions. If α is ∂Ω-quasi-monotonically 

decreasing on Y then, for each 1 ≤ l ≤ m, there exists a positive constant cp,Y ,l, independent of α, such 
that 

/ 

(|w|+ α)p−2|w|2 dx ≤ c 

{ 
αY(Y ) 

\p−2 / 

(|∇w|+ α)p−2|∇w|2 dx, w ∈ W1,p(Ω), 

Yl 
p,Y,l αY(Yl) 

0 
Pl,l∗ 

where the region Pl,l∗ was given in Definition 4.9. 

Similar to Definition 4.4 we present the definition of the quasi-monotone decrease constant CQM for 

p ∈ (1, 2) in the following text. 

DEFINITION 4.11. Assume that p ∈ (1, 2). Let α ∈ L∞(Ω) be a non-negative function on Ω. The quasi- 
monotone decrease constant CQM ∈ [0, ∞] is defined by 

CQM = inf 

⎧
⎨ 

max α (Y )  
p−2 

Y 
· 
L, 
c

p,Y,l 

⎫
⎬ 

, 

Y ⎩1≤l≤m  α  (Yl) l=1 
⎭ 

where the constants cp,Y ,l’s were given in Lemma 4.10 and the infimum is taken over every nonoverlap- 
ping polygonal partition Y of Ω such that α is ∂Ω-quasi-monotonically decreasing on Y . 

In terms of the quasi-monotone decrease constant CQM, we present a quasi-norm Poincaré–Friedrichs 
inequality for p ∈ (1, 2) in Theorem 4.12, which can be proven in a similar manner to Theorem 4.5. 

THEOREM 4.12. Assume that p ∈ (1, 2). Let α ∈ L∞(Ω) be a non-negative function on Ω. Then we have 

 

p−2 2 QM 
p,α 

Ω Ω 

(|∇w|+ α)p−2|∇w|2 dx, w ∈ W1,p(Ω), 
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p,α 

(|w|+ α) |w| dx ≤ C 

/ 

0 

0 

p,α 

⎧
⎪⎨ 

3 

3 

J 1 
(|Ew|+ α)p−2|Ew|2 dx 

J 
(|(Ew) | +  α) |(Ew) | dx 

p,α 

1 
3 ≤ x < 

 

where the quasi-monotone decrease constant CQM ∈ [0, ∞] was given in Definition 4.11. 

The following lemma characterizes the condition when the quasi-monotone decrease constant Cp,α 

is finite, under an additional assumption that α ∈ Wh(Ω), i.e., α is a non-negative piecewise constant 
function on the triangulation Th. 

LEMMA 4.13. Assume that p ∈ (1, 2). Let α ∈ Wh(Ω) be a non-negative piecewise constant function on 
T . Then, the quasi-monotone decrease constant CQM is finite if and only if every maximal polygonal 

h p,α 

region S ⊂ Ω with α = 0 satisfies that ∂S ∩ ∂Ω has nonvanishing one-dimensional measure. 

Proof. The proof is analogous to that of Lemma 4.6. □ 

We obtain Corollary 4.14, in which Lemma 3.5 is a particular case α = |∇u|, as a direct consequence 
of Theorem 4.12 and Lemma 4.13. 

COROLLARY 4.14. Assume that p ∈ (1, 2). Let α ∈ Wh(Ω) be a non-negative piecewise constant function 
on Th. If every maximal polygonal region S ⊂ Ω with α = 0 satisfies that ∂S ∩ ∂Ω has nonvanishing 
one-dimensional measure, then we have 

 

p−2 2 QM 
p,α 

Ω Ω 

(|∇w|+ α)p−2|∇w|2 dx, w ∈ W1,p(Ω), 

 
where CQM is a finite constant given in Definition 4.11. Moreover, if α does not vanish on Ω then CQM 

p,α 

has an upper bound CQM that is continuous at α in W (Ω). 
p,α 

p,α h 

Finally, we present a counterexample of the quasi-norm Poincaré–Friedrichs inequality (4.1) under 
the condition presented in Lemma 4.13 for the quasi-monotone decrease constant CQM to be infinite. 

EXAMPLE 4.15. Let p ∈ (1, 2) and Ω = (0, 1) ⊂ R. We define w ∈ W1,p(Ω) and α ∈ L∞(Ω) as 
 

 

w(x) = 

3x, if 0 < x < 1 , 
1 if 3 ≤ x < 2 , 

⎪⎩−3x + 3, if 2 ≤ x < 1, 

 

α(x) = 
1 2 

  

3 3 

1, otherwise. 

We observe that the quasi-monotone increase constant CQM becomes infinite because the interval 
(1/3, 2/3) where α vanishes does not touch ∂Ω. For E > 0 direct calculation yields 

1 t p−2 t 2 

  0  → 0 as  E → 0+, 
0 

 

which implies that (4.1) does not hold. 
 
 

5. Numerical experiments 

In this section we present numerical results of the two-level additive Schwarz method for the p-Laplacian, 
which support our theoretical findings. All the algorithms were implemented in MATLAB R2022b. They 
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k=1 k k=1 

1 k k 1 

1 

k 

Fk(w
(n+1)) 

k 

1 
k 

 

 

FIG. 1. Discretization and domain decomposition settings when h = 1/24, H = 1/22 and δ = h. (a) Coarse triangulation TH and 

fine triangulation Th. (b) Nonoverlapping domain decomposition {Ωk }
N  . (c) Overlapping domain decomposition {Ωt }N  . 

 
were executed on a desktop equipped with AMD Ryzen 5 5600X CPU (3.7GHz, 6C), 40GB RAM and 
the operating system Windows 10 Pro. 

In the model p-Laplacian problem (1.1) we set p ∈ {1.05, 1.1, 1.5, 5, 10, 20}, Ω = [0, 1]2 ⊂ R2 and 
f = 1. The domain Ω is partitioned into 2 × 1/H × 1/H uniform triangles to form a coarse triangulation 
TH of Ω. We further refine TH to obtain a fine triangulation Th, which consists of total 2 × 1/h × 1/h 

uniform triangles. Each subdomain Ωk,1 ≤ k ≤ N (N = 1/H × 1/H) is defined by a rectangular region 
consisting of two coarse triangles sharing a diagonal edge. Then we extend Ωk by adding its surrounding 
layers of fine triangles in Th with the width δ to construct Ωt , so that {Ωt }N becomes an overlapping 
domain decomposition for Ω. If δ ∈ (0, H/2) then {Ωt }N k k k=1 can be coloured with four colours in the 

k k=1 
way described in Lemma 2.2. The discretization and domain decomposition settings described above 
are illustrated in Fig. 1. 

In Algorithm 1 we set u(0) = 0 and τ = τ0 = 1/5. Local problems defined on Vk, 1 ≤ k ≤ N, 
and coarse problems defined on V0 are solved by the adaptive Newton method proposed in Mishchenko 
(2023, Algorithm 2.1). We use the stop criterion 

 

F (w(n+1)) − F (w(n)) 
 

 

 
for both local and coarse problems, where Fk represents the energy functional corresponding to the local 
or coarse problems on Vk. 

REMARK 5.1. As alternatives to the adaptive Newton method used in this paper, which is a second- 
order optimization algorithm, first-order optimization algorithms (Teboulle, 2018) can be adopted to 
solve the local and coarse problems. These algorithms are generally easier to implement as they do not 
require the Hessian information of the energy functional, but known to converge slower than second- 
order algorithms. To accelerate the convergence rate of a first-order algorithm several techniques such 
as the FISTA momentum (Beck & Teboulle, 2009), restart scheme (O’Donoghue & Candes, 2015) and 
backtracking (Scheinberg et al., 2014) can be employed. 

A reference solution u∗ ∈ V for each p and h is computed by sufficiently many iterations of the 
adaptive Newton method applied to the full-dimension problem (2.1). The computed reference solutions 
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FIG. 2. Reference solutions of the p-Laplacian problem (2.1) (p ∈ {1.05, 1.1, 1.5, 5, 10, 20}) computed by the adaptive Newton 

method (Mishchenko, 2023) (h = 2−5). 

 

for p ∈ {1.05, 1.1, 1.5, 5, 10, 20} are plotted in Fig. 2. One can observe that for cases where p is close to 
1 the reference solutions exhibit flat regions where the gradient vanishes. This observation implies that 
when p is close to 1 the assumption in Theorem 2.4 that ∇u∗ does not vanish may not hold. On the other 
hand, for cases where p is large, the reference solutions display peaks, leading to singular behaviour in 
the solution. 

In Figs 3, 4, 5, 6, 7, 8, we depict the relative energy errors 

F(u(n)) − F(u∗) 
 

 

F(u(0)) − F(u∗) 
(5.1) 

 
of Algorithm 1 under various settings on p, h, H and δ. More precisely, in Figs 5 and 6 we choose p 
as moderate values 1.5 and 5, in Figs 3 and 4 p is chosen very close to 1 (p = 1.05, 1.1) and in Figs 7 
and 8 p is chosen large (p = 10, 20). In all figures h and H vary such that H/h = 23, and δ is chosen as 
δ ∈ {20h, 21h, 22h}. 

In every case we observe that the convergence curve of the relative energy error with respect to the 
number of iterations n appears linear in the x-linear y-log scale plot when n is large enough, consistent 
with our theoretical result presented in Theorem 2.4. It is noteworthy that even in cases where p is very 
close to 1 (see Figs 3 and 4), where Theorem 2.4 cannot be applied due to the flat region in the solution 
u∗ as shown in Fig. 2(a, b), the convergence curve still appears linear. However, a theoretical explanation 
for the linear convergence in these cases is currently lacking. 

On the other hand, for each p, we observe that the asymptotic convergence rate of Algorithm 1 shown 
in Figs 3, 4, 5, 6, 7, 8 remains bounded when h decreases keeping H/δ constant. This behaviour aligns 
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FIG. 3. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian problem 
(2.1) (p = 1.05). Parameters h, H and δ stand for the characteristic element size, subdomain size and overlapping width among 
subdomains, respectively (H/h = 23). 

 

 

 
FIG. 4. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian problem 
(2.1) (p = 1.1). Parameters h, H and δ stand for the characteristic element size, subdomain size and overlapping width among 
subdomains, respectively (H/h = 23). 

 

 

with the dependence of γ to H/δ explained in Theorem 2.4. Moreover, this observation implies that 
Algorithm 1 is numerically scalable; the asymptotic linear convergence rate is uniformly bounded when 
the ratio of the subdomain size to the overlapping width is fixed. 

 
6. Conclusion 

In this paper we developed a new convergence theory for additive Schwarz methods for boundary value 
problems involving the p-Laplacian. To the best of our knowledge our theory is the first theoretical result 
that explains the asymptotic linear convergence of additive Schwarz methods for the p-Laplacian. Our 
work successfully bridges the gap between theory and practice by demonstrating that our theoretical 
findings align well with numerical results. 
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FIG. 5. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian problem 
(2.1) (p = 1.5). Parameters h, H and δ stand for the characteristic element size, subdomain size and overlapping width among 
subdomains, respectively (H/h = 23). 

 

 

 
FIG. 6. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian 
problem (2.1) (p = 5). Parameters h, H and δ stand for the characteristic element size, subdomain size and overlapping width 
among subdomains, respectively (H/h = 23). 

 

 

While the convergence theory of subspace correction methods for linear problems appears to be 
well-developed (Xu & Zikatanov, 2002; Lee et al., 2008), there remains a need for further research on 
the theory of subspace correction methods for nonlinear problems. We believe that our result can serve 
as a foundation for the sharp convergence theory of general subspace correction methods for complex 
nonlinear problems. 
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FIG. 7. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian 
problem (2.1) (p = 10). Parameters h, H and δ stand for the characteristic element size, subdomain size and overlapping width 
among subdomains, respectively (H/h = 23). 

 

 

 
FIG. 8. Decay of the relative energy error (5.1) in the two-level additive Schwarz method (Algorithm 1) for the p-Laplacian 
problem (2.1) (p = 20). Parameters h, H and δ stand for the characteristic element size, subdomain size and overlapping width 
among subdomains, respectively (H/h = 23). 

 
 

 

REFERENCES 

BADEA, L. (2006) Convergence rate of a Schwarz multilevel method for the constrained minimization of nonquadratic 
functionals. SIAM J. Numer. Anal., 44, 449–477. 

BADEA, L. (2019) Additive and restricted additive Schwarz–Richardson methods for inequalities with nonlinear 
monotone operators. Comput. Optim. Appl., 74, 345–385. 

BADEA, L. & KRAUSE, R. (2012) One-and two-level Schwarz methods for variational inequalities of the second kind 
and their application to frictional contact. Numer. Math., 120, 573–599. 

BARRETT, J. W. & LIU, W. B. (1993) Finite element approximation of the p-Laplacian. Math. Comp., 61, 523–537. 
BARRETT, J. W. & LIU, W. B. (1994) Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. 

Anal., 31, 413–428. 
BAUSCHKE, H. H., BOLTE, J. & TEBOULLE, M. (2017) A descent lemma beyond Lipschitz gradient continuity: First- 

order methods revisited and applications. Math. Oper. Res., 42, 330–348. 

D
o

w
n

lo
a
d

e
d

 fro
m

 h
ttp

s://a
c
a
d

e
m

ic
.o

u
p
.co

m
/im

a
jn

a
/a

d
va

n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3

/im
a

n
u
m

/d
ra

e
0
6
8

/7
7
8

9
8
7

1
 b

y
 g

u
e
s
t o

n
 2

4
 M

a
y
 2

0
2
5
 



29 ADDITIVE SCHWARZ FOR p-LAPLACIAN 
 

 
BECK, A. & TEBOULLE, M. (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM 

J. Imaging Sci., 2, 183–202. 
BENEDIKT, J., GIRG, P., KOTRLA, L. & TAKÁCˇ, P. (2018) Origin of the p-Laplacian and A. Missbach. Electron. J. Differ. 

Equations, 16, 17. 
BERMEJO, R. & INFANTE, J.-A. (2000) A multigrid algorithm for the p-Laplacian. SIAM J. Sci. Comput., 21, 

1774–1789. 
CARSTENSEN, C., LIU, W. & YAN, N. (2006) A posteriori FE error control for p-Laplacian by gradient recovery in 

quasi-norm. Math. Comp., 75, 1599–1616. 
CIARLET, P. G. (2002) The Finite Element Method for Elliptic Problems. Philadelphia: SIAM. 
DÍAZ, J. I. (1985) Nonlinear Partial Differential Equations and Free Boundaries, vol. I, volume 106. Boston, MA: 

Pitman (Advanced Publishing Program). 
DIENING, L., FORNASIER, M., TOMASI, R. & WANK, M. (2020) A relaxed Kacˇanov iteration for the p-Poisson problem. 

Numer. Math., 145, 1–34. 
DIENING, L. & KREUZER, C. (2008) Linear convergence of an adaptive finite element method for the p-Laplacian 

equation. SIAM J. Numer. Anal., 46, 614–638. 
DIENING, L. & RU˚ŽICˇKA, M. (2007) Interpolation operators in Orlicz–Sobolev spaces. Numer. Math., 107, 107–129. 
DRYJA, M. & WIDLUND, O. B. (1994) Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput., 

15, 604–620. 
EBMEYER, C. & LIU, W. B. (2005) Quasi-norm interpolation error estimates for the piecewise linear finite element 

approximation of p-Laplacian problems. Numer. Math., 100, 233–258. 
ERN, A. & GUERMOND, J.-L. (2021) Finite Elements I—Approximation and Interpolation. Cham: Springer. 
GALVIS, J. & EFENDIEV, Y. (2010) Domain decomposition preconditioners for multiscale flows in high-contrast media. 

Multiscale Model. Simul., 8, 1461–1483. 
GLOWINSKI, R. & MARROCCO, A. (1975) Sur l’approximation, par éléments finis d’ordre un, et la résolution, par 

pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. 

Recherche Opérationnelle Sér. Rouge Anal. Numér., 9, 41–76. 
HUANG, Y., LI, R. & LIU, W. (2007) Preconditioned descent algorithms for p-Laplacian. J. Sci. Comput., 32, 343–371. 
LEE, Y.-J., WU, J. & CHEN, J. (2009) Robust multigrid method for the planar linear elasticity problems. Numer. Math., 

113, 473–496. 
LEE, Y.-J., WU, J., XU, J. & ZIKATANOV, L. (2008) A sharp convergence estimate for the method of subspace corrections 

for singular systems of equations. Math. Comp., 77, 831–851. 
LIU, W. & YAN, N. (2001) Quasi-norm local error estimators for p-Laplacian. SIAM J. Numer. Anal., 39, 100–127. 
LIU, W. & YAN, N. (2002) On quasi-norm interpolation error estimation and a posteriori error estimates for p- 

Laplacian. SIAM J. Numer. Anal., 40, 1870–1895. 
LIU, X., CHUNG, E. & ZHANG, L. (2021) Iterated numerical homogenization for multiscale elliptic equations with 

monotone nonlinearity. Multiscale Model. Simul., 19, 1601–1632. 
MISHCHENKO, K. (2023) Regularized Newton method with global O(1/k2) convergence. SIAM J. Optim., 33, 

1440–1462. 
O’DONOGHUE, B. & CANDES, E. (2015) Adaptive restart for accelerated gradient schemes. Found. Comput. Math., 15, 

715–732. 
PARK, J. (2020) Additive schwarz methods for convex optimization as gradient methods. SIAM J. Numer. Anal., 58, 

1495–1530. 
PARK, J. (2021) Accelerated additive schwarz methods for convex optimization with adpative restart. J. Sci. Comput., 

89. 
PARK, J. (2022) Additive schwarz methods for convex optimization with backtracking. Comput. Math. Appl., 113, 

332–344. 
PECHSTEIN, C. & SCHEICHL, R. (2013) Weighted Poincaré inequalities. IMA J. Numer. Anal., 33, 652–686. 
SCHEICHL, R., VASSILEVSKI, P. S. & ZIKATANOV, L. T. (2012) Multilevel methods for elliptic problems with highly 

varying coefficients on nonaligned coarse grids. SIAM J. Numer. Anal., 50, 1675–1694. 

D
o

w
n

lo
a
d

e
d

 fro
m

 h
ttp

s://a
c
a
d

e
m

ic
.o

u
p
.co

m
/im

a
jn

a
/a

d
va

n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3

/im
a

n
u
m

/d
ra

e
0
6
8

/7
7
8

9
8
7

1
 b

y
 g

u
e
s
t o

n
 2

4
 M

a
y
 2

0
2
5
 



30 Y.-J. LEE AND J. PARK 
 

 
SCHEINBERG, K., GOLDFARB, D. & BAI, X. (2014) Fast first-order methods for composite convex optimization with 

backtracking. Found. Comput. Math., 14, 389–417. 
SCOTT, L. R. & ZHANG, S. (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. 

Math. Comp., 54, 483–493. 
SHAPOVALOV, V. M. (2017) On the applicability of the Ostwald–de Waele model in solving applied problems. J. 

Engrg. Phys. Thermophys., 90, 1213–1218. 
TAI, X.-C. & ESPEDAL, M. (1998) Rate of convergence of some space decomposition methods for linear and nonlinear 

problems. SIAM J. Numer. Anal., 35, 1558–1570. 
TAI, X.-C. & XU, J. (2002) Global and uniform convergence of subspace correction methods for some convex 

optimization problems. Math. Comp., 71, 105–125. 
TEBOULLE, M. (2018) A simplified view of first order methods for optimization. Math. Program., 170, 67–96. 
TOSELLI, A. & WIDLUND, O. (2005) Domain Decomposition Methods—Algorithms and Theory. Berlin: Springer. 
XU, J. (1992) Iterative methods by space decomposition and subspace correction. SIAM Rev., 34, 581–613. 
XU, J. & ZIKATANOV, L. (2002) The method of alternating projections and the method of subspace corrections in 

Hilbert space. J. Am. Math. Soc., 15, 573–597. 

D
o

w
n

lo
a
d

e
d

 fro
m

 h
ttp

s://a
c
a
d

e
m

ic
.o

u
p
.co

m
/im

a
jn

a
/a

d
va

n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3

/im
a

n
u
m

/d
ra

e
0
6
8

/7
7
8

9
8
7

1
 b

y
 g

u
e
s
t o

n
 2

4
 M

a
y
 2

0
2
5
 


	1. Introduction
	2. Additive Schwarz methods
	end for
	3. Convergence analysis
	4. Quasi-norm Poincaré–Friedrichs inequality
	5. Numerical experiments
	6. Conclusion
	Funding

