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Abstract
We prove the nonstationary bounded distortion property forC1+ε smooth dynamical systems
on multidimensional spaces. The results we obtain are motivated by potential application to
study of spectral properties of discrete Schrödinger operators with potentials generated by
Sturmian sequences.
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1 Introduction

The bounded distortion lemma is a well-known and widely used tool in the theory of smooth
dynamical systems. One of its classical forms is the following:

Theorem 1 Consider a twice continuously differentiable function f : R → R with a non-
vanishing derivative, such that

| f ′′(x)|
| f ′(x)| < C

for some constant C and every x ∈ R. Assume that there exists an interval I ⊂ R, such that
for some n ∈ N we have

n−1∑

j=0

| f j (I )| < L

for some constant L. Then there exists a constant K that depends only on L and C (and not
n), such that for every two subintervals I1, I2 ⊂ I ,

K−1 |I1|
|I2| <

| f n(I1)|
| f n(I2)| < K

|I1|
|I2| .
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Different forms of this statement are used in [4, 5, 7, 11, 16] to establish various funda-
mental results.

One of its most famous applications is in the proof of Denjoy’s theorem, which states
that any diffeomorphism of the circle with an irrational rotation number and derivative of
bounded variation is topologically conjugate to an irrational rotation (for details see [4] or
[6, theorem 12.1.1]).

Another application of bounded distortion can be seen in the proof of a classical folklore
result that asserts existence of a continuous invariant ergodic measure forC2 expandingmaps
of the circle. Moreover, if a piecewise differentiable map admits an inducedMarkov map and
satisfies the volume bounded distortion property (also known as geometrical self similarity)
and some additional assumptions, then it admits an ergodic invariant absolutely continuous
probability measure. For details and other results of a similar nature see [7] and references
therein.

Bounded distortion plays an important role in the study of dynamically defined Cantor
sets. For example, it is used to prove that the Hausdorff dimension coincides with the box
counting dimension (also known as limit capacity) if the generators are in C1+ε (see [15],
or [11, chapter 4, theorem 3] for a modern exposition). Bounded distortion also allows to
estimate thickness of a dynamically defined Cantor set, and that estimate is used to prove the
celebrated Newhouse’s theorem (see [8] and [11] for details).

A special case of bounded distortion for nonstationary sequences of uniformly hyperbolic
maps of a plane with the uniform cone condition was studied by J. Palis and J-C. Yoccoz in
[12, corollary 3.4]. A generalization of said result that allows unbounded derivatives can be
found in [9]. These results have important applications in the theory of SRB measures for
surface diffeomorphisms. For more results utilizing bounded distortion technique see [5, 16]
and references therein.

Wewould like to point out that bounded distortion is a phenomenon that is usually observed
in systems with C1+ε regularity (see theorem 2). For example, one could see [10] by H.
Ounesli, which proves that within the space of ergodic Lebesgue-preserving C1 expanding
maps of the circle, unbounded distortion is C1-generic.

Our result is primarily motivated by a potential application to the study of spectral prop-
erties of discrete Schrödinger operator with Sturmian potentials. In 1987 A. Sütő (see [13])
found a way to describe the spectrum of the Fibonacci Hamiltonian (which is a special case of
a discrete Schrödinger operators with Sturmian potential) using dynamical properties of the
tracemap. Since then, spectral properties of the Fibonacci Hamiltonian have been extensively
studied by many authors (see [3, 14] and references therein). In particular, D. Damanik and
A. Gorodetski were able to estimate the thickness and Hausdorff dimension of the spectrum
of the Fibonacci Hamiltonian. In their work they used a stationary multidimensional ver-
sion of the bounded distortion property (see [2, proposition 3.11]). A dynamical description
similar to the one discovered by A. Sütő is now available for the spectrum of every discrete
Schrödinger operator with Sturmian potential (see [1]). However, the dynamics involved in
the general case is nonstationary. In order to generalize the results from [2], the nonstationary
bounded distortion property presented in this paper might prove useful.

2 Main Result

In this section we will state and prove the main result of the paper. We start with some
definitions.
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Definition 1 Ifγ is a regularC1 curve,meaningγ : [a, b] ⊂ R → R
d andγ ′(t) is continuous

and does not vanish, then define the length of γ as

L(γ ) =
∫ b

a
‖γ ′(t)‖ dt,

and define the maximal angle of γ as

α(γ ) = sup
x,y∈[a,b]

∠(γ ′(x), γ ′(y)).

Definition 2 For a continuously differentiable map f : Rn → R
m

f (x) =
⎛

⎜⎝
f (1)(x)

...

f (m)(x)

⎞

⎟⎠ ,

and a point x ∈ R
n define the total derivative of f at x as

Dx f =

⎛

⎜⎜⎝

∂ f (1)

∂x1
. . .

∂ f (1)

∂xn
...

. . .
...

∂ f (m)

∂x1
. . .

∂ f (m)

∂xn

⎞

⎟⎟⎠ .

Definition 3 For a continuously differentiable map f : Rn → R
m , define its C1 seminorm

as
‖ f ‖1 = sup

x,v∈Rn ,‖v‖=1
‖Dx f · v‖,

and for 0 < ε ≤ 1, define its C1+ε seminorm as

‖Df ‖ε = sup
x,y∈Rn

‖Dx f − Dy f ‖
‖x − y‖ε

.

We say that f ∈ C1+ε if ‖Df ‖ε < ∞.

Remark 1 Notice that the case of ε = 1 corresponds to f with a Lipschitz first derivative.

The following theorem is the main result of the paper:

Theorem 2 Let γ : [a0, b0] ⊂ R → R
d be the natural parameterization of a regular C1

curve. Fix 0 < ε ≤ 1 and let fi : Rd → R
d be C1+ε maps. Denote Fi = fi ◦ fi−1 ◦ ... ◦ f1,

where 1 ≤ i ≤ n and let F0 be the identity map. Assume there exists C such that

‖ fi‖1, ‖ f −1
i ‖1, ‖Dfi‖ε ≤ C (1)

for all 1 ≤ i ≤ n and assume there exists L and α such that
∑n−1

i=0 L(Fi ◦ γ )ε ≤ L and∑n−1
i=0 α(Fi ◦ γ ) ≤ α. Then there exists a constant K such that for any x, y ∈ [a0, b0],

K−1 ≤ ‖(Fn ◦ γ )′(x)‖
‖(Fn ◦ γ )′(y)‖ ≤ K , (2)

where K depends only on C, L, and α (and not n).
Moreover, consider two subintervals [a1, b1], [a2, b2] ⊂ [a0, b0] and related arcs given

by γ ([a1, b1]) and γ ([a2, b2]). Then
|b1 − a1|
|b2 − a2|K

−2 ≤ L((Fn ◦ γ )([a1, b1]))
L((Fn ◦ γ )([a2, b2])) ≤ |b1 − a1|

|b2 − a2|K
2. (3)
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Proof We start by proving inequality (2). Denote points xi = (Fi ◦ γ )(x), yi = (Fi ◦ γ )(y),
and vectors ui = (Fi ◦ γ )′(x), vi = (Fi ◦ γ )′(y) for 0 ≤ i ≤ n. Notice that all ‖ f −1

i ‖1 are
finite, so we can say that ‖ui‖, ‖vi‖ 
= 0 for all 1 ≤ i ≤ n. Now we can deduce the following
inequality:

∣∣∣∣log
‖un‖
‖vn‖

∣∣∣∣ =
∣∣∣∣log

‖Dxn−1 fn · un−1‖
‖Dyn−1 fn · vn−1‖

∣∣∣∣ ≤

≤
∣∣∣∣log

‖Dxn−1 fn · un−1‖
‖Dxn−1 fn · vn−1‖

∣∣∣∣ +
∣∣∣∣log

‖Dxn−1 fn · vn−1‖
‖Dyn−1 fn · vn−1‖

∣∣∣∣ .
(4)

We continue by bounding both logarithms, and we will do so with the following lemmas:

Lemma 1 For every 1 ≤ i ≤ n,
∣∣∣∣log

‖Dxi−1 fi · ui−1‖
‖Dxi−1 fi · vi−1‖

∣∣∣∣ ≤
∣∣∣∣log

‖ui−1‖
‖vi−1‖

∣∣∣∣ + C2 · α(Fi−1 ◦ γ ).

Proof Let ũi−1 and ṽi−1 notate the normalized vectors ui−1 and vi−1 respectively. Then
∣∣∣∣log

‖Dxi−1 fi · ui−1‖
‖Dxi−1 fi · vi−1‖

∣∣∣∣ ≤
∣∣∣∣log

‖Dxi−1 fi · ũi−1‖
‖Dxi−1 fi · ṽi−1‖

∣∣∣∣ +
∣∣∣∣log

‖ui−1‖
‖vi−1‖

∣∣∣∣ .

Without loss of generality, assume ‖Dxi−1 fi · ũi−1‖ ≥ ‖Dxi−1 fi · ṽi−1‖. If we only focus on
the part of the left term that is inside the logarithm, we can rearrange it as

‖Dxi−1 fi · ũi−1‖
‖Dxi−1 fi · ṽi−1‖ = ‖Dxi−1 fi · ũi−1 − Dxi−1 fi · ṽi−1 + Dxi−1 fi · ṽi−1‖

‖Dxi−1 fi · ṽi−1‖ ≤

≤ ‖Dxi−1 fi‖ · ‖ũi−1 − ṽi−1‖
‖Dxi−1 fi · ṽi−1‖ + 1.

(5)

Denoteαi−1 = ∠(ũi−1, ṽi−1).We can use the definition ofαi−1 and the fact that sin
(αi−1

2

) ≤
αi−1
2 to get

‖ũi−1 − ṽi−1‖ = 2 sin
(αi−1

2

)
≤ αi−1 ≤ α(Fi−1 ◦ γ ). (6)

Note that det(Dxi−1 fi ) 
= 0 since every ‖ f −1
i ‖ is finite, hence its inverse exists. Combining

inequalities (5) and (6) gives us

‖Dxi−1 fi · ũi−1‖
‖Dxi−1 fi · ṽi−1‖ ≤ ‖Dxi−1 fi‖ · ‖(Dxi−1 fi )

−1‖ · α(Fi−1 ◦ γ ) + 1 ≤ C2 · α(Fi−1 ◦ γ ) + 1.

Since |log(1 + x)| ≤ x for all x ≥ 0 and | log x | is monotone increasing for x ≥ 1, we can
get our final bound:

∣∣∣∣log
‖Dxi−1 fi · ũi−1‖
‖Dxi−1 fi · ṽi−1‖

∣∣∣∣ ≤ ∣∣log
(
C2 · α(Fi−1 ◦ γ ) + 1

)∣∣ ≤ C2 · α(Fi−1 ◦ γ ). (7)

�

Lemma 2 For every 1 ≤ i ≤ n,

∣∣∣∣log
‖Dxi−1 fi · vi−1‖
‖Dyi−1 fi · vi−1‖

∣∣∣∣ ≤ C2 · L(Fi−1 ◦ γ )ε.
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Proof Once again, let ṽi−1 notate the normalized vector vi−1. Without loss of generality,
assume ‖Dxi−1 fi · ṽi−1‖ ≥ ‖Dyi−1 fi · ṽi−1‖. Then

‖Dxi−1 fi · vi−1‖
‖Dyi−1 fi · vi−1‖ = ‖Dxi−1 fi · ṽi−1 − Dyi−1 fi · ṽi−1 + Dyi−1 fi · ṽi−1‖

‖Dyi−1 fi · ṽi−1‖ ≤
≤ C · ‖Dxi−1 fi − Dyi−1 fi‖ + 1,

and we can bound the following similar to (7):
∣∣∣∣log

‖Dxi−1 fi · vi−1‖
‖Dyi−1 fi · vi−1‖

∣∣∣∣ ≤ C · ‖Dxi−1 fi − Dyi−1 fi‖.

Notice that
‖xi−1 − yi−1‖ ≤ L(Fi−1 ◦ γ ),

then

1 ≤ L(Fi−1 ◦ γ )ε

‖xi−1 − yi−1‖ε
.

It follows that

C · ‖Dxi−1 fi − Dyi−1 fi‖ ≤ C
‖Dxi−1 fi − Dyi−1 fi‖

‖xi−1 − yi−1‖ε
· L(Fi−1 ◦ γ )ε ≤ C2 · L(Fi−1 ◦ γ )ε.

�


Proof Combining lemma 1 and lemma 2 with Eq. (4) shows
∣∣∣∣log

‖un‖
‖vn‖

∣∣∣∣ ≤
∣∣∣∣log

‖un−1‖
‖vn−1‖

∣∣∣∣ + C2 · α(Fn−1 ◦ γ ) + C2 · L(Fn−1 ◦ γ )ε.

We can apply this inequality recursively to get

∣∣∣∣log
‖un‖
‖vn‖

∣∣∣∣ ≤ C2
n−1∑

i=0

[
α(Fi ◦ γ ) + L(Fi ◦ γ )ε

] ≤ C2(α + L).

We finish the proof of (2) by taking K = eC
2(α+L).

Now let us move on to inequality (3). Let t ∈ [a0, b0] be arbitrary. Note that ‖(Fn ◦
γ )′(t)‖ 
= 0 since det(Dγ (t) fi ) 
= 0 and γ ′(t) 
= 0. Then by definition of length we have

L((Fn ◦ γ )([a1, b1]))
‖(Fn ◦ γ )′(t)‖ =

∫ b1

a1

‖(Fn ◦ γ )′(x)‖
‖(Fn ◦ γ )′(t)‖ dx

and inequality (2) gives us

|b1 − a1|K−1 ≤ L((Fn ◦ γ )([a1, b1]))
‖(Fn ◦ γ )′(t)‖ ≤ |b1 − a1|K .

We can similarly obtain

K−1

|b2 − a2| ≤ ‖(Fn ◦ γ )′(t)‖
L((Fn ◦ γ )([a2, b2])) ≤ K

|b2 − a2| ,

and multiplying these two inequalities finishes the proof. �
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