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Abstract

Satellite imagery is being leveraged for many societally criti-
cal tasks across climate, economics, and public health. Yet,
because of heterogeneity in landscapes (e.g. how a road
looks in different places), models can show disparate per-
formance across geographic areas. Given the important po-
tential of disparities in algorithmic systems used in soci-
etal contexts, here we consider the risk of urban-rural dis-
parities in identification of land-cover features. This is via
semantic segmentation (a common computer vision task in
which image regions are labelled according to what is being
shown) which uses pre-trained image representations gener-
ated via contrastive self-supervised learning. We propose fair
dense representation with contrastive learning (FairDCL) as
a method for de-biasing the multi-level latent space of con-
volution neural network models. The method improves fea-
ture identification by removing spurious model representa-
tions which are disparately distributed across urban and ru-
ral areas, and is achieved in an unsupervised way by con-
trastive pre-training. The obtained image representation miti-
gates downstream urban-rural prediction disparities and out-
performs state-of-the-art baselines on real-world satellite im-
ages. Embedding space evaluation and ablation studies fur-
ther demonstrate FairDCL’s robustness. As generalizability
and robustness in geographic imagery is a nascent topic, our
work motivates researchers to consider metrics beyond aver-
age accuracy in such applications.

Introduction

Dense pixel-level image recognition via deep learning for
tasks such as segmentation have a variety of applications
in landscape feature analysis from satellite images. For ex-
ample, regional water quality analysis (Griffith 2002) or
dust emission estimation (Von Holdt et al. 2019). Success
of the methods rely on powerful visual representations that
include both local and global information. However, since
pixel-level annotations are usually costly, fully supervised
learning is challenging when the amount and variety of la-
beled data is scarce. Therefore, self-supervised learning is
a promising alternative via pre-training a image encoder
and transferring learnt representations to downstream prob-
lems. As a mainstream, contrastive self-supervised tech-
niques have shown state-of-the-art performance in learning
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image representations for land cover semantic segmenta-
tion across locations (Ayush et al. 2021; Scheibenreif et al.
2022). In particular, as labeled images are hard to obtain for
satellite images, and contrastive approaches do not require
labels, they have demonstrated benefits in many real-world
tasks including monitoring dynamic land surface (Saha et al.
2020), irrigation detection from uncurated and unlabeled
satellite images (Agastya et al. 2021), and volcanic unrest
detection with scarce image label (Bountos et al. 2021).

Importantly, recent attention in machine learning systems
has highlighted performance inequities including those by
geographic area (de Vries et al. 2019; Xie et al. 2022; Se-
tianto and Gamal 2021; Majumdar, Flynn, and Mitra 2022;
Aiken, Rolf, and Blumenstock 2023), and how prediction
inequities would compromise policy-making goals (Kond-
mann and Zhu 2021). Disparities at a geographic level fall
into the fairness literature due to implications of unequal
distribution of resources, opportunities, and essential ser-
vices, leading to disparities in quality of life and opportu-
nities for those who live in specific areas (Hay 1995). As
recent work has reinforced, disparities of machine learning
model prediction at a geographic level often show disparate
performance with respect to minoritized groups or already
under-resourced areas (Kondmann and Zhu 2021). There-
fore, given the increased potential of self-supervised con-
trastive learning, here we turn attention to disparity risks in
recognition outcomes between urban and rural areas. The
consequences of such recognition tasks have wide usage for
societal decisions including urban planning, climate change
and disaster risk assessment (Mehrabi et al. 2021; Soden
et al. 2019), so disparity shapes an important concern. Fur-
ther, while recent work has identified disparities with satel-
lite image representation, specifically across urban and rural
lines, and shown the negative consequence on poverty pre-
diction (Aiken, Rolf, and Blumenstock 2023), there is lim-
ited work on mitigating urban-rural disparities with state-of-
the-art vision recognition schemes for landscape analysis,
despite their wide applications.

To bridge this gap, we examine the task of land-cover
segmentation and identify disparities across urban and rural
areas on satellite images from different locations. As pre-
vious work shows, segmentation performance can be dis-
parate across geography types. For example, in areas where
land-cover objects have higher density or heterogeneity, per-



formance will be lower even for similar training sample
sizes (Zhang et al. 2022c). Moreover, identifying and thus
addressing disparities for geographic object segmentation is
different from classification tasks in other image types such
as facial images (Wang et al. 2019; Ramaswamy, Kim, and
Russakovsky 2021; Jung et al. 2021). De-biasing classifica-
tion outcomes relies on robust image-level global represen-
tations, which are not ideal for segmentation in which local
features are important, thus may not apply to satellite data
and relevant tasks. Instead, to our knowledge, we present
the first exploration on learning generalizable and robust lo-
cal landscape features, while reducing spurious features that
are unequally correlated with areas of different urbanization
or economic development. (referred to as “bias” or “spuri-
ous information”). In this way, our work addresses disparity
issues in contrastive self-supervised learning for satellite im-
age segmentation. The specific contributions are:

1. We propose a causal model depicting the relationship be-
tween landscape features and urban/rural property of im-
ages, to unravel the type of implicit bias that a model
might learn from data. This framework enables us to
identify and address unique disparity challenges in deep
learning application for satellite images.

2. For the described bias scenario, we design a fair repre-
sentation learning method which regularizes the statis-
tical association between pixel-level image features and
sensitive variables, termed FairDCL. The methods in-
cludes a novel feature map based local mutual infor-
mation estimation module which incorporates layer-wise
fairness regularization into the contrastive optimization
objective. Given characteristics of satellite images, this
work serves to mitigate performance disparities in down-
stream landscape segmentation tasks.

3. On real-world satellite datasets, FairDCL shows advan-
tages for learning robust image representation in con-
trastive pre-training; it surpasses state-of-the-art methods
demonstrating smaller urban-rural performance differ-
ences and higher worst-case performance, without sac-
rificing overall accuracy on the target tasks.

Scope and Limitation. This work specifically focuses on
image representation learning without supervision of la-
bels for the objects to be segmented (also referred to as
pre-training), motivated by the approach’s effectiveness and
low annotation cost as described. Therefore, we do not
cover other image analysis schemes, such as supervised or
semi-supervised learning and focus on comparison to unsu-
pervised robust representation learning baselines, including
gradient reversal learning, domain independent learning, and
global representation debiasing with mutual-information.
The evaluation of learnt representation quality is achieved by
applying a lightweight decoder for the semantic segmenta-
tion target to obtain the final downstream task performance,
on segmenting common landscape objects, following previ-
ous work (Wang et al. 2021b; Ziegler and Asano 2022).
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Related Work
Self-Supervised Methods for Satellite Images

Semantic segmentation, which quantifies land-cover loca-
tion and boundary at pixel level, is a fundamental problem
in satellite data analysis (Lv et al. 2023). Given that per-
pixel segmentation annotation required for supervised train-
ing is expensive, a growing body of literature leverages self-
supervised methods to extract useful image features from
large-scale satellite image datasets (Li, Chen, and Shi 2021;
Wang et al. 2022a; Li et al. 2022a). Contrastive learning
is used as a self-supervised pre-training approach for var-
ious downstream vision tasks including classification, de-
tection and segmentation (Chen et al. 2020a,b; Hendrycks
et al. 2019; Misra and Maaten 2020; Reed et al. 2022; Vu
et al. 2021; Ayush et al. 2021). Though most work in this
area focuses on optimizing global representations for a sin-
gle prediction for each image, such as presence of an animal
species in an image, (Wu et al. 2018; Chen et al. 2020a,b),
recent work has turned to learning representations suitable
for dense predictions (i.e., a prediction for each pixel); such
approaches train the model to compare local regions within
images, thus preserving pixel-level information (Wang et al.
2021b; O Pinheiro et al. 2020; Chaitanya et al. 2020; Xie
et al. 2021). Other work (Xiong, Ren, and Urtasun 2020)
uses overlapped local blocks to increase depth and capac-
ity for decoders that improves local learning. Such methods
show the importance of local image representations on dense
visual problems like satellite image segmentation, which we
leverage for the first time to mitigate disparities on such
problems.

When satellite data is collected in multiple temporal res-
olutions, studies have included contrastive learning meth-
ods to learn the representations invariant to subtle landscape
variations across the short-term (Mall, Hariharan, and Bala
2023; Ayush et al. 2021). However, this type of work re-
quires multi-temporal satellite data and does not consider
the same question regarding generalizability with respect to
urbanization.

Disparities in Image Recognition

Fairness-promoting approaches are being designed in mul-
tiple visual recognition domains, generally with human
objects and demographic characteristics as the sensitive
attributes. For example, in face recognition applications,
methods are proposed for mitigating bias across groups like
age, gender or race/ethnicity. Such methods include con-
straining models from learning sensitive information by ad-
versarially training sensitive attribute classifiers (Raff and
Sylvester 2018; Morales et al. 2020), using penalty losses
(Xu et al. 2021; Serna et al. 2022), sensitive information
disentanglement (Creager et al. 2019; Park et al. 2021),
and augmenting biased data using generative networks (Ra-
maswamy, Kim, and Russakovsky 2021). Related to health-
care data and practice, methods have shown reduction in bias
by altering sensitive features such as skin color but preserve
relevant features to the clinical tasks (Yuan et al. 2022; Deng
et al. 2023), by augmentation (Burlina et al. 2021), and by
adversarial training (Abbasi-Sureshjani et al. 2020; Puyol-



Antoén et al. 2021). In comparison, investigation on satellite
imagery is limited; Xie et al. (Xie et al. 2022) formulate dis-
parity among sub-units with linked spatial information, us-
ing spatial partitionings instead of sensitive attributes. Aiken
et al. (Aiken, Rolf, and Blumenstock 2023) illustrate that
urban-rural disparities exist in wealth prediction with satel-
lite images. However, no work has explored disparity in im-
age representation learning for satellite images nor proposed
a method to mitigate the same.

A few recent studies have examined robustness and fair-
ness in contrastive learning generally, including an adjust-
ing sampling strategy to restrict models from leveraging
sensitive information (Tsai et al. 2021). However, this ap-
proach could lose task-specific information by only letting
the model differentiate samples from the same group to
avoid learning group boundaries. Two stage training with
balanced augmentation (Zhang et al. 2022a), fairness-aware
losses to penalize sensitive information used in positive and
negative pair differentiation (Park et al. 2022), and using
hard negative samples for contrast to improve representa-
tion generalization (Robinson et al. 2020) are other proposed
approaches, yet such methods both only apply for classifica-
tion based on image-level representations opposed to object-
level segmentation which is the focus of this work.

Summary of Gaps in the Literature

Existing work in robustness and disparity mitigation for im-
age recognition tasks is limited in multiple ways, with im-
portant gaps specifically for satellite imagery. First, some
robustness methods assume that spurious feature properties
are known, such as skin colors, hair colors, presence of
glasses (Wang et al. 2020; Ramaswamy, Kim, and Rus-
sakovsky 2021; Yuan et al. 2022), and remove their influ-
ences on model performance. The analog of such a prop-
erty is not available in satellite images, nor is it homoge-
neous (e.g. each country has unique landscapes relating to
urban/rural). Therefore, we do not explicitly define spurious
features in our model but automatically extract them with
urban/rural discriminators during training. Second, since the
existing methods are mostly designed for classification prob-
lems, they use image-level representation approaches. How-
ever, fairness at an image level would not necessarily extend
to pixel-level dense predictions. Third, there is very little
work on robust and fair satellite image analysis, for which
biased features are harder to discover, interpret and remove,
compared to human-object images. Existing work on gen-
eralizable satellite representations across temporal changes
train models with acquisition date, which is not always avail-
able for satellite datasets.

Problem Statement
Selection of Sensitive Attributes

In algorithmic fairness studies, sensitive attributes are those
that are historically linked to discrimination or bias, and
should not be used as the basis for decisions (Dwork et al.
2012). Commonly, for example in studies focused on face
detection, demographic factors such as race and gender are
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Figure 1: Model segmentation performance on urban and ru-
ral images of LoveDA (Wang et al. 2021a), measured by
intersection-over-union (IoU). Two types of upstream fea-
ture encoders are used: (1) CNN encoder trained on unla-
beled satellite images with contrastive self-supervised learn-
ing (SSL), and (2) pre-trained foundation model Segment
Anything (SAM) (Kirillov et al. 2023). Urban-rural dispari-
ties are observed for land-cover classes with both encoders,
and the disadvantaged groups are consistent across learning
models.

used as sensitive attributes due to their potential, but un-
wanted influence on decision-making processes (Lee 2018;
Pessach and Shmueli 2022). For satellite imagery, while
individual-level attributes such as race and gender are not
of concern, there are geographical properties such as urban-
rural disparities which have precedence both for historical
disparities and legal precedence for the need for protection
from such disparities (Ananian and Dellaferrera 2024). In-
deed, rural areas in the United States and globally have lower
resources such as health care services (Peek-Asa et al. 2011;
Lin et al. 2014), higher education disadvantage (Roscigno,
Tomaskovic-Devey, and Crowley 2006; Li et al. 2022b) and
lower investment in other areas such as communication tech-
nology (Nazem et al. 1996). These factors can all signifi-
cantly impact outcomes for populations in these areas, and
it is critical that future decisions impacting rural and ur-
ban places do not promulgate such disparities. In terms of
operationalizing these attributes, while features of specific
urban or rural areas can vary globally, there is consensus
that urban areas demarcate cities and their surroundings. Ur-
ban areas are very developed, meaning there is a density
of human structures, such as houses, commercial buildings,
roads, bridges, and railways (NationalGeographic 2020). In
sum, examining urban and rural designations as sensitive at-
tributes can unveil systemic inequalities and aid in creating
more equitable algorithms and policies globally.

Urban-Rural Disparities with Feature Encoders

We perform satellite image feature extraction with the
studied contrastive self-supervised learning (SSL) method,
MOCO-v2 (Chen et al. 2020b), and report the semantic seg-
mentation fine-tuning results in Figure 1. There are several
major disparities visible, especially for the class of “Forest”
and “Agricultural”. To further expose the issue, we evaluate



with a general-purpose feature encoder, Segmenting Any-
thing Model (SAM) (Kirillov et al. 2023). It is a vision
foundation model trained on a large image dataset (11 mil-
lions) of wide geographic coverage for learning comprehen-
sive features. Therefore, the model can transfer zero-shot to
image segmentation for our dataset. The results show sim-
ilar disparities to SSL for each land-cover class (Figure 1).
Motivated by the problem, we propose a causal model to un-
ravel feature relationships in satellite images and the design
to utilize robust features to mitigate disparity.

Causal Model for Feature Relationships

Land-cover objects in satellite images, such as residen-
tial building, roads, vegetation, etc, often have heteroge-
neous shapes and distributions in urban and rural areas even
within the same geographic region. These distributions are
affected by varying levels of development (infrastructure,
greening, etc). Considering an attribute S = {sp, s1} denot-
ing urban/rural area, we define visual representation (high-
dimensional embeddings output by model intermediate lay-
ers) as X = {Xspm“iouSaXrobust}a where Xspurious in-
cludes information that varies across urban/rural groups in
S, for example, the contour, color, or texture of “road” or
“building” class. X, opust, On the other hand, includes gen-
eralizable information, for example, “road” segments are
narrow and long, while “building” segments are clustered.
When model output Y is drawn from both X, .4, and
Xspurious» it can lead to biased performance. For example,
roads in grey/blue color (Figure 3 A), with vehicles on them
(Figure 3 B), and with lane markings (Figure 3 C), are seg-
mented better (blue circle) than the others (red circle, Fig-
ure 3 D). Examples of more classes’ spurious and robust
components are in the supplementary material A !

[s)e—(u]

Figure 2: Diagram of defined causal relationships between
representation X learnt with contrastive pre-training, target
task prediction outputs Y, and urban/rural attribute S. X
contains two parts, Xpurious generated from features spu-
riously correlated to S and X,.,pyst generated from inde-
pendent and unchangeable features. U is unmeasured con-
founders which cause both S and X,purious thus result in
correlations between S and X,y rious-

As aresult, urban and rural representations containing dis-
proportionate spurious information levels will cause group-
level model performance disparities in semantic segmenta-
tion. Note that there are other factors not uniformly dis-
tributed across urban and rural areas, such as the number

!Code and supplementary material can be accessed at:
https://github.com/ChunaralLab/FairDCL-mitigating-urban-rural-
disparity
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Figure 3: Examples of segmentation bias for “road” class
due to spurious landscape features; the model segments cer-
tain patterns well, like straight and paved road (blue circles),
but segments the variations poorly, like curvy and sand road
(red circles).

of pixels by land object class. Since we focus on represen-
tation learning, we denote such factors as unmeasured con-
founders U. The problem is illustrated, in terms of causal
relationships, in Figure 2. Different from methods which di-
rectly alter spurious features which are defined a priori, the
goal here is to reduce the part of model representations that
are correlated to the urban and rural split, an important de-
lineation which has strong disparities globally. That is, to
obtain meust which promotes V1S |meust, where the

model prediction Y is independent to group discrepancy.
Accordingly, there is a need for model to (1) focus on ro-
bust and generalizable landscape features, and (2) capture
local features of the image in the pre-training stage. With
contrastive self-supervised pre-training as the framework,
we propose an intervention algorithm to achieve the goals
and promote urban-rural downstream segmentation equity.

Methodology
Datasets

While several standard image datasets used in fairness stud-
ies exist, datasets with linked group-level properties, specif-
ically, urbanization, for real-world satellite imagery are very
limited. We identified two datasets which had or could be
linked with urban/rural annotations for disparity analyses,
collected from Asia and Europe respectively, and with dif-
ferent spatial resolutions:

LoveDA (Wang et al. 2021a) is composed of 0.3m spatial
resolution RGB satellite images collected from three cities
in China. Images are annotated at pixel-level into 7 land-
cover object classes, also with a label based on whether they
are from an urban or rural district. Notably, images from the
two groups have different class distributions. For example,
urban areas contain more buildings and roads, while rural
areas contain larger amounts of agriculture (Wang et al.
2021a). Moreover, it has been shown that model segmen-
tation performances differ across urban and rural satellite
images (Zhang et al. 2022c). We split the original images
into 512x512 pixel tiles, take 18% of the data for testing,



and for the rest, 90% are for contrastive pre-training (5845
urban tiles and 5572 rural tiles) and 10% for fine-tuning the
pre-trained representation to generate predictions.

EOLearn Slovenia (Sinergise 2022) is composed of 10m
spatial resolution Sentinel-2 images collected from whole
region of Slovenia for the year 2017, with pixel-wise land
cover annotations for 10 classes. We only use the RGB
bands for the consistency with other datasets, remove im-
ages that have more than 10% of clouds, and split images
into 256x256 pixel tiles to enlarge the training set. Labels
are assigned by assessing if the center of each tile is lo-
cated in urban boundaries or not (using urban municipal-
ity information? and administrative boundaries from Open-
StreetMap?). This process generates 1760 urban tiles and
1996 rural tiles in total. Similar to the LoveDA process, 18%
of the data are used for testing, and 90% of the rest of the
data are used for pre-training and 10% for fine-tuning.

Metrics

The quality of representations learnt from self-supervised
pre-training is usually evaluated by its transfer-ability to
downstream tasks (Jing and Tian 2020; Wang et al.
2021b). On the downstream semantic segmentation, we use
Intersection-over-Union (IoU) as the accuracy metric, cal-
culated using pixel-wise true positives (1'P), false positives
(F'P), and false negatives (F'N),

. TP
T TPYFPTFN

Group accuracy for group g' is computed via the mean of
class-wise IoUs (referred to as j14:). Model overall accuracy
is the averaged group results (mloU).

We use two fairness metrics: First, the group difference
with regard to accuracy (Raff and Sylvester 2018; Gong,
Liu, and Jain 2021; Szabd, Jamali-Rad, and Mannava 2021;
Zietlow et al. 2022) (Diff). Diff for a 2-element sensitive at-
tribute group {g*, g%} is defined as:

l1gr — pg2|
min{pg.pig2 }

Second, the worst group results (Wst), which is the lower
group accuracy between urban and rural. This is motivated

by the problem of worsening overall performance for zero
disparity (Zhang et al. 2022b).

Diff {g", g} :=

Multi-Level Representation De-biasing

The idea of constraining mutual information between rep-
resentation and sensitive attribute, also referred to as bias,
to achieve attribute-invariant predictions has multiple appli-
cations (Zhu et al. 2021; Ragonesi et al. 2021; Kim et al.
2019), which all operate on a global representation z =
F(d), output from image encoder F'. However, invariance
constraints only on the global output layer do not guarantee
that sensitive information is omitted from representation hi-
erarchies of intermediate layers or blocks in a model (herein

Zhttps://www.gov.si/en/topics/towns-and-protected-areas-in-
slovenia/
3https://www.openstreetmap.org/#map=12/40.7154/-74.1289
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Figure 4: Bias accumulation during contrastive pre-training.
(A) Sum of mutual information estimation, and (B) the con-
trastive loss of ResNet50 model with MoCo-V?2 pre-training.
The baseline method with no intervention (Baseline), regu-
larizing only on the global feature vector (Global only), first
two layers of feature maps (First-two only), last two lay-
ers of feature maps (Last-two only) all show bias residu-
als compared to the multi-level method proposed as part of
FairDCL.

we use the term “multi-level representation” for simplicity).
As has been shown, the distribution of bias in terms of its
category, number and strength is not constant across layers
in contrastive self-supervised models (Sirotkin, Carballeira,
and Escudero-Vifiolo 2022). Besides, layer-wise regulariza-
tion is necessary to constrain the underlying representation
space (Jin et al. 2016; Jiang et al. 2017; Li et al. 2019). Pixel-
level image features in representation hierarchies are impor-
tant (O Pinheiro et al. 2020; Wang et al. 2021b), especially
when transferring to dense downstream tasks such as se-
mantic segmentation, where representations are aggregated
at different resolution scales in order to identify objects in
pixel space. Given the evidences in sum, we design a feature
map based local mutual information estimation module and
incorporate layer-wise regularization into the contrastive op-
timization objective.

To measure mutual information M (X, S) between local
feature X and the urban/rural attribute S = {so,s1}, we
adapt the concat-and-convolve architecture in (Hjelm et al.
2018). Notating the ith layer as [i, we first build a one-hot
encoding map c'* for attributes S whose size is same as the
feature map x'* output by I4, and channel is the size of S.
For each x!*, a c!? is built from the joint distribution of rep-
resentation space X and attribute space S, and the marginal
distribution of S separately, then the ¢/ built in the two ways
are concatenated with x!’ to form an “aligned” feature map
pair, denoted as Px s(x'? || /), and a “shuffled” feature map
pair, denoted as Px Ps(x'" || ¢¥). The mutual information
between the aligned and shuffled feature map pairs will be
estimated by a three-layer 1 X 1 convolutional discriminator
D,, using the JSD-derived formation (Hjelm et al. 2018):

MIysp(X"8) = Bpys[=sp(~Di(x" || )]
—Epyps[sp(Di(x" || <)),

where sp(a) = log(1 + e®), and D; uses separate optimiza-
tion to converge to the lower bound of M1 ;5p.
We empirically validate the necessity to apply multi-



level constraints to reduce bias accumulation across
layers. We run self-supervised contrastive learning on
LoveDA data using MoCo-v2 (Chen et al. 2020b) with
ResNet50 (He et al. 2016) as the base model. Simultane-
ous to model contrastive training, four independent discrim-
inators are optimized to measure the mutual information
MI;sp(X1:S), ..., MI;5p(X";S) between representa-
tion output from the four residual layers and one output layer
of ResNet50 and sensitive attributes: urban/rural. M1 ;sp
are summed to measure the total amount of model bias for
the data batch. As plotted in Figure 4 (A), the baseline train-
ing without M I ;5 p intervention shows continually increas-
ing and significantly higher bias than other methods as the
number of epochs increase. Adding a penalty loss which en-
courages minimizing M [ ygp only on the global representa-
tion or on subsets of layers both control bias accumulation,
but their measurements are still high compared to multi-
level, showing that global level regularization might remove
partial bias but leave significant residual from earlier layers.
The running loss during training indicates all methods’ con-
vergence (Figure 4 (B)); mutual information constraints in
latent space do not affect the contrastive learning objective.

momentum encoder - Ohjective = L5, — a(Lp1 + Lpy o+ Lpy )

MoCo-V2
query encoder

— Layer!

Layer 1

Layer 2

FairDCL

v

\
~

Figure 5: Overview of FairDCL. It captures spurious infor-
mation Xpyrious learnt by urban/rural discriminators, and
applies regularization on image representations at multiple
levels. We build one-hot feature maps to encode urban/ru-
ral attribute and estimate mutual information by neural dis-
criminators. Penalty loss £p, are computed accordingly and
added into the final contrastive pre-training objective.

FairDCL Pipeline

Figure 5 provides an overview of the proposed fair dense
representations with contrastive learning (FairDCL) method
and the training process (Detailed algorithm steps are in Al-
gorithm 1). For each iteration of contrastive pre-training, la-
tent space representation x* is yielded at layer /i of the en-
coder F'. Layer discriminators D; are optimized by simulta-
neously estimating and maximizing M I ;sp with the loss:

Lp,(x",8;D;) = —MI;5p(x%; ). )

Following (Ragonesi et al. 2021), each M I discriminator is
optimized for multiple inner rounds before encoder weights
get updated. More rounds are desirable for discriminators
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Algorithm 1: FairDCL. F' = {i1,12,..li..,IN} is the con-
trastive learning encoder. F is iterations per epoch; B is dis-
criminators updating rounds; 7 is learning rate. « is regular-
ization strength.

for each iteration a from 1 to E do:
Image encoder forward propagation:
xIV N xM « F(x) > x'is the query representation
output of the layer l¢
Discriminators updating:
for each round b from 1 to B do:
for each discriminator D; do:
Lp; = Di(x"" || Pxs(c"),x" || Ps(c"))
> Forward aligned and shuffled feature pairs
Wp, + Wp, —n<7 Lp, > Optimize D;
Image encoder us)dating:
xINV xN=1 XM gk F(z)
global representation
Leon < ¢,k > Compute contrastive loss
Lp SN Lp, > Compute MI loss
Wg « Wp — n(Leon — aLp) > Update encoders

> g, k is the query and key

to estimate mutual information with increased accuracy, and
based on resource availability, we set a uniform round num-
ber B = 20. After discriminator optimization completes,
one iteration of image encoder training is conducted wherein
discriminators infer the multi-stage mutual information by
loss in (1), and the losses are combined with the contrastive
learning loss with a hyper-parameter « adjusting the fairness
constraint strength. The final training objective is:

Lp(X,8;D,F) = Loon — (> _ Lp,(X",S;Dy)), (2)
Ui

With the training objective, the image encoder is encour-
aged to generate representation X with high £p, thus low
M1 ;5p (low spurious information). We apply FairDCL on
the state-of-the-art contrastive learning framework MoCo-
v2 (Chen et al. 2020b). The loss used for learning visual
representation is InfoNCE (Oord, Li, and Vinyals 2018):

exp(gk/T)
exp(qk/T) +>_,(qk;/T)

Here F consists of a query encoder and a key encoder, which
outputs representations ¢ and k£ from two augmented views

of the same image. k; is a queue of representations encoded
from different images in the dataset. L., encourages the
image encoder to distinguish positive and negative keys so it
can extract useful visual representations.

Generalizability to contrastive frameworks. We note that
the proposed locality-sensitive de-biasing scheme applying
intervention on embedding space can be integrated with
any state-of-the-art convolution feature extractors, thus has
the potential to be further promoted with different contas-
tive learning frameworks. Empirically, we experiment with
DenseCL (Wang et al. 2021b), which designs pixel-level
positive and negative keys to better learn local feature cor-
respondences. Since the method fills the gap between pre-
training and downstream dense prediction, it is suitable as
an alternative contrastive learning framework for our pro-
posed method. The results are attached in the supplementary
material.

Econ(F) = - (3)



LoveDA Slovenia

Method Diff({) Wst(1) mloU(T) Diff(]) Wst(1) mloU(?)
Vanilla  0.165 (& 0.010) 0.498 (£ 0.004) 0.539 (£ 0.002) 0.150 (&= 0.028) 0.205 (£ 0.003) 0.220 (& 7e-4)
GR 0.155 (£ 0.013) 0.501 (4 0.005) 0.540 (£ 0.002) 0.128 (£ 0.023) 0.208 (£ 6e-4) 0.222 (£ 0.002)
Moco-v2 DI 0.144 (£ 0.009) 0.499 (4 0.004) 0.535 (£ 0.004) 0.136 (£ 0.010) 0.208 (& 0.005) 0.222 (£ 0.005)
UnbiasedR  0.150 (£ 0.008) 0.502 (£ 0.003) 0.540 (& 0.003) 0.130 (£ 0.017) 0.205 (£ 0.004) 0.219 (& 0.004)
FairDCL  0.127 (£ 0.005) 0.508 (+ 0.002) 0.540 (4 0.002) 0.076 (£ 0.011) 0.217 (& 0.002) 0.225 (£ 0.003)
Vanilla  0.154 (£ 0.013) 0.503 (& 0.004) 0.542 (£ 0.002) 0.122 (& 0.017) 0.207 (& 0.006) 0.219 (&£ 0.005)
GR 0.148 (£ 0.012) 0.498 (4 0.006) 0.534 (£ 0.004) 0.120 (£ 0.020) 0.201 (£ 0.003) 0.216 (40.002)
DenseCL DI 0.140 (£ 0.007) 0.501 (&= 0.003) 0.536 (£ 0.002) 0.120 (£ 0.008) 0.206 (& 0.001) 0.218 (* 5e-4)
UnbiasedR  0.157 (& 0.008) 0.495 (£ 0.005) 0.534 (£ 0.003) 0.128 (£ 0.014) 0.206 (£ 0.004) 0.219 (& 0.003)
FairDCL  0.108 (£ 0.008) 0.518 (& 0.003) 0.546 (4 0.004) 0.079 (£ 0.016) 0.215 (4 0.001) 0.223 (£ 0.003)

Table 1: Downstream semantic segmentation results on LoveDA and Slovenia datasets, using an FCN-8s model with the back-
bone learnt with comparison pre-training methods. Our FairDCL shows consistent improvements on fairness metrics (Diff and
Wst) (bold) over other de-biasing methods , also we do not see a decreased accuracy (mloU) (underlined) than the vanilla
baseline, on all datasets. Results and standard deviations are reported over 5 independent runs.

Experiments
Implementation Details

The first stage of contrastive pre-training. The base model
for the image encoders is ResNet50 (He et al. 2016). The
mutual information discriminators D; are built with 1 x 1
convolution layers (architecture details in supplementary
material D). The contrastive pre-training runs for 10k itera-
tions for each dataset with a batch size of 64. Data augmen-
tations used to generate positive and negative image view
pairs are random greyscale conversion and random color jit-
tering (no cropping, flips or rotations in order to retain local
feature information). Hyper-parameter «, which scales the
amount of mutual information loss £p in the total loss, is
set to 0.5. Adam optimizer is used with a learning rate of
1073 and weight decay of 10~ for both encoders and dis-
criminators.

Comparison methods include state-of-the-art fair repre-
sentation learning approaches: (1) gradient reversal training
(GR) (Raff and Sylvester 2018), which follows the broad ap-
proach of removing bias or sensitive information from learnt
representations by inverse gradients of attribute classifiers.
This approach has been adapted to multiple image recogni-
tion tasks (Zhang, Lemoine, and Mitchell 2018; Wang et al.
2019, 2022b). (2) Domain independent training (DI) which
samples data with a consistent group attribute in each train-
ing iteration to avoid leveraging spurious group boundaries
(Tsai et al. 2021; Wang et al. 2020). (3) Unbiased represen-
tation learning (UnbiasedR) (Ragonesi et al. 2021) which
uses single-level de-biasing only for the global image rep-
resentation. All comparison methods use the same learning
architectures, and are trained with the same settings.

The second stage of semantic segmentation fine-tuning.
Following the protocal of previous work (Wang et al. 2021b;
Zhang et al. 2021; Ziegler and Asano 2022), we train a FCN-
8s (Long, Shelhamer, and Darrell 2015) model on top of
the fixed ResNet50 backbone learnt from the pre-training
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stage for 60 epochs with a batch size of 16, and evaluate
on the testing split for each dataset. We use cross-entropy
(CE) loss as the training objective, and stochastic gradient
descent (SGD) as the optimizer with a learning rate of 10~3
and a momentum of 0.9. The learning rate is decayed using a
polynomial learning rate scheduler implemented in PyTorch.
Image data augmentations used in the fine-tuning include
random horizontal/vertical flips and random rotations. For
both stages, the dimension of the input image to the model
is 512x512x3 where 3 indicates the RGB bands. NVIDIA
RTX8000 GPU is used for training.

Results

Downstream Performances Table 1 summarizes model
fine-tuning results pre-trained with baseline: vanilla MoCo-
v2, and de-biasing methods: GR, DI, UnbiasedR, and
FairDCL, on the two satellite image datasets.

We first note that FairDCL consistently outperforms other
approaches in terms of fairness, that it obtains the smallest
cross-group difference (Diff) and highest worst group result
(Wst). To reveal model decision process, we draw class acti-
vation maps for “road” and “forest” in Figure 6 using Grad-
CAM (Selvaraju et al. 2017). Compared to the vanilla base-
line, the model pre-trained with FairDCL better activates and
recognizes tricky land-cover segments: curved part of roads
(more seen in rural area), and sparse river-side forests (more
seen in urban area). The method can learn robust represen-
tations that are generalizable to object shape and context
variations, using the multi-scale representation regulariza-
tion. Therefore, it reduces segmentation disparity caused by
landscape discrepancy between groups.

Another advantage of learning better features to ensure
generalizability is no subsequent target task degradation,
which is crucial for real-world applications. Importantly,
FairDCL does not show degraded accuracy (the improved
“Diff” metric or “Wst” metric does not cause a worse



Hard segmentation object

Vanilla pre-training  FairDCL pre-training

-

Urban
forest

Figure 6: Class activation mapping. Detailed image loca-
tions that most impact model’s prediction for “road” (first
row) and “forest” (second row). FairDCL better recognizes
land-cover segments particular to sensitive attributes.

“mloU” metric) on all cases. Obtaining comparable or bet-
ter overall accuracy to Baseline demonstrates robustness in
addition to disparity reduction. In contrast, DI allows im-
age contrastive pairs only from a fraction of data which can
discount model learning (Wang et al. 2020). The adversarial
approach used in GR can be counter-productive if the adver-
sary is not trained enough to achieve the infimum (Moyer
et al. 2018), which could all potentially degrade model qual-
ity for group equalization. Our adapted mutual information
constraints use information-theoretic objectives, proved to
be able to optimize without competing with the encoder so
can match or exceed state-of-the-art adversarial de-biasing
methods (Moyer et al. 2018; Ragonesi et al. 2021). FairDCL
further shows that applying the mutual information con-
straints on multi-level latent representations can better ex-
tend fairness to pixel-level applications, which outperforms
the image-level only constraints used in UnbiasedR.

Embedding Spaces To further trace how the image rep-
resentations learnt with proposed method improves fairness,
we analyze a linear separation property (Reed et al. 2022)
on model embedding spaces. Specifically, we assess how
well a linear model can differentiate urban/rural sensitive
attributes using learnt representations. High separation de-
gree indicates that the encoder model’s embedding space
and attribute are differentiable (Oord, Li, and Vinyals 2018;
Chen et al. 2020a; Reed et al. 2022), which could be used
as a short-cut in prediction and cause bias, thus is not de-
sirable here. We freeze the trained ResNet50 encoder and
use a fully connected layer on top of representation out-
put from different layers for urban/rural attribute classifi-
cation. Figure 7 (A) presents the classification score on ur-
ban/rural attribute on LoveDA: FairDCL obtains the low-
est attribute differentiation results for all embedding stages
and global stage of representation, indicating that the en-
coder trained with FairDCL has favorably learnt the least
sensitive information at pixel-level features during the con-
trastive pre-training. Though we focus on satellite images,
we check the method’s generalizability to a different im-
age domain by conducting contrastive pre-training on MS-
COCO (Lin et al. 2014), a dataset commonly used in fair-
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Figure 7: Linear separation evaluation: We train a linear neu-
ral layer on top of each level of representations output from
different model layers. They include four residual modules
(“layerl” - “layer4”) that encode intermediate representa-
tions and a global output layer (“fc”) that encodes the global
representation. The linear layer is to classify sensitive at-
tributes: urban/rural on (A) LoveDA dataset, and women/-
men on (B) MS-COCO dataset. Lower accuracy is good: it
indicates harder to predict sensitive attributes using the pre-
trained representations, thus lower bias residual.

ness studies (Wang et al. 2019; Tang et al. 2021; Wang, Liu,
and Wang 2021). Sensitive attribute gender, categoriezed as
“women” or “men”, is obtained from (Zhao, Wang, and Rus-
sakovsky 2021). There are 2901 images with “women” and
6567 images with “men” labels. Linear analysis results show
that FairDCL again produces the desired lowest classifica-
tion accuracies (Figure 7 (B)), but unlike in Figure 7 (A), it
does not surpass the other comparison methods much. This
is likely because while geographic attributes are represented
at a pixel-level, human face/object, as a foreground, may not
be represented through local features throughout the image,
thus gender attributes are less pronounced as pixel-level bi-
ases in dense representation learning, which is what our pro-
posed approach focuses on.

a=0.1 a=05
Diff ~Wst mloU Diff Wst mloU
0.138 0.506 0.541 0.127 0.508 0.540
a=1 a=10
Diff ~Wst mloU Diff Wst mloU
0.127 0506 0.538 0.126 0.506 0.538

Table 2: Ablation study for discriminator weights. The fine-
tuning result is shown for the representation pre-trained with
a =0.1,0.5,1, 10, of the proposed fairness objective.

Ablation Studies We perform an ablation study for hyper-
parameter o which scales discriminator loss £p, thus the
fairness regularization strength. The method is overall ro-
bust to the parameter (Table 2); a large « like 10 will not
corrupt the downstream accuracy, and a small « like 0.1
has lower fairness gain but still shows advantage over com-
parison methods in Table 1. We select a = 0.5 for a bal-



Urban:68% Rural:32%
Method  Diff(]) Wst (1) mloU(T)

Urban:35% Rural:65%
Diff(}) Wst (1) mloU(1)

Baseline  0.147 0.500  0.537 0.170 0497  0.539
GR 0.154 0497  0.535 0.144 0511  0.547

DI 0.145 0498 0.534 0.148 0499  0.535
UnbiasedR 0.146  0.500  0.537 0.145 0.503  0.539
FairDCL 0.128 0.511  0.543 0.122 0.518 0.549

Table 3: Ablation study for unbalanced group data. The pro-
portion of urban/rural samples in the pre-training data is ad-
justed such that one group has much less samples. FairDCL
performs consistently with the data distirbution shifts.

ance. Furthermore, urban and rural groups have compara-
ble training samples in earlier experiments (LoveDA is 5.8k
and 5.5k, Slovenia is 1.7k and 1.9k for urban/rural). We in-
tentionally reduce pre-training samples for certain groups to
generate more unbalanced subsets. Shown in Table 3, the
proposed method shows robustness under the two less even
group distributions.

Discussion and Conclusion

Among the broader fairness literature in visual recognition,
work focusing on satellite imagery that depicts physical en-
vironments has been limited. This limitation is largely due
to the difficulty in identifying population level biased land-
scape features. Also, disparity problems in satellite image
recognition may get categorized as domain adaptation or
transfer learning problems, other popular computer vision
fields; though they share similar technical methods in bias
mitigation and invariant representation learning, the specific
objective of fair urban/rural satellite image recognition is
to remove spatially disproportionate features that favor one
subgroup over the others, beyond addressing covariate shift.

Here we define the scenario with a causal graph, showing
that contrastive self-supervised pre-training can utilize spu-
rious land-cover object features, thus accumulate urban/rural
attribute-correlated bias. The biased image representations
will result in disparate downstream segmentation accuracy
between subgroups within a specific geographic area. Then,
we address the problem via a mutual information training
objective to learn robust local features with minimal spu-
rious representations. Experimental results show fairer seg-
mentation results pre-trained with the proposed method on
real-world satellite datasets. In addition to disparity reduc-
tion, the method consistently avoids a trade-off between
model fairness and accuracy.

As future directions, a wider set of satellite datasets
can be explored. The fairness analysis can be scaled to a
greater number of attributes relevant to geography, in addi-
tion to urbanization. Methods to encode sensitive attributes
in the model embedding space in addition to one-hot fea-
ture maps can also be explored. We encourage experiment-
ing with different encoding mechanisms and mutual infor-
mation estimators to improve fairness regularization perfor-
mance across different real-world settings.
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