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NON-STATIONARY ANDERSON LOCALIZATION

ANTON GORODETSKI AND VICTOR KLEPTSYN

ABSTRACT. We consider discrete Schrodinger operators on #2(Z) with bounded ran-
dom but not necessarily identically distributed values of the potential. We prove spec-
tral localization (with exponentially decaying eigenfunctions) as well as dynamical lo-
calization for this model. An important ingredient of the proof is a non-stationary
version of the parametric Furstenberg Theorem on random matrix products, which is
also of independent interest.
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1. INTRODUCTION

In this paper we prove spectral and dynamical localization for 1D discrete
Schrodinger operators with potential given by independent but not necessarily identi-
cally distributed random variables. In particular, the setting in which our theorem is
applicable includes non-stationary Anderson-Bernoulli Model; the latter leads to sev-
eral interesting examples that we discuss in Appendix A. In order to prove it, we es-
tablish a non-stationary parametric version of the Furstenberg Theorem on random
matrix products.

1.1. History of Anderson localization. The 1977 Nobel Prize in Physics was
awarded to P. W. Anderson, N. F. Mott, and J. H. van Vleck “for their fundamental the-
oretical investigations of the electronic structure of magnetic and disordered systems”.
One of the main phenomena that contributed to the award was the suppression of elec-
tron transport due to disorder, which is nowadays called Anderson localization. Since
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then Anderson localization attracted enormous amount of attention and was heavily
studied both by physicists and mathematicians. For a brief survey of the history of the
subject from a perspective of a physicist see [LTW].

Mathematically Anderson localization can be formulated either as spectral local-
ization (sometimes the term “Anderson localization” in math literature is specifically
attributed to the spectral localization with exponentially decreasing eigenfunctions) or
as dynamical localization, which is closer to physical intuition. The very first rigorous
results related to Anderson localization were obtained by Gol’dseid, Mol¢anov, Pastur
[GMP] in 1977 and Mol¢anov [M] in 1978. In 1980, Kunz and Souillard [KuS] proved
localization for 1D discrete Schrodinger operators with the potential given by indepen-
dent random variables with nice densities. Localization for 1D Anderson-Bernoulli
model turned out to be a harder problem, and was established by Carmona, Klein,
Martinelli [CKM] in 1987 (see also [DSS] for the continuum 1D Anderson-Bernoulli
case).

In the multidimensional lattice case, the key original articles are those of Frohlich
and Spencer [FS], Martinelli and Scoppola [MS], Simon and Wolff [SW], Kotani and
Simon [KotS], Delyon, Lévy, Souillard [DLS], von Dreifus and Klein [vDK], and Aizen-
man and Mol¢anov [AM]. Once again, Anderson-Bernoulli case is essentially harder;
for the first results on multidimensional Anderson localization (at the lower edge of the
spectrum) in continuum Anderson-Bernoulli case see [B1], [BK], [B2]. In the discrete
case similar results were obtained only recently, see [DSm], [LZ].

For the detailed description of the existing methods and results see the classical [BL],
[CFKS], [CL], [FP] and more recent [AW], [DKKKR] monographs, as well as lecture
notes and surveys [D15], [D16, Section 4], [His], [Hu], [Kir], [Sp1], [Sp2], [Sp3], [S],
[St1], [St2].

1.2. Background and motivation. The main equation of quantum physics is the
time dependent Schrodinger equation

)
lha = H¢,

where ¢ is the wave function that describes the state of the system, 7 is the reduced
Planck constant, and H is a Hamiltonian operator. Formally, the solution is given by

P(t) = exp(—ithH)$(0),

and exactly as in finite dimensional case, to analyse the behaviour of the exponent of
a matrix one needs to know its spectrum. Quantum physics formalism turns the sum
of kinetic and potential energy into sum of Laplacian and a potential. This leads to the
questions on spectral properties of Schrodinger operators, i.e. operators of the form
—A+V(x), where the structure of the potential V(x) reflects the structure of the model.
In particular, to study the properties of disordered structures one needs to investigate
spectral properties of a Schrodinger operator with random potential, see Section 1.1.

A popular mathematical model for the Schrédinger operator on a crystal is the study
of the so-called discrete Schrddinger operator, with the sum of the increments replacing
the Laplacian. Namely, in dimension one this boils down to the study of the operator
H acting on ¢2(Z) via

€)) [Hu](n) = u(n + 1) + u(n — 1) + V(n)u(n).
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In Anderson model, the values of the potential V(n) are assumed to be independent
random variables. Randomness corresponds to randomly occurring defects or impu-
rities in the crystal, and independence to that the defects occur at different sites inde-
pendently.

1.3. Non-stationary Anderson localization. Here we will assume that {V(n)} in
(1) are independent (but not necessarily identically distributed) random variables, dis-
tributed with respect to some compactly supported non-degenerate (support contains
more than one point) probability measures {uf}. Notice that we do not require the dis-
tributions u to be continuous; in particular, the non-stationary Anderson-Bernoulli
model (when the distribution u is supported on two different values that can depend
on n) is included in our setting. Denote

P = H/,tﬁ.

n=-—oo

We will denote by Var (1) the variance of a distribution u.

Theorem 1.1 (Spectral Anderson localization, 1D). Suppose the potential {V(n)} of the
operator H given by (1) is random and defined by the independent random variables de-
fined by distributions {uf} such that

(1) suppuj € [-K,K];

(2) Var(uf) > ¢,
where e > 0,K < oo are some uniform constants. Then the spectrum of the operator H
is P -almost surely pure point, with exponentially decreasing eigenfunctions. The same

statement holds for spectrum of discrete Schrodinger operator with non-stationary ran-
dom potential on ¢2(N) with the Dirichlet boundary condition.

Moreover, a stronger version of localization, namely dynamical localization, holds
for non-stationary Anderson Model. A self-adjoint operator H : ¢%(Z) — ¢%(Z) has
dynamical localization if for any q > 0 one has

sup 37 (1 + [n)[(8, e~ 80)] < co.
nez
We will show that slightly stronger version of dynamical localization holds in our set-
ting.
Definition 1.2. Let H be a self-adjoint operator on ¢2(Z). The operator H has semi-
uniform dynamical localization (SUDL) if there is o > 0 such that for any £ > 0 there
is a constant C¢ so that forallq,m € Z

sup (34, e I1H15,,)] < Ceflmi=aia=m,
t

In fact, we are going to establish a different property, SULE.

Definition 1.3. A self-adjoint operator H : ¢%(Z) has semi-uniformly localized eigen-
functions (SULE), if H has a complete set {¢,,}>; of orthonormal eigenfunctions, and
there are a > 0 and i, € Z, n € N, such that for each £ > 0 there exists a constant Ce
so that

@) [$n(m)| < Cgeslnl=aim=rinl

forallm € Zand n € N.
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Theorem 7.5 from [DJLS] claims that SULE = SUDL, and for operators with simple
spectrum SUDL = SULE.

Theorem 1.4 (Dynamical localization, 1D). Under assumptions of Theorem 1.1, P -
almost surely the operator H has SULE and, hence, SUDL.

A specific model where Theorems 1.1 and 1.4 are applicable is a Schrédinger oper-
ator with a fixed background potential and i.i.d. random noise. Namely, the following
holds:

Corollary 1.5. Suppose {V p,cr(n)} is a fixed bounded sequence of real numbers that
we will refer to as a background potential, and {V;,,4(n)} is a random sequence given by
a sequence of i.i.d. (independent identically distributed) random variables defined by a
compactly supported distribution. Then almost surely the operator (1) with the poten-
tial V(n) = V paek(M) + Vigna(n) has pure point spectrum with exponentially decaying
eigenfunctions, and satisfies SULE and SUDL.

Remark 1.6.

(a) Notice that in general spectral localization does not imply dynamical localiza-
tion. The classical example is given by the random dimer model [DeG], [JSS].

(b) In the case when the distributions {uf} are absolutely continuous, the result
stated in Theorem 1.1 follows from Kunz - Souillard method [KuS] (see also
[Sim1] for alternative presentation and another application of Kunz - Souil-
lard method). In the case when the distributions {u#} are Hélder continuous,
multiscale analysis method should be applicable [K11] (see [K12] for a detailed
discussion of the method). But in the case of Anderson-Bernoulli potential
(given by i.i.d. random variables that can take only finite number of values)
most previously existing proofs [BDFGVWZ, CKM, GK,JZh] used Furstenberg
Theorem [Furl, Fur2, Fur3] on random matrix products and positivity of Lya-
punov exponent, and therefore could not be adapted to the non-stationary case.
An alternative path to the proof of spectral localization in the non-stationary
case can be found in [SVW]!; it passes through the estimates for the Green’s
function (see [SVW, Proposition 3.3] and the remark after it), followed by the
usual “multiscale” arguments (see [SVW, Proposition 3.6] and the remark after
it). However, this path is completely different from what is presented in our
work.

(c) The proofoflocalization in the case of potential given by i.i.d. random variables
presented in [CKM] does not require the potential to be bounded, it requires
only existence of finite momenta (see also [Ra]). While in Theorem 1.1 we
require uniform boundedness of the potential to reduce technical difficulties,
we expect that with some extra effort our methods can be extended to cover an
unbounded case as well.

(d) Inthe paper [KI13] the so called “crooked” Anderson Model (which can be con-
sidered as an analogue of non-stationary random case) for continuous case is
considered. Localization is proved under the Holder continuity assumption on
distributions.

1We are grateful to one of the referees for this remark.
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(e) In[BMT,Hur,KLS,Sim1] the authors also consider models where the values of
the potentials are random independent, but not identically distributed. There
the randomness decays at infinity, and the focus is mainly on the rate of decay
that still leads to localization or already insufficient to produce localization.

(f) Ergodic Schrodinger operators with i.i.d. random noise are included into our
setting. Questions on topological properties of the spectrum of these operators
also attracted considerable amount of attention lately [ADG, DFG,DG2,Wood].
Notice that in general non-stationary random potentials do not belong to the
class of ergodic potentials.

(g) While the results of this paper imply that stationary and non-stationary An-
derson Models have similar behaviour in terms of spectral type, there is a huge
difference between stationary and non-stationary cases in terms of topological
properties of the spectrum. In particular, the spectrum of a stationary Ander-
son Model is always a finite union of intervals, while in the non-stationary case
the almost sure essential spectrum does not have to have dense interior. We
construct a relevant example in Appendix A.

The crucial ingredient of the proof of Theorems 1.1 and 1.4 is the parametric ver-
sion of the non-stationary Furstenberg Theorem that we discuss below. In the station-
ary case the parametric Furstenberg Theorem is provided in [GK]. There, in order to
demonstrate the power of the developed techniques, we gave a geometrical proof of
the spectral localization in 1D Anderson Model (including Anderson-Bernoulli case).
The proofs of Theorems 1.1 and 1.4 are based on similar (adapted to the non-stationary
case) arguments.

1.4. Parametric non-stationary Furstenberg Theorem. To prove Theorems 1.1
and 1.4 one needs to study the properties of the products of corresponding transfer ma-
trices, and the way those products behave for different values of the energy. Motivated
by this model, here we consider random products of independent but not identically
distributed matrices from SL(2, R) that depend on a parameter. In other words, instead
of one matrix in a random product we are working with a map A(-) from some compact
interval J = [b_,b,] C R to SL(2, R). We assume that all these maps are C'; a ran-
dom matrix, depending on a parameter, is therefore given by a measure on the space
A = CY(J,SL(2, R)). For any such measure u on A and any individual parameter value
a € Jwe can consider the distribution of A(a), that is a measure on SL(2, R); we denote
this measure u%.

A (non-stationary) product of random matrices, depending on a parameter, is given
by a sequence of measures u, on A. We assume that all these measures belong to some
compact set & of measures on C'(J,SL(2, R)), i.e. u, € X foralln € N.

We impose the following assumptions:

(B1) Measures condition: for any measure 4 € X and any a € J, there are no
Borel probability measures vy, v, on RP' such that ( fa)v1 = v, for u®-almost
every matrix A € SL(2, R).

(B2) C!-boundedness: there exists a constant M such that any map A(-) €
C'(J,SL(2, R)) from the support of any 4 € X has C!-norm at most M.
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(B3) Monotonicity: there exists § > 0 such that for any 4 € X, any map A(-) from
the support of 4 and any a, € J one has

darg(A(a)(v))

Vv e R?\ {0} -

> 6.
Qo
These are the exact analogues of the assumptions A1, A2 and A4 from [GK].

At the same time, we do not impose any assumptions on absence of uniform hy-
perbolicity (similar to A3 in [GK]). Instead we modify some of the conclusions of the
theorems. Examples 1.10 and 1.16 illustrate the necessity of such modifications.

Remark 1.7. One canreplace the assumptions (B1)—(B3) by more general ones. Namely,
it is enough to assume that for some given k the conditions (B1)-(B3) hold for laws of
compositions

A J - SL(2,R), A(a):=Ar(a)...A(a),
where A; are distributed w.r.t. some y; € X. Thisis useful, in particular, when working
with Schrodinger cocycles (in this case, one takes k = 2).

Let us introduce some notation. Given a sequence of measures u, € X, satisfying
the assumptions above, we consider the probability space Q := A", equipped with the
measure P := ], u,. For any point @ = (A;,A,,...) € Q and a parameter a € J we
denote

Thaw =An(@)...A ().
For each A € A denote by f4, : S' — S! the projectivization of the map A(a) €
SL(2, R), and choose its lift f Aq - R = Rso that it depends continuously on a, and, to
make this choice unique, satisfy f, a,b_(0) € [0,1), where b_ is the left endpoint of the
interval of parameters J.

Also, following the same notation as in [GK], we denote by f, ., : S* — S' the
projectivizations of the maps T, , ,, and choose their lifts f;,a,w :R —> Ras f;,a,w =
fAn,a 0...0 fAl,a~

Fix a point x, € S!, corresponding to some unit vector v, and its lift X, € R. For
aninterval I C J,I = [a’,a"], define

Rn,w(I) = fn,a”,w(xo) - fn,a’,w(-’zo);

in other words, as the parameter varies on I, the n-th (random) image of the initial
vector v, turns by the angle 7R, , in the positive direction.

In the stationary setting, R,, ,,(I) is almost surely bounded as n — oo if and only if
the random product is uniformly hyperbolic for any internal point a of I. Indeed, a
dynamical analogue of Johnson’s Theorem implies uniform hyperbolicity on any open
interval where the random rotation number is locally constant (see [J] for the original
Johnson’s Theorem, and [ABD, Proposition C.1], [GK, Theorem A.9] for the dynamical
analogue that we refer to).

However, in the non-stationary case there is no notion of a random rotation number
(in the same way as there is no well defined Lyapunov exponent), so we have to choose
a more direct approach. Namely, we introduce the following

Definition 1.8. An open interval I C J is inessential, if almost surely

sup Ry, ,(I) < 0.
n
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The same applies to the intervals I C J = [b_, b, ] of the form [b_, a) and (a, b, ].
The essential set € is defined as a complement to the union of all (open in J) inessen-

tial intervals:
8=J\( U ﬁ.

I is inessential

Remark 1.9. Definition 1.8 is independent on the choice of the initial vector v,: using
another vector cannot change the rotation angles by more than a complete turn, and
hence cannot change the boundedness of the sequence R,, ,,(I).

Also, notice that due to the Kolmogorov’s 0 — 1 law for any interval I either the
sequence R, ,,(I) is almost surely bounded, or it is almost surely unbounded. Indeed,
its boundedness does not depend on any finite number n,, of the first factors A, ..., 4,
in the product.

The choice of terminology is related to the fact that for the random (non-stationary)
Schrodinger operators and the corresponding products of transfer matrices the defined
essential set € turns out to be exactly the almost-sure essential spectrum.

Let us give an example that shows that, contrary to the stationary case, a full turn of
the image of some vector does not forbid an interval to be inessential.

Example 1.10. Consider a stationary random parameter-dependent product
Ay, (a)... A (a) that is uniformly hyperbolic for a from the parameter interval I = [0, 1].
Now, modify only one (random) factor A, by taking its composition with a rotation by
2ra:

By(a) = Rotyzq - As(a), and Bj(a) =Aj(a) if j>1.
Then for the random product B,(a)... B;(a) we have R, .,(I) > 1, though the interval
I is inessential.

Similar example can be given in the random Schrédinger operators setting:

Example 1.11. Consider the Anderson-Bernoulli potential V(n), n € Z, that with
probabilities 1/2 takes values 0 or V,, where

_ 1 n#0,
~]100, n=o0,

n

and the corresponding random Schrédinger operator Hy,. Then, the essential spectrum
of this operator (almost surely) is the interval [—2, 3], and if V(0) = 0, it is also the full
spectrum. However, if the random value V(0) = 100, the spectrum of Hy, contains an
additional eigenvalue. Thus, the non-essential parts of the spectrum may be random,
and therefore one cannot talk about “almost sure spectrum” in the non-stationary case.

We are now ready to state the non-stationary parametric theorems for infinite prod-
ucts. Denote L,(a) := E log||T}, ¢ ql|-

Theorem 1.12 (Non-stationary parametric version of Furstenberg Theorem). Under
the assumptions (B1)~(B3) above, for P -almost every w € Q the following hold:
+ (Regular upper limit) For every a € J we have

. 1
lim sup ﬁ(log ”Tn,a,wH —L,(a))=0.

n—oo
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+ (Gs-vanishing) The set
So(w) = {a eJ|lim inf% log || Ty.q.0l = 0}
n—oo

contains a (random) dense G s-subset of the interior of the essential set E.

» (Hausdorff dimension) The (random) set of parameters with exceptional be-
haviour,

1
Sp(w) := {a e J|lim infﬁ(log 1 Th,0,0ll = Ln(@) < 0},
n—oo

has zero Hausdorff dimension:

Remark 1.13. Regarding “Gs-vanishing” conclusion, we would like to emphasize that
in the non-stationary setting the essential spectrum does not have to have dense inte-
rior. We construct the corresponding example in Appendix A.

In order to study random discrete Schrédinger operators on ¢2(Z), we will have to
consider sequences of random (parameter-dependent) matrices, indexed by n € Z in-
stead of n € N. We thus denote Q, = A%, and for a given bi-infinite sequence {u, },c»
(again, with all the u,’s from some compact set K of measures) equip Q, with the
measure P := [, _ 1.

We then denote for a sequence w = (...,A_;,A4p,A1,...) € Q5

Tonaw = (A_p(@)™" ... (A1 (@) (Ag(a@) ™!
and
L—n(a) =FE log ||T—n,a,w”-
Theorem 1.14. Under the assumptions (B1)-(B3) we have:
« Foralmostallw € Q, forall a € J the following holds. If

. 1
(3) lim sup - (log|Thaw ()] = Lu(@) <0,

n—+oo

then in fact |T,, 4., (§) | tends to zero exponentially as n — co. Namely,

log |Tn,a,w ((1)) | = —Ly(a) + o(n).
« Foralmost all w € Q, for all a € J the following holds. If for some 0 € R? \ {0}

we have
) 1 1
limsup = (1og|T},.4,,0| — Ln(a)) <0, and limsup = (log|T_, 4,0 — L_,(a)) <0,
no+co N n—o+o N

then both sequences |T, g ¢,0|, | T_p q,,,0| in fact tend to zero exponentially. More
specifically,

log|T, 4,0 = —=Ly(a) + o(n), and log|T_,q.,0| = —L_p(a)+ o(n).

Similarly to the stationary case treated in [GK], we obtain the results describing
the behaviour of infinite products by obtaining a description of the “most probable”
behaviour of a large finite product. To obtain such a description, for any given n set
N = [exp(%)]. We divide the interval of parameters J into N equal intervals Jy, ..., Jy;
letb_ = by < b; <:-- <by_; < by = b, be their endpoints, i.e. J; = [b;_1, b;].



NON-STATIONARY ANDERSON LOCALIZATION 89

By U,(x) we denote the e-neighborhood of the point x.

Theorem 1.15. For any ¢ > 0 there exist ng = ny(e) and 8§y = &y () such that for any
n > ng the following statement holds. With probability 1 — exp(—9, %), there exist a
(random) number M € N, exceptional intervals J; , ..., J;,, (each of length %), and the
corresponding numbers my, ..., my; € {1,...,n}, such that:

(I) (Uniform growth in typical subintervals) For any i different from i,,..., iy,
forany a € J;, and foranym = 1,...,n one has

10g [| Tin,a,ll € Une(Lm(a)).
(IT) (Uniform growth in exceptional subintervals) Forany k = 1,..., M, for any

a € J;, and forany m = 1,..., my one has
10g || Tn 0,01l € Une(Lim(@));
foranym =my +1,...,nonehas
log“T[mk,m],a,w” € Uns(L[mk,m](a))’
where

T[mk,m],a,w = Tm,a,w Tr;;i,a,w = Am(a)Am—l(a) .. -Amk+1(a)
and
L[m/,m](a) := [E log ||T[m’,m],a,w||'
(IIT) (Cancelation) For any k = 1,...,M there exists a; € J;, such that for any
m=1,...,n

(5) log ||Tm,ak,w|| € Uns(’vbmk(ms a)),

where
L (a)’ m< m',
'(‘bm! (mr a) = " ,
|Lm (@) — L[m’,m](a)|7 mzm.
In other words, for m > my the parts of the product over the intervals 1, my | and
[my, m] cancel each other in the best possible way.

(IV) (Distribution) For any m < n and any interval I C J of the form I = [b;, by,
0 <i<i <N, the number

My, = #{k | a;, € I, m < m}
belongs to the interval [R,, ,,(I) — €n, Ry, ,,(I) + en]. In particular,
M € Upe(Ry,0(J))-

Theorem 1.15 is a non-stationary analogue of Theorem 1.19 from [GK]. In the sta-
tionary case the distribution of the exceptional intervals had to converge to some mea-
sure analogous to the density of states measure in the context of random Schrédinger
operators. This is where Theorem 1.15 essentially differs from [GK, Theorem 1.19].
While some attempts to generalize the notion of the density of states to the case of
non-ergodic Schrodinger operators were made (e.g. see [BKI]), the situation is quite
delicate in this case. In particular, contrary to the Johnson’s Theorem in the station-
ary case, even if the random rotation number exists (e.g., see Appendix A in [GK] for
details), an interval of its constancy is not necessarily inessential:
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Example 1.16. As in Example 1.10, consider a stationary product A(a), uniformly
hyperbolic for a € I = [0,1], but now add an additional rotation at the steps that are
perfect squares. That is, let

Rotyqq - Aj(@), j=k*forsomek € Z,
Aj(a), otherwise.

Bj(a) = {

Then, for the product

By(a)...By(a),
on the one hand, the interval I is not inessential, as R,, y2(I) > k for any k. On the other
hand,

1
lim =R, ,(I) =0,
n n ’
and the random rotation number is constant on the interval I.

Using the same ideas for the random Schrddinger operators setting, we get the fol-
lowing

Example 1.17. Consider the Anderson-Bernoulli potential V(n) = £, + r(n), where
&, €{0,1} arei.i.d. (1/2,1/2)-Bernoulli random variables, and

20, ifnisa perfect square,
() = P
0, otherwise.

Then, due to Theorem 1.1, the corresponding random Schrédinger operator almost
surely has a pure point spectrum, and its eigenfunctions are exponentially localized.
However, the proportion of eigenfunctions with energy in the interval [18, 23] among
those with the localization center in [N, N] tends to zero as N — oo. Hence for
any natural definition of the density of states measure, it will not charge the interval
[18, 23], though a non-empty subset of it belongs to the essential spectrum.

1.5. Ideas of the proof and structure of the paper. The proofs of non-stationary
spectral and dynamical localization results, i.e. Theorems 1.1 and 1.4, as well as the
Non-stationary Parametric Furstenberg Theorem, i.e. Theorem 1.12, are based mostly
on the results and strategy from two recent papers, [GK] and [GK22]. More specifi-
cally, our new proof of spectral localization in 1D Anderson Model, that we provided
to demonstrate the power of the technics developed in [GK], used the results on para-
metric products of random SL(2, R) matrices. That result, in turn, was based on exis-
tence and positivity of Lyapunov exponents of random matrix products. In the non-
stationary case the norms of random matrix products do not have to have any exact
exponential rate of growth, but their behaviour can be described by an exponentially
growing non-random sequence {L,,}, as was shown in [GK22]. This allows to use the
general strategy of the proof of spectral localization from [ GK] in the non-stationary set-
ting. Certainly, non-stationarity of the model brings many technical challenges. Just
to give one example, in the stationary case the Lyapunov exponent A(a) is a continu-
ous function of the parameter a € J, and uniform continuity of that function over a
compact interval in the parameter space is used in [GK]. In the non-stationary setting
it has to be replaced by equicontinuity of the sequence of functions {%Ln(a)}aE 7, see
Lemma 2.3.
Let us now describe the structure of the rest of the paper.
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In Section 2.1 we provide the statement of the Non-stationary Furstenberg The-
orem and Large Deviations Estimates from [GK22], and explain why its parametric
version, Theorem 2.2, also holds. In Section 2.2 we prove equicontinuity of the se-
quence {%Ln(a)}aE 7, and use it to prove the first part (“Regular upper limit”) of The-
orem 1.12, which can be considered as a dynamical analogue of Craig-Simon’s result
on Schrodinger cocycles. After that, in Section 2.3, we deduce the rest of the Non-
stationary Parametric Furstenberg Theorem (Theorem 1.12) from Theorem 1.15 on
properties of finite products of random matrices.

The central technical statement of this paper is Theorem 1.15, describing the typical
behaviours of finite length random products, and we prove it in Section 3. The number
N = [exp W] of parameter intervals in Theorem 1.15 grows subexponentially in the
number n of iterations. Due to the large deviations type bounds, the growth of the log-
norm at each of their endpoints is ne-close to its expected value with the probability
that is exponentially close to 1, and hence (as the number of endpoints growth subex-
ponentially), the same applies to all endpoints b; simultaneously. We establish these
large deviations type bounds in Section 3.2, see Lemma 3.5.

Next, we extend the control from the endpoints to full parameter intervals. To do
so, we study how the image of a given initial point x, € S! after a given number
of iterations m varies when the parameter varies over the corresponding parameter
intervalJ; = [b;_y, b;]. If all such variations are sufficiently small, the distortion control
ideas (see Section 3.3 and Lemma 3.9) allow us to observe the same growth of log-norms
for all intermediate parameter values. The same applies if the variation becomes large
at some intermediate moment m, but then “quickly” decreases.

Proposition 3.1 in Section 3.1 states that with the probability close to 1 there are
only three possible types of behaviour for such variations: the two mentioned above
and the third one, when the image point at some moment m, makes a full turn around
the circle. In the latter case the product Ty, m),q, after this moment turns out to be
growing uniformly in a € J;, and such a parameter interval is thus exceptional in terms
of Theorem 1.15. In Sections 3.4 and 3.5 we deduce Theorem 1.15 from Proposition 3.1
described above. Then, in Section 3.6 we provide the proof of contraction estimates in
the non-stationary setting, which is the only part where the proof of Proposition 3.1
differs from its stationary version (see Remark 3.2).

In Section 4, we prove Theorem 1.1 and therefore establish the spectral localization
in our model. To do that, we study the possible growth of log-lengths of the images
of a particular vector. It turns out that these log-lengths up to an error term en (with
arbitrarily small ¢) follow one of possible patterns, see Lemmata 4.4, 4.5, and 4.6. This
allows to prove Theorem 1.14 that claims that almost surely every vector whose images
are not growing with respect to the non-random sequence L,,(a) must actually decay
exponentially fast. In the case of transfer matrices associated with Anderson Model
that implies that any solution that does not grow exponentially fast must in fact decay
exponentially fast, and due to Shnol’s Lemma the corresponding Schrédinger operator
must enjoy spectral localization.

In Section 5 we establish that discrete 1D Schrodinger operator with non-stationary
random potential has semi-uniformly localized eigenfunctions (SULE), which implies
Dynamical Localization and proves Theorem 1.4.
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Finally, we provide two appendices with examples that show that the properties of
a non-stationary Anderson Model and non-stationary random matrix products can be
drastically different from their stationary versions. Namely, in Appendix A we show
that the essential spectrum of a discrete Schrodinger operator with non-stationary ran-
dom potential does not have to have dense interior. More specifically, we give an ex-
plicit example of such an operator whose essential spectrum intersected with an inter-
val forms a Cantor set of zero measure. And in Appendix B we give a surprising exam-
ple of a non-stationary parametric random matrix sequence A;(a), A,(q), ..., A,(a),...
such that limsup, _, % log ||A,(a)A,_1(a)...A;(a)|| is not a continuous function of
the parameter. In the stationary setting this function corresponds to the Lyapunov ex-
ponent, that is known to be continuous in this context (under very mild conditions that
are satisfied, say, by transfer matrices of Schrodinger cocycle associated with Anderson
Model).

2. NON-STATIONARY PARAMETRIC FURSTENBERG THEOREM

2.1. Parametric large deviation estimates theorem. First of all, we will need a
version of the Large Deviation Estimates Theorem [GK22, Theorem 1.8] that is uniform
in the parameter. Let us provide the original statement first:

Theorem 2.1 (Large deviations for non-stationary products, [GK22]). Let K be a com-
pact set of probability measures on SL(d, R). Assume that the following hold:
+ (finite moment condition) There exists y > 0, C such that
VueK [[A|[Ydu(A) < C
SL(d,R)
+ (measures condition) For any u € K there are no Borel probability measures
V1, Y, 0n RP*! such that (fa)sv1 = v, for u-almost every A € SL(d, R)

+ (spaces condition) For any u € K there are no two finite unions U, U’ of proper
subspaces of R such that A(U) = U’ for u-almost every A € SL(d, R).

Then for any € > 0 there exists 8 > 0 such that for any sequence of distributions iy, iy, - ..,
HUn, ... from K, for all sufficiently large n € N we have

P{llog || T,|| = Ln| > en} < e~°",

where T, = ApA,_; ... Ay, {Aj} are chosen randomly and independently with respect to
b P =y X uy X ... X uy, and L, = E(log||T,,||). Moreover, the same estimate holds
for the lengths of random images of any given initial unit vector v,:

Yo, € RY, Jug| =1 P{[log]||T,ve|| — Ly| > en} < %",
Finally, the expectations L,, satisfy a lower bound
L, > nh,
where the constant h > 0 can be chosen uniformly for all possible sequences {u,} € K.
Let us now state a version of the Large Deviation Estimates that we need:

Theorem 2.2. Under the assumptions of Theorem 1.12 for any € > 0 there exists § > 0
such that for all sufficiently large n € N and all values of the parameter a € J we have

P {llog| a0l — Ln(@)| > en} < ™",
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where P = u{ Xug X...Xu%. Moreover, the same estimate holds for the lengths of random
images of any given initial unit vector vy:

Yoo € R%, [vg] =1 P{[log||Ty.a.wvoll — Ln(a)| > en} < e=".
Finally, the expectations L, satisfy a lower bound
(6) L, > nh,

where the constant h > 0 can be chosen uniformly for all possible sequences {u,} € KN
and all parameters a € J.

Theorem 2.2 can be considered as a particular case of Theorem 2.1. Indeed, finite
moment condition trivially holds under the assumptions of Theorem 2.1 due to con-
dition (B2). Since in Theorem 2.2 we are only interested in SL(2, R) matrices, spaces
condition holds as soon as measures condition holds; otherwise an atomic measure on
the finite invariant set in RP' would be a measure with a deterministic image. Finally,
the collection of measures {u? | u € X, a € J} forms a compact subset in the space of
measures on SL(2, R), and due to condition (B1), every measure u® from that compact
satisfies the measures condition from Theorem 2.1. Therefore, Theorem 2.1 is applica-
ble with K = {u? | u € X, a € J}. In particular, it is applicable to any sequence of the
form uf, us, ..., u%, ..., which gives Theorem 2.2.

2.2. Upper bound for the upper limit. We will need the following statement:

Lemma 2.3. The sequence of functions {%Ln(a)}nEN is equicontinuous.

Remark 2.4. Lemma 2.3 can be considered as a non-stationary analogue of continuity
of the Lyapunov exponent in the classical stationary setting. Indeed, it implies that
limsup,, %Ln(a) is a continuous function. Nevertheless, this analogy does not go
too far. Namely, in spite of the first claim of Theorem 1.12, in the non-stationary setting
there are examples where almost surely lim sup,, , %log | Th,0,00]] is a discontinuous
function of the parameter a. We construct such an example in Appendix B.

Proof of Lemma 2.3. For any fixed k € N we can decompose the product T, ; ,, into
product of groups by k,

Tn,a,co = Bm(a) cee Bl(a)’
where
Bj(a) == (Aij(@)... Ag(j-ny+1(@), j=1,....,m.
Now, take any unit vector v, € RY; in order to control the cancellations in the action
of the above product on v, define
§j,a := log ”Bj<a)||’ Sj,a := log |Tkj,a,w(U0)|’ Rj,a = Sj,a + §j+1,a - Sj+1,a-
Then
7 log |Tkm,a,wvo| = Sm,a = (gl,a + -t gm,a) - (Ro,a + Rl,a +oeeet Rm—l,a)’

and hence

(8) (gl,a +- gm,a) > log ||Tn,a,w|| > log |Tn,a,wUO|
= (gl,a + e+ gm,a) - (RO,a + Rl,a + -+ Rm—l,a)~
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By direct examining of the proof of [GK22, Proposition 3.2], one can see that it ac-
tually implies its parametric version as well, that provides a uniform in a € J value of
&* > 0 for each given €* > 0:

Proposition 2.5. Forany €* > 0 there exists k1, such that for any k > k; for some §* > 0
one has for alln = km and forany a € J
P(Ro,a + Rl,a + -+ Rm—l,a > nE*) < e_é*m.
Lete > Obe fixed. Take e* := ¢/5, and let us apply Proposition 2.5: for any sufficiently
large k there exists * > 0 such that foranya € J

£
(9) Ro,a + Rl,a + -+ Rm—l,a < gn

with probability at least 1 — e~%"m_Once (9) holds, we have from (8)

€
(10) |10g ||Tn,a,w” - (gl,a + et §m,a)| < gn-
Thus, for any two parameter values ay, a, € J both inequalities

€ .
(11) |10g ||Tn,al-,cu|| - (gl,ai + et gm,ai)' < gn: i=1,2

hold with the probability at least 1 — 2e=%"™.

Finally, note that due to the assumption (B2) (for a fixed k) the random variables
§j.a> considered as (random) functions of the parameter a € J, are equicontinuous.
Hence, there exists §; such that for any a,, a, € J with |a; — a,| < §; we have

€
€0, — §j.an] < 5
and thus

e €
Z |§j,a1 - fj,a2| < gm-
=1

Combining this estimate with (11), we conclude that with the probability at least 1 —
26—5*1’1’1

1 1 3
(12) | 108 1 Tr g 0l = 5 108 I o | < 2

Let us now consider the expectations L,(a;) = E log||T, o, |- We have

1 1
Ean(al) - Ln(az)l < Z[E |log ||Tn,a1,w|| - log ”Tn,az,le
1
= E[E 1{Eq. (11) holds} |10g ||Tn,a1,cu” - log ||Tn,a2,w”|

1
+ l’_l[E 1{Eq. (11) does not hold} |10g ”Tn,al,wH - IOg ||Tn,a2,w||| .

As we have %log 1 Th,a,0ll < log M everywhere due to the assumption (B2), the con-
tribution of the part where (11) does not hold cannot exceed 2e~"" log M, and hence
tends to zero as n — oo. In particular, for all n sufficiently large it does not exceed g
On the other hand, once |a; — a,| < &y, due to (12) the contribution of the part
where (11) holds does not exceed % We finally get for all sufficiently large n = km

1 1 3 ¢
ELn(al) — ELn(az) < ? + g <E.
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As ¢ > 0 was arbitrary (and with an easy handling of n not divisible by k and of a finite
number of n that are too small) we obtain the desired equicontinuity. ]

Notice that the proof above in fact gives a bit more. Namely, equicontinuity holds
for all the functions {%Ln(a)} regardless of the specific choice of the sequence of the
measures Uy, Uy, ... € K. Indeed, for any specific ny > 1 the set of ny-tuples of mea-
sures from K" is compact, the map (uy, 4, ... Mp,) + nl_OLno;Mno*---*Ml(') € C(U,R)
is continuous. Therefore, its image is compact, hence is an equicontinuous family of
functions. That is, the following statement holds:

Lemma 2.6. The family of functions {%Ln(a)}neN,m,uz,. _ex 1S equicontinuous.
As an immediate consequence, we get the following:

Lemma 2.7. For any given sequence of distributions {u;,,,...} C KN, the family of
. 1 . Lo
functions {WL[ml,mz](a)}osm1<mz is equicontinuous.

We are now ready to prove half of the first part (Regular upper limit) of Theorem 1.12.
Namely, we have the following

Proposition 2.8. Fora.e. w € Q and any a € J one has

. 1
lim sup —(l0g || T;,q,0ll — Ln(a)) < 0.
n—oo n
In a sense it can be considered as a non-stationary dynamical analogue of Craig-
Simon’s result [CS, Theorem 2.3] on Schrodinger cocycles. Its stationary counterpart
is Proposition 2.1 from [GK].
This statement is implied by a large deviation-type bound for products of a given
length n, that will be useful for us later:

Proposition 2.9. For any e > 0 there exists c,,C, > 0 and n; € N such that for any
n > n; with the probability at least 1 — C, exp(—c,h) the following statement holds: for
any a € J one has

(13) log ||Tn,a,a)” —Ly(a) < ne.
Deducing Proposition 2.8 from Proposition 2.9 is quite straightforward:

Proof of Proposition 2.8. Applying Borel-Cantelli Lemma, we notice that for every ¢ >
0 and a € J the inequality (13) almost surely takes place for all sufficiently large n.
Hence, for every € > 0 and a € J one has almost surely

. 1 _
lim sup E(log ||Tn,a,cu” —Ly(a)) <e.
n—oo

Taking a countable family of €’s, tending to 0, and intersecting the corresponding events,
we obtain the desired conclusion. g

Proof of Proposition 2.9. Let ¢ > 0 be given; choose and fix €%, k, §; as in the proof of
Lemma 2.3. Take points {b;, ..., by} C J, dividing J into intervals of length less than §;.
The number N’ of these intervals, N’ > ‘5]—]', does not depend on the number m of sum-
mands; meanwhile, independent random variables §; , = log||Bj(a)|| satisfy uniform
upper bound

€ al < klogM
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and hence uniform large deviation estimates. That is, there exists ¢, > 0 such that for
every a € J the probability of the event

3
|§1,a + -t gm,a - [E(‘gl,a +-- gm,a)l > gl’l

does not exceed e~2", The number N of values b; does not depend on n, hence, the
probability of the event

. €
(14) Vi=1,....,N: |&p++Eup —EEp + -+ Emp)l < 3

isatleast 1 — N'e~¢2",

Next, taking the expectation of the left hand side of (10) and (as before) taking into
account the uniform upper bound % log || Tya.0ll < logl\_/I to control the expectation
where (11) does not hold, we get that for all sufficiently large nforalli = 1,...,N’

1 2€
E |Ln(bi) - [E(gl,bi +oeet gm,bi)l < g

Joining it with (14), when the latter holds, we get that foralli =1,...,N’

1 3e
" ILa(b;) = (Erp, + -+ + Empy)| < =

Now, take any a € J, and choose i such that b; is §;-close to a. Then we have

&
log”Tn,a,wH < gl,a +oee gm,a < (‘El,bi +- §m,bi) + gm

due to the equicontinuity of §; ,’s and the choice of §;. Joining it with the previous
inequality, we get

1 1 4¢
E log ||Tn,a,w” < ELn(bi) + ?

Finally, we have %Ln(a) > %Ln(bi) — ¢, and thus

1 1 9
n log ||Tn,a,co” < ELn(a) + 53

holds with the probability is at least 1 — N'e~¢2".
We have obtained the desired upper bound for ¢ = ge. As € > 0 was arbitrary,
Proposition 2.9 follows. U

Corollary 2.10. For any ¢ > 0 there exists c; > 0 and n; € N such that forany n > n;
with the probability at least 1 — exp(—c3h) the following statement holds: for any a € J
andany0 <m' <m" < nonehas

(15) IOg ”T[m/,m//],a’w” - L[m/’m//](a) < l’lg.

Proof. f m" —m’' < nﬁ, the inequality (15) holds automatically due to the upper
bound on norms of 4,:((1)’5.
€

Ifm" —m' > g the probability of the corresponding event

log ”T[m’,m”],a,w” - L[m’,m"](a) > ne

is bounded from above by

Cyexp(—cy(m” —m')) < Cyexp <—Cz —. n)
log M
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due to Proposition 2.9. There are less than n? such events, and choosing sufficiently
small c; > 0 allows to ensure the upper bound

n? . C,exp (—c2 ‘. n) < exp(—c3h)
log M

for all sufficiently large n. O

2.3. Proof of parametric non-stationary Furstenberg Theorem via parameter
discretization. Here we derive Theorem 1.12 (parametric non-stationary Fursten-
berg Theorem) from Theorem 1.15 (on properties of finite products of random ma-
trices). The proof is parallel to the content of Section 3 from [GK].

Proof of Theorem 1.12. Combining Borel-Cantelli Lemma with Theorem 1.15 we ob-
serve that for any € > 0 almost surely there exists n, = ny(¢) such that for any n > n,
there are M,, € N and exceptional intervals J; ,,Ji, 5, - Jipg,n such that the properties
(I)-(IV) from Theorem 1.15 hold. Notice that comparing to the notation used in The-
orem 1.15 we add n as an index to emphasize the dependence of these objects on n. Let
us also define

and

n’2no(e)

Regular upper limit: Due to Proposition 2.8 we only need to show that almost surely
for all a € J we have

. 1
(16) lim sup - (log | Ta,0ll — Ln(a)) > 0.

n—-oo
If a given a € J does not belong to H,, then it does not belong to exceptional intervals
Ji,.,n for all sufficiently large n. Therefore due to property (I) from Theorem 1.15 for all
sufficiently large n we have log || T;, 4., || =L, (a) > —en, or %(log | Th.a,0ll—Ln(a)) > —¢.
Hence
. 1
17) lim sup - (log | Ta,0ll — Ln(@)) > —¢.

n—oo
Ifa € H, there is an arbitrarily large n such that a € J;, ,, for some exceptional interval
Jiin- Consider the corresponding value my, and notice that the property (II) from
Theorem 1.15 implies the following. If % > /e, then log I Ty ool = Lmk,n(a) >
—en, and hence

n
(18) (10g | T a.ll = Limy. (@) = —€ —z-Ve
N

mk,n m
Now, assume that % < 4/e. Then, we have
Ln(a) < L[mk,n,n](a) + Lmk,n(a):

and
log || T q,0ll = log ||T[mk,n,n],a,w|| —log ”ka,a,w”-
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Subtracting, we get

10g | Ty a0l = Ln(@) > 108 | Tim . mlacoll = Lim ponta)
— (108 | Ty oll = Limg ) = 2L
> —e(n—my,) —emy, — 2Lmk,n(a)
> —en — 2Ly, (@) 2 —en — 2my ,Crmax.

where we denote

19 C = log ||A < 0.
(19) max uex, Ag;ﬁ-gp#’ act og|lA(a)|| < oo
Notice that Cy,, is finite due to condition (B2). Hence

1 My,
(20) ﬁ (log ||Tn,a,cu“ - Ln(a)) > —&£— zcmaXTn > —&— 2Cmax\/g-
Therefore, in any case from (18) and (20) we get
. 1

(21) limsup - (10g || T/l = Ln(@)) > — max(Ve,& + 2Cmax V).

n—-oo
Finally, applying (17) and (21) along a sequence of values of ¢ > 0 that tends to zero,
we observe that almost surely (16) holds, and hence the first claim of Theorem 1.12 (on
regular upper limit) follows.

G5 vanishing: Let us recall that the constant Cy,,4 given by (19) is an upper bound
for all log-norms of all the matrices that can be encountered in the random prod-
uct. Due to Theorem 2.1 (or Theorem 1.4 from [GK22]), there is h > 0 such that
Lim,,m,)(@) > h(my —m,) for any m, > m; and any a € J. For each n, p € N introduce
the set

1 4((Cpax/h) +1

Wop = {a € J | for some m > n we have -~ log || Tn,a.0ll < %}

We claim that W, , is open and dense in the interior of the essential set & for any n, p €

N. Indeed, it is clear that each set W, , is open. Apply Theorem 1.15 for ¢ = % with

sufficiently large p; namely, we require p > 10(% + 1). Denote by {ay ,} the set
of exceptional parameters provided by Property (III) for a given n > ny. Since any
interval I C €& is not inessential, Property (IV) implies that U, {a ,} is dense in
int €. Moreover, since R, (,(I) = o0 as n — oo, we must have

R( 1 () >R n 0))

(Cmax/h)+1 _E)n’w 2 Cmax/m+1"?

for infinitely many large values of n. Therefore, Property (IV) implies that the set of
exceptional parameters {ay ,} with
Mg n c 1 1 1
n 2 (Chpax/h) + 17 (Cpax/h) + 1
is also dense in int €. For any such parameter there exists #y , € [my ,, n] such that

|Lmk,n(a) - L[mk,nymk,n](a” < Chax
therefore, Property (IV) implies that
Cmaxten . _n 4((Cunax/) +1)

<2 <4((Cpax/M)+1e=
mk,n mk,n ( max ) D

1
Foen log || Ty a0l <
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This implies that W, , is dense in int €. Hence, the intersection mn,p=1(Wn,p N int &)

is a dense Gs-subset of int &, and for any a € ﬂ:’p:l Wp,p We have

1
liminf — log || T, 4 || = O.
n-co N .

Hausdorff dimension: First of all, notice that H, C J has zero Hausdorff dimen-
sion. Indeed, H, is contained in V}, ., which is covered by {Jik’”}rpn’ <M. Property
(IV) from Theorem 1.15 implies that M,, cannot grow faster than a linear function in
n. Taking into account Property (I) from Theorem 1.15, d-volume of this cover can be

estimated as follows:

d d
Wl Ml '
Z M, <1T”l)> < Z const -n < const Z nexp(—ddyi/n).

d
n>n’ n>n’ N(n) n>n’

Therefore it tends to zero as n’ tends to oco. Since this holds for any d > 0, we have
dimy H, = 0.

If a ¢ H,, then due to Property (I) from Theorem 1.15 for all sufficiently large n we
have %(log | Th.a,0ll — Ln(@)) > —¢, hence

lim il’lf% (log ”Tn,a,a)H - Ln(a)) > —¢t.
n—-oo

Taking a countable union of sets H, over a sequence of values of ¢ > 0 that tend to zero,
we get a set of zero Hausdorff dimension that contains all values of a € J such that

1
lim inf;t (log | Tya,0ll — Lu(a)) < O.
n—oo
This proves the last part of Theorem 1.12. O

3. FINITE PRODUCTS: PROOF OF THEOREM 1.15

3.1. Finite products of random matrices. Here we prove Theorem 1.15. This theo-
rem is a non-stationary version of [GK, Theorem 1.5], and its proof closely follows [ GK].

First, let us remind some notation from Section 1.4. Together with the initial linear
dynamics of SL(2, R)-matrices A(a), a € J, we consider their projectivizations that act
on the circle of directions S* & RP", and lift this action to the action on the real line R
for which S! = R/Z: let

fA,a . §1 - Sl
be the map induced by A(a) : R? — R2, and let
faa :R->R

be the lift of f4 4 : S! — SL. The lifts f, A,q Can be chosen continuous in a € J and so
that f ,_(0) € [0, 1). Also, given @ = (4;,4,,...) € Q = A", denote by

fn,a,cu : St st
the map induced by T, 4., : R* = R%, T;, 4. = Ay(a) - ... - Aj(a), and by
fraw R—R

the lift of f 40 © S' = SY fuaw = fa,a©---° fa,a
For any fixed value of parameter a € J, the (exponential) growth of norms of T, , ,
is related to the (exponential) contraction on the circle of the projectivized dynamics.
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Namely, standard easy computation shows that for a unit vector v in the direction
given by the point x,, one has

1

(22) TnaalXo) = e e

Fix some point x, € S!, for example, the point that corresponds to the vector ((1,)
Denote by X, € [0,1) its lift to R!. Recall that the interval J = [b_, b, ] was divided
into N = [exp(W)] equal intervals Jj,...,Jy that were denoted by J; = [b;_;, b;],
i=1,...,N.

Let %, ; be the image of %, after m iterations of the lifted maps that correspond to
the value of the parameter b;,

xm,i = fm,bi,w(xo)

(we omit here the explicit indication of the dependence on the w), and let
(23) Xm,i = [xm,i—l’xm,i]

be the interval that is spanned by m-th (random) image of the initial point %, while the
parameter a varies in J; = [b;_1, b;].

The main step in the proof of Theorem 1.15 is Proposition 3.1, describing possible
types of behaviour for lengths of the intervals X, ;. It is a word-for-word analogue of
Proposition 4.1 of [GK], that still holds in the non-stationary setting:

Proposition 3.1 (Types of the behaviour). For any ¢’ > 0 there exists ¢, > 0 such that
for any sufficiently large n with the probability at least 1 — exp(—c; {/ﬁ) the following
holds. Foreachi =1,...,N thelengths|X,, ;| behave in one of the three possible ways (see
Figure 1:

« (Smallintervals) The lengths |X,, ;| do not exceed ¢’ forallm = 1,...,n;
+ (Opinion-changers) There is m, such that | Xy, ;| > €', and
|Xnil <€ ifm<mg or m>my+en;

* (Jump intervals) There is m, such that | X, ;| > €', and

|Xmil <€ ifm<myg,

1< Xyl <14€ ifm>my+en.

The relation between jump intervals and exceptional parameter values is illustrated by
Figure 2.

Remark 3.2. Notice that while the statement of Proposition 3.1 is a verbatim repetition
of [GK, Proposition 4.1], one cannot just give a reference to [GK], since [GK, Propo-
sition 4.1] was proven in the stationary setting. However, the only part of the proof
of [GK, Proposition 4.1] that has to be modified is the proof of [GK, Corollary 4.25],
and we prove its non-stationary analogue, Corollary 3.21, in Section 3.6. That proves
Proposition 3.1.
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T, i

m/ m//
FIGURE 1. Graphs of X, ; (consecutive iterations are linked), with the
occurring suspicious intervals marked with blue (dotted) lines and
the jumping ones with red (dashed) lines

image after my, iterations under two different values of parameter

a = b, _; and a = b;,, together with a most contracted direction
for Tj, n),a,e for some a € J;, , marked by a cross. Right: Final im-
age after n iterations; note that the images of x,, are almost opposite,
meaning that they have made a full turn on the projective line of the
directions.

3.2. Large deviations: Convenient versions. Here we formulate several conse-
quences of the Large Deviation Theorem (i.e. Theorem 2.2) in the context of random
matrix products that will be specifically useful in our setting.

Lemma 3.3. Forany¢c' > 0 there exists {; > 0 such that for all sufficiently large n € N
the following holds. For any a € J, any given 0 < m; < m, < n, and %, € R with
probability at least 1 — exp(—¢;n) one has

(24) 108 fiim, mo1a0Finnaw(®0)) € Usn(=2Lim, m, (a)).

Remark 3.4. Notice that in the case m; = 0, m, = n the statement of Lemma 3.3 turns
into Theorem 2.2.
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Proof of Lemma 3.3. Let us recall that if Cy,,, is defined as in (19), then
L[ml,mz](a) =E log ||T[m1,m2],a,cu|| < (m2 - ml)cmax-

Also, if A € SL(2, R), v is a unit vector, f and x are projectivizations of A and v, and f
and X are lifts of f and x, then

|log f'(%)| = 2|log|Av] | < 2log |A]l,

see (22).
Set
& = e
4Cmax
If my, — m; < €*n, then
my
'logf[lml,mz],a,w(fml,a,w(xo))| < 2 |10g.ﬂ1k,a(fk—1,a,w(x0))| <
k=mj;+1
/ E/
(my —my) - 2Cppax < (My — m1)2 s Son
and
¢ ¢
2L[m1,mz](a) < 2(my — my)Crpax = 2(m, — m1)4_6* < E
Therefore,

10g fi’rnl,mz],a,a)(fml,a,w(xo)) € Us’n(_ZL[mz,ml](a))-
Ife*n < my, — m; < n, then by Theorem 2.2 for some ¢ > 0 we have

P (logf[’ml,mz],a,w(fml,a,w(xo)) & Ux-:’n(_ZL[mz,ml](a))) <

P (log f[,ml,mz],a,w(fml,a,w(xo)) & UE’(mz—ml)(_zL[mz,ml](a))) <
e_g(mz_ml) S e‘{E*n‘

Hence, Lemma 3.3 holds with {; = £*¢. O

Let us recall that the interval J is divided into N = [exp({/ﬁ)] equal subintervals
Jis...,Jy denoted J; = [b;_q,b;], i = 1,...,N. With large probability (24) holds simul-
taneously for all possible m;, m, with 0 S m, < m, < nand all parameter values that
form the grid {by, by, ..., by}. Namely, the following statement holds:

Lemma 3.5. Forany¢' > 0 there exists {, > 0 such that for all sufficiently large n € N
the following holds. For a given X, € R with probability at least 1 — exp(—¢,n) one has

(25) log f[lml,mz],bi,w(fml,b,-,co(xo)) € Ua’n(_ZL[ml,mz](bi))’

forallmy,my with0 <m; <m, <nandalli=0,1,...,N.

Proof. Let ¢ be given by Lemma 3.3, and take any positive {, < ;. For a given a €
{bg,b1,..., by} and given m € {1, ..., n} the event (24) holds with probability at least
1—exp(—¢ n). Intersecting the events (24) for all a € {by, by, ..., by} and all m;, m, =
0,1,...,nwith m; < m, we observe that (25) holds with probability at least

n(n +1)

1- (N + Dexp(=in).
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Since N = [exp({/ﬁ)] and ¢, < ¢;, we get

M D (v 4 1y exp(—im) > 1 - exp(Gon)

for all sufficiently large n. O

1

Exactly the same arguments that prove Lemma 3.3 and Lemma 3.5 provide a very
similar but formally different statement:

Lemma 3.6. Forany ¢’ > 0 there exists {, > 0 such that for all sufficiently large n € N
the following holds. For any given unit vector v € R?, ||v|| = 1, with probability at least
1 —exp(—&n) forall my, m, with0 < my <m, <nandalli=0,1,...,N one has

(26) 10g ||T[m1,m2],bi,w0“ € Us’n(L[ml,mz](bi))-
Combining the statements of Lemma 3.6 and Corollary 2.10 we get the following:
Lemma 3.7. Forany ¢’ > 0 there exists {3 > 0 such that for all sufficiently large n € N

the following holds. With probability at least 1 — exp(—3n) for all my, m, with 0 < m; <
m, <nandalli=0,1,...,N one has

(27) 1Og ||T[m1,m2],bi,w|| € Ue’n(L[ml,mz](bi))-
Besides, Lemma 3.6 allows to prove the following useful “additivity” property of the

expectations {L,}:

Proposition 3.8. For any ¢ > 0 there exists n, € N such that for any n > ng, any
my, my, m3 € Nwith0 < my; < my, < mz < n, and any a € J we have
0 < Limy,my (@) + L[mz,mﬂ(a) - L[ml,mﬂ(a) < ne.

Proof. Recall that for any a € J we have a € [b;_;, b;] for some i < N. Equicontinuity
result provided by Lemma 2.7 implies that for a given ¢’ > 0 and all sufficiently large
n € N we have

(L, my1(@ + Limy,ms1(@) = Limy,ms1(@))
— Lpmy,my) (i) + Ly, ms1(bi) = Ly my 1 (01))]
< Eimy,ma)(@) = Limy ma ) (0D + Ly, ms1(@) = Limy, my1 ()]
+ Ly ,ms1(@) = Limy mq) (b)] < €' (my —my) + &' (m3 —my) + &' (m3 —my) < 3¢'n.
Take any unit vector v € R?, ||v|| = 1. We have
Timyma)biwl = Tima,mal,biw imy,ma),bywVs
and hence

Ti v
[mq,m;,],bj,
log ||T[m1,m3],bi,coU” = log =

Timy,ms1,bi0 ( )“ + log ”T[ml,mz],bi,a)UH-

“ T[ml,mz],bi,cuUH
Due to Lemma 3.7, with large probability we have

log”T[ml,mz],bi,cu” € Us’n(L[ml,mz](bi))a 10g ||T[m2,m3],b,-,co|| € Us’n(L[mz,mg,](bi)),
and
log ||T[m1,m3],bi,co|| € Us’n(L[ml,m3](bi))-
Therefore,
0< L[ml,mz](bi) + L[mz,m3](bi) - L[ml,m3](bi) < 3ne,
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and hence
0 < Lim;,m;1(@) + Limy,m;)(@) = Lim, my)(@) < 6ne’.
Taking ¢’ = %, we get the desired result. O

3.3. Distortion control. Here we collect several distortion estimates that will be
needed later.

Lemma 3.9 (Distortion control). Foranyw € Q, w = (A;,A,,...), the following holds.
Givenm’ <m”", y; <y, and @, < @, define the sequence of intervals Y, = [y .1 Ym.2):
m=m,...,m", by

Ym'j =Yj Vm+1,j = fAm,dj(ym,j)a j=12, m=m,....m" — 1.
Then for any a; € [a,,a,), anym=m',...,m", and any y; € [y;,y,] we have
m" -1
|10gf‘[lrn’,m],d3,w(y3) - logf};qq’,m]’dl,w(ylﬂ S L9 Z |Yk| + C|a2 - dl| . (m” - m,)7
k=m'

where the constants x and C are defined by

= sup 16ylog f1 (I, C:= sup 104108 fa.)I.
yeRL, uex, Aesupp u, acJ yeRL, uex, Aesupp u, acJ

Proof of Lemma 3.9. The proof is a verbatim repetition of the proof of Lemma 4.3 from

[GK], with some obvious adjustments of the notation. a

Another estimate that we will need shows how fast nearby points can diverge under
iterates of different but close maps.

Lemma 3.10. In notations of Lemma 3.9, we have
28)  Ymri = Ymr ol ST Y = Yol + Lp(m” —m’) - LT ~a, — a,

where

L= sup 1,0
yeRL, uex, Aesupp u, aeJ

and

Ly = sup |9fa,a)]
yeRL, uex, Aesupp u, aeJ
are the Lipschitz constants for the maps f, 4,a(y) in space and parameter directions respec-
tively.

Proof of Lemma 3.10. The proofis a verbatim repetition of the proof of Lemma 4.4 from
[GK], with some obvious adjustments of the notation. O

3.4. Uniform growth estimates. Here we deduce parts (I) and (II) of Theorem 1.15
from Proposition 3.1.

First let us show that the distortion control given by Lemma 3.9 together with Propo-
sition 3.1 allows us to use Lemma 3.5 to estimate the derivatives at X at all parameter
values a € J:

Proposition 3.11. There exists a constant C; such that for any € > 0 the following
property holds for all sufficiently large n. Assume that w is such that the conclusions of
Lemma 3.5 and Proposition 3.1 hold. Then, forany a € J:
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« Ifa € J;, and J; is either “small” or “opinion-changing” interval in terms of Propo-
sition 3.1, then
(29) Vm=1,....,n 108 fma0u(Xo) € Uc,ern(—2Ly(a)).

« Ifa € J;, and J; is a “jump” interval in terms of Proposition 3.1, with the associ-
ated moment my, then

(30) Vm=1,....,m 10gfnao(X) € Uciern(—2Ln(a)),
where m := mg + £'n is what we will call “jump index” below, and
(31) Vm=m+1,..,0n 108 fnmae®) € Ucon(=2Ljnm(a)),

forany %, € Xy, ;, where m := my+¢'nand we denote Xy;, ; = [Xpp 1 + 1, Xpz5]-

Proof of Proposition 3.11. In the first case, regardless of whether the interval J; is a
“small” one or an “opinion-changer”, we have an upper bound for the sum of the cor-
responding lengths

n-1
(32) DXl = D Xmil+ D) Xl <n-€ +ne-1=2ne.
m=0

[Xm,il<e’ [ Xim,il>e’
Lemma 3.9 implies that for alla € J; and allm = 1, ..., n we have
&1 > &1 < / |J|
| log fm,a,w(xo) - Ingm’bi’w(x0)| <2ke'n+C- ﬁn-

Due to Lemma 2.3, the sequence of functions {%Ln(a)} is equicontinuous. There-
fore, for a given £’ > 0 and any sufficiently large n we have:

1 1 ' VT _
ﬁLn(a) — ELn(bi) <¢, and N <é¢.

Together with the estimate (25) this gives

(33) |log fmaw(Xo) + 2Lm(@)] < [10g fina.0(%0) =108 fi, b, (%o
+110g f b, (Fo) + 2Lin(b))| + [2Ln(b;) — 2L ()|
<2xe'n+Ce'n+éen+2em< (2x+ C+ 3)e'n.

Therefore (29) holds once C; > 2x + C + 3.
Suppose now that J; is a “jump” interval. Checking (30) goes exactly in the same
way as in (32):

m mo—1 m—1
DXl = D0 Xmil+ D) Xmil <n-e +ne’-2=3ne.
m=0 m=0 m=my

Hence, in the same way as in (33), we have for any m < m
[10g fin.a.0(%o) + 2L(a)| < 3ke'n+ Ce'n+e'n+2e'm < 3x + C + 3)'n,

and we have the desired (30) once C; > 3x + C + 3.
Finally, the intervals X;, ; for m > m also satisfy the assumptions of Lemma 3.9.
One has

n
Z |Xm,i| < E’l’l,

m=m
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and thus (again, together with (25)) we get
|logf[’n-1’m]’a,w(fcl) + 2L m(@)] < xe'n+ Ce'n+e'n+2¢'m < (x + C + 3)e'n.

This proves (31) for any C; > x + C + 3, and thus concludes the proof of Proposition
3.11. O

Proposition 3.11 implies the parts (I) and (IT) of Theorem 1.15. Indeed, for any
A € SL(2, R) and for any vector v # 0 one has

v]?

|Av[?’

(34) Jalxw) =

where x, € S! is the direction corresponding to the vector v. In particular, for any
point x on the circle one has log||A|| > —% log f4(x) (as the right hand side of (34) is

not less than W). In particular, for any m, a, w we have

1 , _
(35) log ”Tm,a,wH > _E logfm,a,w(x)-

Joining this estimate with (29), we obtain a lower bound for the norm
1 , C
10g||Tnaell 2 =3 - (=2Lm(a) + Cine’) = Lin(a) - 715 n.

Hence, to obtain the lower bound in the “Uniformity” part, it suffices to take
g < E
G
On the other hand, Proposition 2.8 states that the upper bound
log || Tn,a,0ll < Lm(a) + ne
holds with the probability 1 — exp(c3n). We thus obtain the desired

10g || Tyn,q,0ll € Une(Lim(a))

for all a € J;, provided that the interval J; was “small” or “opinion-changing”. Now,
assume that a € J;, and the interval J; is a “jump” interval. Then again, joining (35)
with (30)-(31), we obtain

C
Vm=1,....m log||T,qwll = Ln(a)— 71£’n > L,,(a)—en
and

G

Vm=m+1,...,n 10g||Timmpa0ll = Lpnm(a) — >

£'n> Ly m(a) —en,
where the last inequalities come from the choice of ¢'.
Again, Proposition 2.8 gives the upper bounds

Vm=1,...,m log||T, 40l <Lnu(a)+ne

and
Vm=m+1,...,n 10g||Tjmmpae0ll <Lmm(a) + ne.

This implies the desired “Uniformity” estimates

Vm=1,....m 10g||Tq0l € Uy(Lnm(a)),

Vm=m+1,...,n log ”T[m,m],a,a)” € UnE(L[m,m](a)):
thus concluding the proof of parts (I) and (II) of Theorem 1.15.
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3.5. Cancelation lemmata. Here we prove the “Cancellation” part (IIT) of Theorem
1.15. The content of this subsection is parallel to Section 4.5 from [GK].

For any A € SL(2,R) denote by f, the corresponding projective map of S'. Also,
for A ¢ SO(2,R) let x~(A) € S! be the point where f, has the largest derivative, and
x*(A) € S! be the image under f, of the point where f4 has the smallest derivative.
Equivalently, x*(A) is the direction of the large axis of the ellipse, obtained by applying
A to the unit circle, and x~(4) = x+*(4™1).

Let a and 8 be the angles of x~(A) and x*(A) respectively. Then, it is easy to see

that
Al o ) -1
A =%R 1]R .
B ( 0 HA” 1 o+7/2

In particular, the following statement holds:

Lemma 3.12 (Cancellation for matrices, Lemma4.13 from [GK]). LetA, B € SL(2, R)\
SO (2, R) be two matrices such that x*(A) = x~(B). Then
Bl [lA] )
BA|| = max(—, — .
1Al DR
We will also use Lemma 3.13:

Lemma 3.13 (Lemma 4.14 from [GK]). Let A € SL(2,R)\ SO(2,R), x € S! be a point
on the circle, and v,, be some vector in the corresponding direction. Then:

o dist(fa(x),x*(A) < 7 - %
.« dist(r,x"(A) < Z

. [Avxl/[ox]
Al

» Ifwe have f4(x) < %, then ||A|| > \/E and x*(A) belongs to %-neighborhood

of fa(x).

Let us now prove the “Cancellation” part (III) of the conclusions of Theorem 1.15; to
do that, we have to handle the “jump” intervals. Namely, assume that the conclusions
of Lemma 3.5 hold, and J; is a “jump” interval in terms of Proposition 3.1. Recall that
we denoted m := mg + €'n, where my, is given by the definition of “jump interval” in
Proposition 3.1. Notice (we will use it later) that by increasing 1 by 1 we can (and do)
assume that
V1
N
where § > 0 is given by the monotonicity assumption (B3).

We start by handling the case when the jump moment happens too close to the first
or the last iteration.

(36) Xmil 21+6

Lemma 3.14. Let¢',c" > 0, and assume that the conclusions of Proposition 3.1 hold,
that J; is a “jump” interval with associated index mgy, and set m = mgy + &'n. Assume also
that the conclusions of the part (II) of Theorem 1.15 hold with the value €' instead of ¢,
and thatm < ¢"norm > (1—¢")n. Then the conclusions of the “Cancellation” part (I1I)
of Theorem 1.15 are satisfied for arbitrary a € J;, provided that one has

2" + 2CpaxE" <&

Proof. Consider first the case m < €”"n. For m < m, due to the conclusions of part (II)
we have

10g || Tma0ll < ne' + Lip(@),  Ppm(m, a) = Ly(a),
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and hence

[log | Tn.a.0ll — ¥m(m, a)| < ne’ + 2L, (a) < (¢ + 2Cyaxe"In < €n,
thus guaranteeing the desired (5). On the other hand, once m > m, we have

log ”Tﬁl,a,wH <ne + Lm(a), log ”T[m,m],a,w” € Uper (L[m,m](a)),
hence
(37) log ||Tm,a,co|| € U2n£’+Lm(a)(L[m,m](a))-
Therefore, we have

[log || Tn,a,0ll = P (m, @)| = |l0g || Ty a.0ll = ILn(@) = Ljpm(@)]] <
2ne’ + Ly(a) + Lip(a) < 2ne’ + 2Cpaxm < (2" + 2Cpaxe” )n < en.

The case m > (1 — €”)n is completely analogous. O

Let us now consider the case when the jump moment is “sufficiently away” from
the endpoints of the interval of iterations, €’n < m < (1 — £”")n. First, we find the
corresponding value of the parameter a € J;.

Notice that if & is given by Theorem 2.2, then for any 0 < m; < m, < n and any
a € J we have

L[ml,mz](a) > h(my —my).
Moreover, for some uniform cq > 0 and any 0 < m; < m, < nand any a € J we have

h
(38) (mz - ml)z —Co < Lmz(a) - Lml (a) < L[ml,mz](a) < (mz - ml)Cmax’
see [GK22, Lemma 3.7].

Lemma 3.15. Lete',¢" > 0 satisfy
(39) %g” > ¢,
where C; > 1 is given by Proposition 3.11. For all sufficiently large n, the following state-
ment holds.

Assume that the conclusions of Lemma 3.5 and of Proposition 3.1 hold, J; is a “jump’
interval with associated index my, and set m := my—+¢'n. Assume also that the conclusions
of the part (IT) hold with the value ¢’ instead of e. Then there exists a € J; such that

>

x+(Tm,a,w) = x_(qm,m’],a,w)’
where m' := nif Lyp m)(b;) < Ly(by) forallm = m + 1,...,n, and otherwise m’ :=
min{m > 1 | Ly, m (b)) > Lin(b)}.
. . - . 1

Proof of Lemma 3.15. Notice that equicontinuity of the functions ML[ml,mz](a)’
see Lemma 2.7, implies that for large enough n and any m between m and n we have
(40) L, m) (@) = Lya,my(by)| < €' —m) < ¢'n.
In particular, we have

|L[m’m/](a) - L[m,m’](bi)| < E’(n—’l, - n_’l) <én.
We claim that for any a € J; one has
(41) Lynmi(@) > (€"h — €)n.
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Indeed, if m’ < n, then
Lim,m(@) > Lyp(b) —e'n>mh —¢'n> (e"h —&')n,
and if m' = n, then
Lpnmi(@) > (n—m)h > "hn > (¢"h — ')n.

Note that the uniformity estimates imply that the products Ty, 4, and Tj5,m/1,a,0 are
of norm bounded away from 1 for all a € J;. Indeed, the conclusions of the part (IT)
imply that

log ||Ty a0l > Lin(a) —ne’ > n(e"h—¢') > 0,
and
log [| T, m,a0ll > Limmi(@) —e'n > (€"h — 26" )n > 0,

where we used (41), and in both cases the last inequalities are due to (39).
Hence the directions x* (T} 4,¢,) and X~ (Tjm, m'1,0,00) depend continuously on a € J;.
To shorten the notations, we denote

(@)= x"(Thaw) X7(@)=x"(Tinmaw)

Lemma 3.13 implies that x*(a) stays % fi,a.0(Xo)-close to the image f q.,(Xo) as
a varies in J;. At the same time, for any a € J;, due to Proposition 3.11, we have

gf;h’a,w(xo) < % exp(—2L;(a) + Cine') < g exp(—2mh + Cyne')

72'- " ! 5|J|
< > exp((—2he" + Ci€')n) < N’

where we used the assumption m > ne”, inequality (39), and the subexponential
growth of N = exp(3/n).

At the same time, due to (36), we have [X}; ;| >
point x* (a) passes through the midpoint

S|J|

- Hence, as a varies over J, the

((Xm,i—l +1)+ fmz)
ri=7 5

of the interval (X}, ;) = 7([%5,1—1 + 1, %5,]) at least twice, making the full turn in
between; see Figure 3.
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FIGURE 3. While the parameter a varies over a jump interval J;, the
x*(a) == x* (T}, o) makes more than a full turn, staying in a neigh-
borhood of the corresponding image f, 4., (X). At the same time, the
point x7(a) := X~ (Tjm,m),a,0) NEVET enters the interval Xy, ; (the arc
shown in bold).

At the same time, we know from the distortion control estimates in the proof of
Proposition 3.11 that the derivatives of f|; 71,4, 00 X5 ; do not exceed

exp(—2Lp,m1(a) + Cie'n) < exp(=2(c"h —&')n + Cie'n) < 1,

using (41) for the first inequality and (39) for the last one.

Hence the point x~(a) never crosses r for a € J;. Thus, we can choose the lifts
X%*(a) and %~ (a) on the real line of x*(a), x~(a) respectively such that the difference
%*(a) — %~ (a) changes sign while a varies in J;. Hence, there exists a point a € J; for
which the directions x*(a) and x~(a) coincide. O

We are now ready to conclude the proof of the “Cancellation” part (III). Takee’, " >

0 such that (39) holds, as well as
! E ! "
g < 10° 2(e" + Cppax€”) < €.

Assume that the conclusions of Lemma 3.5 hold and of Proposition 3.1 hold, that J;
in its terms is a “jump” interval, with m := mg + ¢'n being the corresponding jump mo-
ment. Assume also that the conclusions of the part (II) hold with the value ¢’ instead
of .

Let us show that then the part (IIT) of conclusions of Theorem 1.15 are satisfied. In-
deed, if m < ¢"norm > (1—¢")n, this directly follows from Lemma 3.14. Otherwise we
can apply Lemma 3.15; take q; to be the value of the parameter a given by Lemma 3.15,
and let us check that (5) holds forallm =1, ..., n.

Note that for any m € [1, m] the estimates of the part (II) imply

(42) log ||Tm,ai,w|| € Us’n(Lm(ai)) = Us’n(lpm(m» ai))-

We have now to handle the case m € [m,n]. The next steps depend on whether
m <norm' =n.
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Consider first the case i’ < n. Notice that by definition of " we have L; 5/1(b;) >
Ly (b;) and Ly s —11(b;) < Lyz(b;), hence
|L[m,m’](bi) - Lm(bi)l < Cmax-
Together with (40) this implies that
(43) ILim,m1(@i) — Lin(a;)| < 3¢'n.
Then, applying Lemma 3.12 and the uniformity estimates on the intervals [1, m] and
[m,m'], we get
(44) log ”Trh’,ai,w” = '10g ||Tm,ai,w|| - log ”T[m,m’],ai,w”l
< |10g ||Tm,ai,w|| - Lm(ai)' + |10g ||T[m,m’],ai,w|| - L[m,m’](ai)l + |Lm(ai) - L[m,m’](ai)l
<é¢n+¢en+3e'n=>5n.
For any m € [m, m'], due to the part (II) of Theorem 1.15 we have
log ||Tn'1,a,-,w|| € UE'n(Lm(ai))’ log ||T[m,m],ai,co|| € Us’n(L[m,m](ai))’
and hence we get the following estimate from below:
log ||Tm,ai,co|| > log ”Tm,ai,w” - log ||T[n'1,m],ai,w||
> Lin(ai) = Lymym (@) — 26'n = P(m, a;) — 2¢'n.
To get an estimate from above, we can represent
Tna0 = q;n{m’],ai,me',ai,w-

The log-norm of the latter factor does not exceed 5¢'n by (44), while for the former
factor we have

HT[r_nl,m/],ai,wH = HT[m,n”L’],ai,cu“-
Due to Corollary 2.10, Proposition 3.8, and by using (43), we get
10g (| Tjm,m,a;,0ll < Limgm (@) + €1 < L m(a) = Lpgmy(@;) +2e'n <
< Ly(a;) = Lyp,my(a) + 5¢'n = Pp(m, a;) + 5¢'n,
and, therefore,
10g {| Tima;.0ll < 108 (| T a;,0ll + 108 (| Tjm,mr 1,010l < Ym(a;, m) + 10ne’.
Combining lower and upper bounds we obtain
log | Tn,a;,0ll € Urone (¥m(ai, m)).

Aswe have ¢’ < %, we obtained the desired estimate.
Now let us consider the case when m’ < nand m € [, n]. Again, due to (43), (44),
Corollary 2.10, and Proposition 3.8, we have

log ||Tm,ai,co|| < log ”Tm’,ai,w” + log ||T[n'1’,m],ai,w|| < log ||T[m’,m],ai,co|| + 5¢'n
< Ly m)(@;) + 6€'n < Lz m1(@;) — Ly, my (@) + 7€'n < Lygy my(a;) — Lip(a;) + 10e'n
=yY,n(m,q;) + 10¢'n.
Similarly, since

Tm,a,-,w = T[m’,m],ai,co Tn’fz’,ai,cw



112 A. GORODETSKI AND V. KLEPTSYN

we get an estimate from below:

!

log ”Tm,ai,w” 2 log ||T[Wl’,m],ai,cu” - log ||Trh’,ai,co” 2 log ”T[Wl’,m],ai,cu” —Sen.
Now, since
-1
’T[m/’m]’ai’w = nm,m],ai,wqm,m’],ai,w!
using (43) and the estimates of the part (II) we have
log ||T[m’,m],ai,w“ > 10g ||T[Wl,m],ai,w” - log ||T[m,n'1’],ai,w||
> Lim,m)(@i) — €'n— Liypnm(a;) —€'n > Lyg m)(a;) — Ly — 5¢'n = $,(m, a;) — 5¢'n,
and hence
log ||Tm,ai,w|| > 1 (m, a;) — 10e'n.
Putting estimates from above and from below together, we obtain
log ||Tm,ai,co|| € Uyone (®m(ai, m)).
Finally, consider the case m' = n. The estimates of the part (II) imply
log”Tﬁz,ai,wH € Uns’(Lm(ai))’ log ||T[n'1,n],a,-,co|| € Uns’(L[m,n](ai))’
and thus we have
(45) log || T 0,0/l € Uzner (ILm(@i) = Lin,ny(@)]) = Upner (P (@, n)).
Now, for any m € [m, n] we have two representations for Ty, 4, .,:
(46) Tm,ai,w = nm,m],ai,me,ai,w = q;n{n],ai,an,ai,w'
By Corollary 2.10 we have
log || Tjn,m.ap.0ll < Limmi(@) +ne's 108 [|Tjm,n).ap.0ll < Limn(ai) + ne',
so using Proposition 3.8, from (45) and (46) we get both a bound from above
log | Tin,a;,0l < 10g (| Thq; 0l + 108 | Tim,n),0;0l
< (Ln(ay) = Lyp,ny(ay) + 26'n) + (L py(a;) + €'n)

< (Ln(ai) = Limym) (@) + (Lim,n)(@i) = Lipm) (@) + Lpsm) + 36’0
< Pm(a;, m) +4e'n

and from below

10g || Tin,q;,0ll = 108 | Ti,q;,0l — 108 (| Tjm,m),a;,0|]

> (Lp(a;) —€'n) — (Lpaym)(@) + €'n) = Pz(a;, m) — 2¢'n.
Thus, in this case we also get the desired

log ”Tm,ai,w” € Ugpe (Ym(m, a;)),

concluding the proof of the “Cancellation” part (III) of Theorem 1.15.
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3.6. Exponential contraction: Quantitative statements. This part is parallel to
Section 4.6 from [GK]. Notice that we cannot use the statements proven in [GK] di-
rectly, since in the non-stationary setting some of the proofs must be essentially modi-
fied.

We start by establishing the following two contraction-type statements. The first
one is a negative Lyapunov exponent type of a statement:

Proposition 3.16. There exist k, € N such that for any k > k,, any x, € S', any
His--- > Mk € K and any a € J we have

[Eﬂg,. . .,/,L(ll log flé,a,w(xo) S _1
The second is an actual contraction:

Lemma 3.17. For any €;,&, > 0 there exists K; € N such that for any a € J and any
x,y € S! we have

P (diSt(le,a,w(x)’ le,a,w(y)) < El) >1—e,.

Proof of Proposition 3.16. Recall thatfor A € SL(2, R) and a point x, € S!, correspond-
ing to the direction of a unit vector vy € RZ2, one has

, 1
(fa) (xo0) = m-
Hence,
(47) log(fa)'(x0) = —21log|Auv|.

Now, recall that Theorem 2.2 provides a lower bound L,, > hn and a large deviations
type bound for every € > 0: there exists § > 0 such that for all sufficiently large n and
anyaeJ

[P’{|log |Th.0.0V0] — Lp(a@)| > El’l} <eon,

Take ¢ = g; this implies that for any a € J one has L,,(a) — ne > "Th Joining this

with the lower deviations bound, we get that there exists § > 0 such that for every
sufficiently large n we have

(48) YaeJ Vv, |vg] =1 P{log|Tn,a’va| > gn} >1—e%n,
Joining with (47), we get for all sufficiently large n an upper bound for the expectation
E H1se - ofn lOg fr;,a,co(xo) = [E,ul,. . .,/,L,,(_Z log |Tn,a,w(UO)|)
<—hn-(1—e) +nlogM-e " = —n(h — e %"(h + logM)),

where we have used a uniform upper bound ||A|| < M for any A € suppu?, any a € J
and any u € X. As the second factor in the right hand side tends to 4 as n — oo, for
all sufficiently large n we get the desired

E iy, .t 108 fira.o(0) < —n(h — e=%"(h + log M) < —1.
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Proof of Lemma 3.17. Recall that Lemma 3.13 states

T [Ux|/|Avy|

dist(fa(0),x"(A) < 5 - =

Applying (48) for v,, we get that for all sufficiently large n for every a € J
P (dist(fy,q,0(%), x* (Thaw) <€) >1—e o,

The same applies to the vector vy, and thus
P (dist(fy,q,00(0): fraw®) < 2e7) > 1 —2e7",
Taking n sufficiently large so that 2e™™" < ¢;, 279" < ¢, concludes the proof. g
Definition 3.18. For every s € (0, 1] let the function ¢ (x, y) be defined as
(49) p(x,y) = (dists1(x, ).

The next statement provides another view on the contraction of orbits on the projec-
tive line; it states that for a sufficiently small s the s-th power of the distance decreases
in average under the random dynamics. It is deduced from the two above contraction
statements, joined with the estimate d° = 1 + slogd + O(s?), in the same way as its
stationary counterpart was established in [GK, Proposition 4.17]).

Proposition 3.19. There are constants s € (0,1] and K, € N such that forany a € J
one has

(50) [E¢(fK¢,a,w(x)’ fKW,a,w(y)) =

[ ko SO i, < S

Proof of Proposition 3.19. The proof repeats the proof of [ GK, Proposition 4.17] modulo
the following adjustments:

(1) The arguments leading to the formula (45) in [GK] should be replaced by the
statement of Proposition 3.16;

(2) The proof of [GK, Lemma 4.19] should be replaced by the proof of Lemma 3.17
above. O

Finally, we use Proposition 3.19 to estimate the behaviour of random iterations with
different parameters:

Corollary 3.20. Fixconstants K, s given by Proposition 3.19. There exists a constant Cy,
such that for any a,a’ € J, x,y € S* one has

(51) E@Ufipaw0O ficpa w() < 50067) + Cola— a'F

Proof of Corollary 3.20. The proof is the verbatim repetition of the proof of Corollary
4.25 from [GK]. O

Iterating Corollary 3.20, we get
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Corollary 3.21. There are positive constants Cy, and Cg, (that depend on K, s, and con-
stants L, L, from Lemma 3.10) such that foranyl € N, k' < Ko, and any a,a’ € J,
x,y € S! we have

!’

C
(52) EQ(f ik, 40,000 F1k, +krar, ) < 57 o(6,y) + Cla—a'f.

Proof of Corollary 3.21. The proof is the verbatim repetition of the proof of Corollary
4.26 from [GK]. O

Sketch of the proof of Proposition 3.1. Once Corollary 3.21 is obtained, Proposition 3.1
follows by repeating verbatim the same arguments as in [GK] (see Remark 3.2).
Namely, consider the sequence of intervals |X,,;|, m = 1,...,n. If all of them are of
length at most €', we are in the first (“small intervals”) case. Otherwise, there is a first
iteration number m’ for which | X,/ ;| > €'

Denote y := exp(—{/ﬁ). Then, for each such interval, Corollary 3.21 (together with
the Markov inequality) implies that with the probability at least 1 — y*/3 the images

Xm,i-1 = fm,bi_l,w(xo) and Xm,i = fm,bi,w(xo)

approach each other at the time m = m’ + Ki/n at the distance at most y'/12, and stay

close to each other until m = n. Now, their lifts X,,, ;_; and X,,,; can either approach
each other — in which case the length of the corresponding interval X,, ; becomes
small, and this is the “opinion-changer” option. Or the difference between these lifts
can be close to 1, and this is the “jump interval” case.

Finally, for every m the intervals X, ; have disjoint interiors, hence there are at
most const -n? of them that are larger than ¢’. Thus, with the probability at least 1 —
const -n?y*/3 the above description applies simultaneously to all non-small intervals,
and this concludes the proof. O

3.7. Distribution of jump intervals. Here we provide a sketch of the proof of Prop-
erty (IV) in Theorem 1.15. The proof is almost a verbatim repetition of the proof of
Parts (I) and (V) from [GK, Theorem 1.19]. Here we just explain what steps of the
proof has to be adjusted in the non-stationary setting.

Recall that we denoted %,,,; = fm’bi,w(fco), the intervals X,,, ; were defined by (23),
and for an interval I C J, I = [d’, a"], we defined

Rn,co(I) = f;,a”,w(xo) - fn,a’,w(xo)-

The Property (IV) follows immediately from the following statement, which is analo-
gous to [GK, Proposition 4.27]:

Proposition 3.22. Forany ¢’ > 0 there exists {5 > 0 such that forany m < n

(Xm,N - xm,o) - #{] . |Xm,j| > 1} > E,)
n

< exp(=¢si/n).

(53) P (

Proposition 3.22 applied to any interval I C J of the form I = [b;,by],0<i<i' <N
instead of J, implies that with probability at least 1 — exp(—{; %/Z), the number

Mpy == #lk | a;, € I, my < m}
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is &'n-close to fy b, w(Fo) = fab,.w(Xo) = Rnw(). And applied to m = n, it gives
that with probability at least 1 — exp(=¢si/n), M = #{j : |Xp,j| > 1} is €'n-close
t0 fu b, w(X0) = fab_w(Xo) = Ry (). This gives the part (IV) of Theorem 1.15.

The proof of Proposition 3.22 is exactly the same as the proof of [GK, Proposition
4.27], where the only difference is that, in order to accommodate the shift from station-
ary to non-stationary setting, one should use Proposition 3.19 instead of [GK, Proposi-
tion 4.18].

4. SPECTRAL LOCALIZATION: PROOF OF THEOREMS 1.14 AND 1.1

4.1. Deducing spectral localization from Theorem 1.14. Let us first show that
Theorem 1.14 implies spectral localization.

Proof of Theorem 1.1. We will need the following result, that is usually referred to as
“Shnol Theorem”, due to a similar result in the paper [Shn] (see also [GI1, GI2]):

Theorem 4.1 (Shnol Theorem). Let H : ¢%(Z) — ¢%(Z) be an operator of the form
[Hul(n) = u(n — 1) + u(n + 1) + V(n)u(n),

with a bounded potential {V(n)}, . If every polynomially bounded solution to Hu = Eu
is in fact exponentially decreasing, then H has pure point spectrum, with exponentially
decaying eigenfunctions. Similar statement holds for operators on ¢2(N) with Dirichlet
boundary condition.

In the continuum case Theorem 4.1 follows also from [Sim2, Theorem 1.1]. The
formal proof in the discrete case can be found, for instance, in [Kir, Theorem 7.1]; we
also refer the reader to some improved versions of this result in [JZ, Lemma 2.6] or [H].

Due to Theorem 4.1, it suffices to show that (almost surely) every polynomially
bounded solution u to the eigenvector problem Hu = Eu is in fact exponentially de-
creasing. Now, for a random Schrddinger operator H, given by (1), this relation can be
written as

Upr = (B = V(W))uy, — up_y,

that transforms into a recurrent relation for vectors v,, := (”"“ ):

(54) (un+1>znn£< Up ) "

Up Up—1

M, 5 = (E —-V(n) —1).

where

1 0
Note that the product of matrices corresponding to the random Schrddinger opera-
tor (1) satisfies the assumptions of Theorem 1.14 after grouping these matrices in pairs
(that is, the condition in Remark 1.7 for k = 2). Indeed, these matrices are indepen-
dent (as random variables V(n) are), and satisfy the C'-boundedness assumption (B2).
Now, they can be represented as

(1 E-V(m)\[(0 -1\
HmE‘(o 1 )(1 0>’

this implies non-strict monotonicity, as the first (parabolic) factor turns everything in
the positive direction, except for the vector ( (1) ) thatis the image of the ( (1’ ) vector under
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the action of the second matrix. As these two vectors are different, a composition of
any two such matrices IT,, ;. g1, g satisfies the strict monotonicity condition (B3).

Finally, if for two measures v, v, and some homeomorphisms f, g one has f,v; =
g.V1 = V,, then v, is an invariant measure of the quotient (f o g~!). However, the
quotient of any two different maps I1,, g is a parabolic map of the form

o )

and the only invariant measure of its projectivization is the Dirac one, concentrated at
the direction of the vector ((1)) This measure is the image of the measure concentrated

at the direction of the vector ((1)) And as these two measures are different, there is no
measure with a deterministic image under a composition of two matrices, and hence
for such a composition the condition (B1) is also satisfied. Hence, the assumptions of
Theorem 1.14 are satisfied.

Returning to polynomially growing solutions of Hu = Eu, note that for any such

solution,
lirrflﬂsoljp %(log [vnl = Ly(E)) = lirrfl_)s::p _%Ln(E) <-h<0,
and hence due to Theorem 1.14
log|v,| = =Ly + o(n),
thus u,, is exponentially decreasing. This (due to Shnol’s lemma) completes the proof

of the spectral localization. O

4.2. Hyperbolic-like products and behaviour of log-norms. We will need Defini-
tions 4.2 and 4.3; roughly speaking, the first one is the condition that means that in a
product of given matrices there is “not too much cancellation”:

Definition 4.2. Given matrices A,...,A, € SL(2,R), and a sequence L;, j =1,...,n
of real numbers, we say that the product A,, ... A; is (L, r)-hyperbolic if for any 0 < m <
m’ < n for the product Tjp, /) = Apy ... Apyq ONE has

(55) 10g | Tjm,m |l € Up(Lpy = Lin)-

Also, we say that a part [n, n,] of this product is (L, r)-hyperbolic, if (55) holds for all
m, m’ such that [m,m'] C [ny,n,].

The second definition imposes restrictions on the sequences L we will be using:

Definition 4.3. Asequence L = (Lj)j=1,... . is (h, C)-growing, ifforany0 < m < m’ <
n one has
Ly — Ly, > h(m' —m) - C,
where we set L := 0.
Now, to establish Theorem 1.14, we will study possible behaviours of the sequence of
log-normslog | T, 4 ( (1)) |. To do so, assume again that we are given a (finite) sequence

of matrices Ay, ..., A4, € SL(2,R). Then, given a (non-zero) vector v, € RZ, we can
consider the sequence of its iterations

(56) Um =AnUm_1, Mm=1,...,n.
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The following statements, describing possible behaviours of the sequence of log-
normslog|v,,|, m = 0,..., n, are non-stationary analogues of Lemmata 5.2, 5.4, and 5.5
and of Remark 5.3 from [GK]. Their proofs are almost verbatim reproduction of the
arguments from [GK], but we present them here for completeness.

Lemma 4.4 (Growth curve). Forany M, h,e > 0 there exist €', n; > 0 with the following
property. Assume that n > n, and the following conditions hold:

 apart [my, my] of the product A,, ... A, is (L, ne')-hyperbolic,

o all A; satisfy ||Ai|]| < M,

« the sequence L is (h, ne')-growing

« and vy, Is the least norm vector in the sequence (56) in the index interval

[mg, my], ie. [V | < [Vl forallm =my +1,...,m;.
Then
Vm=my,my+1,....,my  10g|vy| —10g|vy,| € Upe(Lp — L)

log [v,] log v log v

H
m i m m

i
mo mi 0w n 0 m/ m m, 7

FIGURE 4. Behaviour of log-norm of iterations of a given vector as in
Lemmata 4.4, 4.5, 4.6. Bold line corresponds to the prediction curve
(mid-point of the vertical neighborhood), dashed region shows its
en-neighborhood.

Proof. Withoutloss of generality, we can assume that v, is a unit vector. Take another
unit vector, Wiy s that realizes the norm of the full product until given m € [mg, m, ],

|T[m0,m]wm0| = ”T[mo,m]H’
and consider the sequence of the corresponding intermediate images,
w;j :Ajwj_l, j=mg+1,....,m.

Then, we have a lower bound for their norms: as wy, = Tjj nWj,

| Wil
T3,

2 ((Lm — Lym,) — ne") = (L, — Lj) + ne’)

= (Lj = Ly,) — 2ne’ > h(j — my) — 3ne’,

(57)  log|wj| > log = 10g | Tjmeg,m |l = 10g [| Ty j,m

where we have used the (h, ne’)-growth assumption for the sequence L.
Now, let ¢4 be the function on the circle of directions that describes the change of
the length:
Av
$a(o) = tog 1!
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for v € R?\ {0}, where [v] is the corresponding point of S! = RP!.
Then the log-length of an image of a vector is given by a sum:

m
A0
(58) log|vm| = D, logﬁ Z ¢a,([0j1]),
j:m0+1 J_ j mo+1
o Awjl _
(59) log|wy,| = Y log——— o] Z $a,((wj_1])
Jj=mo+1 Jj-1 Jj=mo+1

Family of the functions ¢, for A € SL(2,R), ||A|| < M, is equicontinuous on RP?.
Hence, for any € > 0 there exists § > 0 such that

(60) [$a(ul) = g4l < 5

for all A € SL(2, R) with ||A|| < M and all u, v with the angle between the correspond-
ing lines less than 8. At the same time, subtracting (59) from (58) gives

m
(61) 10g|Um| = logwm| + D, (¢a,([vj—1]) — ¢a,([wj1]).-
Jj=mp+1
The first summand is within 2ne’ from (L,,, — L,,,) due to (57) and the assumption on
(ne’, L)-hyperbolicity.

Let us decompose the sum in the second summand depending on whether we can
guarantee that the directions of w;_, and v;_, are less than § apart. To do so, note that
the initial v, and wy,  are unit vectors, and thus they form a parallelogram of area at
most 1. Hence the same holds for their images v; and w; for any j = m, ..., m; (see
Fig. 5). As we have assumed |v;| > 1 and as |w;| > exp(L; — Ly,, — 2ne’), the angle
between the lines passing through v; and w; does not exceed

(62) dist([v;], [w;]) < eXp( Lj + Ly, + 2ne’).
Umg Timos)
4 vj
wj
Wing

FIGURE 5. Controlling angles between v; and w;

Hence, due to (62) we can guarantee that the angle between the lines containing v;
and w; is at most § once
T
h(j — —3ne’ > log(=<),
(Jj = mo) — 3ne’ 2 log(55)

or, equivalently, once
. 3¢’ log(7/25)
J—mgy 2> A n+ A >
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in particular, for all n sufficiently large, it suffices to assume that

j—mozwn.

!
Hence, in (61) there are at most 47511 summands with the angles exceeding &, each of
which does not exceed 2 log M ; hence, their contribution does not exceed

4¢’ —
—n-2logM.
ptolo8
At the same time, the contribution of the other ones is bounded by gn due to the choice
of 6. Thus, we get an estimate
4¢

[log || — log |wy,]| < n% +2logM - = (

810ng’+ E)n
h 2) 7

and adding it with (57), we finally get

8logM
|log|vm|—Lm|§<<2+ OE )£’+%>n.

-1
Fixing ¢’ = (2 + SlofM) . g, we get (for all sufficiently large n) the desired upper
bound
|1Og |Um| - Lm| <en.
This completes the proof of Lemma 4.4. O

Removing the assumption that v, is the least norm vector in the sequence, we then
immediately get the following

Lemma 4.5 (Curved-V-shape). ForanyM, ¢, h > 0 there existe', n, > 0 with the follow-
ing property. Assume that n > n, and

« a part [mgy, m;] of the product A,, ... A, is (L, ne')-hyperbolic,

 all A; satisfy ||A;l| < M,

« the sequence L is (h, ne')-growing

« and (v,,) be a sequence of intermediate images associated to some v, € R? \ {0}

given by (56)

Then there exists m' € {my, ..., my}, such that

Vm=mg,my+1,....,m; log|v,,|—1og || € Uu(|Ly — Lyy|)-

Proof. Tt suffices to take m’ to be the index of the least norm v,,, m = m,...,my, and
apply Lemma 4.4 to intervals [mg, m'] and [m’, m, | separately.

To handle the case of one of these intervals being too small (of length less than ny),
we choose n; sufficiently large so that n;e > 2n, log M. O

Now, the conclusions (I) and (II) of Theorem 1.15 together imply (for n, € for which
these conclusions hold) that for any a € J the product T, , ,, either is (ne, (Ly,))-
hyperbolic itself, or can be divided into two hyperbolic products; also, Proposition 3.8
implies that {L,,} is (h, en) growing. Thus, under the conclusions of Theorem 1.15 and
Proposition 3.8 we have Lemma 4.6.
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Lemma 4.6 (Curved-W-shape). For any € > 0 there exists € > 0, n; € N such that
forall n > ny the following holds. Assume that the conclusions of Theorem 1.15 with the
given €' are satisfied for some finite product T, , ... Then for any sequence 0, of non-zero
vectors such that 0, = Ty, q.,(Do), there exist numbers m_ < m < m/, such that

Vm € [0,/] log|vp,| —1og|vm | € Une(|Lp — L. |),
Vm € [m,n] log|v,| —log |Umf,_| € Une(ILyn — Lm_’,_l)-

In the same way as the previous ones, Lemma 4.6 admits a geometric interpretation
in terms of the corresponding graphs; see Fig. 4.

4.3. First part of Theorem 1.14: Dirichlet conditions. In the same way as in [GK,
Theorem 1.13], Lemma 4.5 allows us to prove the first (one-sided products) part of
Theorem 1.14.

Proof of the first part of Theorem 1.14. Denote
(63) o=(8)s Um=Tnawbe, Mm=1,...,n0

Assume that (3) holds; then for some €, > 0 one has for all sufficiently large n
(64) 10g[Vn| = 10g| Tya (5)| < Ln(@) — e

Due to the standard argument of a countable intersection (considering a sequence of
positive values of ¢, that tends to zero) it suffices to show that the conclusion of the
theorem holds with (3) replaced with (64). From now on, fix small ¢, > 0.

Take the point x, on the circle to be the projectivization image of the vector v,.
As in [GK], note that due to the convergence of the series ) exp(—8,4/n), Borel-
Cantelli lemma implies that for any ¢,¢’" > 0 almost surely for all sufficiently large n
the conclusions of Theorem 1.15 and of Proposition 3.11 (for this specific choice of the
point x;) hold.

Take and fix sufficiently small ¢’ (we will impose an assumption on its smallness
later), and let n, = n,(¢’) be such that the conclusions of Theorem 1.15 (for ¢’ instead
of €) and of Proposition 3.11, as well as (64), hold for all n > n,. Note first that for n > n,
the parameter interval J;, containing a, cannot be neither small nor opinion-changing,
and hence it is a jump interval.

Indeed, otherwise due to Proposition 3.11 we get

lOg ﬁg,a,w(jo) € Ucls/n(_ZLn(a)),
thus implying a lower bound for the norm

Cie
log |Un| = 10g |Tn,a,w(UO)| > Ln(a) — lTn.

Once ¢’ is sufficiently small to ensure

Clg,
T < €ps

this lower bound contradicts (64). This proves that the interval J; © ais actually a jump
interval for all n > n;.
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Moreover, if /) is the corresponding jump index (provided by the conclusion of
Proposition 3.11), using the estimate (30) for the derivative after m = m;,, iterations
again provides a lower bound

G ¢

(65) 1Og |Uﬁ’l(n)| = log ITM(n),a,w(UO)| Z LM(H)(a) - Tn‘

Together with an upper bound (64) at the same iteration ), still assuming that
n_’l(n) > n,, we get

log |vﬁ’l.(n)| < Ll’?l(n)(a) - m(n)EO’
this (see Fig. 6, left) provides an inequality

C e _
Tn = Mp)o-

. 2egn
Hence, for all sufficiently large n (namely, for n > ﬁ) we have an upper bound
_ G ¢
(66) H’l(n) < _280 n.

4

" >

0 n

FIGURE 6. Left: Upper estimate for r,; if it did not hold, lower
(dashed) and upper (dotted) estimates for log |v,,| would contradict

!
each other at m = clezn. Right: Lower estimate for m,,; otherwise,
lower (dashed) and upper (dotted) estimates for log |v,,| would con-
tradict each other.

Now, for given ¢ > 0 let ¢’ > 0 be chosen sufficiently small, and n be sufficiently
large for Lemma 4.5 to be applicable. Then, the conclusions of Theorem 1.15 and
Proposition 3.11 imply that the part [#71,), n] of the product A,(a)...A,(a) is (L, ne’)-
hyperbolic, and hence the conclusions of Lemma 4.5 hold on this interval of indices.
Letm' = m&n) € [myy), n] be the corresponding index. Then, we have lower bounds
for the log-norms, where the former one is (65), and two latter ones are implied by
Lemma 4.5:

C¢'

(67) 10g Uy | > Ling,y (@) = =

n,
(68) 10g [V | = 108 [V | = ~(Lny (@) = L, (@) = 2,

(69) log|vy,| —log |vm2n)| > (Lp(a) - Lmén)(a)) — 2ne.
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alog |Um|

FIGURE 7. Guaranteed decrease of log |v,,| between m = An and m = 24n

Hence,

(70) log|vy,| = Ly(a) — 2(Lmén)(a) - Lm(n)(a)) —4ne — %E,n.
On the other hand, recall that log v, | < L, (a) — ney. Hence,

(1) 2y (@) = Ly (@) 2 ey — e — 25,

and as we can choose ¢ and then ¢’ arbitrarily small, we can ensure that the right hand
side of (71) is at least %"n, finally implying a lower bound (see Fig. 6, right)

€o
(L (@ = Ling,y (@) = 2n

and thus
€
(72) M,y — Mgy > —>—n.
(n) ™ 4logM
Let A := SI(ZM' Then, for a sufficiently small ¢’ and all sufficiently large n, from (66)
and (72) we get

My < An, m&n) > 2/n.

Now, the conclusions of Lemma 4.5 imply that (for all sufficiently large n and for all
m,;, m, on the interval [An, 2An] one has

(73) (10g [Up, | = 10g [Um, ) € Uzne (=L, (@) = Lin, (@))) 5
see Fig. 7. Denote 1, := log |v,,| + L,,(a), then we can rewrite (73) as
Vmy, m, € [An,24n] |y, — hy,| < 2ne.
Hence, if we use the notation [x] for “ceiling function” that rounds a number x up to
the nearest integer, then for every sufficiently large m we have

2
(74) |, — r[%ﬂ < 7€M

where we are taking n = [m/21] to ensure that both m; := m, m, := [m/2] belong to
[An, 2An].

Finally, summing (74) over the decreasing geometric series m, =, =2, ..., we get

’?777

4
(75) vm || < 76 m+ const
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for some uniform constant that does not depend on m. (One can also see the proof
of (75) as an induction argument, and the constant coming from the base of the induc-
tion, that is, small values of m.)

Thus,

lim supnl1 [log |v,| + Lyy(a)] < %5.

As ¢ > 0 can be chosen arbitrarily small, and 1 depends only on ¢,, but not on ¢, we
obtain the desired

m—oo

lim sup % (log |vy,| + Ly(a)) = 0.

m-oo

This completes the proof of the first part of Theorem 1.14. O

4.4. Second part of Theorem 1.14. The proof of Theorem 1.14 repeats almost word-
for-word the proof of [GK, Theorem 1.11], though there are some modifications adapt-
ing it to the non-stationary case.

Proof of the second part of Theorem 1.14. Let v, := T, 4 ,(v) for all n. Without loss of
generality, we can assume that |vg| = 1. As in the proof of the first part, it suffices to
show that

1

(76) lim sup m(log [vp| = Ly(a)) < —¢g
n—+oo

in fact forces 1
lim sup —(log |v,| + L,(a)) = 0.

n—=*oo |n|
As before, (76) implies that for all sufficiently large n we have

(77) log|v,| < Ly(a) —egn, log|u_,| < L_,(a) —¢yn.

We can assume that for any ¢,&' > 0, ¢’ < € < g, for all n sufficiently large the
conclusions of Theorem 1.15 hold for the product

(78) T[—n;n],a,w = An(a) .. -A—n(a)’
and hence Lemma 4.6 can be applied.

In the same way as before, for any such n we let m’_ w < Mm < m’+,(n) be the
indices given for the product (78) by Lemma 4.6 (that correspond to the breakpoints of
the “curved W” graph, the central one being the upwards break point).

Note first that for all sufficiently large n one has

!

(79) m’_,(n) <0<my -

Indeed, if m;,(n) < 0, then one would have
log [uy| —log|vg| € Uzne(Ln(a)),
and hence (recall that |vg| = 1)
log|v,| = L,(a) — 2ne,

contradicting the assumed (77) as 2¢ < ¢,. In the same way we get m’_ o <0
Now, in the same way as in the first part, we are going to show that the “jump” index
My is sufficiently close to 0. Indeed, the conclusions of Lemma 4.6 together with (79)
imply that
log |Um(,,)| > Lm(n)(a) — 2ne.
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Since due to (77) we know that

log |Un'1(n)| < Ln_’l(n) (a) — & |m(l’l)|’
we get
€0 * [Mmy| < 2ne,
and thus
_ 2¢
|WL(n)| < E—I’l.
0

Now, in the same way as in the first part, we are going to prove the auxiliary

€0

Lemma 4.7. m’/ —
8logM

+,(n)’

|m’_’(n)| > 2An for all sufficiently large n, where 1 =

’

Proof. We will establish the estimate for m', (), as the other one is completely analo-
gous. To do so, assume first that 71,y > 0. Then, we have three inequalities

(80) log |Um(,,)| > Lm(n)(a) — 2¢n,

(81) log |vm;,(n)| —log |Um(n)| > —(Lm;’(n) (a) — Lm(n)(a)) — 2ng,

(82) log[v] —10g Uy | > (Ln(@) = Ly, (0)) = 2n¢

that are analogues of (67), (68) and (69) respectively. Adding, we get an analogue of (70)
(83) log[n| 2 Ln(a) = 2Ly (@) = Ly, (@) — 61e,

and hence

AL, (@ = Ly (@) 2 (e — 66).

1
Thus, once ¢ < €0, We have

’ = ney
log M - (m+,(n) - I’}’L(n)) > —4
and hence the desired
m’ — My > Mo _ 2An
T = g M

Now, in the case ) < 0, instead of (80) and (81) we get directly
log |vm;’(n)| > —Lm;,(n)(a) — 2ng;
together with (82), we then get
10g 0] > Ln(@) = 2Ly (@) — 41,
and conclude in the same way as before. ]

Now, we have that for all sufficiently large n

My < An < 2An < m’+,(n),

and hence (73) holds for any two m,, m, on the interval [An, 2An]. From this moment
the exact repetition of the arguments of the first part allows to conclude: we denote
ty, = log|v,,|+L,,(a), obtain the estimate (74) for all sufficiently large m. By summing
over m, %, %, ..., we get (75) and hence

1 4
lim sup -~ [log |vy,| + Liy(a)] < 75

m—oo
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thus implying (as ¢ can be taken arbitrarily small) the desired

lim sup 1 (log |v,| + Lyy(a)) = 0.
m—oo m
This completes the proof of the first part of Theorem 1.14.
The asymptotics at —oco can be handled in the same way. This completes the proof
of Theorem 1.14. O

5. DYNAMICAL LOCALIZATION: PROOF OF THEOREM 1.4
5.1. Operator on ¢2(N) with the Dirichlet boundary conditions.

Proof of the first part of Theorem 1.4. We will start by considering the case of the oper-
ator on ¢£?(N) with the Dirichlet boundary condition at the origin. We already know
from Theorem 1.1 that the spectral localization holds: the operator H admits an or-
thonormal base of eigenfunctions u; € £2(N),

Hu; = Eju;.

As before, this e(qua)tion can be transformed into the recurrent relation (54) on the vec-
uj(n+1
iij(n)
U, j is proportional to the vector vy = (§).
Take a = g where h is chosen for the random product of IT,, g-matrices (with E
belonging to the interval J := [—K, K], containing the spectrum) as in Theorem 2.2. Let
us show that the conclusion of the theorem holds with this value of a. That is, for any
given £ > 0 we show the existence of a constant C ¢ such that the desired estimate (2)
holds, where 7; is always chosen to be the index, at which the norm of the vector v,,,

is maximal:

(84) Vm gl 2 [Um,jl-

tors v, j = ( ) Note that due to the Dirichlet boundary condition, the vector

Actually, we are going to establish a slightly stronger estimate: as the function u; is
orthonormal, one has |Uﬁ1j’ jl < 1; we will actually show that

(85) [Om,j| < CeeSMITM = Jug,
for all m and j.

In order to do so, we will repeat the arguments of the proof of Theorem 1.14. Namely,
we first fix sufficiently small €,¢’ > 0; in fact, as we will see, one can take
(86) e=A 'min<é, ﬁ), ¢ = i, where A’ := _h —,

20° 20 G 20logM

and M is given by (B2), and C; is given by Proposition 3.11. Then, almost surely there
exists an n, such that for all n > n, the conclusions of Theorem 1.15 and of Proposi-
tion 3.11 hold for the chosen values of €,¢’. We will show that knowing n, suffices to

give an explicit value for the constant Ce. To do so, let us first establish Lemma 5.1,
analogous to the first steps the proof of Theorem 1.14:

Lemma 5.1. Forany n > max(%n’ij, n,) the parameter interval Jy ,, containing the
energy Ej, is a jump interval in terms of Proposition 3.11. Moreover, denote by my the
corresponding jump moment, and let m,, € [My),n] be the moment obtained by the
application of “curved-V” Lemma 4.5. Then, for any such n, the following estimates hold:



NON-STATIONARY ANDERSON LOCALIZATION 127

* the jump moment satisfies m, < An,
« the lowest point of curved-V satisfies m,, > 2A'n.

Proof. Indeed, if the corresponding interval was not a jump one, or if the upper es-
timate for the jump index mgn) did not hold, we would have (due to the log-growth
estimates (29) and (30) respectively) a lower bound for the norm of vy j:

(87) 10g |U[/1’n],j| > IOg |vﬁlj’j| - chl’lé" + L[ﬂ.'n](E]) - Lrﬁ](E])

Asln > 2ﬁ1j, we then would have

’

, N In
Liyn(Ej) = L (By) = h([An] = 1j) 2 b —=

as due to the choices (86) one has
’
2C ne’ =2en < o n,
the right hand side of (87) would thus be greater than log |v,ﬁj, jl» and this would be in
contradiction with the choice (84) of the index ;.
The second part, the lower bound for mzn), is obtained by an argument close to the
one ensuring (72). Namely, we get a lower estimate for |v, ;|, joining a lower estimate

log |vyy il =108 [V j| > —[i#t; = miy| -logM
with
log vy, j| — log |Um(n)’f| >L,— L'"En) —2en > |n—m,|-h—3en,
we get
(88) logluy,,jl — 10g|vmj,j| Z|n—mg,l-h- | — My -logM — 3¢n

!

, — 2
> nh — 2m,y - logM — hin.

Now, if we had mén) < 2X'n, that would imply zmén) -logM < %n and hence
h !
log|vy, | — log|v,ﬁj,j| > hn — o~ hEn >0
(where we have used that ' < %). And this would be a contradiction with the choice
of the index ;. O
Lemma 5.1 already suffices to provide explicit exponential decrease bounds for all
m > max(2/;, A'n,) =: m;,;;. Namely, we have the inequalities

My < An, mén) > 2An

for every n > max(%fr\lj, n,). In the same way as in the proof of the first part of Theo-
rem 1.14, this implies that for every m > m;,;;, taking n;,;; := [%], from

My < [%] <m < 2An,
we get (compare with (73))

(89) (log [vm,j| = log|vpmy ;]) € Unpe (_(Lm(Ej) - L[%](Ej)))-
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Denoting 1y, := log|v,, | + a - [m — ;| and recalling that we chose a = g we get
from (89)

’ ’ m
(90) ny, — Ky = log [vyy, j| — log |v[%w| +a
m
< (_(Lm(Ej) - L[%](Ej))) +2ne + S

< —%h + 4ne + Ecx.

2

A'hn
5

Now, due to the choice of ¢ we have 4ne <
of (90) is less than or equal to

mh . .
< =-, and finally the right hand side

—%h+m?h+% = mh(=3+ 3 +7) <0
Hence, for every m > m;,;; we have
, ’ m
U+ |m—mj|—rm§r[%]=u%+a |3_m]|,

and hence it suffices to establish (85) for m € [0, my,;]; recall that my,; =
max(2i;, ' ny).

Now, note that to handle the case 27?11- < A'n,, it suffices to take C £ > ez as then
forany m = 0, ..., m;,;; one has

log|v,| <1< Cge_“|m_mi‘.

. . A~ 2/ .
Finally, let us consider the case A'n, < 2/m;. Take n;,;; := [%] and consider the

corresponding jump index iy, . y and break point mEnim). Due to Lemma 5.1, we have

— A ! !
0 < M), Mj < 24 iy < M iie):

log |vm|A log \vm\‘

m; o m m/ o m moom m/ o m
FIGURE 8. Estimating L;(E;) — Ly, (Ej). The graph represents the
behaviour of log |v,,| predicted by curved-V Lemma, together with
+en error. Dashed line shows maximal possible value of log |v,,| due
to the choice of m s and the arrow shows the “forbidden” growth be-
tween the compared values if the estimated difference was too large.

The conclusions of Lemma 4.5 imply that, regardless of whether m; < m,, . or
m; 2 M)

log |Um(nmn)’j| —log | | > |L’"(nmn)(Ej) — L, (Ep)| — 3eninis,
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and as the increment in the left hand side should be negative, we actually get (see Fig. 8)
(91) |L t)(Ej) — L, (Ej)| < 3enipy;.

MR
Also, again from Lemma 4.5 for every m < m;,;; we have

log|om,j| —loglvm, il < =L (Ej) — L, t)(Ej)l + 3eRinis

L

and joining it with (91) we obtain

log vy, j| — log lvm(nmn)’jl < —|Lp(Ej) — Ly (Ep)| + 6€nin¢

<-h- |m - I’/}'\IJ| + 8£nimt.

A’
Now, ¢ < 2—05, and hence

2., 2., 2/, -
Benypir < 5/1 Ny = 3/1 [7] &< ém.

We finally obtain
|vm,j| < e—h'lm—mj|+§mj|vmj,j|,
so the estimate (85) holds for these values of m for any C¢ > 1.
Joining the two cases, we see that (85) (and hence the desired uniform estimate (2))
always holds for C := e*"2, where n, corresponds to the chosen ¢ and ¢'. This con-

cludes the proof of the theorem for the case of #2(N). O

Remark 5.2. Actually, slightly more accurate estimates (copying those of the proof of
Theorem 1.14) allow to show that the eigenfunctions’ localization rate is given by the
corresponding function L, (E) up to an arbitrarily small correction: for any £ > 0 there
exists C¢ such that for any eigenfunction u, satisfying Hu = Eu, there exists 7 such
that

Vj Vm |uj(m)| < Cge&?t . e~ Em(E)—Lp(Ej)|+§lm—m|

5.2. Operator on £%(Z).

Proof of the second part of Theorem 1.4. Let us now pass to the case of the operator on
£2(Z). Again, due to the spectral localization there exists an orthonormal base of eigen-
vectors
Huj = Ejuj,

and this equation becomes a recurrent relation v, ; = I, E;Un,j O the vectors v, ; =
< uj(n+1)

uj(n)
of random matrices IT,, g, where E € [-K,K] D o(H).

Now, for any given £ > 0, asin the first part, we take ¢, ¢’, 1 given by (86) and consider
n, such that for all n > n, for the products

). Again, we will take a = %, where h is chosen for the setting of the product

1 U §

the conclusions of Theorem 1.15 hold, and Lemma 4.6 hence can be applied. As before,
we will construct C, depending only on n, (but not on the eigenvalue E;), for which
the estimate (2) holds; actually, we will again establish a stronger estimate (85).

Also as before, let the eigenfunction u; (and the corresponding eigenvalue E;) be
fixed, and let 7; be the index of the maximal norm for the corresponding vectors vy, j:

;51 = r,rnlgglvm,,-l-
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!’

For any n > n, denote by m’_’(n) < My < MY g the indices given for this n by
Lemma 4.6 (these indices correspond to the breakpoints of the “curved W” graph, the
central one being the upwards break point).

Lemma 5.3 is an analogue of Lemma 5.1:

Lemma 5.3. Foranyn > max(% ||, ny) the following estimates hold:

* the central index satisfies || < A'n,
« the left and right indices satisfy

m’_’(n) < =21n, m;’(n) > 21n.

Proof. Let us start with the second conclusion, following the same lines as in Lemma
5.1.
Namely, we have

(92)  log|vparny,jl —loglusm,jl > —|m; —[24n]| - logM
— 3
> -3n- = —_— .
> —-3An-logM 2Ohn

On the other hand, if we had m’+’(n) < 2X'n, this would imply
(93) log|vy,j| —1og|vj2arny,jl = Ln(Ej) — Lioan)(Ej) — 2en

>(m—|2An])-h—3en>hn—-21hn— 3/123

n.

1

Adding (92) and (93), and recalling that X' < 390 We would get
3

, ,_ 3
log vy, ;| — log|v,ﬁj,j| >nh(l—21 — 2—0/1 - E) >0,

thus obtaining a contradiction with the choice of the index ;.
We have obtained the desired m/, ) > 24'n. The same arguments show that
m’ )y < —24'n; this time, a contradiction comes from the consideration of log [v_p ;|-
For the first conclusion, we have
(94) log |vm(n),j| > log |Umj,j| —2Cne’ + |Lm(n)(Ej) - Lmj(Ej)| —ne

> log v, j| — 2ne + h - gy — mj| — 2ne.
If we had |m,)| > A'n, the inequality X'n > 2|m;| would imply that

!

In
10g|Um(n),j| - log|v,ﬁj,j| > h- 7 — 4ne

An Ah 1 1
>h. — — =] Y ——
>h 5 4n 20 A hn (2 5)>0,
again providing a contradiction with the choice of the index ;. O

Again, Lemma 5.3 suffices to provide explicit exponential decrease bounds for all
|m| > max(2m;,'n,) =t my,;;. Consider the case m > 0, for the case m < 0 is com-
pletely analogous. We have the inequalities

Mpy < An, mén) > 2An
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for every n > max(%r’ﬁj, n,). In the same way as before, taking n := [%], from

My < [%] <m < 24n,
we get
(95) (10g [V, | — 10g [0y 2 ;1) € Use (—(Lm(Ey) = Ly (Ep))

Denoting 1y, := log|v,, j| + o« - [m — ;| and recalling that we chose a = g we get
from (95)

’ ’ m
(96) 1y — fmy = log [vyy, j| — log |U[%],j| t5a
m
< (~@m B — Ly () + 2ne + Tt

m m
< —— —Q.
h+4ne + a

Now, due to the choice of € we have 4ne < /1’? "< mTh, and finally the right hand side
of (96) is less than or equal to
m mh m 1 1 1
—5h+T+EOC—mh(—§+§+Z)<O.

Hence, for every m > m;,;; we have
Upt+a-|m—m;| =ty <tm, =vm +oc-|ﬂ—r?z~|
m 1= Im =m =52 2 b
and hence it suffices to establish (85) for m € [—my;;, Mipi;s -
Again as before, the case 2|/7i;| < A'n, is handled by requesting C¢ > €*"2, as then
for any |m| < m;y,;; one has
10g |vyy| < 1 < Cee™®Im=jl,
2|7
ll
. . . — . ’ ’
the corresponding jump index m,,, ) and break points M_ ) Mo (i) Due to
Lemma 5.3, we have

Finally, let us consider the case X'n, < 2|m;|. Take ny,; = [ ] and consider

!

! ! = Ly !
M_(ninie) < =22 Mg < M(nipy0)> M < 2X iy < My (Minie)"

Then, the conclusions of Lemma 4.6 imply
log|vm, il =108 [vm;,jl = Ly, (Ej) = Ly (Epl = 3enini,
and as the increment in the left hand side should be negative, we actually get
(97) |Lm(,,imt)(Ej) — L, (Ep)| < 3enipy;.
Also, again from Lemma 4.6 for every m < m;,;; we have
log |vyy,,j| — log |Um2nmn),j| < —|Ly(Ej) — Lmé"init)(EjN + 3enipit,
and joining it with (97) we obtain
log [vp,, jl —log|vy,y | £ =|Lu(E)j) — L, (Ej)| + 6enyp;
(inir) J

< —h-|m— | + 8enyp;.
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Now, € < %, and hence
2 2, [2m; .
8N < gfllfninit = 5/1' [7] -§ < &my.
We finally obtain

|vm,j| > e—h‘|M—ﬁ1j|+§rﬁj|va’j|’
so the estimate (85) holds for these values of m for any C¢ > 1.

Joining the cases studied, we again see that the uniform estimate (2) holds for the
choice C¢ := e**"2 where n, corresponds to the chosen ¢ and ¢’. This completes the

proof for the case of £2(Z). O
Again in the same way as before, we have Remark 5.4.

Remark 5.4. Slightly more accurate estimates allow to show that the eigenfunctions’
localization rate is given by the corresponding function L, (E) up to an arbitrarily small
correction: for any § > 0 there exists C such that for any eigenfunction u, satisfying
Hu = Eu, there exists 7 such that

V] VYm |u](m)| < Cgegﬁl . e_le(Ej)_Lr’ﬁ(Ej)|+§|m_m|.

We conclude this section by a reference to Theorem 7.5 from [DJLS]: this theorem
states that SULE implies SUDL, and hence the dynamical localization for this operator
is also established.

APPENDIX A. LOCALLY CANTOR ESSENTIAL SPECTRUM

Here we give an example of a non-stationary Anderson-Bernoulli potential such
that the almost sure essential spectrum of the corresponding discrete Schrodinger op-
erator H : £%(Z) — ¢%(Z) intersects an open interval at a Cantor set of zero measure.
Construction is very explicit. Namely, choose any sequence {n;}yy of integers such
that

n — oo and ngy —n > o0 as k — oo.

We define the random potential in the following way:
0 or 1 with probability 1/2, ifn é& {n};

(98) V(n) = . . .
0 or 100 with probability 1/2, ifn € {n;}.

Proposition A.1. Almost sure essential spectrum of the operator H with the potential
(98) is a union of the interval [—2, 3] and a Cantor set contained in the interval [98, 102].

To characterize the spectrum of an operator it will be convenient to use the following
criterion (notice that we do not make any assumptions regarding the nature of the
potential in Proposition A.2):

Proposition A.2. Let {V(n)},cz be a bounded potential of the discrete Schrodinger op-
erator H acting on €%(Z) via

(99) [Hu]l(n) = u(n+ 1) + u(n — 1) + V(n)u(n).
Then we have the following:

(1) Energy E € R belongs to the spectrum of the operator H if and only if there exists
K > 0 such that for any N € N there is m € Z and a unit vector i, |i| = 1, such that
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|Tim,m+ip,5 8l < K for all |i| < N, where Tjp, i), is the product of transfer matrices
given by

Monict - Tone 11> 0;

T[m,m+i],E =11d, ifi=0;
gl e ifi<0,
E-V -1
andIl, g = ( 1 (m) 0 )

(2) Energy E € R belongs to the essential spectrum of the operator H if and only if
there exists K > 0 such that for any N € N there is a sequence {m;}jen, m; € Z, with
|mj —my| > 2N if j # j', and unit vectors i, |i;| = 1, such that |T[mj,mj+i],E uj| <K
forall|if < Nandall j €N

Proof. Proof of Proposition A.2 can be extracted from the density of generalized eigen-
values (energies for which there are polynomially bounded solutions of the Schrodinger
equation), e.g. see [D16, Theorem 2.11], and the classical Weyl’s criterion. We leave
the details to the reader. O

For each w € {0, 1}# consider an operator H,, : ¢2(Z) — ¢2(Z) given by the potential

100, ifn=0;
Vo(n) = .

w,, ifn#o0.
There are uncountably many operators of this form. Each of them has exactly one
eigenvalue in the interval [98, 102]. Let us denote this eigenvalue by E,,.

Lemma A.3. Intersection of the almost sure essential spectrum of the operator H given
by the potential (98) with the interval [98,102] is exactly Ugeq0,112 Ec-

Proof of Lemma A.3. IfE, € [98,102]is an eigenvalue of H,,, consider the correspond-
ing eigenvector {u, ,},cz € ¢%(Z), and the vector i = ul""). Notice that for any fi-

2,0
nite sequence {V,,(—N), ..., V,(N)} with probability 1 the potential {V(n)} given by (98)
contains infinitely many intervals {V(m; — N), ..., V(m; + N)} that coincide with that
sequence. Due to Proposition A.2 this implies that E,, belongs to almost sure spectrum
of H with potential (98).

Suppose now that E, € [98,102] belongs to almost sure essential spectrum of H
with potential (98). Then there exist K > 0, a sequence of vectors {#;}, and a sequence
of finite intervals {V(m; — j),..., V(m; + j)} such that |T[mj,mj+i]ﬂj| < Kforall |i] <j.
Using Cantor diagonal process, we can find a subsequence {j;};ey such that @;, — @
ast — oo, and V(m;, + k) = V¥ € {0,1} for all k # 0 and all large enough t € N.
Consider w ={...w_g ... wow; ... Wk ...} With w = V. Then @#* must decay exponen-
tially under the application of transfer matrices generated by the potential {V,(n)}, and
hence generate an eigenvector of the operator H,, with the eigenvalue E,,,. O
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Notice that if A > 2, then the matrix of the form (fl (1)) has two eigenvalues,

Az —JAaz_ vaz—a\
namely w > 1and 2 ; 2 (4t ;4 4 < 1. The corresponding eigen-
A+VA2-4 1
vectors are 2 and | 4,ya7_3 |- Let us denote the projectivizations of those
1 -
2

vectors by x;(A) and x,(A).

. . E 1
For an operator H,, each transfer matrix IT,, g, n # 0, must be either (_ 1 O)’ or

E-1 1
( 1 0), and we are interested in the regime where E € [98,102]. Let us denote by

I,(E) the interval on S* between the points x;(E) and x; (E—1), and by I,(E) the interval
between the points x,(E) and x,(E —1). Denote by f, g the projectivization of the map
I1, g. Then if n # 0, we have f, g(I;(E)) C I(E), and fnjé(IZ(E)) C I,(E). Moreover,
JnElr, 5y and fn‘,é| I,(E) are contractions for each n # 0. For a given w € {0, 1} there
exists exactly one point z,(E) € I;(E) such that

Zco(E) = nneNf—n,E 0...0 f—l,E(Il(E))-
Notice that if the vector w € R?, |w| = 1, corresponds to the direction defined by z,(E),
then
-1
(M_,g...M_15) (W)—>0as n— oo,
and for any vector 0 4 @

(M- Toyp)” ()] > oo

exponentially fast as n — oo. The set K(E) = Ugeo,1jz2(E) is a dynamically defined

Cantor set inside of I;(E). Notice that |f; g|r,m)| ~ %, and in our regime E ~ 100.

Hence Hausdorff dimension of K(E) is small, dimy K(E) = dimg K(E) < 1/2.
Similarly, the set

C(E) = Uyepo11z (Nnenfig o --- © frp(I(E)))
is a dynamically defined Cantor set, and dimy; C(E) = dimp C(E) < 1/2.
A given point E € [98,102] is an eigenvalue of an operator H,, for some w € {0, 1}*
if fo, e(K(E)) N C(E) # ¥. Now Proposition A.1 follows from the following statement:

Lemma A.4. Let K(E) and C(E) be two families of dynamically defined Cantor sets on
RY, E € [0, 1]. Suppose that the following properties hold:

(1) The Cantor set K(E) is generated by two C'-smooth (both in x € R' and E €
[0, 1]) orientation preserving contractions f, g, f, g : R = RY;

(2) The Cantor set C(E) is generated by two C'-smooth (both in x € R and E €
[0, 1]) orientation preserving contractions g, g, 8> - R! - R1;

(3) max(K(0)) < min(C(0)) and min(K(1)) > max(C(1));

(4) There exists 6 > 0 such that

9fip(x)
E

forallE € [0,1],i = 1,2, and x € R;

agi,E(x) <

3E =9

5’
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(5) We have
max dimg C(E)+ max dimg K(E) < 1.
Ee[Oﬁ] g C(E) Ee[Oﬁ] B K(E)

Then
{E €10,1] | C(E) nK(E) # ¢}
is a Cantor set of box counting dimension not greater than

max dimg C(E max dimg K(E)].
(Ee[o,l] B ( )+Ee[0,l] B ( )>

Proof of Lemma A.4. Denote

dg = dimg K(E), d¢c = dimg C(E).
K Efél[%ﬁ] imp K(E), d¢ Efél[%ﬁ] imp C(E)

The assumption (5) therefore means that dg + d¢ < 1. For any small € > 0 there is a
cover of K(E) by e~9% open intervals of length ¢, and of C(E) by e~9¢ intervals. Due to
assumptions (10, (2), and (4), one can choose those intervals in such a way that each

interval of the form (x(E), x(E) + ¢) depends smoothly on E € [0, 1], and B 550

dE
for intervals covering K(E), and dfif) < =6 < 0 for intervals covering C(E). This im-

plies that the length of an interval in the space of parameters that correspond to a non-
empty intersection of a given interval from a cover of K(E) and a given interval from a
cover of C(E) is bounded from above by %. Hencetheset{E € [0,1] | C(E) N K(E) # @}

can be covered by e~ . g~dc = ¢~(dx+dc) intervals of length % = const-e. Hence

Remark A.5. Notice that the question on the structure of the set of translations of one
Cantor set that have non-empty intersections with another is closely related to the ques-
tions about the structure of the difference of two Cantor sets. Sums (and differences)
of dynamically defined Cantor sets were heavily studied, e.g. see [DG1] and references
therein. But in our case we needed to work with two Cantor sets that depend on a pa-
rameter, so the question about the set of parameters that correspond to a non-empty
intersection of the sets cannot be directly reduced to considering the difference of the
Cantor sets, and therefore we needed Lemma A.4.

APPENDIX B. DISCONTINUOUS UPPER LIMIT

Lemma 2.3 claims that a sequence of functions {%Ln(a)} is equicontinuous. This

implies that limsup,,_ %Ln(a) is a continuous function of a € J. At the same time,
. . . . 1

Theorem 1.12 claims, in particular, that limsup, - (log 1 Ty.0.0ll — Ln(a)) = 0 for
all a € J. So it is tempting to expect that limsup,,_ %log | Ty,q,0|l is @ continuous
function of the parameter a € J, which would be nicely aligned with the fact that
Lyapunov exponent is a continuous function of the parameter in the stationary setting.
Nevertheless, here we present an example that shows that this is not always the case.

Consider two diagonal matrices with very different norms:

H':=(317,). H" = ("3 1/%00)-
Take J to be the interval [0,27], and let 1’, u” be two measures on C!(J,SL(2, R)),
obtained in the following way: a random parameter-dependent matrix A(a) w.r.t. each
of these measures is the corresponding diagonal matrix, H' or H”, precomposed with a
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rotation by a random uniformly distributed angle « € [0, 27], and postcomposed with
the rotation by the parameter. That is,

(100) A(@) =R, -H-Ry,,

where H = H' for ¢’ and H = H" for u".

Itis not hard to see that this choice of the matrices {A;(a)} implies that the functions
L,(a) arein fact independent of a € J, i.e. are constant functions (but certainly depend
on n).

We will take a sequence of times n;, defined recurrently by

n, = 1000, n;y, = 100",
Let the laws for the matrices A;(a) to be chosen in the following way: we take

_|u", ifn; < j < 2n; for some i,
K W', otherwise.

Then, we have Proposition B.1.

Proposition B.1. For the random product A,(a)...A;(a) defined above, almost surely
there exists a (random) dense set X' C J of parameters, such that one has a strict inequal-

ity
. 1 . 1
limsup = log || T}, 4,0 < limsup =L,(a).
n—oo n n—oo n
In particular, limsup, | % log ||T};,q,.|| is not a continuous function of a € J, contrary
to the continuous (in fact, constant) function limsup, _ %Ln(a).
Remark B.2. Ttis clear that X' C S,, where S, C J is a (random) subset of exceptional

parameters defined in Theorem 1.12. At the same time, one can show that J\X' isa G
subset of J, so (J\X") N S, # @, and, therefore, X’ must be a proper subset of S,.

Proof of Proposition B.1. Let us first calculate the average log-norms L,. Namely, fol-
lowing [AB], for any matrix B € SL(2, R) let us consider the “averaged expansion rate”

27
1 COoS
N(B) = Ef IOg‘B(sm;)‘ d
0

An easy calculation (see [AB, Proposition 3]) shows that
|IBI| + |1BJ|”*
5 .

Now, let H; be the non-random sequence of diagonal matrices defining A; in (100),
and let g; be the sequence of (non-random) values of N(A;), that is,

N(B) = N(||B]|) = log

NQ2), ifu;=p,

q; = N(A;) = N(H;) = {N(IOO), it =

Now, let v, be a unit vector, and set v, = T}, 4 ,U. Then (see (58)) we have

n
(101) 10g | T a.000l = Y ®a,,(Um—1)s
m=1
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where p4(v) = log %. Now,

PaA,, (Up-1) = $H,, (ROlm Um—1)>

as the rotations do not change the lengths.
However, for any initial vector v the directions of the vector R, (v), a € [0, 27], are
uniformly distributed. Therefore, taking the expectation of (101), we get:

n n n
E 10g| T a0V0l = D E@n,(Reym-1) = 2 N(Hp) = 3 dm.
m=1 m=1 m=1

The right hand side does not depend on v, and averaging this equality w.r.t. v, gives
us

n
[EN(Tn,a,w) = Z dm-
m=1
Note that for any matrix A € SL(2, R) we have

A
log|]] = N(4) > log A1,

and thus |[N(A) — log ||A||| < log 2. Hence,

n
L — D qml| < log2,

m=1
and thus
1 1 ¢ N(2) + N(100
limsup =L, = limsup — Z Qm = M,
n—oo n n—oo n me1 2

with the values close to the upper limit that are attained for n = 2n; - (1 + o(1)).

Now, fix a sufficiently small ¢ > 0 (for instance, ¢ = 0.001 will do); then, for all
sufficiently large n the conclusions of Theorem 1.15 for this ¢ hold. The mechanism
leading to the appearance of the random set X’ is the following.

Take any interval I C J. Due to Lemma B.3 and Conclusion (IV) of Theorem 1.15,
for a sufficiently large n; from the fast growing sequence {n;} defined above, with very
large probability one can find an exceptional interval (in terms of Theorem 1.15) in I
with some special property. Namely, if we denote that special exceptional (or “jump”)
interval by J;, the corresponding cancelation parameter by a;, and the corresponding
jump moment by m;, we can assume that

(15 - 35)1’li <m; < 1.5n;.

Thus the sequence of norms of products T,, , ., for a = a; will start decreasing after
n = m;, and hence we have

(102) max 1 log||Th.a. 0l < gN(2) + lN(lOO) +e.
n=n;,...,.2n; N o 3 3

Moreover, the same estimate (upon replacing ¢ with 2¢) holds in a neighborhood I; of

a; of size 10—, Indeed, in such a neighborhood, the directions of any initial vectors

stay e-close during 2n; iterations, and one application of a matrix A cannot increase

any angle by more than ||A||> < 100? times.
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Notice that between the moments 2n; and n;,; we apply only norm 2 matrices, so
one can easily see that

(103) Va e I; max % log || T 4.0l < max(N(2)+6eN(100)4+3¢,log2) = log 2;

n=2ni,...,nj4

the term 6eN(100) here has to be added, since the cancelation moment m; is not per-
fectly at the center 1.5n; of the interval [n;, 2n;], so we need to include the “worst case
scenario” of the application of a growing sequence of norm 100 matrices along the in-
terval [(1 — 6¢)n;, 2n;].

While the interval I; of size 10~8% was “small” for 2n; iterations (that is, the cor-
responding norms of the matrix products behaved similarly), it becomes “large” for
iy = 101" jterations. Namely, due to Lemma B.3, on the interval I; one can find
(with the probability extremely close to 1) a new jump subinterval J;; C I; with the
corresponding cancelation point a;,; € J;;1, such the corresponding jump moment
m; . satisfies (1.5 — 3e)n;q < My < 1.5n;44.

Again, we find an interval I;,; around the point a;,; of size 1078"+1 where the can-
celation estimates (102), (103) hold (with i replaced by i + 1), etc. Continuing this
procedure, we find a sequence of decreasing intervals

IDL DL DL D,
such that
. 1 2 1
Vj Vael max  —log||Tyq0ll < §N(2) + 5N(100) +e
n

n:nj,, coljp
Hence, taking a to be the intersection point of all the I ;, we get
. 1 2 1
limsup = log|| T, q.0ll £ =N(2) + =N(100) + ¢.
n—-oo n 7 3 3

As we have started with an arbitrary initial interval I, the constructed points a form a
dense set X’ in the interval of parameters.

7 log [T a0

3

15TLL -~
L% 2n; Ti+1 2717;_;'_1 - IOg n

FIGURE 9. Behaviour of the sequence % log || ;4,0 || for a parameter
a € X' (bold line), compared with the one of %Ln (dashed line)

Thus, the proof of Proposition B.1 will be concluded, once we show that the prob-
ability of making each new step in the construction of the sequence of intervals I; is
sufficiently high so that Borel-Cantelli Lemma can be applied. Finding a jump interval,
due to Conclusion (IV) of Theorem 1.15, can be stated in terms of the corresponding
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lift iterations and their differences R, ,,(I). Namely, for finding a jump interval inside
I (assuming that Conclusion (IV) holds) with a jump index m; € [(1.5 — 3¢)n;, 1.5n;]
it suffices to establish the inequality

R(1.5—3s)ni,w(l) +3< R(I.S—Za)ni,w(l)-

Indeed, due to Conclusion (IV) of Theorem 1.15 (applied with n = 2n;) we know

that number of exceptional intervals in I with jump moment not greater than 1.5n; is

bounded from below by R(; 5_2¢)n;,» — 1. On the other hand, the number of exceptional

intervals in I with jump moment less than (1.5 — 3¢)n; is at most Ry 5_3e)n; -
Therefore, it is enough to establish the following statement.

Lemma B.3. Foranyi, letay,...,a,, and aninterval I C J of length |I| be given. Then,

with the probability at least 1 — %Zm one has
1

R(1,5—3£)ni,w(1) +10< R(1.5—2£)ni,w(l)-

Proof. Denote n; = (1.5 — 3¢)n;, ny = (1.5 — 2¢)n;, and assume, additionally to the
assumptions of the lemma, that a,, is given for all n < nj. This defines the intermediate
images y_ = f;:l,b,_,w(xo) andy, = f;z'l,b;,w(fo)’ where I = [b_, b’ ]. To prove Lemma
B.3 it is enough to show that

(104) St bt 0@+ = fint bt (=) 2 (v —y-) +10

with the claimed probability. This is exactly what we are going prove.

Note that as all the lifts f commute with the shift by 1, inequality (104) is preserved
if one shifts y_ by any integer. Hence, without loss of generality we can assume that
yo <y, <y_-+1

Notice that due to the choice of the matrices in (100), for any fixed parameter a € J
(in particular, for a = b_) the Lebesgue measure on the circle of directions is stationary
with respect to the inverse maps f; 5. Indeed, we defined A(a) = R, o H o R, (where
H is either H' or H"), so A(a)™! = R_, o H! o R_,. The rotation R_,, is a rotation
by a random angle —« uniformly distributed in [0, 27], hence the image of any initial
point is uniformly distributed on the circle. A standard argument in random dynamics
(see [A], [DKN], or [KN]), based on the ideas going back to Furstenberg’s work [Fur3],
implies that

Vael, VI[y,y'1cR Elfooy,y" DI =,y
As lifts fp o, and fy, , of 1-step maps differ by a translation by |I| = b’, — b, this
implies that
(105) Y[y, y'1CR E(fo 00" = forw®))=
E (o) = For @D + o 00" = for o)) = 1+ " = y).

Consider now the random process given by the lengths of the corresponding images
under iterations following the initial moment nj:

Dm(@) = fint miprw@+) = finlmbr =)

where the sequence of random parameterized matrices w is defined by the sequence of
angles o, ay, .... Then (105) becomes a submartingale relation

EMmer | Q1seees ) = Oy + ).
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It suffices now to apply standard submartingales technique. Namely, consider a
stopping time T = T(w), defined as

T(w) = min({m € [n},n}] |y 2 11} U{RY}).

Then, one has

Enr@) = 1w + M1 - E(T(@) — ).

However, Eny,) < 12 (due to the choice of T(w) as the first moment at which the
length exceeds 11), and hence

E(T(w) — 1)) < %

Applying Chebyshev inequality, we see that

12 12

P(T(w) < ny) < —— = ,
YTy —nh) -1 eng - I

and the event T(w) < n) exactly means that for some intermediate iteration m €
[n1,n5] the length of the interval (f[n{,m],b' 0" = f[ni’m],b,_,w(y’)) exceeds 11, and
thus for all the consecutive iterations (in particular, n}) is at least 10 + (y” — y'). We

have established (104), thus completing the proof of Lemma B.3. O
Lemma B.3 is proven, and this concludes the proof of Proposition B.1. O
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