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NON-STATIONARY ANDERSON LOCALIZATION

ANTON GORODETSKI AND VICTOR KLEPTSYN

Abstract. We consider discrete Schrödinger operators on ℓ2(ℤ) with bounded ran-
dom but not necessarily identically distributed values of the potential. We prove spec-
tral localization (with exponentially decaying eigenfunctions) as well as dynamical lo-
calization for this model. An important ingredient of the proof is a non-stationary
version of the parametric Furstenberg Theorem on random matrix products, which is
also of independent interest.
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1. Introduction

In this paper we prove spectral and dynamical localization for 1D discrete
Schrödinger operators with potential given by independent but not necessarily identi-
cally distributed random variables. In particular, the setting in which our theorem is
applicable includes non-stationary Anderson-Bernoulli Model; the latter leads to sev-
eral interesting examples that we discuss in Appendix A. In order to prove it, we es-
tablish a non-stationary parametric version of the Furstenberg Theorem on random
matrix products.

1.1. History of Anderson localization. The 1977 Nobel Prize in Physics was
awarded to P.W.Anderson, N. F.Mott, and J.H. vanVleck “for their fundamental the-
oretical investigations of the electronic structure of magnetic and disordered systems”.
One of themain phenomena that contributed to the award was the suppression of elec-
tron transport due to disorder, which is nowadays called Anderson localization. Since
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then Anderson localization attracted enormous amount of attention and was heavily
studied both by physicists and mathematicians. For a brief survey of the history of the
subject from a perspective of a physicist see [LTW].
Mathematically Anderson localization can be formulated either as spectral local-

ization (sometimes the term “Anderson localization” in math literature is specifically
attributed to the spectral localization with exponentially decreasing eigenfunctions) or
as dynamical localization, which is closer to physical intuition. The very first rigorous
results related to Anderson localization were obtained by Gol′dšeı̆d, Molčanov, Pastur
[GMP] in 1977 and Molčanov [M] in 1978. In 1980, Kunz and Souillard [KuS] proved
localization for 1D discrete Schrödinger operators with the potential given by indepen-
dent random variables with nice densities. Localization for 1D Anderson-Bernoulli
model turned out to be a harder problem, and was established by Carmona, Klein,
Martinelli [CKM] in 1987 (see also [DSS] for the continuum 1D Anderson-Bernoulli
case).
In the multidimensional lattice case, the key original articles are those of Fröhlich

and Spencer [FS], Martinelli and Scoppola [MS], Simon and Wolff [SW], Kotani and
Simon [KotS], Delyon, Lévy, Souillard [DLS], von Dreifus and Klein [vDK], and Aizen-
man and Molčanov [AM]. Once again, Anderson-Bernoulli case is essentially harder;
for the first results onmultidimensional Anderson localization (at the lower edge of the
spectrum) in continuum Anderson-Bernoulli case see [B1], [BK], [B2]. In the discrete
case similar results were obtained only recently, see [DSm], [LZ].
For the detailed description of the existingmethods and results see the classical [BL],

[CFKS], [CL], [FP] and more recent [AW], [DKKKR] monographs, as well as lecture
notes and surveys [D15], [D16, Section 4], [His], [Hu], [Kir], [Sp1], [Sp2], [Sp3], [S],
[St1], [St2].

1.2. Background and motivation. The main equation of quantum physics is the
time dependent Schrödinger equation

𝑖ℏ 𝜕𝜓𝜕𝑡 = 𝐻𝜓,

where 𝜓 is the wave function that describes the state of the system, ℏ is the reduced
Planck constant, and 𝐻 is a Hamiltonian operator. Formally, the solution is given by

𝜓(𝑡) = exp(−𝑖𝑡ℏ𝐻)𝜓(0),
and exactly as in finite dimensional case, to analyse the behaviour of the exponent of
a matrix one needs to know its spectrum. Quantum physics formalism turns the sum
of kinetic and potential energy into sum of Laplacian and a potential. This leads to the
questions on spectral properties of Schrödinger operators, i.e. operators of the form
−Δ+𝑉(𝑥), where the structure of the potential𝑉(𝑥) reflects the structure of themodel.
In particular, to study the properties of disordered structures one needs to investigate
spectral properties of a Schrödinger operator with random potential, see Section 1.1.
A popularmathematicalmodel for the Schrödinger operator on a crystal is the study

of the so-called discrete Schrödinger operator, with the sum of the increments replacing
the Laplacian. Namely, in dimension one this boils down to the study of the operator
𝐻 acting on ℓ2(ℤ) via
(1) [𝐻𝑢](𝑛) = 𝑢(𝑛 + 1) + 𝑢(𝑛 − 1) + 𝑉(𝑛)𝑢(𝑛).
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In Anderson model, the values of the potential 𝑉(𝑛) are assumed to be independent
random variables. Randomness corresponds to randomly occurring defects or impu-
rities in the crystal, and independence to that the defects occur at different sites inde-
pendently.

1.3. Non-stationary Anderson localization. Here we will assume that {𝑉(𝑛)} in
(1) are independent (but not necessarily identically distributed) random variables, dis-
tributed with respect to some compactly supported non-degenerate (support contains
more than one point) probability measures {𝜇#𝑛}. Notice that we do not require the dis-
tributions 𝜇#𝑛 to be continuous; in particular, the non-stationary Anderson-Bernoulli
model (when the distribution 𝜇#𝑛 is supported on two different values that can depend
on 𝑛) is included in our setting. Denote

ℙ =
∞
∏

𝑛=−∞
𝜇#𝑛 .

We will denote by Var (𝜇) the variance of a distribution 𝜇.
Theorem 1.1 (Spectral Anderson localization, 1D). Suppose the potential {𝑉(𝑛)} of the
operator 𝐻 given by (1) is random and defined by the independent random variables de-
fined by distributions {𝜇#𝑛} such that

(1) supp𝜇#𝑛 ⊆ [−𝐾, 𝐾];
(2) Var (𝜇#𝑛) > 𝜀,

where 𝜀 > 0, 𝐾 < ∞ are some uniform constants. Then the spectrum of the operator 𝐻
is ℙ -almost surely pure point, with exponentially decreasing eigenfunctions. The same
statement holds for spectrum of discrete Schrödinger operator with non-stationary ran-
dom potential on ℓ2(ℕ) with the Dirichlet boundary condition.
Moreover, a stronger version of localization, namely dynamical localization, holds

for non-stationary Anderson Model. A self-adjoint operator 𝐻 ∶ ℓ2(ℤ) → ℓ2(ℤ) has
dynamical localization if for any 𝑞 > 0 one has

sup
𝑡
∑
𝑛∈ℤ

(1 + |𝑛|)𝑞|⟨𝛿𝑛, 𝑒−𝑖𝑡𝐻𝛿0⟩| < ∞.

We will show that slightly stronger version of dynamical localization holds in our set-
ting.
Definition 1.2. Let 𝐻 be a self-adjoint operator on ℓ2(ℤ). The operator 𝐻 has semi-
uniform dynamical localization (SUDL) if there is 𝛼 > 0 such that for any 𝜉 > 0 there
is a constant 𝐶𝜉 so that for all 𝑞,𝑚 ∈ ℤ

sup
𝑡
|⟨𝛿𝑞, 𝑒−𝑖𝑡𝐻𝛿𝑚⟩| ≤ 𝐶𝜉𝑒𝜉|𝑚|−𝛼|𝑞−𝑚|.

In fact, we are going to establish a different property, SULE.
Definition 1.3. A self-adjoint operator 𝐻 ∶ ℓ2(ℤ) has semi-uniformly localized eigen-
functions (SULE), if 𝐻 has a complete set {𝜙𝑛}∞𝑛=1 of orthonormal eigenfunctions, and
there are 𝛼 > 0 and 𝑚̂𝑛 ∈ ℤ, 𝑛 ∈ ℕ, such that for each 𝜉 > 0 there exists a constant 𝐶𝜉
so that
(2) |𝜙𝑛(𝑚)| ≤ 𝐶𝜉𝑒𝜉|𝑚̂𝑛|−𝛼|𝑚−𝑚̂𝑛|

for all𝑚 ∈ ℤ and 𝑛 ∈ ℕ.
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Theorem 7.5 from [DJLS] claims that SULE⇒ SUDL, and for operators with simple
spectrum SUDL⇒ SULE.

Theorem 1.4 (Dynamical localization, 1D). Under assumptions of Theorem 1.1, ℙ -
almost surely the operator𝐻 has SULE and, hence, SUDL.

A specific model where Theorems 1.1 and 1.4 are applicable is a Schrödinger oper-
ator with a fixed background potential and i.i.d. random noise. Namely, the following
holds:

Corollary 1.5. Suppose {𝑉 𝑏𝑎𝑐𝑘(𝑛)} is a fixed bounded sequence of real numbers that
we will refer to as a background potential, and {𝑉𝑟𝑎𝑛𝑑(𝑛)} is a random sequence given by
a sequence of i.i.d. (independent identically distributed) random variables defined by a
compactly supported distribution. Then almost surely the operator (1) with the poten-
tial 𝑉(𝑛) = 𝑉 𝑏𝑎𝑐𝑘(𝑛) + 𝑉𝑟𝑎𝑛𝑑(𝑛) has pure point spectrum with exponentially decaying
eigenfunctions, and satisfies SULE and SUDL.

Remark 1.6.
(a) Notice that in general spectral localization does not imply dynamical localiza-

tion. The classical example is given by the random dimer model [DeG], [JSS].
(b) In the case when the distributions {𝜇#𝑛} are absolutely continuous, the result

stated in Theorem 1.1 follows from Kunz – Souillard method [KuS] (see also
[Sim1] for alternative presentation and another application of Kunz – Souil-
lard method). In the case when the distributions {𝜇#𝑛} are Hölder continuous,
multiscale analysis method should be applicable [Kl1] (see [Kl2] for a detailed
discussion of the method). But in the case of Anderson-Bernoulli potential
(given by i.i.d. random variables that can take only finite number of values)
most previously existing proofs [BDFGVWZ,CKM,GK,JZh] used Furstenberg
Theorem [Fur1,Fur2,Fur3] on random matrix products and positivity of Lya-
punov exponent, and therefore could not be adapted to the non-stationary case.
An alternative path to the proof of spectral localization in the non-stationary
case can be found in [SVW]1; it passes through the estimates for the Green’s
function (see [SVW, Proposition 3.3] and the remark after it), followed by the
usual “multiscale” arguments (see [SVW, Proposition 3.6] and the remark after
it). However, this path is completely different from what is presented in our
work.

(c) The proof of localization in the case of potential given by i.i.d. randomvariables
presented in [CKM] does not require the potential to be bounded, it requires
only existence of finite momenta (see also [Ra]). While in Theorem 1.1 we
require uniform boundedness of the potential to reduce technical difficulties,
we expect that with some extra effort our methods can be extended to cover an
unbounded case as well.

(d) In the paper [Kl3] the so called “crooked” AndersonModel (which can be con-
sidered as an analogue of non-stationary random case) for continuous case is
considered. Localization is proved under theHölder continuity assumption on
distributions.

1We are grateful to one of the referees for this remark.



NON-STATIONARY ANDERSON LOCALIZATION 85

(e) In [BMT,Hur,KLS,Sim1] the authors also considermodels where the values of
the potentials are random independent, but not identically distributed. There
the randomness decays at infinity, and the focus is mainly on the rate of decay
that still leads to localization or already insufficient to produce localization.

(f) Ergodic Schrödinger operators with i.i.d. random noise are included into our
setting. Questions on topological properties of the spectrum of these operators
also attracted considerable amount of attention lately [ADG,DFG,DG2,Wood].
Notice that in general non-stationary random potentials do not belong to the
class of ergodic potentials.

(g) While the results of this paper imply that stationary and non-stationary An-
dersonModels have similar behaviour in terms of spectral type, there is a huge
difference between stationary and non-stationary cases in terms of topological
properties of the spectrum. In particular, the spectrum of a stationary Ander-
sonModel is always a finite union of intervals, while in the non-stationary case
the almost sure essential spectrum does not have to have dense interior. We
construct a relevant example in Appendix A.

The crucial ingredient of the proof of Theorems 1.1 and 1.4 is the parametric ver-
sion of the non-stationary Furstenberg Theorem that we discuss below. In the station-
ary case the parametric Furstenberg Theorem is provided in [GK]. There, in order to
demonstrate the power of the developed techniques, we gave a geometrical proof of
the spectral localization in 1D Anderson Model (including Anderson-Bernoulli case).
The proofs of Theorems 1.1 and 1.4 are based on similar (adapted to the non-stationary
case) arguments.

1.4. Parametric non-stationary Furstenberg Theorem. To prove Theorems 1.1
and 1.4 one needs to study the properties of the products of corresponding transfer ma-
trices, and the way those products behave for different values of the energy. Motivated
by this model, here we consider random products of independent but not identically
distributedmatrices from SL(2, ℝ) that depend on a parameter. In other words, instead
of onematrix in a random product we are working with amap𝐴(⋅) from some compact
interval 𝐽 = [𝑏−, 𝑏+] ⊂ ℝ to SL(2, ℝ). We assume that all these maps are 𝐶1; a ran-
dom matrix, depending on a parameter, is therefore given by a measure on the space
𝒜 ≔ 𝐶1(𝐽, SL(2, ℝ)). For any suchmeasure 𝜇 on𝒜 and any individual parameter value
𝑎 ∈ 𝐽 we can consider the distribution of𝐴(𝑎), that is ameasure on SL(2, ℝ); we denote
this measure 𝜇𝑎.
A (non-stationary) product of randommatrices, depending on a parameter, is given

by a sequence of measures 𝜇𝑛 on𝒜. We assume that all these measures belong to some
compact set𝒦 of measures on 𝐶1(𝐽, SL(2, ℝ)), i.e. 𝜇𝑛 ∈ 𝒦 for all 𝑛 ∈ ℕ.
We impose the following assumptions:

(B1) Measures condition: for any measure 𝜇 ∈ 𝒦 and any 𝑎 ∈ 𝐽, there are no
Borel probability measures 𝜈1, 𝜈2 onℝℙ1 such that (𝑓𝐴)∗𝜈1 = 𝜈2 for 𝜇𝑎-almost
every matrix 𝐴 ∈ SL(2, ℝ).

(B2) 𝐶1-boundedness: there exists a constant 𝑀 such that any map 𝐴(⋅) ∈
𝐶1(𝐽, SL(2, ℝ)) from the support of any 𝜇 ∈ 𝒦 has 𝐶1-norm at most𝑀.
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(B3) Monotonicity: there exists 𝛿 > 0 such that for any 𝜇 ∈ 𝒦, any map 𝐴(⋅) from
the support of 𝜇 and any 𝑎0 ∈ 𝐽 one has

∀𝑣 ∈ ℝ2 ⧵ {0} 𝑑 arg(𝐴(𝑎)(𝑣))
𝑑𝑎

|||𝑎0
> 𝛿.

These are the exact analogues of the assumptions A1, A2 and A4 from [GK].
At the same time, we do not impose any assumptions on absence of uniform hy-

perbolicity (similar to A3 in [GK]). Instead we modify some of the conclusions of the
theorems. Examples 1.10 and 1.16 illustrate the necessity of such modifications.

Remark 1.7. One can replace the assumptions (B1)–(B3) bymore general ones. Namely,
it is enough to assume that for some given 𝑘 the conditions (B1)–(B3) hold for laws of
compositions

𝐴 ∶ 𝐽 ↦ SL(2, ℝ), 𝐴(𝑎) ≔ 𝐴𝑘(𝑎) . . . 𝐴1(𝑎),
where𝐴𝑖 are distributedw.r.t. some𝜇𝑖 ∈ 𝒦. This is useful, in particular, whenworking
with Schrödinger cocycles (in this case, one takes 𝑘 = 2).

Let us introduce some notation. Given a sequence of measures 𝜇𝑛 ∈ 𝒦, satisfying
the assumptions above, we consider the probability space Ω ≔ 𝒜ℕ, equipped with the
measure ℙ ≔ ∏𝑛 𝜇𝑛. For any point 𝜔 = (𝐴1, 𝐴2, . . . ) ∈ Ω and a parameter 𝑎 ∈ 𝐽 we
denote

𝑇𝑛,𝑎,𝜔 ≔ 𝐴𝑛(𝑎) . . . 𝐴1(𝑎).
For each 𝐴 ∈ 𝒜 denote by 𝑓𝐴,𝑎 ∶ 𝕊1 → 𝕊1 the projectivization of the map 𝐴(𝑎) ∈
SL(2, ℝ), and choose its lift ̃𝑓𝐴,𝑎 ∶ ℝ → ℝ so that it depends continuously on 𝑎, and, to
make this choice unique, satisfy ̃𝑓𝐴,𝑏−(0) ∈ [0, 1), where 𝑏− is the left endpoint of the
interval of parameters 𝐽.
Also, following the same notation as in [GK], we denote by 𝑓𝑛,𝑎,𝜔 ∶ 𝕊1 → 𝕊1 the

projectivizations of the maps 𝑇𝑛,𝑎,𝜔, and choose their lifts ̃𝑓𝑛,𝑎,𝜔 ∶ ℝ → ℝ as ̃𝑓𝑛,𝑎,𝜔 =
̃𝑓𝐴𝑛,𝑎 ∘ . . . ∘ ̃𝑓𝐴1,𝑎.
Fix a point 𝑥0 ∈ 𝕊1, corresponding to some unit vector 𝑣0, and its lift ̃𝑥0 ∈ ℝ. For

an interval 𝐼 ⊂ 𝐽, 𝐼 = [𝑎′, 𝑎″], define
𝑅𝑛,𝜔(𝐼) ≔ ̃𝑓𝑛,𝑎″,𝜔( ̃𝑥0) − ̃𝑓𝑛,𝑎′,𝜔( ̃𝑥0);

in other words, as the parameter varies on 𝐼, the 𝑛-th (random) image of the initial
vector 𝑣0 turns by the angle 𝜋𝑅𝑛,𝜔 in the positive direction.
In the stationary setting, 𝑅𝑛,𝜔(𝐼) is almost surely bounded as 𝑛 → ∞ if and only if

the random product is uniformly hyperbolic for any internal point 𝑎 of 𝐼. Indeed, a
dynamical analogue of Johnson’s Theorem implies uniform hyperbolicity on any open
interval where the random rotation number is locally constant (see [J] for the original
Johnson’s Theorem, and [ABD, Proposition C.1], [GK, TheoremA.9] for the dynamical
analogue that we refer to).
However, in the non-stationary case there is no notion of a random rotation number

(in the same way as there is no well defined Lyapunov exponent), so we have to choose
a more direct approach. Namely, we introduce the following

Definition 1.8. An open interval 𝐼 ⊂ 𝐽 is inessential, if almost surely
sup
𝑛
𝑅𝑛,𝜔(𝐼) < ∞.
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The same applies to the intervals 𝐼 ⊂ 𝐽 = [𝑏−, 𝑏+] of the form [𝑏−, 𝑎) and (𝑎, 𝑏+].
The essential set ℰ is defined as a complement to the union of all (open in 𝐽) inessen-

tial intervals:

ℰ = 𝐽 ⧵ ( ⋃
𝐼 is inessential

𝐼) .

Remark 1.9. Definition 1.8 is independent on the choice of the initial vector 𝑣0: using
another vector cannot change the rotation angles by more than a complete turn, and
hence cannot change the boundedness of the sequence 𝑅𝑛,𝜔(𝐼).
Also, notice that due to the Kolmogorov’s 0 − 1 law for any interval 𝐼 either the

sequence 𝑅𝑛,𝜔(𝐼) is almost surely bounded, or it is almost surely unbounded. Indeed,
its boundedness does not depend on any finite number 𝑛0 of the first factors𝐴1, . . . , 𝐴𝑛0
in the product.

The choice of terminology is related to the fact that for the random (non-stationary)
Schrödinger operators and the corresponding products of transfer matrices the defined
essential set ℰ turns out to be exactly the almost-sure essential spectrum.
Let us give an example that shows that, contrary to the stationary case, a full turn of

the image of some vector does not forbid an interval to be inessential.

Example 1.10. Consider a stationary random parameter-dependent product
𝐴𝑛(𝑎) . . . 𝐴1(𝑎) that is uniformly hyperbolic for 𝑎 from the parameter interval 𝐼 = [0, 1].
Now, modify only one (random) factor 𝐴1 by taking its composition with a rotation by
2𝜋𝑎:

𝐵1(𝑎) = Rot2𝜋𝑎 ⋅ 𝐴1(𝑎), and 𝐵𝑗(𝑎) = 𝐴𝑗(𝑎) if 𝑗 > 1.
Then for the random product 𝐵𝑛(𝑎) . . . 𝐵1(𝑎) we have 𝑅𝑛,𝜔(𝐼) ≥ 1, though the interval
𝐼 is inessential.

Similar example can be given in the random Schrödinger operators setting:

Example 1.11. Consider the Anderson-Bernoulli potential 𝑉(𝑛), 𝑛 ∈ ℤ, that with
probabilities 1/2 takes values 0 or 𝑉𝑛, where

𝑉𝑛 = {1 𝑛 ≠ 0,
100, 𝑛 = 0,

and the corresponding random Schrödinger operator𝐻𝑉 . Then, the essential spectrum
of this operator (almost surely) is the interval [−2, 3], and if 𝑉(0) = 0, it is also the full
spectrum. However, if the random value 𝑉(0) = 100, the spectrum of 𝐻𝑉 contains an
additional eigenvalue. Thus, the non-essential parts of the spectrum may be random,
and therefore one cannot talk about “almost sure spectrum” in the non-stationary case.

We are now ready to state the non-stationary parametric theorems for infinite prod-
ucts. Denote 𝐿𝑛(𝑎) ≔ 𝔼 log ‖𝑇𝑛,𝜔,𝑎‖.

Theorem 1.12 (Non-stationary parametric version of Furstenberg Theorem). Under
the assumptions (B1)–(B3) above, for ℙ -almost every 𝜔 ∈ Ω the following hold:

• (Regular upper limit) For every 𝑎 ∈ 𝐽 we have

lim sup
𝑛→∞

1
𝑛(log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) = 0.
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• (𝐺𝛿-vanishing) The set

𝑆0(𝜔) ≔ {𝑎 ∈ 𝐽 ∣ lim inf
𝑛→∞

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ = 0}

contains a (random) dense 𝐺𝛿-subset of the interior of the essential set ℰ.
• (Hausdorff dimension) The (random) set of parameters with exceptional be-
haviour,

𝑆𝑒(𝜔) ≔ {𝑎 ∈ 𝐽 ∣ lim inf
𝑛→∞

1
𝑛(log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) < 0} ,

has zero Hausdorff dimension:
dim𝐻 𝑆𝑒(𝜔) = 0.

Remark 1.13. Regarding “𝐺𝛿-vanishing” conclusion, we would like to emphasize that
in the non-stationary setting the essential spectrum does not have to have dense inte-
rior. We construct the corresponding example in Appendix A.

In order to study random discrete Schrödinger operators on ℓ2(ℤ), we will have to
consider sequences of random (parameter-dependent) matrices, indexed by 𝑛 ∈ ℤ in-
stead of 𝑛 ∈ ℕ. We thus denoteΩℤ ≔ 𝒜ℤ, and for a given bi-infinite sequence {𝜇𝑛}𝑛∈ℤ
(again, with all the 𝜇𝑛’s from some compact set 𝒦 of measures) equip Ωℤ with the
measure ℙ ≔∏𝑛∈ℤ 𝜇𝑛.
We then denote for a sequence 𝜔 = (. . . , 𝐴−1, 𝐴0, 𝐴1, . . . ) ∈ Ωℤ

𝑇−𝑛,𝑎,𝜔 ≔ (𝐴−𝑛(𝑎))−1 . . . (𝐴−1(𝑎))−1(𝐴0(𝑎))−1

and
𝐿−𝑛(𝑎) ≔ 𝔼 log ‖𝑇−𝑛,𝑎,𝜔‖.

Theorem 1.14. Under the assumptions (B1)–(B3) we have:
• For almost all 𝜔 ∈ Ω, for all 𝑎 ∈ 𝐽 the following holds. If

(3) lim sup
𝑛→+∞

1
𝑛 (log |𝑇𝑛,𝑎,𝜔 (

1
0 ) | − 𝐿𝑛(𝑎)) < 0,

then in fact |𝑇𝑛,𝑎,𝜔 ( 10 ) | tends to zero exponentially as 𝑛 → ∞. Namely,
log |𝑇𝑛,𝑎,𝜔 ( 10 ) | = −𝐿𝑛(𝑎) + 𝑜(𝑛).

• For almost all 𝜔 ∈ Ωℤ, for all 𝑎 ∈ 𝐽 the following holds. If for some ̄𝑣 ∈ ℝ2 ⧵ {0}
we have

(4)
lim sup
𝑛→+∞

1
𝑛 (log |𝑇𝑛,𝑎,𝜔 ̄𝑣| − 𝐿𝑛(𝑎)) < 0, and lim sup

𝑛→+∞

1
𝑛 (log |𝑇−𝑛,𝑎,𝜔 ̄𝑣| − 𝐿−𝑛(𝑎)) < 0,

then both sequences |𝑇𝑛,𝑎,𝜔 ̄𝑣|, |𝑇−𝑛,𝑎,𝜔 ̄𝑣| in fact tend to zero exponentially. More
specifically,
log |𝑇𝑛,𝑎,𝜔 ̄𝑣| = −𝐿𝑛(𝑎) + 𝑜(𝑛), and log |𝑇−𝑛,𝑎,𝜔 ̄𝑣| = −𝐿−𝑛(𝑎) + 𝑜(𝑛).

Similarly to the stationary case treated in [GK], we obtain the results describing
the behaviour of infinite products by obtaining a description of the “most probable”
behaviour of a large finite product. To obtain such a description, for any given 𝑛 set
𝑁 = [exp(4√𝑛)]. We divide the interval of parameters 𝐽 into𝑁 equal intervals 𝐽1, . . . , 𝐽𝑁 ;
let 𝑏− = 𝑏0 < 𝑏1 < ⋯ < 𝑏𝑁−1 < 𝑏𝑁 = 𝑏+ be their endpoints, i.e. 𝐽𝑖 = [𝑏𝑖−1, 𝑏𝑖].
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By 𝑈𝜀(𝑥) we denote the 𝜀-neighborhood of the point 𝑥.

Theorem 1.15. For any 𝜀 > 0 there exist 𝑛0 = 𝑛0(𝜀) and 𝛿0 = 𝛿0(𝜀) such that for any
𝑛 > 𝑛0 the following statement holds. With probability 1 − exp(−𝛿0 4√𝑛), there exist a
(random) number 𝑀 ∈ ℕ, exceptional intervals 𝐽𝑖1 , . . . , 𝐽𝑖𝑀 (each of length |𝐽|

𝑁 ), and the
corresponding numbers𝑚1, . . . , 𝑚𝑀 ∈ {1, . . . , 𝑛}, such that:

(I) (Uniform growth in typical subintervals) For any 𝑖 different from 𝑖1, . . . , 𝑖𝑀 ,
for any 𝑎 ∈ 𝐽𝑖, and for any𝑚 = 1, . . . , 𝑛 one has

log ‖𝑇𝑚,𝑎,𝜔‖ ∈ 𝑈𝑛𝜀(𝐿𝑚(𝑎)).
(II) (Uniform growth in exceptional subintervals) For any 𝑘 = 1, . . . ,𝑀, for any

𝑎 ∈ 𝐽𝑖𝑘 , and for any𝑚 = 1, . . . , 𝑚𝑘 one has
log ‖𝑇𝑚,𝑎,𝜔‖ ∈ 𝑈𝑛𝜀(𝐿𝑚(𝑎));

for any𝑚 = 𝑚𝑘 + 1, . . . , 𝑛 one has
log ‖𝑇[𝑚𝑘,𝑚],𝑎,𝜔‖ ∈ 𝑈𝑛𝜀(𝐿[𝑚𝑘,𝑚](𝑎)),

where
𝑇[𝑚𝑘,𝑚],𝑎,𝜔 ≔ 𝑇𝑚,𝑎,𝜔𝑇−1𝑚𝑘,𝑎,𝜔 = 𝐴𝑚(𝑎)𝐴𝑚−1(𝑎) . . . 𝐴𝑚𝑘+1(𝑎)

and
𝐿[𝑚′,𝑚](𝑎) ≔ 𝔼 log ‖𝑇[𝑚′,𝑚],𝑎,𝜔‖.

(III) (Cancelation) For any 𝑘 = 1, . . . ,𝑀 there exists 𝑎𝑘 ∈ 𝐽𝑖𝑘 such that for any
𝑚 = 1, . . . , 𝑛

(5) log ‖𝑇𝑚,𝑎𝑘,𝜔‖ ∈ 𝑈𝑛𝜀(𝜓𝑚𝑘(𝑚, 𝑎𝑘)),
where

𝜓𝑚′(𝑚, 𝑎) = {𝐿𝑚(𝑎), 𝑚 < 𝑚′,
|𝐿𝑚′(𝑎) − 𝐿[𝑚′,𝑚](𝑎)|, 𝑚 ≥ 𝑚′.

In other words, for𝑚 ≥ 𝑚𝑘 the parts of the product over the intervals [1,𝑚𝑘] and
[𝑚𝑘, 𝑚] cancel each other in the best possible way.

(IV) (Distribution) For any 𝑚 ≤ 𝑛 and any interval 𝐼 ⊂ 𝐽 of the form 𝐼 = [𝑏𝑖, 𝑏𝑖′],
0 ≤ 𝑖 < 𝑖′ ≤ 𝑁, the number

𝑀𝐼;𝑚 ≔ #{𝑘 ∣ 𝑎𝑖𝑘 ∈ 𝐼,𝑚𝑘 ≤ 𝑚}
belongs to the interval [𝑅𝑚,𝜔(𝐼) − 𝜀𝑛, 𝑅𝑚,𝜔(𝐼) + 𝜀𝑛]. In particular,

𝑀 ∈ 𝑈𝑛𝜀(𝑅𝑛,𝜔(𝐽)).

Theorem 1.15 is a non-stationary analogue of Theorem 1.19 from [GK]. In the sta-
tionary case the distribution of the exceptional intervals had to converge to some mea-
sure analogous to the density of states measure in the context of random Schrödinger
operators. This is where Theorem 1.15 essentially differs from [GK, Theorem 1.19].
While some attempts to generalize the notion of the density of states to the case of
non-ergodic Schrödinger operators were made (e.g. see [BKl]), the situation is quite
delicate in this case. In particular, contrary to the Johnson’s Theorem in the station-
ary case, even if the random rotation number exists (e.g., see Appendix A in [GK] for
details), an interval of its constancy is not necessarily inessential:
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Example 1.16. As in Example 1.10, consider a stationary product 𝐴(𝑎), uniformly
hyperbolic for 𝑎 ∈ 𝐼 = [0, 1], but now add an additional rotation at the steps that are
perfect squares. That is, let

𝐵𝑗(𝑎) = {Rot2𝜋𝑎 ⋅ 𝐴𝑗(𝑎), 𝑗 = 𝑘2 for some 𝑘 ∈ ℤ,
𝐴𝑗(𝑎), otherwise.

Then, for the product
𝐵𝑛(𝑎) . . . 𝐵1(𝑎),

on the one hand, the interval 𝐼 is not inessential, as 𝑅𝜔,𝑘2(𝐼) ≥ 𝑘 for any 𝑘. On the other
hand,

lim
𝑛

1
𝑛𝑅𝜔,𝑛(𝐼) = 0,

and the random rotation number is constant on the interval 𝐼.

Using the same ideas for the random Schrödinger operators setting, we get the fol-
lowing

Example 1.17. Consider the Anderson-Bernoulli potential 𝑉(𝑛) = 𝜉𝑛 + 𝑟(𝑛), where
𝜉𝑛 ∈ {0, 1} are i.i.d. (1/2, 1/2)-Bernoulli random variables, and

𝑟(𝑛) = {20, if 𝑛 is a perfect square,
0, otherwise.

Then, due to Theorem 1.1, the corresponding random Schrödinger operator almost
surely has a pure point spectrum, and its eigenfunctions are exponentially localized.
However, the proportion of eigenfunctions with energy in the interval [18, 23] among
those with the localization center in [−𝑁,𝑁] tends to zero as 𝑁 → ∞. Hence for
any natural definition of the density of states measure, it will not charge the interval
[18, 23], though a non-empty subset of it belongs to the essential spectrum.

1.5. Ideas of the proof and structure of the paper. The proofs of non-stationary
spectral and dynamical localization results, i.e. Theorems 1.1 and 1.4, as well as the
Non-stationary Parametric Furstenberg Theorem, i.e. Theorem 1.12, are based mostly
on the results and strategy from two recent papers, [GK] and [GK22]. More specifi-
cally, our new proof of spectral localization in 1D Anderson Model, that we provided
to demonstrate the power of the technics developed in [GK], used the results on para-
metric products of random SL(2, ℝ) matrices. That result, in turn, was based on exis-
tence and positivity of Lyapunov exponents of random matrix products. In the non-
stationary case the norms of random matrix products do not have to have any exact
exponential rate of growth, but their behaviour can be described by an exponentially
growing non-random sequence {𝐿𝑛}, as was shown in [GK22]. This allows to use the
general strategy of the proof of spectral localization from [GK] in the non-stationary set-
ting. Certainly, non-stationarity of the model brings many technical challenges. Just
to give one example, in the stationary case the Lyapunov exponent 𝜆(𝑎) is a continu-
ous function of the parameter 𝑎 ∈ 𝐽, and uniform continuity of that function over a
compact interval in the parameter space is used in [GK]. In the non-stationary setting
it has to be replaced by equicontinuity of the sequence of functions { 1𝑛𝐿𝑛(𝑎)}𝑎∈𝐽 , see
Lemma 2.3.
Let us now describe the structure of the rest of the paper.
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In Section 2.1 we provide the statement of the Non-stationary Furstenberg The-
orem and Large Deviations Estimates from [GK22], and explain why its parametric
version, Theorem 2.2, also holds. In Section 2.2 we prove equicontinuity of the se-
quence { 1𝑛𝐿𝑛(𝑎)}𝑎∈𝐽 , and use it to prove the first part (“Regular upper limit”) of The-
orem 1.12, which can be considered as a dynamical analogue of Craig-Simon’s result
on Schrödinger cocycles. After that, in Section 2.3, we deduce the rest of the Non-
stationary Parametric Furstenberg Theorem (Theorem 1.12) from Theorem 1.15 on
properties of finite products of random matrices.
The central technical statement of this paper is Theorem 1.15, describing the typical

behaviours of finite length random products, and we prove it in Section 3. The number
𝑁 = [exp 4√𝑛] of parameter intervals in Theorem 1.15 grows subexponentially in the
number 𝑛 of iterations. Due to the large deviations type bounds, the growth of the log-
norm at each of their endpoints is 𝑛𝜀-close to its expected value with the probability
that is exponentially close to 1, and hence (as the number of endpoints growth subex-
ponentially), the same applies to all endpoints 𝑏𝑗 simultaneously. We establish these
large deviations type bounds in Section 3.2, see Lemma 3.5.
Next, we extend the control from the endpoints to full parameter intervals. To do

so, we study how the image of a given initial point 𝑥0 ∈ 𝕊1 after a given number
of iterations 𝑚 varies when the parameter varies over the corresponding parameter
interval 𝐽𝑖 = [𝑏𝑖−1, 𝑏𝑖]. If all such variations are sufficiently small, the distortion control
ideas (see Section 3.3 andLemma3.9) allowus to observe the same growth of log-norms
for all intermediate parameter values. The same applies if the variation becomes large
at some intermediate moment𝑚, but then “quickly” decreases.
Proposition 3.1 in Section 3.1 states that with the probability close to 1 there are

only three possible types of behaviour for such variations: the two mentioned above
and the third one, when the image point at somemoment𝑚0makes a full turn around
the circle. In the latter case the product 𝑇[𝑚0,𝑚],𝑎,𝜔 after this moment turns out to be
growing uniformly in 𝑎 ∈ 𝐽𝑗 , and such a parameter interval is thus exceptional in terms
of Theorem 1.15. In Sections 3.4 and 3.5 we deduce Theorem 1.15 from Proposition 3.1
described above. Then, in Section 3.6 we provide the proof of contraction estimates in
the non-stationary setting, which is the only part where the proof of Proposition 3.1
differs from its stationary version (see Remark 3.2).
In Section 4, we prove Theorem 1.1 and therefore establish the spectral localization

in our model. To do that, we study the possible growth of log-lengths of the images
of a particular vector. It turns out that these log-lengths up to an error term 𝜀𝑛 (with
arbitrarily small 𝜀) follow one of possible patterns, see Lemmata 4.4, 4.5, and 4.6. This
allows to prove Theorem 1.14 that claims that almost surely every vector whose images
are not growing with respect to the non-random sequence 𝐿𝑛(𝑎) must actually decay
exponentially fast. In the case of transfer matrices associated with Anderson Model
that implies that any solution that does not grow exponentially fast must in fact decay
exponentially fast, and due to Shnol’s Lemma the corresponding Schrödinger operator
must enjoy spectral localization.
In Section 5 we establish that discrete 1D Schrödinger operator with non-stationary

random potential has semi-uniformly localized eigenfunctions (SULE), which implies
Dynamical Localization and proves Theorem 1.4.
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Finally, we provide two appendices with examples that show that the properties of
a non-stationary Anderson Model and non-stationary random matrix products can be
drastically different from their stationary versions. Namely, in Appendix A we show
that the essential spectrum of a discrete Schrödinger operator with non-stationary ran-
dom potential does not have to have dense interior. More specifically, we give an ex-
plicit example of such an operator whose essential spectrum intersected with an inter-
val forms a Cantor set of zero measure. And in Appendix B we give a surprising exam-
ple of a non-stationary parametric randommatrix sequence 𝐴1(𝑎), 𝐴2(𝑎), . . . , 𝐴𝑛(𝑎), . . .
such that lim sup𝑛→∞

1
𝑛 log ‖𝐴𝑛(𝑎)𝐴𝑛−1(𝑎) . . . 𝐴1(𝑎)‖ is not a continuous function of

the parameter. In the stationary setting this function corresponds to the Lyapunov ex-
ponent, that is known to be continuous in this context (under verymild conditions that
are satisfied, say, by transfer matrices of Schrödinger cocycle associated with Anderson
Model).

2. Non-stationary parametric Furstenberg Theorem

2.1. Parametric large deviation estimates theorem. First of all, we will need a
version of the LargeDeviationEstimates Theorem [GK22, Theorem1.8] that is uniform
in the parameter. Let us provide the original statement first:

Theorem 2.1 (Large deviations for non-stationary products, [GK22]). Let𝐊 be a com-
pact set of probability measures on SL(𝑑, ℝ). Assume that the following hold:

• (finite moment condition) There exists 𝛾 > 0, 𝐶 such that

∀𝜇 ∈ 𝐊 ∫
SL(𝑑,ℝ)

‖𝐴‖𝛾𝑑𝜇(𝐴) < 𝐶

• (measures condition) For any 𝜇 ∈ 𝐊 there are no Borel probability measures
𝜈1, 𝜈2 on ℝℙ𝑑−1 such that (𝑓𝐴)∗𝜈1 = 𝜈2 for 𝜇-almost every 𝐴 ∈ SL(𝑑, ℝ)

• (spaces condition) For any 𝜇 ∈ 𝐊 there are no two finite unions𝑈,𝑈′ of proper
subspaces of ℝ𝑑 such that 𝐴(𝑈) = 𝑈′ for 𝜇-almost every 𝐴 ∈ SL(𝑑, ℝ).

Then for any 𝜀 > 0 there exists 𝛿 > 0 such that for any sequence of distributions𝜇1, 𝜇2, . . . ,
𝜇𝑛, . . . from𝐊, for all sufficiently large 𝑛 ∈ ℕ we have

ℙ {|log ‖𝑇𝑛‖ − 𝐿𝑛| > 𝜀𝑛} < 𝑒−𝛿𝑛,
where 𝑇𝑛 = 𝐴𝑛𝐴𝑛−1 . . . 𝐴1, {𝐴𝑗} are chosen randomly and independently with respect to
{𝜇𝑗}, ℙ = 𝜇1 × 𝜇2 × . . . × 𝜇𝑛, and 𝐿𝑛 = 𝔼(log ‖𝑇𝑛‖). Moreover, the same estimate holds
for the lengths of random images of any given initial unit vector 𝑣0:

∀𝑣0 ∈ ℝ𝑑, |𝑣0| = 1 ℙ {|log ‖𝑇𝑛𝑣0‖ − 𝐿𝑛| > 𝜀𝑛} < 𝑒−𝛿𝑛.
Finally, the expectations 𝐿𝑛 satisfy a lower bound

𝐿𝑛 ≥ 𝑛ℎ,
where the constant ℎ > 0 can be chosen uniformly for all possible sequences {𝜇𝑛} ∈ 𝐊ℕ.

Let us now state a version of the Large Deviation Estimates that we need:

Theorem 2.2. Under the assumptions of Theorem 1.12 for any 𝜀 > 0 there exists 𝛿 > 0
such that for all sufficiently large 𝑛 ∈ ℕ and all values of the parameter 𝑎 ∈ 𝐽 we have

ℙ {||log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)|| > 𝜀𝑛} < 𝑒−𝛿𝑛,
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whereℙ = 𝜇𝑎1 ×𝜇𝑎2 ×. . .×𝜇𝑎𝑛. Moreover, the same estimate holds for the lengths of random
images of any given initial unit vector 𝑣0:

∀𝑣0 ∈ ℝ2, |𝑣0| = 1 ℙ {||log ‖𝑇𝑛,𝑎,𝜔𝑣0‖ − 𝐿𝑛(𝑎)|| > 𝜀𝑛} < 𝑒−𝛿𝑛.
Finally, the expectations 𝐿𝑛 satisfy a lower bound
(6) 𝐿𝑛 ≥ 𝑛ℎ,
where the constant ℎ > 0 can be chosen uniformly for all possible sequences {𝜇𝑛} ∈ 𝒦ℕ

and all parameters 𝑎 ∈ 𝐽.

Theorem 2.2 can be considered as a particular case of Theorem 2.1. Indeed, finite
moment condition trivially holds under the assumptions of Theorem 2.1 due to con-
dition (B2). Since in Theorem 2.2 we are only interested in SL(2, ℝ) matrices, spaces
condition holds as soon as measures condition holds; otherwise an atomic measure on
the finite invariant set inℝℙ1 would be a measure with a deterministic image. Finally,
the collection of measures {𝜇𝑎 | 𝜇 ∈ 𝒦, 𝑎 ∈ 𝐽} forms a compact subset in the space of
measures on SL(2, ℝ), and due to condition (B1), every measure 𝜇𝑎 from that compact
satisfies the measures condition from Theorem 2.1. Therefore, Theorem 2.1 is applica-
ble with 𝐊 = {𝜇𝑎 | 𝜇 ∈ 𝒦, 𝑎 ∈ 𝐽}. In particular, it is applicable to any sequence of the
form 𝜇𝑎1 , 𝜇𝑎2 , . . . , 𝜇𝑎𝑛, . . ., which gives Theorem 2.2.

2.2. Upper bound for the upper limit. We will need the following statement:

Lemma 2.3. The sequence of functions { 1𝑛𝐿𝑛(𝑎)}𝑛∈ℕ is equicontinuous.

Remark 2.4. Lemma 2.3 can be considered as a non-stationary analogue of continuity
of the Lyapunov exponent in the classical stationary setting. Indeed, it implies that
lim sup𝑛→∞

1
𝑛𝐿𝑛(𝑎) is a continuous function. Nevertheless, this analogy does not go

too far. Namely, in spite of the first claim of Theorem 1.12, in the non-stationary setting
there are examples where almost surely lim sup𝑛→∞

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ is a discontinuous

function of the parameter 𝑎. We construct such an example in Appendix B.

Proof of Lemma 2.3. For any fixed 𝑘 ∈ ℕ we can decompose the product 𝑇𝑛,𝑎,𝜔 into
product of groups by 𝑘,

𝑇𝑛,𝑎,𝜔 = 𝐵𝑚(𝑎) . . . 𝐵1(𝑎),
where

𝐵𝑗(𝑎) ≔ (𝐴𝑘𝑗(𝑎) . . . 𝐴𝑘(𝑗−1)+1(𝑎)), 𝑗 = 1, . . . , 𝑚.
Now, take any unit vector 𝑣0 ∈ ℝ𝑑; in order to control the cancellations in the action

of the above product on 𝑣0, define
𝜉𝑗,𝑎 ≔ log ‖𝐵𝑗(𝑎)‖, 𝑆𝑗,𝑎 ≔ log |𝑇𝑘𝑗,𝑎,𝜔(𝑣0)|, 𝑅𝑗,𝑎 = 𝑆𝑗,𝑎 + 𝜉𝑗+1,𝑎 − 𝑆𝑗+1,𝑎.

Then

(7) log |𝑇𝑘𝑚,𝑎,𝜔𝑣0| = 𝑆𝑚,𝑎 = (𝜉1,𝑎 +⋯+ 𝜉𝑚,𝑎) − (𝑅0,𝑎 + 𝑅1,𝑎 +⋯+ 𝑅𝑚−1,𝑎),
and hence

(8) (𝜉1,𝑎 +⋯+ 𝜉𝑚,𝑎) ≥ log ‖𝑇𝑛,𝑎,𝜔‖ ≥ log |𝑇𝑛,𝑎,𝜔𝑣0|
= (𝜉1,𝑎 +⋯+ 𝜉𝑚,𝑎) − (𝑅0,𝑎 + 𝑅1,𝑎 +⋯+ 𝑅𝑚−1,𝑎).
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By direct examining of the proof of [GK22, Proposition 3.2], one can see that it ac-
tually implies its parametric version as well, that provides a uniform in 𝑎 ∈ 𝐽 value of
𝛿∗ > 0 for each given 𝜀∗ > 0:

Proposition 2.5. For any 𝜀∗ > 0 there exists 𝑘1, such that for any 𝑘 > 𝑘1 for some 𝛿∗ > 0
one has for all 𝑛 = 𝑘𝑚 and for any 𝑎 ∈ 𝐽

ℙ (𝑅0,𝑎 + 𝑅1,𝑎 +⋯+ 𝑅𝑚−1,𝑎 > 𝑛𝜀∗) < 𝑒−𝛿∗𝑚.

Let 𝜀 > 0 befixed. Take 𝜀∗ ≔ 𝜀/5, and let us apply Proposition 2.5: for any sufficiently
large 𝑘 there exists 𝛿∗ > 0 such that for any 𝑎 ∈ 𝐽

(9) 𝑅0,𝑎 + 𝑅1,𝑎 +⋯+ 𝑅𝑚−1,𝑎 ≤
𝜀
5𝑛

with probability at least 1 − 𝑒−𝛿∗𝑚. Once (9) holds, we have from (8)

(10) ||log ‖𝑇𝑛,𝑎,𝜔‖ − (𝜉1,𝑎 +⋯+ 𝜉𝑚,𝑎)|| <
𝜀
5𝑛.

Thus, for any two parameter values 𝑎1, 𝑎2 ∈ 𝐽 both inequalities

(11) ||log ‖𝑇𝑛,𝑎𝑖,𝜔‖ − (𝜉1,𝑎𝑖 +⋯+ 𝜉𝑚,𝑎𝑖 )|| <
𝜀
5𝑛, 𝑖 = 1, 2

hold with the probability at least 1 − 2𝑒−𝛿∗𝑚.
Finally, note that due to the assumption (B2) (for a fixed 𝑘) the random variables

𝜉𝑗,𝑎, considered as (random) functions of the parameter 𝑎 ∈ 𝐽, are equicontinuous.
Hence, there exists 𝛿𝐽 such that for any 𝑎1, 𝑎2 ∈ 𝐽 with |𝑎1 − 𝑎2| < 𝛿𝐽 we have

|𝜉𝑗,𝑎1 − 𝜉𝑗,𝑎2 | <
𝜀
5 ,

and thus
𝑚
∑
𝑗=1

|𝜉𝑗,𝑎1 − 𝜉𝑗,𝑎2 | <
𝜀
5𝑚.

Combining this estimate with (11), we conclude that with the probability at least 1 −
2𝑒−𝛿∗𝑚

(12) |||
1
𝑛 log ‖𝑇𝑛,𝑎1,𝜔‖ −

1
𝑛 log ‖𝑇𝑛,𝑎2,𝜔‖

||| <
3
5𝜀.

Let us now consider the expectations 𝐿𝑛(𝑎𝑖) = 𝔼 log ‖𝑇𝑛,𝑎𝑖,𝜔‖. We have

1
𝑛 |𝐿𝑛(𝑎1) − 𝐿𝑛(𝑎2)| ≤

1
𝑛𝔼 ||log ‖𝑇𝑛,𝑎1,𝜔‖ − log ‖𝑇𝑛,𝑎2,𝜔‖||

= 1
𝑛𝔼 𝟏{Eq. (11) holds} ||log ‖𝑇𝑛,𝑎1,𝜔‖ − log ‖𝑇𝑛,𝑎2,𝜔‖||

+ 1
𝑛𝔼 𝟏{Eq. (11) does not hold} ||log ‖𝑇𝑛,𝑎1,𝜔‖ − log ‖𝑇𝑛,𝑎2,𝜔‖|| .

As we have 1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ < log𝑀 everywhere due to the assumption (B2), the con-

tribution of the part where (11) does not hold cannot exceed 2𝑒−𝛿∗𝑛 log𝑀, and hence
tends to zero as 𝑛 → ∞. In particular, for all 𝑛 sufficiently large it does not exceed 𝜀

5 .
On the other hand, once |𝑎1 − 𝑎2| < 𝛿𝐽 , due to (12) the contribution of the part

where (11) holds does not exceed 3𝜀
5 . We finally get for all sufficiently large 𝑛 = 𝑘𝑚

|||
1
𝑛𝐿𝑛(𝑎1) −

1
𝑛𝐿𝑛(𝑎2)

||| <
3𝜀
5 + 𝜀

5 < 𝜀.
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As 𝜀 > 0was arbitrary (and with an easy handling of 𝑛 not divisible by 𝑘 and of a finite
number of 𝑛 that are too small) we obtain the desired equicontinuity. □

Notice that the proof above in fact gives a bit more. Namely, equicontinuity holds
for all the functions { 1𝑛𝐿𝑛(𝑎)} regardless of the specific choice of the sequence of the
measures 𝜇1, 𝜇2, . . . ∈ 𝒦. Indeed, for any specific 𝑛0 ≥ 1 the set of 𝑛0-tuples of mea-
sures from 𝒦𝑛0 is compact, the map (𝜇1, 𝜇2, . . . , 𝜇𝑛0) ↦

1
𝑛0
𝐿𝑛0;𝜇𝑛0∗. . .∗𝜇1(⋅) ∈ 𝐶(𝐽, ℝ)

is continuous. Therefore, its image is compact, hence is an equicontinuous family of
functions. That is, the following statement holds:

Lemma 2.6. The family of functions { 1𝑛𝐿𝑛(𝑎)}𝑛∈ℕ,𝜇1,𝜇2,. . .∈𝒦 is equicontinuous.

As an immediate consequence, we get the following:

Lemma 2.7. For any given sequence of distributions {𝜇1, 𝜇2, . . .} ⊂ 𝒦ℕ, the family of
functions { 1

𝑚2−𝑚1
𝐿[𝑚1,𝑚2](𝑎)}0≤𝑚1<𝑚2 is equicontinuous.

Weare now ready to prove half of the first part (Regular upper limit) of Theorem1.12.
Namely, we have the following

Proposition 2.8. For a.e. 𝜔 ∈ Ω and any 𝑎 ∈ 𝐽 one has

lim sup
𝑛→∞

1
𝑛(log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≤ 0.

In a sense it can be considered as a non-stationary dynamical analogue of Craig-
Simon’s result [CS, Theorem 2.3] on Schrödinger cocycles. Its stationary counterpart
is Proposition 2.1 from [GK].
This statement is implied by a large deviation-type bound for products of a given

length 𝑛, that will be useful for us later:
Proposition 2.9. For any 𝜀 > 0 there exists 𝑐2, 𝐶2 > 0 and 𝑛1 ∈ ℕ such that for any
𝑛 > 𝑛1 with the probability at least 1 − 𝐶2 exp(−𝑐2𝑛) the following statement holds: for
any 𝑎 ∈ 𝐽 one has
(13) log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎) ≤ 𝑛𝜀.
Deducing Proposition 2.8 from Proposition 2.9 is quite straightforward:

Proof of Proposition 2.8. Applying Borel–Cantelli Lemma, we notice that for every 𝜀 >
0 and 𝑎 ∈ 𝐽 the inequality (13) almost surely takes place for all sufficiently large 𝑛.
Hence, for every 𝜀 > 0 and 𝑎 ∈ 𝐽 one has almost surely

lim sup
𝑛→∞

1
𝑛(log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≤ 𝜀.

Taking a countable family of 𝜀’s, tending to 0, and intersecting the corresponding events,
we obtain the desired conclusion. □

Proof of Proposition 2.9. Let 𝜀 > 0 be given; choose and fix 𝜀∗, 𝑘, 𝛿𝐽 as in the proof of
Lemma 2.3. Take points {𝑏1, . . . , 𝑏𝑁 } ⊂ 𝐽, dividing 𝐽 into intervals of length less than 𝛿𝐽 .
The number 𝑁′ of these intervals, 𝑁′ > |𝐽|

𝛿𝐽
, does not depend on the number𝑚 of sum-

mands; meanwhile, independent random variables 𝜉𝑗,𝑎 = log ‖𝐵𝑗(𝑎)‖ satisfy uniform
upper bound

|𝜉𝑗,𝑎| ≤ 𝑘 log𝑀
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and hence uniform large deviation estimates. That is, there exists 𝑐2 > 0 such that for
every 𝑎 ∈ 𝐽 the probability of the event

|𝜉1,𝑎 +⋯+ 𝜉𝑚,𝑎 − 𝔼 (𝜉1,𝑎 +⋯+ 𝜉𝑚,𝑎)| >
𝜀
5𝑛

does not exceed 𝑒−𝑐2𝑛. The number 𝑁 of values 𝑏𝑖 does not depend on 𝑛, hence, the
probability of the event

(14) ∀𝑖 = 1, . . . , 𝑁 ∶ |𝜉1,𝑏𝑖 +⋯+ 𝜉𝑚,𝑏𝑖 − 𝔼 (𝜉1,𝑏𝑖 +⋯+ 𝜉𝑚,𝑏𝑖 )| ≤
𝜀
5𝑛

is at least 1 − 𝑁′𝑒−𝑐2𝑛.
Next, taking the expectation of the left hand side of (10) and (as before) taking into

account the uniform upper bound 1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ ≤ log𝑀 to control the expectation

where (11) does not hold, we get that for all sufficiently large 𝑛 for all 𝑖 = 1, . . . , 𝑁′

1
𝑛
||𝐿𝑛(𝑏𝑖) − 𝔼 (𝜉1,𝑏𝑖 +⋯+ 𝜉𝑚,𝑏𝑖 )|| <

2𝜀
5 .

Joining it with (14), when the latter holds, we get that for all 𝑖 = 1, . . . , 𝑁′

1
𝑛
||𝐿𝑛(𝑏𝑖) − (𝜉1,𝑏𝑖 +⋯+ 𝜉𝑚,𝑏𝑖 )|| <

3𝜀
5 .

Now, take any 𝑎 ∈ 𝐽, and choose 𝑖 such that 𝑏𝑖 is 𝛿𝐽 -close to 𝑎. Then we have

log ‖𝑇𝑛,𝑎,𝜔‖ ≤ 𝜉1,𝑎 +⋯+ 𝜉𝑚,𝑎 ≤ (𝜉1,𝑏𝑖 +⋯+ 𝜉𝑚,𝑏𝑖 ) +
𝜀
5𝑚

due to the equicontinuity of 𝜉𝑗,𝑎’s and the choice of 𝛿𝐽 . Joining it with the previous
inequality, we get

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ ≤

1
𝑛𝐿𝑛(𝑏𝑖) +

4𝜀
5 .

Finally, we have 1
𝑛𝐿𝑛(𝑎) ≥

1
𝑛𝐿𝑛(𝑏𝑖) − 𝜀, and thus
1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ ≤

1
𝑛𝐿𝑛(𝑎) +

9
5𝜀

holds with the probability is at least 1 − 𝑁′𝑒−𝑐2𝑛.
We have obtained the desired upper bound for 𝜀 = 9

5 𝜀. As 𝜀 > 0 was arbitrary,
Proposition 2.9 follows. □

Corollary 2.10. For any 𝜀 > 0 there exists 𝑐3 > 0 and 𝑛1 ∈ ℕ such that for any 𝑛 > 𝑛1
with the probability at least 1 − exp(−𝑐3𝑛) the following statement holds: for any 𝑎 ∈ 𝐽
and any 0 ≤ 𝑚′ ≤ 𝑚″ ≤ 𝑛 one has
(15) log ‖𝑇[𝑚′,𝑚″],𝑎,𝜔‖ − 𝐿[𝑚′,𝑚″](𝑎) ≤ 𝑛𝜀.

Proof. If 𝑚″ − 𝑚′ < 𝑛 𝜀
log𝑀

, the inequality (15) holds automatically due to the upper
bound on norms of 𝐴𝑖(𝑎)’s.
If𝑚″ −𝑚′ ≥ 𝑛 𝜀

log𝑀
, the probability of the corresponding event

log ‖𝑇[𝑚′,𝑚″],𝑎,𝜔‖ − 𝐿[𝑚′,𝑚″](𝑎) ≥ 𝑛𝜀
is bounded from above by

𝐶2 exp(−𝑐2(𝑚″ −𝑚′)) ≤ 𝐶2 exp(−𝑐2
𝜀

log𝑀
⋅ 𝑛)
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due to Proposition 2.9. There are less than 𝑛2 such events, and choosing sufficiently
small 𝑐3 > 0 allows to ensure the upper bound

𝑛2 ⋅ 𝐶2 exp(−𝑐2
𝜀

log𝑀
⋅ 𝑛) < exp(−𝑐3𝑛)

for all sufficiently large 𝑛. □

2.3. Proof of parametric non-stationary Furstenberg Theorem via parameter
discretization. Here we derive Theorem 1.12 (parametric non-stationary Fursten-
berg Theorem) from Theorem 1.15 (on properties of finite products of random ma-
trices). The proof is parallel to the content of Section 3 from [GK].

Proof of Theorem 1.12. Combining Borel-Cantelli Lemma with Theorem 1.15 we ob-
serve that for any 𝜀 > 0 almost surely there exists 𝑛0 = 𝑛0(𝜀) such that for any 𝑛 ≥ 𝑛0
there are𝑀𝑛 ∈ ℕ and exceptional intervals 𝐽𝑖1,𝑛, 𝐽𝑖2,𝑛, . . . 𝐽𝑖𝑀𝑛 ,𝑛 such that the properties
(I)–(IV) from Theorem 1.15 hold. Notice that comparing to the notation used in The-
orem 1.15 we add 𝑛 as an index to emphasize the dependence of these objects on 𝑛. Let
us also define

𝑉𝑛′,𝜀 ≔ ⋃
𝑛≥𝑛′

⋃
𝑘=1,. . .,𝑀𝑛

𝐽𝑖𝑘,𝑛,

and
𝐻𝜀 = ⋂

𝑛′≥𝑛0(𝜀)
𝑉𝑛′,𝜀.

Regular upper limit: Due to Proposition 2.8 we only need to show that almost surely
for all 𝑎 ∈ 𝐽 we have

(16) lim sup
𝑛→∞

1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≥ 0.

If a given 𝑎 ∈ 𝐽 does not belong to 𝐻𝜀, then it does not belong to exceptional intervals
𝐽𝑖𝑘,𝑛 for all sufficiently large 𝑛. Therefore due to property (I) from Theorem 1.15 for all
sufficiently large 𝑛we have log ‖𝑇𝑛,𝑎,𝜔‖−𝐿𝑛(𝑎) ≥ −𝜀𝑛, or 1

𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖−𝐿𝑛(𝑎)) ≥ −𝜀.
Hence

(17) lim sup
𝑛→∞

1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≥ −𝜀.

If 𝑎 ∈ 𝐻𝜀, there is an arbitrarily large 𝑛 such that 𝑎 ∈ 𝐽𝑖𝑘,𝑛 for some exceptional interval
𝐽𝑖𝑘,𝑛. Consider the corresponding value 𝑚𝑘,𝑛 and notice that the property (II) from
Theorem 1.15 implies the following. If 𝑚𝑘,𝑛

𝑛 > √𝜀, then log ‖𝑇𝑚𝑘,𝑛,𝑎,𝜔‖ − 𝐿𝑚𝑘,𝑛(𝑎) ≥
−𝜀𝑛, and hence

(18) 1
𝑚𝑘,𝑛

(log ‖𝑇𝑚𝑘,𝑛,𝑎,𝜔‖ − 𝐿𝑚𝑘,𝑛(𝑎)) ≥ −𝜀 𝑛
𝑚𝑘,𝑛

≥ −√𝜀.

Now, assume that 𝑚𝑘,𝑛
𝑛 ≤ √𝜀. Then, we have

𝐿𝑛(𝑎) ≤ 𝐿[𝑚𝑘,𝑛,𝑛](𝑎) + 𝐿𝑚𝑘,𝑛(𝑎),

and
log ‖𝑇𝑛,𝑎,𝜔‖ ≥ log ‖𝑇[𝑚𝑘,𝑛,𝑛],𝑎,𝜔‖ − log ‖𝑇𝑚𝑘,𝑎,𝜔‖.
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Subtracting, we get

log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎) ≥ (log ‖𝑇[𝑚𝑘,𝑛,𝑛],𝑎,𝜔‖ − 𝐿[𝑚𝑘,𝑛,𝑛],𝑎)
− (log ‖𝑇𝑚𝑘,𝑛,𝑎,𝜔‖ − 𝐿𝑚𝑘,𝑛,𝑎) − 2𝐿𝑚𝑘,𝑛,𝑎

≥ −𝜀(𝑛 − 𝑚𝑘,𝑛) − 𝜀𝑚𝑘,𝑛 − 2𝐿𝑚𝑘,𝑛(𝑎)
≥ −𝜀𝑛 − 2𝐿𝑚𝑘,𝑛(𝑎) ≥ −𝜀𝑛 − 2𝑚𝑘,𝑛𝐶max,

where we denote
(19) 𝐶max = max

𝜇∈𝒦, 𝐴∈supp𝜇, 𝑎∈𝐽
log ‖𝐴(𝑎)‖ < ∞.

Notice that 𝐶max is finite due to condition (B2). Hence

(20) 1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≥ −𝜀 − 2𝐶max

𝑚𝑘,𝑛
𝑛 ≥ −𝜀 − 2𝐶max√𝜀.

Therefore, in any case from (18) and (20) we get

(21) lim sup
𝑛→∞

1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≥ −max(√𝜀, 𝜀 + 2𝐶max√𝜀).

Finally, applying (17) and (21) along a sequence of values of 𝜀 > 0 that tends to zero,
we observe that almost surely (16) holds, and hence the first claim of Theorem 1.12 (on
regular upper limit) follows.
𝐺𝛿 vanishing: Let us recall that the constant 𝐶max given by (19) is an upper bound

for all log-norms of all the matrices that can be encountered in the random prod-
uct. Due to Theorem 2.1 (or Theorem 1.4 from [GK22]), there is ℎ > 0 such that
𝐿[𝑚1,𝑚2](𝑎) ≥ ℎ(𝑚2−𝑚1) for any𝑚2 > 𝑚1 and any 𝑎 ∈ 𝐽. For each 𝑛, 𝑝 ∈ ℕ introduce
the set

𝑊𝑛,𝑝 = {𝑎 ∈ 𝐽 ∣ for some𝑚 ≥ 𝑛 we have 1
𝑚 log ‖𝑇𝑚,𝑎,𝜔‖ <

4 ((𝐶max/ℎ) + 1)
𝑝 } .

We claim that𝑊𝑛,𝑝 is open and dense in the interior of the essential set ℰ for any 𝑛, 𝑝 ∈
ℕ. Indeed, it is clear that each set 𝑊𝑛,𝑝 is open. Apply Theorem 1.15 for 𝜀 = 1

𝑝 with
sufficiently large 𝑝; namely, we require 𝑝 > 10 (𝐶max

ℎ + 1). Denote by {𝑎𝑘,𝑛} the set
of exceptional parameters provided by Property (III) for a given 𝑛 ≥ 𝑛0. Since any
interval 𝐼 ⊂ ℰ is not inessential, Property (IV) implies that ∪𝑛≥𝑛0 {𝑎𝑘,𝑛} is dense in
int ℰ. Moreover, since 𝑅𝑛,𝜔(𝐼) → ∞ as 𝑛 → ∞, we must have

𝑅( 1
(𝐶max/ℎ)+1

−𝜀)𝑛,𝜔(𝐼) > 𝑅 1
2

𝑛
(𝐶max/ℎ)+1

,𝜔(𝐼)

for infinitely many large values of 𝑛. Therefore, Property (IV) implies that the set of
exceptional parameters {𝑎𝑘,𝑛} with

𝑚𝑘,𝑛
𝑛 ∈ [12

1
(𝐶max/ℎ) + 1 ,

1
(𝐶max/ℎ) + 1]

is also dense in int ℰ. For any such parameter there exists 𝑚̃𝑘,𝑛 ∈ [𝑚𝑘,𝑛, 𝑛] such that
|𝐿𝑚𝑘,𝑛(𝑎) − 𝐿[𝑚𝑘,𝑛,𝑚̃𝑘,𝑛](𝑎)| ≤ 𝐶max;

therefore, Property (IV) implies that
1

𝑚̃𝑘,𝑛
log ‖𝑇𝑚̃𝑘,𝑛,𝑎,𝜔‖ ≤

𝐶max+𝜀𝑛
𝑚̃𝑘,𝑛

< 2𝜀 𝑛
𝑚𝑘,𝑛

≤ 4 ((𝐶max/ℎ) + 1) 𝜀 = 4 ((𝐶max/ℎ) + 1)
𝑝 .
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This implies that𝑊𝑛,𝑝 is dense in int ℰ. Hence, the intersection⋂
∞
𝑛,𝑝=1(𝑊𝑛,𝑝 ∩ int ℰ)

is a dense 𝐺𝛿-subset of int ℰ, and for any 𝑎 ∈ ⋂∞
𝑛,𝑝=1𝑊𝑛,𝑝 we have

lim inf
𝑛→∞

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ = 0.

Hausdorff dimension: First of all, notice that 𝐻𝜀 ⊆ 𝐽 has zero Hausdorff dimen-
sion. Indeed, 𝐻𝜀 is contained in 𝑉𝑛′,𝜀, which is covered by {𝐽𝑖𝑘,𝑛}𝑛≥𝑛′, 𝑘≤𝑀𝑛

. Property
(IV) from Theorem 1.15 implies that𝑀𝑛 cannot grow faster than a linear function in
𝑛. Taking into account Property (I) from Theorem 1.15, 𝑑-volume of this cover can be
estimated as follows:

∑
𝑛≥𝑛′

𝑀𝑛 (
|𝐽|
𝑁(𝑛))

𝑑
≤ ∑

𝑛≥𝑛′
const ⋅𝑛 |𝐽|𝑑

𝑁(𝑛)𝑑 ≤ const′ ∑
𝑛≥𝑛′

𝑛 exp(−𝑑𝛿0 4√𝑛).

Therefore it tends to zero as 𝑛′ tends to ∞. Since this holds for any 𝑑 > 0, we have
dim𝐻 𝐻𝜀 = 0.
If 𝑎 ∉ 𝐻𝜀, then due to Property (I) from Theorem 1.15 for all sufficiently large 𝑛we

have 1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≥ −𝜀, hence

lim inf
𝑛→∞

1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) ≥ −𝜀.

Taking a countable union of sets𝐻𝜀 over a sequence of values of 𝜀 > 0 that tend to zero,
we get a set of zero Hausdorff dimension that contains all values of 𝑎 ∈ 𝐽 such that

lim inf
𝑛→∞

1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) < 0.

This proves the last part of Theorem 1.12. □

3. Finite products: Proof of Theorem 1.15

3.1. Finite products of randommatrices. Here we prove Theorem 1.15. This theo-
rem is a non-stationary version of [GK, Theorem1.5], and its proof closely follows [GK].
First, let us remind some notation from Section 1.4. Together with the initial linear

dynamics of SL(2, ℝ)-matrices 𝐴(𝑎), 𝑎 ∈ 𝐽, we consider their projectivizations that act
on the circle of directions 𝕊1 ≅ ℝℙ1, and lift this action to the action on the real line ℝ
for which 𝕊1 = ℝ/ℤ: let

𝑓𝐴,𝑎 ∶ 𝕊1 → 𝕊1
be the map induced by 𝐴(𝑎) ∶ ℝ2 → ℝ2, and let

̃𝑓𝐴,𝑎 ∶ ℝ → ℝ
be the lift of 𝑓𝐴,𝑎 ∶ 𝕊1 → 𝕊1. The lifts ̃𝑓𝐴,𝑎 can be chosen continuous in 𝑎 ∈ 𝐽 and so
that ̃𝑓𝐴,𝑏−(0) ∈ [0, 1). Also, given 𝜔 = (𝐴1, 𝐴2, . . .) ∈ Ω = 𝒜ℕ, denote by

𝑓𝑛,𝑎,𝜔 ∶ 𝕊1 → 𝕊1

the map induced by 𝑇𝑛,𝑎,𝜔 ∶ ℝ2 → ℝ2, 𝑇𝑛,𝑎,𝜔 = 𝐴𝑛(𝑎) ⋅ . . . ⋅ 𝐴1(𝑎), and by
̃𝑓𝑛,𝑎,𝜔 ∶ ℝ → ℝ

the lift of 𝑓𝑛,𝑎,𝜔 ∶ 𝕊1 → 𝕊1, ̃𝑓𝑛,𝑎,𝜔 = ̃𝑓𝐴𝑛,𝑎 ∘ . . . ∘ ̃𝑓𝐴1,𝑎.
For any fixed value of parameter 𝑎 ∈ 𝐽, the (exponential) growth of norms of 𝑇𝑛,𝜔,𝑎

is related to the (exponential) contraction on the circle of the projectivized dynamics.
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Namely, standard easy computation shows that for a unit vector 𝑣0 in the direction
given by the point 𝑥0, one has

(22) 𝑓′𝑛,𝑎,𝜔(𝑥0) =
1

|𝑇𝑛,𝑎,𝜔(𝑣0)|2
.

Fix some point 𝑥0 ∈ 𝕊1, for example, the point that corresponds to the vector ( 10 ).
Denote by ̃𝑥0 ∈ [0, 1) its lift to ℝ1. Recall that the interval 𝐽 = [𝑏−, 𝑏+] was divided
into 𝑁 = [exp(4√𝑛)] equal intervals 𝐽1, . . . , 𝐽𝑁 that were denoted by 𝐽𝑖 = [𝑏𝑖−1, 𝑏𝑖],
𝑖 = 1, . . . , 𝑁.
Let ̃𝑥𝑚,𝑖 be the image of ̃𝑥0 after 𝑚 iterations of the lifted maps that correspond to

the value of the parameter 𝑏𝑖,

̃𝑥𝑚,𝑖 ≔ ̃𝑓𝑚,𝑏𝑖,𝜔( ̃𝑥0)

(we omit here the explicit indication of the dependence on the 𝜔), and let

(23) 𝑋𝑚,𝑖 ≔ [ ̃𝑥𝑚,𝑖−1, ̃𝑥𝑚,𝑖]

be the interval that is spanned by𝑚-th (random) image of the initial point ̃𝑥0 while the
parameter 𝑎 varies in 𝐽𝑖 = [𝑏𝑖−1, 𝑏𝑖].
The main step in the proof of Theorem 1.15 is Proposition 3.1, describing possible

types of behaviour for lengths of the intervals 𝑋𝑚,𝑖. It is a word-for-word analogue of
Proposition 4.1 of [GK], that still holds in the non-stationary setting:

Proposition 3.1 (Types of the behaviour). For any 𝜀′ > 0 there exists 𝑐1 > 0 such that
for any sufficiently large 𝑛 with the probability at least 1 − exp(−𝑐1 4√𝑛) the following
holds. For each 𝑖 = 1, . . . , 𝑁 the lengths |𝑋𝑚,𝑖| behave in one of the three possible ways (see
Figure 1:

• (Small intervals) The lengths |𝑋𝑚,𝑖| do not exceed 𝜀′ for all𝑚 = 1, . . . , 𝑛;
• (Opinion-changers) There is𝑚0 such that |𝑋𝑚0,𝑖| > 𝜀′, and

|𝑋𝑚,𝑖| < 𝜀′ if𝑚 < 𝑚0 or 𝑚 > 𝑚0 + 𝜀′𝑛;

• (Jump intervals) There is𝑚0 such that |𝑋𝑚0,𝑖| > 𝜀′, and

|𝑋𝑚,𝑖| < 𝜀′ if𝑚 < 𝑚0,

1 < |𝑋𝑚,𝑖| < 1 + 𝜀′ if𝑚 > 𝑚0 + 𝜀′𝑛.

The relation between jump intervals and exceptional parameter values is illustrated by
Figure 2.

Remark 3.2. Notice that while the statement of Proposition 3.1 is a verbatim repetition
of [GK, Proposition 4.1], one cannot just give a reference to [GK], since [GK, Propo-
sition 4.1] was proven in the stationary setting. However, the only part of the proof
of [GK, Proposition 4.1] that has to be modified is the proof of [GK, Corollary 4.25],
and we prove its non-stationary analogue, Corollary 3.21, in Section 3.6. That proves
Proposition 3.1.
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Figure 1. Graphs of ̃𝑥𝑚,𝑖 (consecutive iterations are linked), with the
occurring suspicious intervals marked with blue (dotted) lines and
the jumping ones with red (dashed) lines

Tmk,a,ω̄

T[mk;n],a,ω̄

v0

Figure 2. Left: A unit circle with a marked point 𝑥0. Center: Its
image after 𝑚𝑘 iterations under two different values of parameter
𝑎 = 𝑏𝑖𝑘−1 and 𝑎 = 𝑏𝑖𝑘 , together with a most contracted direction
for 𝑇[𝑚𝑘,𝑛],𝑎,𝜔 for some 𝑎 ∈ 𝐽𝑖𝑘 , marked by a cross. Right: Final im-
age after 𝑛 iterations; note that the images of 𝑥0 are almost opposite,
meaning that they have made a full turn on the projective line of the
directions.

3.2. Large deviations: Convenient versions. Here we formulate several conse-
quences of the Large Deviation Theorem (i.e. Theorem 2.2) in the context of random
matrix products that will be specifically useful in our setting.

Lemma 3.3. For any 𝜀′ > 0 there exists 𝜁1 > 0 such that for all sufficiently large 𝑛 ∈ ℕ
the following holds. For any 𝑎 ∈ 𝐽, any given 0 ≤ 𝑚1 < 𝑚2 ≤ 𝑛, and ̃𝑥0 ∈ ℝ with
probability at least 1 − exp(−𝜁1𝑛) one has
(24) log ̃𝑓′[𝑚1,𝑚2],𝑎,𝜔( ̃𝑓𝑚1,𝑎,𝜔( ̃𝑥0)) ∈ 𝑈𝜀′𝑛(−2𝐿[𝑚1,𝑚2](𝑎)).

Remark 3.4. Notice that in the case𝑚1 = 0,𝑚2 = 𝑛 the statement of Lemma 3.3 turns
into Theorem 2.2.
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Proof of Lemma 3.3. Let us recall that if 𝐶max is defined as in (19), then

𝐿[𝑚1,𝑚2](𝑎) = 𝔼 log ‖𝑇[𝑚1,𝑚2],𝑎,𝜔‖ ≤ (𝑚2 −𝑚1)𝐶max.

Also, if 𝐴 ∈ SL(2, ℝ), 𝑣 is a unit vector, 𝑓 and 𝑥 are projectivizations of 𝐴 and 𝑣, and ̃𝑓
and ̃𝑥 are lifts of 𝑓 and 𝑥, then

| log ̃𝑓′( ̃𝑥)| = 2| log |𝐴𝑣| | ≤ 2 log ‖𝐴‖,
see (22).
Set

𝜀∗ = 𝜀′
4𝐶max

.

If𝑚2 −𝑚1 < 𝜀∗𝑛, then

||log ̃𝑓′[𝑚1,𝑚2],𝑎,𝜔( ̃𝑓𝑚1,𝑎,𝜔( ̃𝑥0))|| ≤
𝑚2

∑
𝑘=𝑚1+1

||log ̃𝑓′𝐴𝑘,𝑎( ̃𝑓𝑘−1,𝑎,𝜔( ̃𝑥0))|| ≤

(𝑚2 −𝑚1) ⋅ 2𝐶max ≤ (𝑚2 −𝑚1)
𝜀′
2𝜀∗ ≤

𝜀′
2 𝑛,

and
2𝐿[𝑚1,𝑚2](𝑎) ≤ 2(𝑚2 −𝑚1)𝐶max = 2(𝑚2 −𝑚1)

𝜀′
4𝜀∗ ≤

𝜀′
2 𝑛.

Therefore,
log ̃𝑓′[𝑚1,𝑚2],𝑎,𝜔( ̃𝑓𝑚1,𝑎,𝜔( ̃𝑥0)) ∈ 𝑈𝜀′𝑛(−2𝐿[𝑚2,𝑚1](𝑎)).

If 𝜀∗𝑛 ≤ 𝑚2 −𝑚1 ≤ 𝑛, then by Theorem 2.2 for some 𝜁 > 0 we have

ℙ (log ̃𝑓′[𝑚1,𝑚2],𝑎,𝜔( ̃𝑓𝑚1,𝑎,𝜔( ̃𝑥0)) ∉ 𝑈𝜀′𝑛(−2𝐿[𝑚2,𝑚1](𝑎))) ≤
ℙ (log ̃𝑓′[𝑚1,𝑚2],𝑎,𝜔( ̃𝑓𝑚1,𝑎,𝜔( ̃𝑥0)) ∉ 𝑈𝜀′(𝑚2−𝑚1)(−2𝐿[𝑚2,𝑚1](𝑎))) ≤

𝑒−𝜁(𝑚2−𝑚1) ≤ 𝑒−𝜁𝜀∗𝑛.
Hence, Lemma 3.3 holds with 𝜁1 = 𝜀∗𝜁. □

Let us recall that the interval 𝐽 is divided into 𝑁 = [exp(4√𝑛)] equal subintervals
𝐽1, . . . , 𝐽𝑁 denoted 𝐽𝑖 = [𝑏𝑖−1, 𝑏𝑖], 𝑖 = 1, . . . , 𝑁. With large probability (24) holds simul-
taneously for all possible𝑚1, 𝑚2 with 0 ≤ 𝑚1 < 𝑚2 ≤ 𝑛 and all parameter values that
form the grid {𝑏0, 𝑏1, . . . , 𝑏𝑁 }. Namely, the following statement holds:

Lemma 3.5. For any 𝜀′ > 0 there exists 𝜁2 > 0 such that for all sufficiently large 𝑛 ∈ ℕ
the following holds. For a given ̃𝑥0 ∈ ℝ with probability at least 1 − exp(−𝜁2𝑛) one has
(25) log ̃𝑓′[𝑚1,𝑚2],𝑏𝑖,𝜔( ̃𝑓𝑚1,𝑏𝑖,𝜔( ̃𝑥0)) ∈ 𝑈𝜀′𝑛(−2𝐿[𝑚1,𝑚2](𝑏𝑖)),
for all𝑚1, 𝑚2 with 0 ≤ 𝑚1 < 𝑚2 ≤ 𝑛 and all 𝑖 = 0, 1, . . . , 𝑁.

Proof. Let 𝜁1 be given by Lemma 3.3, and take any positive 𝜁2 < 𝜁1. For a given 𝑎 ∈
{𝑏0, 𝑏1, . . . , 𝑏𝑁 } and given 𝑚 ∈ {1, . . . , 𝑛} the event (24) holds with probability at least
1− exp(−𝜁1𝑛). Intersecting the events (24) for all 𝑎 ∈ {𝑏0, 𝑏1, . . . , 𝑏𝑁 } and all𝑚1, 𝑚2 =
0, 1, . . . , 𝑛 with𝑚1 < 𝑚2 we observe that (25) holds with probability at least

1 − 𝑛(𝑛 + 1)
2 (𝑁 + 1) exp(−𝜁1𝑛).
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Since 𝑁 = [exp(4√𝑛)] and 𝜁2 < 𝜁1, we get

1 − 𝑛(𝑛 + 1)
2 (𝑁 + 1) exp(−𝜁1𝑛) > 1 − exp(−𝜁2𝑛)

for all sufficiently large 𝑛. □

Exactly the same arguments that prove Lemma 3.3 and Lemma 3.5 provide a very
similar but formally different statement:

Lemma 3.6. For any 𝜀′ > 0 there exists 𝜁2 > 0 such that for all sufficiently large 𝑛 ∈ ℕ
the following holds. For any given unit vector 𝑣 ∈ ℝ2, ‖𝑣‖ = 1, with probability at least
1 − exp(−𝜁2𝑛) for all𝑚1, 𝑚2 with 0 ≤ 𝑚1 < 𝑚2 ≤ 𝑛 and all 𝑖 = 0, 1, . . . , 𝑁 one has
(26) log ‖𝑇[𝑚1,𝑚2],𝑏𝑖,𝜔𝑣‖ ∈ 𝑈𝜀′𝑛(𝐿[𝑚1,𝑚2](𝑏𝑖)).
Combining the statements of Lemma 3.6 and Corollary 2.10 we get the following:

Lemma 3.7. For any 𝜀′ > 0 there exists 𝜁3 > 0 such that for all sufficiently large 𝑛 ∈ ℕ
the following holds. With probability at least 1−exp(−𝜁3𝑛) for all𝑚1, 𝑚2 with 0 ≤ 𝑚1 <
𝑚2 ≤ 𝑛 and all 𝑖 = 0, 1, . . . , 𝑁 one has
(27) log ‖𝑇[𝑚1,𝑚2],𝑏𝑖,𝜔‖ ∈ 𝑈𝜀′𝑛(𝐿[𝑚1,𝑚2](𝑏𝑖)).
Besides, Lemma 3.6 allows to prove the following useful “additivity” property of the

expectations {𝐿𝑛}:
Proposition 3.8. For any 𝜀 > 0 there exists 𝑛0 ∈ ℕ such that for any 𝑛 ≥ 𝑛0, any
𝑚1, 𝑚2, 𝑚3 ∈ ℕ with 0 ≤ 𝑚1 < 𝑚2 < 𝑚3 ≤ 𝑛, and any 𝑎 ∈ 𝐽 we have

0 ≤ 𝐿[𝑚1,𝑚2](𝑎) + 𝐿[𝑚2,𝑚3](𝑎) − 𝐿[𝑚1,𝑚3](𝑎) ≤ 𝑛𝜀.
Proof. Recall that for any 𝑎 ∈ 𝐽 we have 𝑎 ∈ [𝑏𝑖−1, 𝑏𝑖] for some 𝑖 ≤ 𝑁. Equicontinuity
result provided by Lemma 2.7 implies that for a given 𝜀′ > 0 and all sufficiently large
𝑛 ∈ ℕ we have

||(𝐿[𝑚1,𝑚2](𝑎) + 𝐿[𝑚2,𝑚3](𝑎) − 𝐿[𝑚1,𝑚3](𝑎))
− (𝐿[𝑚1,𝑚2](𝑏𝑖) + 𝐿[𝑚2,𝑚3](𝑏𝑖) − 𝐿[𝑚1,𝑚3](𝑏𝑖))||

≤ |(𝐿[𝑚1,𝑚2](𝑎) − 𝐿[𝑚1,𝑚2](𝑏𝑖)| + |𝐿[𝑚2,𝑚3](𝑎) − 𝐿[𝑚2,𝑚3](𝑏𝑖)|
+ |𝐿[𝑚1,𝑚3](𝑎) − 𝐿[𝑚1,𝑚3](𝑏𝑖)| ≤ 𝜀′(𝑚2 −𝑚1) + 𝜀′(𝑚3 −𝑚2) + 𝜀′(𝑚3 −𝑚1) ≤ 3𝜀′𝑛.

Take any unit vector 𝑣 ∈ ℝ2, ‖𝑣‖ = 1. We have
𝑇[𝑚1,𝑚3],𝑏𝑖,𝜔𝑣 = 𝑇[𝑚2,𝑚3],𝑏𝑖,𝜔𝑇[𝑚1,𝑚2],𝑏𝑖,𝜔𝑣,

and hence

log ‖𝑇[𝑚1,𝑚3],𝑏𝑖,𝜔𝑣‖ = log‖‖‖𝑇[𝑚2,𝑚3],𝑏𝑖,𝜔 (
𝑇[𝑚1,𝑚2],𝑏𝑖,𝜔𝑣
‖𝑇[𝑚1,𝑚2],𝑏𝑖,𝜔𝑣‖

)‖‖‖ + log ‖𝑇[𝑚1,𝑚2],𝑏𝑖,𝜔𝑣‖.

Due to Lemma 3.7, with large probability we have
log ‖𝑇[𝑚1,𝑚2],𝑏𝑖,𝜔‖ ∈ 𝑈𝜀′𝑛(𝐿[𝑚1,𝑚2](𝑏𝑖)), log ‖𝑇[𝑚2,𝑚3],𝑏𝑖,𝜔‖ ∈ 𝑈𝜀′𝑛(𝐿[𝑚2,𝑚3](𝑏𝑖)),

and
log ‖𝑇[𝑚1,𝑚3],𝑏𝑖,𝜔‖ ∈ 𝑈𝜀′𝑛(𝐿[𝑚1,𝑚3](𝑏𝑖)).

Therefore,
0 ≤ 𝐿[𝑚1,𝑚2](𝑏𝑖) + 𝐿[𝑚2,𝑚3](𝑏𝑖) − 𝐿[𝑚1,𝑚3](𝑏𝑖) ≤ 3𝑛𝜀′,
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and hence
0 ≤ 𝐿[𝑚1,𝑚2](𝑎) + 𝐿[𝑚2,𝑚3](𝑎) − 𝐿[𝑚1,𝑚3](𝑎) ≤ 6𝑛𝜀′.

Taking 𝜀′ = 𝜀
6 , we get the desired result. □

3.3. Distortion control. Here we collect several distortion estimates that will be
needed later.

Lemma 3.9 (Distortion control). For any 𝜔 ∈ Ω, 𝜔 = (𝐴1, 𝐴2, . . .), the following holds.
Given𝑚′ < 𝑚″, 𝑦1 < 𝑦2, and ̄𝑎1 < ̄𝑎2, define the sequence of intervals 𝑌𝑚 = [𝑦𝑚,1, 𝑦𝑚,2],
𝑚 = 𝑚′, . . . , 𝑚″, by

𝑦𝑚′,𝑗 = 𝑦𝑗 , 𝑦𝑚+1,𝑗 = ̃𝑓𝐴𝑚,𝑎̄𝑗 (𝑦𝑚,𝑗), 𝑗 = 1, 2, 𝑚 = 𝑚′, . . . , 𝑚″ − 1.
Then for any ̄𝑎3 ∈ [ ̄𝑎1, ̄𝑎2], any𝑚 = 𝑚′, . . . , 𝑚″, and any 𝑦3 ∈ [𝑦1, 𝑦2] we have

||log ̃𝑓′[𝑚′,𝑚],𝑎̄3,𝜔(𝑦3) − log ̃𝑓′[𝑚′,𝑚],𝑎̄1,𝜔(𝑦1)|| ≤ 𝜅
𝑚″−1
∑

𝑘=𝑚′
|𝑌 𝑘| + 𝐶| ̄𝑎2 − ̄𝑎1| ⋅ (𝑚″ −𝑚′),

where the constants 𝜅 and 𝐶 are defined by
𝜅 ≔ sup

𝑦∈ℝ1, 𝜇∈𝒦,𝐴∈supp𝜇, 𝑎∈𝐽
|𝜕𝑦 log ̃𝑓′𝐴,𝑎(𝑦)|, 𝐶 ≔ sup

𝑦∈ℝ1, 𝜇∈𝒦,𝐴∈supp𝜇, 𝑎∈𝐽
|𝜕𝑎 log ̃𝑓′𝑎,𝜔(𝑦)|.

Proof of Lemma 3.9. The proof is a verbatim repetition of the proof of Lemma 4.3 from
[GK], with some obvious adjustments of the notation. □

Another estimate that we will need shows how fast nearby points can diverge under
iterates of different but close maps.

Lemma 3.10. In notations of Lemma 3.9, we have
(28) |𝑦𝑚″,1 − 𝑦𝑚″,2| ≤ 𝐿𝑚″−𝑚′ |𝑦𝑚′,1 − 𝑦𝑚′,2| + 𝐿𝑝(𝑚″ −𝑚′) ⋅ 𝐿𝑚″−𝑚′−1| ̄𝑎2 − ̄𝑎1|,
where

𝐿 = sup
𝑦∈ℝ1, 𝜇∈𝒦,𝐴∈supp𝜇, 𝑎∈𝐽

| ̃𝑓′𝐴,𝑎(𝑦)|

and
𝐿𝑝 = sup

𝑦∈ℝ1, 𝜇∈𝒦,𝐴∈supp𝜇, 𝑎∈𝐽
|𝜕𝑎 ̃𝑓𝐴,𝑎(𝑦)|

are the Lipschitz constants for themaps ̃𝑓𝐴,𝑎(𝑦) in space and parameter directions respec-
tively.

Proof of Lemma 3.10. The proof is a verbatim repetition of the proof of Lemma4.4 from
[GK], with some obvious adjustments of the notation. □

3.4. Uniform growth estimates. Here we deduce parts (I) and (II) of Theorem 1.15
from Proposition 3.1.
First let us show that the distortion control given by Lemma 3.9 togetherwith Propo-

sition 3.1 allows us to use Lemma 3.5 to estimate the derivatives at ̃𝑥0 at all parameter
values 𝑎 ∈ 𝐽:

Proposition 3.11. There exists a constant 𝐶1 such that for any 𝜀′ > 0 the following
property holds for all sufficiently large 𝑛. Assume that 𝜔 is such that the conclusions of
Lemma 3.5 and Proposition 3.1 hold. Then, for any 𝑎 ∈ 𝐽:
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• If𝑎 ∈ 𝐽𝑖, and 𝐽𝑖 is either “small” or “opinion-changing” interval in terms of Propo-
sition 3.1, then

(29) ∀ 𝑚 = 1, . . . , 𝑛 log ̃𝑓′𝑚,𝑎,𝜔( ̃𝑥0) ∈ 𝑈𝐶1𝜀′𝑛(−2𝐿𝑚(𝑎)).
• If 𝑎 ∈ 𝐽𝑖, and 𝐽𝑖 is a “jump” interval in terms of Proposition 3.1, with the associ-
ated moment𝑚0, then

(30) ∀ 𝑚 = 1, . . . , 𝑚̄ log ̃𝑓′𝑚,𝑎,𝜔( ̃𝑥0) ∈ 𝑈𝐶1𝜀′𝑛(−2𝐿𝑚(𝑎)),
where 𝑚̄ ≔ 𝑚0 + 𝜀′𝑛 is what we will call “jump index” below, and

(31) ∀ 𝑚 = 𝑚̄ + 1, . . . , 𝑛 log ̃𝑓′[𝑚̄,𝑚],𝑎,𝜔( ̃𝑥1) ∈ 𝑈𝐶1𝜀′𝑛(−2𝐿[𝑚̄,𝑚](𝑎)),
for any ̃𝑥1 ∈ 𝑋 ′

𝑚̄,𝑖, where 𝑚̄ ≔ 𝑚0+𝜀′𝑛 and we denote 𝑋 ′
𝑚̄,𝑖 ≔ [ ̃𝑥𝑚̄,𝑖−1+1, ̃𝑥𝑚̄,𝑖].

Proof of Proposition 3.11. In the first case, regardless of whether the interval 𝐽𝑖 is a
“small” one or an “opinion-changer”, we have an upper bound for the sum of the cor-
responding lengths

(32)
𝑛−1
∑
𝑚=0

|𝑋𝑚,𝑖| = ∑
|𝑋𝑚,𝑖 |<𝜀′

|𝑋𝑚,𝑖| + ∑
|𝑋𝑚,𝑖 |≥𝜀′

|𝑋𝑚,𝑖| ≤ 𝑛 ⋅ 𝜀′ + 𝑛𝜀′ ⋅ 1 = 2𝑛𝜀′.

Lemma 3.9 implies that for all 𝑎 ∈ 𝐽𝑖 and all𝑚 = 1, . . . , 𝑛 we have

| log ̃𝑓′𝑚,𝑎,𝜔( ̃𝑥0) − log ̃𝑓′𝑚,𝑏𝑖,𝜔( ̃𝑥0)| ≤ 2𝜅𝜀′𝑛 + 𝐶 ⋅ |𝐽|𝑁 𝑛.

Due to Lemma 2.3, the sequence of functions { 1𝑛𝐿𝑛(𝑎)} is equicontinuous. There-
fore, for a given 𝜀′ > 0 and any sufficiently large 𝑛 we have:

|||
1
𝑛𝐿𝑛(𝑎) −

1
𝑛𝐿𝑛(𝑏𝑖)

||| ≤ 𝜀′, and |𝐽|
𝑁 < 𝜀′.

Together with the estimate (25) this gives

(33) | log ̃𝑓′𝑚,𝑎,𝜔( ̃𝑥0) + 2𝐿𝑚(𝑎)| ≤ | log ̃𝑓′𝑚,𝑎,𝜔( ̃𝑥0) − log ̃𝑓′𝑚,𝑏𝑖,𝜔( ̃𝑥0)|
+ | log ̃𝑓′𝑚,𝑏𝑖,𝜔( ̃𝑥0) + 2𝐿𝑚(𝑏𝑖)| + |2𝐿𝑚(𝑏𝑖) − 2𝐿𝑚(𝑎)|

≤ 2𝜅𝜀′𝑛 + 𝐶𝜀′𝑛 + 𝜀′𝑛 + 2𝜀′𝑚 ≤ (2𝜅 + 𝐶 + 3)𝜀′𝑛.
Therefore (29) holds once 𝐶1 > 2𝜅 + 𝐶 + 3.
Suppose now that 𝐽𝑖 is a “jump” interval. Checking (30) goes exactly in the same

way as in (32):
𝑚̄
∑
𝑚=0

|𝑋𝑚,𝑖| =
𝑚0−1
∑
𝑚=0

|𝑋𝑚,𝑖| +
𝑚̄−1
∑

𝑚=𝑚0

|𝑋𝑚,𝑖| ≤ 𝑛 ⋅ 𝜀′ + 𝑛𝜀′ ⋅ 2 = 3𝑛𝜀′.

Hence, in the same way as in (33), we have for any𝑚 ≤ 𝑚̄
| log ̃𝑓′𝑚,𝑎,𝜔( ̃𝑥0) + 2𝐿𝑚(𝑎)| ≤ 3𝜅𝜀′𝑛 + 𝐶𝜀′𝑛 + 𝜀′𝑛 + 2𝜀′𝑚 ≤ (3𝜅 + 𝐶 + 3)𝜀′𝑛,

and we have the desired (30) once 𝐶1 > 3𝜅 + 𝐶 + 3.
Finally, the intervals 𝑋 ′

𝑚,𝑖 for 𝑚 ≥ 𝑚̄ also satisfy the assumptions of Lemma 3.9.
One has

𝑛
∑
𝑚=𝑚̄

|𝑋𝑚,𝑖| ≤ 𝜀′𝑛,
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and thus (again, together with (25)) we get
| log ̃𝑓′[𝑚̄,𝑚],𝑎,𝜔( ̃𝑥1) + 2𝐿[𝑚̄,𝑚](𝑎)| ≤ 𝜅𝜀′𝑛 + 𝐶𝜀′𝑛 + 𝜀′𝑛 + 2𝜀′𝑚 ≤ (𝜅 + 𝐶 + 3)𝜀′𝑛.

This proves (31) for any 𝐶1 > 𝜅 + 𝐶 + 3, and thus concludes the proof of Proposition
3.11. □

Proposition 3.11 implies the parts (I) and (II) of Theorem 1.15. Indeed, for any
𝐴 ∈ SL(2, ℝ) and for any vector 𝑣 ≠ 0 one has

(34) 𝑓′𝐴(𝑥𝑣) =
|𝑣|2
|𝐴𝑣|2 ,

where 𝑥𝑣 ∈ 𝕊1 is the direction corresponding to the vector 𝑣. In particular, for any
point 𝑥 on the circle one has log ‖𝐴‖ ≥ − 1

2 log 𝑓
′
𝐴(𝑥) (as the right hand side of (34) is

not less than 1
‖𝐴‖2 ). In particular, for any𝑚, 𝑎, 𝜔 we have

(35) log ‖𝑇𝑚,𝑎,𝜔‖ ≥ −12 log 𝑓
′
𝑚,𝑎,𝜔( ̄𝑥).

Joining this estimate with (29), we obtain a lower bound for the norm

log ‖𝑇𝑚,𝑎,𝜔‖ ≥ −12 ⋅ (−2𝐿𝑚(𝑎) + 𝐶1𝑛𝜀′) = 𝐿𝑚(𝑎) −
𝐶1
2 𝜀

′𝑛.

Hence, to obtain the lower bound in the “Uniformity” part, it suffices to take

𝜀′ < 2𝜀
𝐶1
.

On the other hand, Proposition 2.8 states that the upper bound
log ‖𝑇𝑚,𝑎,𝜔‖ < 𝐿𝑚(𝑎) + 𝑛𝜀

holds with the probability 1 − exp(𝑐3𝑛). We thus obtain the desired
log ‖𝑇𝑚,𝑎,𝜔‖ ∈ 𝑈𝑛𝜀(𝐿𝑚(𝑎))

for all 𝑎 ∈ 𝐽𝑖, provided that the interval 𝐽𝑖 was “small” or “opinion-changing”. Now,
assume that 𝑎 ∈ 𝐽𝑖, and the interval 𝐽𝑖 is a “jump” interval. Then again, joining (35)
with (30)–(31), we obtain

∀𝑚 = 1, . . . , 𝑚̄ log ‖𝑇𝑚,𝑎,𝜔‖ ≥ 𝐿𝑚(𝑎) −
𝐶1
2 𝜀

′𝑛 > 𝐿𝑚(𝑎) − 𝜀𝑛

and

∀𝑚 = 𝑚̄ + 1, . . . , 𝑛 log ‖𝑇[𝑚̄,𝑚],𝑎,𝜔‖ ≥ 𝐿[𝑚̄,𝑚](𝑎) −
𝐶1
2 𝜀

′𝑛 > 𝐿[𝑚̄,𝑚](𝑎) − 𝜀𝑛,

where the last inequalities come from the choice of 𝜀′.
Again, Proposition 2.8 gives the upper bounds

∀𝑚 = 1, . . . , 𝑚̄ log ‖𝑇𝑚,𝑎,𝜔‖ < 𝐿𝑚(𝑎) + 𝑛𝜀
and

∀𝑚 = 𝑚̄ + 1, . . . , 𝑛 log ‖𝑇[𝑚̄,𝑚],𝑎,𝜔‖ < 𝐿[𝑚̄,𝑚](𝑎) + 𝑛𝜀.
This implies the desired “Uniformity” estimates

∀𝑚 = 1, . . . , 𝑚̄ log ‖𝑇𝑚,𝑎,𝜔‖ ∈ 𝑈𝑛𝜀(𝐿𝑚(𝑎)),
∀𝑚 = 𝑚̄ + 1, . . . , 𝑛 log ‖𝑇[𝑚̄,𝑚],𝑎,𝜔‖ ∈ 𝑈𝑛𝜀(𝐿[𝑚̄,𝑚](𝑎)),

thus concluding the proof of parts (I) and (II) of Theorem 1.15.
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3.5. Cancelation lemmata. Here we prove the “Cancellation” part (III) of Theorem
1.15. The content of this subsection is parallel to Section 4.5 from [GK].
For any 𝐴 ∈ SL(2, ℝ) denote by 𝑓𝐴 the corresponding projective map of 𝑆1. Also,

for 𝐴 ∉ SO(2, ℝ) let 𝑥−(𝐴) ∈ 𝕊1 be the point where 𝑓𝐴 has the largest derivative, and
𝑥+(𝐴) ∈ 𝕊1 be the image under 𝑓𝐴 of the point where 𝑓𝐴 has the smallest derivative.
Equivalently, 𝑥+(𝐴) is the direction of the large axis of the ellipse, obtained by applying
𝐴 to the unit circle, and 𝑥−(𝐴) = 𝑥+(𝐴−1).
Let 𝛼 and 𝛽 be the angles of 𝑥−(𝐴) and 𝑥+(𝐴) respectively. Then, it is easy to see

that
𝐴 = ±𝑅𝛽 (

‖𝐴‖ 0
0 ‖𝐴‖−1)𝑅

−1
𝛼+𝜋/2.

In particular, the following statement holds:

Lemma3.12 (Cancellation formatrices, Lemma4.13 from [GK]). Let𝐴, 𝐵 ∈ SL(2, ℝ)⧵
SO(2, ℝ) be two matrices such that 𝑥+(𝐴) = 𝑥−(𝐵). Then

‖𝐵𝐴‖ = max(‖𝐵‖‖𝐴‖ ,
‖𝐴‖
‖𝐵‖ ) .

We will also use Lemma 3.13:

Lemma 3.13 (Lemma 4.14 from [GK]). Let 𝐴 ∈ SL(2, ℝ) ⧵ SO(2, ℝ), 𝑥 ∈ 𝕊1 be a point
on the circle, and 𝑣𝑥 be some vector in the corresponding direction. Then:

• dist(𝑓𝐴(𝑥), 𝑥+(𝐴)) ≤ 𝜋
2 ⋅

|𝑣𝑥|/|𝐴𝑣𝑥|
‖𝐴‖ ,

• dist(𝑥, 𝑥−(𝐴)) ≤ 𝜋
2 ⋅

|𝐴𝑣𝑥|/|𝑣𝑥|
‖𝐴‖ ,

• If we have 𝑓′𝐴(𝑥) <
1
𝐶 , then ‖𝐴‖ ≥ √𝐶 and 𝑥+(𝐴) belongs to 𝜋

2𝐶 -neighborhood
of 𝑓𝐴(𝑥).

Let us nowprove the “Cancellation” part (III) of the conclusions of Theorem1.15; to
do that, we have to handle the “jump” intervals. Namely, assume that the conclusions
of Lemma 3.5 hold, and 𝐽𝑖 is a “jump” interval in terms of Proposition 3.1. Recall that
we denoted 𝑚̄ ≔ 𝑚0 + 𝜀′𝑛, where 𝑚0 is given by the definition of “jump interval” in
Proposition 3.1. Notice (we will use it later) that by increasing 𝑚̄ by 1 we can (and do)
assume that

(36) |𝑋𝑚̄,𝑖| ≥ 1 + 𝛿 |𝐽|𝑁 ,

where 𝛿 > 0 is given by the monotonicity assumption (B3).
We start by handling the case when the jumpmoment happens too close to the first

or the last iteration.

Lemma 3.14. Let 𝜀′, 𝜀″ > 0, and assume that the conclusions of Proposition 3.1 hold,
that 𝐽𝑖 is a “jump” interval with associated index𝑚0, and set 𝑚̄ ≔ 𝑚0+𝜀′𝑛. Assume also
that the conclusions of the part (II) of Theorem 1.15 hold with the value 𝜀′ instead of 𝜀,
and that 𝑚̄ ≤ 𝜀″𝑛 or 𝑚̄ ≥ (1−𝜀″)𝑛. Then the conclusions of the “Cancellation” part (III)
of Theorem 1.15 are satisfied for arbitrary 𝑎 ∈ 𝐽𝑖, provided that one has

2𝜀′ + 2𝐶max𝜀″ < 𝜀.
Proof. Consider first the case 𝑚̄ ≤ 𝜀″𝑛. For𝑚 ≤ 𝑚̄, due to the conclusions of part (II)
we have

log ‖𝑇𝑚,𝑎,𝜔‖ ≤ 𝑛𝜀′ + 𝐿𝑚̄(𝑎), 𝜓𝑚̄(𝑚, 𝑎) = 𝐿𝑚(𝑎),
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and hence
||log ‖𝑇𝑚,𝑎,𝜔‖ − 𝜓𝑚̄(𝑚, 𝑎)|| ≤ 𝑛𝜀′ + 2𝐿𝑚(𝑎) ≤ (𝜀′ + 2𝐶max𝜀″)𝑛 < 𝜀𝑛,

thus guaranteeing the desired (5). On the other hand, once𝑚 ≥ 𝑚̄, we have
log ‖𝑇𝑚̄,𝑎,𝜔‖ ≤ 𝑛𝜀′ + 𝐿𝑚̄(𝑎), log ‖𝑇[𝑚̄,𝑚],𝑎,𝜔‖ ∈ 𝑈𝑛𝜀′(𝐿[𝑚̄,𝑚](𝑎)),

hence
(37) log ‖𝑇𝑚,𝑎,𝜔‖ ∈ 𝑈2𝑛𝜀′+𝐿𝑚̄(𝑎)(𝐿[𝑚̄,𝑚](𝑎)).
Therefore, we have

||log ‖𝑇𝑚,𝑎,𝜔‖ − 𝜓𝑚̄(𝑚, 𝑎)|| = ||log ‖𝑇𝑚,𝑎,𝜔‖ − |𝐿𝑚̄(𝑎) − 𝐿[𝑚̄,𝑚](𝑎)||| ≤
2𝑛𝜀′ + 𝐿𝑚̄(𝑎) + 𝐿𝑚̄(𝑎) ≤ 2𝑛𝜀′ + 2𝐶max𝑚̄ ≤ (2𝜀′ + 2𝐶max𝜀″)𝑛 < 𝜀𝑛.

The case 𝑚̄ ≥ (1 − 𝜀″)𝑛 is completely analogous. □

Let us now consider the case when the jump moment is “sufficiently away” from
the endpoints of the interval of iterations, 𝜀″𝑛 < 𝑚̄ < (1 − 𝜀″)𝑛. First, we find the
corresponding value of the parameter 𝑎 ∈ 𝐽𝑖.
Notice that if ℎ is given by Theorem 2.2, then for any 0 ≤ 𝑚1 < 𝑚2 ≤ 𝑛 and any

𝑎 ∈ 𝐽 we have
𝐿[𝑚1,𝑚2](𝑎) ≥ ℎ(𝑚2 −𝑚1).

Moreover, for some uniform 𝑐0 > 0 and any 0 ≤ 𝑚1 ≤ 𝑚2 ≤ 𝑛 and any 𝑎 ∈ 𝐽 we have

(38) (𝑚2 −𝑚1)
ℎ
2 − 𝑐0 ≤ 𝐿𝑚2(𝑎) − 𝐿𝑚1(𝑎) ≤ 𝐿[𝑚1,𝑚2](𝑎) ≤ (𝑚2 −𝑚1)𝐶max,

see [GK22, Lemma 3.7].

Lemma 3.15. Let 𝜀′, 𝜀″ > 0 satisfy

(39) ℎ
4𝐶1

𝜀″ > 𝜀′,

where 𝐶1 > 1 is given by Proposition 3.11. For all sufficiently large 𝑛, the following state-
ment holds.
Assume that the conclusions of Lemma 3.5 and of Proposition 3.1 hold, 𝐽𝑖 is a “jump”

intervalwith associated index𝑚0, and set 𝑚̄ ≔ 𝑚0+𝜀′𝑛. Assumealso that the conclusions
of the part (II) hold with the value 𝜀′ instead of 𝜀. Then there exists 𝑎 ∈ 𝐽𝑖 such that

𝑥+(𝑇𝑚̄,𝑎,𝜔) = 𝑥−(𝑇[𝑚̄,𝑚̄′],𝑎,𝜔),
where 𝑚̄′ ≔ 𝑛 if 𝐿[𝑚̄,𝑚](𝑏𝑖) ≤ 𝐿𝑚̄(𝑏𝑖) for all 𝑚 = 𝑚̄ + 1, . . . , 𝑛, and otherwise 𝑚̄′ ≔
min{𝑚 > 𝑚̄ | 𝐿[𝑚̄,𝑚](𝑏𝑖) > 𝐿𝑚̄(𝑏𝑖)}.

Proof of Lemma 3.15. Notice that equicontinuity of the functions 1
𝑚2−𝑚1

𝐿[𝑚1,𝑚2](𝑎),
see Lemma 2.7, implies that for large enough 𝑛 and any𝑚 between 𝑚̄ and 𝑛 we have
(40) |𝐿[𝑚̄,𝑚](𝑎) − 𝐿[𝑚̄,𝑚](𝑏𝑖)| < 𝜀′(𝑚̄′ −𝑚) < 𝜀′𝑛.
In particular, we have

|𝐿[𝑚̄,𝑚̄′](𝑎) − 𝐿[𝑚̄,𝑚̄′](𝑏𝑖)| < 𝜀′(𝑚̄′ − 𝑚̄) < 𝜀′𝑛.
We claim that for any 𝑎 ∈ 𝐽𝑖 one has
(41) 𝐿[𝑚̄,𝑚̄′](𝑎) > (𝜀″ℎ − 𝜀′)𝑛.
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Indeed, if 𝑚̄′ < 𝑛, then

𝐿[𝑚̄,𝑚̄′](𝑎) > 𝐿𝑚̄(𝑏𝑖) − 𝜀′𝑛 > 𝑚̄ℎ − 𝜀′𝑛 > (𝜀″ℎ − 𝜀′)𝑛,

and if 𝑚̄′ = 𝑛, then

𝐿[𝑚̄,𝑚̄′](𝑎) > (𝑛 − 𝑚̄)ℎ > 𝜀″ℎ𝑛 > (𝜀″ℎ − 𝜀′)𝑛.

Note that the uniformity estimates imply that the products 𝑇𝑚̄,𝑎,𝜔 and 𝑇[𝑚̄,𝑚̄′],𝑎,𝜔 are
of norm bounded away from 1 for all 𝑎 ∈ 𝐽𝑖. Indeed, the conclusions of the part (II)
imply that

log ‖𝑇𝑚̄,𝑎,𝜔‖ > 𝐿𝑚̄(𝑎) − 𝑛𝜀′ > 𝑛(𝜀″ℎ − 𝜀′) > 0,

and

log ‖𝑇[𝑚̄,𝑚̄′],𝑎,𝜔‖ > 𝐿[𝑚̄,𝑚̄′](𝑎) − 𝜀′𝑛 > (𝜀″ℎ − 2𝜀′)𝑛 > 0,

where we used (41), and in both cases the last inequalities are due to (39).
Hence the directions 𝑥+(𝑇𝑚̄,𝑎,𝜔) and 𝑥−(𝑇[𝑚̄,𝑚̄′],𝑎,𝜔) depend continuously on 𝑎 ∈ 𝐽𝑖.

To shorten the notations, we denote

𝑥+(𝑎) ≔ 𝑥+(𝑇𝑚̄,𝑎,𝜔), 𝑥−(𝑎) ≔ 𝑥−(𝑇[𝑚̄,𝑚̄′],𝑎,𝜔).

Lemma 3.13 implies that 𝑥+(𝑎) stays 𝜋
2 𝑓

′
𝑚̄,𝑎,𝜔(𝑥0)-close to the image 𝑓𝑚̄,𝑎,𝜔(𝑥0) as

𝑎 varies in 𝐽𝑖. At the same time, for any 𝑎 ∈ 𝐽𝑖, due to Proposition 3.11, we have

𝜋
2 𝑓

′
𝑚̄,𝑎,𝜔(𝑥0) <

𝜋
2 exp(−2𝐿𝑚̄(𝑎) + 𝐶1𝑛𝜀′) <

𝜋
2 exp(−2𝑚̄ℎ + 𝐶1𝑛𝜀′)

< 𝜋
2 exp((−2ℎ𝜀

″ + 𝐶1𝜀′)𝑛) <
𝛿|𝐽|
2𝑁 ,

where we used the assumption 𝑚̄ ≥ 𝑛𝜀″, inequality (39), and the subexponential
growth of 𝑁 = exp(4√𝑛).
At the same time, due to (36), we have |𝑋 ′

𝑚̄,𝑖| ≥
𝛿|𝐽|
𝑁 . Hence, as 𝑎 varies over 𝐽, the

point 𝑥+(𝑎) passes through the midpoint

𝑟 ≔ 𝜋(
( ̃𝑥𝑚̄,𝑖−1 + 1) + ̃𝑥𝑚̄,𝑖

2 )

of the interval 𝜋(𝑋 ′
𝑚̄,𝑖) = 𝜋([ ̃𝑥𝑚̄,𝑖−1 + 1, ̃𝑥𝑚̄,𝑖]) at least twice, making the full turn in

between; see Figure 3.
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x
+(bi)

x
+(bi−1)

x
−(bi−1)

x
−(bi)

xm̄,i−1

xm̄,i

π(X ′

m̄,i)

Figure 3. While the parameter 𝑎 varies over a jump interval 𝐽𝑖, the
𝑥+(𝑎) ≔ 𝑥+(𝑇𝑚̄,𝜔,𝑎)makes more than a full turn, staying in a neigh-
borhood of the corresponding image 𝑓𝑚̄,𝑎,𝜔( ̄𝑥). At the same time, the
point 𝑥−(𝑎) ≔ 𝑥−(𝑇[𝑚̄,𝑚̄′],𝑎,𝜔) never enters the interval 𝑋 ′

𝑚̄,𝑖 (the arc
shown in bold).

At the same time, we know from the distortion control estimates in the proof of
Proposition 3.11 that the derivatives of 𝑓[𝑚̄,𝑚̄′],𝑎,𝜔 on 𝑋 ′

𝑚̄,𝑖 do not exceed

exp(−2𝐿[𝑚̄,𝑚̄′](𝑎) + 𝐶1𝜀′𝑛) < exp(−2(𝜀″ℎ − 𝜀′)𝑛 + 𝐶1𝜀′𝑛) < 1,

using (41) for the first inequality and (39) for the last one.
Hence the point 𝑥−(𝑎) never crosses 𝑟 for 𝑎 ∈ 𝐽𝑖. Thus, we can choose the lifts

̃𝑥+(𝑎) and ̃𝑥−(𝑎) on the real line of 𝑥+(𝑎), 𝑥−(𝑎) respectively such that the difference
̃𝑥+(𝑎) − ̃𝑥−(𝑎) changes sign while 𝑎 varies in 𝐽𝑖. Hence, there exists a point 𝑎 ∈ 𝐽𝑖 for
which the directions 𝑥+(𝑎) and 𝑥−(𝑎) coincide. □

Weare now ready to conclude the proof of the “Cancellation” part (III). Take 𝜀′, 𝜀″ >
0 such that (39) holds, as well as

𝜀′ < 𝜀
10 , 2(𝜀′ + 𝐶max𝜀″) < 𝜀.

Assume that the conclusions of Lemma 3.5 hold and of Proposition 3.1 hold, that 𝐽𝑖
in its terms is a “jump” interval, with 𝑚̄ ≔ 𝑚0+𝜀′𝑛 being the corresponding jumpmo-
ment. Assume also that the conclusions of the part (II) hold with the value 𝜀′ instead
of 𝜀.
Let us show that then the part (III) of conclusions of Theorem 1.15 are satisfied. In-

deed, if 𝑚̄ ≤ 𝜀″𝑛 or 𝑚̄ ≥ (1−𝜀″)𝑛, this directly follows fromLemma 3.14. Otherwise we
can apply Lemma 3.15; take 𝑎𝑖 to be the value of the parameter 𝑎 given by Lemma 3.15,
and let us check that (5) holds for all𝑚 = 1, . . . , 𝑛.
Note that for any𝑚 ∈ [1, 𝑚̄] the estimates of the part (II) imply

(42) log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ∈ 𝑈𝜀′𝑛(𝐿𝑚(𝑎𝑖)) = 𝑈𝜀′𝑛(𝜓𝑚̄(𝑚, 𝑎𝑖)).

We have now to handle the case 𝑚 ∈ [𝑚̄, 𝑛]. The next steps depend on whether
𝑚̄′ < 𝑛 or 𝑚̄′ = 𝑛.
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Consider first the case 𝑚̄′ < 𝑛. Notice that by definition of 𝑚̄′ we have 𝐿[𝑚̄,𝑚̄′](𝑏𝑖) >
𝐿𝑚̄(𝑏𝑖) and 𝐿[𝑚̄,𝑚̄′−1](𝑏𝑖) ≤ 𝐿𝑚̄(𝑏𝑖), hence

|𝐿[𝑚̄,𝑚̄′](𝑏𝑖) − 𝐿𝑚̄(𝑏𝑖)| ≤ 𝐶max.
Together with (40) this implies that

(43) |𝐿[𝑚̄,𝑚̄′](𝑎𝑖) − 𝐿𝑚̄(𝑎𝑖)| ≤ 3𝜀′𝑛.
Then, applying Lemma 3.12 and the uniformity estimates on the intervals [1, 𝑚̄] and
[𝑚̄, 𝑚̄′], we get

(44) log ‖𝑇𝑚̄′,𝑎𝑖,𝜔‖ = ||log ‖𝑇𝑚̄,𝑎𝑖,𝜔‖ − log ‖𝑇[𝑚̄,𝑚̄′],𝑎𝑖,𝜔‖||
≤ ||log ‖𝑇𝑚̄,𝑎𝑖,𝜔‖ − 𝐿𝑚̄(𝑎𝑖)|| + ||log ‖𝑇[𝑚̄,𝑚̄′],𝑎𝑖,𝜔‖ − 𝐿[𝑚̄,𝑚̄′](𝑎𝑖)|| + ||𝐿𝑚̄(𝑎𝑖) − 𝐿[𝑚̄,𝑚̄′](𝑎𝑖)||

≤ 𝜀′𝑛 + 𝜀′𝑛 + 3𝜀′𝑛 = 5𝜀′𝑛.
For any𝑚 ∈ [𝑚̄, 𝑚̄′], due to the part (II) of Theorem 1.15 we have

log ‖𝑇𝑚̄,𝑎𝑖,𝜔‖ ∈ 𝑈𝜀′𝑛(𝐿𝑚̄(𝑎𝑖)), log ‖𝑇[𝑚̄,𝑚],𝑎𝑖,𝜔‖ ∈ 𝑈𝜀′𝑛(𝐿[𝑚̄,𝑚](𝑎𝑖)),
and hence we get the following estimate from below:

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ≥ log ‖𝑇𝑚̄,𝑎𝑖,𝜔‖ − log ‖𝑇[𝑚̄,𝑚],𝑎𝑖,𝜔‖
≥ 𝐿𝑚̄(𝑎𝑖) − 𝐿[𝑚̄,𝑚](𝑎𝑖) − 2𝜀′𝑛 = 𝜓𝑚̄(𝑚, 𝑎𝑖) − 2𝜀′𝑛.

To get an estimate from above, we can represent

𝑇𝑚,𝑎𝑖,𝜔 = 𝑇−1[𝑚,𝑚̄′],𝑎𝑖,𝜔𝑇𝑚̄′,𝑎𝑖,𝜔.
The log-norm of the latter factor does not exceed 5𝜀′𝑛 by (44), while for the former
factor we have

‖𝑇−1[𝑚,𝑚̄′],𝑎𝑖,𝜔‖ = ‖𝑇[𝑚,𝑚̄′],𝑎𝑖,𝜔‖.
Due to Corollary 2.10, Proposition 3.8, and by using (43), we get

log ‖𝑇[𝑚,𝑚̄′],𝑎𝑖,𝜔‖ ≤ 𝐿[𝑚,𝑚̄′](𝑎𝑖) + 𝜀′𝑛 ≤ 𝐿[𝑚̄,𝑚̄′](𝑎𝑖) − 𝐿[𝑚̄,𝑚](𝑎𝑖) + 2𝜀′𝑛 ≤
≤ 𝐿𝑚̄(𝑎𝑖) − 𝐿[𝑚̄,𝑚](𝑎𝑖) + 5𝜀′𝑛 = 𝜓𝑚̄(𝑚, 𝑎𝑖) + 5𝜀′𝑛,

and, therefore,

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ≤ log ‖𝑇𝑚̄′,𝑎𝑖,𝜔‖ + log ‖𝑇[𝑚,𝑚̄′],𝑎𝑖,𝜔‖ ≤ 𝜓𝑚̄(𝑎𝑖, 𝑚) + 10𝑛𝜀′.
Combining lower and upper bounds we obtain

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ∈ 𝑈10𝑛𝜀′(𝜓𝑚̄(𝑎𝑖, 𝑚)).

As we have 𝜀′ < 𝜀
10 , we obtained the desired estimate.

Now let us consider the case when 𝑚̄′ < 𝑛 and𝑚 ∈ [𝑚̄′, 𝑛]. Again, due to (43), (44),
Corollary 2.10, and Proposition 3.8, we have

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ≤ log ‖𝑇𝑚̄′,𝑎𝑖,𝜔‖ + log ‖𝑇[𝑚̄′,𝑚],𝑎𝑖,𝜔‖ ≤ log ‖𝑇[𝑚̄′,𝑚],𝑎𝑖,𝜔‖ + 5𝜀′𝑛
≤ 𝐿[𝑚̄′,𝑚](𝑎𝑖) + 6𝜀′𝑛 ≤ 𝐿[𝑚̄,𝑚](𝑎𝑖) − 𝐿[𝑚̄,𝑚̄′](𝑎𝑖) + 7𝜀′𝑛 ≤ 𝐿[𝑚̄,𝑚](𝑎𝑖) − 𝐿𝑚̄(𝑎𝑖) + 10𝜀′𝑛

= 𝜓𝑚̄(𝑚, 𝑎𝑖) + 10𝜀′𝑛.
Similarly, since

𝑇𝑚,𝑎𝑖,𝜔 = 𝑇[𝑚̄′,𝑚],𝑎𝑖,𝜔𝑇𝑚̄′,𝑎𝑖,𝜔,



112 A. GORODETSKI AND V. KLEPTSYN

we get an estimate from below:

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ≥ log ‖𝑇[𝑚̄′,𝑚],𝑎𝑖,𝜔‖ − log ‖𝑇𝑚̄′,𝑎𝑖,𝜔‖ ≥ log ‖𝑇[𝑚̄′,𝑚],𝑎𝑖,𝜔‖ − 5𝜀′𝑛.

Now, since
𝑇[𝑚̄′,𝑚],𝑎𝑖,𝜔 = 𝑇[𝑚̄,𝑚],𝑎𝑖,𝜔𝑇−1[𝑚̄,𝑚̄′],𝑎𝑖,𝜔,

using (43) and the estimates of the part (II) we have

log ‖𝑇[𝑚̄′,𝑚],𝑎𝑖,𝜔‖ ≥ log ‖𝑇[𝑚̄,𝑚],𝑎𝑖,𝜔‖ − log ‖𝑇[𝑚̄,𝑚̄′],𝑎𝑖,𝜔‖
≥ 𝐿[𝑚̄,𝑚](𝑎𝑖) − 𝜀′𝑛− 𝐿[𝑚̄,𝑚̄′](𝑎𝑖) − 𝜀′𝑛 ≥ 𝐿[𝑚̄,𝑚](𝑎𝑖) − 𝐿𝑚̄ − 5𝜀′𝑛 = 𝜓𝑚̄(𝑚, 𝑎𝑖) − 5𝜀′𝑛,

and hence
log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ≥ 𝜓𝑚̄(𝑚, 𝑎𝑖) − 10𝜀′𝑛.

Putting estimates from above and from below together, we obtain

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ∈ 𝑈10𝑛𝜀′(𝜓𝑚̄(𝑎𝑖, 𝑚)).

Finally, consider the case 𝑚̄′ = 𝑛. The estimates of the part (II) imply

log ‖𝑇𝑚̄,𝑎𝑖,𝜔‖ ∈ 𝑈𝑛𝜀′(𝐿𝑚̄(𝑎𝑖)), log ‖𝑇[𝑚̄,𝑛],𝑎𝑖,𝜔‖ ∈ 𝑈𝑛𝜀′(𝐿[𝑚̄,𝑛](𝑎𝑖)),

and thus we have

(45) log ‖𝑇𝑛,𝑎𝑖,𝜔‖ ∈ 𝑈2𝑛𝜀′(|𝐿𝑚̄(𝑎𝑖) − 𝐿[𝑚̄,𝑛](𝑎𝑖)|) = 𝑈2𝑛𝜀′(𝜓𝑚̄(𝑎𝑖, 𝑛)).

Now, for any𝑚 ∈ [𝑚̄, 𝑛] we have two representations for 𝑇𝑚,𝑎𝑖,𝜔:

(46) 𝑇𝑚,𝑎𝑖,𝜔 = 𝑇[𝑚̄,𝑚],𝑎𝑖,𝜔𝑇𝑚̄,𝑎𝑖,𝜔 = 𝑇−1[𝑚,𝑛],𝑎𝑖,𝜔𝑇𝑛,𝑎𝑖,𝜔.

By Corollary 2.10 we have

log ‖𝑇[𝑚̄,𝑚],𝑎𝑖,𝜔‖ ≤ 𝐿[𝑚̄,𝑚](𝑎𝑖) + 𝑛𝜀′, log ‖𝑇[𝑚,𝑛],𝑎𝑖,𝜔‖ ≤ 𝐿[𝑚,𝑛](𝑎𝑖) + 𝑛𝜀′,

so using Proposition 3.8, from (45) and (46) we get both a bound from above

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ≤ log ‖𝑇𝑛,𝑎𝑖,𝜔‖ + log ‖𝑇[𝑚,𝑛],𝑎𝑖,𝜔‖
≤ (𝐿𝑚̄(𝑎𝑖) − 𝐿[𝑚̄,𝑛](𝑎𝑖) + 2𝜀′𝑛) + (𝐿[𝑚,𝑛](𝑎𝑖) + 𝜀′𝑛)

≤ (𝐿𝑚̄(𝑎𝑖) − 𝐿[𝑚̄,𝑚](𝑎𝑖)) + (𝐿[𝑚,𝑛](𝑎𝑖) − 𝐿[𝑚̄,𝑚](𝑎𝑖) + 𝐿[𝑚̄,𝑚]) + 3𝜀′𝑛
≤ 𝜓𝑚̄(𝑎𝑖, 𝑚) + 4𝜀′𝑛

and from below

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ≥ log ‖𝑇𝑚̄,𝑎𝑖,𝜔‖ − log ‖𝑇[𝑚̄,𝑚],𝑎𝑖,𝜔‖
≥ (𝐿𝑚̄(𝑎𝑖) − 𝜀′𝑛) − (𝐿[𝑚̄,𝑚](𝑎𝑖) + 𝜀′𝑛) = 𝜓𝑚̄(𝑎𝑖, 𝑚) − 2𝜀′𝑛.

Thus, in this case we also get the desired

log ‖𝑇𝑚,𝑎𝑖,𝜔‖ ∈ 𝑈4𝑛𝜀′(𝜓𝑚̄(𝑚, 𝑎𝑖)),

concluding the proof of the “Cancellation” part (III) of Theorem 1.15.
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3.6. Exponential contraction: Quantitative statements. This part is parallel to
Section 4.6 from [GK]. Notice that we cannot use the statements proven in [GK] di-
rectly, since in the non-stationary setting some of the proofs must be essentially modi-
fied.
We start by establishing the following two contraction-type statements. The first

one is a negative Lyapunov exponent type of a statement:

Proposition 3.16. There exist 𝑘0 ∈ ℕ such that for any 𝑘 ≥ 𝑘0, any 𝑥0 ∈ 𝑆1, any
𝜇1, . . . , 𝜇𝑘 ∈ 𝒦 and any 𝑎 ∈ 𝐽 we have

𝔼𝜇𝑎𝑘,. . .,𝜇𝑎1 log 𝑓
′
𝑘,𝑎,𝜔(𝑥0) ≤ −1.

The second is an actual contraction:

Lemma 3.17. For any 𝜀1, 𝜀2 > 0 there exists 𝐾1 ∈ ℕ such that for any 𝑎 ∈ 𝐽 and any
𝑥, 𝑦 ∈ 𝕊1 we have

ℙ (dist(𝑓𝐾1,𝑎,𝜔(𝑥), 𝑓𝐾1,𝑎,𝜔(𝑦)) < 𝜀1) > 1 − 𝜀2.

Proof of Proposition 3.16. Recall that for𝐴 ∈ SL(2, ℝ) and a point 𝑥0 ∈ 𝕊1, correspond-
ing to the direction of a unit vector 𝑣0 ∈ ℝ2, one has

(𝑓𝐴)′(𝑥0) =
1

|𝐴𝑣0|2
.

Hence,

(47) log(𝑓𝐴)′(𝑥0) = −2 log |𝐴𝑣0|.

Now, recall that Theorem 2.2 provides a lower bound 𝐿𝑛 ≥ ℎ𝑛 and a large deviations
type bound for every 𝜀 > 0: there exists 𝛿 > 0 such that for all sufficiently large 𝑛 and
any 𝑎 ∈ 𝐽

ℙ {||log |𝑇𝑛,𝑎,𝜔𝑣0| − 𝐿𝑛(𝑎)|| > 𝜀𝑛} < 𝑒−𝛿𝑛.

Take 𝜀 = ℎ
2 ; this implies that for any 𝑎 ∈ 𝐽 one has 𝐿𝑛(𝑎) − 𝑛𝜀 ≥ 𝑛ℎ

2 . Joining this
with the lower deviations bound, we get that there exists 𝛿 > 0 such that for every
sufficiently large 𝑛 we have

(48) ∀𝑎 ∈ 𝐽 ∀𝑣0, |𝑣0| = 1 ℙ {log |𝑇𝑛,𝑎,𝜔𝑣0| >
ℎ
2 𝑛} > 1 − 𝑒−𝛿𝑛.

Joining with (47), we get for all sufficiently large 𝑛 an upper bound for the expectation

𝔼 𝜇1,. . .,𝜇𝑛 log 𝑓′𝑛,𝑎,𝜔(𝑥0) = 𝔼 𝜇1,. . .,𝜇𝑛(−2 log |𝑇𝑛,𝑎,𝜔(𝑣0)|)
≤ −ℎ𝑛 ⋅ (1 − 𝑒−𝛿𝑛) + 𝑛 log𝑀 ⋅ 𝑒−𝛿𝑛 = −𝑛(ℎ − 𝑒−𝛿𝑛(ℎ + log𝑀)),

where we have used a uniform upper bound ‖𝐴‖ ≤ 𝑀 for any 𝐴 ∈ supp𝜇𝑎, any 𝑎 ∈ 𝐽
and any 𝜇 ∈ 𝒦. As the second factor in the right hand side tends to ℎ as 𝑛 → ∞, for
all sufficiently large 𝑛 we get the desired

𝔼 𝜇1,. . .,𝜇𝑛 log 𝑓′𝑛,𝑎,𝜔(𝑥0) ≤ −𝑛(ℎ − 𝑒−𝛿𝑛(ℎ + log𝑀)) < −1.

□
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Proof of Lemma 3.17. Recall that Lemma 3.13 states

dist(𝑓𝐴(𝑥), 𝑥+(𝐴)) ≤
𝜋
2 ⋅

|𝑣𝑥|/|𝐴𝑣𝑥|
‖𝐴‖ .

Applying (48) for 𝑣𝑥, we get that for all sufficiently large 𝑛 for every 𝑎 ∈ 𝐽

ℙ (dist(𝑓𝑛,𝑎,𝜔(𝑥), 𝑥+(𝑇𝑛,𝑎,𝜔)) < 𝑒−𝑛ℎ) ≥ 1 − 𝑒−𝛿𝑛.

The same applies to the vector 𝑣𝑦, and thus

ℙ (dist(𝑓𝑛,𝑎,𝜔(𝑥), 𝑓𝑛,𝑎,𝜔(𝑦)) < 2𝑒−𝑛ℎ) ≥ 1 − 2𝑒−𝛿𝑛.

Taking 𝑛 sufficiently large so that 2𝑒−𝑛ℎ < 𝜀1, 2𝑒−𝛿𝑛 < 𝜀2 concludes the proof. □

Definition 3.18. For every 𝑠 ∈ (0, 1] let the function 𝜑𝑠(𝑥, 𝑦) be defined as

(49) 𝜑(𝑥, 𝑦) ≔ (dist𝕊1(𝑥, 𝑦))𝑠.

The next statement provides another view on the contraction of orbits on the projec-
tive line; it states that for a sufficiently small 𝑠 the 𝑠-th power of the distance decreases
in average under the random dynamics. It is deduced from the two above contraction
statements, joined with the estimate 𝑑𝑠 = 1 + 𝑠 log 𝑑 + 𝑂(𝑠2), in the same way as its
stationary counterpart was established in [GK, Proposition 4.17]).

Proposition 3.19. There are constants 𝑠 ∈ (0, 1] and 𝐾𝜑 ∈ ℕ such that for any 𝑎 ∈ 𝐽
one has

(50) 𝔼𝜑(𝑓𝐾𝜑,𝑎,𝜔(𝑥), 𝑓𝐾𝜑,𝑎,𝜔(𝑦)) =

∫𝜑(𝑓𝐾𝜑,𝑎,𝜔(𝑥), 𝑓𝐾𝜑,𝑎,𝜔(𝑦))𝑑𝜇𝑎1 . . . 𝑑𝜇𝑎𝐾𝜑 ≤
1
2𝜑(𝑥, 𝑦).

Proof of Proposition 3.19. The proof repeats the proof of [GK, Proposition 4.17]modulo
the following adjustments:
(1) The arguments leading to the formula (45) in [GK] should be replaced by the

statement of Proposition 3.16;
(2) The proof of [GK, Lemma 4.19] should be replaced by the proof of Lemma 3.17

above. □

Finally, we use Proposition 3.19 to estimate the behaviour of random iterations with
different parameters:

Corollary 3.20. Fix constants𝐾𝜑, 𝑠 given by Proposition 3.19. There exists a constant𝐶𝜑
such that for any 𝑎, 𝑎′ ∈ 𝐽, 𝑥, 𝑦 ∈ 𝕊1 one has

(51) 𝔼𝜑(𝑓𝐾𝜑,𝑎,𝜔(𝑥), 𝑓𝐾𝜑,𝑎′,𝜔(𝑦)) ≤
1
2𝜑(𝑥, 𝑦) + 𝐶𝜑|𝑎 − 𝑎′|𝑠.

Proof of Corollary 3.20. The proof is the verbatim repetition of the proof of Corollary
4.25 from [GK]. □

Iterating Corollary 3.20, we get
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Corollary 3.21. There are positive constants 𝐶′
𝜑 and 𝐶″

𝜑 (that depend on 𝐾𝜑, 𝑠, and con-
stants 𝐿, 𝐿𝑝 from Lemma 3.10) such that for any 𝑙 ∈ ℕ, 𝑘′ < 𝐾𝜑, and any 𝑎, 𝑎′ ∈ 𝐽,
𝑥, 𝑦 ∈ 𝕊1 we have

(52) 𝔼𝜑(𝑓𝑙𝐾𝜑+𝑘′,𝑎,𝜔(𝑥), 𝑓𝑙𝐾𝜑+𝑘′,𝑎′, 𝜔(𝑦)) ≤
𝐶′
𝜑
2𝑙 𝜑(𝑥, 𝑦) + 𝐶″

𝜑|𝑎 − 𝑎′|𝑠.

Proof of Corollary 3.21. The proof is the verbatim repetition of the proof of Corollary
4.26 from [GK]. □

Sketch of the proof of Proposition 3.1. Once Corollary 3.21 is obtained, Proposition 3.1
follows by repeating verbatim the same arguments as in [GK] (see Remark 3.2).
Namely, consider the sequence of intervals |𝑋𝑚,𝑖|, 𝑚 = 1, . . . , 𝑛. If all of them are of
length at most 𝜀′, we are in the first (“small intervals”) case. Otherwise, there is a first
iteration number𝑚′ for which |𝑋𝑚′,𝑖| > 𝜀′.
Denote 𝛾 ≔ exp(−4√𝑛). Then, for each such interval, Corollary 3.21 (together with

the Markov inequality) implies that with the probability at least 1 − 𝛾𝑠/3 the images

𝑥𝑚,𝑖−1 = 𝑓𝑚,𝑏𝑖−1,𝜔(𝑥0) and 𝑥𝑚,𝑖 = 𝑓𝑚,𝑏𝑖,𝜔(𝑥0)

approach each other at the time𝑚 = 𝑚′ + 𝐾 3√𝑛 at the distance at most 𝛾1/12, and stay
close to each other until 𝑚 = 𝑛. Now, their lifts ̃𝑥𝑚,𝑖−1 and ̃𝑥𝑚,𝑖 can either approach
each other — in which case the length of the corresponding interval 𝑋𝑚,𝑖 becomes
small, and this is the “opinion-changer” option. Or the difference between these lifts
can be close to 1, and this is the “jump interval” case.
Finally, for every 𝑚 the intervals 𝑋𝑚,𝑖 have disjoint interiors, hence there are at

most const ⋅𝑛2 of them that are larger than 𝜀′. Thus, with the probability at least 1 −
const ⋅𝑛2𝛾𝑠/3 the above description applies simultaneously to all non-small intervals,
and this concludes the proof. □

3.7. Distribution of jump intervals. Here we provide a sketch of the proof of Prop-
erty (IV) in Theorem 1.15. The proof is almost a verbatim repetition of the proof of
Parts (I) and (V) from [GK, Theorem 1.19]. Here we just explain what steps of the
proof has to be adjusted in the non-stationary setting.
Recall that we denoted ̃𝑥𝑚,𝑖 = ̃𝑓𝑚,𝑏𝑖,𝜔( ̃𝑥0), the intervals 𝑋𝑚,𝑖 were defined by (23),

and for an interval 𝐼 ⊂ 𝐽, 𝐼 = [𝑎′, 𝑎″], we defined

𝑅𝑛,𝜔(𝐼) ≔ ̃𝑓𝑛,𝑎″,𝜔( ̃𝑥0) − ̃𝑓𝑛,𝑎′,𝜔( ̃𝑥0).

The Property (IV) follows immediately from the following statement, which is analo-
gous to [GK, Proposition 4.27]:

Proposition 3.22. For any 𝜀′ > 0 there exists 𝜁5 > 0 such that for any𝑚 ≤ 𝑛

(53) ℙ (
( ̃𝑥𝑚,𝑁 − ̃𝑥𝑚,0) − #{𝑗 ∶ |𝑋𝑚,𝑗| ≥ 1}

𝑛 > 𝜀′) < exp(−𝜁5 4√𝑛).

Proposition 3.22 applied to any interval 𝐼 ⊂ 𝐽 of the form 𝐼 = [𝑏𝑖, 𝑏𝑖′], 0 ≤ 𝑖 < 𝑖′ ≤ 𝑁
instead of 𝐽, implies that with probability at least 1 − exp(−𝜁5 4√𝑛), the number

𝑀𝐼;𝑚 ≔ #{𝑘 ∣ 𝑎𝑖𝑘 ∈ 𝐼,𝑚𝑘 ≤ 𝑚}
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is 𝜀′𝑛-close to ̃𝑓𝑛,𝑏𝑖,𝜔( ̃𝑥0) − ̃𝑓𝑛,𝑏𝑖′ ,𝜔( ̃𝑥0) = 𝑅𝑛,𝜔(𝐼). And applied to 𝑚 = 𝑛, it gives
that with probability at least 1 − exp(−𝜁5 4√𝑛), 𝑀 = #{𝑗 ∶ |𝑋𝑛,𝑗| ≥ 1} is 𝜀′𝑛-close
to ̃𝑓𝑛,𝑏+,𝜔( ̃𝑥0) − ̃𝑓𝑛,𝑏−,𝜔( ̃𝑥0) = 𝑅𝑛,𝜔(𝐽). This gives the part (IV) of Theorem 1.15.
The proof of Proposition 3.22 is exactly the same as the proof of [GK, Proposition

4.27], where the only difference is that, in order to accommodate the shift from station-
ary to non-stationary setting, one should use Proposition 3.19 instead of [GK, Proposi-
tion 4.18].

4. Spectral localization: Proof of Theorems 1.14 and 1.1

4.1. Deducing spectral localization from Theorem 1.14. Let us first show that
Theorem 1.14 implies spectral localization.

Proof of Theorem 1.1. We will need the following result, that is usually referred to as
“Shnol Theorem”, due to a similar result in the paper [Shn] (see also [Gl1,Gl2]):

Theorem 4.1 (Shnol Theorem). Let𝐻 ∶ ℓ2(ℤ) → ℓ2(ℤ) be an operator of the form
[𝐻𝑢](𝑛) = 𝑢(𝑛 − 1) + 𝑢(𝑛 + 1) + 𝑉(𝑛)𝑢(𝑛),

with a bounded potential {𝑉(𝑛)}𝑛∈ℤ. If every polynomially bounded solution to𝐻𝑢 = 𝐸𝑢
is in fact exponentially decreasing, then 𝐻 has pure point spectrum, with exponentially
decaying eigenfunctions. Similar statement holds for operators on ℓ2(ℕ) with Dirichlet
boundary condition.

In the continuum case Theorem 4.1 follows also from [Sim2, Theorem 1.1]. The
formal proof in the discrete case can be found, for instance, in [Kir, Theorem 7.1]; we
also refer the reader to some improved versions of this result in [JZ, Lemma 2.6] or [H].
Due to Theorem 4.1, it suffices to show that (almost surely) every polynomially

bounded solution 𝑢 to the eigenvector problem 𝐻𝑢 = 𝐸𝑢 is in fact exponentially de-
creasing. Now, for a random Schrödinger operator𝐻, given by (1), this relation can be
written as

𝑢𝑛+1 = (𝐸 − 𝑉(𝑛))𝑢𝑛 − 𝑢𝑛−1,
that transforms into a recurrent relation for vectors 𝑣𝑛 ≔ (ᵆ𝑛+1ᵆ𝑛

):

(54) (𝑢𝑛+1𝑢𝑛
) = Π𝑛,𝐸 (

𝑢𝑛
𝑢𝑛−1

) ,

where
Π𝑛,𝐸 = (𝐸 − 𝑉(𝑛) −1

1 0 ) .

Note that the product of matrices corresponding to the random Schrödinger opera-
tor (1) satisfies the assumptions of Theorem 1.14 after grouping these matrices in pairs
(that is, the condition in Remark 1.7 for 𝑘 = 2). Indeed, these matrices are indepen-
dent (as random variables 𝑉(𝑛) are), and satisfy the 𝐶1-boundedness assumption (B2).
Now, they can be represented as

Π𝑛,𝐸 = (1 𝐸 − 𝑉(𝑛)
0 1 ) (0 −1

1 0 ) ;

this implies non-strict monotonicity, as the first (parabolic) factor turns everything in
the positive direction, except for the vector ( 10), that is the image of the (

0
1 ) vector under
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the action of the second matrix. As these two vectors are different, a composition of
any two such matrices Π𝑛+1,𝐸Π𝑛,𝐸 satisfies the strict monotonicity condition (B3).
Finally, if for two measures 𝜈1, 𝜈2 and some homeomorphisms 𝑓, 𝑔 one has 𝑓∗𝜈1 =

𝑔∗𝜈1 = 𝜈2, then 𝜈2 is an invariant measure of the quotient (𝑓 ∘ 𝑔−1). However, the
quotient of any two different maps Π𝑛,𝐸 is a parabolic map of the form

(1 ∗
0 1) ,

and the only invariant measure of its projectivization is the Dirac one, concentrated at
the direction of the vector ( 10). This measure is the image of the measure concentrated
at the direction of the vector (01 ). And as these two measures are different, there is no
measure with a deterministic image under a composition of two matrices, and hence
for such a composition the condition (B1) is also satisfied. Hence, the assumptions of
Theorem 1.14 are satisfied.
Returning to polynomially growing solutions of 𝐻𝑢 = 𝐸𝑢, note that for any such

solution,

lim sup
𝑛→∞

1
𝑛(log |𝑣𝑛| − 𝐿𝑛(𝐸)) = lim sup

𝑛→∞
−1𝑛𝐿𝑛(𝐸) ≤ −ℎ < 0,

and hence due to Theorem 1.14

log |𝑣𝑛| = −𝐿𝑛 + 𝑜(𝑛),
thus 𝑢𝑛 is exponentially decreasing. This (due to Shnol’s lemma) completes the proof
of the spectral localization. □

4.2. Hyperbolic-like products and behaviour of log-norms. We will need Defini-
tions 4.2 and 4.3; roughly speaking, the first one is the condition that means that in a
product of given matrices there is “not too much cancellation”:

Definition 4.2. Given matrices 𝐴1, . . . , 𝐴𝑛 ∈ SL(2, ℝ), and a sequence 𝐿𝑗 , 𝑗 = 1, . . . , 𝑛
of real numbers, we say that the product 𝐴𝑛 . . . 𝐴1 is (𝐿, 𝑟)-hyperbolic if for any 0 ≤ 𝑚 <
𝑚′ ≤ 𝑛 for the product 𝑇[𝑚,𝑚′] ≔ 𝐴𝑚′ . . . 𝐴𝑚+1 one has

(55) log ‖𝑇[𝑚,𝑚′]‖ ∈ 𝑈𝑟(𝐿𝑚′ − 𝐿𝑚).
Also, we say that a part [𝑛1, 𝑛2] of this product is (𝐿, 𝑟)-hyperbolic, if (55) holds for all
𝑚,𝑚′ such that [𝑚,𝑚′] ⊆ [𝑛1, 𝑛2].

The second definition imposes restrictions on the sequences 𝐿 we will be using:

Definition 4.3. A sequence 𝐿 = (𝐿𝑗)𝑗=1,. . .,𝑛 is (ℎ, ̃𝐶)-growing, if for any 0 ≤ 𝑚 < 𝑚′ ≤
𝑛 one has

𝐿𝑚′ − 𝐿𝑚 ≥ ℎ(𝑚′ −𝑚) − ̃𝐶,
where we set 𝐿0 ≔ 0.

Now, to establish Theorem1.14, wewill study possible behaviours of the sequence of
log-norms log |𝑇𝑚,𝑎,𝜔 ( 10 ) |. To do so, assume again that we are given a (finite) sequence
of matrices 𝐴1, . . . , 𝐴𝑛 ∈ SL(2, ℝ). Then, given a (non-zero) vector 𝑣0 ∈ ℝ2, we can
consider the sequence of its iterations

(56) 𝑣𝑚 = 𝐴𝑚𝑣𝑚−1, 𝑚 = 1, . . . , 𝑛.
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The following statements, describing possible behaviours of the sequence of log-
norms log |𝑣𝑚|, 𝑚 = 0, . . . , 𝑛, are non-stationary analogues of Lemmata 5.2, 5.4, and 5.5
and of Remark 5.3 from [GK]. Their proofs are almost verbatim reproduction of the
arguments from [GK], but we present them here for completeness.

Lemma 4.4 (Growth curve). For any𝑀,ℎ, 𝜀 > 0 there exist 𝜀′, 𝑛1 > 0with the following
property. Assume that 𝑛 > 𝑛1 and the following conditions hold:

• a part [𝑚0, 𝑚1] of the product 𝐴𝑛 . . . 𝐴1 is (𝐿, 𝑛𝜀′)-hyperbolic,
• all 𝐴𝑖 satisfy ‖𝐴𝑖‖ ≤ 𝑀,
• the sequence 𝐿 is (ℎ, 𝑛𝜀′)-growing
• and 𝑣𝑚0 is the least norm vector in the sequence (56) in the index interval
[𝑚0, 𝑚1], i.e. |𝑣𝑚0 | ≤ |𝑣𝑚| for all𝑚 = 𝑚0 + 1, . . . , 𝑚1.

Then
∀𝑚 = 𝑚0, 𝑚0 + 1, . . . , 𝑚1 log |𝑣𝑚| − log |𝑣𝑚0 | ∈ 𝑈𝑛𝜀(𝐿𝑚 − 𝐿𝑚0).

m0 m1

log |vm|

m

0 n

log |vm|

m

m
′ 0 n
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′
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′

+
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Figure 4. Behaviour of log-norm of iterations of a given vector as in
Lemmata 4.4, 4.5, 4.6. Bold line corresponds to the prediction curve
(mid-point of the vertical neighborhood), dashed region shows its
𝜀𝑛-neighborhood.

Proof. Without loss of generality, we can assume that 𝑣𝑚0 is a unit vector. Take another
unit vector, 𝑤𝑚0 , that realizes the norm of the full product until given𝑚 ∈ [𝑚0, 𝑚1],

|𝑇[𝑚0,𝑚]𝑤𝑚0 | = ‖𝑇[𝑚0,𝑚]‖,
and consider the sequence of the corresponding intermediate images,

𝑤𝑗 = 𝐴𝑗𝑤𝑗−1, 𝑗 = 𝑚0 + 1, . . . , 𝑚.
Then, we have a lower bound for their norms: as 𝑤𝑚 = 𝑇[𝑗,𝑚]𝑤𝑗 ,

(57) log |𝑤𝑗| ≥ log |𝑤𝑚|
‖𝑇[𝑗,𝑚]‖

= log ‖𝑇[𝑚0,𝑚]‖ − log ‖𝑇[𝑗,𝑚]‖

≥ ((𝐿𝑚 − 𝐿𝑚0) − 𝑛𝜀′) − ((𝐿𝑚 − 𝐿𝑗) + 𝑛𝜀′)
= (𝐿𝑗 − 𝐿𝑚0) − 2𝑛𝜀′ ≥ ℎ(𝑗 − 𝑚0) − 3𝑛𝜀′,

where we have used the (ℎ, 𝑛𝜀′)-growth assumption for the sequence 𝐿.
Now, let 𝜙𝐴 be the function on the circle of directions that describes the change of

the length:

𝜙𝐴([𝑣]) = log |𝐴𝑣||𝑣|
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for 𝑣 ∈ ℝ2 ⧵ {0}, where [𝑣] is the corresponding point of 𝕊1 = ℝ𝑃1.
Then the log-length of an image of a vector is given by a sum:

(58) log |𝑣𝑚| =
𝑚
∑

𝑗=𝑚0+1
log

|𝐴𝑗𝑣𝑗−1|
|𝑣𝑗−1|

=
𝑚
∑

𝑗=𝑚0+1
𝜙𝐴𝑗 ([𝑣𝑗−1]),

(59) log |𝑤𝑚| =
𝑚
∑

𝑗=𝑚0+1
log

|𝐴𝑗𝑤𝑗−1|
|𝑤𝑗−1|

=
𝑚
∑

𝑗=𝑚0+1
𝜙𝐴𝑗 ([𝑤𝑗−1]).

Family of the functions 𝜙𝐴 for 𝐴 ∈ SL(2, ℝ), ‖𝐴‖ ≤ 𝑀, is equicontinuous on ℝ𝑃1.
Hence, for any 𝜀 > 0 there exists 𝛿 > 0 such that

(60) |𝜙𝐴([𝑢]) − 𝜙𝐴([𝑣])| <
𝜀
2

for all 𝐴 ∈ SL(2, ℝ) with ‖𝐴‖ ≤ 𝑀 and all 𝑢, 𝑣 with the angle between the correspond-
ing lines less than 𝛿. At the same time, subtracting (59) from (58) gives

(61) log |𝑣𝑚| = log |𝑤𝑚| +
𝑚
∑

𝑗=𝑚0+1
(𝜑𝐴𝑗 ([𝑣𝑗−1]) − 𝜑𝐴𝑗 ([𝑤𝑗−1])) .

The first summand is within 2𝑛𝜀′ from (𝐿𝑚 − 𝐿𝑚0) due to (57) and the assumption on
(𝑛𝜀′, 𝐿)-hyperbolicity.
Let us decompose the sum in the second summand depending on whether we can

guarantee that the directions of𝑤𝑗−1 and 𝑣𝑗−1 are less than 𝛿 apart. To do so, note that
the initial 𝑣𝑚0 and 𝑤𝑚0 are unit vectors, and thus they form a parallelogram of area at
most 1. Hence the same holds for their images 𝑣𝑗 and 𝑤𝑗 for any 𝑗 = 𝑚0, . . . , 𝑚1 (see
Fig. 5). As we have assumed |𝑣𝑗| ≥ 1 and as |𝑤𝑗| ≥ exp(𝐿𝑗 − 𝐿𝑚0 − 2𝑛𝜀′), the angle
between the lines passing through 𝑣𝑗 and 𝑤𝑗 does not exceed

(62) dist([𝑣𝑗], [𝑤𝑗]) ≤
𝜋
2 exp(−𝐿𝑗 + 𝐿𝑚0 + 2𝑛𝜀′).

vm0

wm0

vj

wj

T[m0;j]

Figure 5. Controlling angles between 𝑣𝑗 and 𝑤𝑗

Hence, due to (62) we can guarantee that the angle between the lines containing 𝑣𝑗
and 𝑤𝑗 is at most 𝛿 once

ℎ(𝑗 − 𝑚0) − 3𝑛𝜀′ ≥ log( 𝜋2𝛿 ),

or, equivalently, once

𝑗 − 𝑚0 ≥
3𝜀′
ℎ 𝑛 + log(𝜋/2𝛿)

ℎ ;
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in particular, for all 𝑛 sufficiently large, it suffices to assume that

𝑗 − 𝑚0 ≥
4𝜀′
ℎ 𝑛.

Hence, in (61) there are at most 4𝜀′
ℎ 𝑛 summands with the angles exceeding 𝛿, each of

which does not exceed 2 log𝑀; hence, their contribution does not exceed
4𝜀′
ℎ 𝑛 ⋅ 2 log𝑀.

At the same time, the contribution of the other ones is bounded by 𝜀
2𝑛 due to the choice

of 𝛿. Thus, we get an estimate

|log |𝑣𝑚| − log |𝑤𝑚|| ≤ 𝑛 𝜀2 + 2 log𝑀 ⋅ 4𝜀
′

ℎ 𝑛 = (8 log𝑀ℎ 𝜀′ + 𝜀
2) 𝑛,

and adding it with (57), we finally get

|log |𝑣𝑚| − 𝐿𝑚| ≤ ((2 + 8 log𝑀
ℎ ) 𝜀′ + 𝜀

2) 𝑛.

Fixing 𝜀′ = (2 + 8 log𝑀
ℎ )

−1
⋅ 𝜀2 , we get (for all sufficiently large 𝑛) the desired upper

bound
| log |𝑣𝑚| − 𝐿𝑚| ≤ 𝜀𝑛.

This completes the proof of Lemma 4.4. □

Removing the assumption that 𝑣𝑚0 is the least norm vector in the sequence, we then
immediately get the following

Lemma 4.5 (Curved-V-shape). For any𝑀, 𝜀, ℎ > 0 there exist 𝜀′, 𝑛2 > 0with the follow-
ing property. Assume that 𝑛 > 𝑛2 and

• a part [𝑚0, 𝑚1] of the product 𝐴𝑛 . . . 𝐴1 is (𝐿, 𝑛𝜀′)-hyperbolic,
• all 𝐴𝑖 satisfy ‖𝐴𝑖‖ ≤ 𝑀,
• the sequence 𝐿 is (ℎ, 𝑛𝜀′)-growing
• and (𝑣𝑚) be a sequence of intermediate images associated to some 𝑣0 ∈ ℝ2 ⧵ {0}
given by (56)

Then there exists𝑚′ ∈ {𝑚0, . . . , 𝑚1}, such that

∀𝑚 = 𝑚0, 𝑚0 + 1, . . . , 𝑚1 log |𝑣𝑚| − log |𝑣𝑚′ | ∈ 𝑈𝑛𝜀(|𝐿𝑚 − 𝐿𝑚′ |).

Proof. It suffices to take𝑚′ to be the index of the least norm 𝑣𝑚,𝑚 = 𝑚0, . . . , 𝑚1, and
apply Lemma 4.4 to intervals [𝑚0, 𝑚′] and [𝑚′, 𝑚1] separately.
To handle the case of one of these intervals being too small (of length less than 𝑛0),

we choose 𝑛1 sufficiently large so that 𝑛1𝜀 > 2𝑛0 log𝑀. □

Now, the conclusions (I) and (II) of Theorem 1.15 together imply (for 𝑛, 𝜀 for which
these conclusions hold) that for any 𝑎 ∈ 𝐽 the product 𝑇𝑛,𝑎,𝜔 either is (𝑛𝜀, (𝐿𝑚))-
hyperbolic itself, or can be divided into two hyperbolic products; also, Proposition 3.8
implies that {𝐿𝑚} is (ℎ, 𝜀𝑛) growing. Thus, under the conclusions of Theorem 1.15 and
Proposition 3.8 we have Lemma 4.6.
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Lemma 4.6 (Curved-W-shape). For any 𝜀 > 0 there exists 𝜀′ > 0, 𝑛1 ∈ ℕ such that
for all 𝑛 > 𝑛1 the following holds. Assume that the conclusions of Theorem 1.15 with the
given 𝜀′ are satisfied for some finite product 𝑇𝑛,𝑎,𝜔. Then for any sequence ̄𝑣𝑚 of non-zero
vectors such that ̄𝑣𝑚 = 𝑇𝑚,𝑎,𝜔( ̄𝑣0), there exist numbers𝑚′

− ≤ 𝑚̄ ≤ 𝑚′
+ such that

∀𝑚 ∈ [0, 𝑚̄] log |𝑣𝑚| − log |𝑣𝑚′− | ∈ 𝑈𝑛𝜀(|𝐿𝑚 − 𝐿𝑚′− |),

∀𝑚 ∈ [𝑚̄, 𝑛] log |𝑣𝑚| − log |𝑣𝑚′
+ | ∈ 𝑈𝑛𝜀(|𝐿𝑚 − 𝐿𝑚′

+ |).

In the same way as the previous ones, Lemma 4.6 admits a geometric interpretation
in terms of the corresponding graphs; see Fig. 4.

4.3. First part of Theorem 1.14: Dirichlet conditions. In the same way as in [GK,
Theorem 1.13], Lemma 4.5 allows us to prove the first (one-sided products) part of
Theorem 1.14.

Proof of the first part of Theorem 1.14. Denote

(63) 𝑣0 = ( 10 ) , 𝑣𝑚 = 𝑇𝑚,𝑎,𝜔𝑣0, 𝑚 = 1, . . . , 𝑛.

Assume that (3) holds; then for some 𝜀0 > 0 one has for all sufficiently large 𝑛

(64) log |𝑣𝑛| = log |𝑇𝑛,𝑎,𝜔 ( 10 ) | < 𝐿𝑛(𝑎) − 𝑛𝜀0.

Due to the standard argument of a countable intersection (considering a sequence of
positive values of 𝜀0 that tends to zero) it suffices to show that the conclusion of the
theorem holds with (3) replaced with (64). From now on, fix small 𝜀0 > 0.
Take the point 𝑥0 on the circle to be the projectivization image of the vector 𝑣0.

As in [GK], note that due to the convergence of the series ∑𝑛 exp(−𝛿0 4√𝑛), Borel–
Cantelli lemma implies that for any 𝜀, 𝜀′ > 0 almost surely for all sufficiently large 𝑛
the conclusions of Theorem 1.15 and of Proposition 3.11 (for this specific choice of the
point 𝑥0) hold.
Take and fix sufficiently small 𝜀′ (we will impose an assumption on its smallness

later), and let 𝑛2 = 𝑛2(𝜀′) be such that the conclusions of Theorem 1.15 (for 𝜀′ instead
of 𝜀) and of Proposition 3.11, aswell as (64), hold for all𝑛 > 𝑛2. Note first that for𝑛 > 𝑛2
the parameter interval 𝐽𝑖, containing 𝑎, cannot be neither small nor opinion-changing,
and hence it is a jump interval.
Indeed, otherwise due to Proposition 3.11 we get

log ̃𝑓′𝑛,𝑎,𝜔( ̃𝑥0) ∈ 𝑈𝐶1𝜀′𝑛(−2𝐿𝑛(𝑎)),

thus implying a lower bound for the norm

log |𝑣𝑛| = log |𝑇𝑛,𝑎,𝜔(𝑣0)| ≥ 𝐿𝑛(𝑎) −
𝐶1𝜀′
2 𝑛.

Once 𝜀′ is sufficiently small to ensure
𝐶1𝜀′
2 < 𝜀0,

this lower bound contradicts (64). This proves that the interval 𝐽𝑖 ∋ 𝑎 is actually a jump
interval for all 𝑛 > 𝑛1.
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Moreover, if 𝑚̄(𝑛) is the corresponding jump index (provided by the conclusion of
Proposition 3.11), using the estimate (30) for the derivative after 𝑚 = 𝑚̄(𝑛) iterations
again provides a lower bound

(65) log |𝑣𝑚̄(𝑛) | = log |𝑇𝑚̄(𝑛),𝑎,𝜔(𝑣0)| ≥ 𝐿𝑚̄(𝑛)(𝑎) −
𝐶1𝜀′
2 𝑛.

Together with an upper bound (64) at the same iteration 𝑚̄(𝑛), still assuming that
𝑚̄(𝑛) > 𝑛2, we get

log |𝑣𝑚̄(𝑛) | < 𝐿𝑚̄(𝑛)(𝑎) − 𝑚̄(𝑛)𝜀0,
this (see Fig. 6, left) provides an inequality

𝐶1𝜀′
2 𝑛 ≥ 𝑚̄(𝑛)𝜀0.

Hence, for all sufficiently large 𝑛 (namely, for 𝑛 > 2𝜀0𝑛2
𝐶1𝜀′

) we have an upper bound

(66) 𝑚̄(𝑛) ≤
𝐶1𝜀′
2𝜀0

𝑛.

0 n

log |vm|

m

Lm −mε0

Lm

0 n

log |vm|

m

m
′

(n)

Lm −mε0

Lm

2(L
m

′

(n)
− Lm̄(n)

)

Figure 6. Left: Upper estimate for 𝑚̄(𝑛); if it did not hold, lower
(dashed) and upper (dotted) estimates for log |𝑣𝑚| would contradict
each other at 𝑚 = 𝐶1𝜀′

2𝜀0
𝑛. Right: Lower estimate for 𝑚′

(𝑛); otherwise,
lower (dashed) and upper (dotted) estimates for log |𝑣𝑛| would con-
tradict each other.

Now, for given 𝜀 > 0 let 𝜀′ > 0 be chosen sufficiently small, and 𝑛 be sufficiently
large for Lemma 4.5 to be applicable. Then, the conclusions of Theorem 1.15 and
Proposition 3.11 imply that the part [𝑚̄(𝑛), 𝑛] of the product 𝐴𝑛(𝑎) . . . 𝐴1(𝑎) is (𝐿, 𝑛𝜀′)-
hyperbolic, and hence the conclusions of Lemma 4.5 hold on this interval of indices.
Let 𝑚′ = 𝑚′

(𝑛) ∈ [𝑚(𝑛), 𝑛] be the corresponding index. Then, we have lower bounds
for the log-norms, where the former one is (65), and two latter ones are implied by
Lemma 4.5:

(67) log |𝑣𝑚̄(𝑛) | ≥ 𝐿𝑚̄(𝑛)(𝑎) −
𝐶1𝜀′
2 𝑛,

(68) log |𝑣𝑚′
(𝑛)
| − log |𝑣𝑚̄(𝑛) | ≥ −(𝐿𝑚′

(𝑛)
(𝑎) − 𝐿𝑚̄(𝑛)(𝑎)) − 2𝑛𝜀,

(69) log |𝑣𝑛| − log |𝑣𝑚′
(𝑛)
| ≥ (𝐿𝑛(𝑎) − 𝐿𝑚′

(𝑛)
(𝑎)) − 2𝑛𝜀.
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Figure 7. Guaranteed decrease of log |𝑣𝑚| between𝑚 = 𝜆𝑛 and𝑚 = 2𝜆𝑛

Hence,

(70) log |𝑣𝑛| ≥ 𝐿𝑛(𝑎) − 2(𝐿𝑚′
(𝑛)
(𝑎) − 𝐿𝑚̄(𝑛)(𝑎)) − 4𝑛𝜀 − 𝐶1𝜀′

2 𝑛.

On the other hand, recall that log |𝑣𝑛| ≤ 𝐿𝑛(𝑎) − 𝑛𝜀0. Hence,

(71) 2(𝐿𝑚′
(𝑛)
(𝑎) − 𝐿𝑚̄(𝑛)(𝑎)) ≥ 𝑛(𝜀0 − 4𝜀 − 𝐶1𝜀′

2 ),

and as we can choose 𝜀 and then 𝜀′ arbitrarily small, we can ensure that the right hand
side of (71) is at least 𝜀02 𝑛, finally implying a lower bound (see Fig. 6, right)

(𝐿𝑚′
(𝑛)
(𝑎) − 𝐿𝑚̄(𝑛)(𝑎)) ≥

𝜀0
4 𝑛

and thus

(72) 𝑚′
(𝑛) − 𝑚̄(𝑛) ≥

𝜀0
4 log𝑀

𝑛.

Let 𝜆 ≔ 𝜀0
8 log𝑀

. Then, for a sufficiently small 𝜀′ and all sufficiently large 𝑛, from (66)
and (72) we get

𝑚̄(𝑛) < 𝜆𝑛, 𝑚′
(𝑛) > 2𝜆𝑛.

Now, the conclusions of Lemma 4.5 imply that (for all sufficiently large 𝑛 and for all
𝑚1, 𝑚2 on the interval [𝜆𝑛, 2𝜆𝑛] one has
(73) (log |𝑣𝑚1 | − log |𝑣𝑚2 |) ∈ 𝑈2𝑛𝜀 (−(𝐿𝑚1(𝑎) − 𝐿𝑚2(𝑎))) ;
see Fig. 7. Denote 𝑟𝑚 ≔ log |𝑣𝑚| + 𝐿𝑚(𝑎), then we can rewrite (73) as

∀𝑚1, 𝑚2 ∈ [𝜆𝑛, 2𝜆𝑛] |𝑟𝑚1 − 𝑟𝑚2 | ≤ 2𝑛𝜀.
Hence, if we use the notation ⌈𝑥⌉ for “ceiling function” that rounds a number 𝑥 up to
the nearest integer, then for every sufficiently large𝑚 we have

(74) |𝑟𝑚 − 𝑟⌈𝑚2 ⌉| ≤
2
𝜆𝜀 ⋅ 𝑚,

where we are taking 𝑛 = ⌈𝑚/2𝜆⌉ to ensure that both 𝑚1 ≔ 𝑚, 𝑚2 ≔ ⌈𝑚/2⌉ belong to
[𝜆𝑛, 2𝜆𝑛].
Finally, summing (74) over the decreasing geometric series𝑚, 𝑚2 ,

𝑚
4 , . . . , we get

(75) ∀𝑚 |𝑟𝑚| ≤
4
𝜆𝜀 ⋅ 𝑚 + const
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for some uniform constant that does not depend on 𝑚. (One can also see the proof
of (75) as an induction argument, and the constant coming from the base of the induc-
tion, that is, small values of𝑚.)
Thus,

lim sup
𝑚→∞

1
𝑚 |log |𝑣𝑚| + 𝐿𝑚(𝑎)| ≤

4
𝜆𝜀.

As 𝜀 > 0 can be chosen arbitrarily small, and 𝜆 depends only on 𝜀0, but not on 𝜀, we
obtain the desired

lim sup
𝑚→∞

1
𝑚 (log |𝑣𝑚| + 𝐿𝑚(𝑎)) = 0.

This completes the proof of the first part of Theorem 1.14. □

4.4. Second part of Theorem 1.14. The proof of Theorem 1.14 repeats almost word-
for-word the proof of [GK, Theorem 1.11], though there are some modifications adapt-
ing it to the non-stationary case.

Proof of the second part of Theorem 1.14. Let 𝑣𝑛 ≔ 𝑇𝑛,𝑎,𝜔(𝑣) for all 𝑛. Without loss of
generality, we can assume that |𝑣0| = 1. As in the proof of the first part, it suffices to
show that

(76) lim sup
𝑛→±∞

1
|𝑛| (log |𝑣𝑛| − 𝐿𝑛(𝑎)) < −𝜀0

in fact forces
lim sup
𝑛→±∞

1
|𝑛| (log |𝑣𝑛| + 𝐿𝑛(𝑎)) = 0.

As before, (76) implies that for all sufficiently large 𝑛 we have
(77) log |𝑣𝑛| < 𝐿𝑛(𝑎) − 𝜀0𝑛, log |𝑣−𝑛| < 𝐿−𝑛(𝑎) − 𝜀0𝑛.
We can assume that for any 𝜀, 𝜀′ > 0, 𝜀′ ≪ 𝜀 ≪ 𝜀0, for all 𝑛 sufficiently large the

conclusions of Theorem 1.15 hold for the product
(78) 𝑇[−𝑛;𝑛],𝑎,𝜔 = 𝐴𝑛(𝑎) . . . 𝐴−𝑛(𝑎),
and hence Lemma 4.6 can be applied.
In the same way as before, for any such 𝑛 we let 𝑚′

−,(𝑛) < 𝑚̄(𝑛) < 𝑚′
+,(𝑛) be the

indices given for the product (78) by Lemma 4.6 (that correspond to the breakpoints of
the “curved W” graph, the central one being the upwards break point).
Note first that for all sufficiently large 𝑛 one has

(79) 𝑚′
−,(𝑛) < 0 < 𝑚′

+,(𝑛).
Indeed, if𝑚′

+,(𝑛) ≤ 0, then one would have
log |𝑣𝑛| − log |𝑣0| ∈ 𝑈2𝑛𝜀(𝐿𝑛(𝑎)),

and hence (recall that |𝑣0| = 1)
log |𝑣𝑛| ≥ 𝐿𝑛(𝑎) − 2𝑛𝜀,

contradicting the assumed (77) as 2𝜀 < 𝜀0. In the same way we get𝑚′
−,(𝑛) < 0.

Now, in the sameway as in the first part, we are going to show that the “jump” index
𝑚̄(𝑛) is sufficiently close to 0. Indeed, the conclusions of Lemma 4.6 together with (79)
imply that

log |𝑣𝑚̄(𝑛) | ≥ 𝐿𝑚̄(𝑛)(𝑎) − 2𝑛𝜀.
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Since due to (77) we know that
log |𝑣𝑚̄(𝑛) | ≤ 𝐿𝑚̄(𝑛)(𝑎) − 𝜀0 ⋅ |𝑚̄(𝑛)|,

we get
𝜀0 ⋅ |𝑚̄(𝑛)| ≤ 2𝑛𝜀,

and thus
|𝑚̄(𝑛)| ≤

2𝜀
𝜀0
𝑛.

Now, in the same way as in the first part, we are going to prove the auxiliary

Lemma 4.7. 𝑚′
+,(𝑛), |𝑚′

−,(𝑛)| ≥ 2𝜆𝑛 for all sufficiently large 𝑛, where 𝜆 = 𝜀0
8 log𝑀

.

Proof. We will establish the estimate for 𝑚′
+,(𝑛), as the other one is completely analo-

gous. To do so, assume first that 𝑚̄(𝑛) > 0. Then, we have three inequalities
(80) log |𝑣𝑚̄(𝑛) | ≥ 𝐿𝑚̄(𝑛)(𝑎) − 2𝜀𝑛,

(81) log |𝑣𝑚′
+,(𝑛)

| − log |𝑣𝑚̄(𝑛) | ≥ −(𝐿𝑚′
+,(𝑛)

(𝑎) − 𝐿𝑚̄(𝑛)(𝑎)) − 2𝑛𝜀,

(82) log |𝑣𝑛| − log |𝑣𝑚′
(+,𝑛)

| ≥ (𝐿𝑛(𝑎) − 𝐿𝑚′
+,(𝑛)

(𝑎)) − 2𝑛𝜀

that are analogues of (67), (68) and (69) respectively. Adding, we get an analogue of (70)
(83) log |𝑣𝑛| ≥ 𝐿𝑛(𝑎) − 2(𝐿𝑚′

+,(𝑛)
(𝑎) − 𝐿𝑚̄(𝑛)(𝑎)) − 6𝑛𝜀,

and hence
2(𝐿𝑚′

+,(𝑛)
(𝑎) − 𝐿𝑚̄(𝑛)(𝑎)) ≥ 𝑛(𝜀0 − 6𝜀).

Thus, once 𝜀 < 1
12 𝜀0, we have

log𝑀 ⋅ (𝑚′
+,(𝑛) − 𝑚̄(𝑛)) ≥

𝑛𝜀0
4

and hence the desired
𝑚′
+,(𝑛) − 𝑚̄(𝑛) ≥

𝑛𝜀0
4 log𝑀

= 2𝜆𝑛.

Now, in the case 𝑚̄(𝑛) ≤ 0, instead of (80) and (81) we get directly
log |𝑣𝑚′

+,(𝑛)
| ≥ −𝐿𝑚′

+,(𝑛)
(𝑎) − 2𝑛𝜀;

together with (82), we then get
log |𝑣𝑛| ≥ 𝐿𝑛(𝑎) − 2(𝐿𝑚′

+,(𝑛)
(𝑎)) − 4𝑛𝜀,

and conclude in the same way as before. □

Now, we have that for all sufficiently large 𝑛
𝑚̄(𝑛) < 𝜆𝑛 < 2𝜆𝑛 < 𝑚′

+,(𝑛),
and hence (73) holds for any two𝑚1, 𝑚2 on the interval [𝜆𝑛, 2𝜆𝑛]. From this moment
the exact repetition of the arguments of the first part allows to conclude: we denote
𝑟𝑚 ≔ log |𝑣𝑚|+𝐿𝑚(𝑎), obtain the estimate (74) for all sufficiently large𝑚. By summing
over𝑚, 𝑚2 ,

𝑚
4 , . . . , we get (75) and hence

lim sup
𝑚→∞

1
𝑚 |log |𝑣𝑚| + 𝐿𝑚(𝑎)| ≤

4
𝜆𝜀,
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thus implying (as 𝜀 can be taken arbitrarily small) the desired

lim sup
𝑚→∞

1
𝑚 (log |𝑣𝑚| + 𝐿𝑚(𝑎)) = 0.

This completes the proof of the first part of Theorem 1.14.
The asymptotics at −∞ can be handled in the same way. This completes the proof

of Theorem 1.14. □

5. Dynamical localization: Proof of Theorem 1.4

5.1. Operator on ℓ2(ℕ)with the Dirichlet boundary conditions.
Proof of the first part of Theorem 1.4. We will start by considering the case of the oper-
ator on ℓ2(ℕ) with the Dirichlet boundary condition at the origin. We already know
from Theorem 1.1 that the spectral localization holds: the operator 𝐻 admits an or-
thonormal base of eigenfunctions 𝑢𝑗 ∈ ℓ2(ℕ),

𝐻𝑢𝑗 = 𝐸𝑗𝑢𝑗 .
As before, this equation can be transformed into the recurrent relation (54) on the vec-
tors 𝑣𝑛,𝑗 = ( ᵆ𝑗(𝑛+1)ᵆ𝑗(𝑛) ). Note that due to the Dirichlet boundary condition, the vector
𝑣0,𝑗 is proportional to the vector 𝑣0 = ( 10 ).
Take 𝛼 = ℎ

2 , where ℎ is chosen for the random product of Π𝑛,𝐸-matrices (with 𝐸
belonging to the interval 𝐽 ≔ [−𝐾, 𝐾], containing the spectrum) as in Theorem 2.2. Let
us show that the conclusion of the theorem holds with this value of 𝛼. That is, for any
given 𝜉 > 0 we show the existence of a constant 𝐶𝜉 such that the desired estimate (2)
holds, where 𝑚̂𝑗 is always chosen to be the index, at which the norm of the vector 𝑣𝑚,𝑗
is maximal:
(84) ∀𝑚 |𝑣𝑚̂𝑗 ,𝑗| ≥ |𝑣𝑚,𝑗|.
Actually, we are going to establish a slightly stronger estimate: as the function 𝑢𝑗 is

orthonormal, one has |𝑣𝑚̂𝑗 ,𝑗| ≤ 1; we will actually show that

(85) |𝑣𝑚,𝑗| ≤ 𝐶𝜉𝑒𝜉|𝑚̂𝑗 |−𝛼|𝑚−𝑚̂𝑗 | ⋅ |𝑣𝑚̂𝑗 ,𝑗|
for all𝑚 and 𝑗.
In order to do so, wewill repeat the arguments of the proof of Theorem1.14. Namely,

we first fix sufficiently small 𝜀, 𝜀′ > 0; in fact, as we will see, one can take

(86) 𝜀 = 𝜆′ ⋅ min( 𝜉20 ,
ℎ
20) , 𝜀′ = 𝜀

𝐶1
, where 𝜆′ ≔ ℎ

20 log𝑀
,

and𝑀 is given by (B2), and 𝐶1 is given by Proposition 3.11. Then, almost surely there
exists an 𝑛2 such that for all 𝑛 > 𝑛2 the conclusions of Theorem 1.15 and of Proposi-
tion 3.11 hold for the chosen values of 𝜀, 𝜀′. We will show that knowing 𝑛2 suffices to
give an explicit value for the constant 𝐶𝜉. To do so, let us first establish Lemma 5.1,
analogous to the first steps the proof of Theorem 1.14:

Lemma 5.1. For any 𝑛 ≥ max( 2𝜆′ 𝑚̂𝑗 , 𝑛2) the parameter interval 𝐽𝑘𝑛,𝑛, containing the
energy 𝐸𝑗 , is a jump interval in terms of Proposition 3.11. Moreover, denote by 𝑚̄(𝑛) the
corresponding jump moment, and let 𝑚′

(𝑛) ∈ [𝑚̄(𝑛), 𝑛] be the moment obtained by the
application of “curved-V” Lemma 4.5. Then, for any such 𝑛, the following estimates hold:
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• the jump moment satisfies 𝑚̄′
(𝑛) < 𝜆′𝑛,

• the lowest point of curved-V satisfies𝑚′
(𝑛) > 2𝜆′𝑛.

Proof. Indeed, if the corresponding interval was not a jump one, or if the upper es-
timate for the jump index 𝑚̄′

(𝑛) did not hold, we would have (due to the log-growth
estimates (29) and (30) respectively) a lower bound for the norm of 𝑣⌈𝜆′𝑛⌉,𝑗 :
(87) log |𝑣⌈𝜆′𝑛⌉,𝑗| > log |𝑣𝑚̂𝑗 ,𝑗| − 2𝐶1𝑛𝜀′ + 𝐿⌈𝜆′𝑛⌉(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗).

As 𝜆′𝑛 ≥ 2𝑚̂𝑗 , we then would have

𝐿⌈𝜆′𝑛⌉(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗) ≥ ℎ(⌈𝜆′𝑛⌉ − 𝑚̂𝑗) ≥ ℎ ⋅ 𝜆
′𝑛
2 ;

as due to the choices (86) one has

2𝐶1𝑛𝜀′ = 2𝜀𝑛 ≤ ℎ𝜆′
10 ⋅ 𝑛,

the right hand side of (87) would thus be greater than log |𝑣𝑚̂𝑗 ,𝑗|, and this would be in
contradiction with the choice (84) of the index 𝑚̂𝑗 .
The second part, the lower bound for𝑚′

(𝑛), is obtained by an argument close to the
one ensuring (72). Namely, we get a lower estimate for |𝑣𝑛,𝑗|, joining a lower estimate

log |𝑣𝑚′
(𝑛),𝑗

| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ −|𝑚̂𝑗 −𝑚′
(𝑛)| ⋅ log𝑀

with
log |𝑣𝑛,𝑗| − log |𝑣𝑚′

(𝑛),𝑗
| ≥ 𝐿𝑛 − 𝐿𝑚′

(𝑛)
− 2𝜀𝑛 ≥ |𝑛 − 𝑚′

(𝑛)| ⋅ ℎ − 3𝜀𝑛,
we get

(88) log |𝑣𝑛,𝑗| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ |𝑛 − 𝑚′
(𝑛)| ⋅ ℎ − |𝑚̂𝑗 −𝑚′

(𝑛)| ⋅ log𝑀 − 3𝜀𝑛

≥ 𝑛ℎ − 2𝑚′
(𝑛) ⋅ log𝑀 − ℎ𝜆

′

2 𝑛.

Now, if we had𝑚′
(𝑛) ≤ 2𝜆′𝑛, that would imply 2𝑚′

(𝑛) ⋅ log𝑀 ≤ ℎ
10𝑛 and hence

log |𝑣𝑛,𝑗| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ ℎ𝑛 − ℎ
10𝑛 − ℎ𝜆

′

2 𝑛 > 0

(where we have used that 𝜆′ < 1
20 ). And this would be a contradiction with the choice

of the index 𝑚̂𝑗 . □

Lemma 5.1 already suffices to provide explicit exponential decrease bounds for all
𝑚 > max(2𝑚̂𝑗 , 𝜆′𝑛2) ≕ 𝑚𝑖𝑛𝑖𝑡. Namely, we have the inequalities

𝑚̄(𝑛) < 𝜆𝑛, 𝑚′
(𝑛) > 2𝜆𝑛

for every 𝑛 > max( 2𝜆′ 𝑚̂𝑗 , 𝑛2). In the same way as in the proof of the first part of Theo-
rem 1.14, this implies that for every𝑚 > 𝑚𝑖𝑛𝑖𝑡, taking 𝑛𝑖𝑛𝑖𝑡 ≔ ⌈𝑚𝜆′ ⌉, from

𝑚̄(𝑛) < ⌈𝑚2 ⌉ < 𝑚 < 2𝜆𝑛,

we get (compare with (73))

(89) (log |𝑣𝑚,𝑗| − log |𝑣⌈𝑚2 ⌉,𝑗|) ∈ 𝑈2𝑛𝜀 (−(𝐿𝑚(𝐸𝑗) − 𝐿⌈𝑚2 ⌉(𝐸𝑗))) .
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Denoting 𝑟′𝑚 ≔ log |𝑣𝑚,𝑗| + 𝛼 ⋅ |𝑚 − 𝑚̂𝑗| and recalling that we chose 𝛼 = ℎ
2 , we get

from (89)

(90) 𝑟′𝑚 − 𝑟′⌈𝑚2 ⌉ = log |𝑣𝑚,𝑗| − log |𝑣⌈𝑚2 ⌉,𝑗| +
𝑚
2 𝛼

≤ (−(𝐿𝑚(𝐸𝑗) − 𝐿⌈𝑚2 ⌉(𝐸𝑗))) + 2𝑛𝜀 + 𝑚
2 𝛼

≤ −𝑚2 ℎ + 4𝑛𝜀 + 𝑚
2 𝛼.

Now, due to the choice of 𝜀 we have 4𝑛𝜀 ≤ 𝜆′ℎ𝑛
5 ≤ 𝑚ℎ

5 , and finally the right hand side
of (90) is less than or equal to

−𝑚2 ℎ +
𝑚ℎ
5 + 𝑚

2 𝛼 = 𝑚ℎ(−12 +
1
5 +

1
4) < 0.

Hence, for every𝑚 ≥ 𝑚𝑖𝑛𝑖𝑡 we have

𝑣𝑚 + 𝛼 ⋅ |𝑚 − 𝑚̂𝑗| = 𝑟′𝑚 ≤ 𝑟′⌈𝑚2 ⌉ = 𝑣𝑚
2
+ 𝛼 ⋅ |𝑚2 − 𝑚̂𝑗|,

and hence it suffices to establish (85) for 𝑚 ∈ [0,𝑚𝑖𝑛𝑖𝑡]; recall that 𝑚𝑖𝑛𝑖𝑡 =
max(2𝑚̂𝑗 , 𝜆′𝑛2).
Now, note that to handle the case 2𝑚̂𝑗 ≤ 𝜆′𝑛2, it suffices to take 𝐶𝜉 > 𝑒𝛼𝑛2 , as then

for any𝑚 = 0, . . . , 𝑚𝑖𝑛𝑖𝑡 one has

log |𝑣𝑚| < 1 < 𝐶𝜉𝑒−𝛼|𝑚−𝑚̂𝑗 |.

Finally, let us consider the case 𝜆′𝑛2 < 2𝑚̂𝑗 . Take 𝑛𝑖𝑛𝑖𝑡 ≔ ⌈ 2𝑚̂𝑗
𝜆′ ⌉ and consider the

corresponding jump index 𝑚̄(𝑛𝑖𝑛𝑖𝑡) and break point𝑚′
(𝑛𝑖𝑛𝑖𝑡). Due to Lemma 5.1, we have

0 ≤ 𝑚̄(𝑛𝑖𝑛𝑖𝑡), 𝑚̂𝑗 ≤ 2𝜆′𝑛𝑖𝑛𝑖𝑡 < 𝑚′
(𝑛𝑖𝑛𝑖𝑡).

m

log |vm|

m̂j
nm̄ m

′ m

log |vm|

m̂j
nm̄ m

′

Figure 8. Estimating 𝐿𝑚̄(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗). The graph represents the
behaviour of log |𝑣𝑚| predicted by curved-V Lemma, together with
±𝜀𝑛 error. Dashed line shows maximal possible value of log |𝑣𝑚| due
to the choice of 𝑚̂𝑗 , and the arrow shows the “forbidden” growth be-
tween the compared values if the estimated difference was too large.

The conclusions of Lemma 4.5 imply that, regardless of whether 𝑚̂𝑗 < 𝑚̄(𝑛𝑖𝑛𝑖𝑡) or
𝑚̂𝑗 ≥ 𝑚̄(𝑛𝑖𝑛𝑖𝑡),

log |𝑣𝑚̄(𝑛𝑖𝑛𝑖𝑡)
,𝑗| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ |𝐿𝑚̄(𝑛𝑖𝑛𝑖𝑡)

(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗)| − 3𝜀𝑛𝑖𝑛𝑖𝑡,
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and as the increment in the left hand side should be negative, we actually get (see Fig. 8)
(91) |𝐿𝑚̄(𝑛𝑖𝑛𝑖𝑡)

(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗)| ≤ 3𝜀𝑛𝑖𝑛𝑖𝑡.
Also, again from Lemma 4.5 for every𝑚 ≤ 𝑚𝑖𝑛𝑖𝑡 we have

log |𝑣𝑚,𝑗| − log |𝑣𝑚̄(𝑛𝑖𝑛𝑖𝑡)
,𝑗| ≤ −|𝐿𝑚(𝐸𝑗) − 𝐿𝑚̄(𝑛𝑖𝑛𝑖𝑡)

(𝐸𝑗)| + 3𝜀𝑛𝑖𝑛𝑖𝑡,

and joining it with (91) we obtain

log |𝑣𝑚,𝑗| − log |𝑣𝑚̄(𝑛𝑖𝑛𝑖𝑡)
,𝑗| ≤ −|𝐿𝑚(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗)| + 6𝜀𝑛𝑖𝑛𝑖𝑡

≤ −ℎ ⋅ |𝑚 − 𝑚̂𝑗| + 8𝜀𝑛𝑖𝑛𝑖𝑡.

Now, 𝜀 ≤ 𝜆′𝜉
20 , and hence

8𝜀𝑛𝑖𝑛𝑖𝑡 ≤
2
5𝜆

′𝜉𝑛𝑖𝑛𝑖𝑡 =
2
5𝜆

′⌈
2𝑚̂𝑗
𝜆′ ⌉ ⋅ 𝜉 < 𝜉𝑚̂𝑗 .

We finally obtain
|𝑣𝑚,𝑗| ≤ 𝑒−ℎ⋅|𝑚−𝑚̂𝑗 |+𝜉𝑚̂𝑗 |𝑣𝑚̂𝑗 ,𝑗|,

so the estimate (85) holds for these values of𝑚 for any 𝐶𝜉 ≥ 1.
Joining the two cases, we see that (85) (and hence the desired uniform estimate (2))

always holds for 𝐶𝜉 ≔ 𝑒𝛼𝑛2 , where 𝑛2 corresponds to the chosen 𝜀 and 𝜀′. This con-
cludes the proof of the theorem for the case of ℓ2(ℕ). □
Remark 5.2. Actually, slightly more accurate estimates (copying those of the proof of
Theorem 1.14) allow to show that the eigenfunctions’ localization rate is given by the
corresponding function 𝐿𝑛(𝐸) up to an arbitrarily small correction: for any 𝜉 > 0 there
exists 𝐶𝜉 such that for any eigenfunction 𝑢, satisfying 𝐻𝑢 = 𝐸𝑢, there exists 𝑚̂ such
that

∀𝑗 ∀𝑚 |𝑢𝑗(𝑚)| ≤ 𝐶𝜉𝑒𝜉𝑚̂ ⋅ 𝑒−|𝐿𝑚(𝐸𝑗)−𝐿𝑚(𝐸𝑗)|+𝜉|𝑚−𝑚̂|.
5.2. Operator on ℓ2(ℤ).
Proof of the second part of Theorem 1.4. Let us now pass to the case of the operator on
ℓ2(ℤ). Again, due to the spectral localization there exists an orthonormal base of eigen-
vectors

𝐻𝑢𝑗 = 𝐸𝑗𝑢𝑗 ,
and this equation becomes a recurrent relation 𝑣𝑛+1,𝑗 = Π𝑛,𝐸𝑗𝑣𝑛,𝑗 on the vectors 𝑣𝑛,𝑗 =
( ᵆ𝑗(𝑛+1)ᵆ𝑗(𝑛) ). Again, we will take 𝛼 = ℎ

4 , where ℎ is chosen for the setting of the product
of random matrices Π𝑛,𝐸 , where 𝐸 ∈ [−𝐾, 𝐾] ⊃ 𝜎(𝐻).
Now, for any given 𝜉 > 0, as in the first part, we take 𝜀, 𝜀′, 𝜆 given by (86) and consider

𝑛2 such that for all 𝑛 > 𝑛2 for the products
Π𝑛,𝐸 . . . Π−𝑛,𝐸 ,

the conclusions of Theorem 1.15 hold, and Lemma 4.6 hence can be applied. As before,
we will construct 𝐶𝜉, depending only on 𝑛2 (but not on the eigenvalue 𝐸𝑗), for which
the estimate (2) holds; actually, we will again establish a stronger estimate (85).
Also as before, let the eigenfunction 𝑢𝑗 (and the corresponding eigenvalue 𝐸𝑗) be

fixed, and let 𝑚̂𝑗 be the index of the maximal norm for the corresponding vectors 𝑣𝑚,𝑗 :
|𝑣𝑚̂𝑗 ,𝑗| = max

𝑚∈ℤ
|𝑣𝑚,𝑗|.
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For any 𝑛 ≥ 𝑛2 denote by 𝑚′
−,(𝑛) < 𝑚̄(𝑛) < 𝑚′

+,(𝑛) the indices given for this 𝑛 by
Lemma 4.6 (these indices correspond to the breakpoints of the “curved W” graph, the
central one being the upwards break point).
Lemma 5.3 is an analogue of Lemma 5.1:

Lemma 5.3. For any 𝑛 ≥ max( 2𝜆′ |𝑚̂𝑗|, 𝑛2) the following estimates hold:
• the central index satisfies |𝑚̄(𝑛)| < 𝜆′𝑛,
• the left and right indices satisfy

𝑚′
−,(𝑛) < −2𝜆′𝑛, 𝑚′

+,(𝑛) > 2𝜆′𝑛.

Proof. Let us start with the second conclusion, following the same lines as in Lemma
5.1.
Namely, we have

(92) log |𝑣⌊2𝜆′𝑛⌋,𝑗| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ −|𝑚̂𝑗 − ⌊2𝜆′𝑛⌋| ⋅ log𝑀

≥ −3𝜆′𝑛 ⋅ log𝑀 = − 3
20ℎ𝑛.

On the other hand, if we had𝑚′
+,(𝑛) ≤ 2𝜆′𝑛, this would imply

(93) log |𝑣𝑛,𝑗| − log |𝑣⌊2𝜆′𝑛⌋,𝑗| ≥ 𝐿𝑛(𝐸𝑗) − 𝐿⌊2𝜆′𝑛⌋(𝐸𝑗) − 2𝜀𝑛

≥ (𝑛 − ⌊2𝜆′𝑛⌋) ⋅ ℎ − 3𝜀𝑛 ≥ ℎ𝑛 − 2𝜆′ℎ𝑛 − 3𝜆
′ℎ
20 𝑛.

Adding (92) and (93), and recalling that 𝜆′ < 1
20 , we would get

log |𝑣𝑛,𝑗| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ 𝑛ℎ(1 − 2𝜆′ − 3
20𝜆

′ − 3
20) > 0,

thus obtaining a contradiction with the choice of the index 𝑚̂𝑗 .
We have obtained the desired 𝑚′

+,(𝑛) > 2𝜆′𝑛. The same arguments show that
𝑚′
−,(𝑛) < −2𝜆′𝑛; this time, a contradiction comes from the consideration of log |𝑣−𝑛,𝑗|.
For the first conclusion, we have

(94) log |𝑣𝑚̄(𝑛),𝑗| > log |𝑣𝑚̂𝑗 ,𝑗| − 2𝐶1𝑛𝜀′ + |𝐿𝑚̄(𝑛)(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗)| − 𝑛𝜀
≥ log |𝑣𝑚̂𝑗 ,𝑗| − 2𝑛𝜀 + ℎ ⋅ |𝑚̄(𝑛) − 𝑚̂𝑗| − 2𝑛𝜀.

If we had |𝑚̄(𝑛)| ≥ 𝜆′𝑛, the inequality 𝜆′𝑛 > 2|𝑚̂𝑗| would imply that

log |𝑣𝑚̄(𝑛),𝑗| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ ℎ ⋅ 𝜆
′𝑛
2 − 4𝑛𝜀

≥ ℎ ⋅ 𝜆
′𝑛
2 − 4𝑛 ⋅ 𝜆

′ℎ
20 = 𝜆′ ⋅ ℎ𝑛 ⋅ (12 −

1
5) > 0,

again providing a contradiction with the choice of the index 𝑚̂𝑗 . □

Again, Lemma 5.3 suffices to provide explicit exponential decrease bounds for all
|𝑚| > max(2𝑚̂𝑗 , 𝜆′𝑛2) ≕ 𝑚𝑖𝑛𝑖𝑡. Consider the case 𝑚 > 0, for the case 𝑚 < 0 is com-
pletely analogous. We have the inequalities

𝑚̄(𝑛) < 𝜆𝑛, 𝑚′
(𝑛) > 2𝜆𝑛
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for every 𝑛 > max( 2𝜆′ 𝑚̂𝑗 , 𝑛2). In the same way as before, taking 𝑛 ≔ ⌈𝑚𝜆′ ⌉, from

𝑚̄(𝑛) < ⌈𝑚2 ⌉ < 𝑚 < 2𝜆𝑛,
we get

(95) (log |𝑣𝑚,𝑗| − log |𝑣⌈𝑚2 ⌉,𝑗|) ∈ 𝑈2𝑛𝜀 (−(𝐿𝑚(𝐸𝑗) − 𝐿⌈𝑚2 ⌉(𝐸𝑗))) .

Denoting 𝑟′𝑚 ≔ log |𝑣𝑚,𝑗| + 𝛼 ⋅ |𝑚 − 𝑚̂𝑗| and recalling that we chose 𝛼 = ℎ
2 , we get

from (95)

(96) 𝑟′𝑚 − 𝑟′⌈𝑚2 ⌉ = log |𝑣𝑚,𝑗| − log |𝑣⌈𝑚2 ⌉,𝑗| +
𝑚
2 𝛼

≤ (−(𝐿𝑚(𝐸𝑗) − 𝐿⌈𝑚2 ⌉(𝐸𝑗))) + 2𝑛𝜀 + 𝑚
2 𝛼

≤ −𝑚2 ℎ + 4𝑛𝜀 + 𝑚
2 𝛼.

Now, due to the choice of 𝜀 we have 4𝑛𝜀 ≤ 𝜆′ℎ𝑛
5 ≤ 𝑚ℎ

5 , and finally the right hand side
of (96) is less than or equal to

−𝑚2 ℎ +
𝑚ℎ
5 + 𝑚

2 𝛼 = 𝑚ℎ(−12 +
1
5 +

1
4) < 0.

Hence, for every𝑚 ≥ 𝑚𝑖𝑛𝑖𝑡 we have

𝑣𝑚 + 𝛼 ⋅ |𝑚 − 𝑚̂𝑗| = 𝑟′𝑚 ≤ 𝑟′⌈𝑚2 ⌉ = 𝑣𝑚
2
+ 𝛼 ⋅ |𝑚2 − 𝑚̂𝑗|,

and hence it suffices to establish (85) for𝑚 ∈ [−𝑚𝑖𝑛𝑖𝑡, 𝑚𝑖𝑛𝑖𝑡].
Again as before, the case 2|𝑚̂𝑗| ≤ 𝜆′𝑛2 is handled by requesting 𝐶𝜉 ≥ 𝑒2𝛼𝑛2 , as then

for any |𝑚| ≤ 𝑚𝑖𝑛𝑖𝑡 one has

log |𝑣𝑚| < 1 < 𝐶𝜉𝑒−𝛼|𝑚−𝑚̂𝑗 |.

Finally, let us consider the case 𝜆′𝑛2 < 2|𝑚̂𝑗|. Take 𝑛𝑖𝑛𝑖𝑡 ≔ ⌈ 2|𝑚̂𝑗 |
𝜆′ ⌉ and consider

the corresponding jump index 𝑚̄(𝑛𝑖𝑛𝑖𝑡) and break points 𝑚′
−,(𝑛𝑖𝑛𝑖𝑡), 𝑚

′
+,(𝑛𝑖𝑛𝑖𝑡). Due to

Lemma 5.3, we have

𝑚′
−(𝑛𝑖𝑛𝑖𝑡) ≤ −2𝜆′𝑛𝑖𝑛𝑖𝑡 ≤ 𝑚̄(𝑛𝑖𝑛𝑖𝑡), 𝑚̂𝑗 ≤ 2𝜆′𝑛𝑖𝑛𝑖𝑡 < 𝑚′

+,(𝑛𝑖𝑛𝑖𝑡).
Then, the conclusions of Lemma 4.6 imply

log |𝑣𝑚̄(𝑛𝑖𝑛𝑖𝑡)
,𝑗| − log |𝑣𝑚̂𝑗 ,𝑗| ≥ |𝐿𝑚̄(𝑛𝑖𝑛𝑖𝑡)

(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗)| − 3𝜀𝑛𝑖𝑛𝑖𝑡,

and as the increment in the left hand side should be negative, we actually get

(97) |𝐿𝑚̄(𝑛𝑖𝑛𝑖𝑡)
(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗)| ≤ 3𝜀𝑛𝑖𝑛𝑖𝑡.

Also, again from Lemma 4.6 for every𝑚 ≤ 𝑚𝑖𝑛𝑖𝑡 we have

log |𝑣𝑚,𝑗| − log |𝑣𝑚′
(𝑛𝑖𝑛𝑖𝑡)

,𝑗| ≤ −|𝐿𝑚(𝐸𝑗) − 𝐿𝑚′
(𝑛𝑖𝑛𝑖𝑡)

(𝐸𝑗)| + 3𝜀𝑛𝑖𝑛𝑖𝑡,

and joining it with (97) we obtain

log |𝑣𝑚,𝑗| − log |𝑣𝑚′
(𝑛𝑖𝑛𝑖𝑡)

,𝑗| ≤ −|𝐿𝑚(𝐸𝑗) − 𝐿𝑚̂𝑗 (𝐸𝑗)| + 6𝜀𝑛𝑖𝑛𝑖𝑡
≤ −ℎ ⋅ |𝑚 − 𝑚̂𝑗| + 8𝜀𝑛𝑖𝑛𝑖𝑡.
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Now, 𝜀 ≤ 𝜆′𝜉
20 , and hence

8𝜀𝑛𝑖𝑛𝑖𝑡 ≤
2
5𝜆

′𝜉𝑛𝑖𝑛𝑖𝑡 =
2
5𝜆

′ ⌈
2𝑚̂𝑗
𝜆′ ⌉ ⋅ 𝜉 < 𝜉𝑚̂𝑗 .

We finally obtain
|𝑣𝑚,𝑗| ≥ 𝑒−ℎ⋅|𝑚−𝑚̂𝑗 |+𝜉𝑚̂𝑗 |𝑣𝑚̂𝑗 ,𝑗|,

so the estimate (85) holds for these values of𝑚 for any 𝐶𝜉 ≥ 1.
Joining the cases studied, we again see that the uniform estimate (2) holds for the

choice 𝐶𝜉 ≔ 𝑒2𝛼𝑛2 , where 𝑛2 corresponds to the chosen 𝜀 and 𝜀′. This completes the
proof for the case of ℓ2(ℤ). □

Again in the same way as before, we have Remark 5.4.

Remark 5.4. Slightly more accurate estimates allow to show that the eigenfunctions’
localization rate is given by the corresponding function 𝐿𝑛(𝐸) up to an arbitrarily small
correction: for any 𝜉 > 0 there exists 𝐶𝜉 such that for any eigenfunction 𝑢, satisfying
𝐻𝑢 = 𝐸𝑢, there exists 𝑚̂ such that

∀𝑗 ∀𝑚 |𝑢𝑗(𝑚)| ≤ 𝐶𝜉𝑒𝜉𝑚̂ ⋅ 𝑒−|𝐿𝑚(𝐸𝑗)−𝐿𝑚(𝐸𝑗)|+𝜉|𝑚−𝑚̂|.
We conclude this section by a reference to Theorem 7.5 from [DJLS]: this theorem

states that SULE implies SUDL, and hence the dynamical localization for this operator
is also established.

Appendix A. Locally Cantor essential spectrum

Here we give an example of a non-stationary Anderson-Bernoulli potential such
that the almost sure essential spectrum of the corresponding discrete Schrödinger op-
erator 𝐻 ∶ ℓ2(ℤ) → ℓ2(ℤ) intersects an open interval at a Cantor set of zero measure.
Construction is very explicit. Namely, choose any sequence {𝑛𝑘}𝑘∈ℕ of integers such
that

𝑛𝑘 →∞ and 𝑛𝑘+1 − 𝑛𝑘 →∞ as 𝑘 → ∞.
We define the random potential in the following way:

(98) 𝑉(𝑛) = {0 or 1 with probability 1/2, if 𝑛 ∉ {𝑛𝑘};
0 or 100 with probability 1/2, if 𝑛 ∈ {𝑛𝑘}.

Proposition A.1. Almost sure essential spectrum of the operator 𝐻 with the potential
(98) is a union of the interval [−2, 3] and a Cantor set contained in the interval [98, 102].
To characterize the spectrumof an operator it will be convenient to use the following

criterion (notice that we do not make any assumptions regarding the nature of the
potential in Proposition A.2):

Proposition A.2. Let {𝑉(𝑛)}𝑛∈ℤ be a bounded potential of the discrete Schrödinger op-
erator𝐻 acting on ℓ2(ℤ) via
(99) [𝐻𝑢](𝑛) = 𝑢(𝑛 + 1) + 𝑢(𝑛 − 1) + 𝑉(𝑛)𝑢(𝑛).
Then we have the following:
(1) Energy 𝐸 ∈ ℝ belongs to the spectrum of the operator 𝐻 if and only if there exists

𝐾 > 0 such that for any 𝑁 ∈ ℕ there is 𝑚 ∈ ℤ and a unit vector 𝑢̄, |𝑢̄| = 1, such that
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|𝑇[𝑚,𝑚+𝑖],𝐸 𝑢̄| ≤ 𝐾 for all |𝑖| ≤ 𝑁, where 𝑇[𝑚,𝑚+𝑖],𝐸 is the product of transfer matrices
given by

𝑇[𝑚,𝑚+𝑖],𝐸 =
⎧
⎨
⎩

Π𝑚+𝑖−1,𝐸 . . . Π𝑚,𝐸 , if 𝑖 > 0;
Id, if 𝑖 = 0;
Π−1
𝑚+𝑖,𝐸 . . . Π−1

𝑚−1,𝐸 , if 𝑖 < 0,

andΠ𝑛,𝐸 = (𝐸 − 𝑉(𝑛) −1
1 0 ).

(2) Energy 𝐸 ∈ ℝ belongs to the essential spectrum of the operator 𝐻 if and only if
there exists 𝐾 > 0 such that for any 𝑁 ∈ ℕ there is a sequence {𝑚𝑗}𝑗∈ℕ, 𝑚𝑗 ∈ ℤ, with
|𝑚𝑗 − 𝑚𝑗′ | > 2𝑁 if 𝑗 ≠ 𝑗′, and unit vectors 𝑢̄𝑗 , |𝑢̄𝑗| = 1, such that |𝑇[𝑚𝑗 ,𝑚𝑗+𝑖],𝐸 𝑢̄𝑗| ≤ 𝐾
for all |𝑖| ≤ 𝑁 and all 𝑗 ∈ ℕ.

Proof. Proof of Proposition A.2 can be extracted from the density of generalized eigen-
values (energies forwhich there are polynomially bounded solutions of the Schrödinger
equation), e.g. see [D16, Theorem 2.11], and the classical Weyl’s criterion. We leave
the details to the reader. □

For each𝜔 ∈ {0, 1}ℤ consider an operator𝐻𝜔 ∶ ℓ2(ℤ) → ℓ2(ℤ) given by the potential

𝑉𝜔(𝑛) = {100, if 𝑛 = 0;
𝜔𝑛, if 𝑛 ≠ 0.

There are uncountably many operators of this form. Each of them has exactly one
eigenvalue in the interval [98, 102]. Let us denote this eigenvalue by 𝐸𝜔.

Lemma A.3. Intersection of the almost sure essential spectrum of the operator 𝐻 given
by the potential (98) with the interval [98, 102] is exactly ∪𝜔∈{0,1}ℤ 𝐸𝜔.

Proof of Lemma A.3. If𝐸𝜔 ∈ [98, 102] is an eigenvalue of𝐻𝜔, consider the correspond-

ing eigenvector {𝑢𝑛,𝜔}𝑛∈ℤ ∈ ℓ2(ℤ), and the vector 𝑢̄ = (𝑢1,𝜔𝑢2,𝜔
). Notice that for any fi-

nite sequence {𝑉𝜔(−𝑁), . . . , 𝑉𝜔(𝑁)}with probability 1 the potential {𝑉(𝑛)} given by (98)
contains infinitely many intervals {𝑉(𝑚𝑗 − 𝑁), . . . , 𝑉(𝑚𝑗 + 𝑁)} that coincide with that
sequence. Due to Proposition A.2 this implies that 𝐸𝜔 belongs to almost sure spectrum
of 𝐻 with potential (98).
Suppose now that 𝐸0 ∈ [98, 102] belongs to almost sure essential spectrum of 𝐻

with potential (98). Then there exist 𝐾 > 0, a sequence of vectors {𝑢̄𝑗}, and a sequence
of finite intervals {𝑉(𝑚𝑗 − 𝑗), . . . , 𝑉(𝑚𝑗 + 𝑗)} such that |𝑇[𝑚𝑗 ,𝑚𝑗+𝑖]𝑢̄𝑗| ≤ 𝐾 for all |𝑖| ≤ 𝑗.
Using Cantor diagonal process, we can find a subsequence {𝑗𝑡}𝑡∈ℕ such that 𝑢̄𝑗𝑡 → 𝑢̄∗
as 𝑡 → ∞, and 𝑉(𝑚𝑗𝑡 + 𝑘) = 𝑉∗

𝑘 ∈ {0, 1} for all 𝑘 ≠ 0 and all large enough 𝑡 ∈ ℕ.
Consider 𝜔 = {. . . 𝜔−𝑘 . . . 𝜔0𝜔1 . . . 𝜔𝑘 . . .} with 𝜔𝑘 = 𝑉∗

𝑘 . Then 𝑢̄∗ must decay exponen-
tially under the application of transfer matrices generated by the potential {𝑉𝜔(𝑛)}, and
hence generate an eigenvector of the operator 𝐻𝜔 with the eigenvalue 𝐸𝜔. □
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Notice that if 𝐴 > 2, then the matrix of the form ( 𝐴 1
−1 0) has two eigenvalues,

namely 𝐴+√𝐴2−4
2 > 1 and 𝐴−√𝐴2−4

2 = (𝐴+√𝐴2−4
2 )

−1
< 1. The corresponding eigen-

vectors are (
𝐴+√𝐴2−4

2
1

) and (
1

𝐴+√𝐴2−4
2

). Let us denote the projectivizations of those

vectors by 𝑥1(𝐴) and 𝑥2(𝐴).
For an operator 𝐻𝜔 each transfer matrix Π𝑛,𝐸 , 𝑛 ≠ 0, must be either ( 𝐸 1

−1 0), or

(𝐸 − 1 1
−1 0), and we are interested in the regime where 𝐸 ∈ [98, 102]. Let us denote by

𝐼1(𝐸) the interval on 𝑆1 between the points 𝑥1(𝐸) and 𝑥1(𝐸−1), and by 𝐼2(𝐸) the interval
between the points 𝑥2(𝐸) and 𝑥2(𝐸−1). Denote by 𝑓𝑛,𝐸 the projectivization of the map
Π𝑛,𝐸 . Then if 𝑛 ≠ 0, we have 𝑓𝑛,𝐸(𝐼1(𝐸)) ⊂ 𝐼1(𝐸), and 𝑓−1𝑛,𝐸(𝐼2(𝐸)) ⊂ 𝐼2(𝐸). Moreover,
𝑓𝑛,𝐸 |𝐼1(𝐸) and 𝑓−1𝑛,𝐸 |𝐼2(𝐸) are contractions for each 𝑛 ≠ 0. For a given 𝜔 ∈ {0, 1}ℤ there
exists exactly one point 𝑧𝜔(𝐸) ∈ 𝐼1(𝐸) such that

𝑧𝜔(𝐸) = ∩𝑛∈ℕ𝑓−𝑛,𝐸 ∘ . . . ∘ 𝑓−1,𝐸(𝐼1(𝐸)).
Notice that if the vector 𝑤̄ ∈ ℝ2, |𝑤̄| = 1, corresponds to the direction defined by 𝑧𝜔(𝐸),
then

(Π−𝑛,𝐸 . . . Π−1,𝐸)
−1 (𝑤̄) → 0 as 𝑛 → ∞,

and for any vector ̄𝑣 ∦ 𝑤̄
||(Π−𝑛,𝐸 . . . Π−1,𝐸)

−1 ( ̄𝑣)|| → ∞
exponentially fast as 𝑛 → ∞. The set 𝐾(𝐸) = ∪𝜔∈{0,1}ℤ𝑧𝜔(𝐸) is a dynamically defined
Cantor set inside of 𝐼1(𝐸). Notice that ||𝑓′𝑛,𝐸 |𝐼1(𝐸)|| ∼

1
𝐸2 , and in our regime 𝐸 ∼ 100.

Hence Hausdorff dimension of 𝐾(𝐸) is small, dim𝐻 𝐾(𝐸) = dim𝐵 𝐾(𝐸) ≪ 1/2.
Similarly, the set

𝐶(𝐸) = ∪𝜔∈{0,1}ℤ (∩𝑛∈ℕ𝑓−11,𝐸 ∘ . . . ∘ 𝑓−1𝑛,𝐸(𝐼2(𝐸)))
is a dynamically defined Cantor set, and dim𝐻 𝐶(𝐸) = dim𝐵 𝐶(𝐸) ≪ 1/2.
A given point 𝐸 ∈ [98, 102] is an eigenvalue of an operator 𝐻𝜔 for some 𝜔 ∈ {0, 1}ℤ

if 𝑓0,𝐸(𝐾(𝐸)) ∩ 𝐶(𝐸) ≠ ∅. Now Proposition A.1 follows from the following statement:

Lemma A.4. Let 𝐾(𝐸) and 𝐶(𝐸) be two families of dynamically defined Cantor sets on
ℝ1, 𝐸 ∈ [0, 1]. Suppose that the following properties hold:

(1) The Cantor set 𝐾(𝐸) is generated by two 𝐶1-smooth (both in 𝑥 ∈ ℝ1 and 𝐸 ∈
[0, 1]) orientation preserving contractions 𝑓1,𝐸 , 𝑓2,𝐸 ∶ ℝ1 → ℝ1;

(2) The Cantor set 𝐶(𝐸) is generated by two 𝐶1-smooth (both in 𝑥 ∈ ℝ1 and 𝐸 ∈
[0, 1]) orientation preserving contractions 𝑔1,𝐸 , 𝑔2,𝐸 ∶ ℝ1 → ℝ1;

(3) max(𝐾(0)) < min(𝐶(0)) andmin(𝐾(1)) > max(𝐶(1));
(4) There exists 𝛿 > 0 such that

𝜕𝑓𝑖,𝐸(𝑥)
𝜕𝐸 > 𝛿,

𝜕𝑔𝑖,𝐸(𝑥)
𝜕𝐸 < −𝛿

for all 𝐸 ∈ [0, 1], 𝑖 = 1, 2, and 𝑥 ∈ ℝ1;
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(5) We have
max
𝐸∈[0,1]

dim𝐵 𝐶(𝐸) + max
𝐸∈[0,1]

dim𝐵 𝐾(𝐸) < 1.

Then
{𝐸 ∈ [0, 1] | 𝐶(𝐸) ∩ 𝐾(𝐸) ≠ ∅}

is a Cantor set of box counting dimension not greater than

( max
𝐸∈[0,1]

dim𝐵 𝐶(𝐸) + max
𝐸∈[0,1]

dim𝐵 𝐾(𝐸)) .

Proof of Lemma A.4. Denote
𝑑𝐾 = max

𝐸∈[0,1]
dim𝐵 𝐾(𝐸), 𝑑𝐶 = max

𝐸∈[0,1]
dim𝐵 𝐶(𝐸).

The assumption (5) therefore means that 𝑑𝐾 + 𝑑𝐶 < 1. For any small 𝜀 > 0 there is a
cover of 𝐾(𝐸) by 𝜀−𝑑𝐾 open intervals of length 𝜀, and of 𝐶(𝐸) by 𝜀−𝑑𝐶 intervals. Due to
assumptions (10, (2), and (4), one can choose those intervals in such a way that each
interval of the form (𝑥(𝐸), 𝑥(𝐸)+𝜀) depends smoothly on 𝐸 ∈ [0, 1], and 𝑑𝑥(𝐸)

𝑑𝐸 > 𝛿 > 0
for intervals covering 𝐾(𝐸), and 𝑑𝑥(𝐸)

𝑑𝐸 < −𝛿 < 0 for intervals covering 𝐶(𝐸). This im-
plies that the length of an interval in the space of parameters that correspond to a non-
empty intersection of a given interval from a cover of 𝐾(𝐸) and a given interval from a
cover of𝐶(𝐸) is bounded fromabove by 2𝜀

𝛿 . Hence the set {𝐸 ∈ [0, 1] | 𝐶(𝐸) ∩ 𝐾(𝐸) ≠ ∅}
can be covered by 𝜀−𝑑𝐾 ⋅ 𝜀−𝑑𝐶 = 𝜀−(𝑑𝐾+𝑑𝐶) intervals of length 2𝜀

𝛿 = const ⋅𝜀. Hence
dim𝐵 {𝐸 ∈ [0, 1] | 𝐶(𝐸) ∩ 𝐾(𝐸) ≠ ∅} ≤ 𝑑𝐾 + 𝑑𝐶 . □

Remark A.5. Notice that the question on the structure of the set of translations of one
Cantor set that havenon-empty intersectionswith another is closely related to the ques-
tions about the structure of the difference of two Cantor sets. Sums (and differences)
of dynamically defined Cantor sets were heavily studied, e.g. see [DG1] and references
therein. But in our case we needed to work with two Cantor sets that depend on a pa-
rameter, so the question about the set of parameters that correspond to a non-empty
intersection of the sets cannot be directly reduced to considering the difference of the
Cantor sets, and therefore we needed Lemma A.4.

Appendix B. Discontinuous upper limit

Lemma 2.3 claims that a sequence of functions { 1𝑛𝐿𝑛(𝑎)} is equicontinuous. This
implies that lim sup𝑛→∞

1
𝑛𝐿𝑛(𝑎) is a continuous function of 𝑎 ∈ 𝐽. At the same time,

Theorem 1.12 claims, in particular, that lim sup𝑛→∞
1
𝑛 (log ‖𝑇𝑛,𝑎,𝜔‖ − 𝐿𝑛(𝑎)) = 0 for

all 𝑎 ∈ 𝐽. So it is tempting to expect that lim sup𝑛→∞
1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ is a continuous

function of the parameter 𝑎 ∈ 𝐽, which would be nicely aligned with the fact that
Lyapunov exponent is a continuous function of the parameter in the stationary setting.
Nevertheless, here we present an example that shows that this is not always the case.
Consider two diagonal matrices with very different norms:

𝐻′ ≔ ( 2 0
0 1/2 ) , 𝐻″ ≔ ( 100 0

0 1/100 ) .
Take 𝐽 to be the interval [0, 2𝜋], and let 𝜇′, 𝜇″ be two measures on 𝐶1(𝐽, SL(2, ℝ)),

obtained in the following way: a random parameter-dependent matrix 𝐴(𝑎)w.r.t. each
of these measures is the corresponding diagonal matrix,𝐻′ or𝐻″, precomposed with a
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rotation by a random uniformly distributed angle 𝛼 ∈ [0, 2𝜋], and postcomposed with
the rotation by the parameter. That is,

(100) 𝐴(𝑎) = 𝑅𝑎 ⋅ 𝐻 ⋅ 𝑅𝛼,
where 𝐻 = 𝐻′ for 𝜇′ and 𝐻 = 𝐻″ for 𝜇″.
It is not hard to see that this choice of thematrices {𝐴𝑗(𝑎)} implies that the functions

𝐿𝑛(𝑎) are in fact independent of 𝑎 ∈ 𝐽, i.e. are constant functions (but certainly depend
on 𝑛).
We will take a sequence of times 𝑛𝑖, defined recurrently by

𝑛1 = 1000, 𝑛𝑖+1 = 1010𝑛𝑖 .
Let the laws for the matrices 𝐴𝑗(𝑎) to be chosen in the following way: we take

𝜇𝑗 = {𝜇
″, if 𝑛𝑖 < 𝑗 ≤ 2𝑛𝑖 for some 𝑖,
𝜇′, otherwise.

Then, we have Proposition B.1.

Proposition B.1. For the random product 𝐴𝑛(𝑎) . . . 𝐴1(𝑎) defined above, almost surely
there exists a (random) dense set 𝑋 ′ ⊂ 𝐽 of parameters, such that one has a strict inequal-
ity

lim sup
𝑛→∞

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ < lim sup

𝑛→∞

1
𝑛𝐿𝑛(𝑎).

In particular, lim sup𝑛→∞
1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ is not a continuous function of 𝑎 ∈ 𝐽, contrary

to the continuous (in fact, constant) function lim sup𝑛→∞
1
𝑛𝐿𝑛(𝑎).

Remark B.2. It is clear that 𝑋 ′ ⊂ 𝑆𝑒, where 𝑆𝑒 ⊂ 𝐽 is a (random) subset of exceptional
parameters defined in Theorem 1.12. At the same time, one can show that 𝐽\𝑋 ′ is a 𝐺𝛿
subset of 𝐽, so (𝐽\𝑋 ′) ∩ 𝑆𝑒 ≠ ∅, and, therefore, 𝑋 ′ must be a proper subset of 𝑆𝑒.

Proof of Proposition B.1. Let us first calculate the average log-norms 𝐿𝑛. Namely, fol-
lowing [AB], for any matrix 𝐵 ∈ SL(2, ℝ) let us consider the “averaged expansion rate”

𝑁(𝐵) = 1
2𝜋 ∫

2𝜋

0
log|||𝐵 (

cos 𝛾
sin 𝛾 )

||| 𝑑𝛾.

An easy calculation (see [AB, Proposition 3]) shows that

𝑁(𝐵) = 𝑁(‖𝐵‖) ≔ log ‖𝐵‖ + ‖𝐵‖−1
2 .

Now, let 𝐻𝑗 be the non-random sequence of diagonal matrices defining 𝐴𝑗 in (100),
and let 𝑞𝑗 be the sequence of (non-random) values of 𝑁(𝐴𝑗), that is,

𝑞𝑗 = 𝑁(𝐴𝑗) = 𝑁(𝐻𝑗) = {𝑁(2), if 𝜇𝑗 = 𝜇′,
𝑁(100), if 𝜇𝑗 = 𝜇″.

Now, let 𝑣0 be a unit vector, and set 𝑣𝑚 = 𝑇𝑚,𝑎,𝜔𝑣. Then (see (58)) we have

(101) log |𝑇𝑛,𝑎,𝜔𝑣0| =
𝑛
∑
𝑚=1

𝜑𝐴𝑚(𝑣𝑚−1),
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where 𝜑𝐴(𝑣) = log |𝐴𝑣|
|𝑣| . Now,

𝜑𝐴𝑚(𝑣𝑚−1) = 𝜑𝐻𝑚(𝑅𝛼𝑚𝑣𝑚−1),

as the rotations do not change the lengths.
However, for any initial vector 𝑣 the directions of the vector 𝑅𝛼(𝑣), 𝛼 ∈ [0, 2𝜋], are

uniformly distributed. Therefore, taking the expectation of (101), we get:

𝔼 log |𝑇𝑛,𝑎,𝜔𝑣0| =
𝑛
∑
𝑚=1

𝔼𝜑𝐻𝑚(𝑅𝛼𝑚𝑣𝑚−1) =
𝑛
∑
𝑚=1

𝑁(𝐻𝑚) =
𝑛
∑
𝑚=1

𝑞𝑚.

The right hand side does not depend on 𝑣0, and averaging this equality w.r.t. 𝑣0 gives
us

𝔼𝑁(𝑇𝑛,𝑎,𝜔) =
𝑛
∑
𝑚=1

𝑞𝑚.

Note that for any matrix 𝐴 ∈ SL(2, ℝ) we have

log ‖𝐴‖ ≥ 𝑁(𝐴) ≥ log ‖𝐴‖2 ,

and thus |𝑁(𝐴) − log ‖𝐴‖| ≤ log 2. Hence,

|𝐿𝑛 −
𝑛
∑
𝑚=1

𝑞𝑚| ≤ log 2,

and thus

lim sup
𝑛→∞

1
𝑛𝐿𝑛 = lim sup

𝑛→∞

1
𝑛

𝑛
∑
𝑚=1

𝑞𝑚 = 𝑁(2) + 𝑁(100)
2 ,

with the values close to the upper limit that are attained for 𝑛 = 2𝑛𝑖 ⋅ (1 + 𝑜(1)).
Now, fix a sufficiently small 𝜀 > 0 (for instance, 𝜀 = 0.001 will do); then, for all

sufficiently large 𝑛 the conclusions of Theorem 1.15 for this 𝜀 hold. The mechanism
leading to the appearance of the random set 𝑋 ′ is the following.
Take any interval 𝐼 ⊂ 𝐽. Due to Lemma B.3 and Conclusion (IV) of Theorem 1.15,

for a sufficiently large 𝑛𝑖 from the fast growing sequence {𝑛𝑖} defined above, with very
large probability one can find an exceptional interval (in terms of Theorem 1.15) in 𝐼
with some special property. Namely, if we denote that special exceptional (or “jump”)
interval by 𝐽𝑖, the corresponding cancelation parameter by 𝑎𝑖, and the corresponding
jump moment by𝑚𝑖, we can assume that

(1.5 − 3𝜀)𝑛𝑖 < 𝑚𝑖 < 1.5𝑛𝑖.

Thus the sequence of norms of products 𝑇𝑛,𝑎,𝜔 for 𝑎 = 𝑎𝑖 will start decreasing after
𝑛 = 𝑚𝑖, and hence we have

(102) max
𝑛=𝑛𝑖,. . .,2𝑛𝑖

1
𝑛 log ‖𝑇𝑛,𝑎𝑖,𝜔‖ ≤

2
3𝑁(2) +

1
3𝑁(100) + 𝜀.

Moreover, the same estimate (upon replacing 𝜀 with 2𝜀) holds in a neighborhood 𝐼𝑖 of
𝑎𝑖 of size 10−8𝑛𝑖 . Indeed, in such a neighborhood, the directions of any initial vectors
stay 𝜀-close during 2𝑛𝑖 iterations, and one application of a matrix 𝐴 cannot increase
any angle by more than ‖𝐴‖2 ≤ 1002 times.
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Notice that between the moments 2𝑛𝑖 and 𝑛𝑖+1 we apply only norm 2 matrices, so
one can easily see that

(103) ∀𝑎 ∈ 𝐼𝑖 max
𝑛=2𝑛𝑖,. . .,𝑛𝑖+1

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ ≤ max(𝑁(2)+6𝜀𝑁(100)+3𝜀, log 2) = log 2;

the term 6𝜀𝑁(100) here has to be added, since the cancelation moment 𝑚𝑖 is not per-
fectly at the center 1.5𝑛𝑖 of the interval [𝑛𝑖, 2𝑛𝑖], so we need to include the “worst case
scenario” of the application of a growing sequence of norm 100 matrices along the in-
terval [(1 − 6𝜀)𝑛𝑖, 2𝑛𝑖].
While the interval 𝐼𝑖 of size 10−8𝑛𝑖 was “small” for 2𝑛𝑖 iterations (that is, the cor-

responding norms of the matrix products behaved similarly), it becomes “large” for
𝑛𝑖+1 = 1010𝑛𝑖 iterations. Namely, due to Lemma B.3, on the interval 𝐼𝑖 one can find
(with the probability extremely close to 1) a new jump subinterval 𝐽𝑖+1 ⊂ 𝐼𝑖 with the
corresponding cancelation point 𝑎𝑖+1 ∈ 𝐽𝑖+1, such the corresponding jump moment
𝑚𝑖+1 satisfies (1.5 − 3𝜀)𝑛𝑖+1 < 𝑚𝑖+1 < 1.5𝑛𝑖+1.
Again, we find an interval 𝐼𝑖+1 around the point 𝑎𝑖+1 of size 10−8𝑛𝑖+1 where the can-

celation estimates (102), (103) hold (with 𝑖 replaced by 𝑖 + 1), etc. Continuing this
procedure, we find a sequence of decreasing intervals

𝐼 ⊃ 𝐼𝑖 ⊃ 𝐼𝑖+1 ⊃ 𝐼𝑖+2 ⊃ . . . ,
such that

∀𝑗 ∀𝑎 ∈ 𝐼𝑗 max
𝑛=𝑛𝑗 ,. . .,𝑛𝑗+1

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ ≤

2
3𝑁(2) +

1
3𝑁(100) + 𝜀.

Hence, taking 𝑎 to be the intersection point of all the 𝐼𝑗 , we get

lim sup
𝑛→∞

1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ ≤

2
3𝑁(2) +

1
3𝑁(100) + 𝜀.

As we have started with an arbitrary initial interval 𝐼, the constructed points 𝑎 form a
dense set 𝑋 ′ in the interval of parameters.

1

n
log ‖Tn,a,ω‖

log nni 2ni
ni+1 2ni+1

N(2)

1

2
(N(2) +N(100))

. . .

1

n
Ln

1.5ni

Figure 9. Behaviour of the sequence 1
𝑛 log ‖𝑇𝑛,𝑎,𝜔‖ for a parameter

𝑎 ∈ 𝑋 ′ (bold line), compared with the one of 1
𝑛𝐿𝑛 (dashed line)

Thus, the proof of Proposition B.1 will be concluded, once we show that the prob-
ability of making each new step in the construction of the sequence of intervals 𝐼𝑗 is
sufficiently high so that Borel-Cantelli Lemma can be applied. Finding a jump interval,
due to Conclusion (IV) of Theorem 1.15, can be stated in terms of the corresponding
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lift iterations and their differences 𝑅𝑚,𝜔(𝐼). Namely, for finding a jump interval inside
𝐼 (assuming that Conclusion (IV) holds) with a jump index 𝑚𝑖 ∈ [(1.5 − 3𝜀)𝑛𝑖, 1.5𝑛𝑖]
it suffices to establish the inequality

𝑅(1.5−3𝜀)𝑛𝑖,𝜔(𝐼) + 3 < 𝑅(1.5−2𝜀)𝑛𝑖,𝜔(𝐼).
Indeed, due to Conclusion (IV) of Theorem 1.15 (applied with 𝑛 = 2𝑛𝑖) we know
that number of exceptional intervals in 𝐼 with jump moment not greater than 1.5𝑛𝑖 is
bounded from below by 𝑅(1.5−2𝜀)𝑛𝑖,𝜔−1. On the other hand, the number of exceptional
intervals in 𝐼 with jump moment less than (1.5 − 3𝜀)𝑛𝑖 is at most 𝑅(1.5−3𝜀)𝑛𝑖,𝜔.
Therefore, it is enough to establish the following statement.

Lemma B.3. For any 𝑖, let 𝛼1, . . . , 𝛼𝑛𝑖 and an interval 𝐼 ⊂ 𝐽 of length |𝐼| be given. Then,
with the probability at least 1 − 12

𝜀𝑛𝑖 |𝐼|
one has

𝑅(1.5−3𝜀)𝑛𝑖,𝜔(𝐼) + 10 < 𝑅(1.5−2𝜀)𝑛𝑖,𝜔(𝐼).
Proof. Denote 𝑛′1 ≔ (1.5 − 3𝜀)𝑛𝑖, 𝑛′2 ≔ (1.5 − 2𝜀)𝑛𝑖, and assume, additionally to the
assumptions of the lemma, that 𝛼𝑛 is given for all 𝑛 ≤ 𝑛′1. This defines the intermediate
images 𝑦− = ̃𝑓𝑛′1,𝑏′−,𝜔( ̃𝑥0) and 𝑦+ = ̃𝑓𝑛′1,𝑏′+,𝜔( ̃𝑥0), where 𝐼 = [𝑏′−, 𝑏′+]. To prove Lemma
B.3 it is enough to show that
(104) ̃𝑓[𝑛′1,𝑛′2],𝑏′+,𝜔(𝑦+) − ̃𝑓[𝑛′1,𝑛′2],𝑏′−,𝜔(𝑦−) ≥ (𝑦+ − 𝑦−) + 10
with the claimed probability. This is exactly what we are going prove.
Note that as all the lifts ̃𝑓 commute with the shift by 1, inequality (104) is preserved

if one shifts 𝑦− by any integer. Hence, without loss of generality we can assume that
𝑦− < 𝑦+ < 𝑦− + 1.
Notice that due to the choice of the matrices in (100), for any fixed parameter 𝑎 ∈ 𝐽

(in particular, for 𝑎 = 𝑏−) the Lebesguemeasure on the circle of directions is stationary
with respect to the inverse maps 𝑓−1𝑎,𝜔. Indeed, we defined 𝐴(𝑎) = 𝑅𝑎 ∘ 𝐻 ∘ 𝑅𝛼 (where
𝐻 is either 𝐻′ or 𝐻″), so 𝐴(𝑎)−1 = 𝑅−𝛼 ∘ 𝐻−1 ∘ 𝑅−𝑎. The rotation 𝑅−𝛼 is a rotation
by a random angle −𝛼 uniformly distributed in [0, 2𝜋], hence the image of any initial
point is uniformly distributed on the circle. A standard argument in random dynamics
(see [A], [DKN], or [KN]), based on the ideas going back to Furstenberg’s work [Fur3],
implies that

∀ 𝑎 ∈ 𝐽, ∀ [𝑦′, 𝑦″] ⊂ ℝ 𝔼 | ̃𝑓𝑎,𝜔([𝑦′, 𝑦″])| = |[𝑦′, 𝑦″]|.
As lifts ̃𝑓𝑏′−,𝜔 and ̃𝑓𝑏′+,𝜔 of 1-step maps differ by a translation by |𝐼| = 𝑏′+ − 𝑏′−, this
implies that

(105) ∀ [𝑦′, 𝑦″] ⊂ ℝ 𝔼 ( ̃𝑓𝑏′+,𝜔(𝑦
″) − ̃𝑓𝑏′−,𝜔(𝑦′)) =

𝔼 (( ̃𝑓𝑏′+,𝜔(𝑦
″) − ̃𝑓𝑏′−,𝜔(𝑦″)) + ( ̃𝑓𝑏′−,𝜔(𝑦″) − ̃𝑓𝑏′−,𝜔(𝑦′))) = |𝐼| + (𝑦″ − 𝑦′).

Consider now the random process given by the lengths of the corresponding images
under iterations following the initial moment 𝑛′1:

𝜂𝑚(𝜔) ≔ ̃𝑓[𝑛′1,𝑚],𝑏′+,𝜔(𝑦+) − ̃𝑓[𝑛′1,𝑚],𝑏′−,𝜔(𝑦−),
where the sequence of random parameterized matrices 𝜔 is defined by the sequence of
angles 𝛼1, 𝛼2, . . .. Then (105) becomes a submartingale relation

𝔼 (𝜂𝑚+1 ∣ 𝛼1, . . . , 𝛼𝑚) = 𝜂𝑚−1 + |𝐼|.
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It suffices now to apply standard submartingales technique. Namely, consider a
stopping time 𝑇 = 𝑇(𝜔), defined as

𝑇(𝜔) = min({𝑚 ∈ [𝑛′1, 𝑛′2] ∣ 𝜂𝑚 ≥ 11} ∪ {𝑛′2}) .
Then, one has

𝔼𝜂𝑇(𝜔) = 𝜂𝑛′1 + |𝐼| ⋅ 𝔼 (𝑇(𝜔) − 𝑛′1).
However, 𝔼𝜂𝑇(𝜔) < 12 (due to the choice of 𝑇(𝜔) as the first moment at which the
length exceeds 11), and hence

𝔼 (𝑇(𝜔) − 𝑛′1) ≤
12
|𝐼| .

Applying Chebyshev inequality, we see that

ℙ (𝑇(𝜔) < 𝑛′2) ≤
12

(𝑛′2 − 𝑛′1) ⋅ |𝐼|
= 12
𝜀𝑛𝑖 ⋅ |𝐼|

,

and the event 𝑇(𝜔) < 𝑛′2 exactly means that for some intermediate iteration 𝑚 ∈
[𝑛′1, 𝑛′2] the length of the interval ( ̃𝑓[𝑛′1,𝑚],𝑏′+,𝜔(𝑦

″) − ̃𝑓[𝑛′1,𝑚],𝑏′−,𝜔(𝑦′)) exceeds 11, and
thus for all the consecutive iterations (in particular, 𝑛′2) is at least 10 + (𝑦″ − 𝑦′). We
have established (104), thus completing the proof of Lemma B.3. □

Lemma B.3 is proven, and this concludes the proof of Proposition B.1. □
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