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Abstract

The Brillouin sphere is defined as the smallest sphere, centered at the origin of the geocentric
coordinate system, that incorporates all the condensed matter composing the planet. The
Brillouin sphere touches the Earth at a single point, and the radial line that begins at the origin
and passes through that point is called the singular radial line. For about 60 years there has been
a persistent anxiety about whether or not a spherical harmonic (SH) expansion of the external
gravitational potential, V, will converge beneath the Brillouin sphere. Recently, it was proven
that the probability of such convergence is zero. One of these proofs provided an asymptotic
relation, called Costin’s formula, for the upper bound, Ey, on the absolute value of the
prediction error, ey, of a SH series model, Vy (6, \, ), truncated at some maximum degree,

N = nmax. When the SH series is restricted to (or projected onto) a particular radial line, it
reduces to a Taylor series (TS) in 1/r. Costin’s formula is Ey ~ BN~?(R/r)Y, where R is the
radius of the Brillouin sphere. This formula depends on two positive parameters: b, which
controls the decay of error amplitude as a function of N when r is fixed, and a scale factor B. We
show here that Costin’s formula derives from a similar asymptotic relation for the upper bound,
A,, on the absolute value of the TS coefficients, a,, for the same radial line. This formula,

A, ~ Kn~k, depends on degree, 1, and two positive parameters, k and K, that are analogous to b
and B. We use synthetic planets, for which we can compute the potential, V, and also the radial
component of gravitational acceleration, g, = 9V/Jr, to hundreds of significant digits, to
validate both of these asymptotic formulas. Let superscript V refer to asymptotic parameters
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associated with the coefficients and prediction errors for gravitational potential, and

superscript g to the coefficients and predictions errors associated with g,. For polyhedral planets
of uniform density we show that b = k¥ = 7/2 and b = k® = 5/2 almost everywhere. We show
that the frequency of oscillation (around zero) of the TS coefficients and the series prediction
errors, for a given radial line, is controlled by the geocentric angle, «, between that radial line
and the singular radial line. We also derive useful identities connecting KV, BV, K¢, and BS.
These identities are expressed in terms of quotients of the various scale factors. The only other
quantities involved in these identities are o and R. The phenomenology of ‘series divergence’
and prediction error (when r < R) can be described as a function of the truncation degree, N, or
the depth, d, beneath the Brillouin sphere. For a fixed » < R, as N increases from very low
values, the upper error bound Ey shrinks until it reaches its minimum (best) value when N
reaches some particular or optimum value, Nop. When N > Ny, prediction error grows as N
continues to increase. Eventually, when N >> N, prediction errors increase exponentially with
rising N. If we fix the value of N and allow R/r to vary, then we find that prediction error in free
space beneath the Brillouin sphere increases exponentially with depth, d, beneath the Brillouin
sphere. Because b® = b" — 1 everywhere, divergence driven prediction error intensifies more
rapidly for g, than for V, both in terms of its dependence on N and d. If we fix both N and d, and

focus on the ‘lateral’ variations in prediction error, we observe that divergence and prediction
error tend to increase (as does B) as we approach high-amplitude topography.

Keywords: spherical harmonic expansion, divergence, gravitational potential, asymptotic

1. Introduction

The Brillouin sphere is defined as the smallest sphere, centered
at the center of the Earth (or other planet), that incorporates all
the condensed matter composing the planet. It is possible to
define a Brillouin ellipsoid similarly, by using an oblate ellips-
oid of rotation instead of a sphere. Either Brillouin surface will
touch the ground at a single point. For Earth’s Brillouin sphere,
that point is the summit of Mt. Chimborazo in Ecuador, which
is the surface point most distant from the geocenter, by vir-
tue of that mountain’s position near the crest of the equatorial
bulge. In contrast, the Brillouin ellipsoid touches the Earth
at the summit of Mt. Everest, which has the greatest ellips-
oidal height of any point on the Earth. In this work, we discuss
spherical harmonic (SH) representations of the gravitational
field. In this context, we can define the geocenter (or the center
of some other planet of interest) as the origin of the coordin-
ate system used to define the SHs. Ideally, the origin coincides
with the planet’s center of mass. In practice, the origin will lie
very close to the center of mass. In this treatment, we will neg-
lect temporal variation of the gravitational field and the grav-
itational impact of Earth’s atmosphere.

In ‘free space’ devoid of mass, gravitational potential V
obeys Laplace’s equation V2V = 0. In the eighteenth century,
Laplace, building on the work of Legendre, showed that it
was possible to solve this equation in spherical coordinates
using SH functions. By the early twentieth century, physi-
cists, geodesists and mathematicians routinely assumed that
the gravitational potential V(r,6, \) outside of the Earth could
be represented using a SH expansion (SHE) of the form

R r

o) n+1 n
v GM (5) Z (Crm COSMN + Sy sinmA) Pjy (cos6)
n=0

m=0

ey

where G is the universal constant of gravitation, M is the
mass of the Earth, § and A are colatitude and longitude, r
is the radial coordinate, and R is the radius of some refer-
ence sphere. In recent decades, R is usually equated with the
semi-major axis length of a reference ellipsoid that approx-
imates sea level. The summation indices n and m are called
the degree and order of the expansion, respectively, and the
terms ¢y, and s, are its coefficients. The P!’ are the associated
Legendre functions (also called the associated Legendre poly-
nomials); these reduce to the Legendre polynomials P, when
m=0. That is, Pg = P, for any value of n. When m =0 then
sinmA = 0, causing this term to disappear along with its coef-
ficient. Thus for each degree n there are a total of 2n + 1 coef-
ficients. Mathematicians should note that geodesists routinely
call n the degree of the SHE, even though the exponent of R/r
isn+1.

The degree-1 terms in equation (1) express the displace-
ment of the origin of the coordinate system from the center
of mass of the planet. If the origin exactly coincides with the
center of mass, all the degree-1 coefficients are zero, and the
corresponding terms vanish from the expansion.

Obviously, equation (1) describes an infinite series. In prac-
tice, numerical models of the gravitational field are truncated
at some maximum degree N, and the result is the finite SH
series

n

N n+1
M R
V= G Z () Z (Cum COSMN + Sy sSinmA) Pl (cos0) .

m=0
2

The larger the value of N, the better the spatial resolution of
this model. Mathematicians refer to equation (2) as a SH poly-
nomial. But most geodesists and geophysicists refer to it as a
SH series, without adding the qualifier ‘finite’ or ‘truncated.’
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This is unfortunate since mathematicians normally interpret
the word series to imply an infinite series.

The gravitational acceleration vector, g, is obtained from V
by differentiation:

g=VV, 3

where V is the gradient operator (section 7.1).

The P} in equations (1) and (2) can be normalized in a vari-
ety of ways—e.g. Guo (2023)—but normalization is not really
relevant to this study, nor would it affect our findings, so we
will not discuss it here.

It is worth noting that there are two different sign conven-
tions in use for the potential function V. For physicists and
most geophysicists, the gravitational potential V is negative,
consistent with the notion that the Earth sits in a potential well
of its own making. In this case, the gravitational acceleration
vector g = —V V. But nearly all geodesists define V to be pos-
itive, in which case g = VV. In the case of a spherical Earth
model, in which density is constant or spherically symmetric,
most physicists define V= —GM/r whereas most geodesists
define V= GM/r. But both groups agree as to the sign and
magnitude of gravitational force and acceleration.

2. The problem of divergence

By the early 1960s, it was widely understood that the SHE
of V, equation (1), is guaranteed to converge for any value of r
greater than the radius, Rp, of the Brillouin sphere (Kellogg
1929), but there was no such guarantee inside of that sphere.
Moritz (1961) argued that the expansion of the actual poten-
tial V should be considered divergent at the surface of the
Earth. Heiskanen and Moritz (1967) amended that position
when they stated the expansion will usually be divergent for
any r < Rp. This brought into question the utility of SH series
for approximating the external gravitational field anywhere
near the surface of the Earth. Krarup (1969) emphasized the
extreme instability of the property of convergence (when r <
Rp), noting that if the expansion of some external potential V
was convergent down to the planet’s surface, the tiniest per-
turbation, even that caused by the introduction of a single grain
of sand, could render the expansion divergent. But Krarup
(1969) also argued that a generalization of Runge’s theorem
(now called the Runge-Krarup theorem by geodesists) implies
that non-convergence is a non-problem in practice. As Moritz
(1980) put it

... let us for brevity introduce the name ‘conver-
gent potential’ for an external potential whose
spherical harmonic expansion is convergent on
or outside the Earth’s surface. Then the the-
orem by Runge-Krarup states that the set of
‘convergent potentials’ is dense within the set
of all external potentials, just as the rationals
are dense within the set of real numbers.

The analogy being drawn is that every irrational number can
be approximated with arbitrary accuracy by a rational number,

because the rational numbers are dense within the set of real
numbers. Given that any physical measurement has limited
precision, the question as to whether the quantity being meas-
ured, say a distance, should be represented by a rational or an
irrational number is moot and physically meaningless. Within
the range of uncertainty of the measurement, there would
always be ‘infinitely many rational and infinitely many irra-
tional numbers, all of them perfectly respectable and equally
suited for the office of numerically representing the distance
under consideration.’ Moritz used this analogy to explain that,
in the space of all potentials, there would be infinitely many
convergent potentials and infinitely many divergent potentials
located arbitrarily close to the actual potential of the Earth,
and therefore, in practice, there will always be a convergent
potential that can approximate the actual exterior potential of
the Earth to any desired degree of accuracy.

Hofmann-Wellenhof and Moritz (2006) expressed what
was still a widely held opinion a quarter of a century later:
that the spherical harmonic series of the actual potential V of
the Earth can be divergent or convergent at the surface of the
Earth, and ‘theoretically, this makes the use of a harmonic
expansion of V at the Earth’s surface somewhat difficult; prac-
tically, it is always safe to regard it as convergent.’

Despite Krarup’s and Moritz’s assurances that non-
convergence was a non-problem in practice, geodesists
engaged in constructing global gravitational models using SH
series, equation (2), occasionally reported numerical experi-
ments that seemed to manifest divergence, e.g. Jekeli (1983).
From the early 1980s to the present day, those building such
models have tended to improve their resolution, and bet-
ter exploit growing collections of terrestrial and space-based
measurements of gravitation and gravity, by increasing the
truncation degree N of their models. If the underlying SHE
of V is diverging, the higher the value of N, the more likely
that the finite SH series will manifest or illuminate this diver-
gent behavior. Jekeli (1983) referred to such non-convergent
behavior as ‘series divergence,” whereas Bucha et al (2019)
described it as ‘the divergence effect.’

Hirt and Kuhn (2017) investigated the ‘divergence issue’
using a set of SH series approximations for the external poten-
tial of the Moon. In these numerical experiments, the gravity
field generated by lunar topography was forward-modeled in
spherical harmonics using numerical integration techniques,
at various heights and different levels of resolution. In suc-
cessive experiments, N was increased from 90 to 2160. They
found that the spherical harmonic gravity field generated from
degree-180 topography was convergent everywhere in free
space, but when the topographic mass model was complete
through degree 360, divergence started to affect very high
degree gravity signals over regions deep inside the Brillouin
sphere. For topography and gravity models with N =2160,
divergence was so severe (with several 1000 mGal amp-
litudes) it prohibited accurate gravity modeling over most of
the topography. This result is consistent with previous sug-
gestions that divergence is more likely to occur the higher
the truncation degree N, the more extreme the planetary
topography, and the deeper the evaluation point lies beneath
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the Brillouin sphere (Wang 1997, Lowes and Winch 2012,
Hu and Jekeli 2015).

The increasing frequency and persuasiveness of published
claims concerning series divergence, and our own numerical
experiments conducted with entirely synthetic planets, promp-
ted Ogle et al (2021) and Costin et al (2022) to revisit the ques-
tion of whether or not a SHE of V would converge. Both stud-
ies used purely analytical approaches. Ogle et al (2021) used
the methods of differential topology, and Costin et al (2022)
used modern asymptotic approximation theory. They proved
that, for any realistic planet with topography, the probabil-
ity that a SHE for V will converge in free space beneath the
Brillouin surface is zero. This may seem surprising given the
Runge-Krarup theorem, which implies that there are an infin-
ite number of convergent potentials, as well as an infinite num-
ber of divergent potentials, arbitrarily close to a given external
potential. The apparent contradiction is resolved when we
understand:

(i) For each convergent potential in any small neighborhood
of the space of all external potentials, there are infinitely
many more divergent potentials.

(i) The Runge-Krarup theorem is an existence theorem. It
does not provide a method for finding or constructing a
convergent potential. No such method has been found.

Very loosely speaking, any procedure for evaluating the
coefficients of the expansion which cannot steer the result
towards a convergent potential is going to arrive at a diver-
gent potential, because the latter are infinitely more common
than the former.

We can re-purpose Moritz’s analogy of rational versus irra-
tional numbers in order to illustrate a parallel idea. Even
though there are infinitely many rational numbers in any seg-
ment of the real line, no matter how small that interval is, for
each rational number in that segment there are infinitely many
more irrational numbers. Therefore, if we randomly pick a
point (i.e. a real number) on the real line, the probability that
it will be a rational number is zero.

For further reading on the topic of convergence/divergence
we recommend Ecker (1972), Kholshevnikov (1977), Sjoberg
(1980), Sanso and Sideris (2013), Fukushima (2020) and the
references therein.

3. The structure and goals of this study

Since there has been considerable confusion concerning the
divergence of the SHE, and the results of Ogle et al (2021) and
Costin et al (2022) may be viewed as somewhat abstract, in
this current paper we aim to present both analytical and numer-
ical results which demonstrate clearly how and why the SHE is
divergent, and illustrate the practical numerical consequences
of this divergence.

In this work we will utilize the analytical framework of
Costin et al (2022). The analysis of Ogle et al (2021) is
also of interest because the two proofs arrive at similar con-
clusions concerning the presence of divergence beneath the

Brillouin sphere, using remarkably different methodologies.
Furthermore, the Ogle et al (2021) proof is based on a more
minimal set of assumptions concerning the continuity of the
planet. But the analysis of Costin et al (2022) is of greater
importance in that it establishes the necessary conditions for
convergence beneath the Brillouin sphere (which has zero
probability), and because it provides us with a powerful frame-
work for analyzing the phenomenology of the series approx-
imation error driven by divergence. The main goals of this
work are (1) to demonstrate that some key findings of Costin
et al (2022) can be tested using numerical experiments, and
that these tests are always passed, (2) to extend the original
theory, and (3) to elucidate the phenomenology of divergence-
driven series prediction error.

The greatest impediment to assessing the prediction errors
produced by SH series approximations for the Earth’s external
potential V is that we do not know the exact or true value
to compare with. For this reason we will focus on the grav-
itational potential of artificial or synthetic planets, which we
can compute anywhere in free space to hundreds of significant
digits, allowing a direct assessment of series prediction error,
both as a function of spatial position (especially with respect
to depth below the Brillouin sphere) and as a function of the
series truncation degree N.

4. Some preliminaries

One way of representing a SH series (normalized so that
GM/R=1), that emphasizes the sum on degree, n, is

N

Vy=>_ (R/N"™Y,(0,\), )

n=0

where

Y, (0,)\) = Z (CumcOSmA + Sy sinm\) P (cosB) . (5)

m=0

In general, the right-hand side of equation (5) has a total of
2n+ 1 non-zero terms.

Suppose we wish to evaluate the SH series on a radial line
A passing through points with angular coordinates (64, A4).
Restricting Y,(0, ) to ¥,,(64, ) reduces it to a constant a,
where, for any n,

a, = Z (Crm COSTAL + Sy SInmMAL) Pl (c0sB4),  (6)

m=0

so, on this same axis A, equation (4) reduces to

V= an(R/r)"" =ao(R/r) +ar (R/r)’
n=0
+ay(R/r) ++ay(R/r)* @

We can equate this expression with a Taylor polynomial in R/ r.
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The Taylor series (TS), or Taylor expansion, of a real or
complex function f(z) that is infinitely differentiable at z=a
is the power series

®)

where f*) (@) is the kth derivative of f(z) evaluated at z=a,
f9(a) =fla) and 0! = 1. If a =0, then the Taylor expansion
reduces to

> ()
f(Z):Zf (O)Zk

k!
k=0

€))
or

[ee]
f(2)= Zbkzk =by+biz+by +-
k=0

(10)

where by = f¥)(0) /k!. In the event that we truncate the Taylor
expansion at k = M, we obtain the Taylor polynomial

M
F@) = b =bo+biz+ba2? + .+ by,
k=0

D

We can associate equation (7) with this Taylor polynomial by
making the substitution R/r — z in equation (7). This means
that equation (7) is rewritten as

N
V=Y a" =aztai? +a +-+a™ (12)
n=0

The reader should not confuse the variable z with the geo-
centric Cartesian coordinate, which we represent with Z. We
sometimes use z to indicate any real or complex variable, as
in equation (11), and sometimes to mean the quotient R/r, as
in equation (12). The particular usage should be obvious from
the context.

There is another potential source of confusion for the
unwary, since mathematicians refer to k as the degree of the
Taylor polynomial (equation (11)), whereas geodesists refer
to n as the degree of the SHE (equation (1)), and this is the
same n that appears in equation (12).

In the context of our gravitational problem, z=0 cor-
responds to r = co. Because V— 0 as r — oo, there is no
constant term of the right-hand side of equation (7) or
equation (12). Therefore, to equate f(z) in equation (11) with
Vg in equation (12) we must set the constant by = 0, so that the
first term on the right-hand side of equation (11) vanishes, and
setb, =a,_; forn>0,and set M = N+ 1.

With these qualifications in mind, we conclude that the spa-
tial restriction (or projection) of a SH series onto a specific
radial line reduces the SH series to a truncated TS (or Taylor
polynomial) in R/r. Similarly, the divergence of the SHE in
free space anywhere beneath the Brillouin sphere will mani-
fest as the divergence (in free space) of the TS on the radial
line, if r < Rg, no matter the choice of radial line.

P

L(P)

Figure 1. A radial line L(P) that passes through some point P (that
is not coincident with the origin O) is entirely determined by the
geocentric colatitude, ¢, and longitude, A, of P. The complementary
radial line L(P) contains the point P which is antipodal to point P.

S is the singular radial line

S
L is a general f
radial line

Brillouin
/ Sphere

~

condensed matter

AN

Figure 2. A section through the center of the planet containing the
singular radial line S and an arbitrary radial line of interest, L. The
geocentric angle between S and L is «. In the case of the Earth, S
would pass through Mt. Chimborazo in Ecuador.

We conclude this section by introducing some useful ter-
minology associated with radial lines. Radial lines are half-
lines that begin at the origin, O, of the geocentric coordin-
ate system, and extend to infinity (figure 1). All the points
on a radial line (excluding the origin) have the same angular
coordinates (0, \). Thus we can specify a radial line L(P) by
providing the coordinates of any point P on that line. The com-
plementary radial line L(P) passes through a point P which is
antipodal to point P. The union of L(P) and L(P) is a line or
axis that passes through P, O and P.

If a radial line passes through the single point of contact
between the surface of the planet and its Brillouin sphere, we
refer to this radial line as the singular radial line (figure 2). The
Earth has a singular radial line, and the same would almost cer-
tainly be true for any rocky planet or moon. A singular radial
line and its complementary radial line jointly compose a sin-
gular axis. In section 7, we will see that a very important con-
trol on divergence and series prediction error along any radial
line L is the geocentric angle o between L and the singular
radial line S (figure 2).
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5. An asymptotic expression for the bound on
series prediction error

5.1. The Costin formula

A SH series is a function of co-latitude, 6, longitude, A, and r.
But if we restrict the SH series to specific values of 6 and A,
then it depends on r alone. Indeed, it reduces to a Taylor poly-
nomial in R/r where R = R™ is the radius of the reference
sphere.

Suppose, at some point P, the exact value of potential is V,
and the finite TS approximation is Vy, where N = ny, is the
truncation degree. Then the prediction error is ey = Vy — V,
and the relative prediction error is (Vy — V)/V.

Costin et al (2022) derived an asymptotic expression for the
upper bound, Ey, on the absolute value of the series approx-
imation error, ey, as a function of N and the radial coordinate,
r. The asymptotic formula for the error bound is

Ey~BN~"(R/r)", (13)

where R is the radius of the Brillouin sphere, the positive con-
stant b is proportional to the regularity (differentiability) of
the planet’s topography, and the positive constant B is fixed
for any given radial line, but, in general, will vary with 6
and A\. We call b and B the formula’s decay constant and scale
factor, respectively. The symbol ~, sometimes referred to as
‘asymptotically equal to,” means that Ey/(BN~?(R/r)V) — 1
as N — oo. The right-hand side of equation (13) serves as a
very good approximation to the true error bound only for ‘large
enough’ values of N. In the interests of brevity, we sometimes
refer to equation (13) as Costin’s formula.

For the rest of this paper, we will use R (rather than Rg) to
represent the radius of the Brillouin sphere.

Note that the right-hand side of equation (13) consists of the
constant B, the expression N~? which decays as N increases,
and the expression (R/r)", which either grows or decays as N
increases depending on whether r is smaller or greater than R,
respectively.

In the sections that follow, we will validate equation (13),
and explore its implications, using synthetic, constant-density
planets for which we can compute the correct values of the
potential, V, and gravitational acceleration, g, everywhere in
free space above the planet’s surface, to hundreds of signific-
ant digits (using Mathematica’s arbitrary precision arithmetic),
and compute the series approximation error, ey, with a simil-
arly high precision. Comparing Ey to ey for N =1,2,..., Nax
requires us to evaluate the positive constants b and B, for
each radial line of interest, so that we can evaluate Ey as a
function of N.

Our strategy for estimating b and B is to do so on the
Brillouin sphere, where R/r=1. In this setting, ey should
be bound above (for large enough N) by Ey = BN, and
the scaled errors e}, = N?ey should be bound above by Ej, =
NPEy = B. This suggests an obvious search algorithm for find-
ing b, and once the value for b has been determined, then B is
simply the observed upper bound on ej,. This strategy is most
easily grasped using a concrete example—see section 6.

5.2. The connection of the exponent b (and error decay rate)
to smoothness of the topography

The asymptotic decay rate of the sequence of truncation errors
{en} is closely related to the decay rate of the sequence of
coefficients {ay} appearing in (12). Call a power series suffi-
ciently alternating if the ratio of the number of positive coeffi-
cients to the number of negative coefficients through degree N
tends to 1 as N — co. In practice, the power series VA in
equation (12) is almost always of this type. The following is
not hard to verify.

Theorem 1. [f equation (12) is sufficiently alternating, then
the asymprotic bounds for {ey} and {|ay|} differ by a constant
(i.e. their ratio is a constant).

Said another way: when the series for the radial restriction
of V is sufficiently alternating, then on the Brillouin sphere
Sg: both {ey} and {ay} asymptotically behave as {N~"} for
some b > 0.

Assuming the planet has a single largest peak (generically
this happens almost always), the precise result of Costin et al
(2022) is that the regularity (smoothness) of the topography in
a topographical neighborhood of the peak of the tallest moun-
tain determines the magnitude of b; a smoother neighborhood
results in a larger b, and hence a more rapid rate of decrease for
the sequence {ay}, and hence also {ey} by the above theorem.

Define the function Vg to be the restriction of the poten-
tial V to the sphere S. Let the Brillouin sphere be represented
by Sgr. The smoothness of the function Vg, is determined by
the smoothness of Vg, in a neighborhood of the point on Sg;
where that mountain touches Sg;, which in turn strongly cor-
relates with the smoothness of the topographical neighborhood
above, viewed as an open surface in R?. Finally, the smooth-
ness of Vg, directly correlates with the decay rate of the coef-
ficients appearing in the SH series expansion of V, in much the
same way as the decay rate of the coefficients of the Fourier
transform of a 27-periodic function of one variable f is determ-
ined by the smoothness (degree of differentiability) of f on the
interval (—, ). Similar correlations hold when the planet has
finitely many maximal peaks all of the same distance from the
origin (as is the case with our cubic planet, discussed next).

6. The case of a cubic planetoid

6.1 Methodology

We begin with a highly idealized, constant-density ‘planet’ in
the form of a cube (figure 3). This cube has volume 2 x 2 x
2 = 8 and its Brillouin sphere has radius R = \/§, which is the
distance from the center of the cube to each of the eight ver-
tices. We adopt the normalization scheme that Gp = GM /8 =
1, where p is the density of the cube. We can compute the
gravitational potential, V, and the gravitational acceleration, g,
anywhere in free space exterior to the cube, by integrating the
standard expressions for V or g at some exterior point P due to
an infinitesimal element of volume dv (with mass dm = p dv)
over the cube as a whole. Typically, this classical approach
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Z vertex with
coordinates
(+1,+1,+1)

(A) The X, Y and Z axes pass through the centers of
the faces of the cubic planet. The Brillouin sphere has
radius R = v/3, and it touches the planet at just eight
points, i.e. the vertices of the cube.

s,

evaluation point
with Z/R = 0.95

interior of
cubic planet

(B) The evaluation points on the Z-axis that are used
in this study. Note that the cube does not touch its
Brillouin sphere in the X, Z-plane, though it does so,
for example, in the @, Z-plane.

Figure 3. (A) The cubic planet, and (B) The X, Y-plane (right).

requires numerical integration. But this resort is not necessary
for the cube. If the point P lies on one of the three axes, say
the positive Z-axis, then, given the resulting symmetry of the
problem, it becomes practical to find exact closed-form ana-
Iytical expressions for V and g as functions of Z, the only
non-zero coordinate of P. We did this using Mathematica. The
analytical expressions for V or g can be evaluated to hun-
dreds of significant digits using Mathematica’s arbitrary pre-
cision arithmetic. This provides us with the ‘correct’ answer,
to any desired degree of accuracy, at any chosen evaluation
point (figure 3(B)), and facilitates computation of the predic-
tion error associated with a truncated TS approximation for V
or g. Analogous results can be obtained for other Platonic
solids, in particular for the tetrahedron, which can be viewed
as a fundamental building block.

In order to compute the prediction error associated with
a TS approximation truncated at degree N, it is necessary
to compute the coefficients of this Taylor polynomial. If we
set z=R/r=R/Z, then we could, in principle, compute the
coefficients in the polynomial approximations for V by suc-
cessively differentiating the analytical expression for V with
respect to z, as seen in the expansion equation (9). In prac-
tice this would be prohibitively expensive (computationally),
so we compute the series approximation using Mathematica’s
built-in Series function instead. This approach is viable when
our evaluation points are restricted to the positive Z-axis but
not for the case of an arbitrarily oriented radial line.

The other advantage to restricting our evaluation points to
the positive Z-axis is that along this radial line the magnitude
of gravitational acceleration g = ||g|| = ||VV| = |0V/dr| =
|0V/0Z|. Typically, algebraic expressions for |[VV]|| can be
derived in closed form, but they are much more involved
than the expression for V and so in general do not allow for
the algebraic computation of Taylor polynomial approxima-
tions. However, the expression for |0V/JZ| is much simpler
(it can be stated in four pages), making the computations more
manageable.

Having computed the exact solution for V and its
TS approximation complete through degree N (for N =
1,2,...,Nmax), We can now compute the series approximation
error, ey, and implement the strategy outlined in section 5 for
finding the constants b and B in the asymptotic formula for
the upper bound on the absolute value of series approximation
erTor.

6.2. Searching for constants b and B, and validating the
results

As noted in section 5, if we choose the correct value for b the
scaled errors e}, = N’ey should be bounded above by Ej =
NPEy = B, which is a constant. We illustrate this strategy in
figure 4.

If we guess that b=3.3 we see that the local upper and
lower bounds on ey, converge as N increases (figure 4(A)). In
contrast, if we guess that b= 3.7 we see that the local upper
and lower bounds on ey, diverge as N increases (figure 4(C)).
But when we set b=7/2 = 3.5, as soon as N exceeds about
150, the upper and lower bounds (B and —B) are fixed or
horizontal, and, to a good approximation, B =25.94. Clearly,
asymptotic behavior was achieved quite quickly. The other
interesting aspect of this sub-plot is that once asymptotic beha-
vior is fairly well established, the scaled prediction error for
the series approximation for V is seen to oscillate between the
upper and lower bounds. We shall discuss the nature of oscil-
latory errors in some detail in section 7.3.

Having found the values of b and B in the asymptotic
expression, equation (13), for the radial line corresponding to
the positive Z-axis, we can now validate this formula for values
of R/r other than 1. We do this at a number of evaluation points
on the Z-axis, at varying depths below the Brillouin sphere
(the red dots in figure 3(B)). The errors ey were computed for
N=1,2,...,Nmax, Where Npn.,x = 3500, at each of the evalu-
ation points. Because ey varies by many orders of magnitude
over this range of N-values, it is not practical to use a linear
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Figure 4. The search for the values of the constants » and B in Costin’s formula, equation (13), when applied to prediction error in the
series approximation for V (on the positive Z-axis above the cubic planet). The search for b is realized where the positive Z-axis intersects
the Brillouin sphere, where R/r = R/Z = 1. The dashed red line in the central plot shows the constant upper and lower bounds, once

asymptotic behavior is established.

scale for the vertical axis used in plots of ey versus N. It is
necessary to use a logarithmic scale instead, and this requires
us to plot the logarithm of the absolute value of ey versus N
(these are the blue dots in figure 5). The ey are oscillating
between upper and lower bounds, as seen previously with the
scaled errors ey in figure 4, but now the negative values of ey
are represented using their (positive) absolute values in the
new plots. The sparse sub-set of blue dots near the bottom of
each cloud of blue dots represent those values of ey that are
unusually close to zero. Such values manifest the oscillations
(and therefore zero-crossings) in the ey spectrum.

The predictions of the asymptotic formula for the upper
bound Ey are also shown using red dashed lines in each of
the three sub-plots of figures 5(A)—(C), which correspond to
evaluation points with Z/R = 0.999,0.996, and 0.990, respect-
ively. Obviously, these asymptotic curves are shown using
the same logarithmic scaling. The agreement between the
upper limits of the directly computed |ey| and the theoretical
curve Ey is all the more pleasing given that we developed the

asymptotic expression for Ey many months before we found
a way to compute the series prediction errors on the positive
Z-axis above the cube with the necessary degree of accuracy.

6.3. The behavior of series approximation error for V beneath
the Brillouin sphere

Having validated the asymptotic formula for the upper bound
Ey, we can plot these bounding curves for eight different eval-
uation points on a single semi-log plot, to illuminate the phe-
nomenology of divergence-driven series prediction error. But
rather than work with the error Vy — V we will plot the upper
bounds for the magnitude of relative error (Vy — V)/V, instead
(figure 6). These curves are labeled in terms of the value of
r/R = Z/R of the corresponding evaluation points, which lie
in the range 0.950-0.999.

We define N = Ny to be the value of the series trunca-
tion degree N where the magnitudes of both the error, ey,
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Series error for V: directly computed versus upper bound from asymptotics
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Figure 5. Directly computed prediction errors ey for series approximations for V, complete through degree N (blue dots), compared with
the asymptotic expression for the upper bound Ex on these errors, for three evaluation points on the positive Z-axis. The evaluation points
lie between the cubic planet and its Brillouin sphere. The evaluation points for plots (A)~(C) have R/r = R/Z = 0.999, 0.996 and 0.990,
respectively. Note the use of the base-10 logarithm: the error bound curve in (C) has values that range over 10 orders of magnitude or

decades.

and relative error, ey/V, reach their minimum or optimal val-
ues (for given r/R = Z/R). These turning points are marked
with the blue circles in figure 6. We shall show that N = Ngp
depends on b but not on B. We can understand this beha-
vior by examining the components of the error bound formula,
equation (13), that is Ey = BN~"(R/r)N, where r = Z. We see
that below the Brillouin sphere:

e For N < Ny, N~* dominates (R/Z)", and the error declines
as N increases.

e For N> Noy, (R/Z)M dominates N7, and the error
increases as N increases.

Since exponential growth manifests as a straight line on
this semi-log plot, figure 6 suggests that for N >> Ny, error

increases exponentially with increasing N. This is easily
understood. When N >> Ny, the rate of change of Ey is dom-
inated by the rate of change of (R/Z)", and this term grows
exponentially with N.

This discussion of the relative impacts of N~* and (R/Z)¥
focuses on the mathematical behavior of Costin’s formula,
equation (13). But is it possible to make a physically more
intuitive interpretation of this behavior? We offer the follow-
ing thoughts. Increasing N reduces series approximation error
by providing the truncated series with greater degrees of free-
dom, allowing Vy to better ‘follow’ the variations in the true
potential V on the radial line in free space (where (R/Z)N is
bounded as a function of N). Increasing N allows Vy to bet-
ter resolve the fine details in the structure of V(r). We can
also take the view that this improvement in the performance
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Figure 6. The upper bound on the relative prediction error versus the truncation degree N of the series approximation for V. The eight
curves show the relative error spectra for eight evaluation points on the positive Z-axis with values of r/R = Z/R ranging between 0.95 and
0.999. Each curve is labeled with the corresponding value of Z/R. The blue circles indicated the location of the minimum relative error on
each curve. This turning point occurs when N = Nop. Clearly, N = Nop declines as the evaluation point lies deeper and deeper beneath the

Brillouin sphere, where Z =R.

of the polynomial approximation is achieved by reducing its
‘error of omission’ or ‘truncation error’ (i.e. the impact of
omitting from the Taylor polynomial all terms in the infin-
ite TS with degree greater than N). In contrast, and simul-
taneously, increasing N also causes an increase in the series
prediction error beneath the Brillouin sphere because, as it
lengthens, the Taylor polynomial increasingly manifests the
divergence of the infinite TS. These ‘enhancing’ and ‘degrad-
ing’ tendencies co-exist and compete. Improving resolution is
more important than suppressing divergence when N < Ny,
because the speed of improvement (as N — N+ 1) is greater
than the speed of degradation. The reverse is true when N >
Nopi. Thus, Ny serves as the cross-over point in the compet-
ition between increasing the degrees of freedom available to
the Taylor polynomial and reducing its divergence.

So far we have emphasized how series approximation error
changes with N when depth beneath the Brillouin sphere is
held constant. It is also useful to track ey and Ex when we fix N
and vary Z instead. We did this by setting N = 3500, and dir-
ectly computing relative error e/ V and evaluating the relative
error bound Ey/V at 30 different values of Z. The results are
shown in figure 7. At first it might seem strange that there is a
significant gap or offset between the directly computed errors
and the error bound predicted using the asymptotic formula.
But recall that the actual errors ey are oscillating between Ey
and —Ey (figure 5), and therefore there are many N-values for
which |ey| will be smaller than Ey. There is only one value
of N in figure 7. The presence of the ‘gap’ is not surprising;
though it is interesting that the size of this gap does not change
significantly over this range of depth values. The explanation
for this will become apparent in section 6.6.

Series prediction
; 3

error for V with N = 3500, on Z-axis above cube
T T T T T

0.998 -

0.996 -

0.994 -

ZIR

0.992 -

—o— prediction error from direct computation

099 - — — upper bound on error, from asymptotics

0.988 -

L L 1 | {
-4 2 0
log,,(abs(relative error))

Figure 7. The absolute value of relative prediction error for V
evaluated on the Z-axis beneath the Brillouin sphere, when

N = 3500. The directly computed error is shown using red circles
and the upper bound implied by Costin’s formula using a blue
dashed line.

The most obvious feature of figure 7 is that the observed
error profile (ey versus Z/R) and the corresponding Ey-curve
both appear to be very nearly straight lines on this semi-log
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Figure 8. The search for the values of the constants » and B in the asymptotic formula, equation (13), when applied to prediction error in

the series approximation for g on the positive Z-axis above the cubic

planet. The search for b is realized where the positive Z-axis intersects

the Brillouin sphere, where R/r = R/Z = 1. The dashed red line in the central plot shows the constant upper and lower bounds, once

asymptotic behavior is established.

plot. This implies that series prediction error is increasing
exponentially with depth below the Brillouin sphere. Suppose
we define depth d = R — r = R — Z, then it is easy to show that
if dinax < R (for example diax/R < 0.01) then Costin’s for-
mula implies that, to a very good approximation, Ey should
increase exponentially with d in the depth range 0 < d < dpax-
Specifically, for all d < R, the asymptotic approximation for
the upper bound on series error can be approximated thus

logEy = log ES" + Nd/R, (14)
where log refers to the natural logarithm, and E8" = BN—?
the value of the error bound Ej at the intersection of the pos-
itive Z-axis and the Brillouin sphere (where R/r=R/Z=1).
Given that b and B are constants, if N is held fixed, then the
first term on the right-hand side of equation (14) is a constant,
and d is the only variable in the second term.

6.4. Gravitational acceleration on the Z-axis beneath the
Berillouin sphere

As we noted in section 6.1, we can estimate the gravitational
acceleration g anywhere on the positive Z-axis beneath the
Brillouin sphere and compare it to the TS approximation for g,
which we obtain by forming the Z-derivative of the TS approx-
imation for V. This allows us to compute ey for g, and thus
search for the constants for b and B in Costin’s formula when
it is applied to g rather than V. The analysis of Costin et al
(2022) implies that since g = OV/OZ we should expect that
b =bY —1=7/2—1=15/2. This s confirmed when we per-
form a search for b%, much as we previously searched for b”
in figure 4. We see that when we plot the scaled errors Ej
versus N for g, the error bounds converge if we assume that
b=2.3 (figure 8(A)) and diverge if we assume that b =2.7
(figure 8(C)). But when we set b = 5/2 = 2.5, then as soon as
N exceeds about 100, the upper and lower bounds (B and —B)

1
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Figure 9. The upper bound on the relative prediction error versus the truncation degree N of the series approximation for g. The eight
curves show the relative error spectra for eight evaluation points on the positive Z-axis with r/R = Z/R values ranging between 0.95 and
0.999. Each curve is labeled with the corresponding value of Z/R. The blue circles indicated the location of the minimum relative error on
each curve. This turning point occurs when N = Nop. Clearly, N = Nop declines as the evaluation point lies deeper and deeper beneath the
Brillouin sphere, where Z = R. Compare these curves with those in figure 6.

become ‘fixed’ or horizontal. We see that for g, B = 15.00. This
allows us to find the g equivalent to figure 6, that is, the relative
error spectra for g shown in figure 9.

Note that the onset of divergence and increased predic-
tion error occurs ‘sooner’ for g than for V, in terms of its
development as a function of N, and as a function of depth
as we descend beneath the Brillouin sphere (figure 9 versus
figure 6). This is a natural consequence of the differentiation
of the potential.

6.5. On the optimal value of N

We need to know both b and B in Costin’s formula in order
to evaluate the upper bound of divergence-driven prediction
error. But to compute N,,;, we need only knowledge of b. To
find the optimal value of N we replace N in equation (13) with
a continuous real variable u. We take the derivative of Ey with
respect to u, set that derivative to zero, and solve for the par-
ticular value of u at the turning point, yielding

urtp = b/lOg(R/V)

As utp is generally not an integer, we set Nop to be the largest
integer less than or equal to utp.

To compute the vertical profile of Ny for V and g, we
must set b="7/2 or b=15/2, respectively. We have done

5)

this in figure 10(B). Having computed Ny, it is a simple
matter to compute the upper bounds on relative error Ey/V
and Ey/g for V and g, respectively, when N = Nopt. This
provides an upper bound on the minimum value of relat-
ive error at each value of R/r=R/Z. We plot these min-
imum relative error profiles in figure 10(A). As we saw pre-
viously, divergence drives much larger relative approximation
errors for g than for V, and the onset of divergence occurs
(at any given depth below the Brillouin sphere) at smaller
values of N.

6.6. Asymptotic bounds on the Taylor series coefficients

In section 5.2, we claimed that the asymptotic behavior of
approximation error ey is closely related to the asymptotic
behavior of the coefficients of the TS along the same radial
line. In this section, we will show that in the asymptotic limit,
the coefficients {a,} in equation (12) have an upper bound A,
given by

A, ~ Kn~k, (16)

where k and K are positive constants. When the TS coefficients
for a given radial line are oscillating around zero (which is
the case for nearly all radial lines) then their lower bound is
—A,. It is sometimes convenient to plot the coefficients using
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Figure 10. (A—left) The upper bound on the minimum relative error as a function of Z/R, which is the value of the relative error when
N = Nopt. This is shown for the series approximation error for V and g. (B—right) The vertical profile of Nop for V and g, again for a range

of Z/R values on the positive Z-axis above the cube.

a logarithmic scale, requiring us to plot |a,| rather than a,. In
this case, the upper bound remains the same and there is no
lower bound.

The asymptotic formula, equation (16), implies that the
scaled coefficients a’ = n*a, should be bound above by A =
n*A, = K. (The same is true if we define a* = n*|a,|, so we
can use a semilog plot). In the case of the series approximation
for V, this expectation is true if we select k = 7/2 (figure 11).
This allows us to determine that K =42.31. While the asymp-
totic constant k for V is identical to the asymptotic constant b
for V, this equality does not extend to the associated con-
stants B and K.

We perform a similar analysis for the coefficients of the
Taylor polynomial approximation for g and find that k =
5/2 and K =24.45 (figure 12). Once again see that k for g
matches the value of b for g, but this equality does not extend
to K and B.

However, there are suggestions of proportionality since
we find that KV/BY ~ K8 /B$ ~ 1.63. Similarly, we find that
KY/K# ~ BY/B? ~ 1.73. The radius of the Brillouin sphere for
the cube is R = v/3 &~ 1.73. So perhaps the underlying asymp-
totic relationship is KV /K¢ = BV /B¢ = R. We are better able
to assess these intriguing relationships in the next section,
when we work with a synthetic polygonal planet and examine
the phenomenology of divergence and asymptotic behavior on
many different radial lines.

7. Investigating Taylor series divergence in free
space exterior to a polyhedral planet

There are obvious problems and limitations with our use of a
‘cubic planet.” First, it is nothing like the shape of the Earth
or Moon, or any other terrestrial planet. We have performed
similar studies of other regular Platonic solids, but they are not
Earth-like either, particularly in terms of our ability to simulate
fairly realistic topography. Secondly, in terms of our analytical
methodology, we were limited to working on the positive Z-
axis which passed through the center of one of the faces of the
cube. We could do the same on the negative Z-axis, or the pos-
itive and negative X and Y axes, but given the symmetry of this
cubic planet, this would not introduce any new insights. We
need a new approach that allows us to examine divergence in
free space beneath the Brillouin sphere along any radial line,
and which allows us to simulate planets that are more real-
istic in terms of their morphology. This new approach has to
allow us to compute V and the components of the gravitational
acceleration vector g anywhere in free space external to the
planet with arbitrary levels of numerical precision, allowing
us to compute prediction error V — Vy, or relative prediction
error (V — Vy)/V, to hundreds of significant digits, so we can
track the evolution of divergence with changing N or changing
depth beneath the Brillouin sphere, even when the intensity or
impact of divergence is still very small.
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Figure 11. Asymptotic behavior of the scaled absolute values, a;; = nk|an|, of the Taylor polynomial coefficients for V restricted to the
positive Z-axis. A constant upper bound is found only if kK = 7/2. Once asymptotic behavior is fully established, when N is greater than
about 200, the upper bound on a;; is the constant K = 42.31. The scaled coefficients n*a, are oscillating between —K and K, but the blue
dots represent the scaled absolute values of the coefficients, nk|an|, which are always positive. The sparse set of dots seen near the bottom of
the plot represent near-approaches to zero as the oscillating coefficients change sign.
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Figure 12. Asymptotic behavior of the scaled absolute values, a;;, of the Taylor polynomial coefficients for g restricted to the positive
Z-axis. A constant upper bound is found only if k = 5/2. Once asymptotic behavior is fully established, when N is greater than about 100,
the upper bound on a;, is the constant K =24.45.
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For these reasons we decided to adopt the flexible simula-
tion framework of a constant-density polyhedral planet based
on the approach of Werner (1994).

71 A polyhedral, constant-density planet

Werner (1994) provided a means to compute the gravitational
field exterior to a homogeneous (constant density) planet
whose surface is a polyhedron composed of an arbitrary num-
ber of triangular faces. He did so by providing closed-form
expressions for exterior gravitational potential V and for exter-
ior gravitational acceleration g. These algebraic solutions were
derived using Gauss’ divergence theorem and Green’s the-
orem, one triangular face at a time, and summed over the entire
polyhedron. They are exact solutions.

We employ Werner’s algebraic expressions for V, but we
choose to compute g=VV by taking numerical derivat-
ives of V, using arbitrary precision arithmetic. As with the
cube, we developed our codes for the polyhedral planet using
Mathematica. We can use this code to compute the ‘correct
answer’ for V and g to hundreds or thousands of signific-
ant digits, and—as we did for the cubic planet—to compute a
series approximation for V restricted to any radial line, to sim-
ilar levels of numerical precision. We often compute the series
approximation for the radial component g, of g by forming
the numerical derivative (with respect to r) of V. Recall that in
Cartesian coordinates

v,
0X

ov .,

v, N . .
g=VV= 8_Yy+ 8—Zz:gxx—|—gyy+gzz, 17)

and in spherical coordinates

1 oV

ov.. L1 oV
rsinf O\

_r+ 18_‘/A
or

T A=gT+g90+ g\

(18)

For any nearly-spherical planet g, >> gy and g, >> g and
therefore g = ||g|| ~ g, and |(g —g,)/g| << 1. In most set-
tings, divergence-driven approximation error in g is dominated
by the approximation error in g,. So, we can usually reduce our
computational costs by a factor of 3 by computing approxim-
ation error in g, and using it as a proxy for the approximation
error in g. This can lead to significant reductions in computa-
tional expense when the polyhedral planet has a large number
of triangular faces. The key idea here is, if the prediction error
for g, is growing very strongly, the same would be true of the
prediction error for g.

72. Building a synthetic polyhedral planet

Constant-density polyhedral planets have a greater utility than
one might first imagine, in that a linear combination of such
planets can be used to construct layered planets with piece-
wise constant density. The upper and lower boundaries of all
but the innermost of the constant density layers would be con-
vex polygons, and the thickness of each layer could be lat-
erally variable. In this work, we will focus on homogeneous

Figure 13. Local densification of the icosphere at the site of the
highest mountain, in the center of the plot. Similar densification
occurred at the location of the second highest mountain summit,
seen at the right limb of the polyhedron. Similar densifications
occurred at the antipodes of both mountains. Both mountains have
six triangular faces as their flanks.

planets, and defer the modeling of layered planets to a sequel
publication.

We begin by constructing a polyhedron in which all the
triangular faces have vertices with equal radial coordinates
r = R,. Thus the polygon approximates a sphere of radius R;.
In our first study we set Ry = 1. To triangulate this sphere,
so as to produce a geodesic polyhedron, we use a standard
approach, described by Tegmark (1996), in which the trian-
gular faces of an icosahedron are divided into a set of smaller
triangles, and all the vertices are projected onto the sphere that
circumscribes the icosahedron. The number of triangular faces
depends on the number of times each triangle—starting with
the 20 triangular faces composing the original icosahedron—
is divided into four new triangles. The triangular faces of this
nearly spherical polyhedron, sometimes referred to as an ico-
sphere, are not equilateral triangles, but they are roughly sim-
ilar in terms of their edge lengths. We densified the icosahed-
ron twice, resulting in a polyhedron with 162 vertices and 320
faces. Six triangles meet at every vertex, except for the 12 ver-
tices of the original icosahedron, where only five triangular
faces meet.

We decided to produce two giant mountains by increas-
ing the radial coordinate r of two (well-separated) vertices
to 1.05 and 1.1, respectively. To reduce the width of the
base of these mountains we performed a local densification
(figure 13) of two triangles whose centroids were located about
95 degrees apart, and did the same for the antipodal triangles.
This ensured that the antipode to each ‘mountain top,” or sum-
mit vertex, was itself a vertex. Once this local densification was
completed, the polyhedron had 182 vertices and 360 faces. We
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Figure 14. Selected vertices of the ‘two-mountain polyhedron’ are
indicated using their indices. The summit vertex for the tallest
mountain (with r = 1.1) has index 163, and the summit vertex of the
second mountain (with » = 1.05) has index 173. The intersection of
the Brillouin sphere with the plane that passes through the origin
and the two summit vertices is indicated using the dotted red line.
Vertex 168 is antipodal to vertex 163, and vertex 178 is antipodal to
vertex 173. From this perspective, we can see only two of the six
triangular faces that flank the highest mountain.

then adjusted the radial coordinate of a single vertex to make
each mountain. Note that the pattern of local densification
(subdivision of triangular faces) is such that each mountain
takes the form of an hexagonal pyramid (figure 13).

Each vertex and each triangular face has a unique index,
and we label some of these elements in figures 14 and 15.

After the summit vertices 163 and 173 were displaced radi-
ally outwards, to produce the mountains, our final step was
to rotate the coordinate system so that the summit vertex for
the highest mountain was located at the ‘North Pole’ (on the
positive Z-axis), and the ‘Greenwich Meridian’ (A = 0) passes
through the summit vertex of the second, smaller mountain.
The summit of the smaller mountain has a latitude of 7.853°S
(so 8 =97.853°). The singular radial line passes through ver-
tex 163, and the complementary radial line passes through
vertex 168.

Of course, the two mountains on our polyhedral planet
would be absurdly large if we wished to evoke an Earth-
like planet. The reason we designed this synthetic planet
in this way was (i) to allow us to assess series divergence
above the planet’s surface but deep beneath its Brillouin
sphere, and (ii) to produce large signals in the rate at
which the asymptotic parameters K and B change ‘later-
ally’ in response to topography. The larger the mountain,
the larger the response. These mountains are so large that
the center of mass of the planet has Cartesian coordinates

B

Figure 15. Selected faces of the ‘two-mountain polyhedron’ are
indicated using their indices. Each face is labeled at its centroid.
Thus face 323 constitutes part of the flank of the highest mountain,
and face 324 lies on the flat lowlands immediately adjacent to this
mountain. Face 315 constitutes part of the flank of the smaller
mountain.

(X,Y,Z) = (0.00022636,—0.0000024,0.0004306), signific-
antly displaced from the center of the original sphere, which
remains the origin of our coordinate system. The volume, V,
of this mountainous polyhedron is 4.054604. We emphasize
that every vertex describing the final polyhedron has r=1
except for the two mountain summit vertices (with r=1.05
and r=1.1).

As with the cubic planet, it is convenient to adopt a nor-
malization scheme. We chose the uniform density, p, for the
planet such that Gp = 2.

73. Bounding series coefficients and prediction error for V

We begin by assessing the behavior of the TS coefficients
for V on the radial line passing through the centroid of tri-
angular face 324 (figure 15). As before with the cubic planet,
we search for the asymptotic parameters k and K, which were
defined in equation (16). We find that k =7/2 on this radial
line (figure 16). As we shall see, we find that k = 7/2 on every
radial line except the singular radial line and its complement.
This is true whether the radial line passes through a vertex, an
edge, or a face of the polyhedron.

We estimated the wavelength, A, of the oscillation—after
asymptotic behavior seemed well established—by locating the
positive peaks and determining the mean distance between
them. We found that A ~ 35.1.

After we made a similar analysis for many other radial
lines we realized that A was inversely proportional to the
angle, o, between the radial line under consideration and the
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Figure 16. The behavior of the Taylor series coefficients for V on the radial line through the centroid of face 324. (A) The scaled
coefficients a; = n*a, versus degree, n. Note that asymptotic behavior seems well established when n > 200 provided that k = 7 /2.(B) In
this plot, the coefficients are represented by the dots, and the oscillating curve is K'sin (an + f34), where K = 10.284, o = 6 is the angle
between this radial line and the singular radial line (figure 2), n is treated as a continuous real variable, and [ is the phase angle (for this
radial line) determined by weighted least-squares estimation. In this plot and all similar plots, the estimated value of /3 is stated in the

legend. In this case, 5, = 0.7072.

singular radial line (figure 2). It did not take long to realize
that

a; ~ Ksin(an+ f,), (19)

~

where, as before, the symbol means that a; —
Ksin(an+ (,) as n— oo. The value of phase angle §,
depends on the particular radial line. Note that the symbol ~
is sometimes interpreted as ‘approximately equal to’ (=) for
‘large enough’ n. This characterization, sometimes referred
to as the ‘asymptotic approximation,” depends as much on
one’s tolerance of error as it does on the actual behavior of the
coefficients, and thus it is somewhat subjective.

We illustrate this asymptotic behavior by treating n as a
continuous real variable and evaluating the sinusoid on the
right-hand side of equation (19) at an interval n < 0.1. This
sinusoid is plotted as the continuous curve in figure 16(B), and
the discrete values of aj;, for integer n, are plotted as small
circles on top of this curve, so that it is easy to determine the
level of agreement. For most practical purposes, the asymp-
totic approximation will be acceptable (for this radial line)
when n > 200, and perhaps even earlier.

Next we examine the asymptotic bounds of the scaled errors
e}, = NPey at the intersection of the same radial line and the
Brillouin sphere, where R/r=1 (figure 17). We find that

b =17/2, meaning that b = k, as for the cubic planet. We estim-
ated the wavelength of the oscillation seen in figure 17(A), and
found that A = 35.1, which is what we found for the oscillating
coefficients in figure 16. The suggestion is that the asymptotic
behavior of oscillations in prediction error on the Brillouin
sphere can be described as

ey ~ Bsin(aN+ (,), (20)
which is very similar to the asymptotic relation equation (19).
We find that this asymptotic formula holds for every other
radial line we have examined that is not parallel to the singular
radial line. We test asymptotic equation (20) in figure 17(B),
using the same approach that we used for the coefficients. The
wavelengths seen in figures 16 and 17 are identical because
both figures focus on the same radial line, and therefore have
the same value of «. But note that the values of the phase
angle g are different. That is, §, # B, on the same radial
line.

We now switch our focus to the radial line passing through
vertex 141 (figure 14), where o = 44.8216°, about 4.37 times
larger than the value of « for the radial line we have just
examined. We show the results from our search for k and K
in figure 18, and the results from our search for b and B in
figure 19. We see that b=k =7/2, as before, and that the
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Figure 17. The behavior of the series prediction error for V on the radial line through the centroid of face 324. (A) The scaled errors

ek = N¥ey are plotted as a function of the truncation degree, N. (B) In this plot, the scaled errors are represented by the dots, and the
oscillating curve is Bsin (aN + 3.), where B =57.4419, e = 0 is the angle between this radial line and the singular radial line (figure 2), N
is treated as a continuous real variable, and S, is the phase angle (for this radial line) determined by a weighted least squares analysis. In this
case, B, = 2.3478 radians.

20 (A) radial line code: 121-133-141-0-0-1 (0 = 44.8216, A = -4.0577) above vertex 141 k=3.5,K=5.1770
T T \ \ T T T \ T \
15 e :
-—K
c 10 for 100 < n < 1095, wavelength A= 8.033 + 0.016 =
xm
[ = 5k — P —— o [ —— -
I 1
= ot RN
R A AR AR ARARARARAAARAZARAASARIAANRRARARAARRARARARDRINRAARARIARANARRCAARDUQANRARAARARANNNSNRALARRIR LL
10 I | | | I \ I | | |
100 200 300 400 500 600 700 800 900 1000
degree, n
& (B) detailed view
I T I I T
abda LR LR L] ‘-"
2 id
. a
n
& 0 —— K sin{an +0.4029)
I
-2 3
f
L ] [0 1 RReRAdaads L 11
-6 | 1 | | | 1 1 | |
600 650 700 750 800 850 900 950 1000 1050
degree, n

Figure 18. The behavior of the scaled Taylor series coefficients for V on the radial line through vertex 141. The format of parts (A) and (B)
in this figure are the same as for parts (A) and (B) of figure 16. The parameter k = 7/2, as before. For this radial line o = 44.8216°, so the
scaled coefficients a,, oscillate about 4.37 times faster than in figure 16.
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(B) detailed view
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Figure 19. The behavior of the scaled prediction errors for V on the radial line through vertex 141. The format of parts (A) and (B) in this
figure are the same as for parts (A) and (B) of figure 17. The parameter b = 7/2, as before. For this radial line ow = 44.8216°, so the scaled

coefficients e;; oscillate about 4.37 times faster than in figure 17.

scaled coefficients and scaled errors are oscillating at the same
rate (and with the same wavelength) but about 4.37 times faster
than for the previous radial line.

The asymptotic relationship equation (19) implies that
rather special outcomes occur when =0, on the singular
axis, which passes through the highest vertex, and when o =
m, on the complementary radial line, which passes through the
antipode. As o — 0, then A — oo, implying that, once asymp-
totic behavior is well established, the coefficients will never
change their sign when o =0. This suggestion is verified in
figure 20(A). Indeed, the coefficients do not change their sign
for any value of n. The other remarkable finding is that k=3
rather than 7/2. If we make a similar plot but with k=2.9
or k=3.1 we find no ‘flattening’ of the upper bound curve
for the scaled coefficients for large values of n. Instead, the
local upper bound on the scaled coefficients either strongly
increases or strongly decreases with rising n.

Even when k = 3, the apparent ‘convergence’ of the scaled
coefficients with the dashed red line, seen in figure 20(A), is
misleading. Having found the appropriate value of k, we estim-
ate the value of the asymptotic parameter K in plots of this kind
by finding the largest absolute value of the scaled coefficients
a; after asymptotic behavior is well established, that is, ignor-
ing the anomalous values that occur for small values of n. But
in this case (figure 20(A)), the largest value of a;, is that for
the largest value of n (figure 20(B)). We are surely underes-
timating the value of K. The convergence process is so slow on
the singular radial line, we cannot reliably estimate the value

of K. The fact that the coefficients never change sign helps to
explain this. Alternating signs (even with a long wavelength)
encourages convergence of the series (section 5.2).

The other special case of interest is for the complement-
ary radial line, with o = 7, where the oscillation of the scaled
coefficients has a wavelength A, = 27/« =2, implying that
the coefficient’s signs will eventually alternate, strictly, from
one value of n to the next. This expectation is confirmed
in figure 21. For the second time we find that k=3. This
anomalous value of k applies to the entire singular axis, that
is, to the singular radial line and its complement. But in
this case, convergence with the expected asymptotic behavior
(equation (19)) is essentially complete when n exceeds about
250. This means that a; very closely approximates =K. Such
rapid convergence is promoted when the sign of the coeffi-
cients strictly alternates from one value of n to the next.

We cannot examine prediction error beneath the Brillouin
sphere on the singular radial line, because there is no free
space there, only the solid planet. But we can examine predic-
tion error at the intersection of the singular radial line and the
Brillouin sphere, that is, where the highest mountain’s sum-
mit touches that sphere. We employ a trick to work around the
fact that the Werner method can compute V above the surface
of the polyhedral planet, but not on it. We compute V at a point
on the singular radial line at r = R + ¢, and set € ~ 10749, 50
that the difference between V(R) and V(R + ¢) is entirely neg-
ligible. This leads us to the scaled error plot figure 22, showing
that b = 2 rather than the usual value of b =7/2.
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Figure 20. The behavior of the scaled Tayor series coefficients for V on the singular radial line through vertex 163, which lies on the

Brillouin sphere.
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Figure 21. The behavior of the scaled Taylor series coefficients for V on the radial line through vertex 168, which is antipodal to the
singular radial line. Note that in (B), the g, have values very close to +K or —K, and they are strictly alternating in sign.
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Figure 22. The behavior of the scaled prediction errors for V at the intersection of the Brillouin sphere and the singular radial line (that is,
on vertex 163). We find that b =2.
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Figure 23. The behavior of the scaled prediction errors for V at the intersection of the Brillouin sphere and the radial line through vertex
168, which is antipodal to the singular radial line. Note that in (B), the ey have values very close to +B or —B, and they are strictly
alternating in sign.

There is free space both on and beneath the Brillouin sphere This ‘spatial quantization’ of the asymptotic scaling para-
on the complementary radial line which passes through vertex meters k and b provides additional support to an asymptotic
168. We examine the asymptotic behavior of the scaled series  theory of divergence and prediction error that is so strongly
prediction errors ey versus N in figure 23. We find that »=3  tied to the Brillouin sphere, and is frequently focused on what

rather than the usual value of 7/2. happens near the singular point on this sphere, where it touches
We conclude that, for this polyhedral planet, the asymp- the planet (Costin et al 2022).
totic decay parameters for V are b=k ="7/2 when 0 < o < While the presence and amplitude of topography does

7. When aw=0 then k=3 and b =2, and when o =7 then not affect the value of the asymptotic parameters k£ and b
k = b = 3. The singular radial line is the only radial line on away from the singular axis, nor does it change the asymp-
which b # k. totic behavior expressed by equations (19) and (20), it
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Figure 24. The behavior of the scaled prediction errors for V on the Brillouin sphere above the midpoint of the edge between vertices 164
and 163, where o = 3.94°. Notice in subplot (B) that there is a small but discernible offset between the ey and the continuous curve

representing asymptotic behavior (equation (20)), until N is about 700.

certainly does affect the parameters K and B, and also
the rate of convergence towards asymptotic behavior. For
example, if we search for k and b above a point in the
middle of one the edges of the highest mountain, halfway
between vertices 164 and 163, we find that K =16.25 and
B =234.72, much higher values than we have seen so far.
Furthermore, a careful visual inspection of figure 24(B)
reveals that asymptotic behavior is not very well established
until N =~ 700.

Even closer to the highest summit vertex, there are radial
lines on which B > 500 ensures much larger prediction errors
for V than prevail over nearly all the sphere.

74. Prediction error for V beneath the Birillouin sphere

We now show that Costin’s formula, equation (13), cor-
rectly bounds the directly computed series prediction error
for V beneath the Brillouin sphere. Rather than plot the
errors ey = (V— Vy) versus N, we plot the absolute value of
relative prediction error ey/V = (V— Vy)/V versus N. The
upper bound should be Ey/V. We confirm this for the radial
line passing through vertex 141, for four different values of
r/R, in figure 25. Note that Nopt = 1748 when r = 0.998R,
but much deeper beneath the Brillouin sphere, at r = 0.96R,
the impact of divergence manifests far more quickly, and
Nope = 86. In this setting, relative error is greater than 1 when
N ~ 500, meaning that the prediction Vs has no significant
digits.

75. Bounding series coefficients and prediction error for g

We now consider asymptotic behavior in the TS coefficients
for g,. We do this for the radial line passing through ver-
tex 141 in figure 26. As with the cubic planet, we find
k=15/2 when focusing on gravitational acceleration rather
than gravitational potential. Note that the oscillations in the
scaled coefficients follow the same asymptotic relationship,
equation (19), seen previously with the coefficients for V. The
wavelength A, estimated in figure 26(A) is found by counting
peaks, whereas in figure 26(B) the continuous sinusoid is gen-
erated by setting the wavelength to its asymptotic value A, =
27 /o and simply estimating the sinusoid’s phase angle using
weighted least-squares estimation. Compare figure 26(B) with
figure 18(B).

When we search for asymptotic bounds in the scaled series
prediction error ey for g,, at the intersection of this radial
line and the Brillouin sphere, then, unsurprisingly, we find
b =35/2. The oscillations in ey conform with the asymptotic
relation equation (20), and the asymptotic wavelength Ay =
A, =27/

In the interests of brevity, we summarize, without illustra-
tion, the results of performing investigations on other radial
lines, including all those depicted in figures 14 and 15: that
b8 =5/2 everywhere, no matter if the radial line passes
through a vertex, a face or an edge, except for the singular
radial line (with o = 0), where k¥ = 2 and b® = 1, and the com-
plementary radial line, (with a = ) where k% = b8 = 2.

It is possible to verify that, once we have estimated the
value of B on the Brillouin sphere, Costin’s formula bounds
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Figure 25. A comparison of the absolute value of the directly computed relative prediction error, ex/V = (Vy — V)/V, and its asymptotic
bound, Ey/V, from Costin’s formula, equation (13), for a radial line passing through vertex 141. This comparison is made at four different
depths beneath the Brillouin sphere: (A) r/R = 0.998, (B) r/R = 0.994, (C) r/R = 0.986, and (D) r/R = 0.96. Note that we plot the absolute
values of relative error, since we are using a logarithmic scale. Also shown in each plot is the value of Nop: computed from equation (15).

the prediction error for g, at any value of R/r. If we divide the
observed prediction error and Costin’s formula by the correct
value for g,, we can use Costin’s formula to bound relative
prediction error as well (figure 27).

76. Relationships between the parameters K and B in the
asymptotic formulas for V and g

The asymptotic formulas equations (13) and (16) involve pos-
itive constants B and K, respectively. When these formulas are
applied to the gravitational potential V or to the radial compon-
ent of gravitational acceleration g, = 0V/0r, then we some-
times refer to them as B” and K" or B and K?, respectively. In
our treatment of the cubic planet (section 6), we noticed that
KY/K$ ~ BY /B ~ R, and that KY/B" ~ K* /B, on the radial
line corresponding to the positive Z-axis. We find similar rela-
tionships for the polyhedral planet for many different radial
lines, including those depicted in figures 14 and 15, and addi-
tional radial lines passing through the edges between adjoining
triangular faces, and radial lines passing through a face com-
posing one of the flanks of the highest mountain, at locations
between the centroid of this face and the summit vertex, 163.

In appendix A, we prove, for any radial line with angle «
in the open interval 0 < a < m, which excludes the singular
radial line and its complement, that

14

BY

2sina/2, 21

and if we combine this result with a result proven in

appendix B, it follows that
KY 8

AT (22)

= 2sina/2.

This equality applies to the ratios of true values of the asymp-
totic constants BY, KV, B2, and K%. In our numerical experi-
ments for the polyhedral planet we estimate the values of these
constants for various radial lines, and expect the estimates to
lie very close to the true values, so we expect the ratios of
our estimates to approximate the predictions of equation (22).
We validate this expectation empirically in figure 28—see the
black curve and the overlying data points for radial lines with
differing values of a.
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Figure 26. The behavior of the scaled Taylor series coefficients for g, = OV/9r on the radial line through vertex 141. The asymptotic

behavior is evident only when we set k =5/2.

When a =0 then equation (22) does not apply, but we can
prove that KV/BY = bY =2 and K¢/B% = b% = 1. This asser-
tion is supported by our estimates for k¥ and " on the singular
radial line, which are 5.7027 and 2.8514, respectively, and by
our estimates for k¢ and 5% on the singular radial line, which
both equal to 5.1938.

Our proof of equation (22) was limited to radial lines
with angles « in the interval 0 < oo < 7, which excludes the
radial line with o = 7w. But we find that the predictions of
equation (22) are close to the observed results when o = 7.

In appendix B, we prove that for any radial line with angle o
(figure 2) in the range 0 < o < m, or, in other words, for any
radial line other than the singular radial line

BV K

BS K¢
Again, this equality applies to the ratios of the true values of
the asymptotic constants BV, K", B¢, and K?. In our numerical
experiments for the polyhedral planet we estimate the values
of these constants for various radial lines, and expect the estim-
ates to lie very close to the true values (except in the case of the
singular radial axis), so we expect the ratios of our estimates
to approximate the predictions of equation (23). We validate
this expectation empirically in figure 28—see the horizontal
red line and the overlying data points for radial lines with dif-
fering values of «.

Our proof of equation (23) excluded the singular radial line,
with e = 0, but we find that in this special case K /K¢ = R and
BY/BS =R/2.

(23)

8. Discussion

We begin this discussion by summarizing in table 1 how the
asymptotic decay constants k and b vary with the angle «
when we describe the asymptotic behavior associated with
the TS coefficients, equation (16), and series prediction error,
equation (13), either for potential, V, or for the radial compon-
ent of gravitational acceleration, g,. The spatial quantization of
these decay constants is remarkable. The value of the constants
on the singular axis—that is, on the singular radial line (with
a=0) or on the complementary radial line (with o = 7)—
differ from the values for every other radial line. Despite this
spatial quantization, k¢ = k¥ — 1 and b% = b” — 1 everywhere.
The practical consequence of this is that the impacts of diver-
gence beneath the Brillouin sphere tend to be worse for g, than
for V at the same location (compare, for example, figure 25
with figure 27).

There is a similarly abrupt change in the behavior of the
various ratios of the asymptotic scale constants K and B for V
and g,, as seen in table 2.

Note that when @ = T, then 2sin /2 = 2, so that K /BY =
2 both on the singular radial line and on its complementary
radial line, though the same is not true for the ratio K/BS. So
‘anomalous’ behavior for these ratios is confined to the singu-
lar radial line (o =0), and not the entire singular axis (o« =0
or o = ).

To simplify this discussion, let us exclude the singular axis,
and focus on the rest of the planet (where 0 < o < 7), where
k' =b"=7/2,k8 =b*=5/2,KY/KS = BY/B% = R (where R

24



Rep. Prog. Phys. 87 (2024) 078301

M Beuvis et al

fn 3 radial line code: 121-133-141-0-0-1
(A) prediction error for g, at r/R=0.9980
10%} Relative Error, |ehI / grl i
— — Relative Error Bound, IEN / g(| ;
_ 107 1
o ] i
i r__!‘
o i
2 1074 L% |
:—'@ 10
0]
o
1078
1081 Nopt=124g'._: S \, /J
0 200 400 600 800 1000
N
(C) prediction error for g, at r/R=0.9860
10° : Relative Error, |eN / gr[ _\
— — Relative Error Bound, |E; / g|| i
S. 2
510 ¢
[}
2
E Faf
[}
o
107 1
. / N ST ‘
10} fesite . ‘ ; parg
0 200 400 600 800 1000
N

above vertex 141 b=25,B=6.1821
(B) prediction error for g, at r/R=0.9940

10%¢ Relative Error, e,/ g|| E
— — Relative Error Bound, lEN /grl

_ 107
o
w
(0]
Z10%F
]
o i
o

108}

ey Nom=41§ | . - ]

0 200 400 600 800 1000
N
(D) prediction error for g, at r/R=0.9600
Jo'0 ! Relative Error, |eN / grl
— — Relative Error Bound, IEN/ ng*

s
@ 10° - 1
(]
=
ks
[¢}]
o

10° 1

1075 L L L ‘Nunt =61 L =

0 200 400 600 800 1000
N

Figure 27. The absolute value of the relative prediction error for g, = &V/9r on the radial line through vertex 141 for four values of r/R,
and the upper bound predicted using the Costin formula. Compare this plot with figure 25 for potential, V, where the four values of /R are

the same as those in (A)—(D) above.

is the radius of the Brillouin sphere), and KY/BY = K¢ /B¢ =
2sina/2. These identities are extremely useful. For example,
the last identity implies that

BV =K"/(2sina/2), (24)
which allows us to compute B” from K. So, we can bound the
prediction errors for V on a radial line from a quantity (K")
that we can derive directly from the TS coefficients for V on
that line. Crucially, equation (24) enables us to bound series
prediction error for V without the need to accurately compute
the true value of V! Furthermore, since B = BV/ R then

B =K"/(2Rsina/2). (25)

This means we can bound the prediction errors for g, from the
TS coefficients for V on the relevant radial line, without the
need to accurately compute the true value of g,.

Because we can compute the true values of V and g, for
our polygonal planet with very high numerical precision, we
have been able to confirm Costin’s formula, equation (13),
bounding series prediction error. We discovered a similar for-
mula, equation (16), that bounds the absolute values of the

25

TS coefficients on a given radial line, which, though it was
not isolated or discussed by Costin et al (2022), is implicit
in their analysis. Indeed the asymptotic behavior in the TS
coefficients underpins the asymptotic behavior in the series
prediction error on the same radial line, both for V and for g,.

Our numerical experiments with TS coefficients and pre-
diction error led us to two new asymptotic relationships:
equation (19), describing how scaled TS coefficients a;; oscil-
late as degree n increases, and equation (20), describing the
rate of oscillation of the scaled errors (ey) as truncation degree
N increases. Of course, the original (unscaled) coefficients a,,
oscillate with the same frequency as the scaled coefficients,
and the unscaled errors ey oscillate with the same frequency
as the scaled errors, but these oscillations are harder to per-
ceive graphically when the scaling is not present to remove the
strong decay envelopes that characterize the unscaled quant-
ities. The rate of oscillation for the coefficients and the pre-
diction errors depend on the angle « for the radial line of
interest, and, as a result, the coefficients and the errors oscil-
late on the same radial line with the same wavelength (A, =
Ay = 2w /a). Consistent with this result, we have seen that the
TS coefficients for V and g, on the singular radial line (with
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Figure 28. The theoretical expressions for the ratios between BY, KV, B%, and K%, and the observed ratios estimated for the radial lines
depicted in figures 14 and 15, plus some additional radial lines, with various values of o, but excluding the singular radial line (with o =0).

Table 1. The asymptotic decay constants for the polyhedral planet
as a function of the value of the angle « for the radial line of interest.

a k¥ bY k8 b®
0 3 2 2 1
O<a<m 712 712 512 52
T 3 3 2 2

Table 2. The ratios of the asymptotic constants BY, K", B, K* for
the polyhedral planet as a function of the angle « for the radial line
of interest.

a K'/K* B" /B¢ KY/BY K% /B¢

0 R R/2 2 1
O<a<m R R 2sina/2 2sina/2
™ R R 2sina/2 2sinc/2

a=0) do not oscillate at all, but maintain a constant sign,
which greatly slows the rate of convergence of these series.
By way of contrast, the coefficients are strictly oscillating on
the complementary radial line (with & = ), meaning that the
sign of a, changes every time that n — n+ 1.

The traditional view of SH series models for the grav-
itational potential, Vy, truncated at degree and order N, is
that their prediction errors arise from errors of omission (the
impact of truncation at degree N) and errors of commission
(e.g. procedural shortcomings in downward continuation or in
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the least-squares methodology used to solve for the SH coeffi-
cients). Series truncation limits the adjustable degrees of free-
dom and the spatial resolution of the SH series, and thus lim-
its the ability of the model to ‘follow’ the actual variations
of V, especially in high and rough mountain belts. In this tradi-
tional view, the prediction errors associated with limited spa-
tial resolution could be reduced by increasing the truncation
degree N, provided that the gravitational data set is sufficient
to support the inversion for an increased number of SH coef-
ficients. However, we have seen that this notion is not really
true. Even if we had larger and higher quality data sets, once N
increases beyond some critical value, Ny, prediction errors
will get worse as N increases further, because the increase
in prediction error due to intensifying divergence overwhelms
any reduction in prediction error due to improved resolution.
For N >> Ny, prediction error tends to increase exponentially
with increasing N. One of the key findings of this work is, for
our polygonal planet, the optimal truncation degree varies by
factors greater than 20, depending on the location in free-space
beneath the Brillouin sphere (e.g. figures 25 and 27), for SH
models of V and g,.

There is no globally optimal value for Noy.

Divergence rates and prediction errors in free space vary
‘laterally,” when latitude and longitude change, but the radial
coordinate r does not. These lateral changes are encoded
by changes in the asymptotic scale factor, B, which also
reflects how the TS coefficients change as the radial line tilts.
But divergence and prediction error typically intensify much
more rapidly as depth beneath the Brillouin sphere increases.
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Indeed, series prediction error varies very nearly exponen-
tially with depth d = R — r (for r <R). The logarithm of the
upper bound on prediction error, Ey, is actually proportional to
the quotient d/R (equation (14)). The maximum depth, dpax,
we can achieve in free space depends on the topography of
the planet. If we compare the topography of Earth and the
Moon, we see that d/R achieves significantly larger near-
surface values on the Moon. For example, the total radial relief
of the Moon, (Fmax — "min = dmax)> €xpressed as a fraction of
the radius, R, of the Brillouin sphere of the Moon, is much
larger than the same statistic for the Earth.

The problem of SHE divergence beneath the Brillouin
sphere is a fundamental problem. Any representation of
the external gravitational potential derived directly from
equation (2) will be flawed beneath the Brillouin sphere, and
the closer we get to the surface, the more severe these flaws
become. The problem for physical geodesists building gravit-
ational models for the Earth and other planets using SH series
is not that Laplace’s equation (V2V = 0) is not valid beneath
the Brillouin sphere—it is valid everywhere in free space—but
rather that a very high degree SH series, equation (4), is not an
optimal representation of the gravitational potential anywhere
beneath the Brillouin sphere. The magnitude of divergence-
driven prediction errors depends on the values of the asymp-
totic constants k, K, b, and B, and these depend on the morpho-
logy of the planet. In a future paper we will address the scale
of this problem for planets which are more similar, in terms of
size, mass and topography, to the Earth and our Moon.

The Earth Gravitational Model 2008 (EGM2008) for V is
expressed using SH coefficients complete through degree and
order 2159, with additional coefficients up to degree 2190 and
order 2159 (Pavlis et al 2012). Although EGM2008 poses as
a SH series, it is actually an ellipsoidal harmonic series whose
coefficients have been transformed into SH coefficients using
the Hotine-Jekeli transformation due to Jekeli (1988). (The
‘missing’ orders in the degree range 2160-2190, are a natural
consequence of using this transformation). The least-squares
problem used to estimate the coefficients of EGM2008 was
posed on a reference ellipsoid closely corresponding to sea
level. This ellipsoid of rotation has its center at the Earth’s
center of mass, its semi-minor axis lies on the Z-axis, and its
semi-major and semi-minor axis lengths are a ~ 6378.14km
and b ~ 6356.75km, respectively. The radius of the Earth’s
Brillouin sphere R = 6,384.41540.030km. Thus, at the
equator, the EGM reference ellipsoid lies about 6.3 km below
the Earth’s Brillouin sphere, and at the poles it lies about
27.7 km below the Earth’s Brillouin sphere. The Hotine—
Jekeli transformation delivers SH coefficients developed on
the EGM reference sphere, whose radius is a, so that the equat-
ors of the reference sphere and reference ellipsoid coincide.
The EGM reference sphere and the Brillouin sphere of the
Earth have a common center, so the former underlies the latter
at a constant depth of (R — a) = 6.28km. The EGM reference
sphere is the Brillouin sphere of the EGM reference ellipsoid,
which is about 0.1% smaller than the Brillouin sphere of the
Earth.

While use of the Hotine—Jekeli transformation and two
reference surfaces complicates the discussion of divergence
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and prediction error, the fundamental representation problem
remains—i.e. trying to represent a definite physical quantity
with a locally divergent series. We will discuss EGM2008 in
greater detail in a future paper.

Sprlék and Han (2021) utilized end-of-mission GRAIL
satellite data, acquired below the Brillouin sphere of the Moon,
to argue that the disagreement between these observations and
the predictions of several global gravity models for the Moon
(based on much larger quantities of GRAIL data acquired
above the Brillouin sphere) implies that these SH series models
manifest divergence beneath the Brillouin sphere. This is the
first argument known to us, for divergence of the SHE beneath
the Brillouin sphere, that is based on physical observations.

Understanding and mitigating the impact of the repres-
entation problem is of considerable practical significance.
For example, global gravitational models are used to provide
‘gravity compensation’ for inertial navigation systems (INSs).
As the accelerometers and the gyros incorporated into state-
of-the-art INS units have improved, the accuracy of gravity
compensation (that is taking account of spatial variations of
gravity acceleration and, especially, the deflection of vertical)
has emerged as a limiting factor for navigational accuracy, par-
ticularly in mountain belts.

Gravity compensation of a different kind is becoming a crit-
ical issue for conventional or quantum networks incorporat-
ing regional or global networks of atomic clocks. The frac-
tional frequency instability, Jf/f, of modern atomic clocks has
been rapidly improving, and state-of-the-art systems now have
an instrumental stability |(9f/f)inse| < 107!% (McGrew et al
2018). Clock frequency shifts in response to changes in grav-
ity potential, W. (The difference between gravity potential, W,
and gravitational potential, V, is that the former is the sum
of the latter and the potential associated with the centrifugal
forces driven by Earth rotation). The gravitational red shift (or
gravitational time dilation) driven by a difference or change in
gravity potential, 6W, is given by

(7)
f grav

where c is the speed of light. This equation implies that mov-
ing an atomic clock near the surface of the Earth downwards
by about 1 cm causes that clock to slow down to the degree that
[(0f /N grav| = |(3f /f)inst|, meaning that the resulting change in
clock frequency is already detectable, and—given the rather
stunning rate of improvement of atomic clock technology in
the last five years (Bothwell et al 2022)—will soon be eas-
ily detectable. It is not so much the clock that is slowing as it
descends, but rather time itself is slowing down. Timing spe-
cialists working with networks of atomic clocks already make
efforts to take into account the differences in W at the various
clock locations, so they can compare or average their rates.
Consider the problem of providing a user in a conventional
or a quantum network with a virtual atomic clock derived from
an analysis of a distributed network of actual atomic clocks.
That user’s virtual clock must also account for gravitational
time dilation at the user’s location. This requires us to estim-
ate W at that location with an accuracy comparable to the

ow
-

(26)
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change in W that occurs near the Earth’s surface when position
shifts vertically by about 1 cm (or less). Since the user could
be located almost anywhere, it is likely that a global gravita-
tional model will be used to predict V, and calculate W. (The
uncertainty in W would be dominated by the uncertainty in V).
The present-day reality is that we cannot predict V or W at the
order of 1 cm-equivalent accuracy over most of the surface
of the Earth, and in some areas we cannot get within a factor
of 10 of that goal. And in the near future, atomic clocks will
improve to the point that even this ~1cm-equivalent goal will
prove inadequate.

Improving global gravity models, so as to improve grav-
ity compensation for INS and timing networks, is not just a
matter of resolving the representation problem—instrumental
errors are an issue too. Nevertheless, understanding and mitig-
ating (or ‘side-stepping’) the representation problem is obvi-
ously an important part of ensuring that gravity compensation
does not become the dominant factor limiting the performance
of future geospatial technologies, including those focused on
positioning, navigation and timing.

9. Concluding remarks

The ubiquity of divergence beneath the Brillouin sphere, and
the inevitable consequence of model prediction error, sug-
gests that the scientific community needs to find a way of
representing the external potential field beneath the Brillouin
sphere by means other than direct evaluation of a SH polyno-
mial. Ultra-accurate simulations of the external gravity field,
of the kind employed in this study, can provide guidance as we
redesign the mathematical foundations of global gravity mod-
eling. Moreover, these simulations can be extended to account
for density variations within planets such as the Earth, and also
represent topography more realistically. It is possible to build
planetary models featuring variable (but piece-wise constant)
density by linear superposition of suites of constant-density
polyhedra, mostly nested one inside another like matryoshka
or ‘babushka’ dolls. Such simulated planets will not allow us
to escape the divergence problem for the outermost polyhed-
ron at least. And if one solution in this linear suite involves a
diverging series, then the superposition of all the elementary
solutions will diverge too. The need for density layering, and
the desirability of representing topography realistically, sug-
gests that ultra-accurate simulations of the gravitational field
for Earth-like or Moon-like planets will require polyhedra con-
sisting of millions of triangles.
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Appendix. A

In this appendix we utilize the notation of Costin et al (2022).
For example, the angle between the singular radial line and
some other radial line of interest (figure 2) is represented by 6
rather than by «. In this appendix, as in Costin et al (2022),
a denotes the exponent of the Holder condition. (This was
used to characterize the continuity of planetary topography in
an e-neighborhood of the planet’s highest point). In the last
paragraph of this appendix, we will translate our key result
(obtained below) back into the notation employed in the rest
of this paper.

Our starting point is formula (23) in Costin et al (2022)
giving the asymptotic behavior C, of the SHE coefficients C,.
This formula states that for large n, the coefficients of the SHE
series have the asymptotic form

R V2D (a+1)
n3tatl VT
xR (eimﬂei(”l/z)e” [(i* [ig+ + g1a+ (1 + a)]

— (=) [ig- +gia_(1+a)])]), 27

C, = C,, =

where « is the Holder exponent and (z) denotes the real part
of the complex number z.
This can be written in simplified form as

C, =R Aeint—(3+a+1) , (28)
where A = A| + iA; is the complex constant
P Lgﬂ
ie”imez .
A=——"[(2a_+2a1)g1+ig+ +g-]. 29)

V3

Note that the exponent of 7 in equation (28) is —(3 + a + 1),
and that (% + o+ 1) corresponds to the positive constant & in
equation (16) in the main text. We have already established
that, for polygonal planets of constant density, k = 7/2 when
0 < 0 <, implying that a=1. In this case equation (28)
becomes

The following proposition is based on the assumption that
0 < 8 <, so it does not apply to a radial line with § =0 or
0=m.

C, =R [Aei"gn_% (30)

Proposition 1. Assume that C, = 6’”[1 + #] (this is the
case for polyhedral planets of constant density). For R=1
and o =1 we have that é’n satisfies (30), therefore é’” takes
all the values in the interval [—Kn~"/? Kn=7/?] where K =
s/A% + A2, and the remainder > e, Cx asymptotically takes
all the values in the interval [—Bn_7/2,Bn_7/2} where B =
m if, as generically the case is, 0 is irrational; other-
wise it takes a discrete set of values.
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Proof of proposition 1
We estimate

o 1 +o(1)
Ry=Y e"n 1 |14 22001 31
v= et 1 a1
Lemma 1. We have
eiN9
Ry=——— N’7/2+0(N’7/2). (32)

Proof. Noting that

1

i _1

E e"n=1 ~
n

n=N

7
< Const.N™ 2

(by the integral test) to estimate Ry we can ignore the terms

o(1) in (31).
Let
1 o 5 1 Be
g(f’l):eib‘i_lenn <1+nei9—1 .
Using the binomial formula we have (n+1)7%=

n P (1+ %)_B =n"P(1 - g +0(n~?%)). Applying this, a
straightforward calculation shows that
e"n P =gn+1)—gm)+0(n "),  (33)
where O(n~%~2) denotes a term bounded in absolute value by
const-n~H72,
We now sum (33) (where 3 is 7/2 or 9/2) and obtain

S e = g(N+ 1)~ g(N) +g(N+2) —g(N+1)

n=N
S0 (=2 — _ yh1
+...+n§:Njo(n )=—gm+0 ("),

(34
where we used the integral test again to see that
|30y O(n™P72)| < const-n= =1

We obtain the estimate (32). O

To finish the proof of proposition 1, note that while C,
has the asymptotic behavior (28), the remainder Rem, :
> i, Cr is, by lemma 1,

in6

Rem,

—7/2
RIAR,] < R {A] o ]
nO—i0/2+im /2

n_7/2] =R {AWn

_ 1 in6—i6 /2+ir /2 —7/2}
= Zsin(@/2) " [Ae S

ei1197i9/2

e—i0/2 _ 4i6/2

-7/2

:%[A

which proves proposition 1.

In this appendix, we have proven that B = K/(2sin(6/2))
when 0 < § < 7. To translate this result into the notation of the
main text, we must replace the symbol 6 with the symbol «.
So,if 0 < o < 7 then B = K/(2sin(a/2)).
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Appendix. B

Assume a radial line A has been fixed, with V* the restriction
of the potential function V to A and g the restriction of V/Or
to A. Note that g4 may also be viewed as the restriction of g,
to A, where g, is the radial component of g = V (V).
Following (10) we may write the TS for V* at r = oo as

TS (V) (z) = mezm, (35)
m=1

where z =z(r) =R/r.

Proposition 2. The Taylor series for g at r = oo is given by

o0
TS (g)) (z) = Zcmzm, (36)
m=2
where ¢y = —(m/R)by, form > 1.
Proof. One has
d d Rm Rm+l
emy — T ) — m—(m+1):_ JE—
dr(z) dr(r’") mR"r m/R(rm"'l)
=—(m/R) (Z""). (37)
Then
oo d .
TS (g}) (z) = — (TS (V) () = me— (™)
dr = dr
o0
=Y (=m/R)by ("), (38)
m=1
from which the result follows. O

The following will be useful for comparing asymptotic
bounds.

Definition 1. Let {d,, } be a series of real or complex numbers.
Given a pair of real numbers (K, p) with K,p > 0, we will call
(K, p) a bounding pair for {d,,} if there exists an M > 0 such
that

|d,|n” <K

foralln > M. (39)

Observation 1. If K’ > K, p’ < p, and (K, p) is a bounding
pair, then so is both (K’,p) and (K,p’).

We assume for the remainder of this appendix that limd,,, =
0 (this is a necessary condition for convergence). The sequence
of coefficients S := {d,, } is said to have polynomially bounded
decay if there exists p’ > 0 for which the set of bounding pairs
(K,p') is empty (i.e. the sequence {d,m” } is unbounded).
If, in addition, there exists a bounding pair (K,p’’) for this
sequence with p’’ > 0, we say that S has polynomial decay,
with decay rate lying in the interval [p’/,p’].

Observation 2. The set
I:={p| {d,m"}is unbounded} (40)

is a subinterval of [0,00).
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As I is a non-empty subset of [0, 00), it is bounded below
and therefore has a greatest lower bound (glb). The interval I,
and therefore also its glb, obviously depend on the sequence
of coefficients S.

For each non-empty 7 =1(S), we will write k = k(S) for
the glb of I(S). The sequence S will have polynomial decay
iff k(S) > 0; in this case we refer to k(S) as the polynomial
decay rate of S. In what follows we will only be concerned
with sequences S having polynomial decay.

The glb k(S) may or may not be contained in 1(S). We will
assume that I(S) is non-empty and k(S) ¢ I(S). Define J(S) =
[0,00) — I(S) as the complement of I(S) in [0, 00).

Observation 3. For I(S) non-empty J(S) = [0,k(S)].

Let Ap denote the radial line through the tip of the (unique)
tallest mountain, and A, the colinear radial line in the oppos-
ite direction. For the polyhedral planet defined above in
section 7.2, k(S) = 7/2 and J(S) = [0,7/2] for all radial lines A
distinct from Ay and A, where S denotes the coefficients of
the TS (35). Moreover, for the radial line A, k(S) =3 and
J(S) = [0,3]. So the assumptions made above on /(S) and k(S)
hold for all radial lines except Ay.

Fix a radial line A where J(S) = [0,4]. By definition the
sequence S = {b,m"*} is bounded. Fix N > 0. We say M >0
is an N-bound for S if |b,,m*| < M for all m > N.

Bd(S,N) := {M > 0| Mis an N — bound for S} . 41)

The following is clear.

Proposition 3. For each N>0 Bd(S,N) is an interval in
(0,00). Moreover if 0 < N < N' then Bd(S,N) C Bd(S,N").

Let

Bd(S,00) = lim Bd(S,N). (42)
N

By the above proposition this is a direct limit of intervals in
(0,00), hence also an interval. Let K(S) be the glb of Bd(S, c0).
We call S stable if K(S) € Bd(S,c0). In that case Bd(S,00) =
[K(S), 00). Note that this also implies K(S) > 0.

Theorem 2. Let A # A denote a radial line other than A,
Sy = {bn} the set of Taylor series coefficients for TS(V*)(z)
(asin(35)), and S,, = {cn} the set of Taylor series coefficients
for g‘;‘ (as in (36)). Then both Sy and Sy, are stable. Moreover
k(S,,) =k(Sy) — 1 and

(43)

Proof. The stability of both Sy and S,, follows from the res-
ults of appendix A when A # Ag,,. And for A = A it can be
verified by direct inspection.

Suppose (p, M) is a bounding pair for Sy; this means there
exists N > 0 such that |b,m?| < M for m > N. Fixing ¢ >0,
we may choose N’ > N so that |b,,(m+ 1)?| < M + ¢ for all
m > N’. By proposition 2 when m > N’ we have

30

(m+1) by (m+ 1)

1\

R

1 M—+e
= = lbw (m+ 1) < ===,

b (1| < 2=

|Cmt1 (m+ 1)1)71 | =

(44)

implying (p —1,(M +¢)/R) is a bounding pair for S,,. The
same analysis applies in the other direction, showing that if
(¢,M’) is a bounding pair for Sg, then (¢+ 1,R*M’) is a
bounding pair for Sy. This implies both that k(S,,) = k(Sy) — 1
and K(S,,) = K(Sv)/R. O

Let PSy denote the sequence of partial sums error for the
TS in (35), and PS,, the sequence of partial sums error for the
TS in (36).

Theorem 3. Let A # A denote radial line other than Ay. Then
both PSy and PS, have polynomial decay and are stable.
Denote the polynomial decay rates respectively by b(PSy) and
b(PS,,). Then b(PSy) = k(Sy), b(PS,,) = k(S,,). Also denote
by B(Svy) and B(S,,) the glbs of Bd(PSy,c0) and Bd(PS,,,c0)
respectively. Then

(45)

Proof. The equalities b(PS,) = k(Sy) and b(PS,, )= k(S,,)
follow from the fact that the series Sy and S, are sufficiently
alternating when A # Ag. Let « represent the angle formed
by Ay and A (note that o >0 as A # Ag). By the results of
appendix A, we have

B(Sy) = K(Sv) /(2sin(a/2)),
B(S,,) =K(S,,)/(2sin(a/2)). (46)
Then
B(Sv) _ K(Sv) _
B(S,) K(5,) - @0

by theorem 2.
In the notation of the main text of this paper, we have shown
that for any radial line other than the singular radial line

BV K
—=—= (48)
Bs K8
O
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