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Abstract—Pixel recovery with deep learning has shown to be
very effective for a variety of low-level vision tasks like image
super-resolution, denoising, and deblurring. Most existing works
operate in the spatial domain, and there are few works that
exploit the transform domain for image restoration tasks. In
this paper, we present a transform domain approach for image
deblocking using a deep neural network called DCTResNet. Our
application is compressed video motion deblur, where the input
video frame has blocking artifacts that make the deblurring
task very challenging. Specifically, we use a block-wise Discrete
Cosine Transform (DCT) to decompose the image into its low
and high-frequency sub-band images and exploit the strong sub-
band specific features for more effective deblocking solutions.
Since JPEG also uses DCT for image compression, using DCT
sub-band images for image deblocking helps to learn the JPEG
compression prior to effectively correct the blocking artifacts.
Our experimental results show that both PSNR and SSIM for
DCTResNet perform more favorably than other state-of-the-art
(SOTA) methods, while significantly faster in inference time.

I. INTRODUCTION

JPEG is the most widely used lossy image compression
technique. It uses block-wise 2D-DCT to convert images into
transform domain and performs compression on each block
independently by eliminating and quantizing some of the high-
frequency information from the DCT coefficient of the image.
However, lossy compression sometimes will also introduce
unpleasant distortions in the image called blocking artifacts,
which are often seen as a sharp change in intensity at block
boundaries. Blocking artifacts can have different magnitude,
from mild to severe, depending on the compression strength.
Blocking artifacts not only degrade the visual quality of the
image but also affect many other image enhancement tasks,
as the visually unpleasant blocking artifacts may get enhanced
by those image enhancement algorithms, resulting in an even
worse visual quality. Therefore, image deblocking can not only
help improving the compressed image quality, but also play an
important role as the first step of other enhancement tasks to
improve their effectiveness on images with blocking artifacts.
In this paper we focus on removing the blocking artifacts with
experiments conducted on a dataset collected for compressed
image motion deblur.

Many image based training dataset for deep learning mod-
els are scraped from the internet, such as the ImageNet dataset
[1]. The uploaded images are usually compressed to JPEG
to reduce their size. Despite the fact that these compressed
images preserve the image’s global information, the majority
of its information is removed that in turn introduces block-
ing artifacts which can significantly affect the deep learning
model performance and result in poor visual quality or lower
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Fig. 1: Plot showing the reconstructed RGB PSNR vs the
inference time in logl0 scale (microseconds) for RGB image
of size 1280x720 of our method compared to other SOTA
methods.

quantitative results. Therefore, image deblocking can be used
as the first stage of processing network for datasets to improve
performance in vision tasks.

Traditional methods like block filtering [2, 3, 4], sparse
representation [5] etc. were used for removing the block-
ing artifacts. However, these methods introduce blurriness in
the image and are usually computationally expensive. Deep
learning-based methods, such as ARCNN [6], MemNet [7],
have recently been used to remove JPEG compression arti-
facts. These methods have shown promising results for image
deblocking. Typically, these methods execute deblocking in the
spatial domain (RGB or grayscale channels). ARCNN [6] uses
a very shallow model as a deblocking network. It is extremely
fast but its performance is limited. It is not able to remove
the blocking artifacts from the image when subjected to a
lower quality factor JPEG image. MemNet [7] on the other
hand uses a memory block, consisting of the recursive unit and
gated unit to improve the deblocking performance. But with
the increase in depth of network and use of memory blocks,
the inference time is increased significantly. In addition, both
of these methods are proposed to operate in gray-scale images
only and when applied to a color image they do not perform
well. Other methods like DnCNN [8], EDSR [9] and RCAN
[10] are specifically designed to work on spatial domain and
have higher inference time.

A few methods have been developed for processing im-
ages in the transform domain for restoration tasks. MWCNN
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Fig. 2: [a] Input image. [b] Image after applying 4 x 4 DCT on
R channel of input image [a] and then subsampled to 16 sub-
band images represents low-frequency DC image and high-
frequencies AC1-AC15 images. Sub-band images are 1/4%" the
resolution of input image.

[11, 12] in particular uses Discrete Wavelet Transform (DWT)
to decompose the image into its low and high-frequency
components to perform image restoration. However, because
the entire network is driven by the spatial loss function, the
learning still remains in the spatial domain.

In this paper, we present a novel method for deblocking
images in the transform domain. We used Discrete Cosine
Transform (DCT) as our method to decomposing the image
into the transform domain. JPEG compression employs the
DCT transform during compression, and the blocking artifact
is caused primarily by removing some information from these
DCT blocks. Learning in the transform domain allows us
to get knowledge of JPEG compression prior which helps
to effectively remove blocking artifacts. More importantly,
we used 4x4 DCT to decompose the compressed image
and subsample the resulting DCT image to create 16 sub-
band images, each channel representing DC, AC1, AC2,...,
ACI15. DC represents the low-frequency component and has
global information of the image. AC1 to AC15 represents
high-frequency components of the image. AC1 represents the
principal vertical component, AC4 representing the principal
horizontal component, and AC5 representing the principal
diagonal component. Whereas the rest of the ACs represent
the subsidiary vertical, horizontal and diagonal components.
Fig 2 [b] shows more detail on DCT sub-band images where
image [a] is decomposed using 4x4 DCT and subsampled to
its respective frequency components.We used a deep residual
learning-based network [13] to perform deblocking and recon-
struct the image in the transform domain. Finally, we apply the
Inverse Discrete Cosine Transform (IDCT) to the reconstructed
DCT sub-bands to convert them back to their spatial (RGB)
domain. We used REDS motion blur with JPEG compression
dataset [14] to train and evaluate the effectiveness of our
method for removing blocking artifacts from compressed mo-
tion blur images. REDS dataset consist of the synthetic motion
blur image, which is created by combining multiple images
to simulate the camera and object motion. This motion blur
image is then compressed using JPEG with a quality factor
of 25, which introduces the JPEG compression artifacts in
the input image. Therefore our method of deblocking in the
transform domain can be used as a preliminary stage in the
image deblurring process.

The main contributions of this paper are as follows:

e  Sub-band image-based deblocking: We proposed to
use transform domain processing for image deblock-
ing instead of the spatial domain. We applied 4x4
DCT transform as our image decomposition method
and used the subsampled DCT sub-band images {DC,
ACI1, AC2, ..., ACI5 sub-images} as input to our
network.

e  Much faster inference: We conducted extensive exper-
iments on the REDS motion blur with JPEG compres-
sion dataset [14] and achieved significant PSNR/SSIM
gain over pixel-based deblocking methods, along with
a significantly lighter model resulting in faster infer-
ence time.

II. PROPOSED METHOD
A. Transform Domain

In our work, we used 4x4 DCT transform to decompose
the image to its low-frequency and high-frequency component.
We subsampled the DCT image to its respective sub-band
images as shown in Flleg 2. We then concatenate them together
to form 48 channel - x % images. Both input and ground
truth images are converted using this method.

The advantage of learning in the transform domain for
deblocking is in two folds. Firstly, learning in the transform
domain for deblocking tasks helps to exploit the information
from DCT components by learning the prior knowledge of
JPEG compression. It makes the network easier to learn the
degradation. Secondly, since the 4x4 DCT sub-band image is
1/4“ the size of the original image, the effective receptive
field is much larger than the previously proposed methods
such as EDSR [9], RCAN [10], MemNet [7]. Thus, even with
similarly configured network, we were able to train a model
that outperforms methods learning in the spatial domain.

B. Network Architecture

Inspired by the success of residual learning architecture in
image reconstruction, we modified EDSR to add an additional
sub-band specific pixel residue showed by red arrow in Fig.
3 [b]. We also removed the Upsampler block from the EDSR
network as input and output of our network are of the same
resolution. Our DCT based residual learning network consists
of 20 ResBlocks with 64 feature maps. Each ResBlock consists
of two convolutional layers sandwiching the ReLU activation
function. The structure of the network is shown in Fig. 3.
A total of 16 separate networks are trained for learning 16
different DCT sub-band images. The architecture of all the
networks are the same.

The input to DCTResNet is 48 channel (16 DCT sub-band
images for each of R, G, and B color channel) DCT sub-band
image while the output is 3 channel sub-band specific DCT
image. The predicted DCT sub-band images are then converted
back to the spatial domain using the Inverse Discrete Cosine
Transform (IDCT).

III. EXPERIMENTS AND RESULTS
A. Dataset and Data Preparation

In this work, we used REDS dataset [14] for both training
and testing purposes. The REDS dataset includes JPEG com-
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Fig. 3: [a] Network architecture of DCTResNet. RGB image transformed into transform domain using DCT transform. The DCT
sub-band images are then used as input to our DCTResNet network. Pixel-level skip connection for learning each corresponding
sub-band image. [b] Architecture of DCTResNet. It consist of 20 ResBlocks. [c] Structure of residual block.

pressed motion blur images, its corresponding blur images,
and ground truth sharp images. For our purpose of the JPEG
deblocking task, we used the first two pairs as our input and
ground truth: motion blur JPEG compressed image as input
and corresponding motion blur image as ground truth. The
JPEG image is compressed using the quality factor of 25.

To prepare the input data for our method, we performed
4 x4 block-wise DCT on the input image in each R, G, and
B channel. The output of 4x4 DCT is subsampled to its low-
frequency (DC) and high-frequency (AC1-AC15) as shown in
Fig. 2. We stacked all of the sub-images together to form 48
channel DCT sub-image (16 sub-bands for R, G, and B color
channels) which we used as input to our network. As learning
is done in the transform domain, the ground truth image is
also converted to the transform domain.

While training, we converted all the training data to the
transform domain offline and used this newly created DCT
dataset to train our network. Creating DCT sub-band images
offline helped us to reduce the training time. A total of 24,000
images from 240 different scenes were used for training. For
data augmentation, we performed random cropping, horizontal,
and vertical flipping of the DCT sub-band images.

While testing, we use padding in the RGB image to align

with the 4 x 4 DCT block if the input is not a perfect factor
of 4 which is equivalent to DCT block size. 300 images from
30 different scenes were used to evaluate as mentioned in the
REDS dataset website.

B. Experimental Settings

TABLE I: Comparison of our proposed DCTResNet with the
existing SOTA methods for REDS motion blur with JPEG
compression dataset [14]. Bold indicates the best result and
underline the second best.

Methods PSNR | SSIM
ARCNN [6] 35.22 | 0.9344
MWCNN [12] 35.55 | 0.9263
EDSR [9] 36.16 | 0.9430
MemNet [7] 36.48 | 0.9468
RCAN [10] 36.72 | 0.9476
DCTResNet(ours) | 36.92 | 0.9760

We trained our model with a single NVIDIA 1080Ti GPU.
Model optimization was performed using L; loss and Adam
optimizer with learning rate initially set to 1 x 10~* and
decreased by a factor of 2 at epochs 100, 150, and 180, with a
total of 200 epochs. The patch size was set to 128x 128 with
each batch containing 16 images.
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TABLE II: Comparison of MSE of all the reconstructed DCT subimages of our proposed method with RCAN for REDS motion
blur with JPEG compression dataset [14]. Bold indicates the best result. All results are in range of 1073, (Lower value of MSE

is better.)
Methods DC AC1 AC2 AC3 AC4 AC5 AC6 AC7 ACS8 AC9 | AC10 | ACI1 | AC12 | AC13 | AC14 | ACI15
RCAN 31.449 | 7417 | 2.886 | 0.752 | 7.384 | 2.704 | 1.276 | 0.350 | 3.202 | 1.471 | 0.706 | 0.195 | 0.988 | 0.469 | 0.229 | 0.069
Our 31.348 | 7.415 | 2.889 | 0.755 | 7.362 | 2.695 | 1.273 | 0.350 | 3.191 | 1.467 | 0.704 | 0.194 | 0.986 | 0.469 | 0.228 | 0.068

TABLE III: Table showing inference time DCTResNet com-
pared with the existing SOTA methods for image size of
720x 1280 RGB image. Bold indicates the best result and
underline the second best.

Methods Inference time
ARCNN [6] 0.8 ms
MWCNN [12] 41.83 ms
EDSR [9] 7.5 ms
MemNet [7] 13.8 ms
RCAN [10] 45.5 sec

DCTResNet(ours) 5.9 ms

C. Comparison to state-of-the-art methods

For the deblocking task, since the input image we used is
motion blurred with JPEG compressed image, we took ground-
truth as blur image without any compression. There are no
available results as a baseline. Therefore, for a fair comparison,
we trained the SOTA methods for image deblocking on the
REDS motion blur with JPEG compression dataset [14]. We
used ARCNN [6], MemNet [7], MWCNN [12], EDSR [9]
and RCAN [10] to evaluate with our method. For all these
methods we train the network on REDS motion blur with
JPEG compression dataset from scratch based on the parameter
provided in their respective papers. Considering the input and
output are in RGB color space, all the methods are also trained
and tested on color images. Table I shows the comparison
of our method with the SOTA. We used Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM) [15] as evaluation metrics. From Table I we see that
DCTResNet has a 0.2 dB PSNR gain over RCAN that is
10 times deeper than DCTResNet. Compared to EDSR, for
same depth of network and similar training configuration, our
DCTResNet has 0.76 dB PSNR gain. Also, DCTResNet has
significantly higher SSIM value of 0.9760 compare to other
methods. (Higher values of PSNR and SSIM are better.)

We further performed a detailed experiment on our pro-
posed method to evaluate the mean squared error (MSE) of
each learned DCT sub-band image. We calculate MSE for each
of the predicted DCT sub-band images with respect to DCT
of ground truth blur image and showed in the Table II. For
comparison, we use the best performing method from above
Table I and computed its MSE as well. We decompose the
reconstructed RGB image from RCAN [10] using the DCT
transform and then compute MSE with respect to ground truth
image. MSE from our DCT prediction network is higher for
the DC component, which contains most of the energy than
that of RCAN [10]. While for the ACs, most of the ACs have
better MSE results for our method except AC2, AC3, and AC7.
The bold text indicated the best results (Lower MSE value is
better).

Table. IIT shows the comparison between our method with
SOTA methods in terms of average inference time for process-
ing 720x 1280 RGB image on 1080Ti GPU. As our method
run in parallel GPU setting the effective average inference
time is 5.9 ms per image which is much faster than RCAN
that has an average inference time of 45.5 seconds. Even with
the cascade configuration of the 16 DCT networks, the total
inference time is only 94.4 ms for our DCTResNet. Though
ARCNN [6] has the fastest average inference time of around
0.8 ms, the PSNR for ARCNN is 1.7 dB less than that of
DCTResNet. Since EDSR [9] is processing in full resolution

. . . . th .
of the image in spatial domain compared to % of the image
resolution for DCTResNet, our method is 1.2 times faster than
EDSR for a similar network configuration.

IV. CONCLUSION

We presented DCTResNet, a sub-band image-based deep-
learning network that performs image deblocking in a trans-
form domain. We process an image in the transform domain
to exploit the information from decomposed low and high-
frequencies sub-bands. The reduced spatial size of the DCT
sub-band images also improves the receptive field for the
convolutional neural network compared to spatial domain
processing network with similar networks backbone. From our
experiment for the REDS motion blur with JPEG compression
dataset, we showed that the learning in transform domain has
much better performance of PSNR and SSIM than learning in
RGB domain. Even with a smaller network, we got 0.2 dB gain
over much deeper network RCAN. Our method with cascade
configuration has 480 times faster inference time than RCAN.
Additionally, we got 0.76 dB gain over similarly configured
spatial domain EDSR network with 1.2 time faster inference
time. In the future, we will apply proposed DctRestNet to
other low-level vision tasks like image deblurring, denoising,
super-resolution, etc. to prove its effectiveness. Finally, we
will explore proposed framework for a joint deblur-deblocking
solution on real-world captured images.
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