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Abstract—Gait recognition is a technology that identifies
human ID according to the human unique biometric gait feature.
It has two popular categories, appearance-based and model-
based algorithms. Appearance-based algorithms generally use
human silhouettes as the initial input data. External factors
such as clothing and physical carrying can drastically alter
human silhouettes. In contrast, model-based algorithms tend
to be more robust in regard to appearances, with human
skeletons providing the initial input data in general. However,
human skeletons suffer from limited information which causes an
obstacle to increasing performance. In this paper, we, therefore,
address this challenge by presenting two new databases, named
CASIA-B-DensePose and MoBo-DensePose, which are based
on the publicly available multiview database, CASIA-B and
MoBo. They exploit UV coordinates of body surface and human
semantic segmentation as the initial gait feature. It is less
sensitive to human shape compared with human silhouettes,
and has richer semantic information compared with human
skeletons. In addition, we also introduce a novel model-based
framework, DensePoseGait, to take full advantage of databases.
Unlike traditional algorithms which either extract isolated local
features or combine them with global features, DensePoseGait
uses a novel way to exploit partial features. That is, human
pose parts are employed as a regulator to guide the learning
of global features in the training stage. Its core idea is to
establish better representative features with the assistance of
partial features, but not require additional calculation in the
inference stage. We believe these databases and framework
can offer researchers a fresh perspective on model-based gait
recognition and inspire further exploration and advancements in
this area.

Index Terms—Gait recognition, DensePoseGait, part-guided
learning.
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I. INTRODUCTION

ITH the outbreak of the novel coronavirus 2019
(COVID-19), it has become imperative to develop
biometric technologies to address various concerns arising
from the rapid spread of COVID-19. Biometric technologies
usually have two categories, contact and non-contact biomet-
rics. Contact biometrics such as fingerprints and palm prints
will obviously speed up the spread of the virus. For non-
contact biometric technology, face recognition [1] is one of
the mature biometric technologies. But identifying subjects
becomes challenging when people are wearing masks. Iris
recognition also faces challenges when wearing anti-virus
glasses. What is more, due to the close-range collection of iris
data, it also brings the risk of personnel touching the device.
Compared with the above biometrics, gait biometric has the
following advantages, 1) long-distance human identification
2) no user action and cooperation required. It is particularly
suitable for impeding the spread of COVID-19, monitoring
people [2], video surveillance, crime prevention, and forensic
identification.

There are two main approaches for gait recognition
development: appearance-based and model-based algorithms.
Appearance-based algorithms which generally use the human
silhouettes [3], [4], [5] as initial data, as shown in Fig. 1 (b).
Their advantage is that silhouettes can be easily obtained with
good accuracy under simple conditions. However, they may
not work well in complicated situations, like someone carrying
a bag or wearing different outfits in their daily life. In contrast,
model-based algorithms generally use human skeletons [6],
[71, [8], [9] as initial input data, as shown in Fig. 1 (c). They
are better at handling difficult scenarios because they are not
affected drastically by the changes in human shape. However,
the total number of human body joints is usually not more
than twenty. The recognition rate is somewhat affected by the
lack of information.

In this paper, instead of using human silhouettes or skele-
tons, we further exploit a human pose estimation feature
for gait recognition, DensePose, as shown in Fig. 1 (d).
DensePose is a surface-based representation of the human
body. It can map all human pixels of an RGB image to the
3D surface of the human body. That is, each pixel of an RGB
image has UV coordinates on the 3D surface system. It is
obvious that DensePose has richer representative information
compared with the human skeleton, and it is also less sensitive
to human carrying or coat, even in extreme scenarios, as shown
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Fig. 1. Comparison of three raw input data under three walking variations.
The DensePose-based input data is less sensitive to human shape compared
with silhouette-based, and has richer representative features compared with
skeleton-based.

Fig. 2. DensePose [10] is robust to clothes, even with extreme skirts or
dresses. It is obvious that DensePose is more robust to external factors and
gait recognition utility in real applications.

in Fig. 2. Therefore, DensePose is particularly suitable as a
robust gait feature.

Traditional gait recognition features predominantly fall into
two categories: appearance-based and model-based algorithms.
The first type method, relying on human silhouettes, is
significantly affected by external factors such as clothing
and physical carrying, leading to variations in the silhou-
ette and, consequently, recognition inaccuracies. The second
type method, while more robust against such appearance
changes, often utilizes human skeletons that provide limited
information, hindering the performance. Our motivation for
employing 3D body surfaces stems from the need to address
these shortcomings. The 3D body surface model offers a more
holistic and stable representation of the human form, reducing
sensitivity to external appearance changes and providing richer
information compared to skeletal models.

The 3D body surface model captures the three-dimensional
structure of the human body, offering essential view-invariant
features for gait recognition. This is particularly advantageous
in diverse and real-world scenarios where the subject may
not always be facing the camera directly. The 3D structure
provides a comprehensive and consistent dataset that is not
as affected by perspective shifts, making our DensePoseGait
framework robust against various viewing angles and environ-
mental conditions.
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Fig. 3.

General human body part division based on the fixed grid.

Fig. 4. Demonstration of UV coordinate maps of DensePose [10]: partitioning
of the surface and correspondence to a point on a part.

Most existing gait recognition algorithms take the whole
human body as a unit to extract the spatio-temporal features,
thereby overlooking local part information. To further improve
the gait representation ability, some works [11], [12], [13]
will divide the human body into several parts, and extract
local features or combine them with global features for final
identification. Such as Fan et al. [11] divide the human body
into 4 parts from up to down, and extracts spatio-temporal
representations from each body part. And Hossain et al. [12]
divide the human body into 8 parts to solve the problem
of clothing. However, those dividing are typically based on
the fixed grid, and can not exactly segment the human
semantic body, as shown in Fig. 3. It would totally have a
negative influence on the modeling of the human body local
movement.

In order to address the above problem, we further exploit
the partial information of DensePose, which can accurately
divide the human body into 24 parts, as shown in Fig. 4.
Unlike the above methods [11], [12], [13] which focus on
establishing partial features or combining them with global
features, we, introduce a novel model-based gait recogni-
tion framework, DensePoseGait. DensePoseGait framework
employs pose parts to guide the representative feature learning
in the training stage. This allows us to create higher-quality
representative features without requiring additional calcula-
tions during the inference stage. The idea of DensePoseGait is
inspired by one work [14] of IEEE International Conference
on Computer Vision Workshops, which verifies that part-pose
guided feature learning is beneficial to re-identification. We
extend this network on the task of gait recognition and exploit
a sequence of dense pose maps rather than just a single-frame
skeleton image.
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In summary, our major contributions are:

« This paper presents two new databases, named CASIA-
B-DensePose, Mobo-DensePose, which bring a new way
to exploit model-based gait recognition for researchers.
DensePose databases are based on the publicly available
multiview databases, CASIA-B and Mobo. It exploits
UV coordinates of the human surface and human seman-
tic segmentation as the initial gait feature. It is less
sensitive to human shape compared with human silhou-
ettes, and has richer information compared with human
skeletons.

« To make the most of DensePose gait databases, we
introduce a novel model-based gait recognition frame-
work, called DensePoseGait, it carries richer information
and accurate body segmentation compared with human
skeletons. In addition, some existing algorithms leverage
partial features to enhance individual identification, but
they lack highly accurate semantic segmentation. With
DensePoseGait framework, this issue is resolved since
it enables accurate 24-part semantic segmentation of the
human body.

« Unlike traditional algorithms which either extract isolated
local features or combine them with global features, we
use accurate semantic segmented parts as a regulator
to make an alignment constraint on global gait feature
learning. The purpose is to create better representative
features by making use of partial features, but without
requiring extra calculations in the inference stage.

II. RELATED WORK

Gait recognition algorithms can be roughly divided into two
categories: appearance-based and model-based. In this section,
we will give a quick overview of the existing algorithms in
the field. We also will review DensePose algorithm in brief.

A. Model-Based Algorithms

Model-based algorithms extract features through the
modeling of the human body structure and the examina-
tion of movement patterns of various body parts. Unlike
appearance-based approaches, which are highly sensitive to
human appearance, these methods prove to be more robust to
variations due to their focus on the analysis of movement.

Studies [15], [16], [17] conducted in the early stage of
research indicate that human body movement patterns have
the potential to reveal human identity. As advancements in
pose estimation algorithms continue, this concept is becom-
ing increasingly relevant. Some researchers [6], [18], [19]
improve the performance of model-based methods greatly with
the help of pose skeleton estimation algorithms. In 2017,
Liao et al. [6] extract 2D human pose skeletons and put
into PTSN [6] network. In 2018, 3D pose skeletons are
used in PTSN-3D [7] network for gait recognition. In 2020,
PoseGait [9] has made a remarkable debut and achieved
a commendable recognition rate by deep analysis of the
3D pose skeleton. In the same year, OU-ISIR create a gait
dataset with pose sequence [8] for public research. In 2022,
PoseMapGait [13] further improve the gait performance by

using pose heatmaps rather than relying on skeleton joints
coordinates.

To address the limitations associated with skeletal repre-
sentations, recent studies such as those by Fan et al. [20]
and Liao et al. [13] have employed skeleton-maps to augment
skeletal information, thereby enhancing gait robustness to
some extent. Skeleton-maps entail the prediction of joint
maps surrounding human body joints. In contrast, dense
pose features predict UV coordinate maps across the human
surface, indicating that dense pose representations offer richer
information compared to skeleton-maps.

Furthermore, the advancement in human parsing tech-
niques has found successful applications in gait recognition,
as demonstrated in works by Wang et al. [21] and
Zheng et al. [22]. Human parsing involves segmenting the
human body into various parts, thereby enhancing pose fea-
tures. In contrast, dense pose features not only encompass
attributes of human segmentation similar to parsing but also
estimate UV coordinates for every human joint on the surface.
Thus, while human parsing primarily focuses on human
body segmentation, dense pose extends its focus to include
human surface modeling, providing a more comprehensive
representation of the human form.

Model-based approaches have seen substantial growth,
thanks to the above works. The recognition rate still requires
further enhancement due to limited skeleton information.
In contrast, the input data of the proposed DensePoseGait
framework has richer dense human pose feature representa-
tive information compared with skeletons, skeleton maps, or
parsing.

B. Appearance-Based Algorithms

Appearance-based algorithms generally extract features
from the human silhouettes. Some algorithms would create a
gait template from a sequence of human silhouettes, e.g., Gait
Energy Image (GEI) template [23] and Chrono-Gait Image
(CGI) template [24]. Template-based algorithms [3], [4], [25]
don’t require much computational cost, but they usually miss
mass temporal information.

In order to extract more temporal information, some algo-
rithms [11], [26], [27] apply a deep convolutional neural
network extract representative feature from a sequence of
human silhouettes. Chen et al. propose pyramid attention [28]
and GaitAMR [29], and Dou et al. [30] introduce GaitMPL
framework, they have achieved high accuracy on the gait
recognition.

Appearance-based algorithms can perform well in some
conditions, like view variation. However, they have a serious
shortcoming, that is, human silhouettes would be changed
dramatically under difficult scenarios, like the condition of
wearing a big cloth, as shown in Fig. 1 (b). By contrast,
the input data of our proposed DensePoseGait framework
doesn’t have this shortcoming, and also have accurate semantic
segmentation of body parts.

C. DensePose

Unlike traditional human pose estimation which evaluates
human skeleton joint coordinates, dense pose estimation [10]
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Fig. 5.

The overview of the proposed framework DensePoseGait. Given a video of people’s walking sequence. DensePose [10] will extract UV coordinate

maps and corresponding human body parts. Then, UV coordinate maps will be put into one C-stream and two partial streams. C-stream is the mainstream
for extracting global features from complete gait images. In terms of two partial streams, TP-stream and LP-stream, are used to extract local features from
torso and limb gait patches, respectively. In the training phase, local features play a regulating role in global feature learning. In the inference phase, only the

C-stream is used for gait recognition.

aims at mapping all human pixels of an RGB image to the
3D surface of the human body. DensePose will semantically
divide the human body into 24 parts, including Head, Torso,
Lower/Upper Arms, Lower/Upper Legs, Hands, and Feet.
Each part will estimate UV coordinate maps on the surface-
based representations of the human body. For every pixel, will
determine which surface part it belongs to, and where on the
2D paremeterization of the part it corresponds to, as shown in
Fig. 4. The yellow color pixels have a higher coordinate value
than the green color pixels in the UV surface system.

III. PROPOSED METHOD

In this section, we will present the pipeline
of DensePoseGait framework, as shown in Fig. 5.
DensePoseGait. Given a video of people’s walking sequence.
DensePose [10] will be used to extract UV coordinate maps
and corresponding human body parts. In order to make full
use of local movement patterns and global movement patterns,
UV coordinate maps will be put into three streams: one
C-stream and two partial streams. C-stream is the mainstream
for extracting global features from complete gait images.
In terms of two partial streams, TP-stream and LP-stream,
are used to extract local features from torso and limb gait
patches, respectively. In the training phase, local features play
a regulating role in global feature learning. In the inference
phase, only the C-stream is used for gait recognition.

A. DensePose UV Coordinate Maps

In this section, we will describe the generation of robust gait
input features from the dense pose. Given a sequence of people
walking images, DensePose [10] will extract UV coordinate
maps and corresponding human body parts. As shown in
Fig. 6, each frame will generate three maps, U coordinate
maps, V coordinate maps, and human body part index maps.

(a) (b) (c) (d)

Fig. 6. Demonstration of output result of DensePose [10]. a) Input image.
b) U coordinate maps. ¢) V coordinate maps. d) human body part index maps.

UV coordinates maps are surface-based representations of the
human body, the detail is described in Section II-C. Each map
will be aligned based on methods in [31].

In order to make full use of local movement patterns and
global movement patterns, rather than directly use dense poses
directly, we generate three types of maps as input features,
as shown in Fig. 5. Two part maps will guide the learning of
global features.

Complete Body Maps: It consists of U and I two coordi-
nates maps. The sequence of complete body maps will be put
into the Dense Pose Gait Complete Network (DPGCNet) to
model the pattern of the global movement. Given a video with
N frames, a sequence of complete body maps is formulated
as:

C={qli=1,2,...,N} 1)

where c¢; is the complete body maps at current time £, including
UI coordinates maps.

Torso Part Maps: It also consists of U and I two coordi-
nates maps, but only will the torso part according to the human
body part index maps. The sequence of torso part maps will be
put into the Dense Pose Gait Torso Part Network (DPGTPNet)
to extract the pattern of the body truck. Given a video with N
frames, a sequence of torso part maps is formulated as:

T={tli=1,2,...,N} 2)
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where ¢#; is the torso part maps at current time #, as shown in
the middle input image of DPGTPNet in Figure 5. #; includes
the head and human torso two parts, it is extracted from
human UV coordinate maps according to human body part
index maps, as shown in Figure 6. The human body part index
maps has 24 parts, including Head, Torso, Lower/Upper Arms,
Lower/Upper Legs, Hands, and Feet. The index range is from
0 to 23.

Limb Part Maps: It consists of 8 parts: left upper arm, right
upper arm, left lower arm + hand, right lower arm + hand, left
upper leg, right upper leg, left lower leg + feet, and right lower
leg + feet. And each part contains U and I two coordinates
maps. The sequence of limb part maps will be put into the
Dense Pose Gait Limbs Part Network (DPGLPNet) to extract
the movement pattern from each limb part. Given a video with
N frames, a sequence of limb part maps is formulated as:

L={lli=12,...,N} 3)

where /; is the torso part maps at current time i, as shown in
the third input image of DPGLPNet in Figure 5. /; consists of
8 human limb parts, it is extracted from human UV coordinate
maps according to human body part index maps, as shown in
Figure 6.

B. DensePoseGait Framework

The purpose of the DensePoseGait network is to leverage
part-pose representations for enhancing the learning of global
gait features. The network comprises three integral streams:
the Complete Body Stream (C-Stream), the Torso Part Stream
(TP-Stream), and the Limbs Part Stream (LP-Stream), as now
clearly illustrated in the revised Fig. 5. The backbone network
of three streams are all based on the GaitSet [27], as shown
in Fig. 7

C-Stream (Complete Body Stream): The C-Stream is
responsible for capturing and analyzing the global gait fea-
tures. It serves as the backbone of the network, synthesizing
the overall gait pattern from a holistic perspective.

TP-Stream (Torso Part Stream): The TP-Stream focuses
specifically on the torso part, extracting localized features that
are crucial for understanding the upper body movements and
postures in gait analysis.

LP-Stream (Limbs Part Stream): Similarly, the LP-Stream
is dedicated to the limbs, analyzing lower body movements
and contributing to the understanding of the gait dynamics.

The feature feompiere, supervised jointly by the C-Stream,
TP-Stream, and LP-Stream, embodies both the global and local
aspects of gait features. Specifically, f; and f,; represent the
global feature (extracted from the C-Stream) and the local
feature (from the Part-Streams), respectively. The optimization
of feompiere l0ss is a collaborative effort of all three streams,
ensuring a comprehensive and nuanced feature development.

During gradient backpropagation in the training phase, the
C-Stream’s parameters are adjusted in response to the gradient
loss from the fused features of the TP-Stream and LP-Stream.
This process ensures that the C-Stream is continuously refined
by the influence of local features, leading to a more accurate
and holistic gait representation. Consequently, the TP-Stream

+

™
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CNN& o CNN&
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Fig. 7. Backbone Network. Spatial features (red cube) are extracted from
each frame by traditional CNN. Temporal features (blue cube) are extracted
by temporal pooling (TP).

and LP-Stream play a crucial regularization role in guiding
the feature learning for the C-Stream.

Complete Body Stream (C-Stream): This stream is mainly
to extract rich global spatial and temporal feature representa-
tions. A sequence of global complete body maps C are put into
the Dense Pose Gait Complete Network (DPGCNet) to extract
global feature vector feompiere. DPGCNet uses GaitSet [27]
network as backbone, as shown in Fig. 7. It consists of
three blocks, and each block will extract spatial and temporal
features, formulated as follows:

fcomplete = G(F(C)) (4)

where F is a traditional convolutional network which can
extract the spatial features (feomplere = {fi i=1,2,...,N})
from each complete body maps (C = {c¢jli=1,2,...,N}). G
is used to extract temporal features from spatial features. A
sequence of spatial features ({fi i=1,2,...,N}) would put
into G function. G is achieved by an operation called temporal
pooling (TP), G(-) = max(-) + mean(-) 4+ median(-), which
aims to aggregate gait information of elements in the time
sequence. Other than those used in traditional convolutional
neural networks, it preserves strong temporal information, as
well as sufficiently spans spatial information. The diagram of
temporal pooling can be shown in Fig. 7, fcompiere is the output
features from complete body maps.

The essence of TP is to capture different statistical
aspects of the spatial features across the temporal dimension.
Specifically, the max operation is used to capture the most
prominent feature in the sequence, which often corresponds to
the most significant movement in a gait cycle. The mean oper-
ation provides an average representation of the features over
time, effectively smoothing out anomalies and highlighting
consistent patterns. Lastly, the median operation contributes
by pinpointing the central tendency of the features, which is
crucial in identifying typical postures or movements in the gait
cycle.

By combining these three operations, TP effectively
synthesizes a comprehensive temporal profile from the spa-
tial features. This aggregation method preserves temporal
information by encapsulating the variability (max), consistency
(mean), and typicality (median) of the gait patterns over
time. Therefore, while each individual operation (max, mean,
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median) contributes a unique perspective on the spatial fea-
tures, their summation in TP provides a multi-faceted temporal
representation. This representation is crucial for accurate gait
analysis, as it ensures that the model is not only informed by
the most extreme or average patterns but also by the typical
and consistent features that characterize an individual’s gait
over time.

Torso Part Stream (TP-Stream): TP-Stream focuses on
extracting spatio-temporal representations from a sequence of
torso part maps. This is because the torso part of a human has
the richest stature information that can identify the individual
person. T-Stream consists of the Dense Pose Gait Torso Part
Network (DPGTPNet), which includes block 1 and block 2 of
the backbone network (Fig. 7). The output f;,,5, of DPGTPNet
is formulated as:

ftorso = G(F(T)) (5)

Limbs Part Stream (LP-Stream): To learn the local details
of individual parts area rather than mixing them all together,
the Dense Pose Gait Limbs Part Network (DPGLPNet) with
multiple branches are used to learn the limbs feature map.
First, we use the 8 parallel independent DPGLPNet networks
to learn the local features fiimp.1, [ = 1,2,3,4,5,6,7, 8 from 8
limb part maps T = {;]li = 1, 2, ..., N}. And then concatenate
8 local features fj;,p, into one limb representative features
fiimps, formulated as equation (6). Considering the size of
limbs is smaller than the size of the complete body, the
DPGLPNet network only consists of block 1 of the backbone
network (Fig. 7).

Jiimbs = G(F(L)) (6)

C. Feature Fusion

To improve the learning and alignment of global features
using local part features, we fuse the part and global fea-
tures from the three streams by adding corresponding feature
vectors:

)
®)

fCt = fcamplete +florx0
fcl = fcomplete +ﬁimbs

Here, feompiere TEpresents the global feature extracted by the
C-Stream. The local features f;,,5, and fips are extracted by
the TP-Stream and LP-Stream, respectively. The fused feature
fe: combines the global feature with the torso feature, while
fe1 combines the global feature with the limbs feature.

During training, these fused features help adjust the learning
of the global feature feompiere. By integrating local features
(from the TP-Stream and LP-Stream) with the global feature,
the learning process for feompiere is guided by detailed local
information.

D. Loss Function

To optimize the three streams (C-Stream, TP-Stream, and
LP-Stream), we employ a combination of cross-entropy loss
and triplet loss. The cross-entropy loss is used for gait
ID identification, while the triplet loss enhances inter-class

variation and reduces intra-class variation. The total loss is
formulated as a weighted sum of these two losses:

9)

Liotai = ‘XLcruss—entrapy + ﬂ Ltriplet

where « and S are the weights for the cross-entropy loss
and triplet loss, respectively. In our experiments, we set
a=p=1.

The feature feomplere» Which represents the global gait
pattern, is supervised by the C-Stream, TP-Stream, and
LP-Stream. The fused features f.; (from C-Stream and TP-
Stream) and f;; (from C-Stream and LP-Stream) consist of
both global and local information. The learning process for
Jcompiere 1s influenced by these fused features, ensuring that
local features guide the global feature learning.

During backpropagation, the gradient of the total loss
Liora1 With respect to the parameters of the C-Stream (6¢) is
influenced by the losses from all three streams:

0L _ dLc | dLrp  dLrp (10)
00¢ 30¢ 00¢ 30¢
Here, ggfc is the gradient from the C-Stream, 881‘0# is the
C C

gradient from the TP-Stream, and aaLTLC” is the gradient from the
LP-Stream. This equation shows that the parameter updates
for the C-Stream are influenced by both the global feature
learning and the detailed local features from the TP-Stream
and LP-Stream.

By integrating local features (f;yrso and fiimps) into the global
feature learning process (feomplere), the C-Stream can adjust
its parameters in response to the detailed local insights. This
ensures that the C-Stream’s learning is continually refined
and guided by the local information, resulting in a more
comprehensive and nuanced representation of gait patterns.

In summary, the combination of local and global features
during training allows the C-Stream to benefit from the
detailed features captured by the TP-Stream and LP-Stream,
leading to a robust and thorough learning process that
enhances the model’s capability for gait identification.

IV. EXPERIMENTS
A. Datasets

CASIA-B [32]: It is a widely applied gait dataset. It
has 124 subjects. Each subject has 10 sequences, including
6 sequences of normal walking (NM), 2 sequences of walking
with a bag (BG), and 2 sequences of walking with a coat (CL),
as shown in Fig. 1 (a). What’s more, each sequence has 11
views {0°,18°,---, 180°} with around 80 frames. The number
of total frames is around 124 x 10 x 11 x 80 = 1, 091, 200
images. The experimental setting of training and testing, as
shown in Table I.

OU-MVLP [31], OU-ISIR [34], Gait3D [35] and
GREW [36]: They are also very popular data with large
subjects. We plan to do some experiments on these datasets.
However, the original RGB videos are not open to the public
due to the privacy issue. It is hard to extract dense pose maps
without RGB videos. Therefore, we don’t perform experiments
on these datasets.
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TABLE I
EXPERIMENTAL SETTING ON CASIA-B DATASET. NM: NORMAL WALKING, BG: WALKING WITH A BAG, CL: WALKING WITH A COAT

Segs: NM01-NMO06
BG01-BG02, CL01-CL02

Trainin Testing
& Gallery Set Probe Set
ID: 001-062 ID: 063-124 ID: 063-124

Seqs: NM01-NM04

Seqs: NM05-NMO06
BG01-BG02, CL01-CL02

TABLE I
EXPERIMENTAL SETTING ON THE CMU MOTION OF BODY (MOBO) DATASET [33]

Training Test
Gallery Set Probe Set
ID: 01-13 ID: 14-25 ID: 14-25
slow walking, fast walking, slow walking | fast walking, incline walking,
incline walking, walking with a ball walking with a ball

Walking with a ball Fast walking Incline walking

Slow walking

Fig. 8. Four walking variations on MoBo [33] dataset.

w16 7V
- e w05_7 o
315¢ ﬁ S

Fig. 9. View angle definition on MoBo [33] dataset.

The CMU Motion of Body (MoBo) dataset [33]: As
mention above, OU-MVLP [31] and OU-ISIR [34] are not
available for the experiment. Therefore, we perform exper-
iments on the MoBo [33] dataset. It has 25 subjects, and
each subject has 4 conditions, that is, slow walking, fast
walking, incline walking, and walking with a ball, as shown in
Fig. 8. In addition, each subject is captured using 6 cameras
distributed evenly around the treadmill, cameras are defined as
vr03_7,vr05_7,vr07_7,vr13_7,vr16_7, and vr17_7. Similar
to the angle definition of the CASIA-B dataset, we define the
angle set of MoBo dataset is {0°, 45°, 90°, 180°, 225°, 315°},
as shown in Fig. 9. The experimental setting of training and
testing of MoBo [33] dataset, as shown in Table II.

B. Comparison With Model-Based Algorithms on CASIA-B
Dataset

We compare our proposed method DensePoseGait with
recent state-of-the-art model-based algorithms on CASIA-B

dataset. Including methods based on the 2D human skele-
ton, PTSN [6], methods based on the 3D human skeleton,
PTSN-3D [7] and PoseGait [9], and methods based on the 2D
human pose heatmap, PoseMapGait [13]. The performance is
shown in Table III.

From Table III, we can see that DensePoseGait can achieve
the highest performance under the three walking conditions,
that is, 77.5% (NM), 65.2% (BG), and 45.2% (CL), respec-
tively. The gap of mean accuracy between the DensePoseGait
(58.1%) and the state-of-the-art method PoseMapGait (65.2%)
can even reach 7.1% on the variation of carrying a bag. The
input features of compared methods [6], [7], [9], [13] are all
based on human skeletons. Unlike these approaches which
considered several human joint coordinates modeling, we not
only generate rich body UV coordinates (dense pose maps) as
gait features, but also make full use of body parts to promote
the learning of global features. The comparison shows that
dense pose maps can further improve the development of
model-based approaches for gait recognition.

C. Comparison With Appearance-Based Algorithms on
CASIA-B Dataset

We also compare DensePoseGait with recent appearance-
based algorithms. Including SPAE [37], GaitGAN [38],
GaitGANv2 [25], DV-GEIs-pre [4], and DV-GEIs [3]. The
initial input features of those methods are all based on human
silhouettes or their variants. The experimental results can be
shown in Table IV.

From Table IV, we can see that our proposed method
gets better performance compared with these silhouette-based
methods [3], [4], [25], [37], [38]. There are obvious gaps in the
conditions of carrying a bag or wearing a coat. It is obvious
shows that the input data of DensePoseGait is less sensitive
to human shape compared with the human silhouette.

We also compare our method with contemporary
appearance-based  methods, including  GaitSet [27],
GaitPart [11], 3DLocal [39], and CSTL [40]. In our study, we
delineated three distinct experimental scenarios to evaluate
our models. For the initial scenario, we allocated the first
set of 62 subjects to the training group, with the subsequent
62 subjects serving as the test group. The second scenario
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TABLE III
AVERAGE RECOGNITION RATE (%) COMPARISONS WITH MODEL-BASED APPROACHES ON CASIA-B DATASET. EXCLUDING IDENTICAL-VIEW CASES.
(NM: NORMAL WALKING, BG: WALKING WITH A BAG, CL: WALKING WITH A COAT)

Gallery angle NM #1-4 0°-180°

Probe angle NM #b5-6 0° 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean
PTSN [6] 345 | 456 | 49.6 | 51.3 | 52.7 | 523 | 53 50.8 | 522 | 483 | 314 | 474

PTSN-3D [7] 387 | 502 | 559 | 56 | 56.7 | 54.6 | 54.8 56 541 | 524 | 402 | 519

PoseGait [9] 485 | 62.7 | 66.6 | 66.2 | 619 | 59.8 | 63.6 | 65.7 66 58 46.5 60.5

PoseMapGait [13] 599 | 762 | 81.7 | 831 | 76.8 | 76.1 | 763 | 81.1 | 79.6 | 754 | 66.1 75.7

DensePoseGait (ours) 65.7 | 79.7 | 828 | 844 | 794 | 779 | 80.1 | 834 | 83.7 | 743 | 615 77.5

Probe angle BG #1-2 0° 18° [ 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean
PTSN [6] 224 | 298 | 296 | 292 | 325 | 315 | 3211 31 273 | 281 | 182 | 283

PTSN-3D [7] 277 | 327 | 374 | 35 | 371|375 | 377 | 369 | 33.8 | 318 27 34.1

PoseGait [9] 29.1 | 39.8 | 465 | 46.8 | 42.7 | 422 | 42.7 | 422 | 423 | 352 | 267 | 39.6

PoseMapGait [13] 47.7 | 56.1 | 639 | 633 | 642 | 595 | 58.1 | 61.5 | 61.9 | 582 | 443 | 581

DensePoseGait (ours) 554 | 704 | 76.6 | 733 | 65.6 | 653 | 68.1 | 71.0 | 69.8 | 573 | 448 65.2

Probe angle CL #1-2 0° 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean
PTSN [6] 142 | 171 | 176 | 193 | 195 | 20 | 20.1 | 173 | 165 | 181 14 17.6

PTSN-3D [7] 158 | 172 | 199 | 20 | 223 | 243 | 281 | 23.8 | 209 23 17 21.1

PoseGait [9] 213 | 282 | 347 | 33.8 | 338 | 349 | 31 31 327 | 263 | 197 | 298

PoseMapGait [13] 304 | 419 | 452 | 489 | 473 | 481 | 465 | 449 | 36.0 | 345 | 296 | 412

DensePoseGait (ours) 41.8 | 47.7 | 49.7 | 503 | 465 | 46.0 | 495 | 478 | 474 | 394 | 293 | 452

TABLE IV

CASES. (NM: NORMAL WALKING, BG: WALKING WITH A BAG, CL: WALKING WITH A COAT)

COMPARISONS WITH APPEARANCE-BASED ALGORITHMS AT AVERAGE ACCURACY (%) ON CASIA-B DATASET. EXCLUDING IDENTICAL-VIEW

Gallery angle NM #1-4 0°-180°

Probe angle NM #5-6 0° 18° | 36° | 54° | 72° [ 90° | 108° | 126° | 144° | 162° | 180° | Mean
SPAE [37] 50.0 | 58.1 | 61.0 | 63.3 | 64.0 | 621 | 623 | 663 | 644 | 545 | 467 | 593

GaitGAN [38] 419 | 535 | 63.0 | 645 | 63.1 | 581 | 61.7 | 65.7 | 62.7 | 541 | 406 | 572

GaitGANV2 [25] 481 | 619 | 68.7 | 71.7 | 66.7 | 648 | 66.0 | 702 | 71.6 | 589 | 46.1 63.1

DV-GEls-pre [4] 645 | 762 | 81.3 | 80.8 | 77.1 | 72.6 | 744 | 789 | 806 | 756 | 63.7 | 751

DV-GEIs [3] 631 | 794 | 846 | 798 | 77.0 | 726 | 774 | 803 | 840 | 785 | 63.7 | 764

DensePoseGait (ours) 657 | 79.7 | 82.8 | 844 | 794 | 779 | 80.1 | 834 | 837 | 743 | 615 77.5

Probe angle BG #1-2 0° 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean
SPAE [37] 340 | 386 | 421 | 42.7 | 39.0 | 328 | 31.3 | 399 | 410 | 357 | 323 | 372

GaitGAN [38] 285 | 352 | 42.7 | 344 | 38.0 | 335 | 362 | 448 | 418 | 333 | 236 | 356

GaitGANV?2 [25] 372 | 434 | 466 | 460 | 47.6 | 415 | 412 | 485 | 488 | 422 | 316 | 431

DV-GEIs [3] 475 | 59.6 | 64.2 | 663 | 613 | 56.7 | 63.4 | 633 | 61.8 | 575 | 470 | 59.0

DensePoseGait (ours) 554 | 704 | 76.6 | 73.3 | 65.6 | 653 | 68.1 | 71.0 | 698 | 57.3 | 44.8 65.2

Probe angle CL #1-2 0° 18° [ 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean
SPAE [37] 215 | 254 | 273 | 281 | 269 | 222 | 223 | 263 | 248 | 215 | 19.6 | 242

GaitGAN [38] 98 | 152 | 248 | 25.0 | 247 | 199 | 22.7 | 245 | 277 | 18.0 | 119 | 204

GaitGANV2 [25] 20.7 | 23.1 | 266 | 308 | 282 | 23.0 | 244 | 274 | 242 | 219 | 16.0 | 242

DV-GEIs [3] 302 | 433 | 434 | 43.1 | 43.6 | 419 | 40.0 | 403 | 414 | 387 | 299 | 396

DensePoseGait (ours) 41.8 | 47.7 | 49.7 | 503 | 465 | 460 | 495 | 478 | 474 | 394 | 293 | 452

was structured with an augmented training group comprising
the initial 74 subjects, leaving a smaller cohort of 50 subjects
for testing. The third and final scenario further expanded the
training group to encompass the first 100 subjects. As shown
in Table V.

These established methods have set a high bar for gait
recognition accuracy, particularly under variable conditions
such as wearing coats or carrying bags. Their strategies
revolve around refining the human silhouette’s representation.
However, the silhouette is inherently limited by its inability to
abstract away clothing and accessory variations.

In contrast, DensePoseGait introduces a paradigm shift by
theoretically eliminating these variations at the source. Instead
of iterating upon silhouette processing, it leverages a novel
feature type that transcends the conventional silhouette. Initial
results suggest that while DensePoseGait‘s accuracy currently
trails that of its appearance-based counterparts—partially due to

the 3D model’s occasional omission of fine body details—the
method’s growth rates, as demonstrated in our latest dataset
expansions, indicate a robust learning curve and substantial
adaptability.

DensePoseGait, as substantiated by our experimental data,
shows a remarkable capacity for improvement and adaptability.
In the normal walking condition (NM), our method improved
from 77.5% to 93.5% in accuracy as the training set expanded
from 62 to 100 subjects, a growth rate of 17.1%. This is
significantly higher than the other methods, which show more
modest improvements over the same interval. For example,
GaitSet [27], a leading method, shows a growth rate of 4.0%,
from 92.0% to 95.815%.

Moreover, under the more challenging conditions where
subjects carried a bag (BG), DensePoseGait‘s growth rate was
an impressive 22.0%, and in the coat-wearing scenario (CL), it
demonstrated a staggering growth rate of 42.2%, highlighting
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TABLE V
COMPARISON ON CASIA-B DATASET. EXCLUDING IDENTICAL-VIEW CASES

Conditions Methods

Training Subjects

Growth Rate Gap with DensePoseGait

Method Types o

100 62to74 | 62to 100 | 62 74 100

GaitSet [27]
GaitPart [11]
3DLocal [39]
CSTL [40]
DensePoseGait (ours)

92.0
92.4
94.0
94.5
77.5

NM Appearance-based

Model-based

95.0
96.2
97.5
97.8
85.5

95.815
97 .4
98.5
98.9
93.5

3.3%
4.1%
3.7%
3.5%
10.3%

4.0% 145 | 95 2.3
51% 149 | 10.7 3.9
4.6% 16.5 | 12.0 5.0
4.4% 17.0 | 12.3 5.4
17.1% - - -

GaitSet [27]
GaitPart [11]
3DLocal [39]
CSTL [40]
DensePoseGait (ours)

84.3
87.9
90.9
90.1
65.2

BG Appearance-based

Model-based

87.2
91.5
94.3
93.6
73.4

91.78
94.5
96.6
96.1
83.6

3.4%
4.1%
3.7%
3.9%
12.6%

8.1% 19.1 | 13.8 8.2
7.0% 22.7 | 18.1
5.9% 25.7 | 209
6.2% 249 | 20.2
22.0% - - -

GaitSet [27]
GaitPart [11]
3DLocal [39]
CSTL [40]
DensePoseGait (ours)

62.5
70.7
75.5
75.8
45.2

CL Appearance-based

Model-based

70.4
78.7
83.7
84.2
62.4

83.144
84.7
89.9
90.3
78.2

12.6%
11.3%
10.9%
11.1%
38.1%

24.8% 173 | 8.0 49
16.5% 255 | 16.3 6.5
16.0% 303 | 21.3
16.1% 30.6 | 21.8
42.2% - - -

the method’s exceptional potential for dealing with external
variations. The performance increment is noteworthy, espe-
cially considering that in the CL condition, DensePoseGait‘s
initial accuracy of 45.2% rose significantly to 78.2%, while
other methods, although starting from a higher baseline,
showed lesser improvements.

In Table V, we have conducted an analysis to quantify
the accuracy disparity between traditional appearance-based
algorithms and our model-based algorithm DensePoseGait.
The results clearly illustrate a narrowing accuracy gap between
DensePoseGait and other methods as the size of the training
dataset increases. This trend is particularly noteworthy, as seen
in the transition from a baseline dataset of 62 subjects to a
more extensive dataset encompassing 100 subjects.

Compared to established appearance-based algorithms such
as GaitSet [27], the gap in performance diminishes notably
under various conditions on the conditions of normal condition
(2.3) and wearing a coat (4.9). Although DensePoseGait may
initially lag behind due to the dense pose representation
potentially missing some fine-grained body details compared
to traditional human silhouettes, its trajectory indicates rapid
improvement and adaptability as it learns from a larger pool
of training data.

The tables above illustrate the cross-view capabilities
of gait recognition. Notably, the DensePoseGait framework
demonstrates its optimal performance under the identity-view
condition. As depicted in Fig. 11, when the probe angle
matches the gallery angle, DensePoseGait achieves remarkable
accuracy rates, reaching nearly 100%, 95%, and 85% for the
NM, BG, and CL conditions, respectively, even with only 62
training subjects. This highlights the robustness of dense pose
gait features, indicating their lower sensitivity to variations in
human shape and resilience to factors like carrying bags or
wearing different clothing styles.

The observed trend suggests that the distinctive feature
set of DensePoseGait, which theoretically mitigates variations
that conventional silhouettes struggle to capture, exhibits high
scalability and shows significant performance enhancement
with the provision of additional data. This scalability is
imperative for real-world applications where environmental
conditions can vary widely.

Fig. 10. Comparing with cross-view methods at probe angle 54°, 90° and
126°. Galley angles are from 0° to 180°.

Looking forward, leveraging the framework of
DensePoseGait, with the refinement of network, pose
estimation techniques, and the enrichment of gait datasets, it
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Fig. 11. Experimental results of DensePoseGait-C-Stream and DensePoseGait. From left column to right column are NM, BG and CL condition respectively.

is anticipated that DensePoseGait‘s performance will continue
to ascend, fortifying its position as a transformative approach
in model-based gait recognition methodologies.

D. Effectiveness on View Variation

The input feature of the proposed method DensePoseGait
consists of rich UV coordinates, and UV coordinates contain
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3D body informants. In order to analyze the effectiveness of
the view variation, we compared our method DensePoseGait
with some cross-view gait recognition methods. Including
FD-VTM [41], RSVD-VITM [42], RPCA-VTM [43],
R-VTM [44], GP+CCA [45] and C3A [46]. Those methods
use view transformation model (VTM) to reduce the effect
of view variation. VTM can transform gait template features
from one view to another view for improving the robustness of
the view. Three probe angles (54°, 90°, and 126° ) are chosen
to compare. The recognition rates are shown in Fig. 10.

From Fig. 10, it is obvious that our proposed method,
DensePoseGait, demonstrates exceptional performance when
there is a significant angle difference between the gallery
and probe. As the angle difference increases, so does the
improvement in performance. This highlights the advantage of
DensePoseGait, as it is specifically designed for modeling 3D
human body movement, making it more robust to variations
in viewpoint.

E. Ablation Study

In order to show the proposed framework can further
promote the learning of gait features. We only use the
C-Stream to train a model, namely DensePoseGait-C-Stream,
while the DensePoseGait is trained by using C-Stream and
with the guide learning with TP-Stream and LP-Stream. For
the reference stage, both are using C-Stream. The experimental
results can be shown in Fig. 11. Due to limited space, we only
list 4 probe angles with a 36° interval, that is, 36°, 72°, 108°
and 144°. From Fig. 11, we can see that the performance of
DensePoseGait is better than that of DensePoseGait-C-Stream
at many points. This is because during the training stage, the
representative features would become better with the guidance
of TP-Stream and LP-Stream. It shows that the human body
parts have a positive influence on the global feature learning.

FE. Experimental Results on MoBo Dataset

The MoBo dataset experimental results can be found in
Fig. 12. This figure displays the evaluation results under
different scenarios such as varying views, fast walking, incline
walking, and walking with a ball. In the experiment, slow
walking sequences were placed in the gallery set while fast
walking, incline walking, and walking with a ball were
placed in the probe set. Each set of experiments contains 36
combinations, resulting in 36 recognition rates per figure.

G. Comparisons on MoBo Dataset

Except for experiments on CASIA-B dataset, we also
perform evaluation experiments and comparisons on the
MoBo dataset. The comparison methods consists of model-
based methods PoseGait [9] and PoseMapGait [13], and
appearance-based methods GaitGANvV2 [25], DV-GEls-pre [4]
and DV-GEIs [3]. We conducted above methods by ourselves
because they do not perform the experiments on the MoBo
dataset according to the original paper. To gain a better
overview of the comparisons, we segregated them into two
categories depending on the variations in their conditions.

Identical-View Comparison: The mean recognition rates
on identical-view cases can be shown in Fig. 13. From
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Fig. 12. The experimental results under three conditions on MoBo dataset.

—e—fast walking  —e—incline walking walking with a ball

Fig. 13. The average recognition rates for the probe data being fast walking,
incline walking and walking with a ball on identical-view cases.

Fig. 13, it is obvious that proposed methods can achieve
better accuracy than model-based methods and appearance-
based methods, which shows that dense pose features has a
big potential to improve the robustness of gait recognition on
the real world.

Cross-View Comparison: The mean recognition rates on
the cross-view cases can be shown in Table VI. We can see
that our proposed methods not only can perform better on
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TABLE VI
AVERAGE ACCURACIES (%) ON MOBO DATASET UNDER THREE DIFFERENT EXPERIMENTAL SETTINGS, EXCLUDING IDENTICAL-VIEW CASES

Gallery angle (slow walking) 0°, 45°,90°, 180°, 225°, 315°

Probe angle (fast walking) 0° 45° | 90° | 180° | 225° | 315° | Mean
GaitGANV2 [25] 31.7 | 46.7 | 50.0 | 333 | 36.7 | 50.0 414

DV-GEIs [3] 417 | 483 | 483 | 383 | 51.7 | 533 46.9

PoseGait [9] 383 | 45.0 | 433 | 25.0 | 36.7 | 45.0 38.9

PoseMapGait [13] 483 | 433 | 433 | 400 | 46.7 | 583 46.7

DesenPoseGait-C-Stream (ours) 498 | 458 | 476 | 385 | 47.7 | 623 48.6

DesenPoseGait (ours) 50.1 | 51.2 | 47.6 | 40.0 | 46.8 | 57.1 48.8

Probe angle (incline walking) 0° 45° | 90° | 180° | 225° | 315° | Mean
GaitGANV2 [25] 36.7 | 51.7 | 383 | 31.7 | 433 | 46.7 414

DV-GEIs [3] 40.0 | 51.7 | 36.7 | 35.0 | 383 | 51.7 422

PoseGait [9] 36.7 | 50.0 | 36.7 | 30.0 | 35.0 | 51.7 40.0

PoseMapGait [13] 40.0 | 46.7 | 40.0 | 383 | 45.0 | 450 425

DesenPoseGait-C-Stream (ours) 46.0 | 453 | 39.0 | 39.6 | 456 | 473 43.8

DesenPoseGait (ours) 365 | 486 | 413 | 483 | 43.6 | 51.2 44.9

Probe angle (walking with a ball) 0° 45° | 90° | 180° | 225° | 315° | Mean
GaitGANV2 [25] 327 |1 273 | 309 | 273 | 327 | 273 29.7

DV-GEISs [3] 382 | 273 | 32.7 | 41.8 | 40.0 | 36.4 36.1

PoseGait [9] 327 | 218 | 327 | 23.6 | 382 | 345 30.6

PoseMapGait [13] 364 | 309 | 32.7 | 455 | 41.8 | 400 37.9

DesenPoseGait-C-Stream (ours) 349 | 326 | 39.0 | 39.6 | 45.6 | 43.6 39.2

DesenPoseGait (ours) 36.5 | 35.6 | 40.3 | 48.3 43.6 42.8 41.2

the identical-view cases, but also on the cross-view cases.
In addition, the comparison of DesenPoseGait-C-Stream and
DesenPoseGait also can further show that the human body
parts has a positive impact on the feature learning of global.

V. CONCLUSION AND FUTURE WORK

Our study introduced the DensePoseGait framework, a
novel approach in model-based gait recognition that leverages
dense pose maps for initial input data. This approach marks
a significant advancement over traditional skeleton-based and
silhouette-based methods. The dense pose maps provide a
richer and more robust 3D pose representation, particularly
effective against variations in human shape. Our experiments
on the CASIA-B and MoBo datasets have demonstrated
that DensePoseGait sets a new benchmark in state-of-the-art
performance for model-based gait recognition systems.

A key insight from our research is the pivotal role of
initial data in gait recognition systems. The success of
DensePoseGait highlights how advanced data representations,
such as dense pose maps, can substantially improve robustness
and accuracy, particularly in scenarios with significant gait
variation. This finding can be instrumental in guiding future
research towards exploring and developing more sophisticated
data types for gait recognition.

Looking forward, we identify several promising directions
for further research:

Exploration of 3D Point Cloud Data: Building on the
success of dense pose maps, we propose investigating the
use of 3D point cloud data in gait recognition. As camera
technology and pose estimation algorithms continue to evolve,
3D point cloud data could offer even more detailed and
accurate representations of human gait, such as LidarGait [47],
potentially opening new avenues for research and application.

Enhancement of Pose Estimation Algorithms:
Continuous improvements in pose estimation algorithms
will be crucial for the advancement of gait recognition
technology. We plan to contribute to this area by developing

more sophisticated algorithms that can accurately capture
subtle gait nuances, further enhancing the performance of
systems like DensePoseGait. Additionally, we are considering
integrating complementary technologies, such as depth sensors
or advanced texture mapping, to enhance the detail captured in
our 3D body surface model. This integration could potentially
address the limitations you highlighted and further improve
the robustness and accuracy of our gait recognition approach.
Application in Real-world Scenarios: Given the non-
contact and long-distance identification advantages of gait
recognition, particularly highlighted during the COVID-19
pandemic, we aim to test and refine DensePoseGait in various
real-world scenarios. This includes deployment in surveillance,
healthcare monitoring, and human-computer interaction, to
assess its practicality and efficacy in dynamic environments.
In conclusion, DensePoseGait represents a significant step
forward in gait recognition technology. With ongoing research
and development, we anticipate making substantial contributions
to the field, enhancing the utility of gait recognition in various
applications, and addressing emerging challenges in a world
increasingly reliant on sophisticated biometric technologies.
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