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Abstract—Gait recognition is a technology that identifies
human ID according to the human unique biometric gait feature.
It has two popular categories, appearance-based and model-
based algorithms. Appearance-based algorithms generally use
human silhouettes as the initial input data. External factors
such as clothing and physical carrying can drastically alter
human silhouettes. In contrast, model-based algorithms tend
to be more robust in regard to appearances, with human
skeletons providing the initial input data in general. However,
human skeletons suffer from limited information which causes an
obstacle to increasing performance. In this paper, we, therefore,
address this challenge by presenting two new databases, named
CASIA-B-DensePose and MoBo-DensePose, which are based
on the publicly available multiview database, CASIA-B and
MoBo. They exploit UV coordinates of body surface and human
semantic segmentation as the initial gait feature. It is less
sensitive to human shape compared with human silhouettes,
and has richer semantic information compared with human
skeletons. In addition, we also introduce a novel model-based
framework, DensePoseGait, to take full advantage of databases.
Unlike traditional algorithms which either extract isolated local
features or combine them with global features, DensePoseGait

uses a novel way to exploit partial features. That is, human
pose parts are employed as a regulator to guide the learning
of global features in the training stage. Its core idea is to
establish better representative features with the assistance of
partial features, but not require additional calculation in the
inference stage. We believe these databases and framework
can offer researchers a fresh perspective on model-based gait
recognition and inspire further exploration and advancements in
this area.

Index Terms—Gait recognition, DensePoseGait, part-guided
learning.
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I. INTRODUCTION

W
ITH the outbreak of the novel coronavirus 2019

(COVID-19), it has become imperative to develop

biometric technologies to address various concerns arising

from the rapid spread of COVID-19. Biometric technologies

usually have two categories, contact and non-contact biomet-

rics. Contact biometrics such as fingerprints and palm prints

will obviously speed up the spread of the virus. For non-

contact biometric technology, face recognition [1] is one of

the mature biometric technologies. But identifying subjects

becomes challenging when people are wearing masks. Iris

recognition also faces challenges when wearing anti-virus

glasses. What is more, due to the close-range collection of iris

data, it also brings the risk of personnel touching the device.

Compared with the above biometrics, gait biometric has the

following advantages, 1) long-distance human identification

2) no user action and cooperation required. It is particularly

suitable for impeding the spread of COVID-19, monitoring

people [2], video surveillance, crime prevention, and forensic

identification.

There are two main approaches for gait recognition

development: appearance-based and model-based algorithms.

Appearance-based algorithms which generally use the human

silhouettes [3], [4], [5] as initial data, as shown in Fig. 1 (b).

Their advantage is that silhouettes can be easily obtained with

good accuracy under simple conditions. However, they may

not work well in complicated situations, like someone carrying

a bag or wearing different outfits in their daily life. In contrast,

model-based algorithms generally use human skeletons [6],

[7], [8], [9] as initial input data, as shown in Fig. 1 (c). They

are better at handling difficult scenarios because they are not

affected drastically by the changes in human shape. However,

the total number of human body joints is usually not more

than twenty. The recognition rate is somewhat affected by the

lack of information.

In this paper, instead of using human silhouettes or skele-

tons, we further exploit a human pose estimation feature

for gait recognition, DensePose, as shown in Fig. 1 (d).

DensePose is a surface-based representation of the human

body. It can map all human pixels of an RGB image to the

3D surface of the human body. That is, each pixel of an RGB

image has UV coordinates on the 3D surface system. It is

obvious that DensePose has richer representative information

compared with the human skeleton, and it is also less sensitive

to human carrying or coat, even in extreme scenarios, as shown
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Fig. 1. Comparison of three raw input data under three walking variations.
The DensePose-based input data is less sensitive to human shape compared
with silhouette-based, and has richer representative features compared with
skeleton-based.

Fig. 2. DensePose [10] is robust to clothes, even with extreme skirts or
dresses. It is obvious that DensePose is more robust to external factors and
gait recognition utility in real applications.

in Fig. 2. Therefore, DensePose is particularly suitable as a

robust gait feature.

Traditional gait recognition features predominantly fall into

two categories: appearance-based and model-based algorithms.

The first type method, relying on human silhouettes, is

significantly affected by external factors such as clothing

and physical carrying, leading to variations in the silhou-

ette and, consequently, recognition inaccuracies. The second

type method, while more robust against such appearance

changes, often utilizes human skeletons that provide limited

information, hindering the performance. Our motivation for

employing 3D body surfaces stems from the need to address

these shortcomings. The 3D body surface model offers a more

holistic and stable representation of the human form, reducing

sensitivity to external appearance changes and providing richer

information compared to skeletal models.

The 3D body surface model captures the three-dimensional

structure of the human body, offering essential view-invariant

features for gait recognition. This is particularly advantageous

in diverse and real-world scenarios where the subject may

not always be facing the camera directly. The 3D structure

provides a comprehensive and consistent dataset that is not

as affected by perspective shifts, making our DensePoseGait

framework robust against various viewing angles and environ-

mental conditions.

Fig. 3. General human body part division based on the fixed grid.

Fig. 4. Demonstration of UV coordinate maps of DensePose [10]: partitioning
of the surface and correspondence to a point on a part.

Most existing gait recognition algorithms take the whole

human body as a unit to extract the spatio-temporal features,

thereby overlooking local part information. To further improve

the gait representation ability, some works [11], [12], [13]

will divide the human body into several parts, and extract

local features or combine them with global features for final

identification. Such as Fan et al. [11] divide the human body

into 4 parts from up to down, and extracts spatio-temporal

representations from each body part. And Hossain et al. [12]

divide the human body into 8 parts to solve the problem

of clothing. However, those dividing are typically based on

the fixed grid, and can not exactly segment the human

semantic body, as shown in Fig. 3. It would totally have a

negative influence on the modeling of the human body local

movement.

In order to address the above problem, we further exploit

the partial information of DensePose, which can accurately

divide the human body into 24 parts, as shown in Fig. 4.

Unlike the above methods [11], [12], [13] which focus on

establishing partial features or combining them with global

features, we, introduce a novel model-based gait recogni-

tion framework, DensePoseGait. DensePoseGait framework

employs pose parts to guide the representative feature learning

in the training stage. This allows us to create higher-quality

representative features without requiring additional calcula-

tions during the inference stage. The idea of DensePoseGait is

inspired by one work [14] of IEEE International Conference

on Computer Vision Workshops, which verifies that part-pose

guided feature learning is beneficial to re-identification. We

extend this network on the task of gait recognition and exploit

a sequence of dense pose maps rather than just a single-frame

skeleton image.
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In summary, our major contributions are:

• This paper presents two new databases, named CASIA-

B-DensePose, Mobo-DensePose, which bring a new way

to exploit model-based gait recognition for researchers.

DensePose databases are based on the publicly available

multiview databases, CASIA-B and Mobo. It exploits

UV coordinates of the human surface and human seman-

tic segmentation as the initial gait feature. It is less

sensitive to human shape compared with human silhou-

ettes, and has richer information compared with human

skeletons.

• To make the most of DensePose gait databases, we

introduce a novel model-based gait recognition frame-

work, called DensePoseGait, it carries richer information

and accurate body segmentation compared with human

skeletons. In addition, some existing algorithms leverage

partial features to enhance individual identification, but

they lack highly accurate semantic segmentation. With

DensePoseGait framework, this issue is resolved since

it enables accurate 24-part semantic segmentation of the

human body.

• Unlike traditional algorithms which either extract isolated

local features or combine them with global features, we

use accurate semantic segmented parts as a regulator

to make an alignment constraint on global gait feature

learning. The purpose is to create better representative

features by making use of partial features, but without

requiring extra calculations in the inference stage.

II. RELATED WORK

Gait recognition algorithms can be roughly divided into two

categories: appearance-based and model-based. In this section,

we will give a quick overview of the existing algorithms in

the field. We also will review DensePose algorithm in brief.

A. Model-Based Algorithms

Model-based algorithms extract features through the

modeling of the human body structure and the examina-

tion of movement patterns of various body parts. Unlike

appearance-based approaches, which are highly sensitive to

human appearance, these methods prove to be more robust to

variations due to their focus on the analysis of movement.

Studies [15], [16], [17] conducted in the early stage of

research indicate that human body movement patterns have

the potential to reveal human identity. As advancements in

pose estimation algorithms continue, this concept is becom-

ing increasingly relevant. Some researchers [6], [18], [19]

improve the performance of model-based methods greatly with

the help of pose skeleton estimation algorithms. In 2017,

Liao et al. [6] extract 2D human pose skeletons and put

into PTSN [6] network. In 2018, 3D pose skeletons are

used in PTSN-3D [7] network for gait recognition. In 2020,

PoseGait [9] has made a remarkable debut and achieved

a commendable recognition rate by deep analysis of the

3D pose skeleton. In the same year, OU-ISIR create a gait

dataset with pose sequence [8] for public research. In 2022,

PoseMapGait [13] further improve the gait performance by

using pose heatmaps rather than relying on skeleton joints

coordinates.

To address the limitations associated with skeletal repre-

sentations, recent studies such as those by Fan et al. [20]

and Liao et al. [13] have employed skeleton-maps to augment

skeletal information, thereby enhancing gait robustness to

some extent. Skeleton-maps entail the prediction of joint

maps surrounding human body joints. In contrast, dense

pose features predict UV coordinate maps across the human

surface, indicating that dense pose representations offer richer

information compared to skeleton-maps.

Furthermore, the advancement in human parsing tech-

niques has found successful applications in gait recognition,

as demonstrated in works by Wang et al. [21] and

Zheng et al. [22]. Human parsing involves segmenting the

human body into various parts, thereby enhancing pose fea-

tures. In contrast, dense pose features not only encompass

attributes of human segmentation similar to parsing but also

estimate UV coordinates for every human joint on the surface.

Thus, while human parsing primarily focuses on human

body segmentation, dense pose extends its focus to include

human surface modeling, providing a more comprehensive

representation of the human form.

Model-based approaches have seen substantial growth,

thanks to the above works. The recognition rate still requires

further enhancement due to limited skeleton information.

In contrast, the input data of the proposed DensePoseGait

framework has richer dense human pose feature representa-

tive information compared with skeletons, skeleton maps, or

parsing.

B. Appearance-Based Algorithms

Appearance-based algorithms generally extract features

from the human silhouettes. Some algorithms would create a

gait template from a sequence of human silhouettes, e.g., Gait

Energy Image (GEI) template [23] and Chrono-Gait Image

(CGI) template [24]. Template-based algorithms [3], [4], [25]

don’t require much computational cost, but they usually miss

mass temporal information.

In order to extract more temporal information, some algo-

rithms [11], [26], [27] apply a deep convolutional neural

network extract representative feature from a sequence of

human silhouettes. Chen et al. propose pyramid attention [28]

and GaitAMR [29], and Dou et al. [30] introduce GaitMPL

framework, they have achieved high accuracy on the gait

recognition.

Appearance-based algorithms can perform well in some

conditions, like view variation. However, they have a serious

shortcoming, that is, human silhouettes would be changed

dramatically under difficult scenarios, like the condition of

wearing a big cloth, as shown in Fig. 1 (b). By contrast,

the input data of our proposed DensePoseGait framework

doesn’t have this shortcoming, and also have accurate semantic

segmentation of body parts.

C. DensePose

Unlike traditional human pose estimation which evaluates

human skeleton joint coordinates, dense pose estimation [10]
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Fig. 5. The overview of the proposed framework DensePoseGait. Given a video of people’s walking sequence. DensePose [10] will extract UV coordinate
maps and corresponding human body parts. Then, UV coordinate maps will be put into one C-stream and two partial streams. C-stream is the mainstream
for extracting global features from complete gait images. In terms of two partial streams, TP-stream and LP-stream, are used to extract local features from
torso and limb gait patches, respectively. In the training phase, local features play a regulating role in global feature learning. In the inference phase, only the
C-stream is used for gait recognition.

aims at mapping all human pixels of an RGB image to the

3D surface of the human body. DensePose will semantically

divide the human body into 24 parts, including Head, Torso,

Lower/Upper Arms, Lower/Upper Legs, Hands, and Feet.

Each part will estimate UV coordinate maps on the surface-

based representations of the human body. For every pixel, will

determine which surface part it belongs to, and where on the

2D paremeterization of the part it corresponds to, as shown in

Fig. 4. The yellow color pixels have a higher coordinate value

than the green color pixels in the UV surface system.

III. PROPOSED METHOD

In this section, we will present the pipeline

of DensePoseGait framework, as shown in Fig. 5.

DensePoseGait. Given a video of people’s walking sequence.

DensePose [10] will be used to extract UV coordinate maps

and corresponding human body parts. In order to make full

use of local movement patterns and global movement patterns,

UV coordinate maps will be put into three streams: one

C-stream and two partial streams. C-stream is the mainstream

for extracting global features from complete gait images.

In terms of two partial streams, TP-stream and LP-stream,

are used to extract local features from torso and limb gait

patches, respectively. In the training phase, local features play

a regulating role in global feature learning. In the inference

phase, only the C-stream is used for gait recognition.

A. DensePose UV Coordinate Maps

In this section, we will describe the generation of robust gait

input features from the dense pose. Given a sequence of people

walking images, DensePose [10] will extract UV coordinate

maps and corresponding human body parts. As shown in

Fig. 6, each frame will generate three maps, U coordinate

maps, V coordinate maps, and human body part index maps.

Fig. 6. Demonstration of output result of DensePose [10]. a) Input image.
b) U coordinate maps. c) V coordinate maps. d) human body part index maps.

UV coordinates maps are surface-based representations of the

human body, the detail is described in Section II-C. Each map

will be aligned based on methods in [31].

In order to make full use of local movement patterns and

global movement patterns, rather than directly use dense poses

directly, we generate three types of maps as input features,

as shown in Fig. 5. Two part maps will guide the learning of

global features.

Complete Body Maps: It consists of U and I two coordi-

nates maps. The sequence of complete body maps will be put

into the Dense Pose Gait Complete Network (DPGCNet) to

model the pattern of the global movement. Given a video with

N frames, a sequence of complete body maps is formulated

as:

C = {ci|i = 1, 2, . . . , N} (1)

where ci is the complete body maps at current time i, including

UI coordinates maps.

Torso Part Maps: It also consists of U and I two coordi-

nates maps, but only will the torso part according to the human

body part index maps. The sequence of torso part maps will be

put into the Dense Pose Gait Torso Part Network (DPGTPNet)

to extract the pattern of the body truck. Given a video with N

frames, a sequence of torso part maps is formulated as:

T = {ti|i = 1, 2, . . . , N} (2)
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where ti is the torso part maps at current time i, as shown in

the middle input image of DPGTPNet in Figure 5. ti includes

the head and human torso two parts, it is extracted from

human UV coordinate maps according to human body part

index maps, as shown in Figure 6. The human body part index

maps has 24 parts, including Head, Torso, Lower/Upper Arms,

Lower/Upper Legs, Hands, and Feet. The index range is from

0 to 23.

Limb Part Maps: It consists of 8 parts: left upper arm, right

upper arm, left lower arm + hand, right lower arm + hand, left

upper leg, right upper leg, left lower leg + feet, and right lower

leg + feet. And each part contains U and I two coordinates

maps. The sequence of limb part maps will be put into the

Dense Pose Gait Limbs Part Network (DPGLPNet) to extract

the movement pattern from each limb part. Given a video with

N frames, a sequence of limb part maps is formulated as:

L = {li|i = 1, 2, . . . , N} (3)

where li is the torso part maps at current time i, as shown in

the third input image of DPGLPNet in Figure 5. li consists of

8 human limb parts, it is extracted from human UV coordinate

maps according to human body part index maps, as shown in

Figure 6.

B. DensePoseGait Framework

The purpose of the DensePoseGait network is to leverage

part-pose representations for enhancing the learning of global

gait features. The network comprises three integral streams:

the Complete Body Stream (C-Stream), the Torso Part Stream

(TP-Stream), and the Limbs Part Stream (LP-Stream), as now

clearly illustrated in the revised Fig. 5. The backbone network

of three streams are all based on the GaitSet [27], as shown

in Fig. 7

C-Stream (Complete Body Stream): The C-Stream is

responsible for capturing and analyzing the global gait fea-

tures. It serves as the backbone of the network, synthesizing

the overall gait pattern from a holistic perspective.

TP-Stream (Torso Part Stream): The TP-Stream focuses

specifically on the torso part, extracting localized features that

are crucial for understanding the upper body movements and

postures in gait analysis.

LP-Stream (Limbs Part Stream): Similarly, the LP-Stream

is dedicated to the limbs, analyzing lower body movements

and contributing to the understanding of the gait dynamics.

The feature fcomplete, supervised jointly by the C-Stream,

TP-Stream, and LP-Stream, embodies both the global and local

aspects of gait features. Specifically, fct and fcl represent the

global feature (extracted from the C-Stream) and the local

feature (from the Part-Streams), respectively. The optimization

of fcomplete loss is a collaborative effort of all three streams,

ensuring a comprehensive and nuanced feature development.

During gradient backpropagation in the training phase, the

C-Stream’s parameters are adjusted in response to the gradient

loss from the fused features of the TP-Stream and LP-Stream.

This process ensures that the C-Stream is continuously refined

by the influence of local features, leading to a more accurate

and holistic gait representation. Consequently, the TP-Stream

Fig. 7. Backbone Network. Spatial features (red cube) are extracted from
each frame by traditional CNN. Temporal features (blue cube) are extracted
by temporal pooling (TP).

and LP-Stream play a crucial regularization role in guiding

the feature learning for the C-Stream.

Complete Body Stream (C-Stream): This stream is mainly

to extract rich global spatial and temporal feature representa-

tions. A sequence of global complete body maps C are put into

the Dense Pose Gait Complete Network (DPGCNet) to extract

global feature vector fcomplete. DPGCNet uses GaitSet [27]

network as backbone, as shown in Fig. 7. It consists of

three blocks, and each block will extract spatial and temporal

features, formulated as follows:

fcomplete = G(F(C)) (4)

where F is a traditional convolutional network which can

extract the spatial features (fcomplete = {f i|i = 1, 2, . . . , N})

from each complete body maps (C = {ci|i = 1, 2, . . . , N}). G

is used to extract temporal features from spatial features. A

sequence of spatial features ({f i|i = 1, 2, . . . , N}) would put

into G function. G is achieved by an operation called temporal

pooling (TP), G(·) = max(·) + mean(·) + median(·), which

aims to aggregate gait information of elements in the time

sequence. Other than those used in traditional convolutional

neural networks, it preserves strong temporal information, as

well as sufficiently spans spatial information. The diagram of

temporal pooling can be shown in Fig. 7, fcomplete is the output

features from complete body maps.

The essence of TP is to capture different statistical

aspects of the spatial features across the temporal dimension.

Specifically, the max operation is used to capture the most

prominent feature in the sequence, which often corresponds to

the most significant movement in a gait cycle. The mean oper-

ation provides an average representation of the features over

time, effectively smoothing out anomalies and highlighting

consistent patterns. Lastly, the median operation contributes

by pinpointing the central tendency of the features, which is

crucial in identifying typical postures or movements in the gait

cycle.

By combining these three operations, TP effectively

synthesizes a comprehensive temporal profile from the spa-

tial features. This aggregation method preserves temporal

information by encapsulating the variability (max), consistency

(mean), and typicality (median) of the gait patterns over

time. Therefore, while each individual operation (max, mean,
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median) contributes a unique perspective on the spatial fea-

tures, their summation in TP provides a multi-faceted temporal

representation. This representation is crucial for accurate gait

analysis, as it ensures that the model is not only informed by

the most extreme or average patterns but also by the typical

and consistent features that characterize an individual’s gait

over time.

Torso Part Stream (TP-Stream): TP-Stream focuses on

extracting spatio-temporal representations from a sequence of

torso part maps. This is because the torso part of a human has

the richest stature information that can identify the individual

person. T-Stream consists of the Dense Pose Gait Torso Part

Network (DPGTPNet), which includes block 1 and block 2 of

the backbone network (Fig. 7). The output ftorso of DPGTPNet

is formulated as:

ftorso = G(F(T)) (5)

Limbs Part Stream (LP-Stream): To learn the local details

of individual parts area rather than mixing them all together,

the Dense Pose Gait Limbs Part Network (DPGLPNet) with

multiple branches are used to learn the limbs feature map.

First, we use the 8 parallel independent DPGLPNet networks

to learn the local features flimb,l, l = 1, 2, 3, 4, 5, 6, 7, 8 from 8

limb part maps T = {ti|i = 1, 2, . . . , N}. And then concatenate

8 local features flimb,l into one limb representative features

flimbs, formulated as equation (6). Considering the size of

limbs is smaller than the size of the complete body, the

DPGLPNet network only consists of block 1 of the backbone

network (Fig. 7).

flimbs = G(F(L)) (6)

C. Feature Fusion

To improve the learning and alignment of global features

using local part features, we fuse the part and global fea-

tures from the three streams by adding corresponding feature

vectors:

fct = fcomplete + ftorso (7)

fcl = fcomplete + flimbs (8)

Here, fcomplete represents the global feature extracted by the

C-Stream. The local features ftorso and flimbs are extracted by

the TP-Stream and LP-Stream, respectively. The fused feature

fct combines the global feature with the torso feature, while

fcl combines the global feature with the limbs feature.

During training, these fused features help adjust the learning

of the global feature fcomplete. By integrating local features

(from the TP-Stream and LP-Stream) with the global feature,

the learning process for fcomplete is guided by detailed local

information.

D. Loss Function

To optimize the three streams (C-Stream, TP-Stream, and

LP-Stream), we employ a combination of cross-entropy loss

and triplet loss. The cross-entropy loss is used for gait

ID identification, while the triplet loss enhances inter-class

variation and reduces intra-class variation. The total loss is

formulated as a weighted sum of these two losses:

Ltotal = αLcross−entropy + βLtriplet (9)

where α and β are the weights for the cross-entropy loss

and triplet loss, respectively. In our experiments, we set

α = β = 1.

The feature fcomplete, which represents the global gait

pattern, is supervised by the C-Stream, TP-Stream, and

LP-Stream. The fused features fct (from C-Stream and TP-

Stream) and fcl (from C-Stream and LP-Stream) consist of

both global and local information. The learning process for

fcomplete is influenced by these fused features, ensuring that

local features guide the global feature learning.

During backpropagation, the gradient of the total loss

Ltotal with respect to the parameters of the C-Stream (θC) is

influenced by the losses from all three streams:

∂Ltotal

∂θC

=
∂LC

∂θC

+
∂LTP

∂θC

+
∂LLP

∂θC

(10)

Here,
∂LC

∂θC
is the gradient from the C-Stream, ∂LTP

∂θC
is the

gradient from the TP-Stream, and ∂LLP

∂θC
is the gradient from the

LP-Stream. This equation shows that the parameter updates

for the C-Stream are influenced by both the global feature

learning and the detailed local features from the TP-Stream

and LP-Stream.

By integrating local features (ftorso and flimbs) into the global

feature learning process (fcomplete), the C-Stream can adjust

its parameters in response to the detailed local insights. This

ensures that the C-Stream’s learning is continually refined

and guided by the local information, resulting in a more

comprehensive and nuanced representation of gait patterns.

In summary, the combination of local and global features

during training allows the C-Stream to benefit from the

detailed features captured by the TP-Stream and LP-Stream,

leading to a robust and thorough learning process that

enhances the model’s capability for gait identification.

IV. EXPERIMENTS

A. Datasets

CASIA-B [32]: It is a widely applied gait dataset. It

has 124 subjects. Each subject has 10 sequences, including

6 sequences of normal walking (NM), 2 sequences of walking

with a bag (BG), and 2 sequences of walking with a coat (CL),

as shown in Fig. 1 (a). What’s more, each sequence has 11

views {0◦,18◦,· · · , 180◦} with around 80 frames. The number

of total frames is around 124 × 10 × 11 × 80 = 1, 091, 200

images. The experimental setting of training and testing, as

shown in Table I.

OU-MVLP [31], OU-ISIR [34], Gait3D [35] and

GREW [36]: They are also very popular data with large

subjects. We plan to do some experiments on these datasets.

However, the original RGB videos are not open to the public

due to the privacy issue. It is hard to extract dense pose maps

without RGB videos. Therefore, we don’t perform experiments

on these datasets.
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TABLE I
EXPERIMENTAL SETTING ON CASIA-B DATASET. NM: NORMAL WALKING, BG: WALKING WITH A BAG, CL: WALKING WITH A COAT

TABLE II
EXPERIMENTAL SETTING ON THE CMU MOTION OF BODY (MOBO) DATASET [33]

Fig. 8. Four walking variations on MoBo [33] dataset.

Fig. 9. View angle definition on MoBo [33] dataset.

The CMU Motion of Body (MoBo) dataset [33]: As

mention above, OU-MVLP [31] and OU-ISIR [34] are not

available for the experiment. Therefore, we perform exper-

iments on the MoBo [33] dataset. It has 25 subjects, and

each subject has 4 conditions, that is, slow walking, fast

walking, incline walking, and walking with a ball, as shown in

Fig. 8. In addition, each subject is captured using 6 cameras

distributed evenly around the treadmill, cameras are defined as

vr03_7, vr05_7, vr07_7, vr13_7, vr16_7, and vr17_7. Similar

to the angle definition of the CASIA-B dataset, we define the

angle set of MoBo dataset is {0◦, 45◦, 90◦, 180◦, 225◦, 315◦},

as shown in Fig. 9. The experimental setting of training and

testing of MoBo [33] dataset, as shown in Table II.

B. Comparison With Model-Based Algorithms on CASIA-B

Dataset

We compare our proposed method DensePoseGait with

recent state-of-the-art model-based algorithms on CASIA-B

dataset. Including methods based on the 2D human skele-

ton, PTSN [6], methods based on the 3D human skeleton,

PTSN-3D [7] and PoseGait [9], and methods based on the 2D

human pose heatmap, PoseMapGait [13]. The performance is

shown in Table III.

From Table III, we can see that DensePoseGait can achieve

the highest performance under the three walking conditions,

that is, 77.5% (NM), 65.2% (BG), and 45.2% (CL), respec-

tively. The gap of mean accuracy between the DensePoseGait

(58.1%) and the state-of-the-art method PoseMapGait (65.2%)

can even reach 7.1% on the variation of carrying a bag. The

input features of compared methods [6], [7], [9], [13] are all

based on human skeletons. Unlike these approaches which

considered several human joint coordinates modeling, we not

only generate rich body UV coordinates (dense pose maps) as

gait features, but also make full use of body parts to promote

the learning of global features. The comparison shows that

dense pose maps can further improve the development of

model-based approaches for gait recognition.

C. Comparison With Appearance-Based Algorithms on

CASIA-B Dataset

We also compare DensePoseGait with recent appearance-

based algorithms. Including SPAE [37], GaitGAN [38],

GaitGANv2 [25], DV-GEIs-pre [4], and DV-GEIs [3]. The

initial input features of those methods are all based on human

silhouettes or their variants. The experimental results can be

shown in Table IV.

From Table IV, we can see that our proposed method

gets better performance compared with these silhouette-based

methods [3], [4], [25], [37], [38]. There are obvious gaps in the

conditions of carrying a bag or wearing a coat. It is obvious

shows that the input data of DensePoseGait is less sensitive

to human shape compared with the human silhouette.

We also compare our method with contemporary

appearance-based methods, including GaitSet [27],

GaitPart [11], 3DLocal [39], and CSTL [40]. In our study, we

delineated three distinct experimental scenarios to evaluate

our models. For the initial scenario, we allocated the first

set of 62 subjects to the training group, with the subsequent

62 subjects serving as the test group. The second scenario
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TABLE III
AVERAGE RECOGNITION RATE (%) COMPARISONS WITH MODEL-BASED APPROACHES ON CASIA-B DATASET. EXCLUDING IDENTICAL-VIEW CASES.

(NM: NORMAL WALKING, BG: WALKING WITH A BAG, CL: WALKING WITH A COAT)

TABLE IV
COMPARISONS WITH APPEARANCE-BASED ALGORITHMS AT AVERAGE ACCURACY (%) ON CASIA-B DATASET. EXCLUDING IDENTICAL-VIEW

CASES. (NM: NORMAL WALKING, BG: WALKING WITH A BAG, CL: WALKING WITH A COAT)

was structured with an augmented training group comprising

the initial 74 subjects, leaving a smaller cohort of 50 subjects

for testing. The third and final scenario further expanded the

training group to encompass the first 100 subjects. As shown

in Table V.

These established methods have set a high bar for gait

recognition accuracy, particularly under variable conditions

such as wearing coats or carrying bags. Their strategies

revolve around refining the human silhouette’s representation.

However, the silhouette is inherently limited by its inability to

abstract away clothing and accessory variations.

In contrast, DensePoseGait introduces a paradigm shift by

theoretically eliminating these variations at the source. Instead

of iterating upon silhouette processing, it leverages a novel

feature type that transcends the conventional silhouette. Initial

results suggest that while DensePoseGait‘s accuracy currently

trails that of its appearance-based counterparts–partially due to

the 3D model’s occasional omission of fine body details–the

method’s growth rates, as demonstrated in our latest dataset

expansions, indicate a robust learning curve and substantial

adaptability.

DensePoseGait, as substantiated by our experimental data,

shows a remarkable capacity for improvement and adaptability.

In the normal walking condition (NM), our method improved

from 77.5% to 93.5% in accuracy as the training set expanded

from 62 to 100 subjects, a growth rate of 17.1%. This is

significantly higher than the other methods, which show more

modest improvements over the same interval. For example,

GaitSet [27], a leading method, shows a growth rate of 4.0%,

from 92.0% to 95.815%.

Moreover, under the more challenging conditions where

subjects carried a bag (BG), DensePoseGait‘s growth rate was

an impressive 22.0%, and in the coat-wearing scenario (CL), it

demonstrated a staggering growth rate of 42.2%, highlighting
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TABLE V
COMPARISON ON CASIA-B DATASET. EXCLUDING IDENTICAL-VIEW CASES

the method’s exceptional potential for dealing with external

variations. The performance increment is noteworthy, espe-

cially considering that in the CL condition, DensePoseGait‘s

initial accuracy of 45.2% rose significantly to 78.2%, while

other methods, although starting from a higher baseline,

showed lesser improvements.

In Table V, we have conducted an analysis to quantify

the accuracy disparity between traditional appearance-based

algorithms and our model-based algorithm DensePoseGait.

The results clearly illustrate a narrowing accuracy gap between

DensePoseGait and other methods as the size of the training

dataset increases. This trend is particularly noteworthy, as seen

in the transition from a baseline dataset of 62 subjects to a

more extensive dataset encompassing 100 subjects.

Compared to established appearance-based algorithms such

as GaitSet [27], the gap in performance diminishes notably

under various conditions on the conditions of normal condition

(2.3) and wearing a coat (4.9). Although DensePoseGait may

initially lag behind due to the dense pose representation

potentially missing some fine-grained body details compared

to traditional human silhouettes, its trajectory indicates rapid

improvement and adaptability as it learns from a larger pool

of training data.

The tables above illustrate the cross-view capabilities

of gait recognition. Notably, the DensePoseGait framework

demonstrates its optimal performance under the identity-view

condition. As depicted in Fig. 11, when the probe angle

matches the gallery angle, DensePoseGait achieves remarkable

accuracy rates, reaching nearly 100%, 95%, and 85% for the

NM, BG, and CL conditions, respectively, even with only 62

training subjects. This highlights the robustness of dense pose

gait features, indicating their lower sensitivity to variations in

human shape and resilience to factors like carrying bags or

wearing different clothing styles.

The observed trend suggests that the distinctive feature

set of DensePoseGait, which theoretically mitigates variations

that conventional silhouettes struggle to capture, exhibits high

scalability and shows significant performance enhancement

with the provision of additional data. This scalability is

imperative for real-world applications where environmental

conditions can vary widely.

Fig. 10. Comparing with cross-view methods at probe angle 54◦, 90◦ and
126◦. Galley angles are from 0◦ to 180◦.

Looking forward, leveraging the framework of

DensePoseGait, with the refinement of network, pose

estimation techniques, and the enrichment of gait datasets, it
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Fig. 11. Experimental results of DensePoseGait-C-Stream and DensePoseGait. From left column to right column are NM, BG and CL condition respectively.

is anticipated that DensePoseGait‘s performance will continue

to ascend, fortifying its position as a transformative approach

in model-based gait recognition methodologies.

D. Effectiveness on View Variation

The input feature of the proposed method DensePoseGait

consists of rich UV coordinates, and UV coordinates contain
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3D body informants. In order to analyze the effectiveness of

the view variation, we compared our method DensePoseGait

with some cross-view gait recognition methods. Including

FD-VTM [41], RSVD-VTM [42], RPCA-VTM [43],

R-VTM [44], GP+CCA [45] and C3A [46]. Those methods

use view transformation model (VTM) to reduce the effect

of view variation. VTM can transform gait template features

from one view to another view for improving the robustness of

the view. Three probe angles (54◦, 90◦, and 126◦ ) are chosen

to compare. The recognition rates are shown in Fig. 10.

From Fig. 10, it is obvious that our proposed method,

DensePoseGait, demonstrates exceptional performance when

there is a significant angle difference between the gallery

and probe. As the angle difference increases, so does the

improvement in performance. This highlights the advantage of

DensePoseGait, as it is specifically designed for modeling 3D

human body movement, making it more robust to variations

in viewpoint.

E. Ablation Study

In order to show the proposed framework can further

promote the learning of gait features. We only use the

C-Stream to train a model, namely DensePoseGait-C-Stream,

while the DensePoseGait is trained by using C-Stream and

with the guide learning with TP-Stream and LP-Stream. For

the reference stage, both are using C-Stream. The experimental

results can be shown in Fig. 11. Due to limited space, we only

list 4 probe angles with a 36◦ interval, that is, 36◦, 72◦, 108◦

and 144◦. From Fig. 11, we can see that the performance of

DensePoseGait is better than that of DensePoseGait-C-Stream

at many points. This is because during the training stage, the

representative features would become better with the guidance

of TP-Stream and LP-Stream. It shows that the human body

parts have a positive influence on the global feature learning.

F. Experimental Results on MoBo Dataset

The MoBo dataset experimental results can be found in

Fig. 12. This figure displays the evaluation results under

different scenarios such as varying views, fast walking, incline

walking, and walking with a ball. In the experiment, slow

walking sequences were placed in the gallery set while fast

walking, incline walking, and walking with a ball were

placed in the probe set. Each set of experiments contains 36

combinations, resulting in 36 recognition rates per figure.

G. Comparisons on MoBo Dataset

Except for experiments on CASIA-B dataset, we also

perform evaluation experiments and comparisons on the

MoBo dataset. The comparison methods consists of model-

based methods PoseGait [9] and PoseMapGait [13], and

appearance-based methods GaitGANv2 [25], DV-GEIs-pre [4]

and DV-GEIs [3]. We conducted above methods by ourselves

because they do not perform the experiments on the MoBo

dataset according to the original paper. To gain a better

overview of the comparisons, we segregated them into two

categories depending on the variations in their conditions.

Identical-View Comparison: The mean recognition rates

on identical-view cases can be shown in Fig. 13. From

Fig. 12. The experimental results under three conditions on MoBo dataset.

Fig. 13. The average recognition rates for the probe data being fast walking,
incline walking and walking with a ball on identical-view cases.

Fig. 13, it is obvious that proposed methods can achieve

better accuracy than model-based methods and appearance-

based methods, which shows that dense pose features has a

big potential to improve the robustness of gait recognition on

the real world.

Cross-View Comparison: The mean recognition rates on

the cross-view cases can be shown in Table VI. We can see

that our proposed methods not only can perform better on
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TABLE VI
AVERAGE ACCURACIES (%) ON MOBO DATASET UNDER THREE DIFFERENT EXPERIMENTAL SETTINGS, EXCLUDING IDENTICAL-VIEW CASES

the identical-view cases, but also on the cross-view cases.

In addition, the comparison of DesenPoseGait-C-Stream and

DesenPoseGait also can further show that the human body

parts has a positive impact on the feature learning of global.

V. CONCLUSION AND FUTURE WORK

Our study introduced the DensePoseGait framework, a

novel approach in model-based gait recognition that leverages

dense pose maps for initial input data. This approach marks

a significant advancement over traditional skeleton-based and

silhouette-based methods. The dense pose maps provide a

richer and more robust 3D pose representation, particularly

effective against variations in human shape. Our experiments

on the CASIA-B and MoBo datasets have demonstrated

that DensePoseGait sets a new benchmark in state-of-the-art

performance for model-based gait recognition systems.

A key insight from our research is the pivotal role of

initial data in gait recognition systems. The success of

DensePoseGait highlights how advanced data representations,

such as dense pose maps, can substantially improve robustness

and accuracy, particularly in scenarios with significant gait

variation. This finding can be instrumental in guiding future

research towards exploring and developing more sophisticated

data types for gait recognition.

Looking forward, we identify several promising directions

for further research:

Exploration of 3D Point Cloud Data: Building on the

success of dense pose maps, we propose investigating the

use of 3D point cloud data in gait recognition. As camera

technology and pose estimation algorithms continue to evolve,

3D point cloud data could offer even more detailed and

accurate representations of human gait, such as LidarGait [47],

potentially opening new avenues for research and application.

Enhancement of Pose Estimation Algorithms:

Continuous improvements in pose estimation algorithms

will be crucial for the advancement of gait recognition

technology. We plan to contribute to this area by developing

more sophisticated algorithms that can accurately capture

subtle gait nuances, further enhancing the performance of

systems like DensePoseGait. Additionally, we are considering

integrating complementary technologies, such as depth sensors

or advanced texture mapping, to enhance the detail captured in

our 3D body surface model. This integration could potentially

address the limitations you highlighted and further improve

the robustness and accuracy of our gait recognition approach.

Application in Real-world Scenarios: Given the non-

contact and long-distance identification advantages of gait

recognition, particularly highlighted during the COVID-19

pandemic, we aim to test and refine DensePoseGait in various

real-world scenarios. This includes deployment in surveillance,

healthcare monitoring, and human-computer interaction, to

assess its practicality and efficacy in dynamic environments.

In conclusion, DensePoseGait represents a significant step

forward in gait recognition technology. With ongoing research

and development, we anticipate making substantial contributions

to the field, enhancing the utility of gait recognition in various

applications, and addressing emerging challenges in a world

increasingly reliant on sophisticated biometric technologies.
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