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Abstract

Gait recognition is a particularly effective way to avoid the spread of COVID-
19 while people are under surveillance. Because of its advantages of non-contact
and long-distance identification. One category of gait recognition methods is
appearance-based, which usually extracts human silhouettes as the initial in-
put feature and achieves high recognition rates. However, the silhouette-based
feature is easily affected by the view, clothing, bag, and other external vari-
ations. Another category is based on model-based, one popular model-based
feature is extracted from human skeletons. The skeleton-based feature is robust
to many variations because it is less sensitive to human shape. However, the
performance of skeleton-based methods suffers from recognition accuracy loss
due to limited input information. In this paper, instead of relying on coordi-
nates from skeletons, we exploit that pose estimation maps, the byproduct of

pose estimation. It not only preserves richer cues of the human body compared
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with the skeleton-based feature, but also keeps the advantage of being less sen-
sitive to human shape compared with the silhouette-based feature. Specifically,
the evolution of pose estimation maps is decomposed as one heatmaps evolution
feature (extracted by gaitMap-CNN) and one pose evolution feature (extracted
by gaitPose-GCN), which denote the invariant features of whole body structure
and body pose joints for gait recognition, respectively. Our method is evaluated
on two large datasets, CASIA-B and the CMU Motion of Body (MoBo) dataset.
The proposed method achieves the new state-of-the-art performance compared
with recent advanced model-based methods.

Keywords: COVID-19, Gait Recognition, Pose Estimation Maps, Heatmaps
Evolution Feature, Poses Evolution Feature, Graph Convolutional Networks
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Figure 1: Comparison of three types of raw input feature in three walking conditions on
CASIA-B dataset. NM: normal walking, BG: walking with a bag, CL: walking with a coat. a)
Original video frames. b) Human silhouette-based input feature. ¢) Human pose estimation
results. d) Human skeleton-based input feature. ¢) Human pose estimation maps based input

feature.
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1. Introduction

1.1. Motivation

With the outbreak of novel coronavirus 2019 (COVID-19), the development
of biometric recognition technologies to address the various concerns induced by
the rapid spread of COVID-19 has become urgent. For contact biometrics such
as fingerprint and palm-print, it is clear that they would accelerate the spread
of the virus. For non-contact biometrics, face recognition is one of the mature
biometric recognition technologies. But it is very challenging to identify subjects
when people wear facial masks. The iris recognition also faces challenges when
people wear virus protection glasses, and also brings some risks that people may
touch the devices due to the iris data collection at close range.

Gait, is a walking style of a person, which also can be used as a biometric
feature to identify a person. Compared with the above biometric features, gait
has its unique advantages such as being non-contact and hard to fake. More
importantly, gait is still available at a long-distance human identification, which
is particularly suitable for monitoring people during the period of COVID-19.
Since non-contact and long-distance are two important factors to avoid the rapid
spread of COVID-19. Gait recognition technology also has a great potential
application in other areas, such as video surveillance, crime prevention, and
forensic identification.

Gait is a behavioral biometric, it would change drastically when there are
some variations, such as view, carrying, clothing, and occlusion. In order to
improve the robustness of extracted features, some earlier model-based ap-
proaches [1, 2] tried to capture motion patterns by modeling the human body
for each subject. However, it is very challenging to locate and track the human
body accurately at that earlier time because of technical reasons.

The appearance-based gait recognition approaches [3, 4] usually extract the
human silhouettes (Fig. 1 (b)) from RGB images as raw input data. These
approaches are more popular than the model-based ones in the past two decades

because human silhouettes are easy to obtain and can achieve high recognition
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rates. However, there are many drastic variations in real applications, such
as changes in clothing or carrying. These variations would change the human
silhouette shape greatly and give rise to reducing performance dramatically.
By contrast, model-based approaches are not so sensitive to human shape and
human appearance because they focus on human body structure and movement
modeling.

Recently, with the development of deep learning and human body pose esti-
mation. The performance of locating and tracking human body parts becomes
more and more accurate, which brings hope to the model-based approaches.
Some works [5, 6, 7, 8, 9] extracted accurate human skeleton feature (Fig. 1 (d))
by using the human body pose estimation algorithm (Fig. 1 (¢)). These works
have achieved good performance and made a great contribution to the devel-
opment of model-based approaches. But these works suffer from recognition
accuracy loss compared with appearance-based approaches. One main reason
for this is that the skeleton usually consists of several body joint coordinates,
which is a low dimensional feature and the contained information is very limited
compared with the human silhouette.

In this paper, instead of relying on the coordinates from human joints, we
exploit pose estimation maps (Fig. 1 (e)), the byproduct of pose estimation.
We find that pose estimation maps not only preserve richer cues of the human
body to benefit gait recognition compared with the skeleton-based feature, but
also are less sensitive to human appearance compared with the silhouette-based
feature. Inspired by the popular work [10] of human action recognition, we,
therefore, propose a novel model-based gait recognition method, PoseMap Gait,
which exploits human pose estimation maps as the raw input data. Different
from [10] which created two handcrafted images from heatmaps and poses data
before feeding into CNN, our invariant gait feature is learned automatically from
heatmaps and poses data by set pooling and gait graph construction. Simulation
results demonstrated that the pose estimation maps feature can bring signifi-
cant performance improvement compared with recent advanced model-based

approaches.
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1.2. Method Overview and Contributions

':> Human ID
Label

%

(a) (b.1) (c) (b.2) (d) (e)

Figure 2: The overview of the proposed method. a) Pose estimation maps of each body
part are predicted by extracting the byproduct of pose estimation. b) For each frame, pose
estimation maps are aggregated to generate a heatmap (b.1) and a pose (b.2). ¢) Heatmaps
evolution feature extraction, which denotes the invariant feature of body structure. d) Poses
evolution feature extraction, which denotes the invariant feature of the body pose joints. e) In
the inference stage, two types of evolution features are concatenated to measure the similarity

between the gallery and probe videos, and then predict the human ID label.

The overview of the proposed method is shown in Fig. 2. Given each frame
of a video, we predict a pose estimation map for each body part by extracting
the byproduct of pose estimation. These pose estimation maps not only can
preserve global information, which reflects whole shapes that suffer less from
the appearance noise, but also preserve local information, which reflects the
location movement of body parts.

To reduce the redundancy of pose estimation maps, we average pose estima-
tion maps of all body parts to form an averaged pose estimation map (heatmap,
Fig. 2 (b.1)) for each frame. More importantly, the heatmap can better rep-
resent global human body structure information compared with separate pose
estimation maps (Fig. 2 (a)). According to the study of Liu et al. [10], the
averaged pose estimation map (heatmap) provides richer information to reflect

human body structure and is beneficial to object recognition. In order to ex-
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tract high-level spatial-temporal information of body structure from a sequence
of heatmap images, the heatmap convolutional neural networks (gaitMap-CNN)
is designed to extract heatmaps evolution feature.

Since the heatmap image has no explicit differentiation of body parts, that
is, there is no connectivity relationship between body part joints. We further
predict joint location from the pose estimation map of each body part, gener-
ating a pose (Fig. 2 (b.2)) for each frame to extract the body pose invariant
feature. Unlike the above skeleton-based methods [5, 6], which merely con-
sidered a sequence of human joint coordinates modeling, we construct a gait
graph that not only considers inter-frame connection with the same joints, but
also considers intra-body connection based on naturally connected human body
joints. The pose graph convolutional networks (gaitPose-GCN) is designed to
extract high-level poses evolution feature from the gait spatial-temporal graph.

Intuitively, the heatmaps evolution feature (Fig. 2 (c) yellow vector) and
poses evolution feature (Fig. 2 (d) orange vector) benefit the recognition of
general movements of global body structure and elaborate movements of body
parts. Thereby, both features are fused to generate the discriminative feature
and predict the human ID label.

Compared with appearance-based methods [3, 4, 11], the proposed method
has more robustness and enhances the utility of gait recognition in real applica-
tions. Unlike most appearance-based works [3, 4, 11], they usually use human
silhouettes as the initial input data, the silhouette would be changed greatly
when some big variations exist in the real world, as shown in the variation of
walking with a coat in Fig. 1 (b). We exploit the pose estimation maps, which
are not so sensitive to human shape. In addition, they [3, 4] would ignore the hu-
man body part modeling because the human silhouette is a kind of image which
is combining hands, feet, and other human parts together. Fan et al. [12] divide
silhouette equally into four parts in order to model the body part movement.
However, it can not strictly divide the human body structure. In contrast, pose
estimation maps can model the local movement more accurately as it consists

of separate human body joints.



Compared with model-based methods [6, 7, 9], the proposed method pro-
vides a new way to exploit a model-based algorithm, which inspires researchers
to rethink model-based approaches and promotes the development of gait recog-

uo mnition. Unlike previous works [5, 6, 7, 9], they usually extract discriminative
features from human body skeletons (Fig. 1 (c)), which suffer from accuracy loss
due to limited input information. We abandon the human pose and use a more
informative feature, pose estimation maps, the byproduct of pose estimation, to
solve this challenge. In addition, PTSN [5], PoseGait [9] and other works [6, 7]

us  use CNN or LSTM to analyze coordinates from skeletons, they partly ignore
the human topological structure such as the connectivity relationship between
body part joints. While we construct a gait graph to analyze both inter-frame
connections with the same joints and intra-body connections based on naturally
connected human body joints.

120 To summarize, our contributions are three-fold.

e Flexible: We propose a novel model-based gait recognition method as the
evolution of pose estimation maps, called PoseMapGait, which exploits
human pose estimation maps as the initial input data. Compared with
appearance-based methods that use human silhouettes as input data, the

125 pose estimation maps are less sensitive to human shape. In addition, they
have richer information compared with the model-based methods that use
human skeletons as input data. The visualization of three types of input

data is shown in Fig 1.

e Interpretable: Instead of using pose estimation maps directly, the evolu-

130 tion of pose estimation maps is decomposed as an evolution feature (Fig. 2
(c) yellow vector) of heatmaps and an evolution feature (Fig. 2 (d) orange

vector) of estimated 2D human poses in a biologically interpretable way,

which denote the invariant features of whole body structure and body pose

joints for gait recognition, respectively.

135 e Effective: Some experiments are performed on popular gait dataset CASTA-

B [13] and the CMU Motion of Body (MoBo) dataset [14]. Compared with
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previous model-based methods using skeleton pose information or with the
assistance of hand-crafted features, our models achieve a state-of-the-art
recognition rate. Experiment results show that our proposed method is
more robust to various variations, which enhances the utility of gait recog-

nition in real applications.

2. Related Work

In this section, we will briefly review existing gait recognition methods. Ap-
proaches in the recent gait recognition literature can be roughly grouped into
two categories, appearance-based and model-based approaches. We also briefly

introduce graph convolutional neural networks in this section.

2.1. Appearance-Based Approaches

Appearance-based methods usually use the human silhouettes as raw input
data, and these methods can be also roughly divided into two categories, namely
template-based approaches and sequence-based approaches.

Template-based approaches would create a gait template by rendering
pixel-level operators on the human silhouette images. Template creation and
template matching are common pipelines of template-based approaches. Gait
Energy Image (GEI) template [15] and Chrono-Gait Image (CGI) template [16]
are two very popular gait template features. In the template matching step, the
most common solutions are to reduce the effect of view variation by using View
Transformation Model (VITM). VTM can transform gait template features from
one view to another view for improving the discriminative capability of the tem-
plate feature. Like Yu et al. [17] proposed Stacked Progressive Auto-Encoders
(SPAE) can transform GEI with arbitrary views to a specific angle GEI. Gait-
GANv2 [18] was proposed to directly deal with the view, bag, and clothing vari-
ation by using a generative adversarial network model, while SPAE [17] requires
7 stacks to deal with small view variation one by one. To lighten the burden

of view-invariant feature extraction for CNNs, DV-GEIs [4, 3] was proposed
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to provide a much denser view sampling to deal with the cross-view problem.
These template-based methods have made a great contribution to the develop-
ment of gait, however, the performance is not good enough because it would
reduce some temporal information during the process of template generation.
Sequence-based approaches directly employ a sequence of human gait
features like human silhouettes as input data. Wu et al. [19] proposed the first
work based on deep CNNs for gait recognition to extract gait features from a
sequence of human silhouettes. Different from Wu et al. [19] which uses con-
tinuous human silhouettes, Chao et al. [11] introduced the GaitSet network
to further improve performance based on unordered silhouettes set. Rather
than dealing with human silhouettes for gait recognition, GaitNet [20] was pro-
posed to explicitly disentangle pose and appearance features from RGB images.
Sequence-based approaches can achieve high performance in terms of cross-view
condition. This is because a sequence of human gait features contains rich tem-
poral information compared with template-based methods. However, it can not
deal with cross-carrying and cross-clothing variations very well. The main rea-
son is that human appearance and shape can be changed greatly when these

variations exist in the real world, and lead to a decrease in performance.

2.2. Model-Based Approaches

The model-based approaches extract features through modeling human body
structure and analyzing movement patterns of different human body parts.
These methods are robust to many variations because they are not so sensi-
tive to human appearance compared with appearance-based approaches.

In the early works, model-based approaches are not an easy task because it
requires human bodies are correctly and high accurately modeled. To obtain
human joint positions, some earlier methods [1] even mark human body parts
manually or with the assistance of some specific devices. Nixon et al. [21] argue
that human body movement has the ability to recognize different subjects’ gait
patterns. They simulate legs and leg movement by using a simple stick model

and an articulate pendulum movement. A multi-connected rigid body model
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was proposed by Wang et al. [2]. They divide into 14 parts and each part is
connected through a joint. This work shows that the changes in the angle of
each joint are beneficial to extracting the temporal information of gait.

In recent years, with the development of pose estimation algorithms. Some
researchers [22] extract accurate human body joints information from an RGB
image or a video by using pose estimation models. Feng et al. [23] used a
Long Short Term Memory recurrent neural network to extract temporal fea-
ture from human joints. The body structure spatial information was lost be-
cause the authors just considered temporal information from each human joint
heatmap separately. Liao et al. [5] proposed a pose-based temporal-spatial net-
work (PTSN) to extract static and dynamic information from the human body
skeleton. PTSN-3D [6] was proposed to future improve its robustness to view
variation by estimating 3D pose from a single image. In the following years,
Liao et al. [9] introduced PoseGait based on the human body pose and human
prior knowledge. This method can achieve a high recognition rate despite the
low dimensional feature with only 14 body joints. In order to promote the
study of model-based approaches, OU-ISIR provides a multi-view large popula-
tion dataset with pose sequence [7], this dataset is opened to the public for re-
search. These works boost greatly the development of model-based approaches,
but it still needs to further improve the recognition rate due to limited input

information compared with appearance-based methods.

2.3. Graph Convolutional Neural Networks

Traditional neural networks CNN or LSTM usually process data with grid
attributes (such as images), but many data have a topological structure in daily
life and scientific research. Recently, graph convolutional networks GCN ap-
peared and developed quickly. There are two types of convolution operations
according to the high-dimensional domain. The first one is based on the spec-
tral domain and the second one is based on the spatial domain. The first one
uses the eigenvalues and eigenvectors of the Laplacian matrix of the graph into

spectrum [24]. The second one processes the nodes in the graph and their neigh-

10
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boring nodes based on some rules. The spatial-temporal graph convolutional
networks (ST-GCN) [25] is based on the second one. ST-GCN has achieved
representative performance by applying graph convolution to the human action
recognition field. Our paper is also based on the spatial domain.

Recently, graph convolutional neural networks (GCN) has been successfully
applied in many works for human action recognition. Yan et al. [25] proposed an
ST-GCN network to extract spatial-temporal feature from the human skeleton.
Graph network is also widely used for other fields, such as point cloud com-
pression [26] and sparse feature extraction [27]. In contrast, GCN is not used
often for gait recognition. This is because gait recognition usually uses human
silhouettes as gait raw input feature, and a human silhouette is an image that
lacks a topological structure. In this paper, we exploit pose estimation maps in
gait recognition and extract their spatial-temporal information by constructing

a gait graph.

3. Generation of Pose Estimation Maps

In this section, we will describe the generation of robust gait input features.
Given a video of people’s walking sequence, we extract the pose estimation maps
(Fig. 2 (a)) from each frame, and then generate a heatmap (Fig. 2 (b.1)) and a
pose (Fig. 2 (b.2)) to represent human body characteristic of each frame.

Pose Estimation Maps: The goal of human pose estimation can be mod-
eled as a structure prediction problem. Fang et al. [21] proposed AlphaPose
which is an accurate multi-person pose estimator. Instead of directly using Al-
phaPose [21] to evaluate the coordinates of each human pose joints, we exploit
the hidden layer of AlphaPose to extract pose estimation maps for body joints.
AlphaPose [21] mainly includes three steps to evaluate human pose. 1) detect
the bounding box of human, 2) predict estimation maps for body joints 3) pre-
dict coordinates of each body joint based on predicted estimation maps. In fact,
the pose estimation map is a byproduct of pose estimation.

Let m; denote the pose estimation map from body joint . The whole pose

11
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estimation maps output can be formulated as M = {my,ma,...,my}, where
N is the total number of body joints. There are 17 pose estimation maps,
including one joint of the nose, and two joints (right and left one) of the eyes,
ears, shoulders, elbows, wrists, hips, knees, and ankles, as shown in Fig. 2 (a).
These pose estimation maps will be normalized in a fixed human bounding box
during the extraction. Consequently, the human bodies of different subjects will
be normalized to a fixed size, which removes the variation of a human body size
changes due to the different distances between the subject and the camera.
Heatmaps & Poses: For a RGB frame of a video, N types of pose estima-
tion maps are predicted, namely {mj, ms,...,my}. Since the pose estimation
map of each body part is separate, we average them and as describe a heatmap h
(Fig. 2 (b.1)) to better represent global human body structure information. The
averaging operation can also reduce the redundancy of pose estimation maps.

The heatmap h can be expressed as follows:

1 N

We further predict joint location from pose estimation map of each body
part, generating a pose (Fig. 2 (b.2)) for each frame to extract body pose invari-
ant feature. The pose consists of N coordinates of joints, that is {vy, v, ..., vn}.
Each v; has 2D coordinates (x,y) and one confidence score c. v; is often esti-
mated via Maximum A Posterior (MAP) criterion [28]. For each joint’s coordi-

nates and confidence score can be expressed as:

vi{x,y} = arg max(m;) (2)
veZ
vite} = max{m;} 3)

where Z € R? denote all coordinates on the image m;. The confidence score c is
the maximum value of pose estimation map. In the end, each frame of a video
is described as a heatmap and a pose. Therefore, the video is converted to the

evolution of heatmaps and the evolution of poses.

12
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Figure 3: The structure of gaitMap-CNN. ”SP” represents set pooling, it aims to aggregate

feature maps from every frame of heatmap into a set feature map.

4. Evolution of Pose Estimation Maps

This section describes the high-level evolution feature extraction from pose
estimation maps by gaitMapPose-Net, which consists of two streams, namely,
heatmap convolutional neural networks (gaitMap-CNN) and pose graph convolu-
tional networks (gaitPose-GCN). gaitMap-CNN is used to extract the heatmaps
evolution feature, while gaitPose-GCN is developed to extract the poses evolu-

tion feature.

4.1. Heatmaps Evolution Feature

Given a dataset with T frames heatmaps. A set of n heatmaps H = {h|t =
1,2,...,T} are put into heatmap convolutional neural networks (gaitMap-CNN).
The structure of gaitMap-CNN is inspired by the network framework of Chao et
al. [11] and [29], as shown in Fig. 3. H is a tensor with four dimensions, that
is, set dimension, image channel dimension, image height dimension, and image
width dimension. We use 3 steps to deal with the gait recognition, formulated

as:

fmap = G(F(H)) (4)

13
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where I is a convolutional network aims to extract the frame-level features
({ft|t =1,2,...,T}) from each gait heatmap. G is a function which used to map
a set of frame-level features ({f'|t = 1,2,...,T}) to a set-level feature fp,qp. G
takes set frame-level features as an input, it is a permutation invariant function

which is formulated as:

GUf't=12..TH=G{f WVt=12..T} (5)

where 7 is any permutation [30], this operation makes gait immune to the
permutation of frames based on the set perspective. And can naturally integrate
frames from different videos under different scenarios. G is implemented by an
operation called set pooling G(-) = max(-) + mean(-) + median(-), which aims
to aggregate gait information of elements in a set. Compared with typical
convolutional neural networks which miss the temporal information extraction,
set pooling extracts the set-level feature from high-level feature maps, it not
only preserves temporal information well, but also processes spatial information
sufficiently. The diagram of set pooling can be shown in Fig. 3. fp,qp is the

output heatmaps evolution set-level feature.

4.2. Poses Fvolution Feature

Gait Graph Construction: Heatmap captures more global body struc-
ture information of the gait sequence, while for better recognition performance,
body pose information captured by the skeleton key points is also important.
Inspired by ST-GCN [25], we compute a body pose information embedding
from the skeleton keypoints spatial-temporal graph by employing GCN based
framework. A representation of the pose sequences is generated by using pose
graph convolutional networks (gaitPose-GCN). Specifically, given a dataset with
N joints and T frames, we create an undirected spatial-temporal graph as the

following formula:

14



G=(V.E) (6)
V=Awlt=1,...T,i=1,...N} (7
Eg = {viiv|(i, j) € } (8)

Ep = {vivs1);} (9)

where the node-set V' consists of all the joints in a T frames skeleton se-

quence. The number of input joints is 18 in the framework of ST-GCN [25],

20 while the number of output heatmaps in AlphaPose [21] is 17, without neck

joint. In order to make the joints apply to the ST-GCN network, the mean of
the left shoulder and right shoulder is the neck joint.

FE is called edge set, composed of two subsets. The first subset Fg =

{vivi;|(i,j) € O} represents the intra-joint connection at each frame, it rep-

w5 resents the spatial gait information. Where ® is the set of naturally connected

human body joints, ® = {(1,0), (1,2), (2,3), (3,4), (1,5), (5,6), (6,7), (1,8),

(8,9), (9,10), (1,11), (11,12), (12,13), (0,14), (0,15), (16,14), (15,17)}, as

shown in Fig. 4 gray edges. The second subset depicts the inter-frame connec-

tion with same joints in consecutive frames, denoted as Ep = {vtiv(tﬂ)j}, as

shown in Fig. 4 blue edges, it represents the temporal gait information.
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Figure 4: Gait Graph Construction. Orange dots denote the body joints. Gray edges denote
the intra-body edges set Eg which represents spatial graph of poses. Blue edges denote the

inter-frame edges set Er which represents temporal graph of poses.
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Graph Convolution Neural Networks for the poses evolution feature

extraction is formulated as:

e fin(oy) Wl () (10)

Zyi(vez)

fpose (vti) - Z

v €B(v¢s)

where fpose is output poses evolution feature, w is the weight function to
provide a weight vector for computing the inner product with input feature
lt;. Mapping function ly;(ve;) = d(vej,vs) is the label map for the single frame
case at vertex vy;. Here d(vi;,vy;) denotes the minimum length of any path
from v to vy, for example, d = 0 refers to the root node itself and d = 1
refers to the remaining neighbor nodes. The convolution operation on graphs is
defined to the cases where the input features map f;, resides on a spatial graph
G(V, E). The normalizing term is defined as Z;;(vy;) = {vir|lei(ver) = lii(ve5) }-
B(vi;) = {vg;ld(vej,vi:) < K, |qg —t| <T'/2}, where K is the spatial range, I is

the temporal range, called the temporal kernel size.

4.3. Feature Fusion and Loss Function

In order to make the gait feature more discriminative. The heatmaps evolu-
tion feature fy,qp and poses evolution feature fposc are concatenated to a final
invariant gait feature fgqi:, which benefit the recognition of general movements

of global body structure and elaborate movements of body parts, formulated as:

fgait = Cat(fmap» fpose) (11)

where cat means concatenate operation. The corresponding features fgq::
among different subjects will be used to compute the loss value by triplet loss

function [31], as shown in equation 12. Where d means the distance between

n

two features, fg,;;. gm and fg,;, denote the anchor sample, positive sample

and the negative sample, respectively.

Liyipiet = ma’x(d(f_:]lait? 5ait) —d( _L;lait7 ;Lait) +margin,0) (12)

16
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5. Experimental Results and Analysis

5.1. Datasets

To evaluate our proposed method, RGB color video datasets are needed
because the human pose estimation maps are extracted from RGB color im-
ages rather than from silhouettes. One popular gait dataset, CASTA-B Gait
Dataset [13], not only provides human silhouettes, but also provides the origi-
nal color video to the public for research. Therefore, CASIA-B Gait Dataset [13]
is selected to evaluate our method. The Institute of Scientific and Industrial Re-
search (ISIR), Osaka University (OU) also has provided many large population
datasets such as OU-MVLP [32] and OU-ISIR [33]. However, the original RGB
video is not currently available to the public due to privacy issues. Recently,
ISIR provides multi-view large population dataset with pose sequence [7]. How-
ever, the input data of our proposed method is based on the byproduct of pose
estimation rather than the pose estimation final result. Then, we choose the
CMU Motion of Body (MoBo) dataset [14] as the second dataset to evaluate
our proposed method because it provides original RGB frames and has multiple
variations to evaluate the proposed method.

CASIA-B dataset [13], is one of the popular public gait datasets, it was
created at the Institute of Automation, Chinese Academy of Sciences (CASIA)
in 2005. It consists of 31 females and 93 males, and the total number of subjects
is 124. Each subject has 10 sequences, including 6 sequences of normal walking
(NM), 2 sequences of walking with a bag (BG), and 2 sequences of walking with
a coat (CL), as shown in Fig. 1 (a). In addition, there are 11 cameras to capture
the subjects at the same time, the view angles are {0°,18°,---, 180°}.

The CMU Motion of Body (MoBo) dataset [14] was collected at
Carnegie Mellon University in March 2001. It contains 25 individuals walking on
a treadmill in the CMU 3D room. Each subject has four different walk patterns
with one sequence, including slow walking, fast walking, incline walking, and
walking with a ball, as can be shown in Fig. 5. The average walking speeds of

slow walking, fast walking, incline walking, and walking with a ball are 2.06,
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2.82, 1.96, and 2.04 mph, respectively. In terms of incline walking, the treadmill
was set to the maximum incline of 15°. In addition, each subject is captured
using 6 high-resolution color cameras distributed evenly around the treadmill,
cameras labels are vr03_7, vr05_7, vr07_7, vr13_7,vr16_7, and vr17_7. According
to the angle definition of the CASIA-B dataset, we define the angle set of MoBo
dataset is {0°,45°,90°, 180°, 225°, 315°}, as shown in Fig. 6

Slow walking Walking with a ball Fast walking Incline walking

Figure 5: Four walking conditions on MoBo dataset.

180°
2250 w177

w37,
w037 90°

Treadmill

vr\éjd %
w057 0
315° ﬁ 745
w77

0°

Figure 6: View angle definition on MoBo [14] dataset.

5.2. Experimental settings

CASIA-B dataset [13]: In order to compare with latest model-based
methods, our experimental setting is the same as PTSN [5], PTSN-3D [6] and
PoseGait [9]. That is, the first 62 subjects are put into the training set and
the rest of the subjects are put into the test set. In the test set, the gallery set

consists of the first 4 normal walking sequences of each subject, and the probe
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set consists of the rest of 2 normal walking sequences, 2 sequences of walking

with a bag, and 2 sequences of walking with a coat, as shown in Table 1.

Table 1: Experimental setting on CASIA-B dataset. NM: normal walking, BG: walking with
a bag, CL: walking with a coat.

Test
Training

Gallery Set Probe Set
ID: 001-062 ID: 063-124 ID: 063-124
Seqs: NM01-NMO06 Seqs: NM01-NMO04 | Seqs: NM05-NMO06
BG01-BG02, CLO1-CL02 BG01-BG02, CL0O1-CL02

The CMU Motion of Body (MoBo) dataset [14]: Following the ex-
perimental setting of the above method, the first 13 subjects are put into the
training set and the remaining 12 subjects are put into the test set. In the test
set, the gallery set consists of slow walking condition, because it is closer to
natural walking compared with other walking patterns. For the probe set, it
consists of several conditions, that is, fast walking, incline walking, and walking

with a ball, as shown in Table 2. Each condition only has one walking sequence.

Table 2: Experimental setting on the CMU Motion of Body (MoBo) dataset.

Test
Training
Gallery Set Probe Set
ID: 01-13 ID: 14-25 ID: 14-25
slow walking, fast walking, slow walking fast walking, incline walking,
incline walking, walking with a ball walking with a ball

Implementing details: The gaitMapPose-Net network consists of two
streams, namely, gaitMap-CNN and gaitMapPose-Net. In terms of gaitMap-
CNN network, the input size of pose estimation maps is 64 x 44. The total
number T of set frames is to be 30. For the gaitMapPose-Net network, the
number N of human joints is set as 18. The spatial range K and temporal
range I" are set to be 2 and 9. Adam is selected as an optimizer [34]. The learn-
ing rate is le — 4. The margin in triplet loss is set to be 0.2. The models are
trained with 2 NVIDIA 1080TT 12GB. The implementation is based on PyTorch
with CUDA 9.0.
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5.8. Ezperimental results and discussions on CASIA-B dataset

The experimental results of the proposed method PoseMapGait on the CASTA-
B dataset, as shown in Fig 7, including normal walking, carrying a bag, and
clothing three conditions. The gallery set consists of the first 4 normal walking
sequences with 11 views. The probe set includes three sets, that is, the rest
2 normal sequences, 2 walking with bag sequences, and 2 walking with a coat
sequences, each set also has 11 views, as shown in Fig. 7. For each probe set of
evaluation, there are 121 recognition rates in each figure. From Fig. 7, it can be
found that PoseMapGuait can achieve a high recognition rate when the gallery
angle is equal to the probe angel, and the overall performance is the best when

the probe set under normal walking sequences, following by walking with a bag

x

Normal Walking (NM) Walking with a bag (BG) Walking with a coat (CL)

sequence.

o

Figure 7: The experimental results when probe under three conditions on CASIA-B dataset.

In order to study the complementary of between heatmaps evolution feature
(extracted from heatmaps Fig. 2 (b.1)) and poses evolution feature (extracted
from poses Fig. 2 (b.2)) for gait recognition, three different models are trained
on CASIA-B dataset. MapGait is the model trained with heatmaps by using
gaitMap-CNN network, PoseGraphGait is the model trained with poses by using
gaitPose-GCN network, while PoseMapGait is the model trained with the fusion
of heatmaps and poses by using gaitMapPose-Net network. Because of limited
space, we only list 4 probe angles with a 36° interval, that is, 36°,72° 108°
and 144°. The first column of Fig. 8 compares the recognition rates at different
probe angles in normal walking sequences, the second column is for the compar-

ison in walking with a bag sequence, and the third column is in walking with a
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Figure 8: The complementary between body structure and body pose joints . From left column

to right column are NM, BG and CL condition respectively. MapGait, PoseGraphGait and

PoseMapGait are models trained with heatmaps data (Fig. 2 (b.1)), poses data (Fig. 2 (b.2)),

and the fusion of two data, respectively.
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coat sequences. From Fig. 8, we can see the performance of MapGait is better
than that of PoseGraphGait at many points. One reason for this is that the
input data of MapGait contains more body structure information than that of
PoseGraphGait. In addition, the PoseMapGait model achieves the best per-
formance among them, which shows that the poses evolution feature can bring
performance improvement to the heatmaps evolution feature despite its limited

input information (only 18 joints).

5.4. Comparisons with model-based approaches on CASIA-B dataset

To analyse the performance of our proposed methods PoseGraphGait, Map-
Gait, and PoseMapGait, we compare them with recent state-of-the-art model-
based methods on CASIA-B dataset, including PTSN [5], PTSN-3D [6] and
PoseGait [9], where the input data of PTSN [5] is based on the 2D human
joints, PTSN-3D [6] and PoseGait [9] are based on the 3D human joints. The
comparison is shown in Table 3, results are the mean accuracies on rest 10 views
excepting the identical-view cases, we can get the mean accuracies by averaging
the 10 accuracies in Fig. 8.

From Table 3, it is clear that PoseMapGait can achieve the best accuracy on
mean accuracy of 11 gallery views in all three walking conditions, that is, 75.7%
(NM), 58.1% (BG), and 41.2% (CL), respectively. The mean accuracy gap
between the PoseMapGait (58.1%) and the state-of-the-art method PoseGait
(39.6%) can even reach 18.5% under the carrying a bag condition. The second-
best performance is MapGait, which takes human structure heatmaps as input
data. The high performances of MapGait and PoseMapGait show that the pose
estimation maps feature is more able to promote the development of model-
based approaches compared with the human skeleton-based feature.

In addition, the mean performance of PoseGraphGait is also better than
those of recent advanced model-based methods [5, 6, 9] whether under the con-
dition of normal walking, or under the conditions of walking with a bag and
walking with a coat. The input data between these methods and ours are all

based on human skeletons. Unlike these methods which merely considered a se-
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Table 3: Average recognition rate (%) comparisons with model-based approaches on CASIA-B
dataset. Excluding Identical-view Cases. (NM: normal walking, BG: walking with a bag, CL:

walking with a coat)

Gallery angle NM #1-4 0°-180°

Probe angle NM #5-6 0° 18° 36° 54° 720 90° 108° 126° 144° 162° 180° Mean
PTSN [5] 34.5 45.6 49.6 51.3 52.7 52.3 53 50.8 52.2 48.3 31.4 47.4
PTSN-3D [6] 38.7 50.2 55.9 56 56.7 54.6 54.8 56 54.1 52.4 40.2 51.9
PoseGait [9] 48.5 62.7 66.6 66.2 61.9 59.8 63.6 65.7 66 58 46.5 60.5
PoseGraphGait (ours) 46.5 66.3 71.9 74.9 71.0 70.4 68.6 71.9 70.6 65.2 47.3 65.9
MapGait (ours) 56.5 71.5 78.0 79.6 74.0 74.4 73.8 77.8 76.0 73.5 58.6 72.2
PoseMapGait (ours) 59.9 76.2 81.7 83.1 76.8 76.1 76.3 81.1 79.6 75.4 66.1 75.7
Probe angle BG #1-2 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean
PTSN [5] 22.4 29.8 29.6 29.2 32.5 31.5 32.1 31 27.3 28.1 18.2 28.3
PTSN-3D [6] 27.7 32.7 37.4 35 37.1 37.5 37.7 36.9 33.8 31.8 27 34.1
PoseGait [9] 29.1 39.8 46.5 46.8 42.7 42.2 42.7 42.2 42.3 35.2 26.7 39.6
PoseGraphGait (ours) 37.9 47.3 54.4 55.1 56.3 51.5 51.1 53.6 53.4 48.8 35.0 49.5
MapGait (ours) 43.5 51.1 59.7 60.7 62.5 56.9 55.9 58.6 61.1 55.2 41.9 55.2
PoseMapGait (ours) a7.7 56.1 63.9 63.3 64.2 59.5 58.1 61.5 61.9 58.2 44.3 58.1
Probe angle CL #1-2 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean
PTSN [5] 14.2 17.1 17.6 19.3 19.5 20 20.1 17.3 16.5 18.1 14 17.6
PTSN-3D [6] 15.8 17.2 19.9 20 22.3 24.3 28.1 23.8 20.9 23 17 21.1
PoseGait [9] 21.3 28.2 34.7 33.8 33.8 34.9 31 31 32.7 26.3 19.7 29.8
PoseGraphGait (ours) 24.6 32.8 34.8 38.6 37.9 39.6 39.8 37.8 28.5 27.1 24.1 33.2
MapGait (ours) 27.7 35.3 42.0 45.2 43.2 44.7 43.1 41.9 33.8 30.1 26.5 37.6
PoseMapGait (ours) 30.4 41.9 45.2 48.9 47.3 48.1 46.5 44.9 36.0 34.5 29.6 41.2

quence of human joint coordinates modeling, we construct a gait graph that not
only considers inter-frame connections with the same joints, but also considers
intra-body connections based on naturally connected human body joints. The
comparison shows that the pose graph gait can further boost the development

of the pose skeleton for gait recognition.

5.5. Comparisons with appearance-based approaches on CASIA-B dataset

As mentioned in the previous part of the paper, the model-based feature
(pose estimation maps) used in the proposed method is compact and has less re-
dundant information compared with the appearance-based feature. This means
that the joint maps feature extraction is more challenging for model-based al-
gorithms considering the prediction accuracy of joint maps’ location. In order
to show the effectiveness of the pose estimation maps feature, we compare it
with recent state-of-the-art appearance-based approaches. Including SPAE [17],
GaitGAN [35], GaitGANv2 [18] and DV-GEIs-pre [4]. The experimental results

of these methods can be shown in Table 4.
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Table 4: Comparisons with appearance-based approaches at average accuracy (%) on CASIA-

B dataset. Excluding identical-view cases. (NM: normal walking, BG: walking with a bag,

CL: walking with a coat)

Gallery angle NM #1-4 0°-180°

Probe angle NM #5-6 0° 18° 36° 54° 720 90° 108° 126° 144° 162° 180° Mean
SPAE [17] 50.0 58.1 61.0 63.3 64.0 62.1 62.3 66.3 64.4 54.5 46.7 59.3
GaitGAN [35] 41.9 53.5 63.0 64.5 63.1 58.1 61.7 65.7 62.7 54.1 40.6 57.2
GaitGANv2 [18] 48.1 61.9 68.7 71.7 66.7 64.8 66.0 70.2 71.6 58.9 46.1 63.1
DV-GEls-pre [4] 64.5 76.2 81.3 80.8 77.1 72.6 74.4 78.9 80.6 75.6 63.7 75.1
PoseMapGait (ours) 59.9 76.2 81.7 83.1 76.8 76.1 76.3 81.1 79.6 75.4 66.1 75.7
Probe angle BG #1-2 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean
SPAE [17] 34.0 38.6 42.1 42.7 39.0 32.8 31.3 39.9 41.0 35.7 32.3 37.2
GaitGAN [35] 28.5 35.2 42.7 34.4 38.0 33.5 36.2 44.8 41.8 33.3 23.6 35.6
GaitGANv2 [18] 37.2 43.4 46.6 46.0 47.6 41.5 41.2 48.5 48.8 42.2 31.6 43.1
PoseMapGait (ours) 47.7 56.1 63.9 63.3 64.2 59.5 58.1 61.5 61.9 58.2 44.3 58.1
Probe angle CL #1-2 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean
SPAE [17] 21.5 25.4 27.3 28.1 26.9 22.2 22.3 26.3 24.8 21.5 19.6 24.2
GaitGAN [35] 9.8 15.2 24.8 25.0 24.7 19.9 22.7 24.5 27.7 18.0 11.9 20.4
GaitGANv2 [18] 20.7 23.1 26.6 30.8 28.2 23.0 24.4 27.4 24.2 21.9 16.0 24.2
PoseMapGait (ours) 30.4 41.9 45.2 48.9 47.3 48.1 46.5 44.9 36.0 34.5 29.6 41.2

From Table 4, we can see that the proposed method not only achieves the
highest recognition rates of each gallery view than SPAE, GaitGAN, and Gait-
GANv2, but also obtains much higher recognition rates in all three walking
conditions. It should be noticed that the mean accuracy gap between the
PoseMapGait (41.2%) and GaitGANv2 [18] (24.2%) can even reach 17.0% un-
der the carrying a coat condition. That means that the proposed method is
more robust to the view, carrying a bag, and clothing variations. This is the
advantage of the pose estimation maps. The raw feature is robust to human
shape while the appearance-based features tend to be changed greatly.

We also compare with GaitSet [11] method, which has achieved very high
performance in gait recognition. There are two experimental settings on Gait-
Set [11], one is based on Table 1, that is, the first 62 subjects are put into the
training set and the rest of the 62 subjects are put into the test set. In the
second experimental setting, we set the first 74 subjects as the training set and
the rest of the 50 subjects as the test set. In order to show the potential of our
proposed in a larger dataset, we also implement another experiment that uses
the first 100 subjects as the training set. The experimental results are listed in

Table 5, the evaluation of calculating mean accuracy is the same as the mean
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accuracy of the above Table 4.

Table 5: Mean accuracy (%) comparison with GaitSet [11] approach on CASIA-B dataset.

Excluding Identical-view Cases.

Training Subjects Growth Rate
Conditions Methods
62 T4 100 62 to 74 62 to 100
GaitSet [11] 92.0 95.0 95.8 3.3 % 4.0 %
normal walking (NM) PoseMapGait (ours) 75.7 79.3 89.3 4.7 % 15.3 %
Gap 16.3 15.7 6.5 -1.4% -11.3%
GaitSet [11] 84.3 87.2 91.8 3.4 % 8.1 %
walking with a bag (BG)
PoseMapGait (ours) 58.1 61.1 74.2 5.2 % 21.7 %
Gap 26.2 26.1 17.6 -1.8% -13.6%
GaitSet [11] 62.5 70.4 83.1 12.6 % 24.8 %
walking with a coat (CL)
PoseMapGuait (ours) 41.2 48.1 63.2 16.7 % 34.9 %
Gap 21.3 22.3 19.9 -4.1% -10.1%

From Table 5, it can be seen that the method of GaitSet [11] has achieved
very high performance. There are two reasons that our model-based approach
PoseMapGait is inferior to the appearance-based approach GaitSet [11]. For
one reason, they used human silhouettes as input data which is a high dimen-
sion feature, while our pose estimation maps consist of only 17 compact joint
heatmaps. The semantic information is very limited compared with the human
silhouettes. Another reason is that the performance of model-based methods
depends heavily on the accuracy of body part locating and tracking, while the
accuracy of joint heatmaps extraction is more challenging in such low-resolution
gait recognition conditions compared with human silhouette extraction.

To analyze the potential of pose estimation maps on gait recognition, we cal-
culate the growth rates and gaps of the proposed PoseMapGait and GaitSet [11]
method from 62 training subjects to 74 and 100 training subjects. From Ta-
ble 5, it is clearly found that the growth rates of the proposed method are better
than those of GaitSet [11]. On the condition of walking with a coat, the pro-
posed method can achieve a 16.7% growth rate with only 12 additional training
samples. When the number of training subjects increases from 62 to 100, the
proposed method shows great growth rates (21.7 % and 34.9 %) under the condi-
tions of walking with a bag and a coat. In addition, with the increase of training

subjects, it is obvious that the gaps of mean accuracy between GaitSet [11] and
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PoseMapGait become smaller. The gap can achieve 6.5 % when the training set
under 100 subjects with the normal walking condition. What’s more, from the
table, we can see the gaps in growth rates enlarge when the number of training
subjects increases from 62 to 100. The comparison shows that the pose esti-
mation maps feature has a great potential to deal with external environmental
factors. We believe that with the development of pose estimation algorithms
and the increase in gait data volume, the performance of the proposed method

can ban further improved.

5.6. Effectiveness on View Variation

From the above experiments, it can be found the proposed method can
achieve state-of-the-art performance compared with recent model-based meth-
ods. In order to show the effectiveness of the view variation of the proposed
method, we compared our methods (PoseGraphGait, MapGait and PoseMap-
Gait) with some cross-view gait recognition methods. Including FD-VTM [36],
RSVD-VTM [37], RPCA-VTM [38], R-VTM [39], GP+CCA [40] and C3A [41].
We choose three probe angles, that is, 54°, 90°, and 126°, and the experimental
setting is the same as these methods in the original papers. The recognition
rates are shown in Fig. 9.

It can be clearly found that our methods (PoseGraphGait, MapGait and
PoseMapGait) achieve much high performance when the difference between the
gallery angle and the probe angle is large. The greater the difference, the more
obvious improvements. The greater the difference, the more obvious the im-
provement. It is the advantage of proposed methods that focuses on human

body movement modeling which is more robust to view variation.

5.7. Experimental results on MoBo dataset

The complete experimental results on the MoBo dataset are listed in Fig. 10.
The evaluation under the variations of view, fast walking, incline walking, and
walking with a ball are shown in these figures. In the experiment, the slow

walking sequences at a specific view are put into the gallery set, and the fast
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walking, incline walking, and walking with a ball are put into the probe set of
the three sets of the experiment, respectively. For each set of experiments, there
are 36 combinations. That means there are 36 recognition rates in each figure.
It is easy to found the recognition rate will be high when the gallery angle is

equal to the probe angle.

1 |
i Dlh i

Fast Walking Incline Walking Walking with a Ball

Figure 10: The experimental results when probe under three conditions on MoBo dataset.

5.8. Comparisons on MoBo dataset

As mentioned in previous experimental results on the CASIA-B dataset,
the pose estimation maps feature used in the proposed method contains richer
gait information compared with some model-based features, and has less redun-
dant information compared with some appearance-based features. To show the
effectiveness of the pose estimation maps feature, we make comparisons with
some advanced methods on the MoBo dataset. Including recent popular model-
based method PoseGait [9], and appearance-based method GaitGANv2 [18],
DV-GEIs-pre [4] and DV-GEIs [3]. We implemented these methods by our-
selves as they do not cite the experimental results of the MoBo dataset from
the original paper. In order to better analyze the comparisons, we analyze two
types of comparisons according to variation conditions.

Firstly, we compare with average recognition rates on identical-view cases
under three different conditions (gallery data being slow walking), the compar-
ison is shown in Fig. 11. The average recognition rate is by averaging the 6
recognition rates when the gallery angle is equal to the probe angle from the

above experimental results (Fig. 10). From Fig. 11, it is clear that our three
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Figure 11: The average recognition rates for the probe data being fast walking, incline walking

and walking with a ball on identical-view cases.

types of models can achieve better performance no matter under the condi-
tion of fast walking, or the conditions of incline walking and walking with a
ball. Additionally, there is a big gap (7.6%) between PoseMapGait (62.1%)
and GaitGANv2 (54.5%) when probe data is walking with a ball, which shows
that the pose estimation maps feature has better robustness to human shape
compared with human silhouettes feature.

Secondly, we further compare with average recognition rates under three
different conditions on the cross-view case (excluding identical-view cases), as
shown in Table 6. The average recognition results are the mean accuracies
on the rest of 5 views except the identical-view cases, we can get the mean
accuracies by averaging the 5 accuracies in Fig. 10. It should be notice that
the number of subjects on CASTA-B (124 subjects) is much more than that of
subjects on MoBo (25 subjects), and the types of variation conditions on MoBo
(5 variations: view, slow, fast, incline, and with a ball walking) is more than that
of CASTA-B (4 variations: view, normal, with a bag, and with a coat walking).
Therefore, the overall recognition rates are inferior to that of CASTA-B. But our
methods PoseMapGait can still achieve the best accuracy on mean accuracy of 6
gallery views in all three walking conditions, that is, 46.7% (fast walking), 42.5%
(incline walking), and 37.9% (walking with a ball), respectively. The comparison
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Table 6: Average accuracies (%) on MoBo dataset under three different experimental settings,

excluding identical-view cases.

Gallery angle (slow walking) 0°, 45°, 90°, 180°, 225°, 315°

Probe angle (fast walking) 0° 45° 90° 180° 225° 315° Mean
GaitGANv2 [18] 31.7 46.7 50.0 33.3 36.7 50.0 41.4
DV-GEls-pre [4] 41.7 41.7 51.7 41.7 40.0 53.3 45.0
DV-GEIs [3] 41.7 48.3 48.3 38.3 51.7 53.3 46.9
PoseGait [9] 38.3 45.0 43.3 25.0 36.7 45.0 38.9
PoseGraphGait (ours) 33.3 50.0 45.0 33.3 40.0 55.0 42.8
MapGait (ours) 40.0 41.7 55.0 35.0 43.3 56.7 45.3
PoseMapGait (ours) 48.3 43.3 43.3 40.0 46.7 58.3 46.7
Probe angle (incline walking) 0° 45° 90° 180° 225° 315° Mean
GaitGANv2 [18] 36.7 51.7 38.3 31.7 43.3 46.7 41.4
DV-GElIs [3] 40.0 51.7 36.7 35.0 38.3 51.7 42.2
PoseGait [9] 36.7 50.0 36.7 30.0 35.0 51.7 40.0
PoseGraphGait (ours) 38.3 48.3 33.3 36.7 45.0 40.0 40.3
MapGait (ours) 35.0 55.0 31.7 35.0 43.3 51.7 41.9
PoseMapGait (ours) 40.0 46.7 40.0 38.3 45.0 45.0 42.5
Probe angle (walking with a ball) 0° 45° 90° 180° 225° 315° Mean
GaitGANv2 [18] 32.7 27.3 30.9 27.3 32.7 27.3 29.7
DV-GEIs [3] 38.2 27.3 32.7 41.8 40.0 36.4 36.1
PoseGait [9] 32.7 21.8 32.7 23.6 38.2 34.5 30.6
PoseGraphGait (ours) 29.1 16.4 34.5 30.9 41.8 36.4 31.5
MapGait (ours) 38.2 21.8 29.1 45.5 38.2 38.2 35.2
PoseMapGait (ours) 36.4 30.9 32.7 45.5 41.8 40.0 37.9

of PoseMapGait and PoseGait [9] shows that the proposed pose estimation maps
feature can further improve the performance of gait recognition compared with
the skeleton-based feature. And the comparison between PoseMapGait and
GaitGANv2 [18], DV-GEIs-pre [4], DV-GEISs [3] shows that the pose estimation
maps feature is robust multiple variations compared with the appearance-based

feature, which enhances the utility of gait recognition in real applications.

6. Conclusions and Future Work

To address the various concerns induced by the rapid spread of COVID-19
while people are under surveillance, it is necessary to accelerate the develop-
ment of gait recognition technology because of its advantages of non-contact
and long-distance identification. In this paper, we proposed a novel model-based
gait recognition method, called PoseMapGait. PoseMapGait employs pose esti-
mation maps as a gait feature, rather than directly relying on coordinates from

skeletons. Compared with the skeleton-based feature, this feature not only has
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richer body structure information, but also is more robust to human shape com-
pared to the silhouette-based feature. In addition, we construct a gait graph in
order to extract spatial-temporal information from the human skeleton based on
the pose graph convolutional networks. The experimental results on CASTA-B
and MoBo datasets show that the proposed method achieves the new state-of-
the-art performance compared with recent advanced model-based methods, and
it is comparable with some state-of-the-art appearance-based methods.
Although the proposed model-based method just achieves comparable accu-
racy with state-of-the-art appearance-based methods, it shows that model-based
methods have a great potential for gait recognition because they are robust for
more challenging conditions. In addition to AlphaPose, there are other methods
that can model the human body in more detail. For example, DensePose [42]
can map all human pixels of an RGB image to the 3D surface of the human
body. We believe that with the development of pose estimation algorithms and
the quality of the camera, the proposed pose estimation maps feature can make
a great contribution to the development of gait recognition, and enhance its

utility in real applications.
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