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Communication-Efficient Vertical Federated
Learning via Compressed Error Feedback

Pedro Valdeira”, Jodao Xavier

Abstract—Communication overhead is a known bottleneck in
federated learning (FL). To address this, lossy compression is
commonly used on the information communicated between the
server and clients during training. In horizontal FL, where
each client holds a subset of the samples, such communication-
compressed training methods have recently seen significant
progress. However, in their vertical FL counterparts, where
each client holds a subset of the features, our understanding
remains limited. To address this, we propose an error feedback
compressed vertical federated learning (EF - VFL) method to train
split neural networks. In contrast to previous communication-
compressed methods for vertical FL, EF-VFL does not require a
vanishing compression error for the gradient norm to converge
to zero for smooth nonconvex problems. By leveraging error
feedback, our method can achieve a O(1/T) convergence rate
for a sufficiently large batch size, improving over the state-of-
the-art O(1/vT) rate under O(1/vT) compression error, and
matching the rate of uncompressed methods. Further, when the
objective function satisfies the Polyak-kt.ojasiewicz inequality, our
method converges linearly. In addition to improving convergence,
our method also supports the use of private labels. Numerical
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experiments show that EF-VFL significantly improves over the
prior art, confirming our theoretical results.

Index Terms—Vertical federated learning, nonconvex optimiza-
tion, communication-compressed optimization.

1. INTRODUCTION

EDERATED learning (FL) is a machine learning paradigm

where a set of clients holding local datasets collaborate to
train a model without exposing their local data [2], [3], [4]. FL
can be divided into two categories, based on how the data is
partitioned across the clients: horizontal FL, where each client
holds a different set of samples but all clients share the same
features, and vertical FL, where each client holds a different
subset of features but all clients share the same samples. Note
that we cannot gather and redistribute the data because it must
remain at the clients. Thus, we do not choose under which
category a given task falls. Rather, the category is a consequence
of how the data arises.

In this work, we focus on vertical FL. (VFL) [5]. In VFL, a
global dataset D = {£&,,}_; with N samples is partitioned by
features across a set of clients [K] := {1, ..., K'}. Each sample
has K disjoint blocks of features &, = (£,,;, .., &,,5) and the
local dataset of each client k € [K] is Dy, = {€,,;,}2_,, where
D=U & Dy Since different datasets Dy, have different features,
VFL suits collaborations of clients with complementary types
of information, who tend to have fewer competing interests.
This can lead to a greater incentive to collaborate, compared
to horizontal FL. A common application of VFL is in set-
tings where multiple entities own distinct features concerning a
shared set of users and seek to collaboratively train a predictor;
for example, WeBank partners with other companies to jointly
build a risk model from data regarding shared customers [6].

To jointly train a model from {Dj} without sharing local
data, split neural networks [7] are often considered. To learn
the parameters « of such models, we aim to solve the following
nonconvex optimization problem:

N
1
i == ,h yoosh , (1
Jnin, f(z) N ;% (xo, hin(z1) rn(TK)), (1)
where x := (g, €1, ..., xx). Here, hyp(xr) := hy(xk; €,)
is the representation of §,, extracted by the local model of
client k € [K], which is parameterized by . This represen-
tation 1s then sent to the server. The server, in turn, uses
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{Pgn(zi)}E | as input to ¢,,, which corresponds to the com-
position of the loss function and the fusion model and is param-
eterized by x.!

Most FL methods, including ours, assume that the server can
communicate with all the clients and that the clients do not
communicate with each other. These methods typically require
many rounds of client-server communications. Such communi-
cations can significantly slow down training. In fact, they can
become the main bottleneck during training [8], [9]. To address
this, a plethora of communication-efficient FL methods have
been proposed. In particular, a popular technique to mitigate the
communication overhead is lossy compression. Compression
operators, or simply compressors, are operators that map a given
vector into another vector that is easier to communicate (that is,
requires fewer bits).

Optimization methods employing communication compres-
sion have seen great success [10], [11]. Most of these works
focus on the prevalent horizontal FL setup and thus consider
gradient compression, as these are the vectors being commu-
nicated in the horizontal setting [12], [13]. Yet, in vertical FL,
the clients send representations {hy,(x))} instead. In contrast
to gradient compression, compressing these intermediate rep-
resentations leads the compression-induced error to undergo a
nonlinear function ¢,, before impacting gradient-based updates.
Thus, compression in VFL is not covered by these works and
our understanding of it remains limited. In fact, to the best of
our knowledge, [14] is the only work providing convergence
guarantees for compressed VFL. Yet, [14] employs a direct
compression method, requiring the compression error to go to
zero as the number of gradient steps 7' increases, achieving
a O(1/vT) rate when the compression error is O(1/vT). This
makes the method in [14] unsuitable for applications with strict
per-round communication limitations, such as bandwidth con-
straints, and leads to the following question:

Can we design a communication-compressed VFL method
that preserves the convergence rate of uncompressed
methods without decreasing the amount of compression as
training progresses?

A. Our Contributions

In this work, we answer the question above in the affirmative.
Our main contributions are as follows.

e We propose error feedback compressed VFL (EF-VFL),
which leverages an error feedback technique to im-
prove the stability of communication-compressed training
in VFL.

e We show that our method achieves a convergence rate of
O(1/1) for nonconvex objectives under nonvanishing com-
pression error for a sufficiently large batch size, improv-
ing over the state-of-the-art O(1/vT) rate under O(1/vT)
compression error of [14], and matching the rate of the

IThe server often aggregates the representations hy,, via some nonparam-
eterized operation (for example, a sum or an average) before inputting them
into the server model. We consider this aggregation to be included in ¢n,.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

centralized setting. We further show that, under the
Polyak-t.ojasiewicz (PL) inequality, our method converges
linearly to the solution, in the full-batch case, and, more
generally, to a neighborhood of size proportional to the
mini-batch variance, thus obtaining the first linearly con-
vergent compressed VFL method. Unlike the method in
[14], EF - VFL supports the use of private labels, broaden-
ing its applicability.

e We run numerical experiments and observe empirically
that our method improves the state-of-the-art, achieving a
better communication efficiency than existing methods.

B. Related Work

Communication-Efficient FL. The aforementioned commu-
nication bottleneck in FL [9] makes communication-efficient
methods a particularly active area of research. FL. methods often
employ multiple local updates between rounds of communica-
tion, use only a subset of the clients at a time [2], or even update
the global model asynchronously [15]. Another line of research
considers fully decentralized methods [9], dispensing with the
server and, instead, exploiting communications between clients.
This can alleviate the bandwidth limit ensuing from the cen-
tralized role of the server. Another popular technique is lossy
compression, which is the focus of this work. In both FL and,
more generally, in the broader area of distributed optimization
[16], [17], communication-compressed methods have recently
received significant attention [18], [19], [20], [21].
Communication-compressed optimization methods can ex-
ploit different families of compressors. A popular choice is
the family of unbiased compressors [11], which is appealing
in that its properties facilitate the theoretical analysis of the
resulting methods. Yet, some widely adopted compressors do
not belong to this class, such as top-k sparsification [12], [13]
and deterministic rounding [22]. Thus, the broader family of
contractive compressors [23] has recently attracted a lot of
attention. Yet, methods employing them for direct compression
are often prone to instability or even divergence [23]. To address
this, error feedback techniques have been proposed; first, as a
heuristic [10], but, more recently, significant progress has been
made on our theoretical understanding of the application of
these methods to gradient compression [12], [13], [24]. In the
horizontal setting, some works have combined error feedback
compression with the aforementioned communication-efficient
techniques, such as communication-compressed fully decen-
tralized methods [25], [26].
Vertical FL. To mitigate the communication bottleneck in VFL,
we often employ techniques akin to those used in horizontal
FL. In particular, [27] performed multiple local updates be-
tween communication rounds, [28] updated the local models
asynchronously, and [29] proposed a fully decentralized ap-
proach. Recently, [30] proposed a semi-decentralized method
leveraging both client-server and client-client communications
to avoid the slow convergence of fully-decentralized meth-
ods on large and sparse networks while alleviating the server
bottleneck.
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In this work, we focus on communication-compressed meth-
ods tailored to VFL. While, as mentioned above, most work in
communication-compressed methods focuses on gradient com-
pression and thus does not apply directly to VFL, recently, a few
empirical works on VFL have employed compression. Namely,
[31] compressed the local data before sending it to the server,
where the model is trained, and [32] proposed an asynchronous
method with bidirectional (sparse) gradient compression. Nev-
ertheless, [14], where direct compression is used, is the only
work on compressed VFL with theoretical guarantees. For a
more a detailed discussion on VFL, see [5] and [33].

II. PRELIMINARIES

We now define the class of contractive compressors, which
we consider throughout this paper.

Definition 1 (Contractive compressor): A map C: R% — R?
is a contractive compressor if there exists o € (0, 1] such that,?

Vo eR’: E[C(v) vl < (1-a)|v]?, @

where the expectation is taken with respect to the (possible)
randomness in C.

A. Error Feedback

When transmitting a converging sequence of vectors {v'},
error feedback mechanisms can reduce the compression er-
ror compared to direct compression. In communication-
compressed optimization, this allows for faster and more stable
convergence.

In direct compression, each v is compressed independently,
with C(v') simply replacing v at the receiver. In contrast, in
error feedback compression, the receiver employs a surrogate
for v that incorporates information from previous steps i =
0,...,t — 1. This is achieved by resorting to an auxiliary vector
that is stored in memory and updated at each step, leveraging
feedback from the compression of {v’: i=0,...,t—1} to
refine the surrogate for v’

Earlier communication-compressed optimization methods
employing error feedback mechanisms were motivated by
sigma-delta modulation [34]. In these methods, the auxiliary
vector accumulated the compression error across steps, adding
the accumulated error to the current vector v* before compress-
ing and transmitting it [10], [12], [35].

More recently, a new type of error feedback mechanism has
been proposed, where the auxiliary vector s’ tracks v directly,
rather than the accumulated compression error. This mechanism
uses the (compressed) difference between v'*! and s?, that is,
the error of the surrogate, as the feedback. This approach was
first introduced in [36] for unbiased compressors and was later
extended to the more general class of contractive compressors
in EF21 [24]. More formally, in EF21, the surrogate s’ is
initialized as s° = C(v") and updated recursively as:

Vt>0: s'th=st L C(utT —sh). 3)

2In Definition 1, we use a common, simplified notation, omitting the
randomness in C: RY x Q@ — R4 We assume that the randomness w in
C(v,w) at different applications of C is independent.
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Note that, unlike C(v'), s’ is not necessarily in the range of C.
For example, if C uses sparsification, then the surrogate at the
receiver in direct compression, C('Ut), must be sparse, whereas
s' does not need to be. By continually updating s* with the
compressed error, we ensure that it tracks v*. Moreover, since
these updates are compressed, the communication cost remains
the same as in direct compression. To maintain consistency,
the surrogate s is updated at both the sender (client or server)
and the receiver. In this work, we adopt an EF21-based error
feedback mechanism and henceforth refer to it simply as error
feedback.

B. Problem Setup

Let  hon(xo) =xo and  h,(x) = (hon(xo), ...,
hin(zr)) € RE where hy,(x) € REF and E = Zk]-(zo B,
for all n. Further, let

hii ()

Hk(a:k) = GRNXEk

hkN.(ka-)
and
H(x):=[Ho(xo), Hi(x1), ..., Hx(xg)] € RV*E,

Further, we define ®: RV*F . R as follows:

N
F@) = n () = @ (H ().
n=1

Throughout most of the paper, we assume that ¢,, contains the
label of &,, and that ¢,, is known by all the clients and the
server. This assumption, known as “relaxed protocol” [5], is
sometimes made in VFL [14], [37], [38] and has applications,
for example, in credit score prediction. We also address the case
of private labels, proposing a modified version of our method
for that setting in Section III-A.

We assume that f has an optimal value f* := min, f(x) >
—oo and make the following assumptions, where V denotes not
only the gradient of scalar-valued functions but, more generally,
the derivative of a (possibly multidimensional) map.

Assumption 1 (Smoothness): A function h: RY—R is
L-smooth if there exists a positive constant L such that

Va,y eRY: || Vh(@) - Vh(y)| <Lle—yl. (A

We assume f is Ly-smooth and ® is Lg-smooth and let L =
max{L¢, La}.

Assumption 2 (Bounded derivative): Map F': RP! s RP2*Ps3
has a bounded derivative if there exists a positive constant
such that

Ve eRP:  |VF(z)|| < H, (A2)

where | VF (x)|| is the Euclidean norm of the third-order tensor
VF(x). We assume (A2) holds for { H; }X .

Note that, in Assumption 2, we do not assume that our ob-
jective function f has a bounded gradient. We only require the
local representation-extracting maps { H} to have a bounded
derivative. The same assumption is also made in [14].
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Fig. 1.

III. PROPOSED METHOD

To solve Problem (1) with a gradient-based method, we need
to perform a forward and a backward pass at each step ¢ to com-
pute the gradient of our objective function. In VFL, a standard
uncompressed algorithm employing a single local update per
communication round is mathematically equivalent to gradient
descent.? This algorithm, which our method recovers if we set
C to be the identity map, is as follows:

e In the forward pass, each client k& computes H(x})

and sends it to the server, which then computes f(x!) =
o (H(x)).

e In the backward pass, first, the server backpropagates
through @, obtaining Vo ®(xf, { Hx(z!)} )=V f(z!)
and Vi ®({H(x})}), for all k, where V denotes the
derivative with respect to block k. The former is used to
update w’é, while the latter is sent to each client &, which
uses this derivative to continue backpropagation over its
local model, allowing it to compute V, f(x?).

We repeat these steps until convergence. Let us now cover the
general case, where C may not be the identity map.

Forward Pass. An exact forward pass would require each
client k to send Hy(x},) to the server, bringing a significant
communication overhead. To address this, in our method, the
server model does not have as input Hy(x}), but rather a
surrogate for it, G, which is initialized as G, = C(H(z9))
and is updated as follows, as in (3):

Vke[K]: Gi:=GL'+CL, ClL:=C(Hz})-Gi).

3When performing multiple local updates, we lose this mathematical
equivalence. In that case, we instead get a parallel (block) coordinate descent
method where the simultaneous updates use stale information about the other
blocks of variables.

An illustration of an iteration of the EF-VFL algorithm. Step (1) concerns the model update and step (2) concerns the surrogate update.

This requires keeping G&, of size N x Ej, in memory at
client k& and at the server. (Note that GY, is often smaller than
the local dataset Dj.) The server thus computes the function
o (ch), Gt ..., GtK), which acts as a surrogate for the origi-
nal objective f(x') = ®(xf, Hi(2}),. .., Hk(xk)), as illus-
trated in Fig. 1.

Backward Pass. The server performs a backward pass over the
server model, obtaining Vo®(zf, {G},}1< ), which it uses as
a surrogate for Vo® (2§, { Hj(z)} ) = Vo f(x!) to update
. Similarly, to update each local model x%, for k € [K], we
want client & to have a surrogate for

N,Ej,
ka(wt) = Z [vkcb({Hk(wZ)}kK:O):l ij IZVHk(w}tc):I ij: "
i,j=1
However, while VH (x!) can be computed at each client
k, the V@ term cannot, as client k does not have access to
H(x}), for £ # k. So, we instead use the following surrogate
for Vi f(x!):
N,E),
gii= Y [Vio]  [VH(@D)],,
ij=1
where Vi@ :=V, (..., G}, Hi(x}), G}, ...). Since the
server does not hold H (%), it cannot compute Vi ®. Thus,
the server broadcasts {C, }/<_, so that each client &, which
does hold H 1,(x!), can compute { G/, } 21, and use it to perform
a forward and a backward pass over the server model locally,
obtaining @Z(I). Thus, while the forward pass only requires the
error feedback module at each client & to hold the estimate G,

when we account for the backward pass too, each machine k €
{0,1,..., K} must hold {G}}£ ,. We write our update as:

“)

t+1

't =z' —ng' where g':=(gl,...,9%)

and 7 is the stepsize.
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Algorithm 1: EF-VFL
Input: initial point «°, stepsize 1, and initial surrogates
{G) = C(H ()},
1 fort=0,...,7—1do
2 | Update it =z} — g}, in parallel, for
ke€{0,1,...,K}, based on a shared sample
B! C [N].
3 Compute and send CL = C(H (L) — G}) to
the server in parallel, for k € [K].

4 Server broadcasts {C% 5 to all clients.
s | Update Git' =G}, + C}"" in parallel, for
kef{0,1,...,K}.

Mini-Batch. For the sake of computation efficiency, we further
allow for the use of mini-batch approximations of the objective.
Without compression, or with direct compression, the use of
mini-batches allows client k to send only the entries of H ()
corresponding to mini-batch B C [N], of size B, denoted by
H;5(xy) € REXEr instead of Hy(xy) € RV*Fr. Yet, our
method provides all machines with an estimate for all the entries
of {Hy(zy)} at all times, the error feedback states {Gy}.
Therefore, our communications, needed to update G, may not
depend on [V and B at all. This is determined by our choice of C.

Our mini-batch surrogates depend on the entries of H(xy,)
and G, corresponding to B, Hyp(x)) and Gip. (Note that
Hp(xo) = Ho(x) and G}z = GY.) Thus, we approximate
the partial derivative of the mini-batch function fg(x)=
P({Hs(xr)}) =5 > e ®n (Ry(x)) with respect to
xj, by:

Ey
gh= 2 2 [View | [VHus ()],

ieBt j=1 !

= t t
where qu)gt = qu)gt (, Gk_l,Bt, HkBt (:I)Z), G]H_LBt,
...). We write the mini-batch version of the update as:

o't =a' —ng" where g':=(g,...,9%)-

We now describe our method, which we summarize in
Algorithm 1.

« Initialization: We initialize our model parameters as x".
Each machine k € {0,1,..., K} must hold m% and our
compression estimates {GY, = C(H ()} .

* Model parameters update: In parallel, all machines k €
{0,1,..., K} take a (stochastic) coordinate descent step
with respect to their local surrogate objective, updating
zi = 2! — ng), based on a shared batch B!, sampled
locally at each client following a shared seed.

* Compressed communications: All clients k € [K] com-
pute C;H and send it to the server, who broadcasts
(.

¢ Compression estimates update: Lastly, all machines k €
{0,1,..., K} use the compressed error feedback {C% ™}
to update their (matching) compression estimates {G',}.
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Note that, in the absence of compression (that is, if C is
the identity operator), each client k£ must send C”,;H, of size
N x Ey, at each iteration. Further, the server must broadcast
{CiT1YE . Thus, the total communication complexity of EF -
VFL in the absence of compression is O(N - E - T'). When
compression is used, NV - F is replaced by some smaller amount
which depends on the compression mechanism. For example,
for top-k sparsification (defined in Section V), the communica-
tion complexity is reduced to O(k - T).

In Algorithm 1, we formulate our method in a general set-
ting which allows for the compression of both { H,(zx)}5_,
and x¢. This setting is covered by our analysis in Section IV.
However, in general, the bottleneck lies in the uplink (client-
to-server) communications, rather than the server broadcasting
[39]. Therefore, our experiments in Section V focus on the
compression of {H(xy)} <, rather than x.

A. Adapting Our Method for Handling Private Labels

In this section, we propose an adaptation of EF-VFL to
allow for private labels. That is, we remove the assumption that
all clients hold ¢,,, which contains the label of &,,. Instead,
only the server holds the labels. Further, in this adaptation, the
parameters of the server model, x(, are not shared with the
clients either.

Note that, without holding ¢,,, the clients cannot perform the
entire forward pass locally. Instead, in this setting, the forward
and backward pass over ¢,, take place at the server, while the
forward and backward pass over H (xy) takes place at client
k. More precisely, in the forward pass, each client k& sends CY,
to the server, who holds x( and the labels, and can thus compute
the loss. Then, for the backward pass, the server backpropagates
over its model and sends only the derivative of the loss function
with respect to Gy, to each client k. This requires replacing
our surrogate of Vj f(x!) in (4), which uses the exact local
representation H i () at each client, by one based on our error
feedback surrogates:

N,Ey,
vt .— 421 (Vi@ (Ho(zf), {G Jf.;l)]ij [VHk(a:’,;)]ij_
1,]=
(%)
Note that we do not backpropagate through the error-feedback

update.
More generally, we use the following (possibly) mini-batch
update vector:

Ey
Z Z [qu)Bt (HOBt (‘I’B)v {GE'Bt }szl)} ij [VHkBt (:BZ)] ij:’

1€Btj=1

_v

We summarize the adaption of the EF-VFL method to the
private labels setting in Algorithm 2.

Allowing for private labels broadens the range of applications
for our method, since many VFL applications require not only
private features, but also private labels, rendering any method
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Algorithm 2: EF-VFL with private labels

Input: initial point °, stepsize 7, and initial surrogates

{G} = C(H ,(z}))}.

1 fort=0,...,7—1do

2 Update :):Hl =z} — 7762 in parallel, for
ke€{0,1,...,K}, based on a shared sample
Bt C [N]

3 Compute and send C4"' = C(Hy(z}™) - G}) to

the server in parallel, for k € [K].

4 Server sends V@t (Hop: (), {G;Bt }E) to
client k, in parallel, for k € {0,1,...,K}.

5 Update Gt = G, + CLH in parallel, for
ke{0,1,...,K}.

requiring public labels inapplicable. However, as we will see in
Section V-B, using surrogate (5) instead of (4) can slow down
convergence. Further, unlike Algorithm 1, which can be easily
extendable to allow for multiple local updates at the clients
between rounds of communication, Algorithm 2 works only for
a single local update. This is because, for an VFL algorithm to
perform multiple local updates, ¢,, and &y must be available at
the clients, so that the forward and backward passes over the
server model and the loss function can be performed locally
after each update.

IV. CONVERGENCE GUARANTEES

In this section, we provide convergence guarantees for EF -
VFL. We present our results for Algorithm 1 only, rather then
stating them again for Algorithm 2, since they exhibit only a
minor difference in Lemma 1 and in the main theorem, where
the constant K is replaced with K + 1. We defer the details to
Appendix A.

First, let us define the following sigma-algebra

Fi=0(G%x', G, ... 2 G,
where G* := {GY, ..., G"}. For the sake of conciseness, we
further let Ex denote the conditional expectation E[- | F| with
sigma-algebra F. We use the following assumptions on our
stochastic update vector g' and the use of mini-batches.

Assumption 3 (Unbiased): We assume that our stochastic
update vector is unbiased:

V(z,t)eR? x {0,1,..., T —1}: Eg [§"] =4g"

Assumption 4 (Bounded variance): We assume that there
exists a constant o > 0 such that

(A3)

V(zx,t) eRY x {0,1,...,T —1}: —g'I? <

(A4)

Er g

We now present Lemma 1 and Lemma 2, which we
will use to prove our main theorems. We let D) :=
Zszo |G, — H k(wi)HQ denote the total distortion (caused
by compression) at time .
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Lemma 1 (Surrogate offset bound): If ® is L-smooth (A1)
and {H } have bounded derivatives (A2), then, for all ¢ > 0,

gt — Vf(z")||> < KH?L*DW. (©6)

Proof: See Appendix B-A. O
Lemma 2 (Recursive distortion bound): Let {x'} be a
sequence generated by Algorithm 1. If C is a contractive com-
pressor (2), { H}, } have bounded derivatives (A2), and (A3) and
(A4) hold, then, for all t > 0 and € > 0:

EDWY < (1 — a)(1 + ¢ EDW
2
(1= )1+ e R (Engtn? n j’B). @

Proof: See Appendix B-B. O

A. Nonconvex Setting

We now present our main convergence result for EF-VFL.

Theorem 1: Let {x'} be a sequence generated by Algo-
rithm 1, C be a contractive compressor (2), and f* > —oo. If
(A1) to (A4) hold, then, for 0 <n < 1/(\/parL + L):

0,2 ED(O)
. Z BV (@) <

+po¢2 T )
(®)

where the expectation is over the randomness in C and in {5, },

L
+ (1nLpar) 1=

A:=f(6") — f* and
2
1++1 KH?L?
Pal ::KH4< + 1) and pgo = ————.
1-+vV1—«a
Proof: See Appendix C-A. |

If the batch size is la.rge enough B =Q(c?/6), the iteration
complexity to reach = >/ ' E V£ (6% H < 6§ matches the

O(1/T) rate of the centralized, uncompressed setting. Also,
in the absence of compression (o« =1 and D® =), we re-
cover that, for n € (0,1/L], we can output an z°" such that
E(|V f(z®)|?* < f]—% + 1L If we are also in the full-batch
case (o0 =0), we recover the gradient descent bound exactly:
E|[V f(a*)||? < 22

Note that, if we start our method by sending noncompressed
representations (at ¢ = 0 only), we can drop the last term in the
upper bound in (8).

Our results improve over the prior state-of-the-art com-
pressed vertical FL (CVFL) [14], whose convergence result for
a fixed stepsize is presented below:

ZEIlVf )2 < +o(’7L"> (pr>

Note how, even for full-batch updates, the upper bound
above does not go to zero as T — oo unless D((f) — 0,

where D(t) is the distortion resulting from direct compression

) _ K
Dy Zk o IC(H (2},)) — Hi ()]l
:}1 t 0 ' E||V f(2!)||2 — 0, CVFL requires a vanishing com-
pression error, which necessitates that « — 1. This means that,
despite reducing the total amount of communications across

That is, to achieve
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TABLE I
TOTAL COMMUNICATION COST TO REACH ERROR LEVEL § > 0 (TopP-k; FULL-BATCH; SINGLE LOCAL UPDATE)

C SVFL [19] CVFL [12] EF-VFL (Ours) EF-VFL With Private Labels (Ours)
Uplink (total) NEK-O(i/s) _ min{k-0(1/v5), NE} - K - O(1/s%) KK - O(1/s) KK - O(1/s)
Downlink (total/broadcast) | NEK - O(1/s) min{k - O(}/v5),NE}- (K +1)-0(1/52) k(K +1)-O(1/s) kK - O(1/5)
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The (relative) training gradient squared norm with respect to epochs and validation accuracy with respect to communication cost for the training of

a shallow neural network on MNIST. On the left, CVFL and EF-VFL employ top-£ sparsification with a decreasing k across rows. On the right, they employ
stochastic quantization with a decreasing number of bits across rows. SVFL is the same throughout.

the training, CVFL does not reduce the maximum amount of
communications per round. In contrast, by allowing for nonva-
nishing compression, EF-VFL ensures small communication
cost at every round.

B. Under the PL Inequality

In this section, we establish the linear convergence of EF -
VFL under the PL inequality [40].

Assumption 5 (PL inequality): We assume that there exists a
positive constant y such that

vz eRY: || Vf(@)|* > 2u(f(x) - f).

We resort to the following Lyapunov function to show linear
convergence:

(A5)

V, :=Ef(a') — f* + cEDY, ©9)

where c is a positive constant. We now present Theorem 2.
Theorem 2 Let {x'} be a sequence generated by Algorithm 1,
C be a contractive compressor (2), and f* > —oco. If (Al) to

(A5) hold, then, for 7 such that n?L? (1 — u/L) +nu < o?,
we have:
T o’
Vr < (1—mnp) VO+E-
Proof: See Appendix C-B. 0

Since < L, we have thatn € (0,1/L) implies that 1 — nu €
(0,1). Hence, EF - VFL converges linearly to a O(o?) neighbor-
hood around the global optimum.

In Table I, where E = E; for j € [K] is the embedding
size for each sample at each client (assumed to match for
simplicity), we present the total communication cost to reach
= Z:ol E HVf (6") H2 < §, where § >0 (top-k; full-batch;
single local update). We discuss different downlink communi-
cation schemes for EF-VFL in Appendix D.

V. EXPERIMENTS

We compare EF-VFL with two baselines: (1) standard VFL
(SVFL), which corresponds to the method in [27] and is
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Train loss with respect to the number of epochs and validation accuracy with respect to the communication cost for the training of an MVCNN on

ModelNet10. On the left, CVFL and EF-VFL employ top-k sparsification with a decreasing k across rows. On the right, they employ stochastic quantization

with a decreasing number of bits across rows. SVFL is the same throughout.

mathematically equivalent to stochastic gradient descent when
a single local update is used, and (2) CVFL [14], which recovers
SVFL when an identity compressor is used (that is, without
employing compression). All of our results correspond to the
mean and standard deviation for five different seeds. We employ
two popular compressors in our experiments.

e Top-k sparsification [12], [13] is a map top, : R? — R¢

defined as

top, (v) = v © u(v),

where ® denotes the Hadamard product and u(v) is such
that its entry ¢ is 1 if v; is one of the k largest entries of v
in absolute value and 0 otherwise. We have that (2) holds
fora =k/d.
* Stochastic quantization [11] is a map gsgd,: R? — R,
with s > 1 quantization levels defined as
v

[[v]| - sign(v) {Slvl
[l

ST
where 7 =1+ min{d/s> vd/s} and &~U([0,1]%),
where U denotes the uniform distribution. In practice, we
are interested in values of s such that s = 2°, where b is
the number of bits. We have that (2) holds for a = 1/7.
For the sake of the comparison with CVFL, we employ com-
pressors C = Cy o Cy, where Cs is either top,, (v) or gsgd, and C;

gsgd,(v) :=

selects the rows in B, similarly to CVFL. Further, as explained
in Section III, our experiments focus on the compression of
{H(zy)}H |, and not x.

A. Comparison With SVFL and CVFL

The detailed hyperparameters for the following experiments
can be found in the provided code.
MNIST. We train a shallow neural network (one hidden layer)
on the MNIST digit recognition dataset [41]. The 28 x 28 im-
ages in the original dataset D are split into four local datasets
Dy, of 14 x 14 images, its quadrants (/X = 4). The local models
hy,, are maps v+ sigmoid(W y1v), with W, € R128%196
and the server model is (vq,...,v4) — Wy (Zi:l vy,), with
W, € R10X16_ We use cross-entropy loss. In Fig. 2, we present
the results for when EF-VFL and CVFL employ top,,, keeping
10%, 1%, and 0.1% of the entries, and when they employ gsgd,,
sending b € {4, 2, 1} bits per entry, instead of the uncompressed
b = 32. In both figures, we see that EF - VFL outperforms SVFL
and CVFL in communication efficiency. In terms of results
per epoch, EF-VFL significantly outperforms CVFL and, for a
sufficiently large £ (for top,,) or b (for qsgd,) EF - VFL achieves
a similar performance to SVFL. As predicted in Section IV,
the train gradient squared norm during training goes to zero for
EF-VFL, as it does for SVFL, but not for CVFL.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.



VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK

1073

0.6 Bl
1006 g s 1006 = os
1005 oy ; 1005 ) )
0 Cos 0 Coa
B0 g ¢ 81004 3
- o
£ 1000 2 03 - 5 1002 c N
= 2102 ~ e = 202
1002 ® B = 1092 | —m— SVFL ©
i o1 ==tea | e cviL 201
> 1% e ERVRL 3
0.0 0.0
25 50 75 100 125 250 500 750 1000 1250 1500 25 50 75 100 125 0 500 1000 1500 2000
Epoch Communications (MB) Epoch Communications (MB)
(a) top-k keeping 10% (b) quantization with b = 4
0.6 H
1006 - SVRL | 0% == svrL I R e et S e
—— cVFL || Z g5l —e— cvrL 10% £ o5l —e— cviL
1005 —— EFVFL | & —&— EF-VFL 1005 o —4— EF-VFL
@ Coas @ Coa
8100 g 81004 3
03 03
i =3 144 c
= 202 = 202
1002 |5 1092 { —=— SVFL ©
. Bo1 o1) —o— CVFL Zo1 -
1o* g 1M e EFVFL g ettt g —— e
0.0 0.0
0 25 50 75 100 125 25 50 75 100 125 150 0 25 50 75 100 125 0 250 500 750 1000 1250
Epoch Communications (MB) Epoch Communications (MB)
(c) top-k keeping 1% (d) quantization with b = 2
0.6 = 0.
1006 = —=— SVFL T i e R I b = 6 L
o5 —e— CVFL Sos —e— CVFL
1005 & —— EF-VFL 1005 o —+— EF-VFL
© ©
%) = 0.4 [ « 0.4
E 1004 g § 1004 g
0.3
£ 103 9 S 1008 -
© c © (=
= 202 = L2
1002 e 1002 —m— SVFL ®
B g —— °
— —e— CVFL = 0.1 Lo 100 ~o— CVFL = 0.1
—4— EF-VFL > —— EF-VFL > o
0.0 0.0
0 25 50 75 100 125 0.0 25 5.0 75 10.0 12,5 15.0 0 25 50 75 100 125 0 200 400 600 800
Epoch Communications (MB) Epoch Communications (MB)
(e) top-k keeping 0.1% (f) quantization with b = 1
Fig. 4. Train loss with respect to the number of epochs and the validation accuracy with respect to the communication cost for the training of a ResNet18-

based model on CIFAR-100. On the left, CVFL and EF-VFL employ top-k sparsification with a decreasing k£ across rows. On the right, they employ stochastic
quantization with a decreasing number of bits across rows. SVFL is the same throughout.

ModelNet10. We train a multi-view convolutional neural net-
work (MVCNN) [42] on ModelNet10 [43], a dataset of three-
dimensional CAD models. We use a preprocessed version of
ModelNet10, where each sample is represented by 12 two-
dimensional views. We assign a view per client () = 12).
In Fig. 3, we present the results for when EF-VFL and CVFL
employ top,, keeping 10%, 1%, and 0.1% of the entries, and
when they employ gsgd,, with b € {4,2, 1}. We plot the train
loss with respect to the number of epochs and the validation
accuracy with respect to the communication cost. We observe
that, for EF-VFL, the training loss decreases more rapidly
than for CVFL. Further, if the compression is not excessively
aggressive, EF-VFL performs similarly to SVFL. In terms of
communication efficiency, EF-VFL outperforms both SVFL
and CVFL.

CIFAR-100. We train a model based on a residual neural net-
work, ResNet18 [44], on CIFAR-100 [45]. More precisely, we
divide each image into four quadrants and allocate one quadrant
to each client (K =4), with each client using a ResNetl8
model as its local model. The server model is linear (a single
layer). In Fig. 4, we present the results for when EF-VFL
and CVFL employ top,, keeping 10%, 1%, and 0.1% of the
entries, and when they employ gsgd,, with b € {4,2,1}. We
plot the train loss with respect to the number of epochs and
the validation accuracy with respect to the communication cost.

Regarding the results with respect to the number of epochs,
EF-VFL achieves a similar performance to that of SVFL, sig-
nificantly outperforming CVFL. In terms of communication
efficiency, EF-VFL outperforms both SVFL and CVFL.

We summarize the test metrics for all three tasks in
Table II. In brief, while CVFL performs well for less aggres-
sive compression is employed, the improved performance of
EF-VFL is significant when more aggressive compression is
employed.

B. Performance Under Private Labels

In this section, we run experiments on the adaption of
EF-VFL to handle private labels, proposed in Section III-A.

In [14], the authors assume that the labels are available at
all clients and do not propose an adaptation of CVFL to deal
with private labels. Yet, to get a baseline for a compressed
VFL method allowing for label privacy, we adapt CVFL in
a similar manner to how we adapt EF-VFL (that is, sending
back the derivative from the server to the clients, instead of ¢,,
and x(, and without backpropagating through the compression
operator).

We run an experiment on MNIST, training the same shallow
neural network as in Section V-A, with all the same settings,
except for the use of batch size B = 1024. Further, we train
a ResNet18-based model with a linear server model (a single
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TABLE 11
TEST ACCURACY FOR SVFL, CVFL, AND EF-VFL ACROSS DIFFERENT TASKS, FOR A FIXED NUMBER OF EPOCHS.
WE RUN REACH EXPERIMENT FOR 5 SEEDS AND PRESENT THE MEAN ACCURACY = STANDARD DEVIATION,
HIGHLIGHTING THE HIGHEST ACCURACY IN BOLD

MNIST (accuracy, %)

top-k compressor

qsgd compressor

Uncompressed ~ keep 10% keep 1% keep 0.1% b=4 b=2 b=1
SVFL 91.6 £0.1 — — — — — —
CVFL — 772+£19 357+£50 257+76 503+6.1 53.0+£7.4 52.7+8.7
EF-VFL — 91.8+0.1 911+03 824+21 872+04 811+16 668+59
ModelNet10 (accuracy, %)
top-k compressor qsgd compressor
Uncompressed  keep 10% keep 1% keep 0.1% b=4 b=2 b=1
SVFL 81.2+0.8 — — — — — —
CVFL — 80.7+3.1 532+65 245+42 803+£20 70.7+1.6 52.0+3.2
EF-VFL — 80.4+19 774+25 403+48 794437 804+27 81.1+238
CIFAR-100 (accuracy, %)
top-k compressor gsgd compressor
Uncompressed  keep 10% keep 1% keep 0.1% b=4 b=2 b=1
SVFL 57.7£0.6 — — — — — —
CVFL — 56.8+0.6 45.14+23 11.6+14 19.2+0.6 594+0.7 2.0+0.1
EF-VFL — 572+08 548+09 364+28 578+05 502413 347+28
100 1.0
Wy B ol ®

@
=]

EFVFL
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o
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Fig. 5.
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Train loss with respect to the number of epochs and validation accuracy with respect to the communication cost for the training of a shallow neural

network on MNIST and a ResNet18-based model on CIFAR-100. In the legend, PL stands for private labels. The communication compressed methods—CVFL,

EF-VFL, CVFL (PL), and EF-VFL (PL)—employ top-k sparsification.

layer) on CIFAR-100 [45]. For all the optimizers, we use an ini-
tial stepsize of 77 = 0.01 and a cosine annealing scheduler with
a minimum stepsize of 1/100 the initial value and use a batch
size B =128 and a weight decay of 0.01. The compressed-
communication methods employ top,, keeping 5% of the en-
tries.

In Fig. 5, we observe that, although the modified EF-VFL
for handling private labels converges noticeably slower than
the original method, it still performs effectively. For both the
MNIST experiment and the CIFAR-100 experiment, we see
that, while adapting CVFL to handle private labels leads to a
severe drop in performance, EF-VFL slows down much less
noticeably. In fact, for the MNIST experiment, EF-VFL with
private labels still outperforms CVFL, even with public labels.

C. Performance Under Multiple Local Updates

As mentioned earlier, some VFL works employ ) > 1 local
updates per round [27], using stale information from the other
machines. We now show that, although our analysis focuses
on the case where each client performs a single local update
at each round of communications (that is, ) = 1), EF-VFL

performs well in the () > 1 case too. In particular, to study
the performance of EF-VFL when carrying out multiple local
updates, we train an MVCNN on ModelNet10 and a ResNet18
on CIFAR-10.

For ModelNet10, all three VFL optimizers use a batch size
B =128, a stepsize n = 0.004, and a weight decay of 0.01.
Further, we use a learning rate scheduler, halving the learning
rate at epochs 50 and 75. The results are presented in Fig. 6(a)
and Fig. 6(b). For CIFAR-10, all three VFL optimizers use a
batch size B = 128, a stepsize 1 = 0.0025, and a weight decay
of 0.01. Further, we use a learning rate scheduler, halving the
learning rate at epochs 40, 60, and 80. The results are presented
in Fig. 6(c) and Fig. 6(d).

For both ModelNet10 and CIFAR-10, we see that, similarly
to the Q =1 case, our method outperforms SVFL and CVFL
in communication efficiency. In terms of results per epoch,
EF-VFL performs similarly to SVFL and significantly better
than CVFL. Interestingly, for the CIFAR-10 task, EF - VFL even
outperforms SVFL with respect to the number of epochs. We
suspect this may be due to the fact that compression helps to
mitigate the overly greedy nature of the parallel updates based
on stale information.
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Fig. 6. Train loss with respect to the number of epochs and validation accuracy with respect to the communication cost for the training of a multi-view
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three vertical FL optimizers use ) = 2 local updates and, on the right, they all use @Q = 4 local updates.

VI. CONCLUSION

In this work, we proposed EF-VFL, a method for com-
pressed vertical federated learning. Our method leverages an
error feedback mechanism to achieve a O(1/T) convergence
rate for a sufficiently large batch size, improving upon the state-
of-the-art rate of O(1/+v/T). Numerical experiments further
demonstrate the faster convergence of our method. We further
show that, under the PL inequality, our method converges lin-
early and introduce a modification of EF-VFL supporting the
use of private labels. In the future, it would be interesting to
study the use of error feedback based compression methods for
VFL in the fully-decentralized and semi-decentralized settings,
in setups with asynchronous updates, and in combination with
privacy mechanisms, such as differential privacy as done in the
horizontal setting [46], [47].

APPENDIX A
PRELIMINARIES

If a function is L-smooth (A1), then the following quadratic
upper bound holds:

f(y)

L
+ Sl -yl
(10)

Vz,y e R%: <f(®)+Vf(x) (y—=)

It follows from Assumption (2) that the following inequality
holds:

|Hk(z) — Hi(y)| < Hl|z —yl, Va,yeR™ (11

Letting € > 0, we use the following standard inequality in our
analysis:

vz,y e R: Dyl

12)

le +yl? < (1 +e)llz]|* + (1 + €

We define the distortion associated with block k at time ¢ as
t 2
DY i~ |G}~ Hy(al)|

and, recall, we denote the total distortion at time ¢ as D(*) =
K DY We also define v := (1 —a) € [0, 1).
In Section IV, we introduced the following sigma-algebra

Fi=0(G ', G, ..., x!,G"),
where G' = {GY, t-}. We now further define
1=0(G z', G, ... xt, G !,

Recall that we let Ex denote the conditional expectation

Note that, while we write our proofs for Algorithm 1, they
can be easily adjusted to cover Algorithm 2. To do so, it suf-
fices to adjust the notation, replacing g* and g' by V% and

62, respectively, and to make minor changes to the proof of
Lemma 1, which cause the constant X in Lemma 1 to be
replaced with K + 1. This, in turn, leads to a similar adjustment
in the constants of our main theorems.

APPENDIX B
SUPPORTING LEMMAS
A. Proof of Lemma 1

Decoupling the offset across blocks, we get that

lg" — Vf($t)||2
—Z gt — ka(mk)H ;

K

ZHVHk wk H2 Hvtq) qu’({Hk mk)}k O)HQa
k=0
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where we use the chain rule and the fact that | Az|| < || Al|||x]|
Now, it follows from the bounded gradient assumption (A2) on
{H} and the L-smoothness (A1) of ® that

K
lg" = VF()|? < H2 22> S (|GY — H (=)
k=0 j#£k

K
NI

k=0 j#£k
= KH?L*DW,

as we set out to prove. For Algorithm 2, the sum },_, would
instead be Z;il, leading to |lg' — Vf(z")||* < (K +1)
H2L2D®, However, note that, for Algorithm 2, D(()t) =0.

B. Proof of Lemma 2

It follows from the definition of distortion and from the
update of our compression estimate that

Er DY) =Er G5 — Hial)?

2
G AC(H(z; ) -G —H (x|

Now, from the definition of contractive compressor (2) and from
(12), we have that
2
Er D] <v |Gl — Hia™)|
2
<v(l+e) HG;C — Hk(a:Z)H

+rv(l+e )| He(zi™) - Hk(wfc)||2

b

where, recall, v = (1 — «) € [0, 1). Further, from the bounded
gradient assumption—in particular, from (11)—we arrive at

Ery [DIY] < o1+ DY 1 o1+ el — af |
=v(1+ oD + v+t H g,
where, recall, g is our (possibly stochastic) update vector.

Summing over £ =0,1,..., K and taking the nonconditional
expectation of both sides of the inequality, we get that

ED(t+1) S V(l + G)ED(t) + y(l + 6_1)772H2E‘|gt||2'

Lastly, using the fact ghat, under (A3), (A4) is equivalent to
E|g'|]> <E|lg'|? + %, we arrive at (7).

APPENDIX C
MAIN THEOREMS

First, let us define some shorthand notation for terms we
will be using throughout our proof, whose expectation is with
respect to the (possible) randomness in the compression across
all steps:

(compression error) 2 := ]ED(t),

(surrogate norm) Qb := E||g"||*.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

A. Proof of Theorem 1

From the L-smoothness of f—more specifically, from (10)—
we have that

P~ f(a) < (Vi) 2 —at) + 5t — ot

2
- n°“L _
=—n(Vf(z').g") + 7||9t||2-

Taking the conditional expectation over the batch selection, it
follows from the unbiasedness of gt (A3) that

2
n°L -
Er,f(a'") - f(a') < ~n(Vi(a').g) + TV 15
From (A4), we have that Ez,||g" — g < "—Bz, which, under
(A3), is equivalent to Ex, [|g" || < ||lg*||*> + LBQ, S0
Er, f(z'") - f(z')

772.[/0'2

2B

2
L
< —n(Vi(a).g") + - lg' 1 +

n n
=~V s - 2 D)l
Myt (2 n*Lo®
+ g - viah)+ L

where the last equation follows from the polarization identity
(a,b) = ([lal|* + [|b]|* = [l — b]|*). Now, using our surrogate
offset bound (6) and taking the (non-conditional) expectation,
we get that:

n n
Ef(e'™) ~Ef(a") < ~ JE|VS (@) ~ 201~ L)l
nK H2L2
+ -
2
Using the Q! and Q) notation defined earlier and recall-
ing that v = (1 — «) € [0, 1), we rewrite (7) and (13), respec-
tively, as

2L 2
ED“M%. (13)

v(14+e Yn?H?0?

QU <v(1+e)Q+v(1+e ) H2QL+

B
and
KH?L?
Ef(2"") ~ Ef(a") < —JE|[Vf(a")|? + 50}
2 2
N . n°Lo
S (L= L)% + o

Multiplying the first inequality by a positive constant w and
adding it to the second one, we get

Ef(a") —Ef(@") + w™ — ¢ (w)Q]
< —ZEIVI (@) + a(w)s

L 2.2
+ <w1/(1+6_1)H2+ 2) ra ,

where
nKH?L?

1 (w) :=wr(l+¢€) + 5
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and

Yo(w) :=wr(l + e N H? — g(l —nL).

Looking at (14), we see that, if 19(w) < 0, we can drop the
QO term. Further, if ¢ (w) < w, we can telescope the 2} term
as we sum the inequalities for t =0,...,7 — 1, as we do for

the Ef (mt) terms. We thus get that:
0y _ T
nT
N 2w (0§ — OT)
nT
2
+ (2wr(1 + e YH2 + 1) I
(15)
for
o ] nKH?L? 1—nL
weWe = {“’ 20— v(l+te) - " opH2(1 e ) [

where the lower bound follows from ) (w) < w and the upper
bound from 5 (w) < 0.

Bounding 7 and Choosing e. To ensure that WV, is not empty,
we need

y(e)[> +nL <1 where ~(¢):=KH* v

From Lemma 5 of [24], we know that, if a,b > 0, then 0 <7 <
\/al +b implies an2 + bn < 1. Thus, we can ensure that W, is
not empty by requiring

n§m=<mL+L>_l

Further, to ensure that all w € W, are positive, we need v(1 +
€) < 1, which holds for e < 1_7” Thus, to have the largest upper
bound possible on the stepsize 7, we want € to be the solution
to the following optimization problem, solved in Lemma 3
of [24]:

14e! 1—
€* 1= argmin, {&(e) = 11/(;(—16+2): 0<e< VV}
_ Ly
=5t
1+\/7

It follows that /7(e*) = —1 and thus ~(e*) =
2
KH* (Hi g—a - 1) =: pa1. We therefore need

n< (VAL +L) = (VparL+L1)""

Note that, for a = 1, we recover n < 1/L.
Choosing w. Now, since f* < f(zx) for all z and QT >0, we
have from (15) that, for all w € W,:

= Z E|Vf(z")|* <

QwQ(l)
nl

[

+ w1+ e HYH2 + 1) I,

1077

where A := f(x") — f*. From the inequality above, we see that
we want w € W, to be as small as possible. Therefore, we take
w to be the lower bound in W,. Since 1 — u(l +e)=1—
\/v, this corresponds to setting w = ;’gH \}) Recalling that
Q! =ED® and v =1 — a, we thus arrive at (8):

272 (0)
*ZEHW WP < 2+ =
nLo?

+ (anal + 1)

B

B. Proof of Theorem 2

Recall that, using the 2¢ and Q§ notation, we can rewrite (7)
and (13), respectively, as

v(14+e YHn?H?0?

QU <p(1+e)Q+v(1+e Hn* H2 Q4+ 5
and
KH?L?
Ef(2"") - Ef(a") < —JE|[Vf(@")|? + o9
2 2
R/ . n°Lo
S (L= L)% + =

Now, from our earlier introduced Lyapunov function (9),
Vi =Ef(x!) — f* + cQf, we have that:

Vigr =Ef (') — f* 4 it

(i)

<Ef(z') - f* -

KH?L?
N (77

|V £ (")

5 +ev(1+e) ) QL +aha(c)

,',,20.2

2B

+ (L + 2cv(1 + e Y H?)
<1 - ) Eft) - 1)

272
+ (nKHL +ev(l+ 6)) Qf

2

202

+ o) + (L + 2cv(1 + e_l)HQ)W

= (L =n)Vi
KH?L?
+ (772 +ev(l+e)—c(l— nu)) Qf
=:1p3(c)
+ ()% + (L + 2e0(1 + € 1) H?) ”2;

where (i) follows from (7), (13), ¢>0, and tq(w)=
wy(1+ e Y)n*H? — 2(1 — nL) and (ii) follows from the PL
inequality (A5). Looking the inequality above, we see that, if
there is a ¢ such that 13(c), 93(c) <0, then

202
2B

Vi1 < (1 —nu)Vi + (L +2cH?v(1 +€71)) (16)
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Note that, similarly to what we had in the proof for Theorem 1,
2(c) < 0 corresponds to a upper bound on ¢, while ¢3(c) <0
corresponds to an lower bound on ¢. We therefore want ¢ € W/,
where

W, = {c: nKH?L?
‘ 2(1 —v(l+€) —np)

Recursing (16), we get

<c< i1
_C_2nu(1+e—1)H2 '

Vi < (1—nu) Vot (L+2cH?v(1+€ 1))

<1 —nu)"Vo+ (L+2cH?v(1+€ ")) - —

where the second inequality follows from the sum of a geomet-
ric series, arriving at the result we set out to prove.

Choosing ¢ and Bounding 1 So That V! Is Nonempty. Note
that the lower bound defining W/, is positive if n < M,
where 1 — (1 + €) > 0 as long as € < 1=%. Further, W/ is not

empty, as long as

nKH?L? 1—nL
20 —v(l+e) —nu) ~ 2nu(l + e HH?’

which is equivalent to
n*L? (&((J{)KH4 - ,u/L) +nL(0(a) + p/L) <0 (ar),

where

fc(a)=1-(1-a)(l+e) and Be(a)=(1—-a)l+e").

e «

Ife< min{ - ,m}, we have that () > 1 and 0. («) >

0 for all a. It follows from S.(a) > 1 that B.(a)KH* > ...,
where the last inequality follows from (A2) holding for H,.
We thus get that

L (1= p/L) +nL(p/L) < 0(a).

Choosing ¢ to be

a7

. a, 0<a<1/2,
€ =
l—a, 1/2<a<l,
we get that
0. () a?, 0<a<1/2,
e () =
—1+3a—0a? 1/2<a<l.

Since a? < —1 + 3a — o2 for a € (1/2, 1], we have that o <
O~ () for all o € (0, 1]. Thus, (17) holds if

n°L* (1= p/L) +nL(p/L) < o®. (18)

Further, from (A1) and (A5), we get that 0 < p/L < 1. There-
fore, for a sufficiently small 7, there exists a positive ¢ € W/
such that 15 (¢), ¥3(c) < 0. Lastly, note that we can also guaran-
tee that n < %He*) =0+ (a)/p by having < o/, which
follows from (18).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

Choosing ¢ to Minimize the Upper Bound. From (17), we
see that we want c to be as small as possible. So, we choose ¢
as the lower bound in the definition of W/, arriving at

Ve < (1—=nu)"Vo

nKH?L? 9 1 no?
L+2 H v (1 _—,
(22 (gt o) P 0 ) 3

Now, we know that, for e = ¢* and n2L? (1 — /L) + nu < o2,
the lower bound in the definition of W, is less than or equal to
the upper bound. We therefore have that

2712 _
2( i HTL >H21/(1+e_1)<1 nk
21 —v(l+e) —nu) 7

Using this inequality in the bound above it follows that

0.2

2By’

Vr < (1—nu)"Vo +

thus arriving at the statement that we set out to prove.

APPENDIX D
COMPARISON OF DIFFERENT DOWNLINK
COMMUNICATION SCHEMES

As in most communication-compressed optimization litera-
ture [39], our primary concern is uplink communications, which
are typically the main bottleneck in training. Nevertheless, this
appendix discusses three alternative downlink communication
schemes in EF-VFL: 1) the one in Algorithm 1, 2) the one in Al-
gorithm 2, and 3) a modified version of the one in Algorithm 1
for common VFL fusion models, enabling broadcasts of a size
that is independent of the number of clients, K. Approaches
1) and 3) are mathematically equivalent, yet Approach 2) is
not, as discussed earlier. Each approach has its pros and cons,
making it suitable for different applications. For simplicity, this
discussion focuses on top-k sparsification and the full-batch
case.

1) In Algorithm 1, each round of downlink communications
consists of a broadcast of size k(K + 1)—a compressed object
of size k for each client (the intermediate representations) and
one for the server (the fusion model).

2) In Algorithm 2, each client receives only the derivative of
the loss function with respect to its representation, resulting in
a total downlink communication cost of kK. Recall that this is
only an option when performing a single local update.

Approach 2) avoids the dependency of the downlink commu-
nications to each client on K, seen in Approach 1), but requires
K different communications (one to each client), rather than a
single broadcast, thus the total communication cost still depends
on K. The one-to-many nature of broadcasting makes it is more
appropriate to compare broadcasted information with the total
downlink communications, rather than the communication to a
single client, as the latter ignores the cost of contacting the other
K — 1 clients.

3) To ensure that the downlink communication cost does
not depend on K, we can often exploit the structure of the
fusion model ¢. In particular, a common choice is ¢(x) =
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¢2(xo, p1(H1(21), ..., Hix(xK))), where ¢ is a nonparam-
eterized representation aggregator, such as a sum or an av-
erage, and ¢ is a map parameterized by x(. In this case,
instead of broadcasting K + 1 objects, as in Approach 1), the
server can broadcast the aggregation of the representations,
¢1({H j(x")}). This allows us to collapse the dimension of
length K, as long as each client i can replace H,(x!) with
H;(z!*") in o1({H j(z!)}) using its local knowledge of its
own representation. For example, if ¢; is a sum, client ¢ can
subtract its previous intermediate representation and add the
updated one to obtain an updated aggregation. This allows client
1 to perform forward and backward passes over both its local
model and the fusion model, and thus perform multiple local
updates without requiring further communications. Yet, this
downlink communication of the aggregated representations will
no longer be in the range of the compressor. For example, if
v1 and vy are within the range of top-k, their sum, v + vo,
will generally not be. Therefore, we have a broadcast of up
to size NE + dy, where dj is the size of the parameters of
the fusion model. That is, we avoid the dependency on K,
but this comes at the cost of losing the compressed nature
of the downlink communications. (This sum may still lie in
a lower-dimensional manifold, but this typically recovers the
dependency on K, e.g., for top-k sparsification, we can upper
bound the number of nonzero entries of the sum of K k-sparse
vectors by min{k K, NE} + dy.) Like Approach 1), Approach
3) does not allow for private labels.

We present Approach 1) in Algorithm 1, rather than Ap-
proach 3), because most VFL applications are in the cross-silo
setting [5] and thus the number of clients K is small, therefore
k(K +1) < NE + dy. Yet, for applications where K is large,
Approach 3) may be preferable.

DATA AVAILABILITY STATEMENT

The code for this work can be found at https://github.com/
Valdeira/EF-VFL.
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