
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025 1065

Communication-Efficient Vertical Federated

Learning via Compressed Error Feedback
Pedro Valdeira , João Xavier , Cláudia Soares , and Yuejie Chi , Fellow, IEEE

Abstract—Communication overhead is a known bottleneck in
federated learning (FL). To address this, lossy compression is
commonly used on the information communicated between the
server and clients during training. In horizontal FL, where
each client holds a subset of the samples, such communication-
compressed training methods have recently seen significant
progress. However, in their vertical FL counterparts, where
each client holds a subset of the features, our understanding
remains limited. To address this, we propose an error feedback
compressed vertical federated learning (EF-VFL) method to train
split neural networks. In contrast to previous communication-
compressed methods for vertical FL, EF-VFL does not require a
vanishing compression error for the gradient norm to converge
to zero for smooth nonconvex problems. By leveraging error
feedback, our method can achieve a O(1/T) convergence rate
for a sufficiently large batch size, improving over the state-of-
the-art O(1/

√

T) rate under O(1/
√

T) compression error, and
matching the rate of uncompressed methods. Further, when the
objective function satisfies the Polyak-Łojasiewicz inequality, our
method converges linearly. In addition to improving convergence,
our method also supports the use of private labels. Numerical

Received 23 June 2024; revised 2 January 2025; accepted 27 January
2025. Date of publication 11 February 2025; date of current ver-
sion 4 March 2025. This work was supported in part by the Fun-
dação para a Ciência e a Tecnologia through the Carnegie Mellon
Portugal Program under grant SFRH/BD/150738/2020; in part by the
U.S. National Science Foundation under Grant CCF-2007911 and Grant
ECCS-2318441; in part by NOVA LINCS under Grant UIDB/04516/
2020 (https://doi.org/10.54499/UIDB/04516/2020) and Grant UIDP/04516/
2020 (https://doi.org/10.54499/UIDP/04516/2020); in part by LARSyS
FCT funding (DOI: 10.54499/LA/P/0083/2020); in part by PT Smart
Retail project [PRR—02/C05-i11/2024.C645440011-00000062], through
IAPMEI—Agência para a Competitividade e Inovação; and in part
by TaRDIS Horizon2020 under Grant 101093006. An earlier version
of this paper was presented at the EUSIPCO 2024 [DOI: 10.23919/
EUSIPCO63174.2024.10715377]. The associate editor coordinating the re-
view of this article and approving it for publication was Qing Ling. (Corre-

sponding author: Pedro Valdeira.)

Pedro Valdeira is with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA, also with
the Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon,
Portugal, and also with the Laboratory for Robotics and Engineering Systems,
Institute for Systems and Robotics, 1600-011 Lisbon, Portugal (e-mail:
pvaldeira@cmu.edu).

João Xavier is with the Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisbon, Portugal, and also with the Laboratory for Robotics and
Engineering Systems, Institute for Systems and Robotics, 1600-011 Lisbon,
Portugal (e-mail: jxavier@isr.ist.utl.pt).

Cláudia Soares is with the Department of Computer Science, NOVA School
of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica,
Portugal (e-mail: claudia.soares@fct.unl.pt).

Yuejie Chi is with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
yuejiechi@cmu.edu).

Digital Object Identifier 10.1109/TSP.2025.3540655

experiments show that EF-VFL significantly improves over the
prior art, confirming our theoretical results.

Index Terms—Vertical federated learning, nonconvex optimiza-
tion, communication-compressed optimization.

I. INTRODUCTION

FEDERATED learning (FL) is a machine learning paradigm

where a set of clients holding local datasets collaborate to

train a model without exposing their local data [2], [3], [4]. FL

can be divided into two categories, based on how the data is

partitioned across the clients: horizontal FL, where each client

holds a different set of samples but all clients share the same

features, and vertical FL, where each client holds a different

subset of features but all clients share the same samples. Note

that we cannot gather and redistribute the data because it must

remain at the clients. Thus, we do not choose under which

category a given task falls. Rather, the category is a consequence

of how the data arises.

In this work, we focus on vertical FL (VFL) [5]. In VFL, a

global dataset D = {ξn}Nn=1 with N samples is partitioned by

features across a set of clients [K] := {1, . . . ,K}. Each sample

has K disjoint blocks of features ξn = (ξn1, . . . , ξnK) and the

local dataset of each client k ∈ [K] is Dk = {ξnk}Nn=1, where

D =
⋃

k Dk. Since different datasets Dk have different features,

VFL suits collaborations of clients with complementary types

of information, who tend to have fewer competing interests.

This can lead to a greater incentive to collaborate, compared

to horizontal FL. A common application of VFL is in set-

tings where multiple entities own distinct features concerning a

shared set of users and seek to collaboratively train a predictor;

for example, WeBank partners with other companies to jointly

build a risk model from data regarding shared customers [6].

To jointly train a model from {Dk} without sharing local

data, split neural networks [7] are often considered. To learn

the parameters x of such models, we aim to solve the following

nonconvex optimization problem:

min
x∈Rd

f(x) :=
1

N

N∑

n=1

φn (x0,h1n(x1), . . . ,hKn(xK)), (1)

where x := (x0,x1, . . . ,xK). Here, hkn(xk) := hk(xk; ξnk)
is the representation of ξnk extracted by the local model of

client k ∈ [K], which is parameterized by xk. This represen-

tation is then sent to the server. The server, in turn, uses

1053-587X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1066 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

{hkn(xk)}Kk=1 as input to φn, which corresponds to the com-

position of the loss function and the fusion model and is param-

eterized by x0.1

Most FL methods, including ours, assume that the server can

communicate with all the clients and that the clients do not

communicate with each other. These methods typically require

many rounds of client-server communications. Such communi-

cations can significantly slow down training. In fact, they can

become the main bottleneck during training [8], [9]. To address

this, a plethora of communication-efficient FL methods have

been proposed. In particular, a popular technique to mitigate the

communication overhead is lossy compression. Compression

operators, or simply compressors, are operators that map a given

vector into another vector that is easier to communicate (that is,

requires fewer bits).

Optimization methods employing communication compres-

sion have seen great success [10], [11]. Most of these works

focus on the prevalent horizontal FL setup and thus consider

gradient compression, as these are the vectors being commu-

nicated in the horizontal setting [12], [13]. Yet, in vertical FL,

the clients send representations {hkn(xk)} instead. In contrast

to gradient compression, compressing these intermediate rep-

resentations leads the compression-induced error to undergo a

nonlinear function φn before impacting gradient-based updates.

Thus, compression in VFL is not covered by these works and

our understanding of it remains limited. In fact, to the best of

our knowledge, [14] is the only work providing convergence

guarantees for compressed VFL. Yet, [14] employs a direct

compression method, requiring the compression error to go to

zero as the number of gradient steps T increases, achieving

a O(1/
√
T) rate when the compression error is O(1/

√
T). This

makes the method in [14] unsuitable for applications with strict

per-round communication limitations, such as bandwidth con-

straints, and leads to the following question:

Can we design a communication-compressed VFL method

that preserves the convergence rate of uncompressed

methods without decreasing the amount of compression as

training progresses?

A. Our Contributions

In this work, we answer the question above in the affirmative.

Our main contributions are as follows.

• We propose error feedback compressed VFL (EF-VFL),

which leverages an error feedback technique to im-

prove the stability of communication-compressed training

in VFL.

• We show that our method achieves a convergence rate of

O(1/T) for nonconvex objectives under nonvanishing com-

pression error for a sufficiently large batch size, improv-

ing over the state-of-the-art O(1/
√
T) rate under O(1/

√
T)

compression error of [14], and matching the rate of the

1The server often aggregates the representations hkn via some nonparam-
eterized operation (for example, a sum or an average) before inputting them
into the server model. We consider this aggregation to be included in φn.

centralized setting. We further show that, under the

Polyak-Łojasiewicz (PL) inequality, our method converges

linearly to the solution, in the full-batch case, and, more

generally, to a neighborhood of size proportional to the

mini-batch variance, thus obtaining the first linearly con-

vergent compressed VFL method. Unlike the method in

[14], EF-VFL supports the use of private labels, broaden-

ing its applicability.

• We run numerical experiments and observe empirically

that our method improves the state-of-the-art, achieving a

better communication efficiency than existing methods.

B. Related Work

Communication-Efficient FL. The aforementioned commu-

nication bottleneck in FL [9] makes communication-efficient

methods a particularly active area of research. FL methods often

employ multiple local updates between rounds of communica-

tion, use only a subset of the clients at a time [2], or even update

the global model asynchronously [15]. Another line of research

considers fully decentralized methods [9], dispensing with the

server and, instead, exploiting communications between clients.

This can alleviate the bandwidth limit ensuing from the cen-

tralized role of the server. Another popular technique is lossy

compression, which is the focus of this work. In both FL and,

more generally, in the broader area of distributed optimization

[16], [17], communication-compressed methods have recently

received significant attention [18], [19], [20], [21].

Communication-compressed optimization methods can ex-

ploit different families of compressors. A popular choice is

the family of unbiased compressors [11], which is appealing

in that its properties facilitate the theoretical analysis of the

resulting methods. Yet, some widely adopted compressors do

not belong to this class, such as top-k sparsification [12], [13]

and deterministic rounding [22]. Thus, the broader family of

contractive compressors [23] has recently attracted a lot of

attention. Yet, methods employing them for direct compression

are often prone to instability or even divergence [23]. To address

this, error feedback techniques have been proposed; first, as a

heuristic [10], but, more recently, significant progress has been

made on our theoretical understanding of the application of

these methods to gradient compression [12], [13], [24]. In the

horizontal setting, some works have combined error feedback

compression with the aforementioned communication-efficient

techniques, such as communication-compressed fully decen-

tralized methods [25], [26].

Vertical FL. To mitigate the communication bottleneck in VFL,

we often employ techniques akin to those used in horizontal

FL. In particular, [27] performed multiple local updates be-

tween communication rounds, [28] updated the local models

asynchronously, and [29] proposed a fully decentralized ap-

proach. Recently, [30] proposed a semi-decentralized method

leveraging both client-server and client-client communications

to avoid the slow convergence of fully-decentralized meth-

ods on large and sparse networks while alleviating the server

bottleneck.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK 1067

In this work, we focus on communication-compressed meth-

ods tailored to VFL. While, as mentioned above, most work in

communication-compressed methods focuses on gradient com-

pression and thus does not apply directly to VFL, recently, a few

empirical works on VFL have employed compression. Namely,

[31] compressed the local data before sending it to the server,

where the model is trained, and [32] proposed an asynchronous

method with bidirectional (sparse) gradient compression. Nev-

ertheless, [14], where direct compression is used, is the only

work on compressed VFL with theoretical guarantees. For a

more a detailed discussion on VFL, see [5] and [33].

II. PRELIMINARIES

We now define the class of contractive compressors, which

we consider throughout this paper.

Definition 1 (Contractive compressor): A map C : Rd �→ R
d

is a contractive compressor if there exists α ∈ (0, 1] such that,2

∀v ∈ R
d : E‖C(v)− v‖2 ≤ (1− α)‖v‖2, (2)

where the expectation is taken with respect to the (possible)

randomness in C.

A. Error Feedback

When transmitting a converging sequence of vectors {vt},

error feedback mechanisms can reduce the compression er-

ror compared to direct compression. In communication-

compressed optimization, this allows for faster and more stable

convergence.

In direct compression, each vt is compressed independently,

with C(vt) simply replacing vt at the receiver. In contrast, in

error feedback compression, the receiver employs a surrogate

for vt that incorporates information from previous steps i=
0, . . . , t− 1. This is achieved by resorting to an auxiliary vector

that is stored in memory and updated at each step, leveraging

feedback from the compression of {vi : i= 0, . . . , t− 1} to

refine the surrogate for vt.

Earlier communication-compressed optimization methods

employing error feedback mechanisms were motivated by

sigma-delta modulation [34]. In these methods, the auxiliary

vector accumulated the compression error across steps, adding

the accumulated error to the current vector vt before compress-

ing and transmitting it [10], [12], [35].

More recently, a new type of error feedback mechanism has

been proposed, where the auxiliary vector st tracks vt directly,

rather than the accumulated compression error. This mechanism

uses the (compressed) difference between vt+1 and st, that is,

the error of the surrogate, as the feedback. This approach was

first introduced in [36] for unbiased compressors and was later

extended to the more general class of contractive compressors

in EF21 [24]. More formally, in EF21, the surrogate st is

initialized as s0 = C(v0) and updated recursively as:

∀t≥ 0: st+1 = st + C(vt+1 − st). (3)

2In Definition 1, we use a common, simplified notation, omitting the
randomness in C : Rd × Ω→ R

d. We assume that the randomness ω in
C(v, ω) at different applications of C is independent.

Note that, unlike C(vt), st is not necessarily in the range of C.

For example, if C uses sparsification, then the surrogate at the

receiver in direct compression, C(vt), must be sparse, whereas

st does not need to be. By continually updating st with the

compressed error, we ensure that it tracks vt. Moreover, since

these updates are compressed, the communication cost remains

the same as in direct compression. To maintain consistency,

the surrogate st is updated at both the sender (client or server)

and the receiver. In this work, we adopt an EF21-based error

feedback mechanism and henceforth refer to it simply as error

feedback.

B. Problem Setup

Let h0n(x0) = x0 and hn(x) = (h0n(x0), . . . ,
hKn(xK)) ∈ R

E where hkn(xk) ∈ R
Ek and E =

∑K
k=0 Ek,

for all n. Further, let

Hk(xk) =

⎡

⎢
⎣

hk1(xk)
...

hkN (xk)

⎤

⎥
⎦ ∈ R

N×Ek

and

H(x) := [H0(x0),H1(x1), . . . ,HK(xK)] ∈ R
N×E .

Further, we define Φ: RN×E �→ R as follows:

f(x) =
1

N

N∑

n=1

φn (hn(x)) =: Φ (H(x)).

Throughout most of the paper, we assume that φn contains the

label of ξn and that φn is known by all the clients and the

server. This assumption, known as “relaxed protocol” [5], is

sometimes made in VFL [14], [37], [38] and has applications,

for example, in credit score prediction. We also address the case

of private labels, proposing a modified version of our method

for that setting in Section III-A.

We assume that f has an optimal value f� := minx f(x)>
−∞ and make the following assumptions, where ∇ denotes not

only the gradient of scalar-valued functions but, more generally,

the derivative of a (possibly multidimensional) map.

Assumption 1 (Smoothness): A function h : R
d �→ R is

L-smooth if there exists a positive constant L such that

∀x,y ∈ R
d : ‖∇h(x)−∇h(y)‖ ≤ L‖x− y‖. (A1)

We assume f is Lf -smooth and Φ is LΦ-smooth and let L=
max{Lf , LΦ}.

Assumption 2 (Bounded derivative): Map F : Rp1 �→ R
p2×p3

has a bounded derivative if there exists a positive constant H
such that

∀x ∈ R
p1 : ‖∇F (x)‖ ≤H, (A2)

where ‖∇F (x)‖ is the Euclidean norm of the third-order tensor

∇F (x). We assume (A2) holds for {Hk}Kk=0.

Note that, in Assumption 2, we do not assume that our ob-

jective function f has a bounded gradient. We only require the

local representation-extracting maps {Hk} to have a bounded

derivative. The same assumption is also made in [14].

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1068 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

Fig. 1. An illustration of an iteration of the EF-VFL algorithm. Step (1) concerns the model update and step (2) concerns the surrogate update.

III. PROPOSED METHOD

To solve Problem (1) with a gradient-based method, we need

to perform a forward and a backward pass at each step t to com-

pute the gradient of our objective function. In VFL, a standard

uncompressed algorithm employing a single local update per

communication round is mathematically equivalent to gradient

descent.3 This algorithm, which our method recovers if we set

C to be the identity map, is as follows:

• In the forward pass, each client k computes Hk(x
t
k)

and sends it to the server, which then computes f(xt) =
Φ (H(xt)).

• In the backward pass, first, the server backpropagates

through Φ, obtaining ∇0Φ(x
t
0, {Hk(x

t
k)}Kk=1)=∇0f(x

t)
and ∇kΦ({Hk(x

t
k)}), for all k, where ∇k denotes the

derivative with respect to block k. The former is used to

update xt
0, while the latter is sent to each client k, which

uses this derivative to continue backpropagation over its

local model, allowing it to compute ∇kf(x
t).

We repeat these steps until convergence. Let us now cover the

general case, where C may not be the identity map.

Forward Pass. An exact forward pass would require each

client k to send Hk(x
t
k) to the server, bringing a significant

communication overhead. To address this, in our method, the

server model does not have as input Hk(x
t
k), but rather a

surrogate for it, Gt
k, which is initialized as G0

k = C(Hk(x
0
k))

and is updated as follows, as in (3):

∀k∈ [K] : Gt
k :=Gt−1

k +Ct
k, Ct

k := C(Hk(x
t
k)−Gt−1

k).

3When performing multiple local updates, we lose this mathematical
equivalence. In that case, we instead get a parallel (block) coordinate descent
method where the simultaneous updates use stale information about the other
blocks of variables.

This requires keeping Gt
k, of size N × Ek, in memory at

client k and at the server. (Note that Gt
k is often smaller than

the local dataset Dk.) The server thus computes the function

Φ
(
xt
0,G

t
1, . . . ,G

t
K

)
, which acts as a surrogate for the origi-

nal objective f(xt) = Φ(xt
0,H1(x

t
1), . . . ,HK(xt

K)), as illus-

trated in Fig. 1.

Backward Pass. The server performs a backward pass over the

server model, obtaining ∇0Φ(x
t
0, {Gt

k}Kk=1), which it uses as

a surrogate for ∇0Φ(x
t
0, {Hk(x

t
k)}Kk=1) =∇0f(x

t) to update

xt
0. Similarly, to update each local model xt

k, for k ∈ [K], we

want client k to have a surrogate for

∇kf(x
t) =

N,Ek∑

i,j=1

[
∇kΦ({Hk(x

t
k)}Kk=0)

]

ij

[
∇Hk(x

t
k)
]

ij:
.

However, while ∇Hk(x
t
k) can be computed at each client

k, the ∇kΦ term cannot, as client k does not have access to

H�(x
t
�), for � �= k. So, we instead use the following surrogate

for ∇kf(x
t):

gt
k :=

N,Ek∑

i,j=1

[

∇̃t
kΦ

]

ij

[
∇Hk(x

t
k)
]

ij:
, (4)

where ∇̃t
kΦ :=∇kΦ(...,G

t
k−1,Hk(x

t
k),G

t
k+1, ...). Since the

server does not hold Hk(x
t
k), it cannot compute ∇̃t

kΦ. Thus,

the server broadcasts {Ct
k}Kk=0, so that each client k, which

does hold Hk(x
t
k), can compute {Gt

�}� �=k and use it to perform

a forward and a backward pass over the server model locally,

obtaining ∇̃t
kΦ. Thus, while the forward pass only requires the

error feedback module at each client k to hold the estimate Gt
k,

when we account for the backward pass too, each machine k ∈
{0, 1, . . . ,K} must hold {Gt

�}K�=0. We write our update as:

xt+1 = xt − ηgt where gt := (gt
0, . . . , g

t
K)

and η is the stepsize.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK 1069

Algorithm 1: EF-VFL

Input: initial point x0, stepsize η, and initial surrogates

{G0
k = C(Hk(x

0
k))}.

1 for t= 0, . . . , T − 1 do

2 Update xt+1
k = xt

k − ηg̃t
k in parallel, for

k ∈ {0, 1, . . . ,K}, based on a shared sample

Bt ⊆ [N].

3 Compute and send Ct+1
k = C(Hk(x

t+1
k)−Gt

k) to

the server in parallel, for k ∈ [K].

4 Server broadcasts {Ct+1
k }Kk=0 to all clients.

5 Update Gt+1
k =Gt

k +Ct+1
k in parallel, for

k ∈ {0, 1, . . . ,K}.

Mini-Batch. For the sake of computation efficiency, we further

allow for the use of mini-batch approximations of the objective.

Without compression, or with direct compression, the use of

mini-batches allows client k to send only the entries of Hk(xk)
corresponding to mini-batch B ⊆ [N], of size B, denoted by

HkB(xk) ∈ R
B×Ek , instead of Hk(xk) ∈ R

N×Ek . Yet, our

method provides all machines with an estimate for all the entries

of {Hk(xk)} at all times, the error feedback states {Gk}.

Therefore, our communications, needed to update Gk, may not

depend onN andB at all. This is determined by our choice of C.

Our mini-batch surrogates depend on the entries of Hk(xk)
and Gk corresponding to B, HkB(xk) and GkB. (Note that

H0B(x0) =H0(x0) and Gt
0B =Gt

0.) Thus, we approximate

the partial derivative of the mini-batch function fB(x) =
ΦB({HkB(xk)}) = 1

B

∑

n∈B φn (hn(x)) with respect to

xk by:

g̃t
k :=

∑

i∈Bt

Ek∑

j=1

[

∇̃t
kΦBt

]

ij

[
∇HkBt(xt

k)
]

ij:
,

where ∇̃t
kΦBt :=∇kΦBt(...,Gt

k−1,Bt ,HkBt(xt
k),G

t
k+1,Bt ,

...). We write the mini-batch version of the update as:

xt+1 = xt − ηg̃t where g̃t :=
(
g̃t
0, . . . , g̃

t
K

)
.

We now describe our method, which we summarize in

Algorithm 1.

• Initialization: We initialize our model parameters as x0.

Each machine k ∈ {0, 1, . . . ,K} must hold x0
k and our

compression estimates {G0
k = C(Hk(x

0
k))}Kk=0.

• Model parameters update: In parallel, all machines k ∈
{0, 1, . . . ,K} take a (stochastic) coordinate descent step

with respect to their local surrogate objective, updating

xt+1
k = xt

k − ηg̃t
k based on a shared batch Bt, sampled

locally at each client following a shared seed.

• Compressed communications: All clients k ∈ [K] com-

pute Ct+1
k and send it to the server, who broadcasts

{Ct+1
k }.

• Compression estimates update: Lastly, all machines k ∈
{0, 1, . . . ,K} use the compressed error feedback {Ct+1

k }
to update their (matching) compression estimates {Gt

k}.

Note that, in the absence of compression (that is, if C is

the identity operator), each client k must send Ct+1
k , of size

N × Ek, at each iteration. Further, the server must broadcast

{Ct+1
k }Kk=0. Thus, the total communication complexity of EF-

VFL in the absence of compression is O(N · E · T). When

compression is used, N · E is replaced by some smaller amount

which depends on the compression mechanism. For example,

for top-k sparsification (defined in Section V), the communica-

tion complexity is reduced to O(k · T).
In Algorithm 1, we formulate our method in a general set-

ting which allows for the compression of both {Hk(xk)}Kk=1

and x0. This setting is covered by our analysis in Section IV.

However, in general, the bottleneck lies in the uplink (client-

to-server) communications, rather than the server broadcasting

[39]. Therefore, our experiments in Section V focus on the

compression of {Hk(xk)}Kk=1, rather than x0.

A. Adapting Our Method for Handling Private Labels

In this section, we propose an adaptation of EF-VFL to

allow for private labels. That is, we remove the assumption that

all clients hold φn, which contains the label of ξn. Instead,

only the server holds the labels. Further, in this adaptation, the

parameters of the server model, x0, are not shared with the

clients either.

Note that, without holding φn, the clients cannot perform the

entire forward pass locally. Instead, in this setting, the forward

and backward pass over φn take place at the server, while the

forward and backward pass over Hk(xk) takes place at client

k. More precisely, in the forward pass, each client k sends Ck

to the server, who holds x0 and the labels, and can thus compute

the loss. Then, for the backward pass, the server backpropagates

over its model and sends only the derivative of the loss function

with respect to Gk to each client k. This requires replacing

our surrogate of ∇kf(x
t) in (4), which uses the exact local

representation Hk(xk) at each client, by one based on our error

feedback surrogates:

∇
t
k :=

N,Ek∑

i,j=1

[
∇kΦ

(
H0(x

t
0), {Gt

j}Kj=1

)]

ij

[
∇Hk(x

t
k)
]

ij:
.

(5)

Note that we do not backpropagate through the error-feedback

update.

More generally, we use the following (possibly) mini-batch

update vector:

∑

i∈Bt

Ek∑

j=1

[
∇kΦBt

(
H0Bt(xt

0), {Gt
jBt}Kj=1

)]

ij

[
∇HkBt(xt

k)
]

ij:

︸ ︷︷ ︸

=:∇̃
t

k

.

We summarize the adaption of the EF-VFL method to the

private labels setting in Algorithm 2.

Allowing for private labels broadens the range of applications

for our method, since many VFL applications require not only

private features, but also private labels, rendering any method

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1070 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

Algorithm 2: EF-VFL with private labels

Input: initial point x0, stepsize η, and initial surrogates

{G0
k = C(Hk(x

0
k))}.

1 for t= 0, . . . , T − 1 do

2 Update xt+1
k = xt

k − η∇̃
t

k in parallel, for

k ∈ {0, 1, . . . ,K}, based on a shared sample

Bt ⊆ [N].

3 Compute and send Ct+1
k = C(Hk(x

t+1
k)−Gt

k) to

the server in parallel, for k ∈ [K].
4 Server sends ∇kΦBt

(
H0Bt(xt

0), {Gt
jBt}Kj=1

)
to

client k, in parallel, for k ∈ {0, 1, . . . ,K}.

5 Update Gt+1
k =Gt

k +Ct+1
k in parallel, for

k ∈ {0, 1, . . . ,K}.

requiring public labels inapplicable. However, as we will see in

Section V-B, using surrogate (5) instead of (4) can slow down

convergence. Further, unlike Algorithm 1, which can be easily

extendable to allow for multiple local updates at the clients

between rounds of communication, Algorithm 2 works only for

a single local update. This is because, for an VFL algorithm to

perform multiple local updates, φn and x0 must be available at

the clients, so that the forward and backward passes over the

server model and the loss function can be performed locally

after each update.

IV. CONVERGENCE GUARANTEES

In this section, we provide convergence guarantees for EF-

VFL. We present our results for Algorithm 1 only, rather then

stating them again for Algorithm 2, since they exhibit only a

minor difference in Lemma 1 and in the main theorem, where

the constant K is replaced with K + 1. We defer the details to

Appendix A.

First, let us define the following sigma-algebra

Ft := σ(G0,x1,G1, . . . ,xt,Gt),

where Gt := {Gt
0, . . . ,G

t
K}. For the sake of conciseness, we

further let EF denote the conditional expectation E[· | F] with

sigma-algebra F . We use the following assumptions on our

stochastic update vector g̃t and the use of mini-batches.

Assumption 3 (Unbiased): We assume that our stochastic

update vector is unbiased:

∀(x, t) ∈ R
d × {0, 1, . . . , T − 1} : EFt

[
g̃t
]
= gt. (A3)

Assumption 4 (Bounded variance): We assume that there

exists a constant σ ≥ 0 such that

∀(x, t) ∈ R
d × {0, 1, . . . , T − 1} : EFt

‖g̃t − gt‖2 ≤ σ2

B
.

(A4)

We now present Lemma 1 and Lemma 2, which we

will use to prove our main theorems. We let D(t) :=
∑K

k=0

∥
∥Gt

k −Hk(x
t
k)
∥
∥
2

denote the total distortion (caused

by compression) at time t.

Lemma 1 (Surrogate offset bound): If Φ is L-smooth (A1)

and {Hk} have bounded derivatives (A2), then, for all t≥ 0,

‖gt −∇f(xt)‖2 ≤KH2L2D(t). (6)

Proof: See Appendix B-A.

Lemma 2 (Recursive distortion bound): Let {xt} be a

sequence generated by Algorithm 1. If C is a contractive com-

pressor (2), {Hk} have bounded derivatives (A2), and (A3) and

(A4) hold, then, for all t≥ 0 and ε > 0:

ED(t+1) ≤ (1− α)(1 + ε)ED(t)

+ (1− α)(1 + ε−1)η2H2

(

E‖gt‖2 + σ2

B

)

. (7)

Proof: See Appendix B-B.

A. Nonconvex Setting

We now present our main convergence result for EF-VFL.

Theorem 1: Let {xt} be a sequence generated by Algo-

rithm 1, C be a contractive compressor (2), and f� >−∞. If

(A1) to (A4) hold, then, for 0< η ≤ 1/(
√
ρα1L+ L):

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤ 2Δ

ηT
+(1+ηLρα1)

ηLσ2

B
+ρα2

ED(0)

T
,

(8)

where the expectation is over the randomness in C and in {Bt},

Δ := f
(
θ0
)
− f�, and

ρα1 :=KH4

(
1 +

√
1− α

α
− 1

)2

and ρα2 :=
KH2L2

1−
√
1− α

.

Proof: See Appendix C-A.

If the batch size is large enough, B =Ω(σ2/δ), the iteration

complexity to reach 1
T

∑T−1
t=0 E

∥
∥∇f

(
θt
)∥
∥
2 ≤ δ matches the

O(1/T) rate of the centralized, uncompressed setting. Also,

in the absence of compression (α= 1 and D(t) = 0), we re-

cover that, for η ∈ (0, 1/L], we can output an xout such that

E‖∇f(xout)‖2 ≤ 2Δ
ηT

+ ηLσ2

B
. If we are also in the full-batch

case (σ = 0), we recover the gradient descent bound exactly:

E‖∇f(xout)‖2 ≤ 2Δ
ηT

.

Note that, if we start our method by sending noncompressed

representations (at t= 0 only), we can drop the last term in the

upper bound in (8).

Our results improve over the prior state-of-the-art com-

pressed vertical FL (CVFL) [14], whose convergence result for

a fixed stepsize is presented below:

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤ 4Δ

ηT
+O

(
ηLσ2

B

)

+O
(

1

T

T−1∑

t=0

D
(t)
d

)

.

Note how, even for full-batch updates, the upper bound

above does not go to zero as T →∞ unless D
(t)
d → 0,

where D
(t)
d is the distortion resulting from direct compression

D
(t)
d =

∑K
k=0 ‖C(Hk(x

t
k))−Hk(x

t
k)‖

2
. That is, to achieve

1
T

∑T−1
t=0 E‖∇f(xt)‖2 → 0, CVFL requires a vanishing com-

pression error, which necessitates that α→ 1. This means that,

despite reducing the total amount of communications across

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK 1071

TABLE I
TOTAL COMMUNICATION COST TO REACH ERROR LEVEL δ > 0 (TOP-k; FULL-BATCH; SINGLE LOCAL UPDATE)

C SVFL [19] CVFL [12] EF-VFL (Ours) EF-VFL With Private Labels (Ours)

Uplink (total) NĒK · O(1/δ) min{k · O(1/
√

δ), NĒ} ·K · O(1/δ2) kK · O(1/δ) kK · O(1/δ)

Downlink (total/broadcast) NĒK · O(1/δ) min{k · O(1/
√

δ), NĒ} · (K + 1) · O(1/δ2) k(K + 1) · O(1/δ) kK · O(1/δ)

Fig. 2. The (relative) training gradient squared norm with respect to epochs and validation accuracy with respect to communication cost for the training of
a shallow neural network on MNIST. On the left, CVFL and EF-VFL employ top-k sparsification with a decreasing k across rows. On the right, they employ
stochastic quantization with a decreasing number of bits across rows. SVFL is the same throughout.

the training, CVFL does not reduce the maximum amount of

communications per round. In contrast, by allowing for nonva-

nishing compression, EF-VFL ensures small communication

cost at every round.

B. Under the PL Inequality

In this section, we establish the linear convergence of EF-

VFL under the PL inequality [40].

Assumption 5 (PL inequality): We assume that there exists a

positive constant μ such that

∀x ∈ R
d : ‖∇f(x)‖2 ≥ 2μ(f(x)− f�). (A5)

We resort to the following Lyapunov function to show linear

convergence:

Vt := Ef(xt)− f� + cED(t), (9)

where c is a positive constant. We now present Theorem 2.

Theorem 2 Let {xt} be a sequence generated by Algorithm 1,

C be a contractive compressor (2), and f� >−∞. If (A1) to

(A5) hold, then, for η such that η2L2 (1− μ/L) + ημ≤ α2,

we have:

VT ≤ (1− ημ)TV0 +
σ2

2Bμ
.

Proof: See Appendix C-B.

Since μ≤ L, we have that η ∈ (0, 1/L) implies that 1− ημ ∈
(0, 1). Hence, EF-VFL converges linearly to a O(σ2) neighbor-

hood around the global optimum.

In Table I, where Ē = Ej for j ∈ [K] is the embedding

size for each sample at each client (assumed to match for

simplicity), we present the total communication cost to reach
1
T

∑T−1
t=0 E

∥
∥∇f

(
θt
)∥
∥
2 ≤ δ, where δ > 0 (top-k; full-batch;

single local update). We discuss different downlink communi-

cation schemes for EF-VFL in Appendix D.

V. EXPERIMENTS

We compare EF-VFL with two baselines: (1) standard VFL

(SVFL), which corresponds to the method in [27] and is

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1072 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

Fig. 3. Train loss with respect to the number of epochs and validation accuracy with respect to the communication cost for the training of an MVCNN on
ModelNet10. On the left, CVFL and EF-VFL employ top-k sparsification with a decreasing k across rows. On the right, they employ stochastic quantization
with a decreasing number of bits across rows. SVFL is the same throughout.

mathematically equivalent to stochastic gradient descent when

a single local update is used, and (2) CVFL [14], which recovers

SVFL when an identity compressor is used (that is, without

employing compression). All of our results correspond to the

mean and standard deviation for five different seeds. We employ

two popular compressors in our experiments.

• Top-k sparsification [12], [13] is a map topk : R
d �→ R

d

defined as

topk(v) := v � u(v),

where � denotes the Hadamard product and u(v) is such

that its entry i is 1 if vi is one of the k largest entries of v

in absolute value and 0 otherwise. We have that (2) holds

for α= k/d.

• Stochastic quantization [11] is a map qsgds : R
d �→ R

d,

with s > 1 quantization levels defined as

qsgds(v) :=
‖v‖ · sign(v)

sτ
·
⌊

s
|v|
‖v‖ + ξ

⌋

,

where τ = 1 +min{d/s2,
√
d/s} and ξ ∼ U([0, 1]d),

where U denotes the uniform distribution. In practice, we

are interested in values of s such that s= 2b, where b is

the number of bits. We have that (2) holds for α= 1/τ .

For the sake of the comparison with CVFL, we employ com-

pressors C = C2 ◦ C1, where C2 is either topk(v) or qsgds and C1

selects the rows in Bt, similarly to CVFL. Further, as explained

in Section III, our experiments focus on the compression of

{Hk(xk)}Kk=1, and not x0.

A. Comparison With SVFL and CVFL

The detailed hyperparameters for the following experiments

can be found in the provided code.

MNIST. We train a shallow neural network (one hidden layer)

on the MNIST digit recognition dataset [41]. The 28× 28 im-

ages in the original dataset D are split into four local datasets

Dk of 14× 14 images, its quadrants (K = 4). The local models

hkn are maps v �→ sigmoid(W k1v), with W k1 ∈ R
128×196,

and the server model is (v1, . . . ,v4) �→W 2(
∑4

k=1 vk), with

W 2 ∈ R
10×16. We use cross-entropy loss. In Fig. 2, we present

the results for when EF-VFL and CVFL employ topk, keeping

10%, 1%, and 0.1% of the entries, and when they employ qsgds,

sending b ∈ {4, 2, 1} bits per entry, instead of the uncompressed

b= 32. In both figures, we see that EF-VFL outperforms SVFL

and CVFL in communication efficiency. In terms of results

per epoch, EF-VFL significantly outperforms CVFL and, for a

sufficiently large k (for topk) or b (for qsgds) EF-VFL achieves

a similar performance to SVFL. As predicted in Section IV,

the train gradient squared norm during training goes to zero for

EF-VFL, as it does for SVFL, but not for CVFL.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK 1073

Fig. 4. Train loss with respect to the number of epochs and the validation accuracy with respect to the communication cost for the training of a ResNet18-
based model on CIFAR-100. On the left, CVFL and EF-VFL employ top-k sparsification with a decreasing k across rows. On the right, they employ stochastic
quantization with a decreasing number of bits across rows. SVFL is the same throughout.

ModelNet10. We train a multi-view convolutional neural net-

work (MVCNN) [42] on ModelNet10 [43], a dataset of three-

dimensional CAD models. We use a preprocessed version of

ModelNet10, where each sample is represented by 12 two-

dimensional views. We assign a view per client (K = 12).

In Fig. 3, we present the results for when EF-VFL and CVFL

employ topk, keeping 10%, 1%, and 0.1% of the entries, and

when they employ qsgds, with b ∈ {4, 2, 1}. We plot the train

loss with respect to the number of epochs and the validation

accuracy with respect to the communication cost. We observe

that, for EF-VFL, the training loss decreases more rapidly

than for CVFL. Further, if the compression is not excessively

aggressive, EF-VFL performs similarly to SVFL. In terms of

communication efficiency, EF-VFL outperforms both SVFL

and CVFL.

CIFAR-100. We train a model based on a residual neural net-

work, ResNet18 [44], on CIFAR-100 [45]. More precisely, we

divide each image into four quadrants and allocate one quadrant

to each client (K = 4), with each client using a ResNet18

model as its local model. The server model is linear (a single

layer). In Fig. 4, we present the results for when EF-VFL

and CVFL employ topk, keeping 10%, 1%, and 0.1% of the

entries, and when they employ qsgds, with b ∈ {4, 2, 1}. We

plot the train loss with respect to the number of epochs and

the validation accuracy with respect to the communication cost.

Regarding the results with respect to the number of epochs,

EF-VFL achieves a similar performance to that of SVFL, sig-

nificantly outperforming CVFL. In terms of communication

efficiency, EF-VFL outperforms both SVFL and CVFL.

We summarize the test metrics for all three tasks in

Table II. In brief, while CVFL performs well for less aggres-

sive compression is employed, the improved performance of

EF-VFL is significant when more aggressive compression is

employed.

B. Performance Under Private Labels

In this section, we run experiments on the adaption of

EF-VFL to handle private labels, proposed in Section III-A.

In [14], the authors assume that the labels are available at

all clients and do not propose an adaptation of CVFL to deal

with private labels. Yet, to get a baseline for a compressed

VFL method allowing for label privacy, we adapt CVFL in

a similar manner to how we adapt EF-VFL (that is, sending

back the derivative from the server to the clients, instead of φn

and x0, and without backpropagating through the compression

operator).

We run an experiment on MNIST, training the same shallow

neural network as in Section V-A, with all the same settings,

except for the use of batch size B = 1024. Further, we train

a ResNet18-based model with a linear server model (a single

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1074 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

TABLE II
TEST ACCURACY FOR SVFL, CVFL, AND EF-VFL ACROSS DIFFERENT TASKS, FOR A FIXED NUMBER OF EPOCHS.

WE RUN REACH EXPERIMENT FOR 5 SEEDS AND PRESENT THE MEAN ACCURACY ± STANDARD DEVIATION,
HIGHLIGHTING THE HIGHEST ACCURACY IN BOLD

MNIST (accuracy, %)

top-k compressor qsgd compressor

Uncompressed keep 10% keep 1% keep 0.1% b= 4 b= 2 b= 1

SVFL 91.6± 0.1 — — — — — —
CVFL — 77.2± 1.9 35.7± 5.0 25.7± 7.6 50.3± 6.1 53.0± 7.4 52.7± 8.7
EF-VFL — 91.8 ± 0.1 91.1 ± 0.3 82.4 ± 2.1 87.2 ± 0.4 81.1 ± 1.6 66.8 ± 5.9

ModelNet10 (accuracy, %)

top-k compressor qsgd compressor

Uncompressed keep 10% keep 1% keep 0.1% b= 4 b= 2 b= 1

SVFL 81.2± 0.8 — — — — — —
CVFL — 80.7 ± 3.1 53.2± 6.5 24.5± 4.2 80.3 ± 2.0 70.7± 1.6 52.0± 3.2
EF-VFL — 80.4± 1.9 77.4 ± 2.5 40.3 ± 4.8 79.4± 3.7 80.4 ± 2.7 81.1 ± 2.8

CIFAR-100 (accuracy, %)

top-k compressor qsgd compressor

Uncompressed keep 10% keep 1% keep 0.1% b= 4 b= 2 b= 1

SVFL 57.7± 0.6 — — — — — —
CVFL — 56.8± 0.6 45.1± 2.3 11.6± 1.4 19.2± 0.6 5.9± 0.7 2.0± 0.1
EF-VFL — 57.2 ± 0.8 54.8 ± 0.9 36.4 ± 2.8 57.8 ± 0.5 50.2 ± 1.3 34.7 ± 2.8

Fig. 5. Train loss with respect to the number of epochs and validation accuracy with respect to the communication cost for the training of a shallow neural
network on MNIST and a ResNet18-based model on CIFAR-100. In the legend, PL stands for private labels. The communication compressed methods—CVFL,
EF-VFL, CVFL (PL), and EF-VFL (PL)—employ top-k sparsification.

layer) on CIFAR-100 [45]. For all the optimizers, we use an ini-

tial stepsize of η = 0.01 and a cosine annealing scheduler with

a minimum stepsize of 1/100 the initial value and use a batch

size B = 128 and a weight decay of 0.01. The compressed-

communication methods employ topk, keeping 5% of the en-

tries.

In Fig. 5, we observe that, although the modified EF-VFL

for handling private labels converges noticeably slower than

the original method, it still performs effectively. For both the

MNIST experiment and the CIFAR-100 experiment, we see

that, while adapting CVFL to handle private labels leads to a

severe drop in performance, EF-VFL slows down much less

noticeably. In fact, for the MNIST experiment, EF-VFL with

private labels still outperforms CVFL, even with public labels.

C. Performance Under Multiple Local Updates

As mentioned earlier, some VFL works employ Q> 1 local

updates per round [27], using stale information from the other

machines. We now show that, although our analysis focuses

on the case where each client performs a single local update

at each round of communications (that is, Q= 1), EF-VFL

performs well in the Q> 1 case too. In particular, to study

the performance of EF-VFL when carrying out multiple local

updates, we train an MVCNN on ModelNet10 and a ResNet18

on CIFAR-10.

For ModelNet10, all three VFL optimizers use a batch size

B = 128, a stepsize η = 0.004, and a weight decay of 0.01.

Further, we use a learning rate scheduler, halving the learning

rate at epochs 50 and 75. The results are presented in Fig. 6(a)

and Fig. 6(b). For CIFAR-10, all three VFL optimizers use a

batch size B = 128, a stepsize η = 0.0025, and a weight decay

of 0.01. Further, we use a learning rate scheduler, halving the

learning rate at epochs 40, 60, and 80. The results are presented

in Fig. 6(c) and Fig. 6(d).

For both ModelNet10 and CIFAR-10, we see that, similarly

to the Q= 1 case, our method outperforms SVFL and CVFL

in communication efficiency. In terms of results per epoch,

EF-VFL performs similarly to SVFL and significantly better

than CVFL. Interestingly, for the CIFAR-10 task, EF-VFL even

outperforms SVFL with respect to the number of epochs. We

suspect this may be due to the fact that compression helps to

mitigate the overly greedy nature of the parallel updates based

on stale information.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK 1075

Fig. 6. Train loss with respect to the number of epochs and validation accuracy with respect to the communication cost for the training of a multi-view
convolutional neural network on ModelNet10 and a residual neural network on CIFAR-10. CVFL and EF-VFL use stochastic quantization. On the left, all
three vertical FL optimizers use Q= 2 local updates and, on the right, they all use Q= 4 local updates.

VI. CONCLUSION

In this work, we proposed EF-VFL, a method for com-

pressed vertical federated learning. Our method leverages an

error feedback mechanism to achieve a O(1/T) convergence

rate for a sufficiently large batch size, improving upon the state-

of-the-art rate of O(1/
√
T). Numerical experiments further

demonstrate the faster convergence of our method. We further

show that, under the PL inequality, our method converges lin-

early and introduce a modification of EF-VFL supporting the

use of private labels. In the future, it would be interesting to

study the use of error feedback based compression methods for

VFL in the fully-decentralized and semi-decentralized settings,

in setups with asynchronous updates, and in combination with

privacy mechanisms, such as differential privacy as done in the

horizontal setting [46], [47].

APPENDIX A

PRELIMINARIES

If a function is L-smooth (A1), then the following quadratic

upper bound holds:

∀x,y ∈ R
d : f(y)≤ f(x)+∇f(x)�(y−x)+

L

2
‖x−y‖2.

(10)

It follows from Assumption (2) that the following inequality

holds:

‖Hk(x)−Hk(y)‖ ≤H‖x− y‖, ∀ x,y ∈ R
dk . (11)

Letting ε > 0, we use the following standard inequality in our

analysis:

∀x,y ∈ R
d : ‖x+ y‖2 ≤ (1 + ε)‖x‖2 + (1 + ε−1)‖y‖2.

(12)

We define the distortion associated with block k at time t as

D
(t)
k :=

∥
∥Gt

k −Hk(x
t
k)
∥
∥
2

and, recall, we denote the total distortion at time t as D(t) =
∑K

k=0 D
(t)
k . We also define ν := (1− α) ∈ [0, 1).

In Section IV, we introduced the following sigma-algebra

Ft = σ(G0,x1,G1, . . . ,xt,Gt),

where Gt = {Gt
0, . . . ,G

t
K}. We now further define

F ′
t := σ(G0,x1,G1, . . . ,xt,Gt,xt+1).

Recall that we let EF denote the conditional expectation

E[· | F].
Note that, while we write our proofs for Algorithm 1, they

can be easily adjusted to cover Algorithm 2. To do so, it suf-

fices to adjust the notation, replacing gt and g̃t by ∇
t
k and

∇̃
t

k, respectively, and to make minor changes to the proof of

Lemma 1, which cause the constant K in Lemma 1 to be

replaced with K + 1. This, in turn, leads to a similar adjustment

in the constants of our main theorems.

APPENDIX B

SUPPORTING LEMMAS

A. Proof of Lemma 1

Decoupling the offset across blocks, we get that

‖gt −∇f(xt)‖2

=

K∑

k=0

∥
∥gt

k −∇kf (xk)
∥
∥
2
,

≤
K∑

k=0

‖∇Hk(xk)‖2
∥
∥
∥∇̃t

kΦ−∇kΦ({Hk(x
t
k)}Kk=0)

∥
∥
∥

2

,

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1076 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

where we use the chain rule and the fact that ‖Ax‖ ≤ ‖A‖‖x‖.

Now, it follows from the bounded gradient assumption (A2) on

{Hk} and the L-smoothness (A1) of Φ that

‖gt −∇f(xt)‖2 ≤H2L2
K∑

k=0

∑

j �=k

∥
∥Gt

j −Hj(x
t
j)
∥
∥
2

=H2L2
K∑

k=0

∑

j �=k

D
(t)
j

=KH2L2D(t),

as we set out to prove. For Algorithm 2, the sum
∑

j �=k would

instead be
∑K

j=1, leading to ‖gt −∇f(xt)‖2 ≤ (K + 1)

H2L2D(t). However, note that, for Algorithm 2, D
(t)
0 = 0.

B. Proof of Lemma 2

It follows from the definition of distortion and from the

update of our compression estimate that

EF ′

t

[

D
(t+1)
k

]

= EF ′

t

∥
∥Gt+1

k −Hk(x
t+1
k)

∥
∥
2

= EF ′

t

∥
∥Gt

k+C(Hk(x
t+1
k)−Gt

k)−Hk(x
t+1
k)

∥
∥
2
.

Now, from the definition of contractive compressor (2) and from

(12), we have that

EF ′

t

[

D
(t+1)
k

]

≤ ν
∥
∥Gt

k −Hk(x
t+1
k)

∥
∥
2

≤ ν(1 + ε)
∥
∥Gt

k −Hk(x
t
k)
∥
∥
2

+ ν(1 + ε−1)
∥
∥Hk(x

t+1
k)−Hk(x

t
k)
∥
∥
2
,

where, recall, ν = (1− α) ∈ [0, 1). Further, from the bounded

gradient assumption—in particular, from (11)—we arrive at

EF ′

t

[

D
(t+1)
k

]

≤ ν(1 + ε)D
(t)
k + ν(1 + ε−1)H2‖xt+1

k − xt
k‖2

= ν(1 + ε)D
(t)
k + ν(1 + ε−1)η2H2‖g̃t

k‖2,

where, recall, g̃t
k is our (possibly stochastic) update vector.

Summing over k = 0, 1, . . . ,K and taking the nonconditional

expectation of both sides of the inequality, we get that

ED(t+1) ≤ ν(1 + ε)ED(t) + ν(1 + ε−1)η2H2
E‖g̃t‖2.

Lastly, using the fact that, under (A3), (A4) is equivalent to

E‖g̃t‖2 ≤ E‖gt‖2 + σ2

B
, we arrive at (7).

APPENDIX C

MAIN THEOREMS

First, let us define some shorthand notation for terms we

will be using throughout our proof, whose expectation is with

respect to the (possible) randomness in the compression across

all steps:

(compression error) Ωt
1 := ED(t),

(surrogate norm) Ωt
2 := E‖gt‖2.

A. Proof of Theorem 1

From theL-smoothness of f—more specifically, from (10)—

we have that

f(xt+1)− f(xt)≤ 〈∇f(xt),xt+1 − xt〉+ L

2
‖xt+1 − xt‖2

=−η〈∇f(xt), g̃t〉+ η2L

2
‖g̃t‖2.

Taking the conditional expectation over the batch selection, it

follows from the unbiasedness of g̃t (A3) that

EFt
f(xt+1)− f(xt)≤−η〈∇f(xt), gt〉+ η2L

2
EFt

‖g̃t‖2.

From (A4), we have that EFt
‖g̃t − gt‖2 ≤ σ2

B
, which, under

(A3), is equivalent to EFt
‖g̃t‖2 ≤ ‖gt‖2 + σ2

B
, so

EFt
f(xt+1)− f(xt)

≤−η〈∇f(xt), gt〉+ η2L

2
‖gt‖2 + η2Lσ2

2B

=−η

2
‖∇f(xt)‖2 − η

2
(1− ηL)‖gt‖2

+
η

2
‖gt −∇f(xt)‖2 + η2Lσ2

2B
,

where the last equation follows from the polarization identity

〈a, b〉= 1
2 (‖a‖2 + ‖b‖2 − ‖a− b‖2). Now, using our surrogate

offset bound (6) and taking the (non-conditional) expectation,

we get that:

Ef(xt+1)− Ef(xt)≤−η

2
E‖∇f(xt)‖2 − η

2
(1− ηL)E‖gt‖2

+
ηKH2L2

2
ED(t) +

η2Lσ2

2B
. (13)

Using the Ωt
1 and Ωt

2 notation defined earlier and recall-

ing that ν = (1− α) ∈ [0, 1), we rewrite (7) and (13), respec-

tively, as

Ωt+1
1 ≤ ν(1+ε)Ωt

1+ν(1+ε−1)η2H2Ωt
2+

ν(1+ε−1)η2H2σ2

B

and

Ef(xt+1)− Ef(xt)≤−η

2
E‖∇f(xt)‖2 + ηKH2L2

2
Ωt

1

− η

2
(1− ηL)Ωt

2 +
η2Lσ2

2B
.

Multiplying the first inequality by a positive constant w and

adding it to the second one, we get

Ef(xt+1)− Ef(xt) + wΩt+1
1 − ψ1(w)Ω

t
1

≤−η

2
E‖∇f(xt)‖2 + ψ2(w)Ω

t
2

+

(

wν(1 + ε−1)H2 +
L

2

)
η2σ2

B
, (14)

where

ψ1(w) := wν(1 + ε) +
ηKH2L2

2

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK 1077

and

ψ2(w) := wν(1 + ε−1)η2H2 − η

2
(1− ηL).

Looking at (14), we see that, if ψ2(w)≤ 0, we can drop the

Ωt
2 term. Further, if ψ1(w)≤ w, we can telescope the Ωt

1 term

as we sum the inequalities for t= 0, . . . , T − 1, as we do for

the Ef(xt) terms. We thus get that:

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤ 2(f(x0)− Ef(xT))

ηT

+
2w(Ω0

1 − ΩT
1)

ηT

+
(
2wν(1 + ε−1)H2 + L

) ησ2

B
,

(15)

for

w ∈Wε :=

{

w :
ηKH2L2

2(1− ν(1 + ε))
≤ w ≤ 1− ηL

2ηH2ν(1 + ε−1)

}

,

where the lower bound follows from ψ1(w)≤ w and the upper

bound from ψ2(w)≤ 0.

Bounding η and Choosing ε. To ensure that Wε is not empty,

we need

η2γ(ε)L2 + ηL≤ 1 where γ(ε) :=KH4 ν(1 + ε−1)

1− ν(1 + ε)
.

From Lemma 5 of [24], we know that, if a, b > 0, then 0≤ η ≤
1√
a+b

implies aη2 + bη ≤ 1. Thus, we can ensure that Wε is

not empty by requiring

η ≤ 1
√

γ(ε)L2 + L
=
(√

γ(ε)L+ L
)−1

.

Further, to ensure that all w ∈Wε are positive, we need ν(1 +
ε)< 1, which holds for ε < 1−ν

ν
. Thus, to have the largest upper

bound possible on the stepsize η, we want ε to be the solution

to the following optimization problem, solved in Lemma 3

of [24]:

ε� := argminε

{

γ̃(ε) :=
ν(1 + ε−1)

1− ν(1 + ε)
: 0< ε <

1− ν

ν

}

=
1√
ν
− 1.

It follows that
√

γ̃(ε�) = 1+
√
1−α
α

− 1 and thus γ(ε�) =

KH4
(

1+
√
1−α
α

− 1
)2

=: ρα1. We therefore need

η ≤
(√

γ(ε�)L+ L
)−1

= (
√
ρα1L+ L)

−1
.

Note that, for α= 1, we recover η ≤ 1/L.

Choosing w. Now, since f� ≤ f(x) for all x and ΩT
1 ≥ 0, we

have from (15) that, for all w ∈Wε:

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤ 2Δ

ηT
+

2wΩ0
1

ηT

+
(
2wν(1 + ε−1)H2 + L

) ησ2

B
,

whereΔ := f(x0)− f�. From the inequality above, we see that

we want w ∈Wε to be as small as possible. Therefore, we take

w to be the lower bound in Wε. Since 1− ν(1 + ε�) = 1−√
ν, this corresponds to setting w = ηKH2L2

2(1−
√
ν)

. Recalling that

Ωt
1 = ED(t) and ν = 1− α, we thus arrive at (8):

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤ 2Δ

ηT
+

KH2L2

1−
√
1− α

· ED
(0)

T

+ (ηLρα1 + 1)
ηLσ2

B
.

B. Proof of Theorem 2

Recall that, using the Ωt
1 and Ωt

2 notation, we can rewrite (7)

and (13), respectively, as

Ωt+1
1 ≤ ν(1+ε)Ωt

1+ν(1+ε−1)η2H2Ωt
2+

ν(1+ε−1)η2H2σ2

B

and

Ef(xt+1)− Ef(xt)≤−η

2
E‖∇f(xt)‖2 + ηKH2L2

2
Ωt

1

− η

2
(1− ηL)Ωt

2 +
η2Lσ2

2B
.

Now, from our earlier introduced Lyapunov function (9),

Vt = Ef(xt)− f� + cΩt
1, we have that:

Vt+1 = Ef(xt+1)− f� + cΩt+1
1

(i)

≤ Ef(xt)− f� − η

2
E‖∇f(xt)‖2

+

(
ηKH2L2

2
+ cν(1 + ε)

)

Ωt
1 + ψ2(c)Ω

t
2

+ (L+ 2cν(1 + ε−1)H2)
η2σ2

2B

(ii)

≤ (1− ημ)(Ef(xt)− f�)

+

(
ηKH2L2

2
+ cν(1 + ε)

)

Ωt
1

+ ψ2(c)Ω
t
2 + (L+ 2cν(1 + ε−1)H2)

η2σ2

2B

= (1− ημ)Vt

+

(
ηKH2L2

2
+ cν(1 + ε)− c(1− ημ)

)

︸ ︷︷ ︸

=:ψ3(c)

Ωt
1

+ ψ2(c)Ω
t
2 + (L+ 2cν(1 + ε−1)H2)

η2σ2

2B
,

where (i) follows from (7), (13), c > 0, and ψ2(w) =
wν(1 + ε−1)η2H2 − η

2 (1− ηL) and (ii) follows from the PL

inequality (A5). Looking the inequality above, we see that, if

there is a c such that ψ2(c), ψ3(c)≤ 0, then

Vt+1 ≤ (1− ημ)Vt + (L+ 2cH2ν(1 + ε−1))
η2σ2

2B
. (16)

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1078 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

Note that, similarly to what we had in the proof for Theorem 1,

ψ2(c)≤ 0 corresponds to a upper bound on c, while ψ3(c)≤ 0
corresponds to an lower bound on c. We therefore want c ∈W ′

ε,

where

W ′
ε :=

{

c :
ηKH2L2

2(1− ν(1 + ε)− ημ)
≤ c≤ 1− ηL

2ην(1 + ε−1)H2

}

.

Recursing (16), we get

VT ≤ (1−ημ)TV0+(L+2cH2ν(1+ε−1))
η2σ2

2B

T−1∑

t=0

(1−ημ)t

≤ (1− ημ)TV0 +
(
L+ 2cH2ν(1 + ε−1)

) ησ2

2Bμ
,

where the second inequality follows from the sum of a geomet-

ric series, arriving at the result we set out to prove.

Choosing ε and Bounding η So That W ′
ε Is Nonempty. Note

that the lower bound defining W ′
ε is positive if η < 1−ν(1+ε)

μ
,

where 1− ν(1 + ε)> 0 as long as ε < 1−ν
ν

. Further, W ′
ε is not

empty, as long as

ηKH2L2

2(1− ν(1 + ε)− ημ)
≤ 1− ηL

2ην(1 + ε−1)H2
,

which is equivalent to

η2L2
(
βε(α)KH4 − μ/L

)
+ ηL(θε(α) + μ/L)≤ θε(α),

where

θε(α) = 1− (1− α)(1 + ε) and βε(α) = (1− α)(1 + ε−1).

If ε≤min
{

1−α
α

, α
1−α

}

, we have that βε(α)≥ 1 and θε(α)≥
0 for all α. It follows from βε(α)≥ 1 that βε(α)KH4 ≥ ...,
where the last inequality follows from (A2) holding for H0.

We thus get that

η2L2 (1− μ/L) + ηL(μ/L)≤ θε(α). (17)

Choosing ε to be

ε� =

{

α, 0< α≤ 1/2,

1− α, 1/2< α≤ 1,

we get that

θε�(α) =

{

α2, 0< α≤ 1/2,

−1 + 3α− α2, 1/2< α≤ 1.

Since α2 ≤−1 + 3α− α2 for α ∈ (1/2, 1], we have that α2 ≤
θε�(α) for all α ∈ (0, 1]. Thus, (17) holds if

η2L2 (1− μ/L) + ηL(μ/L)≤ α2. (18)

Further, from (A1) and (A5), we get that 0≤ μ/L≤ 1. There-

fore, for a sufficiently small η, there exists a positive c ∈W ′
ε

such that ψ2(c), ψ3(c)≤ 0. Lastly, note that we can also guaran-

tee that η < 1−ν(1+ε�)
μ

= θε�(α)/μ by having η < α2/μ, which

follows from (18).

Choosing c to Minimize the Upper Bound. From (17), we

see that we want c to be as small as possible. So, we choose c
as the lower bound in the definition of W ′

ε, arriving at

VT ≤ (1− ημ)TV0

+

(

L+ 2

(
ηKH2L2

2(1− ν(1 + ε)− ημ)

)

H2ν
(
1 + ε−1

)
)

ησ2

2Bμ
.

Now, we know that, for ε= ε� and η2L2 (1− μ/L) + ημ≤ α2,

the lower bound in the definition of W ′
ε is less than or equal to

the upper bound. We therefore have that

2

(
ηKH2L2

2(1− ν(1 + ε)− ημ)

)

H2ν
(
1 + ε−1

)
≤ 1− ηL

η
.

Using this inequality in the bound above it follows that

VT ≤ (1− ημ)TV0 +
σ2

2Bμ
,

thus arriving at the statement that we set out to prove.

APPENDIX D

COMPARISON OF DIFFERENT DOWNLINK

COMMUNICATION SCHEMES

As in most communication-compressed optimization litera-

ture [39], our primary concern is uplink communications, which

are typically the main bottleneck in training. Nevertheless, this

appendix discusses three alternative downlink communication

schemes in EF-VFL: 1) the one in Algorithm 1, 2) the one in Al-

gorithm 2, and 3) a modified version of the one in Algorithm 1

for common VFL fusion models, enabling broadcasts of a size

that is independent of the number of clients, K. Approaches

1) and 3) are mathematically equivalent, yet Approach 2) is

not, as discussed earlier. Each approach has its pros and cons,

making it suitable for different applications. For simplicity, this

discussion focuses on top-k sparsification and the full-batch

case.

1) In Algorithm 1, each round of downlink communications

consists of a broadcast of size k(K + 1)—a compressed object

of size k for each client (the intermediate representations) and

one for the server (the fusion model).

2) In Algorithm 2, each client receives only the derivative of

the loss function with respect to its representation, resulting in

a total downlink communication cost of kK. Recall that this is

only an option when performing a single local update.

Approach 2) avoids the dependency of the downlink commu-

nications to each client on K, seen in Approach 1), but requires

K different communications (one to each client), rather than a

single broadcast, thus the total communication cost still depends

on K. The one-to-many nature of broadcasting makes it is more

appropriate to compare broadcasted information with the total

downlink communications, rather than the communication to a

single client, as the latter ignores the cost of contacting the other

K − 1 clients.

3) To ensure that the downlink communication cost does

not depend on K, we can often exploit the structure of the

fusion model φ. In particular, a common choice is φ(x) =

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

VALDEIRA et al.: COMMUNICATION-EFFICIENT VERTICAL FEDERATED LEARNING VIA COMPRESSED ERROR FEEDBACK 1079

φ2(x0, φ1(H1(x1), . . . ,HK(xK))), where φ1 is a nonparam-

eterized representation aggregator, such as a sum or an av-

erage, and φ2 is a map parameterized by x0. In this case,

instead of broadcasting K + 1 objects, as in Approach 1), the

server can broadcast the aggregation of the representations,

φ1({Hj(x
t
j)}). This allows us to collapse the dimension of

length K, as long as each client i can replace Hi(x
t
i) with

Hi(x
t+1
i) in φ1({Hj(x

t
j)}) using its local knowledge of its

own representation. For example, if φ1 is a sum, client i can

subtract its previous intermediate representation and add the

updated one to obtain an updated aggregation. This allows client

i to perform forward and backward passes over both its local

model and the fusion model, and thus perform multiple local

updates without requiring further communications. Yet, this

downlink communication of the aggregated representations will

no longer be in the range of the compressor. For example, if

v1 and v2 are within the range of top-k, their sum, v1 + v2,

will generally not be. Therefore, we have a broadcast of up

to size NĒ + d0, where d0 is the size of the parameters of

the fusion model. That is, we avoid the dependency on K,

but this comes at the cost of losing the compressed nature

of the downlink communications. (This sum may still lie in

a lower-dimensional manifold, but this typically recovers the

dependency on K, e.g., for top-k sparsification, we can upper

bound the number of nonzero entries of the sum of K k-sparse

vectors by min{kK,NĒ}+ d0.) Like Approach 1), Approach

3) does not allow for private labels.

We present Approach 1) in Algorithm 1, rather than Ap-

proach 3), because most VFL applications are in the cross-silo

setting [5] and thus the number of clients K is small, therefore

k(K + 1)�NĒ + d0. Yet, for applications where K is large,

Approach 3) may be preferable.

DATA AVAILABILITY STATEMENT

The code for this work can be found at https://github.com/

Valdeira/EF-VFL.

REFERENCES

[1] P. Valdeira, J. Xavier, C. Soares, and Y. Chi, “Communication-efficient
vertical federated learning via compressed error feedback,” in Proc. 32nd

Eur. Signal Process. Conf. (EUSIPCO), 2024, pp. 1037–1041.
[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., PMLR, 2017, pp. 1273–1282.

[3] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “FedPD: A federated
learning framework with adaptivity to non-IID data,” IEEE Trans. Signal

Process., vol. 69, pp. 6055–6070, 2021.
[4] T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, “Over-the-air fed-

erated learning from heterogeneous data,” IEEE Trans. Signal Process.,
vol. 69, pp. 3796–3811, 2021.

[5] Y. Liu et al., “Vertical federated learning: Concepts, advances, and
challenges,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 7, pp. 3615–
3634, Jul. 2024.

[6] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-
preserving AI,” Commun. ACM, vol. 63, no. 12, pp. 33–36, 2020.

[7] I. Ceballos et al., “SplitNN-driven vertical partitioning,” 2020, arXiv:

2008.04137.
[8] J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.

Neural Inf. Process. Syst., vol. 25, 2012, pp. 1223–1231.
[9] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can

decentralized algorithms outperform centralized algorithms? A case

study for decentralized parallel stochastic gradient descent,” in Proc.

Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 5336–5346.
[10] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic

gradient descent and its application to data-parallel distributed training of
speech DNNs,” in Proc. 15th Annu. Conf. Int. Speech Commun. Assoc.,
2014, pp. 1058–1062.

[11] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1707–1718.

[12] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” in Proc.

Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 5977–5987.
[13] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with

memory,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp.
4452–4463.

[14] T. J. Castiglia, A. Das, S. Wang, and S. Patterson, “Compressed-VFL:
Communication-efficient learning with vertically partitioned data,” in
Proc. Int. Conf. Mach. Learn., PMLR, 2022, pp. 2738–2766.

[15] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
2019, arXiv:1903.03934.

[16] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” IEEE Trans. Signal Process.,
vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[17] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, “D-ADMM:
A communication-efficient distributed algorithm for separable optimiza-
tion,” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2718–2723, May
2013.

[18] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Trans. Signal

Process., vol. 68, pp. 2155–2169, 2020.
[19] Y. Du, S. Yang, and K. Huang, “High-dimensional stochastic gradient

quantization for communication-efficient edge learning,” IEEE Trans.

Signal Process., vol. 68, pp. 2128–2142, 2020.
[20] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “UVeQFed:

Universal vector quantization for federated learning,” IEEE Trans. Signal

Process., vol. 69, pp. 500–514, 2020.
[21] R. Nassif, S. Vlaski, M. Carpentiero, V. Matta, M. Antonini, and

A. H. Sayed, “Quantization for decentralized learning under subspace
constraints,” IEEE Trans. Signal Process., vol. 71, pp. 2320–2335, 2023.

[22] A. Sapio et al., “Scaling distributed machine learning with in-network
aggregation,” in Proc. 18th USENIX Symp. Netw. Syst. Des. Implement.

(NSDI), 2021, pp. 785–808.
[23] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased

compression for distributed learning,” J. Mach. Learn. Res., vol. 24,
no. 276, pp. 1–50, 2023.

[24] P. Richtárik, I. Sokolov, and I. Fatkhullin, “EF21: A new, simpler,
theoretically better, and practically faster error feedback,” in Proc. Adv.

Neural Inf. Process. Syst., vol. 34, 2021, pp. 4384–4396.
[25] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic opti-

mization and gossip algorithms with compressed communication,” in
Proc. Int. Conf. Mach. Learn., PMLR, 2019, pp. 3478–3487.

[26] H. Zhao, B. Li, Z. Li, P. Richtárik, and Y. Chi, “Beer: Fast O(1/T)
rate for decentralized nonconvex optimization with communication
compression,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 31653–31667.

[27] Y. Liu et al., “FedBCD: A communication-efficient collaborative learn-
ing framework for distributed features,” IEEE Trans. Signal Process.,
vol. 70, pp. 4277–4290, 2022.

[28] T. Chen, X. Jin, Y. Sun, and W. Yin, “VAFL: A method of vertical
asynchronous federated learning,” 2020, arXiv:2007.06081.

[29] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under dis-
tributed features,” IEEE Trans. Signal Process., vol. 67, no. 4, pp. 977–
992, Feb. 2019.

[30] P. Valdeira, Y. Chi, C. Soares, and J. Xavier, “A multi-token coordinate
descent method for semi-decentralized vertical federated learning,” 2023,
arXiv:2309.09977.

[31] A. Khan, M. ten Thij, and A. Wilbik, “Communication-efficient vertical
federated learning,” Algorithms, vol. 15, no. 8, p. 273, 2022.

[32] M. Li, Y. Chen, Y. Wang, and Y. Pan, “Efficient asynchronous ver-
tical federated learning via gradient prediction and double-end sparse
compression,” in Proc. 16th Int. Conf. Control, Automat., Robot. Vis.

(ICARCV), Piscataway, NJ, USA: IEEE, 2020, pp. 291–296.
[33] L. Yang et al., “A survey on vertical federated learning: From a layered

perspective,” 2023, arXiv:2304.01829.
[34] H. Inose, Y. Yasuda, and J. Murakami, “A telemetering system by

code modulation-δ-σmodulation,” IRE Trans. Space Electron. Telemetry,
no. 3, pp. 204–209, 1962.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

1080 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

[35] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” in Proc. Int.

Conf. Mach. Learn., PMLR, 2019, pp. 3252–3261.
[36] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, “Distributed

learning with compressed gradient differences,” Optim. Methods Softw.,
pp. 1–16, 2024.

[37] Y. Hu, D. Niu, J. Yang, and S. Zhou, “FDML: A collaborative ma-
chine learning framework for distributed features,” in Proc. 25th ACM

SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2019, pp. 2232–
2240.

[38] T. Castiglia, S. Wang, and S. Patterson, “Flexible vertical federated
learning with heterogeneous parties,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 35, no. 12, pp. 17878–17892, Dec. 2024.
[39] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Feder-

ated learning with compression: Unified analysis and sharp guarantees,”
in Proc. Int. Conf. Artif. Intell. Statist., PMLR, 2021, pp. 2350–2358.

[40] B. T. Polyak, “Gradient methods for the minimisation of functionals,”
USSR Comput. Math. Math. Phys., vol. 3, no. 4, pp. 864–878, 1963.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[42] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in Proc. IEEE

Int. Conf. Comput. Vis., 2015, pp. 945–953.
[43] Z. Wu, S. Song et al., “3D ShapeNets: A deep representation for

volumetric shapes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 1912–1920.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[45] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[46] Z. Li, H. Zhao, B. Li, and Y. Chi, “SoteriaFL: A unified framework for
private federated learning with communication compression,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 4285–4300.

[47] B. Li and Y. Chi, “Convergence and privacy of decentralized nonconvex
optimization with gradient clipping and communication compression,”
2023, arXiv:2305.09896.

Pedro Valdeira received the M.Sc. degree in
aerospace engineering from the Instituto Superior
Técnico (IST), University of Lisbon, Portugal, in
2019. He has been working toward the dual Ph.D.
degree in electrical and computer engineering with
Carnegie Mellon University, USA, and IST, since
2020. His research interests include machine learn-
ing and optimization, focusing on efficient opti-
mization methods for distributed machine learning
systems.

João Xavier received the Ph.D. degree in electrical
and computer engineering from the Instituto Supe-
rior Técnico (IST), Lisbon, Portugal, in 2002. Cur-
rently, he is an Associate Professor with the Depart-
ment of Electrical and Computer Engineering, IST.
He is also a Researcher with the Institute of Systems
and Robotics, Lisbon. His research interests include
optimization and statistical inference for distributed
systems.

Cláudia Soares received the Diploma in modern
languages and literature from Nova University of
Lisbon, Lisbon, Portugal, and the B.Sc., M.Sc.,
and Ph.D. degrees in electrical and computer en-
gineering from the Instituto Superior Técnico, Lis-
bon, Portugal. Currently, she is an Assistant Pro-
fessor with the Department of Computer Science,
NOVA School of Science and Technology, and a
Researcher with NOVA LINCS, Portugal. She uses
real-world data problems to identify shortcomings
of current machine learning, data science, and big

data methods. She applies optimization, statistics, and probability theory to
address those gaps, developing robust and interpretable learning methods that
can be trusted in real life. Her application areas are environmental and urban
sciences, healthcare, transportation, and space.

Yuejie Chi (Fellow, IEEE) received the B.E.
(Hons.) degree in electrical engineering from Ts-
inghua University, Beijing, China, in 2007, and the
M.A. and Ph.D. degrees in electrical engineering
from Princeton University, in 2012 and 2009, re-
spectively. Currently, she is the Sense of Wonder
Group Endowed Professor in electrical and com-
puter engineering of artificial intelligence (AI) sys-
tems with Carnegie Mellon University, with cour-
tesy appointments with the Machine Learning De-
partment and CyLab. Her research interests include

the theoretical and algorithmic foundations of data science, signal processing,
machine learning, and inverse problems, with applications in sensing, imaging,
decision making, and AI systems. Among others, she was a recipient of
the Presidential Early Career Award for Scientists and Engineers (PECASE),
the SIAM Activity Group on Imaging Science Best Paper Prize, the IEEE
Signal Processing Society Young Author Best Paper Award, and the inau-
gural IEEE Signal Processing Society Early Career Technical Achievement
Award for contributions to high-dimensional structured signal processing.
She was named a Goldsmith Lecturer by the IEEE Information Theory
Society, a Distinguished Lecturer by the IEEE Signal Processing Society,
and a Distinguished Speaker by ACM. She currently serves or served as an
Associate Editor of IEEE TRANSACTIONS ON INFORMATION THEORY, IEEE
TRANSACTIONS ON SIGNAL PROCESSING, IEEE TRANSACTIONS ON PATTERN

RECOGNITION AND MACHINE INTELLIGENCE, Information and Inference: A

Journal of the IMA, and SIAM Journal on Mathematics of Data Science.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 14:56:47 UTC from IEEE Xplore. Restrictions apply.

