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Communication-Efficient Federated Optimization

Over Semi-Decentralized Networks
He Wang , Graduate Student Member, IEEE, and Yuejie Chi , Fellow, IEEE

Abstract—In large-scale federated and decentralized learning,
communication efficiency is one of the most challenging bottle-
necks. While gossip communication—where agents can exchange
information with their connected neighbors—is more cost-effective
than communicating with the remote server, it often requires a
greater number of communication rounds, especially for large
and sparse networks. To tackle the trade-off, we examine the
communication efficiency under a semi-decentralized communica-
tion protocol, in which agents can perform both agent-to-agent
and agent-to-server communication in a probabilistic manner. We
design a tailored communication-efficient algorithm over semi-
decentralized networks, referred to as PISCO, which inherits the
robustness to data heterogeneity thanks to gradient tracking and
allows multiple local updates for saving communication. We estab-
lish the convergence rate of PISCO for nonconvex problems and
show that PISCO enjoys a linear speedup in terms of the number
of agents and local updates. Our numerical results highlight the
superior communication efficiency of PISCO and its resilience to
data heterogeneity and various network topologies.

Index Terms—Communication efficiency, semi-decentralized
networks, probabilistic communication models, local updates.

I. INTRODUCTION

C
ONSIDER a networked system that n agents collectively

solve the following federated or distributed optimization

problem:

min
x∈Rd

f(x) :=
1

n

n∑

i=1

fi(x), where fi(x) :=
1

m

∑

z∈Di

�(x; z).

(1)

Here, x ∈ R
d denotes the optimization variable, fi(x) denotes

the local and private objective function at agent i, and f(x)
denotes the global objective function. In addition, let z represent
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Fig. 1. Two communication models for distributed ML.

one data sample,Di stand for the dataset with |Di| = m samples

at agent i, and �(x; z) denote the empirical loss of x w.r.t. the

data sample z. Such problems have a wide range of applications,

including but not limited to estimation in sensor networks [1],

resource allocation in smart grids [2], and coordination in multi-

agent systems [3].

In order to tackle this problem, agents have to communicate

with one another for cooperation, since every agent i ∈ [n] only

has access to its own local dataset Di. There are two main

communication protocols, consisting of agent-to-agent com-

munication model (in decentralized ML) and agent-to-server

communication model (in federated ML). Commonly, they are

formulated via different network topologies [4], as shown in

Fig. 1. More specifically, prior works in decentralized ML often

use a general graph to capture the local communication, where

every agent is only allowed to exchange information with its con-

nected neighbors (cf. Fig. 1(a)). In federated ML, the star graph

is commonly used to depict the communication between agents

and the centralized coordinator (i.e., server) who can both collect

information from and broadcast to each agent (cf. Fig. 1(b)).

As the network size increasingly grows, communication ef-

ficiency becomes so critical that significantly hinders both de-

centralized and federated ML from being applied to real-world

applications. Compared with agent-to-server communication,

agent-to-agent communication is much more affordable and

more applicable to large-scale networks. However, without the

coordination of the server, decentralized approaches may need

more communication rounds to reach consensus, especially for

large and sparse networks.

Given that the communication complexity depends on the

trade-off between the communication rounds and the per-round

cost, emerging works focus on heterogeneous communication
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TABLE I
COMPARISON OF OURS AND OTHER SEMI-DECENTRALIZED ALGORITHMS IN NONCONVEX OPTIMIZATION USING THE SAME BATCH SIZE, REGARDING THE

CONVERGENCE RATE, ALGORITHM DESIGN AND DATA HETEROGENEITY ASSUMPTIONS

Fig. 2. The semi-decentralized communication protocol, where the server
can be accessed with probability p and agents can communicate with their
neighbors whenever the server is not available. Here, dotted lines represents
the agent-to-server communication, while the solid ones are for agent-to-agent
communication.

over semi-decentralized networks, to gain the best from both

agent-to-agent and agent-to-server communication [5], [6], [7].

Such semi-decentralized networks—consisting of a centralized

server and a network of agents—widely exist in many appli-

cations, such as autonomous vehicles [8], energy systems [9]

and ML systems [10]. It has been observed that heterogeneous

communication largely alleviates the heavy network dependence

of distributed learning and tackles the communication bottleneck

of the server [5]. However, to the best of our knowledge, all of

them rely on the assumption of bounded data dissimilarity across

agents and a complete characterization of the convergence be-

havior with respect to the network heterogeneity is still lacking.

More detailed discussions on communication-saving strategies

and semi-decentralized approaches are provided in Section I-B.

A. Our Contributions

To fill the void, we propose a communication-efficient al-

gorithm called PISCO, which incorporates gradient-tracking

techniques [11] and multiple local updates [12] for solving

federated nonconvex optimization over semi-decentralized net-

works modeled by a probabilistic connection model (shown

in Fig. 2). Such a semi-decentralized communication model

(with local updates) allows PISCO to be viewed as a special

form of gradient-tracking-based algorithms with time-varying

networks. However, existing convergence guarantees for non-

convex optimization [13], [14], [15], cannot fully characterize

the benefits of agent-to-server communication and multiple local

updates. Specifically, applying previous analyses would yield

convergence results that depend on the spectral gap of the least

connected network—i.e., the underlying gossip communication

network—while failing to capture the value of agent-to-server

communication. To quantify these benefits, our analysis is of

independent interest and can be readily extended to time-varying

networks. The highlights of our contributions are as follows.

1) We prove thatPISCO converges at a rate ofO(1/
√
nToK)

for sufficiently largeK, whereK is the number of commu-

nication rounds and To is the number of local updates. Our

result does not impose the strong assumptions on data het-

erogeneity. Moreover, increasing the number of local up-

dates accelerates the convergence over semi-decentralized

networks. See Table I for a detailed comparison with prior

art.

2) We show that the communication heterogeneity offered

by a semi-decentralized network largely alleviates the net-

work dependency of communication overheads in decen-

tralized networks via a few agent-to-server communica-

tion rounds. For large and sparse networks (i.e., the mixing

rate λw → 0), with a small probability p = Θ(
√

λw) of

agent-to-server communication, the network dependency

improves from O(λ−2
w ) to O(λ−1

w ).
3) We corroborate the superior communication efficiency of

PISCO through simulations on real-world datasets. The

results substantiate the convergence speedup brought by

multiple local updates and the robustness of PISCO to

data heterogeneity and various topologies, even for locally

disconnected networks.

B. Related Works

Over the past few years, distributed optimization has attracted

growing attention and has been extensively explored. For the

convenience of our readers, we provide a review of the most

related works below.

Distributed nonconvex optimization: As the size of the net-

worked system increases, there are considerable algorithms

developed for solving distributed nonconvex optimization.

Roughly speaking, they can be categorized into two classes

— decentralized algorithms [13], [16], [17], [18] where agents

are only allowed to exchange information with neighbors, and

federated algorithms [19], [20], [21] where agents are able to

1Here we only present the leading term of the rate for simplicity.
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communicate with the server directly. Early attempts apply

(stochastic) gradient descent to distributed optimization, which

performs well in practice [16], [19]. However, the dissimilarity

among local objectives could degenerate the performance under

heterogeneous data and thus requires additional assumptions like

bounded gradient or diminishing step-sizes. To eliminate such

strong assumptions, many following works [13], [17], [20] have

been developed, including gradient tracking (GT) techniques.

The key idea of GT is to utilize dynamic average consensus [11]

for global gradient estimation, which has been incorporated

with many distributed optimization algorithms to achieve faster

convergence rates in nonconvex settings [22], [23], [24], [25].

Our proposed PISCO also takes advantage of GT to inherit its

robustness against data heterogeneity.

Communication-efficient distributed ML: Communication ef-

ficiency is one of the most important bottlenecks in distributed

ML. In the decentralized setting, the communication complexity

largely depends on the network topology, i.e., poor connectivity

slows down the information mixing and thus requires more

communication rounds to consensus [4]. As for the federated

ML, the communication burden of the centralized server may be

unaffordable. To overcome such bottlenecks, a number of strate-

gies are proposed for improving communication efficiency [26],

including: 1) compression methods: compressing the informa-

tion for communication [25], [27]; 2) multiple local communica-

tion and updates: executing multiple gossip communication [5],

[28] or successive local updates within one communication

round [19], [20], [29], [30]; 3) heterogeneous communication

model over semi-decentralized networks: allowing both agent-

to-agent and agent-to-server communication [5], [31], [32]; and

4) adaptive communication strategies: utilizing event-triggered

communication mechanisms [33], [34], [35] and tailored adap-

tive communication topologies [36], [37], [38], [39] for saving

unnecessary communications. In this paper, we aim to gain the

best communication efficiency from probabilistic heterogeneous

communication over semi-decentralized networks and enable

multiple local updates for more communication savings.

Semi-decentralized ML: As mentioned above, semi-

decentralized ML, resorting to heterogeneous communication,

tackles both the communication bottleneck of the centralized

server in federated ML and the heavy network dependency of

decentralized ML. We mainly summarize the works in noncon-

vex setting that are mostly related to this paper, while refer-

ring readers to [5], [40] for the (strongly) convex setting. For

nonconvex problems, Gossip-PGA [5] first integrates Gossip

SGD [16] with periodical global averaging and obtains a better

scalability. It shows that intermittently communicating with the

server can largely alleviate the heavy dependence on the network

connectivity, especially for large or sparse networks. However,

the theoretical results depend on the assumption of bounded

similarity between local objectives. Moreover, HL-SGD [6]

extends Gossip-PGA to the hierarchical networked structure

with multiple clusters, while HA-Fed [7] can be viewed as

HL-SGD with momentum. Both of them enable intra-cluster

gossip averaging and inter-cluster averaging, but also rely on

the data heterogeneity assumptions which may be impractical

in many real-world applications. Noted that all of them consider

deterministic heterogeneous communication, i.e., agents/cluster

can only communicate with the server every H communication

rounds, but the synchronization largely depends on the avail-

ability of the server. To this end, we consider the probabilistic

communication model, where agents only exchange information

with the server at the probability p. Furthermore, to the best of

our knowledge, none of these approaches enable multiple local

updates within a single communication round, whereas ours

benefits from the linear speedup provided by the local updates.

More detailed comparison can be found in Table I. Note that this

comparison is based on the same batch size, while [5] and [6]

may use fewer batch data per round.

C. Notation

Throughout this paper, we use the lowercase and uppercase

boldface letters to represent vectors and matrices, respectively.

We use ‖A‖F for the Frobenius norm of a matrix A, ‖A‖2 for

the largest singular value of a matrix A, ‖a‖2 for the l2 norm

of a vector a, and ⊗ for the Kronecker product. In addition,

we use In for the identity matrix of dimension n, 1n for the

all-one vector of dimension n and Od×n for the all-zero matrix

of dimension (d× n). For any two real functions f(·) and g(·)
defined on R

+, f(x) = O(g(x)) if there exist a positive real

constant M and x0 such that f(x) ≤ Mg(x) for any x ≥ x0.

Similarly, f(x) = Θ(g(x)) if there exist positive real constansts

M1,M2 and x0 such that M1g(x) ≤ f(x) ≤ M2g(x) for any

x ≥ x0. Note that “≤” can be interpreted in an element-wise

fashion, if it is applied to vectors or matrices with the same

dimension.

II. PRELIMINARIES

A. Communication Graph and Mixing Matrix

Consider a semi-decentralized network that has a centralized

server to coordinate all n agents and an undirected commu-

nication graph G = (V, E), where V = {1, . . . , n} denotes the

set of n agents and E ⊆ {{i, j}|i, j ∈ V} represents the lo-

cal communication between agents. For every agent i ∈ V, let

Ni = {j|{i, j} ∈ E} denote agent i’s neighbors whom the agent

i can communicate with.

Moreover, for any communication graphG, the mixing of local

communication can be formally characterized by the mixing

matrix W = [wij ]1≤i,j≤n defined in Definition 1.

Definition 1 (Mixing matrix and mixing rate): Given an undi-

rected communication graph G, a nonnegative matrix W ∈
R

n×n is the mixing matrix, whose element wij = 0 if and

only if {i, j} /∈ E and i 
= j and W is doubly stochastic, i.e.,

W1n = 1n and1
�
nW = 1

�
n . The mixing rate of W is a non-

negative constant, i.e.,

λw := 1−
∥
∥
∥
∥
W − 1

n
1n1

�
n

∥
∥
∥
∥

2

2

.

Note that the doubly stochasticity implies ‖W ‖2 ≤ 1 and the

mixing rate λw = 1− λ
2 ∈ [0, 1], where λ denotes the second

largest eigenvalue. The mixing rate can depict the connectivity of

the communication graph G, or to say, the speed of information
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mixing. Mathematically,

‖Wx− x‖22 ≤ (1− λw)‖x− x‖22, ∀x ∈ R
d,

where x = 1
n
1n1

�
nx ∈ R

n. In other words, a larger mixing rate

λw indicates a better connectivity as well as a faster process of

information mixing, while disconnected graphs have λw = 0.

For example, considering a fully connected graph where every

agent can communicate with each other, the mixing matrix can

be defined as

J :=
1

n
1n1

�
n ,

and its mixing rate is equal to 1. Specifically, in this paper, we use

J to describe the mixing of the agent-to-server communication.

B. Stochastic Gradient Methods

To improve the computational efficiency, one popular ap-

proach is to replace the full-batch gradients with stochastic

gradients on the mini-batch data samples. In distributed setting,

we define the local stochastic gradient for each agent i ∈ [n] as:

gi =
1

b

∑

zi∈Zi

∇�(xi; zi), ∀xi ∈ R
d, (2)

whereZi ⊂ Di denotes the sampled data batch. Here, we assume

that Zi is drawn i.i.d. from Di with the same mini-batch size

b ≤ m for every agent i ∈ [n] for simplicity, while using an

adaptive batch size could be of interest for better controlling

the variance of stochastic gradients [41]. Note that the local

stochastic gradient gi is an unbiased estimate of ∇fi(xi), i.e.,

E[gi] = ∇fi(xi), ∀xi ∈ R
d.

C. Gradient-Tracking Techniques

In many real-world applications, the local dataset Di on every

agent i ∈ [n] may be quite different from each other, referred

to as data heterogeneity. Accordingly, there exists some local

stationary solution x satisfying ∇fi(x) = 0 for some i ∈ [n],
but not necessarily with ∇f(x) =

∑n
i=1 ∇fi(x) = 0. Under

such circumstances, directly incorporating stochastic gradient

methods with gossip or global averaging may not converge to

the global stationary solution [16] without the strong assumption

like bounded data dissimilarity.

To address this issue, gradient-tracking (GT) techniques [13],

[42], [43] have been proposed, which utilizes gossip communi-

cation for global gradient estimation leveraging dynamic aver-

age consensus [11]. Recently, DSGT [44] incorporates GT with

stochastic gradient methods for computational efficiency. The

updates at the k-th iteration are defined as: every agent i ∈ [n]
updates its optimization variable xk

i and gradient-tracking vari-

able yk
i by

xk+1 =
n∑

j=1

wij(x
k
j − ηyk

j ),

yk+1
i =

n∑

j=1

wijy
k
j + gk+1

i − gk
i ,

where η > 0 is the step-size and the initialization y0
i = g0

i .

In addition, [45] incorporates GT with variance-reduced tech-

niques and [28] develops an approximate Newton-type methods

with variance-reduced GT to further accelerate the convergence.

More recent works [30], [46] prove that DSGT with multiple

local updates is able to converge under high data heterogeneity

in nonconvex setting.

III. PROPOSED PISCO ALGORITHM

In this section, we introduce PISCO, which exploits com-

munication heterogeneity from the probabilistic communication

model and inherits the robustness to data heterogeneity from

GT. Before the depiction of PISCO, we first introduce some

compact-form notations for convenience. Let the matrices X =
[x1,x2, . . . ,xn] ∈ R

d×n and Y = [y1,y2, . . . ,yn] ∈ R
d×n

represent the collection of all the optimization variables and

gradient-tracking variables, respectively. We also denote the

gradient of empirical loss given the sampled batch dataset

Z = {Zi}ni=1 as

∇�(X;Z) =
[
∑

z1∈Z1

∇�(x1; z1), . . . ,
∑

zn∈Zn

∇�(xn; zn)

]

.

With the local stochastic gradient as (2) in hand, the distributed

stochastic gradient can be represented by

G = [g1, g2, . . . , gn] =
1

b
∇�(X;Z).

Then, we are ready to describe PISCO detailed in

Algorithm 1, using the above compact notations. At the be-

ginning of the k-th communication round, PISCO maintains

the model estimate Xk, the global gradient estimate Y k and

the distributed stochastic gradient Gk. It then boils down to

the following two stages for achieving both communication

efficiency and exact convergence under data heterogeneity.
� The first stage is to execute To local steps without any

communication (cf. line 4–7). The key idea is to utilize

the local computational resources to facilitate the con-

vergence. At the beginning of the local updates, initial-

ize the local-update variables Xk+1,0 = Xk, Y k+1,0 =
Y k and Gk+1,0 = Gk. At the t-th local update, update

{Xk+1,t,Y k+1,t,Gk+1,t} via (3), maintaining the fash-

ion of gradient-tracking techniques.
� The second stage is to perform the information ex-

change over the semi-decentralized network via a prob-

abilistic communication model (cf. line 8–10), i.e., there

are two possible communication schemes — agent-to-

server communication with probability p and agent-

to-agent communication otherwise. Different schemes

correspond to different mixing matrices (cf. line 8),

i.e., if agents implement the global communication, set

W k = J ; otherwise, set W k = W . Then, agents update

{Xk+1,Y k+1,Gk+1} via (4), using the output of local

updates {Xk+1,To ,Y k+1,To ,Gk+1,To} via the selected

communication scheme.
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Algorithm 1: PISCO for Semi-Decentralized Nonconvex

Optimization.

1: input: X0 = x0
1
�
n , local-update and communication

step sizes ηl, ηc, number of iterations K, number of local

updates To, mini-batch size b.
2: initialize: Draw the mini-batch Z0 = {Z0

i }ni=1

randomly and set Y 0 = G0 = 1
b
∇�(X0;Z0).

3: for k = 0, 1, . . . ,K − 1 do

4: Set Xk+1,0 = Xk, Y k+1,0 = Y k and Gk+1,0 = Gk.

5: for t = 1, 2 · · · , To do

6: Draw the mini-batch Zk+1,t and compute

Xk+1,t = Xk+1,t−1 − ηlY
k+1,t−1 (3a)

Gk+1,t =
1

b
∇�(Xk+1,t;Zk+1,t) (3b)

Y k+1,t = Y k+1,t−1 +Gk+1,t −Gk+1,t−1. (3c)

7: end for

8: Define W k =

{

J with probability p,

W otherwise.

9: Draw the mini-batch Zk+1 and update

Xk+1=
(
(1−ηc)X

k+ηc(X
k+1,To−ηlY

k+1,To)
)
W k

(4a)

Gk+1 =
1

b
∇�(Xk+1;Zk+1) (4b)

Y k+1 =
(
Y k+1,To +Gk+1 −Gk+1,To

)
W k. (4c)

10: end for

IV. THEORETICAL GUARANTEES

In this section, we provide the convergence results of our

PISCO under different settings: PISCO converges at a rate of

O(1/
√
nToK) using mini-batch gradients andO(1/(nK))with

full-batch gradients.

A. Assumptions

Before proceeding to the results, we first impose the following

assumptions on the network model, objective functions and data

sampling.

Assumption 1 (Semi-decentralized network model): Given

the undirected graph G and its mixing matrix W following the

Definition 1, then W k defined in Algorithm 1 satisfies

E[‖W kx− x‖22] ≤ (1− λp)‖x− x‖22, ∀x ∈ R
n,

where x = Jx ∈ R
n and the expected mixing rate λp = λw +

p(1− λw) ∈ (0, 1].
Note that Assumption 1 is weaker than the connected as-

sumption in prior semi-decentralized literatures [5], [6], [7],

i.e., λw > 0. More specifically, Assumption 1 implies that the

underlying graph can be disconnected if and only if p > 0. Only

in the case that the centralized server is unavailable (i.e., p = 0),

Assumption 1 presumes the connectivity of G.

Regarding the objective functions, we assume that the op-

timal value f� := minx f(x) exists and f� > −∞. The local

objective functions {fi}ni=1 could be nonconvex but satisfy the

standard smoothness assumption provided below.

Assumption 2 (L-smooth): Each local function fi(x) is dif-

ferentiable and there exists a constant L such that

‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ R
d.

In addition, we assume that the local stochastic gradient gi is

an unbiased estimate with a bounded variance, which is widely

used in the literature [5], [6], [7], [25], [30], [47].

Assumption 3 (Bounded variance): For every agent i ∈ [n],
there exists a constant σ ≥ 0 s.t.

EZi∼Di
[‖gi −∇fi(x)‖22] ≤ σ2/b, ∀x ∈ R

d.

Note that in the case of the full-batch gradients, i.e., the

mini-batch size b = m, we can simply set σ = 0 and thus

Assumption 3 always holds.

B. Convergence Analysis of PISCO

Now, we are ready to present our main results. First, the

following theorem demonstrates that our proposed PISCO is

able to converge to the neighborhood of the stationary solution to

the problem (1) at the rate of O(1/K) with constant step-sizes.

The proof is postponed to the Appendix B.

Theorem 1 (Convergence rate): Suppose Assumption 1, 2 and

3 hold. Let f̃ = f(x0)− f� and Φ
0
y = Y 0 − Y 0J . For any

α ≥ 0.1 s.t. ηc = α
√

(1 + p)λp and ηl ≤
√

(1+p)λp

360αL(To+1) , it holds

that 1
K

∑K−1
k=0 E[‖∇f(xk)‖22] converges at the rate of

O

(

f̃

ηToK
+

(

L2T 2
o η

2
l +

Lη

n

)
σ2

b

)

︸ ︷︷ ︸

terms due to SGD and local updates

+O

(
(1− p)L2T 2

o η
2

(1 + p)2λ4
p

σ2

b
+

1

nK
E[‖Φ0

y‖2F]
)

︸ ︷︷ ︸

terms due to decentralized overhead

, (5)

where the average model estimate xk = 1
n

∑n
i=1 x

k
i ∈ R

d and

η = ηcηl.
Note that the above convergence result can hold even under

significant data heterogeneity across agents, since we do not

assume any bounded similarity between local objectives.

Due to the existence of the variance σ2, we fine-tune the local-

update step-size to obtain the exact convergence rate with the

leading term O(1/
√
nToK), based on Theorem 1. Specifically,

the following corollary considers the scenarios with mini-batch

gradients (i.e., b ≤ O(σ2 K) and σ > 0), while the case of large

or full batch gradients (i.e., the batch size b ≥ Θ(σ2 K) or σ =
0) will be discussed later in Corollary 2. The proof of Corollary

1 is postponed to Appendix C.

Corollary 1 (Convergence rate with mini batch): Sup-

pose all the conditions in Theorem 1 hold. Consider

that the number of communication rounds K is suffi-

ciently large, i.e., K ≥ Θ(nbToLf̃
λ4
pσ

2 ), and the mini-batch
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TABLE II
THE NUMBER OF THE EXPECTED AGENT-TO-SERVER/AGENT COMMUNICATION ROUNDS OF OURS AND EXISTING DECENTRALIZED AND FEDERATED ML

ALGORITHMS WITH STOCHASTIC GRADIENTS AND LOCAL UPDATES, TO ACHIEVE THE ε-ACCURACY, WHERE ε IS SUFFICIENTLY SMALL

size b ≤O(σ2 K), where σ >0. If the step-sizes ηc =

α
√
1 + pλp, ηl =

1
αTo

min{
√

nα2bTof̃
η2
cLσ2 K

,
3

√

ηcbf̃
αL2σ2 K

}. Then,

1
K

∑K−1
k=0 E[‖∇f(xk)‖22] can converge at the rate of

O

⎛

⎝

(
Lσ2

nTobK

) 1

2

+

(

Lσ

λ2
p

√
bK

) 2

3

+
1

nK

⎞

⎠ .

From Corollary 1, PISCO can achieve the ε-accuracy, i.e.,
1
K

∑K−1
k=0 E[‖∇f(xk)‖22] ≤ ε2 after

O

(

Lσ2

nTobε4
+

Lσ

λ2
p

√
bε3

+
1

nε2

)

communication rounds. Notice that if K is sufficiently large and

the first term ( Lσ2

nTobK
)

1

2 correspondingly becomes dominant,

increasing the number of agents n or the number of local

updatesTo can accelerate the convergence. Such a linear speedup

matches the findings in the special cases of semi-decentralized

ML, i.e., decentralized setting [30], [46] when p = 0 and feder-

ated setting [20] when p = 1.

In fact, PISCO can be generalized to the decentralized case

and federated case by settingp = 0 andp = 1 respectively, while

maintaining comparable convergence guarantees.

Remark 1 (Decentralized case): When p = 0, Algorithm 1

becomes fully decentralized, i.e., agents only perform local com-

munication. Then, the communication complexity to achieve

ε-accuracy becomes

O

(
Lσ2

nTobε4
+

Lσ

λ2
w

√
bε3

+
1

nε2

)

,

which is better than the rate of Periodical-GT in [46] and

LSGT [30], since the network dependency is O(1/λ2
w) and

only appears in the second term (see Table II). The second term

is slightly worse than K-GT, the variance-reduced Periodical-

GT [46], since it corrects the descent direction with the average

of To local updates instead of the last local update at commu-

nication. However, they require that the initial local correction

variables are settled in a centralized way. Combining our anal-

ysis with such a variance-reduction method while avoiding the

centralized initialization would be a promising future direction

of this paper.

Fig. 3. The network dependency of PISCO regarding agent-to-server com-
munication probability p.

Remark 2 (Federated case): When p = 1, every agent can

communicate with the server directly and thus PISCO performs

in the federated fashion at any iteration k ≥ 1. Then, the com-

munication complexity becomes

O

(
Lσ2

nTobε4
+

Lσ√
bε3

+
1

nε2

)

,

where the leading term is the same as that of SCAFFOLD in [20]

with the linear speedup in terms of the network size n and the

number of local updates To.

Moreover, the highlight of our work is to fill the void of

semi-decentralized ML with the probabilistic communication

model and gain the best communication efficiency from both

agent-to-agent communication and agent-to-server communi-

cation, as shown in Table II. In addition, PISCO is able to

improve the network dependency of the communication over-

heads fromO(λ−2
w ) [46] toO(λ−2

p ), where the trade-off between

the communication probability and the network dependency is

illustrated in Fig. 3. The flexible heterogeneous communication

brings the superior communication efficiency of PISCO in both

well-connected and poorly-connected networks.

Remark 3 (For well-connected networks): As gossip commu-

nication is efficient to mix information for well-connected net-

works, PISCO is able to achieve a comparable convergence rate

with much fewer agent-to-server communication rounds com-

pared with using only agent-to-server communication. There-

fore, our PISCO can significantly reduce the communication
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costs for well-connected networks whenever local agent-to-

agent communications are inexpensive.

Remark 4 (For poorly-connected networks): When λw → 0,

performing agent-to-agent only communication often results

in a large number of communication rounds and prohibitive

communication costs. As shown in Fig. 3, with any probability

p ≥ λw, the network dependency can be reduced to O(p−2).
More specifically, even a small agent-to-server probability p =
Θ(

√
λw) can significantly improve the network dependency

from O(λ−2
w ) to O(λ−1

w ). Take the large-scale path graph as

an example, where the mixing rate λw scales on the order of

O(1/n2) [4]. OurPISCOwith p = Θ(1/n) can improve the net-

work dependency fromO(n4) toO(n2). Moreover, if p = Θ(1),
the communication complexity can be network-independent like

Gossip-PGA [5], but our theoretical analysis does not require

the additional assumption of the bounded dissimilarity between

local objectives.

In many real-world scenarios, it is also popular to choose

large mini-batch size b to guarantee the exact convergence to

the stationary point. As the terms related to the variance σ2

on the right hand side of (5) scale on the order of O(σ2/b), if

we choose a large enough mini-batch size b ≥ Θ(σ2/ε2), the

following desirable result holds.

Corollary 2 (Communication complexity with large batch):

Suppose all the conditions in Theorem 1 holds. If the

batch size b is sufficiently large, i.e., b ≥ Θ(σ
2

ε2
), it holds

1
K

∑K−1
k=0 E[‖∇f(x̄k)‖22] ≤ ε2 after

O

(
L

(1 + p)λ2
pε

2
+

1

ε2

)

communication rounds. In addition, if the mini-batch size b =
m, i.e., we take the full-batch gradient, the comunication com-

plexity will be improved to

O

(
L

(1 + p)λ2
pε

2
+

1

nε2

)

.

Note that Corollary 2 also matches the result in decentralized

setting [29] and federated setting [20], by setting p = 0 and

p = 1 respectively.

V. NUMERICAL EXPERIMENTS

In this section, we present the numerical performance of

PISCO on real-world datasets, to substantiate its superior per-

formance in terms of communication efficiency and robustness

to various topologies and data heterogeneity.

A. Logistic Regression With Nonconvex Regularization

To investigate communication efficiency of PISCO, we con-

duct experiments on logistic regression with a nonconvex reg-

ularization term [48] using the a9a dataset [49]. Given the

model parameter x and data sample z = (a, y), the empirical

loss �(x; z) is defined as:

�(x; z) = log
(
1 + exp(−ya�x)

)
+ ρ

d∑

l=1

x(l)2

1 + x(l)2
,

where a ∈ R
d is the feature vector, y ∈ {−1, 1} is the corre-

sponding label, the regularizer coefficient ρ is set as 0.01, and

x(l) denotes the l-th coordinate of x.

In this subsection, we consider a ring topology with n = 10
agents and evenly partition the sorted a9a dataset to 10 agents

to augment the data heterogeneity. Roughly speaking, every

agent will receive m = 3256 training samples of dimension

d = 124, where 5 agents will receive data with label 1 and

the others will receive data with label 0. Regarding the mixing

matrix, we follow the symmetric FDLA matrix [50] to aggregate

information among neighbors. In addition, we set the batch size

b = 256 for the following experiments. To reduce the impact of

randomness, we run every experiment with 5 different seeds and

show the average results.

The impact of different agent-to-server probabilities: First,

we study the influence of the agent-to-server communication

probability p on the training and test performance. To this

end, we vary the probability p from {1, 1/100.5, 1/100.75,
1/10, 1/101.25, 1/101.5, 1/101.75, 1/102, 0} and present the

number of communication rounds of PISCO with different p
to achieve 0.05 training accuracy (i.e., 1

K

∑K−1
k=0 ‖∇f(xk)‖22 ≤

0.05) and 80% test accuracy (≥ 95% of the peak accuracy within

1000 communication rounds), in Fig. 4.

From Fig. 4, we observe that just a small agent-to-server prob-

ability (e.g., p ≤ 0.1) can considerably reduce the number of

communication rounds required to attain a specific accuracy dur-

ing both training and testing phases. For instance, PISCO with

p = 10−1.25 ≈ 0.06 can reduce agent-to-agent communication

rounds by 60%, with several agent-to-server communication

rounds. Moreover, even if the server is more accessible (e.g., p ≥
0.1), increasing the agent-to-server communication probability

p might not further save the total communication rounds. This

indicates that not all costly communications between agents and

the server are crucial for accelerating the convergence compared

with decentralized methods. Therefore, by leveraging hetero-

geneous communication, we can reduce the average per-round

communication expense while preserving a comparable rate of

convergence.

The speedup of multiple local updates: To verify the speedup

of multiple local updates, we plot the training accuracy and

test accuracy of PISCO with different numbers of local updates

To = 1 (cf. Fig. 5(a)) and To = 10 (cf. Fig. 5(b)). In both cases,

we vary the probability p ∈ {1, 10−0.5, 10−1, 0}. It is worth

noting that with only p = 0.1 or p = 10−0.5, PISCO already

achieves almost the same performance as PISCO with p = 1.

Comparing Fig. 5(b) with Fig. 5(a), we can clearly observe the

speedup brought by multiple local updates for different proba-

bilities. For example, for PISCO with p = 0.1, the number of

communication rounds required to attain 0.05 training accuracy

or 80% testing accuracy decreases roughly by 50% if we increase

To from 1 to 10.

B. Neural Network Training

Further, we run the single hidden-layer neural network train-

ing with 32 hidden neurons on the MNIST dataset [51]. More

specifically, we use the sigmoid and softmax function as the
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Fig. 4. The number of agent-to-agent and agent-to-server communication rounds required to achieve 0.05% training accuracy (the left panel) and 80% test
accuracy (the right panel) for PISCO with To = 1 and different p ∈ {0, 10−2, 10−1.75, 10−1.5, 10−1.25, 10−1, 10−0.75, 10−0.5, 1}. Here, the blue (red) dotted
line represents the number of agent-to-agent (agent-to-server) communication rounds that PISCO with p = 0 (with p = 1) requires.

Fig. 5. The training accuracy (left two panels) and testing accuracy (right two panels) against communication rounds with different probabilities p =
1, 10−0.5, 10−1, 0 and different number of local updates To = 1, 10, over a ring topology for logistic regression with a nonconvex regularizer on the sorted
a9a dataset.

activation function, where the empirical loss w.r.t. the train-

ing parameter x = vec(W 1, c1,W 2, c2) and the sample z =
(a, y) is defined using the cross entropy loss as:

CrossEntropy(softmax(W 2 sigmoid(W 1a+c1)+c2), y),

where the training weights W 1 ∈ R
32×784, W 2 ∈ R

10×32,

c1 ∈ R
32, and c2 ∈ R

10.

To verify the robustness of PISCO to diverse topologies,

we consider a well-connected Erdős-Rényi topology with a

connectivity probability of 0.3 (corresponding to λw = 0.38)

and a disconnected Erdős-Rényi topology with a connectivity

probability of 0.1 (corresponding to λw = 0). To simulate the

highly data-heterogeneous scenario, we evenly split the sorted

MNIST dataset to n = 10 agents, where agent i ∈ [n] will

receive the training data associated with label i. Moreover,

we set the batch size b = 100, the number of local updates

To = 10 and the agent-to-server communication probability p ∈
{1, 1/√n, 1/n, 0} = {1, 10−0.5, 10−1, 0}. To reduce the impact

of randomness, we run every experiment with 3 different seeds

and show the average results in Fig. 6.
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Fig. 6. The training loss (the left two panels) and testing accuracy (the right two panels) against communication rounds with different probabilities p =
1, 10−0.5, 10−1, 0 and the number of local updates To = 10 over both well-connected and disconnected Erdős-Rényi graphs for 1-hidden-layer network training
on the sorted MNIST dataset.

Fig. 7. The training loss and testing accuracy across epochs with different probabilities p = 1, 1/
√
5, 0.2, 0 and the number of local updates To = 4, over a ring

topology for CNN training on the sorted CIFAR10 dataset.

In Fig. 6, our PISCO shows impressive robustness to high

data heterogeneity and different topologies, including the well-

connected network (cf. Fig 6(a)) and the disconnected network

(cf. Fig. 6(b)). By comparing Fig. 6(a) with Fig. 6(b), we ob-

serve that better connectivity makes gossip communication suf-

ficiently efficient to mix information. As a result, heterogeneous

communication with a smaller p can attain a comparable perfor-

mance to that of PISCO with p = 1 in Fig. 6(a). Notice that the

performance of PISCO with no agent-to-server communication

degenerates remarkably when the network is disconnected. In

contrast, semi-decentralized PISCO (i.e., 0 < p < 1) maintains

performance levels similar to PISCO with p = 1. It illustrates

that a few number of agent-to-server communication rounds can

largely mitigate the impact of the network connectivity, even for

disconnected graphs.

We also evaluate the performance ofPISCO by training a con-

volutional neural network (CNN) on the unshuffled CIFAR10

dataset [52]. The network architecture includes three sequential

CNN modules, each containing two 2D convolutional layers

with ReLU activation, followed by max pooling (kernel size 2,

stride 2) and dropout (rate 0.2) for regularization. Specifically,

in the first module, the initial convolutional layer transforms the

input from 3 to 32 channels, and the second convolutional layer

maintains 32 channels; the second module follows this pattern,
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mapping 32 to 64 channels; and the third similarly increases

from 64 to 128 channels. After feature extraction, the fully

connected layers process the 2048 flattened output, first mapping

it to 128 features with ReLU activation and dropout, and then

to 10 outputs for classification. We use a ring topology with

n = 5 agent and set the batch size b = 20 and the number of

local updates To = 4. To introduce data heterogeneity, we split

the sorted CIFAR10 dataset across the 5 agents, so that each

agent i ∈ [n] obtains training data with label i and i+ 5.

In Fig. 7, we illustrate the effectiveness of PISCO, in terms

of training loss and test accuracy across epochs. We observe

that, due to sparse agent-to-agent communication in the ring

topology and extremely high data heterogeneity, PISCO with

p = 0 converges more slowly than PISCOwith p > 0. Notably,

PISCO with p = 1/
√
5 achieves performance comparable to

PISCO with p = 1, demonstrating the efficiency of the hetero-

geneous communication protocol in reducing costly agent-to-

server communications.

VI. CONCLUSION

In this paper, we develop a communication-efficient algo-

rithm called PISCO for solving federated nonconvex optimiza-

tion over semi-decentralized networks, which enjoys the lin-

ear speedup of local updates and addresses data dissimilarity

without any additional assumptions. By leveraging the heteroge-

neous communication model, PISCO largely reduces commu-

nication overheads in terms of the network dependency with a

few agent-to-server communication rounds, particularly evident

in poorly-connected networks. Both theoretical guarantees and

empirical experiments underscore PISCO’s outstanding com-

munication efficiency and robustness to data heterogeneity and

various network topologies.

In the future, it will be of interest to incorporate variance

reduction techniques [28], [41] into the algorithm design, apply

communication compression [25] to further reduce the per-

round communication costs, and enable varying agent-to-server

communication probabilities [53], allowing for personalized and

heterogeneous communication strategies for each agent.

APPENDIX A

TECHNICAL LEMMAS

This section establishes several critical lemmas which will be

used in the proof of Theorem 1, whose proofs are delegated to

the supplemental materials. Let η = ηcηl.

To begin with, the following lemma shows that Y
k
= Y kJ

is able to track the average of local stochastic gradients, i.e.,

G
k
= GkJ = ( 1

n

∑n
i=1 g

k
i )1

�
n . We define the average model

estimate as xk = 1
n

∑n
i=1 x

k
i ∈ R

d and X
k
= XkJ .

Lemma 1 (Gradient tracking property): Suppose Assumption

1 holds. Then for any k ∈ N,

Y
k
= G

k
.

In addition, if Assumption 2 and 3 hold, we have

E[‖Y k‖2
F
] ≤ 3σ2

b
+ 3L2

E[‖Φk
x‖2F] + 3nE[‖∇f(xk)‖22], (6)

where Φ
k
x = Xk −X

k
is the consensus error at iteration k.

The following two auxiliary lemmas bound the progress im-

provement between the successive iterates and their averages.

Similar to Φ
k
x = Xk −X

k
, we also use Φ

k
y = Y k − Y

k
to

represent the tracking error at the k-th iteration. As for the local

updates, we define t-th local-update consensus error as Φk,t
x =

Xk+1,t −X
k

and tracking error as Φk,t
y = Y k+1,t − Y

k
.

Lemma 2 (Progress improvement between successive iter-

ates): Suppose Assumption 1, 2 and 3 hold. Then, we have

E[‖Xk −Xk−1‖2
F
]

≤ 12
(
1 + 2T 2

oL
2η2

)
E[‖Φk−1

x ‖2
F
]

+ 6(1− p)λ2(To + 1)2η2E[‖Φk−1
y ‖2

F
] +

48nT 2
o η

2σ2

b

+ 24ToL
2η2

To∑

t=1

E[‖Φk−1,t
x ‖2

F
] + 3(To + 1)2η2E[‖Y k−1‖2

F
].

Lemma 3 (Progress improvement between the averages):

Suppose Assumption 1, 2 and 3 hold. Then, we have

E

[∥
∥X

k+1 −X
k∥
∥2

F

]

≤ 3Toη
2σ2

b
+3ToL

2η2
To∑

t=0

E

[∥
∥Φ

k,t
x

∥
∥2

F

]

+ 3nT 2
o η

2
E

[∥
∥∇f(xk)

∥
∥2

2

]

.

Next, we present the following lemma for bounding the accu-

mulated consensus errors for local updates, in order to control

the consensus and tracking errors at every iteration.

Lemma 4 (Accumulated consensus drift for local updates):

Suppose Assumption 2 and 3 hold. If ηl ≤ 1
8L(To+1) , we have

To∑

t=1

E[‖Φk,t
x ‖2

F
] ≤ 9ToE[‖Φk

x‖2F] + 8η2l (To + 1)3E[‖Φk
y‖2F]

+
64nη2l T

3
o σ

2

b
+3η2l To(To + 1)2E[‖Y k‖2

F
].

With Lemma 4 in hand, we are ready to bound the consensus

error E[‖Φx‖2F] and the tracking error E[‖Φy‖2F], respectively.

Lemma 5 (Consensus error for communication updates):

Suppose Assumption 1, 2 and 3 hold. If ηl ≤ 1
8L(To+1) and

η ≤ λp

80L(To+1) , we have

E[‖Φk
x‖2F] < (1− p)

[
1 + (1 + p)λ2

2
E[‖Φk−1

x ‖2
F
]

+
40λ2

λp

(To + 1)2η2E[‖Φk−1
y ‖2

F
]

+
240λ2L2(To + 1)4η2η2l

λp

E[‖Y k−1‖2
F
]

+
320λ2n(To + 1)2η2

λp

σ2

b

]

.

Lemma 6 (Tracking error for communication updates):

Suppose Assumption 1,2 and 3 hold. If ηl ≤ 1
8L(To+1) and
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η ≤ λp

80L(To+1) , we have

E[‖Φk
y‖2F]

≤ (1− p)λ2

[
1 + (1 + p)

2
E[‖Φk−1

y ‖2
F
]+

400

λp

L2
E[‖Φk−1

x ‖2
F
]

]

+
(1− p)λ2

λp

[

125L2η2(To + 1)2E[‖Y k−1‖2
F
] + 180n

σ2

b

]

.

Finally, we establish the descent lemma for PISCO.

Lemma 7 (Descent lemma): Suppose Assumption 1, 2 and 3

hold. If ηl ≤ 1
8L(To+1) and η ≤ 1

6L(To+1) , we have

E[f(xk+1)]− E[f(xk)]

≤ −η(To + 1)

4
E[‖∇f(xk)‖22] +

3L2(To + 1)3ηη2l
n

E[‖Y k‖2
F
]

+
10(To + 1)L2η

n

(
E[‖Φk

x‖2F] + (To + 1)2η2l E[‖Φk
y‖2F]

)

+

(

64L2T 3
o ηη

2
l +

3LToη
2

2n

)
σ2

b
, (7)

for any k ≥ 0.

APPENDIX B

PROOF OF THEOREM 1

From the descent lemma, i.e., Lemma 7, summing (7) from

k = 0 to k = K − 1 gives

η(To + 1)

4

K−1∑

k=0

E[‖∇f(xk)‖22]

≤ f̃ +
3L2(To + 1)3ηη2l

n

K−1∑

k=0

E[‖Y k‖2
F
]

+
10(To + 1)L2η

n

K−1∑

k=0

(
E[‖Φk

x‖2F] + (To + 1)2η2l E[‖Φk
y‖2F]

)

+

(

64L2T 3
o ηη

2
l +

3LToη
2

2n

)
Kσ2

b
, (8)

where f̃ = f(x0)− f ∗.

To show the convergence of 1
K

∑K−1
k=0 E[‖∇f(xk)‖22], we

need to bound right hand side of (8). To this end, we first

formulate the dynamics of consensus errors and tracking errors.

For any k > 0, let

Φ
k �

[

E[‖Φk
x‖2F]

E[‖Φk
y‖2F]

]

and ek �

[

E[‖Y k‖2
F
]

σ2

b

]

.

Assuming that η ≤ λp

80L(To+1) and ηl ≤ 1
8L(To+1) , we can for-

mulate the dynamics from Lemma 5 and Lemma 6,

Φ
k+1 ≤ (1− p)AΦ

k +
(1− p)λ2

λp

Bek,

where

A =

[
1+(1+p)λ2

2
40λ

2(To+1)2η2

λp

400λ
2L2

λp

1+(1+p)λ2

2

]

, (9)

B =

[

240L2(To + 1)4η2η2l 320n(To + 1)2η2

125L2(To + 1)2η2 180n

]

. (10)

By telescoping, we have

Φ
k ≤ (1− p)kAk

Φ
0 +

k−1∑

t=0

((1− p)A)t
(1− p)λ2

λp

Bek−1−t.

(11)

Summing (11) from k = 0 to K gives

K∑

k=0

Φ
k ≤

K∑

k=0

(1− p)kAk
Φ

0

+

K∑

k=0

k−1∑

t=0

((1− p)A)t
(1− p)λ2

λp

Bek−1−t

≤
( ∞∑

k=0

(1− p)kAk

)

Φ
0

+

( ∞∑

k=0

((1− p)A)k
)

K−1∑

k=0

(1− p)λ2

λp

Bek, (12)

where we define 00 = 1.

To control
∑∞

k=0(1− p)kAk in (12), we then establish the

following lemma implying that I − (1− p)A is invertible,

where the proof is delegated to the supplemental materials.

Lemma 8 (The spectral radius of A): If η ≤ (1+p)λ2
p

80
√
10(To+1)L

,

ρ ((1− p)A) < 1,

where ρ(A) denotes the spectral radius of A defined in (9).

Due to the invertibility of I − (1− p)A, it follows [54,

Corollary 5.6.16] that

∞∑

k=0

(1− p)kAk = (I − (1− p)A)−1 ,

such that (12) becomes

K∑

k=0

Φ
k ≤ (I − (1− p)A)−1

Φ
0 +C

K−1∑

k=0

ek, (13)

where

C = (I − (1− p)A)−1 (1− p)λ2

λp

B.

Now, we are going to control the upper bound of the (I − (1−
p)A)−1, i.e., the upper bound of

1

det(I − (1− p)A)
adj(I − (1− p)A),

where det(A) means the determinant of A and adj(A) rep-

resents the adjugate of A. If the step-size further satisfies
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η ≤ (1+p)λ2
p

360(To+1)L , we have

det(I − (1− p)A)

=

(
(1 + p)λp

2

)2

− 16000λ4(To + 1)2L2(1− p)2η2

λ2
p

≥ (1 + p)2λ2
p

4
− (1 + p)2λ2

p

8
=

(1 + p)2λ2
p

8
.

Then,

(I − (1− p)A)−1

≤ 4

(1 + p)2λ3
p

[

(1 + p)λ2
p 80(1− λp)(To + 1)2η2

800(1− λp)L
2 (1 + p)λ2

p

]

,

and

C≤ 240(1− λp)

(1 + p)2λ4
p

[

4c1L
2(To + 1)4η2η2l 6nc2(To+1)2η2

3c3L
2(To + 1)2η2 3nc4

]

,

where

c1 =
(
(1 + p)λ2

p + 60(1− λp)η
2
c

)
,

c2 =
(
(1 + p)λ2

p + 40(1− λp)
)
,

c3 =
(
(1 + p)λ2

p + 1100(1− λp)L
2(To + 1)2η2l

)
,

c4 =
(
(1 + p)λ2

p + 1600(1− λp)L
2(To + 1)2η2

)
.

Thus, if X0 = x0
1
�
n ,

K−1∑

k=0

E[‖Φk
x‖2F] ≤

K∑

k=0

E[‖Φk
x‖2F]

≤ 320(1− λp)(To + 1)2η2

(1 + p)2λ3
p

E[‖Φ0
y‖2F]

+
960c1(1− λp)L

2(To + 1)4η2η2l
(1 + p)2λ4

p

K−1∑

k=0

E[‖Y k‖2
F
]

+
1440c2(1− λp)(To + 1)2η2

b(1 + p)2λ4
p

nKσ2, (14a)

and

K−1∑

k=0

E[‖Φk
y‖2F] ≤

K∑

k=0

E[‖Φk
y‖2F]

≤ 4

(1 + p)λp

E[‖Φ0
y‖2F]

+
720c3(1− λp)L

2(To + 1)2η2

(1 + p)2λ4
p

K−1∑

k=0

E[‖Y k‖2
F
]

+
720c4(1− λp)

b(1 + p)2λ4
p

nKσ2. (14b)

Substituting (14) into the (8), we have

η(To + 1)

4

K−1∑

k=0

E[‖∇f(xk)‖22]

≤ f̃ +
15L2(To + 1)3ηη2l

n

K−1∑

k=0

E[‖Y k‖2
F
]

︸ ︷︷ ︸

T1

+
80c1L

2(To + 1)3ηη2l
n(1 + p)2λ3

p

E[‖Φ0
y‖2F]

︸ ︷︷ ︸

T2

+

(

T3 +
3LToη

2

2n

)

Kσ2/b (15)

where T3 =
7200(84η2

c+2(1+p)λ2
p)(1−λp)L

2(To+1)3ηη2

l

(1+p)2λ4
p

+

64L2(To + 1)3ηη2l . Together with (6) and (14a), we have

K−1∑

k=0

E[‖Y k‖2
F
]

≤ 3Kσ2/b+ 3L2
K−1∑

k=0

E[‖Φk
x‖2F] + 3n

K−1∑

k=0

E[‖∇f(xk)‖22]

≤ 6n

K−1∑

k=0

E[‖∇f(xk)‖22]

+
1920(1− λp)L

2(To + 1)2η2

(1 + p)2λ3
p

E[‖Φ0
y‖2F]

+

(
1440c2(1− λp)L

2(To + 1)2η2

(1 + p)2λ4
p

+
1

n

)

6nKσ2/b

where the last inequality is due to the step-size conditions, i.e.,

η ≤ (1+p)λ2
p

360L(To+1) and ηl ≤ 1
8L(To+1) s.t.

3 · 960c1L4(To + 1)4η2η2l
(1 + p)2λ4

p

≤ 1

2
.

By further assuming that ηl ≤ 1
27L(To+1) we have

T1 ≤ η(To + 1)

8

K−1∑

k=0

E[‖∇f(xk)‖22]

+
α0(1− p)(To + 1)η

n
E[‖Φ0

y‖2F]+α1L
2(To + 1)3ηη2l K

σ2

b
,

for some positive absolute constant α0, α1. Suppose that ηc =

α
√
1 + pλp and ηl ≤

√
1+pλp

360αL(To+1) for some positive α > 0.1.

Then,

T2 ≤ α2

(
(To + 1)η

n

)

E[‖Φ0
y‖2F],

T3 ≤ α3

(
(1− p)L2(To + 1)3η3

(1 + p)2λ4
p

+ L2(To + 1)3ηη2l

)

for some positive absolute constants α2 and α3. Therefore,

η(To + 1)

8

K−1∑

k=0

E[‖∇f(xk)‖22]
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≤ f̃ +O

(
(To + 1)η

n

)

E[‖Φ0
y‖2F]+O

(
(1− p)L2(To + 1)2η2

(1 + p)2λ4
p

+ L2(To + 1)2η2l +
3Lη

2n

)
K(To + 1)ησ2

b
,

which is equivalent to (5).

APPENDIX C

PROOF OF COROLLARY 1

By rearranging and relaxing (5), we have

1

K

K−1∑

k=0

E[‖∇f(xk)‖22]

≤ O

(

f̃

ηlηcToK
+

ηlηcLσ
2

nb
+

1

(1 + p)λ2
p

L2T 2
o η

2
l σ

2

b

+
1

nK
E[‖Φ0

y‖2F]
)

. (16)

To further fine-tune the step-size and obtain the exact conver-

gence rate, we establish the following lemma, which is slightly

different from the Lemma 17 in [55].

Lemma 9: For any parameters r0 ≥ 0, a1 > 0, a2 > 0, if K
is sufficiently large s.t. η′ = min{( r0

a1 K
)

1

2 , ( r0
a2 K

)
1

3 } ≤ η̄, i.e.,

K ≥ max

{
r0

a1η̄2
,

r0
a2η̄3

}

,

we have

ΨK=
r0
η′K

+a1η
′+a2(η

′)2 ≤ 2
(a1r0

K

) 1

2

+2

(√
a2r0
K

) 2

3

.

Proof: We mainly follow the proof of [55, Lemma 17].
� If η′ = ( r0

a1 K
)

1

2 ≤ ( r0
a2 K

)
1

3 ,

ΨK ≤ 2

(
r0a1
K

) 1

2

+ a2

(
r0
a1K

)

≤ 2

(
r0a1
K

) 1

2

+

(√
a2r0
K

) 2

3

.

� If η′ = ( r0
a2 K

)
1

3 ≤ ( r0
a1 K

)
1

2 ,

ΨK ≤ 2

(√
a2r0
K

) 2

3

+ a1

(
r0
a2K

) 1

3

≤ 2

(√
a2r0
K

) 2

3

+

(
r0a1
K

) 1

2

.

From K ≥ max{ r0
a1η̄2 ,

r0
a2η̄3 }, we have η′ ≤ η̄.

�

Then, applying Lemma 9 with η′ = αToηl and

r0 =
f̃√

1 + pλp

, a1 =

√
1 + pλpLσ

2

nTob
, a2 =

L2σ2

(1 + p)λ2
pb

.

we bound the right hand side of (16) as

O

((
Lf̃σ2

nTobK

) 1

2

+

(
Lf̃σ

(1 + p)λ2
p

√
bK

) 2

3

+
1

nK
E[‖Φ0

y‖2F]
)

,

if the number of communication rounds K is suffi-

ciently large, i.e., K ≥ max{ 3602nTobLf̃
(1+p)2λ4

pσ
2 ,

3603bLf̃
(1+p)λ2

pσ
2 } such that

min{( r0
a1K

)
1

2 , ( r0
a2 K

)
1

3 } ≤ η̄ =
√
1+pλp

360L
.
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