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Communication-Efficient Federated Optimization
Over Semi-Decentralized Networks

He Wang

Abstract—In large-scale federated and decentralized learning,
communication efficiency is one of the most challenging bottle-
necks. While gossip communication—where agents can exchange
information with their connected neighbors—is more cost-effective
than communicating with the remote server, it often requires a
greater number of communication rounds, especially for large
and sparse networks. To tackle the trade-off, we examine the
communication efficiency under a semi-decentralized communica-
tion protocol, in which agents can perform both agent-to-agent
and agent-to-server communication in a probabilistic manner. We
design a tailored communication-efficient algorithm over semi-
decentralized networks, referred to as PTSCO, which inherits the
robustness to data heterogeneity thanks to gradient tracking and
allows multiple local updates for saving communication. We estab-
lish the convergence rate of PTSCO for nonconvex problems and
show that PISCO enjoys a linear speedup in terms of the number
of agents and local updates. Our numerical results highlight the
superior communication efficiency of PISCO and its resilience to
data heterogeneity and various network topologies.

Index Terms—Communication efficiency, semi-decentralized
networks, probabilistic communication models, local updates.

1. INTRODUCTION

ONSIDER a networked system that n agents collectively
solve the following federated or distributed optimization
problem:

min f(x) := %Zfz(w), where f;(x) := % Z lx; 2).

xrcRd 2o,
(1)

Here, x € R? denotes the optimization variable, f;(x) denotes
the local and private objective function at agent ¢, and f(x)
denotes the global objective function. In addition, let z represent
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(a) Agent-to-agent communication (b) Agent-to-server communication
model with a general connected model with a star graph, where each
graph, where each agent only com- agent can send messages to and re-
municates with its adjacent agents.  ceive messages from the server.

Fig. 1. Two communication models for distributed ML.

one data sample, D; stand for the dataset with |D;| = m samples
at agent 7, and ¢(x; z) denote the empirical loss of « w.r.t. the
data sample z. Such problems have a wide range of applications,
including but not limited to estimation in sensor networks [1],
resource allocation in smart grids [2], and coordination in multi-
agent systems [3].

In order to tackle this problem, agents have to communicate
with one another for cooperation, since every agent i € [n] only
has access to its own local dataset D;. There are two main
communication protocols, consisting of agent-to-agent com-
munication model (in decentralized ML) and agent-to-server
communication model (in federated ML). Commonly, they are
formulated via different network topologies [4], as shown in
Fig. 1. More specifically, prior works in decentralized ML often
use a general graph to capture the local communication, where
every agentis only allowed to exchange information with its con-
nected neighbors (cf. Fig. 1(a)). In federated ML, the star graph
is commonly used to depict the communication between agents
and the centralized coordinator (i.e., server) who can both collect
information from and broadcast to each agent (cf. Fig. 1(b)).

As the network size increasingly grows, communication ef-
ficiency becomes so critical that significantly hinders both de-
centralized and federated ML from being applied to real-world
applications. Compared with agent-to-server communication,
agent-to-agent communication is much more affordable and
more applicable to large-scale networks. However, without the
coordination of the server, decentralized approaches may need
more communication rounds to reach consensus, especially for
large and sparse networks.

Given that the communication complexity depends on the
trade-off between the communication rounds and the per-round
cost, emerging works focus on heterogeneous communication
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TABLE I
COMPARISON OF OURS AND OTHER SEMI-DECENTRALIZED ALGORITHMS IN NONCONVEX OPTIMIZATION USING THE SAME BATCH SIZE, REGARDING THE
CONVERGENCE RATE, ALGORITHM DESIGN AND DATA HETEROGENEITY ASSUMPTIONS

Aleorith Convergence rate ! Bounded data Accessibility Multiple
gorithm . .
Mini-batch Large-batch heterogeneity assumption of server local updates
Z
Gossip-PGA [5] O (\/7117> O ((%) 3) v every H rounds X
z
HL-SGD [6] o ( 1K) o ((%) 3) v every H rounds X
This paper O (\/ﬁ) O (%) X w.p. p v

Here, K is the number of communication rounds, 7 is the number of agents, 7, is the number of multiple local updates within a single gossip/global
communication round, G is the quantity in bounded dissimilarity between local objective and the global objective, G, is the quantity in bounded
intra-cluster dissimilarity as [6, Assumption 4], G, is the quantity in bounded inter-cluster dissimilarity as [6, Assumption 5].

Communication with server
with probability p

Communicate with neighbors
with probability 1 — p

Fig. 2. The semi-decentralized communication protocol, where the server
can be accessed with probability p and agents can communicate with their
neighbors whenever the server is not available. Here, dotted lines represents
the agent-to-server communication, while the solid ones are for agent-to-agent
communication.

over semi-decentralized networks, to gain the best from both
agent-to-agent and agent-to-server communication [5], [6], [7].
Such semi-decentralized networks—consisting of a centralized
server and a network of agents—widely exist in many appli-
cations, such as autonomous vehicles [8], energy systems [9]
and ML systems [10]. It has been observed that heterogeneous
communication largely alleviates the heavy network dependence
of distributed learning and tackles the communication bottleneck
of the server [5]. However, to the best of our knowledge, all of
them rely on the assumption of bounded data dissimilarity across
agents and a complete characterization of the convergence be-
havior with respect to the network heterogeneity is still lacking.
More detailed discussions on communication-saving strategies
and semi-decentralized approaches are provided in Section I-B.

A. Our Contributions

To fill the void, we propose a communication-efficient al-
gorithm called PTSCO, which incorporates gradient-tracking
techniques [11] and multiple local updates [12] for solving
federated nonconvex optimization over semi-decentralized net-
works modeled by a probabilistic connection model (shown
in Fig. 2). Such a semi-decentralized communication model
(with local updates) allows PISCO to be viewed as a special
form of gradient-tracking-based algorithms with time-varying
networks. However, existing convergence guarantees for non-
convex optimization [13], [14], [15], cannot fully characterize
the benefits of agent-to-server communication and multiple local
updates. Specifically, applying previous analyses would yield

convergence results that depend on the spectral gap of the least
connected network—i.e., the underlying gossip communication
network—while failing to capture the value of agent-to-server
communication. To quantify these benefits, our analysis is of
independent interest and can be readily extended to time-varying
networks. The highlights of our contributions are as follows.

1) We prove that PTSCO converges atarate of O(1/v/nT, K)
for sufficiently large K, where K is the number of commu-
nication rounds and 7}, is the number of local updates. Our
result does not impose the strong assumptions on data het-
erogeneity. Moreover, increasing the number of local up-
dates accelerates the convergence over semi-decentralized
networks. See Table I for a detailed comparison with prior
art.

We show that the communication heterogeneity offered
by a semi-decentralized network largely alleviates the net-
work dependency of communication overheads in decen-
tralized networks via a few agent-to-server communica-
tion rounds. For large and sparse networks (i.e., the mixing
rate A,, — 0), with a small probability p = ©(y/A,,) of
agent-to-server communication, the network dependency
improves from O(A,%) to O(A,!).

We corroborate the superior communication efficiency of
PISCO through simulations on real-world datasets. The
results substantiate the convergence speedup brought by
multiple local updates and the robustness of PISCO to
data heterogeneity and various topologies, even for locally
disconnected networks.

2)

3)

B. Related Works

Over the past few years, distributed optimization has attracted
growing attention and has been extensively explored. For the
convenience of our readers, we provide a review of the most
related works below.

Distributed nonconvex optimization: As the size of the net-
worked system increases, there are considerable algorithms
developed for solving distributed nonconvex optimization.
Roughly speaking, they can be categorized into two classes
— decentralized algorithms [13], [16], [17], [18] where agents
are only allowed to exchange information with neighbors, and
federated algorithms [19], [20], [21] where agents are able to

Here we only present the leading term of the rate for simplicity.
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communicate with the server directly. Early attempts apply
(stochastic) gradient descent to distributed optimization, which
performs well in practice [16], [19]. However, the dissimilarity
among local objectives could degenerate the performance under
heterogeneous data and thus requires additional assumptions like
bounded gradient or diminishing step-sizes. To eliminate such
strong assumptions, many following works [13], [17], [20] have
been developed, including gradient tracking (GT) techniques.
The key idea of GT is to utilize dynamic average consensus [11]
for global gradient estimation, which has been incorporated
with many distributed optimization algorithms to achieve faster
convergence rates in nonconvex settings [22], [23], [24], [25].
Our proposed PISCO also takes advantage of GT to inherit its
robustness against data heterogeneity.

Communication-efficient distributed ML: Communication ef-
ficiency is one of the most important bottlenecks in distributed
ML. In the decentralized setting, the communication complexity
largely depends on the network topology, i.e., poor connectivity
slows down the information mixing and thus requires more
communication rounds to consensus [4]. As for the federated
ML, the communication burden of the centralized server may be
unaffordable. To overcome such bottlenecks, a number of strate-
gies are proposed for improving communication efficiency [26],
including: 1) compression methods: compressing the informa-
tion for communication [25], [27]; 2) multiple local communica-
tion and updates: executing multiple gossip communication [5],
[28] or successive local updates within one communication
round [19], [20], [29], [30]; 3) heterogeneous communication
model over semi-decentralized networks: allowing both agent-
to-agent and agent-to-server communication [5], [31], [32]; and
4) adaptive communication strategies: utilizing event-triggered
communication mechanisms [33], [34], [35] and tailored adap-
tive communication topologies [36], [37], [38], [39] for saving
unnecessary communications. In this paper, we aim to gain the
best communication efficiency from probabilistic heterogeneous
communication over semi-decentralized networks and enable
multiple local updates for more communication savings.

Semi-decentralized ML: As mentioned above, semi-
decentralized ML, resorting to heterogeneous communication,
tackles both the communication bottleneck of the centralized
server in federated ML and the heavy network dependency of
decentralized ML. We mainly summarize the works in noncon-
vex setting that are mostly related to this paper, while refer-
ring readers to [5], [40] for the (strongly) convex setting. For
nonconvex problems, Gossip-PGA [5] first integrates Gossip
SGD [16] with periodical global averaging and obtains a better
scalability. It shows that intermittently communicating with the
server can largely alleviate the heavy dependence on the network
connectivity, especially for large or sparse networks. However,
the theoretical results depend on the assumption of bounded
similarity between local objectives. Moreover, HL-SGD [6]
extends Gossip-PGA to the hierarchical networked structure
with multiple clusters, while HA-Fed [7] can be viewed as
HL-SGD with momentum. Both of them enable intra-cluster
gossip averaging and inter-cluster averaging, but also rely on
the data heterogeneity assumptions which may be impractical
in many real-world applications. Noted that all of them consider

deterministic heterogeneous communication, i.e., agents/cluster
can only communicate with the server every H communication
rounds, but the synchronization largely depends on the avail-
ability of the server. To this end, we consider the probabilistic
communication model, where agents only exchange information
with the server at the probability p. Furthermore, to the best of
our knowledge, none of these approaches enable multiple local
updates within a single communication round, whereas ours
benefits from the linear speedup provided by the local updates.
More detailed comparison can be found in Table I. Note that this
comparison is based on the same batch size, while [5] and [6]
may use fewer batch data per round.

C. Notation

Throughout this paper, we use the lowercase and uppercase
boldface letters to represent vectors and matrices, respectively.
We use || A||r for the Frobenius norm of a matrix A, || A|| for
the largest singular value of a matrix A, ||a||2 for the I3 norm
of a vector a, and ® for the Kronecker product. In addition,
we use I,, for the identity matrix of dimension n, 1,, for the
all-one vector of dimension n and O 4, for the all-zero matrix
of dimension (d x n). For any two real functions f(-) and g(-)
defined on R, f(z) = O(g(z)) if there exist a positive real
constant M and ¢ such that f(z) < Mg(z) for any = > x.
Similarly, f(z) = ©(g(x)) if there exist positive real constansts
My, My and zq such that M;g(x) < f(z) < Mag(zx) for any
x > zo. Note that “<” can be interpreted in an element-wise
fashion, if it is applied to vectors or matrices with the same
dimension.

II. PRELIMINARIES

A. Communication Graph and Mixing Matrix

Consider a semi-decentralized network that has a centralized
server to coordinate all n agents and an undirected commu-
nication graph G = (V,£), where V = {1,...,n} denotes the
set of n agents and & C {{4,j}|¢,j € V} represents the lo-
cal communication between agents. For every agent 7 € V), let
N; = {jl{i,j} € &} denote agenti’s neighbors whom the agent
1 can communicate with.

Moreover, for any communication graph G, the mixing of local
communication can be formally characterized by the mixing
matrix W = [w;;]1<; j<n defined in Definition 1.

Definition 1 (Mixing matrix and mixing rate): Given an undi-
rected communication graph G, a nonnegative matrix W &€
R™ ™ is the mixing matrix, whose element w;; = 0 if and
only if {i,7} ¢ £ and i # j and W is doubly stochastic, i.e.,
W1, =1,and1]W = 1]. The mixing rate of W is a non-
negative constant, i.e.,

1 2
A =1 — HW - 1,1,
n

2

Note that the doubly stochasticity implies || W ||z < 1 and the
mixing rate A, = 1 — A2 € [0, 1], where A denotes the second
largest eigenvalue. The mixing rate can depict the connectivity of
the communication graph G, or to say, the speed of information
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mixing. Mathematically,

Wa -3 < (1- z|l3, Ve eR?,

w)l[® —

where T = %1n1;w € R™. In other words, a larger mixing rate
A indicates a better connectivity as well as a faster process of
information mixing, while disconnected graphs have A,, = 0.
For example, considering a fully connected graph where every
agent can communicate with each other, the mixing matrix can
be defined as

1 T
J = E ]_n 177, ,
and its mixing rate is equal to 1. Specifically, in this paper, we use
J to describe the mixing of the agent-to-server communication.

B. Stochastic Gradient Methods

To improve the computational efficiency, one popular ap-
proach is to replace the full-batch gradients with stochastic
gradients on the mini-batch data samples. In distributed setting,
we define the local stochastic gradient for each agent i € [n] as

1
9:=3 Z Vi(xi; z;),

z;,€Z;

Vi, € RY, )

where Z; C D, denotes the sampled data batch. Here, we assume
that Z; is drawn 1.i.d. from D; with the same mini-batch size
b < m for every agent i € [n] for simplicity, while using an
adaptive batch size could be of interest for better controlling
the variance of stochastic gradients [41]. Note that the local
stochastic gradient g; is an unbiased estimate of V f;(x;), i.e.,

Elg;] = Vfi(x;), Vx; € R%

C. Gradient-Tracking Techniques

In many real-world applications, the local dataset D; on every
agent i € [n] may be quite different from each other, referred
to as data heterogeneity. Accordingly, there exists some local
stationary solution « satisfying V f;(x) = 0 for some i € [n],
but not necessarily with Vf(z) =>"" ; Vfi(x) = 0. Under
such circumstances, directly incorporating stochastic gradient
methods with gossip or global averaging may not converge to
the global stationary solution [16] without the strong assumption
like bounded data dissimilarity.

To address this issue, gradient-tracking (GT) techniques [13],
[42], [43] have been proposed, which utilizes gossip communi-
cation for global gradient estimation leveraging dynamic aver-
age consensus [11]. Recently, DSGT [44] incorporates GT with
stochastic gradient methods for computational efficiency. The
updates at the k-th iteration are defined as: every agent i € [n]
updates its optimization variable ¥ and gradient-tracking vari-
able y¥ by

Z wi (@

—nyh),

yhtl = szjy]+gk+1 g",

where 7 > 0 is the step-size and the initialization y? = g{.
In addition, [45] incorporates GT with variance-reduced tech-
niques and [28] develops an approximate Newton-type methods
with variance-reduced GT to further accelerate the convergence.
More recent works [30], [46] prove that DSGT with multiple
local updates is able to converge under high data heterogeneity
in nonconvex setting.

III. PROPOSED PISCO ALGORITHM

In this section, we introduce PISCO, which exploits com-
munication heterogeneity from the probabilistic communication
model and inherits the robustness to data heterogeneity from
GT. Before the depiction of PISCO, we first introduce some
compact-form notations for convenience. Let the matrices X =
[®1, 22, ..., 2,] €ERP™ and Y = [y;,¥s,...,Y,] € R
represent the collection of all the optimization variables and
gradient-tracking variables, respectively. We also denote the
gradient of empirical loss given the sampled batch dataset
Z={Z;} as

\40.¢

Z VE :cl,zl

zlezl

z Vl(x,; zn)

Zn€Zy

With the local stochastic gradient as (2) in hand, the distributed
stochastic gradient can be represented by

G= [917927 ce 7gn] = %VK(X,Z)

Then, we are ready to describe PISCO detailed in
Algorithm 1, using the above compact notations. At the be-
ginning of the k-th communication round, PTSCO maintains
the model estimate X *, the global gradient estimate Y'* and
the distributed stochastic gradient G*. It then boils down to
the following two stages for achieving both communication
efficiency and exact convergence under data heterogeneity.

® The first stage is to execute 7, local steps without any

communication (cf. line 4-7). The key idea is to utilize
the local computational resources to facilitate the con-
vergence. At the beginning of the local updates, initial-
ize the local-update variables X *+10 = X% y*+1.0 —
Y* and GF*1Y = G*. At the t-th local update, update
{XFHLE y L GEFLEY via (3), maintaining the fash-
ion of gradient-tracking techniques.

® The second stage is to perform the information ex-

change over the semi-decentralized network via a prob-
abilistic communication model (cf. line 8-10), i.e., there
are two possible communication schemes — agent-to-
server communication with probability p and agent-
to-agent communication otherwise. Different schemes
correspond to different mixing matrices (cf. line 8),
i.e., if agents implement the global communication, set
wk=Jg ; otherwise, set whk=w. Then, agents update
{X Pyt GRHIY via (4), using the output of local
updates { X*+1Te yh+LTo GFHLToY yig the selected
communication scheme.
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Algorithm 1: PTSCO for Semi-Decentralized Nonconvex
Optimization.

1: input: X° = x%1, local-update and communication
step sizes 1y, 1., number of iterations /', number of local
updates T, mini-batch size b.

2: initialize: Draw the mini-batch 2 = {2017,
randomly and set Y° = G* = 1v((X"; 2°).

3:for k=0,1,..., K — 1do
4 Set XFH10 — XF yRHLO — yFand GF0 = G".
5: fort=1,2---,T,do
6: Draw the mini-batch Z¥*1* and compute
XRFLt = xhHLtel )y Lt (3a)
Gk‘—i—l,t — lvg(Xk‘—O—l,t,Zk,—i-l,t) (3b)
b )
Yk‘—‘rl,t — Yk—‘rl,tfl _|_ Gk-‘,—l,t _ Gk—‘rl,tfl. (30)
7: end for
% Define W" — J  with pr.obability D,
W' otherwise.
9:  Draw the mini-batch Z**! and update

Xk+1 _ ((1777(:)Xk +nC(X/€+1,To 7nlYk+17To)) Wk

(4a)
Gkl — %Vg(leFl;Zk-‘rl) (4b)
YR+ — (Yk+1,T,, + GRt Gk+1,TO) Wk, (4¢)
10: end for

IV. THEORETICAL GUARANTEES

In this section, we provide the convergence results of our
PISCO under different settings: PISCO converges at a rate of
O(1/+/nT, K) using mini-batch gradients and O(1/(nK)) with
full-batch gradients.

A. Assumptions

Before proceeding to the results, we first impose the following
assumptions on the network model, objective functions and data
sampling.

Assumption 1 (Semi-decentralized network model): Given
the undirected graph G and its mixing matrix W following the
Definition 1, then W* defined in Algorithm 1 satisfies

E[|WFz — 73] < (1 - ,)llz - |3, Yo eR",

where = Jx € R™ and the expected mixing rate A, = A, +
p(1 —Ay) € (0,1].

Note that Assumption 1 is weaker than the connected as-
sumption in prior semi-decentralized literatures [5], [6], [7],
i.e., Ay, > 0. More specifically, Assumption 1 implies that the
underlying graph can be disconnected if and only if p > 0. Only
in the case that the centralized server is unavailable (i.e., p = 0),
Assumption 1 presumes the connectivity of G.

151

Regarding the objective functions, we assume that the op-
timal value f* := min, f(x) exists and f* > —oo. The local
objective functions { f; }"_; could be nonconvex but satisfy the
standard smoothness assumption provided below.

Assumption 2 (L-smooth): Each local function f;() is dif-
ferentiable and there exists a constant L such that

IVfi() =V iy)lz < Lz — yl2, Ve,y e R

In addition, we assume that the local stochastic gradient g, is
an unbiased estimate with a bounded variance, which is widely
used in the literature [5], [6], [7], [25], [30], [47].

Assumption 3 (Bounded variance): For every agent i € [n],
there exists a constant o > 0 s.t.

Ez,~p,[llg: — Vfi(@)|3] < o?/b, V& € R%

Note that in the case of the full-batch gradients, i.e., the
mini-batch size b =m, we can simply set o =0 and thus
Assumption 3 always holds.

B. Convergence Analysis of PISCO

Now, we are ready to present our main results. First, the
following theorem demonstrates that our proposed PISCO is
able to converge to the neighborhood of the stationary solution to
the problem (1) at the rate of O(1/K’) with constant step-sizes.
The proof is postponed to the Appendix B.

Theorem I (Convergence rate): Suppose Assumption 1,2 and
3 hold. Let f = f(z°) — f* and ®)) =Y — Y"J. For any
a>0.1st.n.=ay/(1+p)r,andny < 367%, it holds
that ZkK;Ol E[||V f(Z")||3] converges at the rate of

f Ln\ o
X (nm ) b)

terms due to SGD and local updates

L0 <(1 — ) L*Ton? o

+ (LQTfnf +

1
L)
p

terms due to decentralized overhead

LS xF e RYand

where the average model estimate Z"
n ="

Note that the above convergence result can hold even under
significant data heterogeneity across agents, since we do not
assume any bounded similarity between local objectives.

Due to the existence of the variance o2, we fine-tune the local-
update step-size to obtain the exact convergence rate with the
leading term O(1/y/nT,K), based on Theorem 1. Specifically,
the following corollary considers the scenarios with mini-batch
gradients (i.e., b < O(0? K) and o > 0), while the case of large
or full batch gradients (i.e., the batch size b > (0% K) or o =
0) will be discussed later in Corollary 2. The proof of Corollary
1 is postponed to Appendix C.

Corollary 1 (Convergence rate with mini batch): Sup-
pose all the conditions in Theorem 1 hold. Consider
that the number of communication rounds K is suffi-

ciently large, ie., K > @(”i{gjgf), and the mini-batch
P
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TABLE II
THE NUMBER OF THE EXPECTED AGENT-TO-SERVER/AGENT COMMUNICATION ROUNDS OF OURS AND EXISTING DECENTRALIZED AND FEDERATED ML
ALGORITHMS WITH STOCHASTIC GRADIENTS AND LOCAL UPDATES, TO ACHIEVE THE €-ACCURACY, WHERE € IS SUFFICIENTLY SMALL

Algorithm

# Agent-to-server communication

# Agent-to-agent communication

SCAFFOLD [20]

)

o2 1
o il
(nToe4 + €2

0

ot 1 1
LSGT [30] 0 (nTO A8 4 + nTL/3)E/3ca/3 T T
Lo o? o 1
Periodical-GT [46] 0 % (nToe4 e e 62)
K-GT [46] 0 ( - t st )
, 0 Tﬂ)};é‘l A%m)ﬁ )\%1]62
. po po P —p)o - p)o —-p
This paper () (nToe4 4 Oow £ 2263 4 E) o ( nTocl O + p)263 T2 )

Here, n is the number of agents, T, is the number of local updates, 4, is the mixing rate of the underlying graph.

size b <O(0?K), where o >0. If the step-sizes 7. =

. 2 foo: f
o/ 1+phy, n = ﬁmm{%%&i{‘}é, Y ag;(TbgK} Then,

LSV E[|V£(@*)|13] can converge at the rate of

2
3

Lo?

0 (nTObK) +

From Corollary 1, PISCO can achieve the e-accuracy, i.e.,
K-1 —
% 2o E[IVF(@")[3] < € after

Lo
22VbK

1
nk

Lo? n Lo n 1
nT,bet )LIQ)\/Bé ne?

communication rounds. Notice that if K is sufficiently large and

2 1 . .
the first term (n%'b )2 correspondingly becomes dominant,
increasing the number of agents n or the number of local
updates T, can accelerate the convergence. Such a linear speedup
matches the findings in the special cases of semi-decentralized
ML, i.e., decentralized setting [30], [46] when p = 0 and feder-
ated setting [20] when p = 1.

In fact, PISCO can be generalized to the decentralized case
and federated case by settingp = 0 and p = 1 respectively, while
maintaining comparable convergence guarantees.

Remark 1 (Decentralized case): When p = 0, Algorithm 1
becomes fully decentralized, i.e., agents only perform local com-
munication. Then, the communication complexity to achieve
e-accuracy becomes

Lo? N Lo +L
nTobet 32 /be3  ne? ’

which is better than the rate of Periodical-GT in [46] and
LSGT [30], since the network dependency is O(1/A2) and
only appears in the second term (see Table II). The second term
is slightly worse than K-GT, the variance-reduced Periodical-
GT [46], since it corrects the descent direction with the average
of T, local updates instead of the last local update at commu-
nication. However, they require that the initial local correction
variables are settled in a centralized way. Combining our anal-
ysis with such a variance-reduction method while avoiding the
centralized initialization would be a promising future direction
of this paper.

Network
dependency
12 Agent-to-agent only

w

(j'&/lzv)'_l)

=1 |..
A Our Algorithm: PISCO

(/1114 A—I/Z)
w 2 Mw

R
v Agent-to-server only

1
A, A2 im 1 Probability p

Fig. 3. The network dependency of PISCO regarding agent-to-server com-
munication probability p.

Remark 2 (Federated case): When p = 1, every agent can
communicate with the server directly and thus PTSCO performs
in the federated fashion at any iteration k£ > 1. Then, the com-
munication complexity becomes

0 Lo? Lo 1

<nTobe4 * Vbe3 + n62> ’

where the leading term is the same as that of SCAFFOLD in [20]
with the linear speedup in terms of the network size n and the
number of local updates 7.

Moreover, the highlight of our work is to fill the void of
semi-decentralized ML with the probabilistic communication
model and gain the best communication efficiency from both
agent-to-agent communication and agent-to-server communi-
cation, as shown in Table II. In addition, PISCO is able to
improve the network dependency of the communication over-
heads from O(2,,%) [46] to O(,,?), where the trade-off between
the communication probability and the network dependency is
illustrated in Fig. 3. The flexible heterogeneous communication
brings the superior communication efficiency of PISCO in both
well-connected and poorly-connected networks.

Remark 3 (For well-connected networks): As gossip commu-
nication is efficient to mix information for well-connected net-
works, PTISCO is able to achieve a comparable convergence rate
with much fewer agent-to-server communication rounds com-
pared with using only agent-to-server communication. There-
fore, our PISCO can significantly reduce the communication
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costs for well-connected networks whenever local agent-to-
agent communications are inexpensive.

Remark 4 (For poorly-connected networks): When i, — 0,
performing agent-to-agent only communication often results
in a large number of communication rounds and prohibitive
communication costs. As shown in Fig. 3, with any probability
p > Ay, the network dependency can be reduced to O(p~2).
More specifically, even a small agent-to-server probability p =
©(v/Ay) can significantly improve the network dependency
from O(A,2%) to O(A,'). Take the large-scale path graph as
an example, where the mixing rate A,, scales on the order of
O(1/n?) [4]. Our PTISCO withp = O(1/n) canimprove the net-
work dependency from O(n*) to O(n?). Moreover, if p = O(1),
the communication complexity can be network-independent like
Gossip-PGA [5], but our theoretical analysis does not require
the additional assumption of the bounded dissimilarity between
local objectives.

In many real-world scenarios, it is also popular to choose
large mini-batch size b to guarantee the exact convergence to
the stationary point. As the terms related to the variance o
on the right hand side of (5) scale on the order of O(o?/b), if
we choose a large enough mini-batch size b > ©(0?/€?), the
following desirable result holds.

Corollary 2 (Communication complexity with large batch):
Suppose all the conditions in Theorem 1 holds. If the
batch size b is sufficiently large, i.e., b > @(Z—j), it holds

e Yico E[IVF(@")[3] < € after

K £sk=0
L 1
of——_ 1+ =
((1 e )

communication rounds. In addition, if the mini-batch size b =
m, i.e., we take the full-batch gradient, the comunication com-
plexity will be improved to

[0 # + L
(1+paze  ne )’

Note that Corollary 2 also matches the result in decentralized
setting [29] and federated setting [20], by setting p = 0 and
p = 1 respectively.

V. NUMERICAL EXPERIMENTS

In this section, we present the numerical performance of
PISCO on real-world datasets, to substantiate its superior per-
formance in terms of communication efficiency and robustness
to various topologies and data heterogeneity.

A. Logistic Regression With Nonconvex Regularization

To investigate communication efficiency of PISCO, we con-
duct experiments on logistic regression with a nonconvex reg-
ularization term [48] using the a9a dataset [49]. Given the
model parameter « and data sample z = (a,y), the empirical
loss £(x; z) is defined as:

(1)

d
((w;2) = log (1 + exp(~ya'a)) +p ) 1+az()?

=1

where a € RY is the feature vector, y € {—1,1} is the corre-
sponding label, the regularizer coefficient p is set as 0.01, and
x(l) denotes the [-th coordinate of x.

In this subsection, we consider a ring topology with n = 10
agents and evenly partition the sorted a9a dataset to 10 agents
to augment the data heterogeneity. Roughly speaking, every
agent will receive m = 3256 training samples of dimension
d =124, where 5 agents will receive data with label 1 and
the others will receive data with label 0. Regarding the mixing
matrix, we follow the symmetric FDLA matrix [50] to aggregate
information among neighbors. In addition, we set the batch size
b = 256 for the following experiments. To reduce the impact of
randomness, we run every experiment with 5 different seeds and
show the average results.

The impact of different agent-to-server probabilities: First,
we study the influence of the agent-to-server communication
probability p on the training and test performance. To this
end, we vary the probability p from {1,1/10°° 1/10°7
1/10,1/10%25,1/10%%,1/107°,1/10%,0} and present the
number of communication rounds of PISCO with different p
to achieve 0.05 training accuracy (i.e., = S r o [ Vf(@")|3 <
0.05) and 80% test accuracy (> 95% of the peak accuracy within
1000 communication rounds), in Fig. 4.

From Fig. 4, we observe that just a small agent-to-server prob-
ability (e.g., p < 0.1) can considerably reduce the number of
communication rounds required to attain a specific accuracy dur-
ing both training and testing phases. For instance, PTISCO with
p = 10712° ~ 0.06 can reduce agent-to-agent communication
rounds by 60%, with several agent-to-server communication
rounds. Moreover, even if the server is more accessible (e.g., p >
0.1), increasing the agent-to-server communication probability
p might not further save the total communication rounds. This
indicates that not all costly communications between agents and
the server are crucial for accelerating the convergence compared
with decentralized methods. Therefore, by leveraging hetero-
geneous communication, we can reduce the average per-round
communication expense while preserving a comparable rate of
convergence.

The speedup of multiple local updates: To verify the speedup
of multiple local updates, we plot the training accuracy and
test accuracy of PTSCO with different numbers of local updates
T, = 1 (cf. Fig. 5(a)) and T,, = 10 (cf. Fig. 5(b)). In both cases,
we vary the probability p € {1,107%-5,1071,0}. It is worth
noting that with only p = 0.1 or p = 107%-%, PTSCO already
achieves almost the same performance as PISCO with p = 1.
Comparing Fig. 5(b) with Fig. 5(a), we can clearly observe the
speedup brought by multiple local updates for different proba-
bilities. For example, for PISCO with p = 0.1, the number of
communication rounds required to attain 0.05 training accuracy
or 80% testing accuracy decreases roughly by 50% if we increase
T, from 1 to 10.

B. Neural Network Training

Further, we run the single hidden-layer neural network train-
ing with 32 hidden neurons on the MNIST dataset [51]. More
specifically, we use the sigmoid and softmax function as the
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400 —4— Agent-to-agent |
—4— Agent-to-server

1072 107! 10°
Probability p

(a) Training accuracy %_H SR L IVF@EF)]2 < 0.05.

Fig. 4.

—4—  Agent-to-agent ’
—4—  Agent-to-server

1072 107! 10°
Probability p

(b) Test accuracy < 80%.

The number of agent-to-agent and agent-to-server communication rounds required to achieve 0.05% training accuracy (the left panel) and 80% test

accuracy (the right panel) for PTSCO with T}, = 1 and different p € {0,1072,10~%75 10715107125, 1071,107%-7>,1070-5, 1}. Here, the blue (red) dotted
line represents the number of agent-to-agent (agent-to-server) communication rounds that PTSCO with p = 0 (with p = 1) requires.

Training accuracy

0 25 50 15 100 125 150 175 200

Communication rounds

0 25 50 5 100 125 150 175 200
Communication rounds

(a) The number of local updates 7, = 1.

Training accuracy

0 25 50 75 100 125 150 175 200
Communication rounds

0 25 50 75 100 125 150 175 200
Communication rounds

(b) The number of local updates T, = 10.

Fig. 5.

The training accuracy (left two panels) and testing accuracy (right two panels) against communication rounds with different probabilities p =

1,10795,1071,0 and different number of local updates T}, = 1, 10, over a ring topology for logistic regression with a nonconvex regularizer on the sorted

a9a dataset.

activation function, where the empirical loss w.r.t. the train-
ing parameter = vec(W1, ¢, W, ¢2) and the sample z =
(a,y) is defined using the cross entropy loss as:

CrossEntropy(softmax(Ws sigmoid(Wia+cy)+c2),y),

where the training weights W, € R32x78 W, ¢ R10%32,
¢, € R32, and ¢y € R19,

To verify the robustness of PISCO to diverse topologies,
we consider a well-connected Erd8s-Rényi topology with a
connectivity probability of 0.3 (corresponding to A,, = 0.38)

and a disconnected Erd6s-Rényi topology with a connectivity
probability of 0.1 (corresponding to A,, = 0). To simulate the
highly data-heterogeneous scenario, we evenly split the sorted
MNIST dataset to n = 10 agents, where agent i € [n] will
receive the training data associated with label ¢. Moreover,
we set the batch size b = 100, the number of local updates
T, = 10 and the agent-to-server communication probability p €
{1,1/y/n,1/n,0} = {1,107%5,1071, 0}. To reduce the impact
of randomness, we run every experiment with 3 different seeds
and show the average results in Fig. 6.
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(b) A disconnected Erd6s-Rényi graph with 0.1 connectivity probability.

Fig. 6.

The training loss (the left two panels) and testing accuracy (the right two panels) against communication rounds with different probabilities p =

1,1079:5 1071, 0 and the number of local updates T, = 10 over both well-connected and disconnected Erdés-Rényi graphs for 1-hidden-layer network training

on the sorted MNIST dataset.

=
o

Training loss

=
ot

0.0
0

Fig. 7.
topology for CNN training on the sorted CIFAR10 dataset.

In Fig. 6, our PISCO shows impressive robustness to high
data heterogeneity and different topologies, including the well-
connected network (cf. Fig 6(a)) and the disconnected network
(cf. Fig. 6(b)). By comparing Fig. 6(a) with Fig. 6(b), we ob-
serve that better connectivity makes gossip communication suf-
ficiently efficient to mix information. As a result, heterogeneous
communication with a smaller p can attain a comparable perfor-
mance to that of PTSCO with p = 1 in Fig. 6(a). Notice that the
performance of PTSCO with no agent-to-server communication
degenerates remarkably when the network is disconnected. In
contrast, semi-decentralized PISCO (i.e., 0 < p < 1) maintains
performance levels similar to PTSCO with p = 1. It illustrates

Test accuracy

The training loss and testing accuracy across epochs with different probabilities p = 1, 1/1/5,0.2, 0 and the number of local updates T}, = 4, over a ring

that a few number of agent-to-server communication rounds can
largely mitigate the impact of the network connectivity, even for
disconnected graphs.

We also evaluate the performance of PTSCO by training a con-
volutional neural network (CNN) on the unshuffled CIFAR10
dataset [52]. The network architecture includes three sequential
CNN modules, each containing two 2D convolutional layers
with ReLU activation, followed by max pooling (kernel size 2,
stride 2) and dropout (rate 0.2) for regularization. Specifically,
in the first module, the initial convolutional layer transforms the
input from 3 to 32 channels, and the second convolutional layer
maintains 32 channels; the second module follows this pattern,
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mapping 32 to 64 channels; and the third similarly increases
from 64 to 128 channels. After feature extraction, the fully
connected layers process the 2048 flattened output, first mapping
it to 128 features with ReLLU activation and dropout, and then
to 10 outputs for classification. We use a ring topology with
n = 5 agent and set the batch size b = 20 and the number of
local updates T, = 4. To introduce data heterogeneity, we split
the sorted CIFAR10 dataset across the 5 agents, so that each
agent i € [n] obtains training data with label ¢ and 7 + 5.

In Fig. 7, we illustrate the effectiveness of PISCO, in terms
of training loss and test accuracy across epochs. We observe
that, due to sparse agent-to-agent communication in the ring
topology and extremely high data heterogeneity, PISCO with
p = 0 converges more slowly than PTSCO with p > 0. Notably,
PISCO with p = 1/4/5 achieves performance comparable to
PISCO with p = 1, demonstrating the efficiency of the hetero-
geneous communication protocol in reducing costly agent-to-
server communications.

VI. CONCLUSION

In this paper, we develop a communication-efficient algo-
rithm called PTSCO for solving federated nonconvex optimiza-
tion over semi-decentralized networks, which enjoys the lin-
ear speedup of local updates and addresses data dissimilarity
without any additional assumptions. By leveraging the heteroge-
neous communication model, PISCO largely reduces commu-
nication overheads in terms of the network dependency with a
few agent-to-server communication rounds, particularly evident
in poorly-connected networks. Both theoretical guarantees and
empirical experiments underscore PISCO’s outstanding com-
munication efficiency and robustness to data heterogeneity and
various network topologies.

In the future, it will be of interest to incorporate variance
reduction techniques [28], [41] into the algorithm design, apply
communication compression [25] to further reduce the per-
round communication costs, and enable varying agent-to-server
communication probabilities [53], allowing for personalized and
heterogeneous communication strategies for each agent.

APPENDIX A
TECHNICAL LEMMAS

This section establishes several critical lemmas which will be
used in the proof of Theorem 1, whose proofs are delegated to
the supplemental materials. Let n = n.7;.

To begin with, the following lemma shows that Y =v*kg
is able to track the average of local stochastic gradients, i.e.,

G =G"J = (37 g¥)1). We define the average model
estimate as " = 1 3" xF € R? and X" = x*tJ.

Lemma 1 (Gradient tracking property): Suppose Assumption
1 holds. Then for any k € N,

v =aG"
In addition, if Assumption 2 and 3 hold, we have

— 302 .
B[ 2] < - + 3LE[|@%[2] + 3nE[| V@)1, ©)

where ®" = X% — X" is the consensus error at iteration k.
The following two auxiliary lemmas bound the progress im-
provement between the successive iterates and their averages.
Similar to &% = X" — Yk, we also use <I>§ —Y"—Y" 0
represent the tracking error at the k-th iteration. As for the local

updates, we define ¢-th local-update consensus error as <I>f;t =
—k . —k
XFk+1t _ X" and tracking error as ‘I)?Ij’t =Ykt YT,
Lemma 2 (Progress improvement between successive iter-

ates): Suppose Assumption 1, 2 and 3 hold. Then, we have
E[| X" — X" 7]
<12 (14277 L%9%) E[| @5 7)

48 T2 2 2
+6(1— p)A*(T, + 1*PE[| @} [} + ——
& k—1
+24T,L%° Y E[| @5 E + 3(T, + D*PE[[Y 3.
t=1
Lemma 3 (Progress improvement between the averages):
Suppose Assumption 1, 2 and 3 hold. Then, we have

37,00

To
; +3T, L4 E ||| @5|F]

t=0

+ 30T [V £@)])3] .

B[|x - X2 <

Next, we present the following lemma for bounding the accu-
mulated consensus errors for local updates, in order to control
the consensus and tracking errors at every iteration.

Lemma 4 (Accumulated consensus drift for local updates):

Suppose Assumption 2 and 3 hold. If n; < Wﬂ)’ we have
T,
D E[I@E] < 9TLE[|@EE] + 807 (T, + 1)°E[| @} 7]
t=1
64nn? T30

—k
0T 3T (T, + 1RV 2],
With Lemma 4 in hand, we are ready to bound the consensus
error E[||®,||Z] and the tracking error E[||®, ||Z], respectively.
Lemma 5 (Consensus error for communication updates):
Suppose Assumption 1, 2 and 3 hold. If »n; < m and
)‘P
n S m, we have

1+ (1+p)a2 _
B[ @53 < (1 - p) | —— 2 [ @5 ]
4012 _
(T, + 1)*n°El| 25" I7]
P
24002 L3(T, + 1)*?n? . —k-1
. LEY I
P
3200°n(T, + 1)%n* ®
A b

Lemma 6 (Tracking error for communication updates):

Suppose Assumption 1,2 and 3 hold. If ; < m and
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A

N < sor(rorny» We have
E[]| @37
< - [ e 0w el
+ a-p® {125L2n2(T0 +12E[Y 2] + 180n";] :
p

Finally, we establish the descent lemma for PISCO.
Lemma 7 (Descent lemma): Suppose Assumption 1, 2 and 3

hold. If n; < m and n < we have

(@) - E[f(z")
< -2 Vi @) ) +
L 10(T, + )L

1

6L(To+1)°
—k

Y7

BL2(To + 1%
n

(E[l@L17) +

3LT,n*\ o2
+ = ) . ()

(T, + 1)*n/El|®yI7])
+ (64L2T0377nl2

for any k£ > 0.
APPENDIX B

PROOF OF THEOREM 1

From the descent lemma, i.e., Lemma 7, summing (7) from
k=0tok =K — 1 gives

K-1
1o 20 S mpjv @3
k=0

L OSLA(T, + 1)
< f+ T DS gy
k=0

10(T, + 1)L
Z (E[||®E]F] + (T, + 1)*n7E[|| @5 |[7])
SLT.2\ K

+ (64L2T3nn? + 2n” ) ;’ , ®)

where f = f(z°) — f*.

To show the convergence of - L EIVA@E) 3], we
need to bound right hand side of (8). To this end, we first
formulate the dynamics of consensus errors and tracking errors.
For any £ > 0, let

q)k k12
oo [EURLIR] B[V
E[|| @y 7] T
Assuming that n < m and n; < m, we can for-

mulate the dynamics from Lemma 5 and Lemma 6,

1—

where
[1+(1+p)a?  4022(To+1)%n?
2 o
A = 400)»21/2 1+(1+p))~2 ] 9 (9)
L )Lp 2
B= 240L2(T, + 1)*n’nf  320n(T, + 1)%? (10)
| 125L3(T, + 1)%? 180n '

By telescoping, we have

k-1

Va2
"< (1-plrare’+> (1 —p)A)t%BeH*t
t=0 p
(11)
Summing (11) from &£ = 0 to K gives
K K
Y ek < Y 1-prate’
k=0 k=0
K k-1
(1—p)A k—1-t
B
+) n e
k=0 t=0
< <Z(1 )’“A’“)
k=0
00 K-1
1—p)r?
+ (Z((l p)A)’“> > P ek
k=0 k=0 P

where we define 00 = 1.

To control 7% (1 — p)* A* in (12), we then establish the
following lemma implying that I — (1 — p)A is invertible,
where the proof is delegated to the supplemental materials.

2
Lemma 8 (The spectral radius of A): 1f n < %,

p(1=pA) <1,
where p(A) denotes the spectral radius of A defined in (9).

Due to the invertibility of I — (1 —p)A, it follows [54,
Corollary 5.6.16] that

o0

>0

k=0
such that (12) becomes

pFAF = (I -(1-pA)",

K K-1
deh<(I-(1-pA) e +C) e (13)
k=0 k=0

where

1 —p)A?
C=(I-01-pA" U=p¥ g
Ap
Now, we are going to control the upper bound of the (I — (1 —

p)A)~1, i.e., the upper bound of
1
(T
det(T — (1 —pya) “II = (

where det(A) means the determinant of A and adj(A) rep-
resents the adjugate of A. If the step-size further satisfies

1-p)A),
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(1+p)22
n < 7360@ L. e have
det(I — (1 —p)A)
B ((1 +p)xp>2 ~ 16000A4(T, + 1)*L2(1 — p)*n®?
2 32
- (1+p)223 B (1+p)222 _ (1 +p)2)uf,.
= 4 8 8
Then,
(I-(1-pA)!
4 (14 p)a2 80(1 — Ap) (T, + 1)*n?
~ (14 p)?A3 |800(1 — Ap) L2 (L+p)r2 ’
and
240(1 — Ap) |4ar L2 (T, + 1)*?n?  6nca(T,+1)%02
T (+p)g | 3esLA(T, +1)%? 3ncy ’
where
= ((L+p)A2 +60(1 — Ap)n?)
= (1 +p)A2 +40(1 — 4p)) ,
= ((1+p)Aj +1100(1 — 2p) L (T, + 1)%17) ,
= (14 p)A2 +1600(1 — A,)L*(T,, + 1)°n?) .
Thus, if X° = wolg,
K-1 K
D> E(I®5IE < ) E[|®57)
k=0 k=0
320(1 — 4,)(T, + 1)2n?2
< e E[l|®} 7]
(1+p)*r;
960c1 (1 — Ap)L2(T, + 1)*n?n?
E[|Y
+ W §j||u
N 1440¢2(1 — Ap) (T, + 1)%n? WK o? (142)
b(1+p)?A2 7
and
K-1 K
Z E[||®y 7] < ZE[H'I”;IIE]
k=0 k=0
4
7]E @O 2
S Tipn, [|®,[F]
K-1
720c3(1 — A,)L2(T, + 1)%n? —k
A+ p)id > ElY I
P)"Ap k=0
1 _
T20ei(L=2p) |y 2. (14b)

b(1+ p)%é
Substituting (14) into the (8), we have

K-1
@ SRV (@)

k=0

- ABLA(T, + 1P "= ok
<+ BEE DS gyt

k=0
T
80c; L2(T, + 1)3nn?
s El®)]F]
n(1+p)?i3
1>
3LT, 0?2
+ <T3 + n ) Ko?/b (15)
2n
where Ty = 7200(841;3+2(1+1Z)1/\_E;Z))§;;;p)y(To+1)37ml2 n
64 L*(T, + 1)3nm?. Together with (6) and (14a), we have
Kl
> EIYI
k=0
K-1 K-1
< 3Ko®/b+3L% Y E[|®L[IF] +3n Y E[IVf(@")]3]
k=0 k=0
K-1
<6n Yy E[|Vf(@")3]
k=0
1920(1 — A,)L2(T, + 1)2n?
SR E[||®}13]
(1+p)*A3
1440c5(1 — 2,)L2(T, + 1)202 1 )
— | 6nKo*/b
+( (1+p)2)»g —|—n nKo*/

where the last inequality is due to the step-size conditions, i.e.,

(14p)r3 s.t

< Sgon(r,4n andm <

1
RL(To+1)

3-960c1 LY(T, + 1)*nn? - 1
(1+p)2ad =3

By further assuming that 7; < we have

1
TL(T,+1)

N

-1

1, < "ot D) S~ gy st

< Mo IB)

b
I
<]

—p)(T, + 1)1 o’

: E(I1 @012 +ar L2(T, + 1Pmi K2,
for some positive absolute constant o, ;. Suppose that 7. =
ay/1+pip and n < o30S m for some positive o > 0.1.
Then,

(T, +1)n
T> < o (n E[[|®}I7],

(1 —p)L* (T, + 1)%n*
(1+p)2rd

+Ck()(].

T; < ag ( + L2(To + 1)3777712>

for some positive absolute constants ais and az. Therefore,

K-1
E[|V /("
k=0

n(T,+ 1)

S JIE)
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p)L*(To + 1)1
(1+p)2ad
K(T, + 1)no?
b b

< fro( T spagao (4

3L
z+n>

+ L3(T, + 1)* 5

which is equivalent to (5).

APPENDIX C
PROOF OF COROLLARY 1

By rearranging and relaxing (5), we have

K-
—k
= g IV

f LommeLo® 1 LPTinio’
mneT, K nb (1+ p))»f, b

IN

@)

1
s ElegIR). (16)
To further fine-tune the step-size and obtain the exact conver-
gence rate, we establish the following lemma, which is slightly
different from the Lemma 17 in [55].
Lemma 9: For any parameters g > 0,a; > 0,a2 > 0, if K

1 1 o
1K) (G R)T ) < ie,

is sufficiently large s.t. ' = min{(;
K> m{ } ,
a17?’ asf)

we have

\IIK

(n')? <z(";§°)5+2<@"0)§

Proof: We mainly follow the proof of [55, Lemma 17].

o Ify/ 7( K)2 S(agK)%’
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Toa1 3
v <2
(%)
3 Jaz z
Toa1 a27o
<2
() + (%)
® Ifﬁ*( K)%S(alK) >
\azro 0 5
< T CLQK
5 \asro %-I- Toa1 3
- K K
fo-1, we have i < 7).

From K > max{-"

K

N

o

oK <9

ai 772 ? agm- O
Then, applying Lemma 9 with ' = aT,7; and
f VI + pr,Lo? L2052
rg = —F/—— Q) = ———F———,0a = 7T N.9.°
0T VTxph, nTb 7T (14 p)aZb

we bound the right hand side of (16) as

Lfc? )2 ( Lfo
© (mwK * (1+p)A2VbK

if the number of communication rounds K is suffi-

360°nT,bLf 360°bLf
ciently large, i.e., K > max{ A+p)73e” (tp)ids = } such that
1 1 _ V14+pA
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