
Scalable Dynamic Resource Allocation via Domain

Randomized Reinforcement Learning

Yiqi Wang

Electrical and Computer Engineering

Carnegie Mellon University

yiqiw2@andrew.cmu.edu

Laixi Shi

Computing and Mathematical Sciences

California Institute of Technology

laixis@caltech.edu

Martin Hyungwoo Lee

Electrical and Computer Engineering

Carnegie Mellon University

martinhwl@cmu.edu

Jaroslaw Sydir

Intel Labs

Intel Corporation

jerry.sydir@intel.com

Zhu Zhou

Intel Labs

Intel Corporation

zhu.zhou@intel.com

Yuejie Chi

Electrical and Computer Engineering

Carnegie Mellon University

yuejiechi@cmu.edu

Bin Li

Intel Labs

Intel Corporation

bin.li@intel.com

Abstract—In 5G wireless networks, the User Plane Function
(UPF) plays a crucial role in efficiently transferring users’ traffic
— a series of data packets — to manage internet communica-
tions. Setting the server’s processor frequency excessively high
can easily meet the packet drop requirements but may lead
to unnecessary power consumption. Therefore, as user traffic
fluctuates, selecting the optimal processor frequency is essential
for minimizing power consumption while satisfying packet drop
constraints. This challenge motivates us to address the dynamic
resource (frequency) allocation problem, where deep reinforce-
ment learning (RL) has shown significant potential. Most existing
studies train and evaluate the RL model in the same environment
with consistent traffic patterns. However, frequent variations in
user traffic can cause the policy trained on the outdated traffic
to fail catastrophically on unseen traffic.

To address such traffic distribution shifts, we propose a
two-phase RL approach augmented with Automatic Domain
Randomization (RL-ADR). This method includes a training
phase that utilizes domain randomization to create a library
of policy candidates, and an inference phase that selects the
optimal frequency using this policy library alongside a safe data
buffer. The proposed RL-ADR achieves zero packet drops on
two unseen long-horizon traffics (3 hours) after being trained
on 25 synthetic traffics that only span for 18 seconds. Compared
to static resource allocation baselines, RL-ADR reduces power
consumption by at least 14.5% and performs comparably to the
oracle solution.

Index Terms—Resource allocation, deep reinforcement learn-
ing, domain randomization.

I. INTRODUCTION

A growing number of mobile devices connect to wireless

networks on a daily basis, requiring a wireless network to

process users’ traffic efficiently to meet the quality of service

required by different applications (e.g., video streaming [1]).

In 5G core network, the 5G User Plane Function (UPF)

workload [2] plays an important role in transferring users’

traffic (consists a series of packets) to meet strict packet

This material is based upon work supported by the National Science
Foundation under grant no. CNS-2148212 and is supported in part by funds
from federal agency and industry partners as specified in the Resilient &
Intelligent NextG Systems (RINGS) program.

drop requirements from various applications. While it is

possible to meet the packet drops requirement easily by

increasing the processor frequency of the server (core or

uncore frequencies), higher processor frequency will result in

a rise in power consumption. This becomes a huge concern

of both the electric bills and sustainability regarding that

communication technology has contributed 2-2.5% worldwide

greenhouse gas emissions [3]. Thus, adaptively choosing the

processor frequency based on the user traffic becomes the key

to balancing two competing objectives: 1) minimizing packet

drops (ideally 0 drops), and 2) minimizing power consumption

(only allocating necessary resources).

Since consistently allocating high frequency leads to ex-

cessive power consumption when the packet rate is low,

adaptively allocating resources to match the dynamically

changing traffic rates are crucial for practical and power-

efficient networks. For such sequential decision making prob-

lems, deep reinforcement learning (RL) has shown significant

power when there are multiple competing objectives to be

considered. For instance, [4], [5] combines two objectives —

packet drops and cache allocations/power consumption — into

the reward functions to train a deep Q-network (DQN) [6] to

allocate resources for network packet processing workload.

Despite the recent progress in allocating resources via deep

RL, we notice that vanilla RL usually trains and evaluates the

policy in the same environment (with an identical traffic pro-

file), illustrated in Fig.1. In real-world applications, however,

the unseen traffic during inference process could deviate from

the one used in training, posing a generalization challenges.

Vanilla RL approaches can’t achieve zero packet drops and

low power consumption in such unseen environments.

To address the generalization challenges, in this paper,

we propose a novel 2-phase algorithm named RL-ADR to

train a deep RL control policy with Automatic Domain

Randomization (ADR) technique (see Fig. 1) to enable re-

source allocations on completely unseen traffics. The main

contributions are summarized as below:

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

2635
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 17:39:56 UTC from IEEE Xplore. Restrictions apply.

for a long-horizon traffic. Finally, we highlight our design of

the neural network architecture for deep RL, tailored for the

resource allocation tasks with different types of states.

A. Domain Randomized RL

Motivated by the capability of ADR to enable generaliza-

tion (introduced in Section II-B), we designs an algorithm

to randomly generate traffics (a sequence of packet rates)

with constrained values and steepness. The packet rates range

[pmin, pmax] is divided into K intervals uniformly to construct

K2 traffics. For the interval k and its combination with all K

intervals, there’re K number of interval pairs. For each pair

of the intervals, we will 1) uniformly samples a start and

end rate from the first and second interval respectively; 2)

uniformly sampling a rate between the start and end rate; and

lastly 3) generates the full traffics by connecting the selected

3 rates smoothly. Note that all the traffics generated by the

above steps are simple traffics that are flat, monotonically

increasing or decreasing as time goes. Empirically, we found

learning from these simple traffics patterns are sufficient to

handle unseen real world traffics and challenging synthetic

traffics.

The overall procedure is described by Algorithm 1. The

policy of the RL agent is trained to solve K2 number of

short-horizon traffics generated by traffic generator G, each

with a total number of T steps. We reinitialize replay buffer

B when a new traffic is generated from G, while not the

policy π since the knowledge from previous training process

could be helpful. Given N = K2 number of randomized

traffics (environments), N corresponding trained policies will

be added to the library L, each is registered with a key (start

rate, end rate) used for policy retrieval.

Algorithm 1 Domain Randomized RL

1: procedure ADR(K,T)

2: N ← K2 ▷ Number of traffics in ADR

3: Initialize a RL policy π and a0. ▷ default action

4: Initialize a traffic generator G.

5: Initialize a RL environment to be interacted E

6: while N > 0 do

7: key, traffic← G ▷ yields the next traffic to train

8: Initialize an empty replay buffer B
9: s1, ← E(traffic)(a0)

10: for t = 1 to T do

11: at = π(st).
12: st+1, rt ← E(traffic)(at)

13: Add experience (st, at, rt, st+1) to B
14: Optimizes π by sampling experience from B
15: end for

16: Add { key: π } to the policy library L.

17: N ← N − 1
18: end while

19: return policy library L

20: end procedure

B. Policy Library Inference

Our inference algorithm combines the policy library L

obtained through the training process with a safe buffer b. Al-

though a library of policies from phase 1 is trained to allocate

resources for many different rates, the training process cannot

cover all possible rates given limited computation resources

and time. Thus, we introduce a safe buffer constructed based

on the the training data to 1) output safe actions (no packet

drops with reasonable power) when the rate is unseen for the

library or 2) output a lower bound action to remove trivially

bad actions from the policy’s predictions.

In buffer b, discrete rates are keys, and power-efficient

actions are values. Regarding that the prior data during

training is noisy, an action corresponding to a key rate p of b

in a low-rate regime is determined by: 1) finding all actions

from the training data with some rate p′ ≥ p, and 2) chooses

the action with the reward as high as the 98% percentile one

among all the actions. The lower rate range is defined by

rate ≤ 5 millions of packets per seconds (mpps). For higher

rate regimes (> 5 mpps), we use the 30% percentile instead

of 98%. The intuition behind this is that dropping packets

is more likely to take place when packet rates are high.

Therefore, we choose a safer action associated with smaller

rewards (i.e., 30%), which is equal to higher frequency. For

the lower rate, we choose the action that almost achieves

minimum power consumption. The hyperparameters including

5 mpps, 98%, and 30% percentile are determined based on

domain knowledge and empirical performance.

Armed with the prior brought by the safe buffer b, the pol-

icy library L inference procedure is summarized in Algorithm

2. At each time step, the proposed algorithm tries to 1) pick

up a candidate policy from the library L to output power-

efficient action and 2) combine with the information in the

safe buffer b to make the action power-efficient and safe. For

the first step (line 9-20, Algorithm 2), a policy from L will be

a candidate when the rate pattern matches the key of the policy

library. Specifically, we look through all the keys in libaray

L and consider those cases that the key (i.e., (start rate, end

rate)) and the current rates (last rate and current rate) have the

same tendency, namely increasing (i.e., key.start < key.end

and last rate < rate) or decreasing. In such cases, the policy

trained on the corresponding traffic is assumed to be capable

of allocating resources with efficient power consumption for

the current step. If such cases occur, we only output one

candidate (the policy corresponds to one key) whose packet

range is the smallest one (line 13, Algorithm 2). The reason is

that a smaller packet rate range indicates the policy is trained

on flatter traffic, which empirically yields better performance

given the traffic is easier to solve. After finalized the chosen

policy from L, it will predict an action. Then, a lower-bounded

action is retrieved from the buffer (line 21-22, Algorithm 2)

to make sure the action to be executed is not trivially unsafe

(dropping packets). The lower-bound action will be retrieved

by rounding the current rate down to the nearest key rate

in the safe buffer. The final action will be the maximum

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

2637
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 17:39:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Policy Library Inference

1: procedure INFERENCE(L, traffic, T, b)

2: Initialize a RL environment wrapper E

3: p′ ← 1 mpps ▷ initializes previous rate to minimum

4: for t = 1 to T do

5: idx← 0 ▷ Index to retrieve π from Library L

6: π ← None

7: p← traffic[t] ▷ current packet rate

8: range← +∞
9: while idx < len(L.keys) do

10: key← L.keys[idx]
11: if sign(p′ − p) = sign(key.start− key.end)
12: and min(key) ≤ p ≤ max(key) and

13: max(key)−min(key) ≤ range then

14: range← max(key)−min(key)

15: π ← L[key] ▷ prefers π trained on

16: flatter traffics

17: end if

18: idx← idx + 1
19: end while

20: if π is not None then

21: π predicts an action.

22: Lower bound the action by checking b.

23: else

24: Replays a safe action from buffer b.

25: end if

26: Execute the action in E(traffic).
27: p′ ← p

28: end for

29: end procedure

core and uncore frequencies between lower-bound action and

the predicted action since any action lower than the action

corresponding to a lower rate is prone to drop packets. If a

rate at test time cannot be matched to any policy in the library,

an action corresponding to the nearest round-up key rate in

the safe buffer will be replayed (line 24, Algorithm 2).

C. Feature-Aware Architecture Design

Recall that deep RL usually parameterizes the policy using

a deep neural network, such as one of the widely used

method DQN [6]. Tailored to our tasks, we propose a new

neural network architecture named DQN-FiLM, since a state

is composed of two types of inputs: 1) 8 performance counters

(large integers) and 2) one incoming packet rate (a floating

point number). Known from domain knowledge, the packet

rate involves more information for predicting the next action

than the performance counters. To address such information

bias, we insert FiLM [9] layers to the architecture used

in DQN (fully connected layers) to emphasize on packet

rates, shown in Fig. 2. Each FiLM layer transforms the

representation Xi from the previous layer by a γi and a

βi (both are scalars predicted by the FiLM generator) for

i = 0, 1, 2. The parameters {γi} and {βi} from all FiLM

Fig. 2. Illustration of the architecture used in DQN with FiLM layers. The
representation learned from counters will be transformed by the γ, β learned
by a separate network.

layers are predicted by a separate neural network (shown in

Fig. 2 in red), taking packet rate as the input. Lastly, the

decision backbone shown in red and blue in Fig. 2 will output

Z, which will be fed into the two prediction heads for state-

action value predictions, similar to Tavakoli et al. [10].

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setups

Task environmental settings. The state observed by an

RL policy on the UPF server is based on performance

counters and packet rates. In the experiments, we consider

8 performance counters (shown in Table I) selected through

the technique in [5]. We assume the RL policy can directly

observe the current ground truth packet rates as part of the

state during both training and inference. The policy chooses a

core frequency from the set [800, 900, ..., 2300] MHz and an

uncore frequency from [800, 900, ..., 2400] MHz as an action.

Frequency adjustments are made through the CPU governor

interface [11], while non-utilized cores are set to idle.

The reward signal is computed from both packet drops

D and power consumption P , shown in Algorithm 3. It

penalizes packet drops with negative values constructed from

current packet drops for 1 second, scaled by the maximum

possible packet drops profiled in advance. If there are no

packet drops, it will output a positive value to encourage the

actions with smaller power consumption. We use Intel PCM

Power monitor [12] to measure the power consumption of

the socket where the UPF workload runs on, and measure the

packet drops at the Network Interface Card (NIC).

Finally, The experiments are conducted on a two-server

system, where the UPF workload runs on dedicated cores on

one socket of an Intel Ice Lake Xeon® server. This server is

TABLE I
CPU PERFORMANCE COUNTERS USED BY RL.

cycle activity.stalls mem any
cycle activity.stalls l2 miss
frontend retired.latency ge 32
offcore requests outstanding.cycles with demand code rd
uops executed.core cycles ge 3
rs events.empty cycles
offcore requests.demand data rd
mem load retired.l2 miss

2024 IEEE Global Communications Conference: Selected Areas in Communications: Machine Learning for Communications

2638
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 25,2025 at 17:39:56 UTC from IEEE Xplore. Restrictions apply.

