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Abstract We perform a comprehensive investigation of the statistical distribution of outer belt electron
acceleration events over energies from 300 keV to ∼10 MeV regardless of storm activity using 6‐years of
observations from Van Allen Probes. We find that the statistical properties of acceleration events are consistent
with the characteristic energies of combined local acceleration by chorus waves and inward radial diffusion.
While electron acceleration events frequently occur both at <2 MeV at L < 4.0 and at multi‐MeV at L > 4.5,
significant acceleration events are confined to L > ∼4.0. By performing superposed epoch analysis of
acceleration events during storm and non/weak storm events and comparing their geomagnetic conditions, we
reveal the strong correlation (>0.8) between accumulated impacts of substorms as measured by time‐integrated
AL (Int(AL)) and the upper flux limit of electron acceleration. While intense storms can provide favorable
conditions for efficient acceleration, they are not necessarily required to produce large maximum fluxes.

Plain Language Summary The Earth's outer belt electrons with high energies, also known as
“killer” electrons due to their deleterious effects on satellites, can be quickly accelerated with fluxes varying up
to several orders of magnitude. Historically, these electron dynamics are associated with geomagnetic storms. It
remains unclear what is the critical geomagnetic condition that governs the electron acceleration during non/
weak storm time. Our study, to our best knowledge, provides the first statistical analysis of electron acceleration
events over a wide energy range (300 keV to ∼10 MeV) regardless of storm events using 6‐years observations
from Van Allen Probes. The statistical properties of acceleration events strongly depend on L‐shell and energy,
which are consistent with the characteristic energies of combined local acceleration by chorus waves and inward
radial diffusion. By performing a superposed epoch analysis of acceleration events during storm and non/weak
storm events and comparing their geomagnetic conditions, we reveal the strong correlation between
accumulated impacts of substorms as indicated by time‐integrated AL (Int(AL)) and the upper limit of electron
acceleration. While intense storms can provide favorable conditions for efficient acceleration, they are not
necessarily required to produce large maximum fluxes.

1. Introduction
The Earth's outer radiation belt electrons contain energies ranging from 100s keV to several MeV, and can pose a
hazard to the Earth‐orbiting satellites as well as our heavily space‐based connection‐dependent society. These
electrons can be quickly accelerated, with fluxes varying by several orders of magnitude on timescales of hours to
days via local acceleration by whistler‐mode chorus waves (e.g., Reeves et al., 2013; Thorne et al., 2013) and
inward radial diffusion (e.g., Hudson et al., 2008; Ozeke et al., 2020). Nevertheless, recent statistical studies
reported the existence of an upper limit for these electron fluxes during storm time, showing similar energy
spectra shapes regardless of storm magnitude, with shaper gradients at multi‐MeV compared to hundreds of keV
(Hua, Bortnik, & Ma, 2022; Zhang et al., 2021). The key question to address, is: what is the critical geomagnetic
condition that produces larger electron maximum fluxes at this upper limit? It is crucial to understand the un-
derlying physical mechanisms that control these electron dynamics and is the primary concern in radiation belt
electron forecast.

Several efforts have been dedicated to understanding the critical factors in producing upper limit of electron
fluxes. Statistical studies demonstrated a small correlation between maximum fluxes and magnitude of storms as
measured by averaged Dst, (SYM‐H)min, or time‐integral of SYM‐H indices (Hua, Bortnik, & Ma, 2022, Hua
et al., 2019; Zhang et al., 2021), indicating that the maximum electron fluxes are not dominantly controlled by
storm activity or intensity. By comparing electron dynamics during small and large storms, Anderson et al. (2015)
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demonstrated that the response of relativistic electrons at geosynchronous orbit to small storms is as extreme as
large storms. By separately investigating the impacts of storms and substorms, Hua, Bortnik, Chu, et al. (2022)
revealed the essential role of cumulative substorm activity as indicated by the time‐integral of AL index instead of
storms in producing the maximum fluxes during storm time, which is supported by the results using machine‐
learning technique, indicating the significant contributions of clusters of AL peaks to the rapid flux enhance-
ment (Ma et al., 2024). This is mainly attributed to the sustained existence of both source and seed electrons
during intense and long‐lasting substorms (Hua, Bortnik, Spence, & Reeves, 2023; Jaynes et al., 2015). Their
results are consistent with previous studies that time‐integrated geomagnetic indices were more informative in
predicting the 10‐day time‐integrated 2‐MeV electron acceleration in the outer belt than instantaneous values
(Mourenas et al., 2019, 2022). The reason is that the upper limit of relativistic electron fluxes are the cumulative
results of acceleration processes that take hours to days to reach their full effect (Agapitov et al., 2019; Li
et al., 2016; Tu et al., 2014).

Although previous studies have revealed the crucial role of the time‐integrated substorm activity in producing the
maximum fluxes, all of these studies are limited to electron acceleration during storm events while it remains
unclear whether this conclusion applies to non/weak storm events. Furthermore, historically, relativistic electron
dynamics has been associated with storm activities (e.g., Murphy et al., 2018; O’Brien et al., 2001; Reeves, 1998;
Reeves et al., 2003). This is reflected in that the most popular way of investigating the outer belt electron dy-
namics is to perform superposed epoch analysis with tepoch = 0 corresponding to (SYM‐H)min (e.g., Gu
et al., 2020; Turner et al., 2015, 2019; Zhao et al., 2019). Considering that the upper limit of electron fluxes does
not depend on storms, a comprehensive study is needed to investigate the upper limit of electron acceleration
during both storm and non‐storm events, and compare their critical controlling geomagnetic conditions. In this
letter, for the first time, we investigate the statistical distributions of outer belt electron acceleration events over
energies of 300 keV–10 MeV regardless of storm activity during the Van Allen Probes Era. By comparing the
electron flux evolution during storm and non‐storm events and performing correlation analysis, we aim to identify
the controlling geomagnetic conditions needed to reach the upper limit of outer belt electron acceleration during
both storm and non‐storm time.

2. Selection of Outer Belt Electron Acceleration Events
In this study, we employed electron flux data from the Energetic Particle Composition and Thermal Plasma suite
(ECT; Spence et al., 2013) onboard both Van Allen Probes (Mauk et al., 2013) during 2013–2018. The spin‐
averaged cross‐calibrated fitted electron flux data product with high energy resolution were adopted (Boyd
et al., 2019). The L‐shell used in this study is the McIlwain L calculated using the TS04D model (Tsyganenko &
Sitnov, 2005). We adopted the storm index (SYM‐H) and substorm index (AL) at 1‐min resolution from the
OMNI data set.

To comprehensively examine the statistical distributions of outer belt electron acceleration events and their upper
limit, we analyze all the electron acceleration events across energies of 300 keV–10 MeV over L = 2.0–6.5 during
2013–2018 regardless of storm activity. Due to much less spatial coverage of Van Allen Probes at L > 6.5, we
focus on the results at L ≤ 6.5. The acceleration events are automatically selected using the following criteria:

1. The electron fluxes are first binned into a 0.1L×6 hr UT grid during 2013–2018. Due to the highly elliptical
orbit of Van Allen Probes with orbit period of ∼9 hr, the time bin size of 6 hr ensures at least one available
measurement in each bin for most of the time, which has been widely used to investigate the outer belt electron
dynamics in previous studies (e.g., Hua, Bortnik, Chu, et al., 2022; Turner et al., 2015, 2019).

2. An increase of flux by a factor of >5 compared to the fluxes observed anytime within a 2‐day look‐back time
window is considered as one acceleration sample, which captures the quick and significant flux enhancements.
Here, one acceleration sample corresponds to one acceleration point at a given L‐shell and energy in one 6‐hr
time bin.

3. The acceleration samples at a given L‐shell and energy that were observed within 1 day are considered as the
same acceleration event. Since there can be oscillations in electron fluxes during one acceleration event, this
criterion ensures that the acceleration event with flux oscillations is regarded as one continuous event instead
of multiple separate events.
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4. The commencement of the acceleration event (t0) is defined as the time of the lowest flux within 2 days of
look‐back window of the first acceleration sample, while the end of the event (t1) corresponds to the time of
flux reaching its maximum value ( jmax).

We use Van Allen Probes observations at L = 5.5 from 29 November to 25 December in 2015 to demonstrate how
our selection criteria successfully identify acceleration events. The SYM‐H and AL indices are show in Figures 1a
and 1b. Figure 1c displays the 3.2‐MeV electron fluxes, with all the fast and strong flux enhancements suc-
cessfully identified as acceleration events, which are shown as red diamonds. Clearly, the acceleration events can
be observed during both non/weak storm and storm times as highlighted in blue and yellow shaded regions,
respectively. Here, the non/weak storm means the SYM‐H index remains at >−50 nT during the whole accel-
eration event plus one day before t0. Otherwise, it is considered to be a storm event. Therefore, we first identity the
electron acceleration events and then determine their geomagnetic conditions so that the acceleration events are
selected regardless of storm activity. Hereafter, (SYM‐H)min represents the minimum value of SYM‐H during this
time interval. Interestingly, all the four identified acceleration events seem to correlate with clusters of strong AL
activity, suggesting the potentially important role of continuous substorms in these acceleration events.
Furthermore, the identified acceleration events at color‐coded energies in Figure 1d suggest that the acceleration

Figure 1. Examples of electron acceleration events observed at L = 5.5 by both Van Allen Probes. (a) SYM‐H index, with the
magenta dashed line representing SYM‐H = −50 nT. (b) AL index. (c) Spin‐averaged 3.2‐MeV electron fluxes, with the red
diamonds representing the selected acceleration events. The shaded regions in panels (a–c) correspond to acceleration events
for 3.2‐MeV electrons during non/weak storm (blue) and storm events (yellow), respectively. (d) Similar to (c) but for
electron fluxes at color‐coded energies, with the diamonds representing the identified acceleration events.
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events strongly depend on energy, with different t0, t1, and magnitude of acceleration at different energies. Still,
all the identified acceleration events at different energies are associated with clusters of strong AL index.

3. Results
3.1. Statistical Distributions of Electron Acceleration Events

Figure 2a shows the number of electron acceleration events as a function of L‐shell and energy based on 6‐years
Van Allen Probes observations. Interestingly, it seems that the acceleration events fall into two groups as shown
by the two peaks in number of acceleration events: one group at <∼2 MeV at L < 4.0 (marked as Group 1 in
Figure 2a), and another one at >∼2 MeV at L > ∼4.5 (marked as Group 2 in Figure 2a). The distributions of the
event numbers of both groups follow the trend of the characteristic energies resulting from the combined local
acceleration by chorus waves and inward radial diffusion, suggesting that both acceleration mechanisms are
important. Here, the black dotted lines represent the first‐order cyclotron resonant energies of electrons at
indicated pitch angles from 50° to 84.5° interacting with parallel propagating chorus waves at 0.25fce at the
geomagnetic equator using plasma trough density model from Sheeley et al. (2001), while the blue dashed lines
show the electron energies at indicated fixed μ from 20 to 10,000 MeV/G and fixed K = 0.01 G0.5RE. Note that
previous studies reported that chorus waves observed at extremely low L‐shells (L ∼ 3.0) can contribute to
electron acceleration (Thorne et al., 2007; Zhang et al., 2020). Additionally, substorm injections can also
contribute to outer belt electron acceleration (Dai et al., 2014; Kim et al., 2021, 2023; Tang et al., 2016). There are
no acceleration events at L < ∼2.5 at energies >1 MeV, which is consistent with the impenetrable barrier to the
outer belt ultrarelativistic electrons reported in previous study (Baker et al., 2014), and lack of observed MeV
energies in the inner belt (Fennell et al., 2015).

Although the event numbers of Group 1 (with maximum number of >500) are much larger compared to those in
Group 2 (reaching a maximum number of ∼300), the overall acceleration ratio (Figure 2b) of Group 1 is smaller
compared to Group 2. Here, acceleration ratio is defined as the ratio of the flux at t1 over the flux at t0, which
describes the magnitude of the acceleration during the whole event. A larger acceleration ratio represents a
stronger acceleration event. The median results over different events are shown in Figure 2b as a function of L‐
shell and energy. Similarly, the distribution of the acceleration ratio also follows the characteristic energies of
combined local acceleration by chorus waves and inward radial diffusion. However, the acceleration ratio peaks at
different regions as the event numbers, showing two peaks at L > ∼4.0, with overall larger ratio at >1 MeV
compared to hundreds of keV electrons. One possible explanation is that the 100s keV electron fluxes can reach
their saturation state with a timescale of several hours, while it takes longer for multi‐MeV electrons to reach their
upper limit of acceleration, which is typically several days (Hua, Bortnik, & Ma, 2022). Therefore, the multi‐MeV
electron fluxes can be continuously elevated during strong acceleration events, leading to larger acceleration ratio.
There is a sharp drop in acceleration ratio at L ∼ 3.5 at almost all energies. This can be attributed to the much less
effective acceleration at low L‐shells compared to higher L‐shells, which is a combined result of much weaker

Figure 2. (a) Number of electron acceleration events as a function of L‐shell and energy based on Van Allen Probes
observations during 2013–2018. The black dotted lines represent the first‐order cyclotron resonant energies of electrons at
indicated pitch angles from 50° to 84.5° interacting with parallel propagating chorus waves at 0.25fce at the geomagnetic
equator, while the blue dashed lines show the electron energies at indicated fixed μ from 20 to 10,000 MeV/G and fixed
K = 0.01 G0.5RE. (b) Similar to (a) but showing median results of acceleration ratio.
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chorus wave intensities, particularly inside the plasmasphere (Aryan et al., 2021) and slower inward radial
diffusion at L < ∼3.5 (Brautigam & Albert, 2000). The results of the lower and upper quartile of the acceleration
ratio are provided in Figure S1 in the supporting information, which demonstrate similar variation trend.

3.2. Determining the Critical Controlling Geomagnetic Activity Factors

Figure 3 presents a comparison of superposed epoch analysis of 2.2‐MeV electron acceleration events near the
heart of the outer belt at L = 5.0 during storm and non/weak storm events. Here, tepoch = 0 corresponds to t0, that
is, the commencement of each acceleration event. We exclude the acceleration events after March 2018 due to the
unavailability of AL measurements from OMNI data. The first two rows show the SYM‐H and absolute value of
AL (i.e., |AL|) indices. Although the overall |AL| value is slightly higher during storm compared to non/weak

Figure 3. Comparison of superposed epoch analysis of acceleration events for 2.2‐MeV electrons at L = 5.0 during (a–f)
storm and (g–l) non/weak storm events. Note that tepoch = 0 corresponds to the commencement of each acceleration event.
(a) SYM‐H index; (b) absolute value of AL index; (c) L‐shell of the plasmapause location (Lpp); (d) Electron density. Here,
the red lines show the median profile, while the blue lines represent the lower and upper quartiles. Electron fluxes at 2.2 MeV
color‐coded by the corresponding (e) |(SYM‐H)min| and (f) Int(AL) in each acceleration event. (g–l) Similar to (a–f) but for
non/weak storm events.
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storm events, the prolonged and intense increases in the |AL| index were observed during both storm and non/
weak storm acceleration events. The third row shows the L‐shell of the plasmapause location (Lpp) inferred from
electron density data from Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS;
Kletzing et al., 2013) onboard both spacecrafts. The satellite is considered to be outside the plasmapause when the
observed electron density is smaller than either 50 cm−3 or the value from the plasma trough model of Sheeley
et al. (2001). We record the lowest L‐shell when the satellite was in the plasma trough region as Lpp for each
inbound and outbound trajectory. During storm events, due to the compression of the magnetosphere, the Lpp is
pushed to lower L‐shells near tepoch = 0 accompanied with a clear decrease in electron density (Figure 3d), which
are favorable for the efficient local acceleration by chorus waves (Allison et al., 2021; Hua, Bortnik, Kellerman,
et al., 2023). In contrast, there is no significant variation in Lpp and electron density during non/weak storm
acceleration events. Figures 3e and 3k present the 2.2‐MeV electron fluxes color‐coded by the corresponding
absolute value of (SYM‐H)min, demonstrating that the electron acceleration is not well correlated with |(SYM‐
H)min|. For example, even a weak storm with small |(SYM‐H)min| as shown by the green color can lead to a large
maximum flux during the acceleration event. However, the electron acceleration is better organized by the time‐
integral of AL index (Int(AL)), with the larger Int(AL) almost always resulting in higher maximum fluxes
(Figures 3f and 3l). Here, the Int(AL) is the integral of the |AL| during the time interval from t0‐dt to t1, where dt
corresponds to 2 days. Note that the Int(AL) shown in Figure 4 is calculated in the similar way.

The strong correlation between Int(AL) and jmax is demonstrated more clearly in Figure 4a–4d, showing the
maximum fluxes ( jmax) of electron acceleration events at energies from ∼300 keV to 3.2 MeV versus Int(AL) on
the horizontal axis, color‐coded by the corresponding |(SYM‐H)min|. Clearly, there is a strong correlation between

Figure 4. (a–d) Maximum electron fluxes ( jmax) at L = 5.0 at indicated energies, from left to right: 355 keV, 794 keV, 2.2 MeV, and 3.2 MeV, versus the corresponding
Int(AL) on the horizontal axis color‐coded by the corresponding |(SYM‐H)min|, with the correlation coefficients between jmax and Int(AL) both in logarithm marked on
the bottom left. Each plus symbol represents an individual acceleration event. (e–h) and (i–l) Similar to (a–d) but for the results color‐coded by the corresponding median
results of electron density and Lpp in each event, respectively.
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jmax and Int(AL) with correlation coefficient (CC) reaching >0.8. A larger Int(AL) almost always leading to a
higher jmax, confirming the important role of continuous and intense substorms in producing jmax for outer belt
electron acceleration. We note that our results do not heavily depend on the choice of dt, which still have similar
trend but with slightly lower or higher CC with dt varying from 0 to 3 days. On the contrary, a larger jmax is not
necessarily associated with a stronger storm as measured by (SYM‐H)min. For instance, a moderate storm (as
shown in green color) can lead to a jmax close to the highest upper limit of jmax during the 6‐years observations.
Nevertheless, the acceleration events during strong storms (shown in red color) seem to correlate with large
Int(AL). These events are mostly associated with small electron density <∼20 cm−3 (Figure 4e–4h) and Lpp

pushed to very low L‐shells (Figure 4i–4l) that are favorable for local acceleration by chorus waves (Allison
et al., 2021) compared to weak storm events with larger density and Lpp. Additionally, the enhanced inward radial
diffusion during storms can also contribute to electron acceleration (Ozeke et al., 2020). Therefore, strong storms
compared to non/weak storms can provide favorable conditions for electron acceleration, but they are not
necessarily required in producing a large jmax, which is dominantly controlled by continuous and intense
substorms.

4. Conclusions and Discussions
We comprehensively investigate the statistical distribution of the outer belt electron acceleration events over
energies of 300 keV–10 MeV using 6‐years observations from Van Allen Probes. By performing superposed
epoch analysis of acceleration events during storm and non/weak storm events and comparing their geomagnetic
conditions, we reveal the strong correlation between continuous and intense substorms as measured by Int(AL)
and the upper limit of electron acceleration ( jmax), while strong storms are not necessarily required to produce
large maximum fluxes. To our best knowledge, this study provides the first statistical analysis of electron ac-
celeration events regardless of storm activity during the whole Van Allen Probes Era, which is important to
improve the way to investigate and organize the outer belt electron dynamics. Our results demonstrate the linear
correlation between Int(AL) and jmax, which can be of great practical importance in future forecasting the extreme
case of radiation belt environment. Our major conclusions are summarized as follows:

1. The statistical distributions of electron acceleration events in terms of event numbers and acceleration ratio
strongly depend on L‐shell and energy, whose variations follow the trend of the characteristic energies of both
local acceleration by chorus waves and inward radial diffusion. While the event numbers fall into two groups
with Group 1 at <∼2 MeV at L < 4.0 and Group 2 at >∼2 MeV at L > ∼4.5, the acceleration ratio exhibit two
peaks at L > ∼4.0, with overall stronger acceleration at >1 MeV compared to hundreds of keV electrons.

2. The upper limit of outer belt electron fluxes is dominantly controlled by the cumulative effects of substorms,
with strong CC between Int(AL) and jmax near the heart of the outer belt at L = 5.0 reaching >0.8.

3. Electron acceleration events can be observed during both storm and non/weak storm time. Although stronger
storms are not necessarily linked with larger jmax, both smaller electron density and lower plasmapause
location that can result in efficient local acceleration, and enhanced inward radial diffusion during intense
storm activities are favorable for a more significant electron acceleration.

Although we investigated the statistical distributions of electron acceleration events that cover the whole outer
belt over L = 2.5–6.5, we mostly focus on revealing the significant role of Int(AL) on the upper limit of ac-
celeration events near the heart of the outer belt. It is worth noting that electron acceleration events can be
frequently observed at L < ∼4.0 below ∼2 MeV with event numbers >∼400 but small acceleration ratio. Since
chorus wave intensities significant decrease at L < 3.5 (Aryan et al., 2021), chorus waves are less likely to cause
these frequent acceleration events. Although inward radial diffusion may be a promising candidate to accelerate
electrons at such low L‐shells, this can only be achieved if radial diffusion coefficients from empirical model (e.g.,
Ozeke et al., 2014) are highly amplified (Hua et al., 2019). Future studies are needed to comprehensively
investigate their acceleration mechanisms and controlling geomagnetic conditions.

Data Availability Statement
The ECT data were obtained from https://rbsp‐ect.newmexicoconsortium.org/data_pub/. The electron density
data from the EMFISIS instrument onboard Van Allen Probes were obtained from https://emfisis.physics.uiowa.
edu/Flight. The geomagnetic indices were obtained from the OMNI data set (https://omniweb.gsfc.nasa.gov/ow_
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min.html). The source data used to produce figures in the present study are publicly available at (Hua &
Bortnik, 2024).
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