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Version control systems typically rely on a patch language, heuristic patch synthesis algorithms like diff, and
three-way merge algorithms. Standard patch languages and merge algorithms often fail to identify conflicts
correctly when there are multiple edits to one line of code or code is relocated. This paper introduces Grove,
a collaborative structure editor calculus that eliminates patch synthesis and three-way merge algorithms
entirely. Instead, patches are derived directly from the log of the developer’s edit actions and all edits commute,
i.e. the repository state forms a commutative replicated data type (CmRDT). To handle conflicts that can arise
due to code relocation, the core datatype in Grove is a labeled directed multi-graph with uniquely identified
vertices and edges. All edits amount to edge insertion and deletion, with deletion being permanent. To support
tree-based editing, we define a decomposition from graphs into groves, which are a set of syntax trees with
conflicts—including local, relocation, and unicyclic relocation conflicts—represented explicitly using holes
and references between trees. Finally, we define a type error localization system for groves that enjoys a
totality property, i.e. all editor states in Grove are statically meaningful, so developers can use standard editor
services while working to resolve these explicitly represented conflicts. The static semantics is defined as a
bidirectional marking system in line with recent work, with gradual typing employed to handle situations
where errors and conflicts prevent type determination. We then layer on a unification-based type inference
system to opportunistically fill type holes and fail gracefully when no solution exists. We mechanize the
metatheory of Grove using the Agda theorem prover. We implement these ideas as the Grove Workbench,
which generates the necessary data structures and algorithms in OCaml given a syntax tree specification.
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1 Introduction

Development teams typically collaborate with the aid of a version control system (VCS) like Git,
Subversion, or Darcs [32]. These systems maintain a branching history of commits to a source
code repository, each consisting of a patch together with various metadata, e.g. a human-readable
commit message. Patches are imperative programs written in a patch language defining a set of
primitive editing commands. The standard POSIX patch language, for example, specifies commands
for inserting and deleting specified lines of text at specified line numbers within a file.

Developers do not typically express program edits using the patch language directly, nor in any
case do version control systems typically have access to a log of the developer’s edits. Instead,
version control systems must synthesize patches from the file system state using heuristic algorithms,
such as the classic diff algorithm that synthesizes a patch that minimizes the edit distance between
two file system states [14].

When two patches, developed concurrently in branches based on a common ancestral commit,
must be merged, version control systems deploy a three-way merge algorithm. The standard approach
is to apply the local patch first, then modify the remote patch by shifting its line numbers to account
for the local patch’s line insertions and deletions. This algorithm is an operational transform [9].
Character-level operational transforms are similarly used for real-time collaborative editing, e.g. in
tools like Google Docs and in Visual Studio Code’s Live Share feature.

Problem 1: Merging Sensibly. When merging patches, conflicts (e.g. due to different modifications
to the same location) are unavoidable. However, standard three-way merge algorithms for line-
based patch languages commonly identify spurious conflicts, fail to identify legitimate conflicts, or
silently duplicate or misplace code. Let us briefly review some classic problems with these systems.
The supplemental material includes Git repositories that demonstrate each of these problems.

The granularity problem arises when both commits make edits to different locations within a
single line of code. For example, one patch might rename a function argument while the other adds
a new argument. Similarly, if one patch renames a type while another makes unrelated changes
to code that references that type, there will be conflicts at every line of code shared between the
two patches. A notable special case is the nesting problem, which arises when one patch changes
the nesting of code structures, e.g. by wrapping a code block within a new control flow construct,
thereby changing the indentation of every line in the block. These changes can cause conflicts.

The relocation conflict problem arises when two patches relocate a code block to different
locations. Standard patch languages operationalize code relocation as simply a deletion paired with
an insertion. The merge will therefore fail to identify this legitimate location conflict and instead
silently duplicate the code block at both locations.

The relocation modification problem arises when one commit relocates a code block that
another commit modifies. A naive approach would silently leave the modifications at the original
location. A more sophisticated block-based approach, like that deployed by git, might indicate a
conflict when an insertion occurs within the bounds of a code block that has been deleted.

These classic problems have motivated research into richer patch languages, more sophisticated
patch synthesis algorithms, and corresponding improvements to three-way merge algorithms.
For example, systems like Git address the nesting problem by allowing indentation changes from
one patch to be merged with other changes that do not modify indentation. More sophisticated
systems deploy parsers and tree differencing algorithms [6, 10, 11, 19, 23, 34] to better address the
granularity problem.

Addressing the relocation-related problems is more difficult. A common approach is to enrich
the patch language to make code relocation a primitive command. However, correctly synthesizing
code relocation commands given only the initial and final states of the repository requires heuristics.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 73. Publication date: January 2025.



Grove: A Bidirectionally Typed Collaborative Structure Editor Calculus 73:3

The typical approach is to assume that a matching deletion and insertion is due to code relocation.
However, relocated code is often also modified. In these cases, it is difficult to determine whether a
deletion and a similar but not identical insertion are related by relocation, rather than coincidental
code similarity. Developers often intentionally copy and then modify code, so there may be multiple
partially matching insertions for a given deletion and there is no clear way to decide which, if
any, are related by relocation. The developer’s actual actions, e.g. cuts, copies, and pastes, are not
persisted into the file system, nor are there persistent identifiers associated with code structures
represented as text, so text-file-based systems have no choice but to deploy imperfect heuristics.

Contribution 1: Grove: A Collaborative Structure Editor Calculus. This paper considers the problem
of collaborative editing for structure editors, which eschew text editing. Instead, developers code
by applying tree edit actions directly to a continuously evolving program sketch, i.e. a syntax tree
with holes, shown projected visually in various ways to the developer. Structure editing has been
studied since the 1980s with the Cornell Program Synthesizer [39] and research continues to this
day, with numerous active projects including Scratch [21] and other block-based editors (which
are widely used in educational and end-user programming settings), Jetbrains MPS (which has
been deployed in industry) [40], and Hazel (a live functional programming environment rooted in
a structure editor calculus called Hazelnut, which serves as an active research platform) [25].

Inspired by Hazelnut, this paper introduces Grove, a collaborative structure editor calculus for
arbitrary syntax trees that does not suffer from the problems just outlined. This is in large part due
to a substantial simplification of the overall collaborative editing architecture. In particular, we
eliminate patch synthesis (i.e. diff algorithms) entirely, instead deriving patches directly from the log
of edits performed by the developer. We also eliminate the need for three-way merge algorithms (i.e.
operational transforms) entirely. Instead, we define the patch language such that all edits commute,
so remote patches can be applied without transformation. We prove a convergence theorem that
ensures that branches of a repository will converge to the same state when the same set of patches
are applied, regardless of the order in which they are applied. The patch language forms what is
known as a commutative replicated data type (CmRDT) [29, 35].

Defining a structure editor calculus that supports code insertion, deletion, and relocation using
only commutative edits, and avoiding the problems outlined above, is not trivial. The Hazelnut
action language is neither commutative nor does it support relocation. Relocation is particularly
challenging because of the potential for relocation conflicts, including the potential for cyclic
relocation (when one commit relocates node A beneath node B, and the other vice versa).

This need to represent conflicting states means that we cannot use a single syntax tree as Grove’s
core data structure. Instead, we use a directed labeled multi-graph. A vertex corresponds to a syntax
tree node and is labeled with a unique identifier (UID) and a constructor, e.g. Plus. An edge is also
labeled with a UID and establishes a parent-child relationship at a labeled position for the parent
vertex’s constructor, e.g. at the L or R position of the Plus constructor. We refer to a parent vertex
and position collectively as a location.

The Grove patch language is quite simple: a patch can insert or delete an edge (which might cause
the creation of a mentioned vertex if it did not already exist). To ensure commutativity, deletion of
an edge is permanent, i.e. the edges form a two-phase set (2P-Set) CmRDT [35]. The edit actions
that users perform are given meaning by a straightforward translation to a graph patch. Relocation
simply translates to edge deletion and insertion. Critically, vertices are not deleted during relocation,
so we do not need to deploy heuristics to identify relocated nodes.

Structure editors are designed to provide editing affordances for trees, not graphs where there
may be any number of children at a given location, vertices may have any number of parents,
and where there may be cycles. To support conventional tree-based structure editing, we define
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a decomposition of our program graph into a grove, which is a set of programs with holes, local
conflicts, and conflict references between them to account for motifs that arise when editing
collaboratively. In particular, a location with no out-edges decomposes to a hole. More than one
out-edge at a given location decomposes to an explicitly represented local conflict. More than one
in-edge indicates that a vertex has a relocation conflict, so we leave a relocation conflict reference
at each of the conflicting locations. Finally, cycles are broken during decomposition by leaving
a unicycle conflict reference at an arbitrary (but deterministically chosen) edge. Resolving these
various conflicts simply requires manipulating these constructs like any other syntactic construct,
e.g. deleting all but one relocation conflict reference to determine a unique location for a node.

Problem 2: Semantic Gaps During Conflict Resolution. When working with traditional version
control systems, resolving conflicts can take time and require reasoning about syntax, types, and
program behavior. Traditionally, however, conflicts are indicated by inserting extra-linguistic
markers into files. These markers are not typically understood by the parser, and because they
include conflicting alternatives, they cannot generally be removed or concatenated to result in a
sensible program. Consequently, language services that require a well-formed, meaningful program
(e.g. type error localization, go-to-definition, live evaluation and so on) either fail to operate or
exhibit gaps in service, e.g. because they are relying on data from a compile prior to the merge
attempt. Developers are left to reason without the aid of much of their tooling during conflict
resolution. This is an instance of the more general semantic gap problem when programming
tools encounter incomplete programs [26].

The previous work on the Hazelnut structure editor calculus addresses the semantic gap problem
in the single-user setting by defining a type system and type error localization system (the marked
lambda calculus) for incomplete programs, i.e. programs with holes [43]. Notably, type error
localization is proven to be total, i.e. the system is able to assign static meaning to every syntactically
well-formed expression by inserting marks to localize errors. Marking employs local type inference
as codified by a bidirectional type system [8] as well as gradual typing [36], i.e. the theory of type
holes, to recover from situations where type errors make it impossible to determine a known type.
A separate type hole filling phase deploys unification-based (i.e. non-local) type inference to fill
type holes when possible, or allows the user to interactively select from hole fillings that partially
satisfy generated constraints when there are type conflicts.

Contribution 2: Total Type Error Localization and Recovery for Groves. This paper extends this prior
work on the marked lambda calculus to develop a total type error localization system for groves,
introduced in Contribution 1 above as the result of decomposing a commutatively edited graph
into a set of terms with empty holes, local conflicts, relocation conflict references, and unicycle
conflict references. This paper develops a type (and type error localization) discipline for handling
these novel constructs. We follow the marked lambda calculus in rooting our marked grove calculus
in bidirectional type checking, deploying gradual typing when conflicts do not allow a single type
to be inferred, and then layering on a unification-based type inference system to opportunistically
fill holes or suggest partial solutions when there are conflicting types due to conflicting syntax.

Paper Outline. Section 2 introduces Grove by example, demonstrating its behavior in each of
the problematic scenarios named above. Section 3 then formally defines Grove’s graph structure,
commutative patch language, grove decomposition procedure, and edit action language. We establish
key metatheoretic properties using the Agda proof assistant. Section 4 describes our implementation
of the Grove Workbench, which is defined modularly to allow it to be instantiated with arbitrary
syntax trees. Section 5 instantiates Grove with a simply typed lambda calculus, then defines
a bidirectional type and type localization system for groves and proves totality and other key
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> (b) > ()
X *y o*xy

Fig. 1. (a) We represent collaborative program sketches as graphs. (b) Hole filling translates to edge insertion.
(c) Term deletion (or cut) deletes an edge, but the vertex persists. (We omit it in subsequent figures.)

metatheoretic properties using the Agda proof assistant. Section 6 reviews related work in more
detail. Section 7 concludes with a discussion and directions for future work on collaborative editing.

2 Grove By Example

This section introduces collaborative structure editing in Grove by example. Section 2.1 describes
how we use graphs to represent collaborative program sketches. Section 2.2 then shows examples
of edits being performed by a single user, Alice. Sections 2.3-2.4 then describe a collaboration
between two users, Alice and Bob, as they edit their own branches of a program and periodically
merge in each other’s edits, starting with examples without conflicts, then considering the various
kinds of conflicts that might arise.

For simplicity and concision, all of the examples in this section will be for a language of standard
arithmetic operations, but our formalism in Section 3 and our implementation in Section 4 are
parameterized by an arbitrary abstract syntax.

Grove can form the basis for both a conventional version control workflow, where edits are
batched into commits, or real-time collaborative editing, where edits are communicated as they
occur. This paper makes no assumptions about which batching mode is in use, nor do we consider
the well-studied problem of reliably and efficiently communicating patches over a network.

2.1 Representing Collaborative Program Sketches as Graphs

The edit state of a Grove branch is a directed multi-graph representing a collaborative program
sketch, meaning an incomplete program, i.e. one that may have holes and (as we will return to)
conflicts. For example, Figure 1a gives one such graph and its corresponding decomposition into, in
this case, a single syntax tree, x * O, whose missing right operand is a hole, denoted O.

Each vertex represents a term in the specified language, except for a distinguished root vertex,
and is labeled with a unique identifier (UID) and a constructor. In Figure 1a, the root vertex has
UID 0 and constructor ». Vertices *, and x; have UIDs 2 and 4 and constructors * and var(x),
respectively. For clarity, we abbreviate var (x) as simply x; here, x is a constructor parameter. We
treat identifiers and literals as indivisible, but we discuss character-level editing in Section 7.

An edge indicates that the destination vertex is a child of the origin vertex. Each edge is labeled
with a UID (e.g., 1 and 3 in Figure 1a) and a position (e.g., Root and L in Figure 1a). The parent
vertex’s constructor determines a set of valid positions. For instance, the * constructor defines
positions L (for the left operand) and R (for the right operand). The var constructor is a leaf so it
defines no positions. The root vertex constructor « has a single child position, Root.

Holes arise in the decomposition by the absence of a child at a valid position. For example, in
Figure 1a the absence of an R child under *, corresponds to the hole in the right operand of x * O.
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lc—> (a) > (b)
O o+ 0

Fig. 2. Wrapping results in a patch which (a) cuts ~ Fig. 3. Term relocation results in a patch which (a)
the original term (edge deletion), (b) creates the  cuts the term (edge deletion) then (b) pastes it in
outer term at the same location (edge insertion),  its new location (edge insertion). Vertex identities
then (c) pastes the original term (edge insertion).  and downstream edges are conserved.

For clarity, we use even numbers for vertex UIDs and odd numbers for edge UIDs. In practice,
UIDs would be generated by a mechanism that effectively ensures that collaborators always generate
distinct UIDs, e.g. by generating universally unique IDs (UUIDs) [28].

2.2 Structure Editing

Individual users perform edits to evolve the edit state. We consider several standard edits, including
insertion, deletion, cut-and-paste (relocation), copy-and-paste, and undo/redo. This paper abstracts
over the user interface aspects of structure editors and makes no usability-related claims; these edits
could be performed through, for example, drag-and-drop interactions (as in block-based editors
like Scratch) or keyboard interactions (as in MPS and Hazel).

Each edit translates directly to a graph patch, which consists of a sequence of patch commands.
The Grove patch language requires only two patch commands: edge insertion and edge deletion. A
vertex is inserted when it is included in an edge insertion command.

To illustrate the Grove patch language, let us consider a sequence of standard edits, found across
structure editors, performed by a single user, Alice.

2.2.1 Hole Filling. First, Alice fills the hole in the right position of x * O from Figure 1a with the
variable y. The resulting edit state is shown in Figure 1b. The patch corresponding to this hole
filling action inserts an edge, labeled Rs, from the vertex corresponding to the parent term, *,, to
the newly constructed variable’s vertex, y;. The resulting graph decomposes to the term x * y.

2.2.2 Deletion. Next, Alice moves the cursor to x in Figure 1b and deletes it, causing the deletion
of edge L3 and resulting in the decomposition O * y as shown in Figure 1c.

Once an edge with a particular identifier is deleted, it cannot be re-inserted. For instance, if Alice
performed an “undo” on this deletion, a fresh edge between *, and x; would be created. (We can
allow simple undo only if the patch has not yet been communicated to a collaborator).

Notice that vertex x, continues to exist (and if it had any children, they would remain connected
to it; see below for the implications in the collaborative setting). In the remaining figures, we omit
such orphaned vertices if they are not relevant to the exposition.

2.2.3  Wrapping. Next, Alice moves the cursor to the parent term *, in Figure 1c with the intention
of wrapping it in a binary addition expression with constructor +.
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Many structure editors define a primitive wrapping edit, choosing a position heuristically (e.g.
favoring the left). Others require the user to cut the original term, construct the new outer term,
then paste the original term in the intended position.

In either case, the corresponding sequence of patch commands would produce the edit states
shown in Figure 2: the edge connecting the root to the original term is deleted (effectively cutting
the original term), leaving *, temporarily orphaned, then an edge to the new outer term is inserted,
followed by an edge reconnecting the original term (effectively pasting the original term).

2.2.4 Relocation. Alice changes her mind and decides to relocate the multiplication from the left
to the right position of the addition. A structure editor might support this using drag-and-drop
or cut-and-paste affordances. In either case, the resulting patch commands will proceed through
the two states shown in Figure 3: deleting the original incoming edge and then inserting an edge
at the new location. Notice that the sub-graph corresponding to the relocated term itself is never
deleted nor re-inserted, in contrast to conventional line-based patch languages. See below for the
implications in the collaborative setting.

2.2.5 Copying. A copy-and-paste, or a cut followed by multiple pastes, would of course involve
copying the graph structure of the original term but generating fresh UIDs (not shown).

2.3 Collaboration

We now turn our attention to how Grove handles collaboration. The examples in this section
generalize to collaborations between any number of users, but for simplicity we consider only two:
Alice and Bob. Alice and Bob are each concurrently editing their own branches of the repository (or
their own instance of a real-time collaborative editor), performing edits that translate to patches as
described above. They periodically communicate these patches to one another. Figure 4 diagrams
the Grove collaboration model.

Alice’s Alice’s Apply
Edit/SY Branch —\,\o\E(')E\Siatch
Base Merged
Branch \ Branch
Bob’s Bob’s Apply
Edits Branch Alice’s Patch

Fig. 4. Collaboration in Grove is simple due to the commutativity of Grove’s patch language.

2.3.1 Commutativity. The Grove patch language is commutative, meaning that there is no need for
a complex three-way merge algorithm (i.e. operational transform). Instead, each user can simply
apply incoming patches to their own edit state as they arrive, no matter the order in which they
arrive. If two users have received the same set of patches, their edit state will converge.

The key properties that make the Grove patch language commutative is that edge deletion is
permanent and vertex insertion is permanent. We establish commutativity formally in Section 3.
For now, let us consider several example scenarios that demonstrate how Grove handles different
collaborative editing scenarios, particularly the problematic situations outlined in Section 1.

2.3.2  Solving the Granularity Problem. Alice and Bob start where Alice left off in Figure 3b with
the term 0 + O * y. Alice then adds u;, as the left child of *,. Concurrently, Bob changes y;
to vi4. Before sharing their patches, Alice and Bob have the edit states Figure 5a and Figure 5b,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 73. Publication date: January 2025.



73:8 Michael D. Adams, Eric Griffis, Thomas J. Porter, Sundara Vishnu Satish, Eric Zhao, and Cyrus Omar

3b > (a) * (b) () * (a) ¥ (b) (©)

O+u*y O+0*v O+uU*yv O+w*xyv ux*xv+n w*xv+0O

Fig. 5. (a) Alice fills the hole in the multiplication Fig. 6. (a) Alice renames u to w. (b) Bob relocates
with u. (b) Bob renames y to v. (c) These edits the multiplication to the left side. (c) These edits
to the same expression commute, addressing the commute without conflict or duplication, addressing
granularity problem. the relocation modification problem.

respectively. Note that the transition from Figure 3b to Figure 5b represents multiple graph updates,
i.e., deleting Rs and adding R along with its child v,,. We thus mark the transition with a star.
Once Alice and Bob share their patches and apply each other’s patch to their own edit state, both
edit states converge to the graph in Figure 5c. Because Grove’s patch language is structural rather
than line-based, the fact that these edits happened to be close to one another (i.e. in the same
arithmetic expression) does not run afoul of the granularity problem described in Section 1.

2.3.3 Solving the Relocation Modification Problem. After converging on 0 + u * v in Figure 5c,
Alice changes u;, to wsg, producing the edit state in Figure 6a. Meanwhile, Bob relocates *, (bringing
along its children) from the R position of +5 to the L position. As discussed above, this involves
deleting Rss and adding Lso. Bob’s resulting edit state is shown in Figure 6b.

Although Alice has modified a term that Bob has concurrently relocated, the edits commute:
Alice’s modifications are relocated to the new location chosen by Bob. This addresses the relocation
modification problem described in Section 1. In a line-based setting, this kind of edit can lead to
silent code duplication or spurious conflicts (the threat of which, in the author’s experience, can
inhibit development teams from performing useful code reorganizations).

2.3.4 Warning of Edits under Disconnected Terms. If instead of relocating the multiplication in
Figure 6, Bob had deleted it (i.e. disconnected it from the root), then Alice’s edits would still
commute, but her edits would be applied under a deleted term.

This situation could also arise in a real-time collaborative editor, where each individual edit
might arrive at any time (rather than in atomic commits). If Alice, say, receives Bob’s deletion of Rss,
then makes her edits before receiving Bob’s subsequent insertion of Lso to complete the relocation,
Alice’s edits would then temporarily be under a disconnected term.

This does not present a formal problem or conflict. A subsequent edit might reconnect a dis-
connected term, so it is sensible for edits to these terms to be recorded. However, heuristically, a
system might warn users, perhaps after a period of quiescence in a real-time setting, that Alice’s
edits were effectively deleted and provide affordances for interacting with disconnected terms.

2.4 Conflicts

The collaborative edits discussed so far merge cleanly, but in general, merging patches can lead to
graphs that do not map cleanly to a conventional syntax tree. We identify several different motifs
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6c =/ (a) (b) ()

W*x v+ X WxvVv+y w*x v+ {x|y}

Fig. 7. (a) Alice fills the hole at the R position of the addition with x. (b) Bob fills the same hole with y. (c) When
the corresponding patches are merged, there are two edges in the R position of the addition. Decomposition
turns these into a local conflict, leaving it to the users to resolve the problem by performing normal edits.

that might arise, all of which give rise to different kinds of conflicts in the graph decomposition:
local conflicts, relocation conflicts, and unicyclic relocation conflicts. As with merge conflicts in
version-control systems such as git, these all require user intervention to resolve.

2.4.1 Local Conflicts. Suppose Alice and Bob both start with the edit state w * v + O from
Figure 6¢. Alice moves the cursor to the hole and constructs x;, as the R child of +5. At the same
time, Bob constructs y;s at the same location. Now Alice and Bob have the graphs in Figure 7a and
Figure 7b, respectively.

When these patches are merged in Figure 7c, both R;5; and R;; appear in the merged graph.
When decomposing this graph to a syntax tree, we resolve this conflict in the R position of +3 by
decomposing to a local conflict, { x| y }.

Local conflicts can be resolved simply by deleting or relocating all but one of the conflicting
terms (and editing the remaining term into the correctly merged value, if needed), which would
remove the corresponding edge. For example, Alice could resolve the problem by wrapping x and y
with a multiplication, effectively moving them to non-conflicting locations. No special edit actions
are needed for conflict resolution.

It is worth noting one special situation: if Alice and Bob independently filled the hole with
structurally identical terms, e.g. x, Grove would still formally identify a conflict, because the terms
have distinct UIDs. In this situation, it would be reasonable for the system to resolve the conflict
without further coordination by deterministically choosing one of the two terms, e.g. the smallest.

When the conflicted terms are similar up to UID differences but not identical, it might be helpful
to give the developer the option to “push down” the conflicts as deeply as possible, using a tree
differencing algorithm. However, this would increase the number of conflicts overall, so it may not
always be preferable. Tree differencing is not fundamental to the collaboration model of Grove.

24.2 Relocation Conflicts. Grove’s support for code relocation creates the possibility for relocation
conflicts. These occur when a merge causes a vertex to have multiple incoming edges, indicating
that it does not have a uniquely determined location (as opposed to local conflicts, which occur
when there are multiple outgoing edges at a specified location).

For example, Figure 8 shows an example where Alice and Bob relocate a term, w, to two different
locations (the two holes in Figure 8a). In both cases, the edits are modeled as one edge deletion
followed by one edge addition. Alice deletes Ls; and adds R in Figure 8b. At the same time, Bob
deletes Ls; and adds R,; in Figure 8c. Edge deletion is idempotent, so the fact that Alice and Bob both
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(a) * (b) * (c) () ———> (¢
W* 0O+ O O*w+0O O*0O+w O * Ysg + Yss O*w+0O
Yss = W

ooty

Ry

R
Lsor
2

9

Fig. 8. (a) We start in a state with a variable, w, and two holes. (b) Alice relocates w to the left hole. (c) Bob
relocates w to the right hole. (d) After merging, vertex wsg has two incoming edges, i.e. it has a relocation
conflict. The corresponding decomposition leaves a relocation conflict reference at both locations, partially
addressing the relocation conflict problem. Terms that have a relocation conflict are tracked separately by
decomposition. (e) The relocation conflict can be resolved by deleting all but one reference.

deleted Ls; will not lead to a conflict. However, both R (added by Alice) and R,; (added by Bob)
point to the same vertex. Once these patches are merged, the resulting edit state is given in Figure 8d.
Notice wsg has two edges pointing to it. When decomposing the graph, we leave a relocation conflict
reference, Y13, at each conflicting location. The conflicted term is separately tracked in the result of
decomposition, which, due to conflicts like these, is formally a set of terms with references between
them. We call this set a grove. This approach partially addresses the relocation conflict problem
from Section 1 (we also need to handle unicycles, see below, to fully address the problem).

To resolve relocation conflicts, a user can simply delete all but one of the relocation conflict
references. This will cause the corresponding edges to be deleted, and when only one edge remains,
there will no longer be a conflict. An editor might provide a more convenient way of deleting all
but a selected relocation conflict reference, and provide affordances for displaying these terms, e.g.
by transcluding them inline at each location or showing them in a separate sidebar.

2.4.3 Cycles. Relocation in a collaborative setting can also lead to cycles in the graph. For example,
consider the situation in Figure 9. Starting in Figure 9a, Alice relocates *,, to the R child of +5 and
then +,, underneath that in Figure 9b. Bob does the opposite, putting *,, under +,; in Figure 9c.
On their own, neither of these edits creates a cycle. However, merging the two patches results in
the graph in Figure 9d, which has a cycle between *,, and +.

The main difficulty with cycles has to do with decomposition back to a term, i.e. a syntax tree.
We do not want decomposition to traverse endlessly attempting to create an infinite tree, so we
need to break the cycle somewhere.

If the cycle is connected to a larger term, then there will necessarily be at least one vertex along
the cycle that has multiple incoming edges. In Figure 9, both *,, and +,, have multiple incoming
edges. As described above, decomposition will leave relocation conflict references in these positions,
thereby breaking the cycle. In this example, these references appear within a local conflict as well,
because both vertices were relocated under a common parent vertex. As before, this cycle can be
broken by deleting or otherwise modifying the terms until there are no longer any such conflicts.

It is also possible to merge patches such that a disconnected unicycle emerges in the graph, even
when neither patch disconnects any vertex from the root. Figure 10 shows a simple example of
when this could occur: Alice relocates *,, under *,, while Bob relocates %, under *.,. This results in
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(a) >* “’m ()

(o*x0oO) *x(o+0)+ O*x0O+ (O0+0) * Oox0O+ (O*0O+ (o *x0O) +
m] m| o) {Yaal Y26}

Yao4 = Vo6 * O

Y26 = You * O

Fig. 9. (a) We start with a tree with a multiplication, *,4, and addition, +¢, at the leaves. (b) Alice relocates
them both, such that *;, is the parent of +2¢. (c) Bob relocates them both, such that + is the parent of
the *4. (d) In the merged state, there is a cycle in the graph. Because the terms have a common parent,
there is a local conflict. Because the cycle is connected to the rest of the graph, the cycle is broken during
decomposition by relocation conflict references as shown.

(@) =—— > (b) (o) (d)

O*x0O+0%0 O* (O*0O) +0 O+ (Oo*0) *0 o+ 0
Oy =0 (O, * 0)

Fig. 10. (a) We start with a tree containing *, and *24. (b) Alice relocates *;4 to a child position of *;. (c) Bob
relocates *; to a child position of *4. (d) When merged, the resulting cycle becomes disconnected from the
rest of the graph, forming a unicycle. During decomposition, we break unicycles by leaving a unicycle conflict
reference at an arbitrarily chosen edge.

Figure 10b and Figure 10c, respectively. Merging these causes both vertices to become disconnected,
because they were both relocated. The inserted edges form a unicycle, meaning a cycle where every
vertex has in-degree 1. In this case, we cannot rely on relocation conflict references to break the
cycle. Instead, we break the cycle by arbitrarily but deterministically choosing an edge along the
unicycle, e.g. the edge with the smallest UID, and leaving a unicycle conflict reference at that location,
as shown in Figure 10d. A user can be notified of this situation when merging and resolve these
conflicts again by relocating or deleting terms until the cycle no longer exists in the graph.

Relocation conflict references and unicycle conflict references together fully address the reloca-
tion conflict problem from Section 1.
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3 The Grove Calculus

We now formalize the ideas presented informally above by defining the Grove Calculus. The calculus
consists of a commutative patch language on graphs, defined in Section 3.1, a decomposition
procedure to go from graphs to groves (i.e. sets of terms with conflicts) in Section 3.2, and a user
action language that operates on groves and is defined by translation to the patch language in
Section 3.3.

3.1 A Commutative Graph Patch Language

3.1.1  Graphs. Let U and ‘W be separate sets of unique identifiers (UIDs) for vertices and edges,
respectively. Assume each is equipped with a total ordering <.

Let K be the set of constructors of terms in the source language, and let # be the set of positions
of subterms in the source language. Assume each constructor k € K is associated with a finite set
of positions arity(k) € P, representing the set of positions that children of k can inhabit.

For example, if the language is the simply typed lambda calculus, K will include construc-
tors for function abstractions (LAMBDA,), function applications (Ap), variables (VAR,), and con-
stants (ConsT,), as well as function type constructors (ARRow) and base types (BAsgp). The ar-
ity of each constructor will reflect the child positions of these constructors, e.g. arity(Ap) =
{FuncTION, ARGUMENTY}, arity(LAMBDA, ) = {ANNOTATION, Bopy}, and arity(VAaRry) = .

A vertexv = (u,k) € V = U x K is labeled with a UID, u, and a constructor, k.

A location £ = (v, p) € L represents the origin of an edge, where v = (u, k) is drawn from V
and position p is drawn from arity (k).

An edge e = (w,t,0) € & = W x L x V represents a directed multi-edge identified by w,
originating from location ¢, with destination vertex v.

A graph g : & — ¥ is a function from edges to edge states s € ¥ = {1,d5,=}.If g(¢) = L, then
¢ has not yet been constructed in the graph. If g(¢) = <& then ¢ is live in the graph. If g(¢) = =,
then ¢ has been deleted and cannot be constructed again. The total ordering | C <+ C = forms a
lattice over X. The state of each edge can only progress along this ordering over time, from not
yet constructed, to live, to deleted. The realized edges in a graph are those assigned to = or =. We
assume that there are finitely many realized edges in a graph.

3.1.2  Graph Patch Commands. We define a graph patch command 7 = (s, ¢) € {dk, =} x & as a pair
of an edge state (excluding 1) and an edge. As a shorthand, we use +¢ to denote the construction
command (g5, ¢) and —¢ to denote the destruction command (=, ¢).

For s1, s, € X, we define the join operation s; L s; to be the least upper bound of s; and s, with
respect to the C ordering. Accordingly, 5 11 | = <= means that an edge can be created if it has
never existed, and < L = = = means that once an edge is deleted it can never be restored.

We define the semantics of patch commands via the following transition relation between graphs.

g% gle—sug(e)]

Applying patch command 7 = (s, €) to graph g results in the updated graph ¢’ = g [g —su g(e)] ,
wherein the edge state associated with edge ¢ in g becomes the join of s with the state of ¢ in g,
and ¢'(¢') = g(¢') for any ¢ # ¢. Essentially, these patch command semantics act as a transition
system between graphs, joining the new edge state with the corresponding edge state of the graph
to which the patch command is being applied. Since a patch command can only change the value
of g on one input, applying the patch command preserves the property that g maps all but finitely
many edges to L.

A graph patch 7 is a sequence of graph patch commands, and the transition relation is extended
to patches as the composition of the transitions of the constituent patch commands.
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k” {EP}pearity(k) | Y(W»U) | Q(va)
(’I:I ‘ Wt | ({\\',ti

}i<n

Fig. 11. Syntax of terms

3.1.3 Commutativity. Using these definitions, commutativity of patch commands can be established
using the commutativity and associativity of the join operation on edge states.

LEMMA 3.1 (JOIN SEMILATTICE). (X,C) with U forms a join semilattice. That is, L1 is associative,
commutative, and idempotent.

Proor. Follows directly from the total ordering (3, C). ]

THEOREM 3.2 (COMMUTATIVITY). Forall graphsg andg’ and all graph patch commands m; = (s1, 1)
and 1y = (s, &), ifg 253 ¢/, then g 25 ¢’

TI1 T2

Proor. If g == ¢/, then ¢’ = g[e; — s1 U g(e1)][e2 — s2 L g(e2)]. We want to show that
this equals g = g[e; — s1 L g(e1)][e2 — s2 L g(ez)]. For any ¢, if ¢ # ¢ and ¢ # ¢, then
g'(e) = g"(e) = g(e). If ¢ = ¢; but ¢ # &, then ¢'(¢) = ¢g"(¢) = s; L g(¢). Similarly if ¢ = ¢ but
not ¢;. Finally, if ¢ = ¢; = &;, then ¢'(¢) = s2 1 (s1 L g(¢)), and g”(¢) = s1 u (s L g(¢)). These are

1

equal by Lemma 3.1. Since ¢'(¢) = ¢”(e) foralle, ¢’ = ¢” and g 25 ¢'. |

The commutativity of patch commands generalizes directly to the commutativity of patches.

3.1.4 Interpretation as a CmRDT. The definition above can be understood operationally as a CmRDT.
In particular, the edges can be understood as forming a two-phase set (2P-Set), because deletion is
permanent [35]. The set of realized edges forms a grow-only set, as does the set of realized vertices
(those included in a realized edge).

3.2 Groves

Structure editors and other tools operate on trees, not on arbitrary graphs. When performing these
operations on a graph g, only the set of edges ¢ such that g(¢) = gk should be considered. We call
this the live subgraph of g.

We present groves, a tree-based representation of a live subgraph. A grove is a collection of
mutually referential terms annotated with vertex and edge UIDs governed by the grammar in
Figure 11. Groves correspond precisely to live subgraphs in the sense that a live subgraph can be
decomposed into a grove, and the grove can be recomposed into the original live graph.

3.2.1 Terms. Given a source language parameterized by a set of constructors k € K, we define an
augmented term language as specified in Figure 11. Terms are extended with cases for relocation
conflict references and unicycle conflict references. Additionally, since any position of any con-
structor may have zero, one, or multiple outgoing edges, we define a secondary sort ChildTerm to
represent these possibilities. A location with no outgoing edges corresponds to an empty hole, a
location with one outgoing edge corresponds to an ordinary subterm, and a location with multiple
outgoing edges corresponds to a local conflict between multiple terms.

These terms also carry information to support additional operations. To enable the reconstruction
of the original graph, each constructor carries the UID of its original vertex, each reference carries
the vertex that it refers to, and each subterm carries the UID of the edge that leads to it. To support
type hole inference (as discussed in Section 5.2), each empty hole and local conflict carries its

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 73. Publication date: January 2025.



73:14 Michael D. Adams, Eric Griffis, Thomas J. Porter, Sundara Vishnu Satish, Eric Zhao, and Cyrus Omar

Root; R47
F) ()
Lys Ry9 0 = {(Mo;k,/.),:l %40 (VV]L%Y43,(42,x)>) 438 ("Hy41,(42,x)),
R 5 5e 492 (4 45 49 5
41 252 542, (d64L) g 446 (43045,(46#) %48 (4)y><)))}
(a) A graph (b) The grove corresponding to the graph
grap g p 24 grap
t, = 1((4("*~[‘)D %40 (413\[43’(42’)())) 438 (4]Y41,(42,x))
NP = {27’}
MP = {x"’}

U= {(4(>,+.L)D 446 (45 045‘(46&) %48 (49y50))}
(c) The partitioned grove corresponding to the graph

Fig. 12. Example of graph decomposition

location. Finally, to support user navigation of the grove, each reference also carries the UID of the
edge that leads to it.

3.2.2  Graph Decomposition. A live subgraph G, which is just a finite set of edges, decomposes
into a grove ©, which is a finite set of terms. In a tree, each node except the root has a unique
parent, and there are no cycles. There is no guarantee of these properties in a graph. Decomposition
operates by allowing each ‘problematic’ vertex, in the sense of having multiple parents or forming
a cycle, to be the root of its own entry in the grove, and to use references at special term leaves to
encode the original graph structure.

Formally, the parents of a vertex v in a graph is defined as the set of origin vertices v’ such that
the graph includes an edge from v’ to v. Conversely, the children of a location ¢ is the set of v such
that the graph includes an edge from ¢ to v. It is convenient to consider these children to be paired
with its edge’s UID .

Definition 3.3.
parentsg(v) = {o' € V | (w, (v/,p).v) eGAwe W A pe P}
childreng (¢) = {(w,0) e W x V| (w,£,0) € G}

To help define decomposition, each vertex in a graph can be classified as either an NP root (if it
has no parents), an MP root (if it has multiple parents), a U root (if there is a sequence of unique
parents from it to itself, and it has the minimal UID in that sequence), or not a root. These classes
are mutually exclusive.

Definition 3.4. A vertex v is an NP root in G if parentsg(v) = &
Definition 3.5. A vertex v is an MP root in G if |parentsG (o)| > 1

Definition 3.6. A vertex v is a U root in G if 3{v;}1<i<n such that v; = v, = v, parents;(v;) =
{vj11} for all 1 < i < n, and the UID of v is the minimum of the UIDs of {v; }1<i<n-

Definition 3.7. rootg(v) if v is an NP root, an MP root, or a U root in G.
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LEmMA 3.8 (UNIQUE CLASSIFICATION). For any live subgraph G < & and vertexv € V, exactly one
of the following holds:

v is an NP root in G
v is an MP root in G
v isan Urootin G
v is not a root in G

The decomposition of a vertex is specified intuitively as the term obtained by traversing the
descendants of the vertex until a leaf or a root vertex of some kind is reached, which is not further
decomposed, but is denoted in the term as the appropriate reference. The decomposition of a graph
is simply the set obtained by decomposing each vertex classified as a root, provided the vertex
actually appears as the origin of an edge in G.

Formally, the decomposition of a vertex is given by the function decompVertex, which returns
a term with the same UID and constructor as the vertex. At each position in the arity of the
constructor, we obtain a child term from the function decompLoc, which decomposes a location
in the graph to a corresponding child term. Consider the multiplication constructor with id 40
in Figure 12. It decomposes to a multiplication term with left and right child terms, the result of
decomploc applied to its left and right locations.

Definition 3.9. decompVertexg (v = (u,k)) = k" {decompLocs (0, p))}pearity(x)

The decomposition decomploc(¢) proceeds by inspecting the children of location ¢. If there are
no children, the resulting child term is an empty hole. This hole is annotated with ¢ to act as a
unique identifier. If £ has children, each is annotated with its edge UID and decomposed using
the function decompChild. If there are multiple children, they are placed in a local conflict, also
annotated with ¢. To continue our example, the left position of vertex 40 has no edges, and therefore
the result is a hole annotated with the source (40, *, L). The right position has one edge, so the
right argument to the multiplication term is the result of applying decompChild to the destination
vertex of this edge.

Definition 3.10.
‘o childreng(f) = &
decomplocg(¢) = { decompChild;(w, v’) abschildreng(¢) =1
{*decompChildg(w,v") | (w,v’) € childreng(¢)} |childreng ()] > 1
A call to decompChild is like a call to decompVertex, except that roots are not decomposed further,
and a reference is returned instead. Without this case, decomposition could traverse cycles in the
graph and never terminate. Instead, decomposition results in well-behaved trees that nevertheless
store enough information to enable rich exploration and analysis. In our example, vertex 42 has

multiple parents, and therefore is an MP root. Its decomposition is a reference storing the edge UID
41 and the destination vertex.

Definition 3.11.

Y (w,0) v is an MP root in G
decompChildg(w,v) = { Oy, v is a U root inG
decompVertexg(v) v is not a root inG

Be decomposing each root vertex that appears in G, we obtain the whole grove.

Definition 3.12. vertices(G) = {v € V | (w, (0,p),0) eGAwe W AV €V A pe P}
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Definition 3.13. decomp(G) = {decompVertex(v) | rootg(v) A v € vertices(G)}

The process can now be reversed and the same live subgraph can be obtained from the grove. At
a high level, a term may be considered a tree, and therefore a graph, and the recomposition of a
grove may be considered the simple union of each tree in the grove. Formally, the recomposition of
a constructor applied to children is a set of edges that includes an edge from the parent to each
child, as well as the recomposition of each child. Terms store vertices on constructors and edge
UIDs for each child to enable the completeness of this reconstruction.

The recomposition of a constructor term is the set obtained by adding edges from each child
of the term, according to the function recompChild Term, whereas references contain no graph
structure of their own and recompose to the empty set.

Definition 3.14.

recompTerm (k" {;P}pearity(k)) = U recompChildTerm(((u, k), p), t,)
pearity (k)
recompTerm(Y (,,,)) = &
recompTerm(O,,,)) = &
The recomposition of a child term at location ¢ includes, for each term in ¢, an edge from the ¢ to
the term’s corresponding vertex, as well as the term’s recomposition. In the case of an empty hole,

there are no terms, and this the recomposition is empty. If there are one or more terms, each term
contributes its own edge and recomposition.

Definition 3.15.

recompChildTerm(¢, D) =
recompChildTerm(£, 't) = {(w, ¢, vertexOfTerm(t))} U recompTerm(t)
recompChildTerm(£, ‘{* ti}i<n = U (w;, £, vertexOfTerm(t;))} U recompTerm(t;))
i<n

The vertex of a term is used as the destination of edges from the term’s parent location. Thus the
vertex of a constructor term is the vertex with the same UID and constructor, and the vertex of a
reference is the vertex it refers to.

Definition 3.16.

vertexOfTerm (k“ {fp}peamy(k)) = (u, k)
vertexOfTerm (Y (,,.0)) =
vertexOfTerm (U, ,)) = v

The recomposition of a grove is simply the union of the recompositions of its terms.
Definition 3.17. recomp(T) = |J,;er recompTerm(¢)

The Theorem 3.18 states that recomposition recovers the entirety of the original live subgraph,
and therefore that groves faithfully represent the underlying data structure.

THEOREM 3.18 (RECOMPOSABILITY). For all subgraphs G, recomp(decomp(G)) = G.
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Fig. 13. The syntax of zippered terms and user actions

3.2.3 Partitioned Groves. In order to facilitate user interaction with groves, we defined a presenta-
tion of a grove called a partitioned grove. A partitioned grove contains three classes, corresponding
to the the three kinds of roots: NP, MP, and U. A partitioned grove also designates a distinguished
child term as the primary component of the program.

Formally, a partitioned grove y is a quadruple (¢,, NP, MP,U) where t, € ChildTerm and
NP, MP, U are finite sets of terms. The construction of a partitioned grove from the grove decomp(G)
requires the designation of a distinguished root location ¢, = (v, = (uy, k), pr) such that v, is an NP
root in G and arity(k,) = {p,}. The distinguished child term can be thought of as the decomposition
of the distinguished root location. The NP, MP, and U partitions are delineated by the class of the
root vertex of each term. The root vertex of a term is like the vertex of a term, except that the
root vertex of a reference is the source of the corresponding edge, rather than the destination. A
term rooted at the distinguished root is excluded from the NP class, since its contents are already
identified as the distinguished child term. Figure 12¢ provides an example of a partitioned grove,
where the position Root of vertex 0 is the distinguished root location.

Definition 3.19.
distinguishedChildTerm (¢, = ((uy, k), pr), ©) = ¢, ifk! t, €@
distinguishedChildTerm(¢, = ((u,, k»), p;),®) = "0 otherwise
Definition 3.20.
rootVertexOf Termg (k* {?p}pea”.ty(k)) = (u,k)
rootVertexOf Termg (Y (1)) = 0'where(w, (v',p),0) € G

rootVertexOf Termg (U ,, ) = v'where(w, (v

Definition 3.21.

grove(t = (vy, pr), ©, G) = (distinguishedChildTerm(¢,, ©),
{t € © | rootVertexOfTermq(t) +# v, and is an NP root in G},
{t € © | rootVertexOfTermg(t) is an MP root in G},
{t € © | rootVertexOfTermg(t) is a U root in G})

3.3 User Edit Actions

We have defined a patch language directly in terms of graph edges and edge states. Since the user
interacts with the more intuitive, tree-based grove representation of the program, we require an
equally intuitive system of user edit actions (edits) that can be translated into the patch language.
The new sorts are defined in Figure 13.

Edit actions operate on zipper terms [13, 25]. The definitions of zipper terms and child terms are
standard, except that the cursor cannot select a child term of the form "¢, but is forced to select the
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term ¢ directly. While inspecting a grove, the user may select an edit action « while the cursor is
represented by f or 7, and this will result in a graph patch 7 to be applied directly to the graph.

Construct(k) constructs a new edge whose destination is determined by the cursor’s location. If
the cursor is on an empty hole, the hole is filled by constructing a fresh vertex with constructor
k. If the cursor is on an existing term or child term, we wrap the existing term or child term by
deleting it from its parent, constructing the new term in its place, then re-connecting the original
term as a child of the new term.

Delete deletes any edges that pass from constructors above the cursor to constructors below the
cursor. If an empty hole is selected, deletion is a no-op. If a local conflict is selected, each edge from
that location to a conflicting child is deleted. If a constructor is selected, every edge targeting that
constructor is deleted. If a reference is selected, the corresponding edge is deleted.

Relocate(#) combines edge construction and deletion into a single atomic operation. Provided
the location ¢ is empty, the edges through the cursor are deleted, as described above, and new edges
are simultaneously constructed with the same destinations as the old, but originating at location ¢.
This is not equivalent to the composition of a sequence of deletions and constructions, because the
UIDs of the relocated vertices remain the same.

Formally, these patches are defined in terms of the function edges; (Definition 3.22) which
produces the set of edges in the live subgraph G passing through a cursor at the given term or child
term. The live subgraph G is therefore an additional input to the patch construction judgment.

Definition 3.22.

edges;('D) = 16}
edges (‘{"titicn) = { wl,t’ o) | (wibo)eGri<nate LAaveV}
edgesg (K" {Tp}pcariry) = {(w, £, (uk)) | (w ¢, (u k))eGarweWnteL}
edgesg (Y (w.0)) = {(w,t,0) | (w.t.0)eG A te L}
edgesg (U (1,0)) = {(w.t,0) | (w.t,v)eGnateL}

For the purpose of the construction action, it is assumed that each constructor k € K in
the language is equipped with a designated position defaultPos(k) € arity(k). The formal patch
generation judgment is defined in terms of edges and defaultPos in Figure 14.

3.4 Mechanized Metatheory

The definitions and theorems in Section 3.1 and Section 3.2.2 have been mechanized [1] in the Agda
proof assistant, with the exception that termination is justified separately for some definitions
and proofs. In particular, Theorem 3.2 and Theorem 3.18 are formalized and proven. Lemma 3.8
follows from the more powerful theorem of classification correctness and completeness, which is
mechanized and used to prove Theorem 3.18.

4 The Grove Workbench

We implemented the core Grove calculus of the previous section as an OCaml library called the
Grove Workbench [1] and a corresponding web-based collaborative structure editor written using
js_of_ocaml [41] primarily intended to demonstrate the collaborative features of the workbench
and serve as a companion to the formal developments in this paper. The library is parameterized by
a syntax specification for expressions, with the necessary data structures generated automatically.

4.1 The Grove Workbench

On opening up the Grove Workbench, the user is met with two almost identical panels side-by-side,
emulating a collaborative editor environment between two users. Additional collaborators can
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Fig. 14. The patch generation judgment

be generated on command. In each case, a cursor is placed on an empty hole at the root of the
displayed term decomposition, which is displayed as a graph visualization of the same graph
structure so that the UI resembles the figures in Section 2. Below this are buttons for various user
edit actions, and commands to send queued commands to specific other users. In addition, we have
separate panels for multi-parented, deleted, and unicycle panels, corresponding to the partitioned
grove datastructure in the previous section. We will now examine them in correspondence to the
formalism described in Section 3.

4.2 Graph Implementation

The graph data structure is implemented as 0Caml Map data structure with insertion and selection
operations whose asymptotic worst-case complexity is logarithmic with respect to the size of the
map. Since we cannot implement an infinite mapping directly, the graph only maps live or deleted
edges to edge states {4k, =}. We do not represent edges that map to L.

Foragraph G : (8§ = U x V x P x V) — 3, our graph decomposition algorithm runs in
O(|V|log|V| + |E|log|V]). It begins with a scan of all edges that have been created or deleted
O(|&]). Their vertices at both ends are partitioned into three sets: multi-parented, single-parented, or
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orphaned. Their relationships are recorded in maps for O(log |'V|) lookups of parent and child edge
sets. After the vertices have been partitioned, we traverse the various single-parented components
and produce equivalent expressions O(|V|). For unicycles, we traverse backward until a vertex
is seen twice O(|V|), then proceed forward to find the least vertex on the cycle O(|]V[). Once
the least vertex is found, decomposition of unicycle begins with it, thus ensuring any edges to it
become references to a unicycle root.

5 Total Type Error Localization and Recovery for Groves

Resolving conflicts is often a time-consuming process and requires understanding the semantics
of the program even while it still has conflicts. Traditionally, conflicts are indicated by inserting
extra-linguistic conflict markers into files.

These markers can limit the operation of language services that need a well-formed or well-typed
term, e.g., type error reporting. Ignoring the markers is not sufficient because multiple conflicting
versions of the code may appear between the markers. This can complicate variable resolution and
type checking.

In the previous sections, we developed a system for explicitly representing various forms of
syntactic conflict directly in the grove resulting from graph decomposition. We now consider the
static semantics of groves.

Groves are sets of terms with holes, local conflicts, relocation conflict references, and unicycle
conflict references between them. These terms may not yet be well-typed during the course of a
collaboration. As such, we need to consider the problem of type error localization and recovery.

We build on recent work on the marked lambda calculus [43], which we briefly review in
Section 5.1. The marked lambda calculus specifies a total type error localization system, i.e. one
where every syntactically well-formed term can be marked with errors to produce a statically
meaningful term.

In this section, we extend the marked lambda calculus to allow reasoning about conflicted
programs, i.e. groves (instantiated with the syntax of the simply typed lambda calculus). The
marked grove calculus maintains the key totality property, so every edit state that can arise in the
course of a collaboration is statically meaningful. Downstream language services can, therefore,
continue to provide support while users resolve conflicts. This addresses the semantic gap problem
described in Section 1.

We follow the marked lambda calculus in basing our marked grove calculus in bidirectional type
checking [8] and deploying gradual typing [36] when conflicts do not allow a single type to be
inferred, then layer on a unification-based type inference system to opportunistically fill holes
or suggest partial solutions when there are conflicting types due to conflicting syntax. We give
an overview of the key judgments and rules in Section 5.2 but due to space considerations and
because much of the development is based directly on the prior work, we leave the full details to
the supplemental material and the mechanized metatheory, which is briefly outlined in 5.3.

5.1 Background: The Marked Lambda Calculus

The marked lambda calculus is a gradual bidirectionally typed rewriting system that takes an
arbitrary syntactically well-formed expression and marks it by localizing type errors, producing a
marked expression.

The key judgments are synthetic and analytic marking judgments that mark and type-check
expressions: ' - e « € = rand T |- e +> € < 7. The synthetic judgment is used when a type is to
be locally inferred from e, while the analytic judgment is used when surrounding type annotations
determine an expected type for e. A subsumption rule, which is not shown, allows analysis at any
type consistent with the synthesized type.
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For example, the rules for marking variables are reproduced below:

MKSVAR MKSFREE
x:7€el x ¢ dom(T)
TFxv»x=71 Fxe (x),=7

The first rule handles bound variables. The second rule handles free variables, which would normally
be statically meaningless. Here, we instead mark it explicitly as a free variable and synthesize the
unknown type, ?.

The rules for marking lambda abstractions when an expected type is provided similarly handle
both well-typed and ill-typed cases (which is key to proving totality):

MKALaAM1
T3 1 — Ty T~ 1T ILx:tHevwé<=n
F'Ax:te> Ax: 7.6 =13
MKALAMZ2 MKALAM3
3P, I'x:tHe>é<=? T3 1T — Ty TA 1 ILx:nnkev»é<=n
F'-Ax:tew (Ax:7.¢)] < IF'-Ax:tew (Ax:7.¢), < 13

The first rule invokes the matched arrow judgment (which handles the situation where the
expected type is unknown [36]) and performs a type consistency check with the argument type
annotation, after which we can analyze the body against the expected output type while recursively
marking it.

If there is not a matched arrow type, the second rule marks the lambda with an error (while
recovering recursively into the body at an unknown type). If the argument type annotation is
inconsistent, the third rule similarly marks the lambda with a different error. The subscript and
superscript are formal analogs of type error messages.

Marking is total, meaning every well-formed expression can be marked in this way, producing
a well-typed marked expression as governed by the bidirectional typing judgments for marked
expressions shown here: I' |5, ¢ = 7,T |5, é < 1.

These typing rules emit constraints because once marked, the system layers on unification-based
type inference to opportunistically fill the unknown types, i.e., the type holes, that arise. In case the
constraints governing a type hole cannot be solved, the system suggests hole fillings that satisfy a
subset of the constraints, asking the user to resolve the issue (rather than attempting to heuristically
decide which constraints were intended). When the user hovers over a choice, the system returns
control to the bidirectional marking system.

5.2 Marking Groves

We extend the marked lambda calculus to groves. The machinery related to type errors remains
largely unchanged. We focus our attention on type error localization in the presence of conflicts.

5.2.1 Syntax. Figure 15 introduces the syntax of the marked grove calculus. We define an unmarked
language, which comprises unmarked expressions, e, child expressions, €, types, 7, and child types
7. We also define a corresponding marked language, which comprises marked expressions, é, child
expressions, ¢é, types, , and child types, . This syntax is an instantiation of the generic term syntax
introduced in Section 3.2. The marked language differs from the unmarked language only by the
inclusion of the marks that arise due to type errors taken directly from the prior work.
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r € UType = num" | n "1 | Y (wo) | O(wo)

£ € UChildType == ‘of"“r|{"r}.,

e € UExp = x‘|nt e+ e e xte | Axite|(61€)" | YViwo | O

¢ € UChildExp == ‘O] el {™ei};—,

e € MEXp = x" | Q“ | él + ég v| él *! éz ‘ /1“3(' 1 T.e | <vél ég)tj | Y(w,v) | U(w,v)
(e, | 2@, | (2. 80| (1605 &) [ ),

§ € MChildExp == ‘O ¢ | e},

o € Type = ?|num|o; — oy

6 € Provlype = 29| num | 61 — &

q € Provenance = typ(£) |exp(f) | ref(w) | mark(u) | —r (q) | —r (q) | anon

m € Mode z= syn | ana(o)

Fig. 15. Syntax

5.2.2  Graph Erasure. The presence of conflicts and UIDs requires us to distinguish syntactic types
from semantic types, o, which are related by a graph erasure function, 7% = ¢ and ¥* = o, that
replaces holes and conflicts with the unknown type and erases vertex and edge UIDs (not shown,
see supplement for the full definition).

5.2.3 Marking. Marking is performed bidirectionally using four mutually defined judgments:
lHew»é=0, 'Féwé=0, Fewé<=oc,and THéwé=o0 .

For standard forms in the simply typed lambda calculus, the rules correspond directly to those
from the marked lambda calculus. For the sake of brevity, we include only the rules related to
lambda expressions below; the full set of rules are in the supplemental material.

MKALaM1
=0 o3 o — 0y o~ o [Lx:0¢&% é< oy
I'=A'x:Tew A'x:7.6 < o3
MKALAM2
=0
o3 »_, [Lx:0éwé<=?
F-Mx:tes (Ix": 1. e) <o
MKALAM3
=0
o3 o1 — 03 o * o [x:01é% ¢é<0y

T'Ax:tew (Ax":7.¢), < o3

These rules differ from the original rules, reproduced in Section 5.1, only in that they graph-erase
the type annotation and recurse using the marking rules for child expressions. For empty holes
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and singleton expressions, these are straightforward. We return to local conflicts below.

MKSONLY MKAONLY

MKSHoOLE Tewé=0o MKAHOLE Thewéeo

FF[Dq_)[D:? r}—we%wé:>0' FF’DHIDCG rl_\veq_)h'é<:o_

Once marked, the corresponding marked expression typing judgments, T - é =6 |C| L,

'+é=¢|C|L, T+¢é¢<6|C|L,and T} é < & |C|L emit type inference constraints,
C, as in prior work, and, recursively collect location conflict contexts, L, discussed further below.
When the system generates inference constraints and tries to unify them, it encounters unknown
types that need to be distinguished. This motivates the need for ¢ in Figure 15, which extends the
sort of semantic types to enable linking generated unknown types to their associated provenance
denoted by g. Provenances help locate the origin of the unknown type by associating them with
their location (¢), edge-ID (w), or vertex-ID (u).

MALaM1
o3 61— 62 | Cy =6 &~ & [,x:6-€é<0|C|L
I‘F/lux:’l_'.éco.'3‘C1UC2U{O.'%O"1}|L1
MALAM2
a3 >, =0 [,x:6-é<=?2""|C|L
T (" 2. 8) <:o"3\Cu{?mark(“)zo"3}|L
MALaMm3
o3 6 — 6 | G =6 G+ 6 I[,x:61é<36|C|L

TH (A" :7.8), <=6d3]|CruCu {?mark(”) ~ 63} | L

5.2.4 Local Conflicts. To mark local conflicts, we recursively mark all conflicted terms under
the given context and with the same expected type when available. The local conflict as a whole
synthesizes the unknown type, i.e. it is essentially a “conflict hole”:

MKSLocALCONFLICT MKALOCALCONFLICT
{F%eQ—)é:Ui}_ {F%eiwéica}_

i1<n i1<n

T edicn © (Mélicn = ? T {Melicn » (Melicn =0

After marking, we generate type inference constraints that constrain this hole (identified using a
provenance based on the location of conflict, £) using all of the conflicted terms.

MSLoCALCONFLICT
{rké:mi\c,vui}.
1<n
Do b, =0 G oo~ af UL
i<n i<n

MALOCALCONFLICT
{I’%e,co\C | 25 }

I, <ol |l L

i<n i<n
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When the conflicted terms have a consistent type, inference will succeed. When it fails, we can
fall back to the unknown type and rely on the type hole inference system developed in prior work
to allow users to choose from partial hole solutions. When a partial solution is selected (effectively
annotating the conflict), the mode becomes analytic, and the conflicted terms are remarked, allowing
users to identify where errors would arise if the conflict were resolved at a particular type.

5.2.5 Relocation and Unicycle Conflict References. Relocation and unicycle conflict references also
synthesize the unknown type and operate similarly:

MKSRELOCATIONCONFLICT MSRELOCATIONCONFLICT

I~ Y(w,v) = y(w,v) =7 ' y(w,v) = ?fef(W) ‘ {} ‘ (03 w, T, Syn)

MARELOCATIONCONFLICT

T Ywo) =0 {?ref(v) ~ (y} | (o, w,T,ana(6))

MKSCycLELOCATIONCONFLICT MSUNICYCLECONFLICT
- (-)(w,v) N O(w,v) =¥ ' U(w,v) = ?ref(w) ‘ {} ‘ (U, w, [, syn)
MAUNICYCLECONFLICT

I'— O(W,U) =q| {?ref(v) ~ o"} | (v,w,T,ana(s))

Because the referenced term has multiple possible locations, it also has multiple possible typing
contexts and typing modes, so we cannot immediately mark it. Instead, we gather this information
in the location conflict context, L, as shown above. This maps a location (identified by an edge UID,
w, and also for the vertex, v, for operational simplicity) to a pair of a typing context, I, and a typing
mode, m. This information can be used by the system to provisionally mark the conflicted term
under an explicitly selected context and mode (e.g. in response to which location the user’s cursor
is on or using some other user interface affordance).

The emitted constraints assume an unknown type for the referenced vertex and constrain it
with any expected types that appear at any of the locations where the corresponding term appears.
Again, solutions to this unknown type can be presented to the user to help them decide which
location might be most sensible.

5.3 Mechanized Metatheory
The key meta-theoretic property that tells us that we did not miss any cases is totality:

THEOREM 5.1 (MARKING TOTALITY).

(1) For all T and e, there exist é and o such thatT e+ é=cand T+é=6|C|L and
6° =o.
(2) For allT, e, and o, there exists é such thatT - e » é < ocand T - é <6 |C|L andé® = o.

In addition, the prior work defined a number of other auxiliary metatheorems that help sanity
check these definitions: well-formedness (marking preserves syntactic structure), and marking
unicity (marking is deterministic).

We have mechanized [1] our extension of the marked lambda calculus and these metatheorems
using the Agda proof assistant, taking the standard approach of modeling judgments as inductive
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datatypes and inference rules as constructors. Marked terms are intrinsically typed, allowing L to
be computed as a function of the term.

6 Related Work

The core components of a version control system are a patch language, a method for synthesizing
patches from user actions, and an approach for merging patches.

6.1 Patch Languages

There have been many different designs for patch languages and indeed many imperative data
structures and their associated operations can be construed as patch languages in the most general
sense. In the context of collaborative coding, patch languages can differ in the data structures they
operate on (e.g. line-based text [32], character-based text [9, 20], tree-structured data [16]). They
can also differ in how they identify locations within the data (e.g. by using numeric offsets [9],
unique identifiers, or paths through a tree). Finally, patch languages differ in which specific actions
are supported explicitly. Insertion and deletion are common, while code relocation, copying, undo,
and other operations are variously also included.

In this paper, our focus was on syntax trees with holes (i.e. program sketches [25, 38]) and explicit
conflicts, which we represented as directed graphs. We identify locations using unique IDs. We
have a two-level patch language, with a low-level graph patch language supporting only edge
insertion and deletion and a higher-level user edit action language focused on insertion, deletion,
and relocation, with some additional narrative consideration of copying and undo (a fuller account
of which we leave to future work). Our user edit language therefore forms a structure editor calculus,
inspired closely by recent work on the Hazelnut structure editor calculus (which did not support
relocation) [25] and patch languages for other tree-based data structures [6, 10, 11, 19, 23, 34].

6.2 Patch Synthesis

The most common approach to patch synthesis is to use a differencing algorithm to compare two
states, e.g. from the file system, to generate a patch. The classic diff algorithm [14], for example,
minimizes edit distance for a patch language involving line insertions and deletions.

In the setting of tree-based editing, there have been a number of tree differencing algorithms
described in the literature [4-7, 10, 11, 16, 19, 23, 34]. As described in Section 1, synthesizing
insertions and deletions is well-understood, but synthesizing relocations is more complex and
requires heuristics.

The approach we explore in this paper is far simpler: we directly translate from the log of user
edit actions to graph patches, without needing a differencing algorithm at all. This is only possible
with a structure editor integrated with the version control system, but the benefit of direct visibility
into the edit action log is that we do not need heuristics to synthesize relocations.

6.3 Merging

6.3.1 Operational Transforms. The most common approach to merging concurrently developed
patches is to deploy an operational transform [9] whereby locations in a remote patch are modified
based on the action of a local patch. Standard three-way merge algorithms in version control
systems deploy this approach, as do real-time collaborative rich text editors [15].

There have been a number of papers studying the algebraic properties of merging patches in
this style. For example, the Darcs [32] version control system, like Grove, represents repositories
using sets of patches. Using operational transforms, Darcs achieves commutativity in many cases,
but not between conflicting patches. The theory of Darcs defines and algebraically characterizes
when operational transforms do satisfy the properties of associativity and commutativity. Recent
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work on homotopical patch theory [3] has similarly developed an abstract algebraic framework for
distinguishing sensible merges.

6.3.2 CRDTs. The observation that commutativity is a particularly helpful property when dealing
with concurrent systems, including version control systems, has led to the development of a number
of data structures centered on commutativity. These are known as CRDTs, which stands variously
for conflict-free, convergent (CvRDT), or commutative replicated datatypes (CmRDT) depending
on particular details about the operations and the state representation [35]. Our approach draws
directly from this line of work: the Grove patch language forms a CmRDT on directed graphs, from
which we observe that we can derive a CmRDT for trees with explicit conflicts.

Much of the prior work on CRDT-based collaborative editing has focused on text editing [2, 12,
17, 22, 24, 27, 30, 31, 42], typically with text tagged with unique IDs. These techniques have been
used to develop collaborative text editors, e.g. Zed [37].

Peritext develops a CRDT-based approach for collaboratively editing rich text, which is structured
as text with hierarchically marked regions [20].

There have been other recent efforts to develop CmRDTs for richer tree data structures [18, 30].
However, the focus in this work has been on avoiding conflicts and cycles entirely by applying
ad hoc heuristics for conflict resolution at merge-time, e.g. using reported timestamps or favoring
particular directions in the tree. Our approach instead embraces manual conflict resolution, as is
common practice in software projects where arbitrarily losing code is not acceptable.

Pijul iterates on the patch based system of Darcs, obtaining commutativity between conflicting
patches using a CRDT graph data structure [44]. Pijul’s graph data structure is very similar to that
of Grove in its treatment of edges, but, unlike Grove, requires vertices to be created before they can
be referred to. This imposes a dependency relation between patches, causing Pijul to fall short of
the full commutativity enjoyed by Grove. Pijul is also language agnostic and models only the linear
structure of text. However, Pijul goes beyond this version of Grove by extending the data structure
to support history and branches, and Grove may be similarly extended in future work.

7 Discussion and Conclusion

“The fact that commutation can fail [in Darcs] makes a huge difference in the whole patch
formalism. It may be possible to create a formalism in which commutation always succeeds,
with the result of what would otherwise be a commutation that fails being something like
a virtual particle ... and it may be that such a formalism would allow strict mathematical
proofs ... However, I'm not sure how you’d deal with a request to delete a file that has not
yet been created, for example. Obviously you’d need to create some kind of antifile, which
would annihilate with the file when that file finally got created ...”

- David Roundy, Theory of patches [33]

This paper proposes a radically simpler, albeit practically ambitious, rearchitecture of collaborative
editing. Our contributions together result in a typed collaborative structure calculus called Grove
where, uniquely, all edits, including code relocations that stymie existing approaches, commute and
where there are no semantic gaps: all possible editor states, including editor states with various
kinds of unresolved conflicts, are semantically meaningful.

This paper focuses on the core theoretical underpinnings of this approach, developing mechanized
metatheory for both the patch language and the type system. A number of research problems on
algorithmic, networking, and user interface aspects of the problem open up given these foundations.
For example, we point out several situations where presenting non-conflicted but heuristically
attention-worthy merges may be worthwhile, and we leave to future work the user experience
design of this process. We intend to use the Grove workbench to integrate these efforts into the
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Hazel programming environment, though its editor component has been evolving so rapidly as to
prevent experimentation in this direction so far.

Although our focus was on tree editing, some aspects of a program are more naturally linearly
structured, e.g. string literals. We also leave to future work the problem of combining existing work
on sequence CRDTs with our work on tree/graph CRDTs.

Data Availability Statement

The artifact [1] that accompanies this work contains the Agda mechanization of the theorems
discussed in section 5.3 and section 3.4 and contains the implementation of the Grove Workbench
discussed in section 4.
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