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Large language models (LLMs) have reshaped the landscape of program synthesis. However, contemporary

LLM-based code completion systems often hallucinate broken code because they lack appropriate code context,

particularly when working with de�nitions that are neither in the training data nor near the cursor. This

paper demonstrates that tighter integration with the type and binding structure of the programming language

in use, as exposed by its language server, can help address this contextualization problem in a token-e�cient

manner. In short, we contend that AIs need IDEs, too! In particular, we integrate LLM code generation into

the Hazel live program sketching environment. The Hazel Language Server is able to identify the type and

typing context of the hole that the programmer is �lling, with Hazel’s total syntax and type error correction

ensuring that a meaningful program sketch is available whenever the developer requests a completion. This

allows the system to prompt the LLM with codebase-wide contextual information that is not lexically local

to the cursor, nor necessarily in the same �le, but that is likely to be semantically local to the developer’s

goal. Completions synthesized by the LLM are then iteratively re�ned via further dialog with the language

server, which provides error localization and error messages. To evaluate these techniques, we introduce

MVUBench, a dataset of model-view-update (MVU) web applications with accompanying unit tests that have

been written from scratch to avoid data contamination, and that can easily be ported to new languages because

they do not have large external library dependencies. These applications serve as challenge problems due to

their extensive reliance on application-speci�c data structures. Through an ablation study, we examine the

impact of contextualization with type de�nitions, function headers, and errors messages, individually and in

combination. We �nd that contextualization with type de�nitions is particularly impactful. After introducing

our ideas in the context of Hazel, a low-resource language, we duplicate our techniques and port MVUBench

to TypeScript in order to validate the applicability of these methods to higher-resource mainstream languages.

Finally, we outline ChatLSP, a conservative extension to the Language Server Protocol (LSP) that language

servers can implement to expose capabilities that AI code completion systems of various designs can use to

incorporate static context when generating prompts for an LLM.
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Fig. 1. Hazel Assistant Conversational Architecture (see section 9 for image acknowledgements)

1 Introduction

Recent advances in generative AI have triggered an avalanche of new AI programming assistants—
the most prominent is Copilot [23], but it has many competitors—that generate code completions
by prompting a large language model (LLM) pre-trained on a corpus of diverse natural language
documents as well as code written in various programming languages [7, 17, 17, 49, 73, 78]. Once
trained, an LLM iteratively transforms an input token sequence, called the prompt, into next-token

probability distributions from which completions are sampled. LLMs are able to learn statistical
regularities in the training data [29], with limited reasoning abilities emerging as LLMs scale up in
size [89]. As a result, AI assistants have become capable enough to substantially impact developer
productivity [9, 61, 74, 88]. For example, one study reports a 50% increase in productivity when
using Copilot [88]. The impact is particularly pronounced for developers working with high resource
libraries and languages, i.e. those well-represented in the training data [78].

Contemporary AI assistants construct the prompt primarily using the program text appearing in
a textual window around the developer’s cursor (the cursor window) [66]. This approach leads to
poor performance in situations where critical task-relevant context comes from de�nitions that
appear neither in the cursor window nor in the training data (the semantic contextualization

problem) [2, 19, 38, 60, 67, 77, 82, 83]. For example, consider the following cursor window, which
would arise when a developer is implementing a GUI component using the model-view-update
(MVU) architecture (central to popular GUI application frameworks like React [8] and Elm [18]):

(* update the room booking data after a user action *)

function update(model: Model , action: Action ): Model {

Correctly completing this function de�nition requires knowing the de�nitions of this speci�c
component’s Model and Action types, which commonly appear in di�erent �les in the repository
and therefore outside the cursor window. Various other �les might also contain relevant de�nitions,
e.g. other types that can be reached from the de�nitions of Model and Action, and useful helper
functions for working with values of these types. Without access to these de�nitions, an LLM will
either be unable to generate su�ciently probable completions (which may result in no completion
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being generated) or more typically it will hallucinate plausible-but-incorrect de�nitions based only
on the provided comment [80, 85].
To address this problem, assistant designers use various retrieval augmented generation (RAG)

techniques [25] to retrieve additional code from other �les in the repository and external libraries
for inclusion in the prompt. Real-world code bases often span hundreds of thousands of lines of
code, so exhaustive retrieval quickly runs into scaling issues. While prompt (i.e. context) size limits
continue to increase [21], generation costs (measured in both time and energy) scale with token
count [30]. These costs are substantial (because LLMs typically have billions of parameters) so
token e�ciency remains a critical metric [66]. Moreover, contemporary LLMs struggle to attend
to relevant information and ignore irrelevant information (such as the Model and Action types for
other GUI components) in large prompts [35, 37, 41, 79].

Given these issues, assistant designers need retrieval techniques that prioritize task-relevant code.
For example, Copilot retrieves code from locations in other �les that the developer has recently
visited, based on the heuristic that these are likely to be task-relevant [71]. Another prominent
retrieval strategy, which we will refer to as vector retrieval, involves performing a vector search
across the repository (and perhaps beyond) to retrieve code similar to the code in the cursor
window [44, 82, 83], as measured by a learned vector similarity metric [36, 49]. This relies on the
heuristic that lexically similar code is likely to be task-relevant code. In the example above, since
the type names Model and Action appear explicitly in the cursor window, this approach may �nd
their de�nitions. However, it may also �nd irrelevant de�nitions of other types named Model and
Action and other implementations of update, e.g. those from other GUI components in this or other
applications. It may also be less e�ective when the task-relevant de�nitions are not named explicitly,
e.g. if the developer is later writing a call to update, the fact that the relevant types are Model and
Action requires reasoning about the type signature of the update function.

These retrieval approaches are language-agnostic, treating source code as a sequence of tokens
like any other, so they must necessarily deploy imprecise heuristics. In this paper, we instead
consider language-aware approaches that take advantage of the fact that in many languages, code
is governed by a rich type and binding discipline determined by a static semantics [28, 62]. To
retrieve relevant semantic information and analyze candidate code completions, we rely on a
modern language server [10, 13] to provide various language services, namely type reporting, typing
context search, and error reporting. Integrated development environments (IDEs) interact with
these services to drive various human-facing a�ordances such as type hints and hover messages.
Here we investigate the hypothesis that LLM code completion can also bene�t from interactions
with language services. Put pithily, we hypothesize that AIs need IDEs, too.

We investigate two language-aware approaches independently and in combination:

Static Retrieval. The �rst approach we consider (section 2) is static retrieval, where the language
server is tasked to (1) determine the type and typing context of the “hole” (implicit in the update

sketch above) at the cursor, and (2) transitively retrieve semantically relevant type de�nitions and
function headers, from wherever they might appear, for inclusion in the prompt.

In the update example, the hole that the language server inserts (either implicitly or explicitly) at
the cursor is of type Model (because it is in the body of the update function, which has return type
Model), and the local typing context includes the argument action : Action, so the language server
can look up the de�nitions of the Model and Action types. These types might themselves refer to
other types, so we can transitively continue type retrieval. We can also retrieve information about
relevant helper functions in the typing context, e.g. those that operate on the types that have been
looked up, continuing transitively up to a token limit.
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Static Error Correction. To further improve correctness, we combine static retrieval in subsec-
tion 2.7 with a straightforward syntactic and static error correction pass [33, 39]: we ask the
language server to localize and generate error messages for syntactic and static errors in the
generated completion, then feed this information back into an instruction-tuned model, prompting
it to correct these errors, potentially over multiple rounds (trading o� latency for correctness).

1.1 Evaluation Overview

1.1.1 Programming Languages and Language Servers. The approaches that we investigate in this
paper are in principle applicable to any programming language with a well-structured type and
binding discipline. The more challenging requirement, which has limited the prior experiments in
these directions (which we review in section 6), is that we also need a rather capable language server.
In particular, the language server must be capable of robust syntax error and type error recovery,
producing a semantically meaningful program sketch (i.e. a program with holes) in any situation
where the developer might request code completion [52]. For instance, the example situation from
the beginning of section 1 are syntactically erroneous, because the developer has not yet closed a
curly brace or parenthesis, so a standard compiler would simply report a syntax error and halt. In
other cases, there may be localized type errors elsewhere in the program that would ideally not
cause gaps in the availability of code completion.
For this reason, we evaluate these ideas primarily by developing an AI programming assistant

for Hazel, extending the Hazel Assistant with LLM support [12]. Hazel is a typed functional
programming environment designed speci�cally around typed holes, inserting them automatically
to ensure total syntax error recovery [47] and total type error recovery [87]. Hazel is also capable
of evaluating programs with holes [50, 81] (including ‘non-empty’ holes inserted as membranes
around marked type errors [87]), which makes it possible to use unit testing to granularly evaluate
the correctness of even locally ill-typed model outputs (rather than the more ad hoc methods that
are common in the literature, like edit distance from a single canonical solution).
The Hazel language is similar to Elm, OCaml, and other languages in the ML family, i.e. it is a

pure typed functional language with support for algebraic datatypes and pattern matching. Unlike
Elm and OCaml, contemporary LLMs have not been trained on a substantial body of Hazel code, i.e.
Hazel is a low resource language. This presents both a challenge and an opportunity for research.
We have found that when asked to write Hazel code, contemporary LLMs fail to follow Hazel’s
syntax and semantics, often borrowing syntactic forms and library functions from OCaml and Elm.
However, LLMs are capable of in-context learning [24, 64], suggesting that it is possible to include
few-shot examples and instructions in the prompt to quickly teach contemporary LLMs about how
Hazel di�ers from related higher resource languages. The error correction approach we investigate
may also be of particular interest in preventing errors in this sort of low-resource setting, which is
of considerable interest to the PL research community [15].
To demonstrate that static retrieval is useful even for mainstream high resource languages, we

also perform additional more limited experiments in section 3 with TypeScript via the TypeScript
Language Server, an instance of the Language Sever Protocol (LSP) [10]. We �nd that the LSP does
not provide simple, direct access to the sort of information that is necessary to implement static
retrieval, so we propose a more direct interface as we introduce the various approaches throughout
the paper, summarized as a prospective LSP extenstion in section 5.

1.1.2 Tasks. The most commonly reported LLM code completion benchmarks are HumanEval [17],
EvalPlus [40], MBPP [7], and LiveCodeBench [32]. These are unsuitable for evaluating the proposed
approaches because they consist of single-�le tasks (constructed either manually, or derived from
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public repositories or programming contests) that are low-context, i.e. they require only builtin or
standard datatypes, and therefore do not highlight the semantic contextualization problem.
Repository-level benchmarks like RepoEval [83], RepoBench [42], CrossCodeEval [20], the Co-

CoMIC dataset [19], and defects4j [34] are more suitable because they are high-context, i.e. they
require completing code that depends on de�nitions in di�erent �les. However, these benchmarks
also present di�culties:

(1) Data Contamination: LLMs are known to be able to memorize code that they have seen
during training, and evidence suggests that this data contamination issue has indeed caused
public models to be over�tted to publicly available code [32, 65]. All of these benchmarks
source examples from GitHub or PyPI. Based on reported cut-o� dates, the projects in these
benchmarks will have by now likely been incorporated into the training of contemporary
models (noting that with few exceptions discussed below, training data is not disclosed).

(2) Language Exclusivity: None of these include Hazel code, nor is it easy to manually port
arbitrary projects taken from GitHub or PyPI that depend on various complex libraries to
Hazel or any other low resource language of interest to the community. Existing porting tech-
niques have only generated low-context datasets [15]. In addition, RepoEval and CoCoMIC
exclusively feature Python code, which is di�cult to statically analyze.

(3) Missing Tests: None of the tasks in these benchmarks include unit tests, which means that
we can only evaluate correctness based on brittle textual similarity metrics. We observe that
models often produce correct output with substantial syntactic variation, similar to human
programmers [27].

For these reasons, we construct a repository-level benchmark suite, MVUBench, in subsubsec-
tion 2.8.1, that consists of various MVU web applications. Web application development is an
important and under-studied application domain. Many visions for the future imagine LLMs gener-
ating complete application logic, not just solving code competition problems [75]. MVU applications
are high-context in that they typically de�ne a number of di�erent datatypes which by convention
are often located in separate �les. Some of these datatypes have generic names, like Model and
Action, and a single application might have multiple such types, one for each GUI component,
presenting a signi�cant challenge to language-agnostic techniques that do not understand binding
structure. Indeed, it is easy to construct particularly challenging yet realistic examples simply by
combining multiple components of MVUBench, as we demonstrate in subsubsection 2.8.5.
We address the data contamination problem following the approach taken by HumanEval, by

conceptualizing and implementing these applications from scratch, without directly adapting any
code from GitHub. We will control the release of these benchmarks to limit the likelihood of future
contamination [31]. We address the language exclusivity problem by ensuring that these MVU
applications do not have any external library dependencies, so it is easy to port them to languages
beyond Hazel and TypeScript, notably including pure functional languages. NewMVU examples are
also easy to develop and add to the benchmark, because they can implement the logic of essentially
any front-end web application or GUI component. Finally, the lack of side e�ects also makes it easy
to unit test the core application logic.

1.1.3 LLMs. We selected two pre-trained language models with which to perform experiments.
First, we selected OpenAI’s GPT-4(-0613) [1], which is currently consistently at or near the top of
code completion benchmarks, to evaluate whether even the most capable contemporary foundation
models (i.e. models so large that only large organizations like OpenAI have the resources to train
and deploy them) bene�t from the approaches we consider.
GPT-4 is a closed model and many of its speci�c details, including its size and training, have

not been publicly disclosed. This presents a signi�cant challenge to reproducibility. Consequently,
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we also conduct experiments using StarCoder2-15B, the most capable fully open-source model
responsibly trained on a fully open code corpus, The Stack v2, as of this writing [43]. The Stack v2
has notably extensive coverage of low resource languages. StarCoder2-15B is small enough to run
locally on su�ciently powerful workstations, so our results should be reproducible inde�nitely.

GPT-4 is an instruction-tuned model, so we are able to use it to evaluate static error correction.
StarCoder2-15B is completion-tuned, meaning it is not designed to receive and respond to instruc-
tions. We are not aware of a comparably powerful fully open source code-specialize model that is
instruction-tuned as of this writing, so we do not evaluate error correction with StarCoder2-15B.

2 Static Retrieval and Error Correction in the Hazel Assistant

We �rst introduce Hazel and the Hazel Assistant by example from the developer’s perspective.
We continue by describing how the Hazel Assistant prompts GPT-4 and interfaces with the Hazel
Language Server to generate code completions augmented with static retrieval and error correction.
Then, we introduce the MVUBench benchmark suite and report the results of an ablation study of
each of these features. We investigate their relative contributions to the overall performance of the
assistant on these high-context MVU tasks, relative to various baselines that establish bounds on
performance.

2.1 Hazel

Hazel is a web-based live functional programming environment that features total syntax and type
error recovery via automatic hole insertion [47, 87]. This ensures that every editor state in Hazel is
a semantically meaningful program sketch and that Hazel’s various editor services, include code
completion, never experience gaps in service [52].

Fig. 2. The Hazel IDE

As a running example, consider a scenario where the developer is implementing EmojiPaint, a
simpli�ed MVU app where a user chooses an emoji from a palette and paints designs by ‘stamping’
it on a grid. Figure 2 shows the user editing the �le where the update function is de�ned. In
Figure 2 the developer’s cursor is shown as a red convex triangle to the right of a hole, represented
as a convex hexagon. The Hazel IDE interfaces with the Hazel Language Server to report static
information which both user and model can use to inform completions. The bottom bar, called the
Cursor Inspector, reports information on the syntax as well the expected type of the expression,
here a typed hole of the function type (Model, Action) -> Model, at the cursor. The lower left
popup, called the Context Inspector, reports the typing context at the cursor.
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The update function is intended to respond to EmojiPaint user actions in the GUI, represented by
values of type Action, transforming the current GUI state, represented by values of type Model, to a
new GUI state, also of type Model. These types and associated helper functions appear in di�erent
�les, excerpted in Figure 3(a-b). Algebraic datatypes (i.e. recursive sum types) are represented in
Hazel as constructors separated by + (rather than | in similar languages like OCaml).

Fig. 3. (a) The types relevant to the EmojiPainter MVU app. (b) An excerpt of already-implemented functions

in another file (with definitions collapsed by Hazel’s outliner). (c) The stubbed function header, where the

developer has requested LLM completion by inserting ?? in the hole.

2.2 Hazel Assistant

The Hazel Assistant is a programming assistant that generates code completions by twomechanisms.
To provide fast, local completions, the Hazel Assistant generates type-directed completions [12],
using localized syntactic and static information to inform small completions with type-directed
lookahead as shown in Figure 4(a-b). This feature can be invoked even when there are syntax errors
because Hazel tracks syntactic obligations in a backpack, e.g. as shown in Figure 4(b) where both
=> and end are necessary to complete the case expression [47].

Fig. 4. The Hazel Assistant defaults to providing only type-directed token completion.

To request an LLM completion from the Hazel Assistant, the developer can �ll any expression
hole with ?? which starts to animate as suggested in Figure 3(c). GPT-4, our underlying model
in this section, is not particularly fast as of this writing, so the developer can continue to edit
elsewhere while waiting for GPT-4 to return a completion. For this example, Figure 5 shows an
example of a GPT-4-generated completion. The developer can inspect this completion (which would
display any type errors found) and accept it with the Tab key.
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Fig. 5. The Hazel LLM Assistant, combining static information with generative creation via language models,

is capable of o�ering more substantial completions

2.3 The Hazel Assistant Trialogue

Our generative hole �lling process consists of the following steps, construed here as a ‘trialogue’
between programmer, the Hazel Language Server, and a language model. This is depicted in Figure 1
as a series of chat messages. In our setup, the primary interaction is between the language model
and the Hazel Language Server, which acts on behalf of the user in response to a request for LLM
hole �lling, kicking o� the following exchange. Here we use the messaging terminology from the
OpenAI Chat API [54], which distinguishes System, User, and Model messages:

(1) System Message: Hazel Crash Course and few-shot examples
(2) User Message: Program sketch augmented by static retrieval

(i.e. relevant semantic context from the language server)
(3) Model Message: Suggested hole �lling
(4) User Message: Syntax and type errors in the completion, if any
(5) Model Message: A corrected completion, if necessary

We repeat steps 4-5, i.e. we perform syntactic and static error correction when needed, stopping
after at most two iterations to limit latency.

2.4 System Message: The Hazel Crash Course

The system message is generic, common to each prompt. For an instruction-tuned model (GPT-4),
the system message consists of three sections:

First, we provide a list of instructions delineating the task. In particular, we instruct the model to
provide a code fragment to replace a sentinel value representing the target hole in the program
sketch. For example, the model is given the instructions:

• "Reply only with code"

• "DO NOT include the program sketch in your reply"

Second, an informal speci�cation of Hazel syntax with emphasis on ‘negative characterization’,
listing di�erences from syntactically-similar higher-resource languages. As this kind of ‘prompt
engineering’ is as-yet a task-sensitive and inexact process, this section, along with the one above,
was constructed though an ad-hoc process of discovering repeated syntactic errors in model output.
For example:

• "No 'rec' keyword is necessary for 'let' to define a recursive function"

• "There is no dot accessor notation for tuples; use pattern matching"

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 288. Publication date: October 2024.



Statically Contextualizing Large Language Models with Typed Holes 288:9

Finally, we positively characterise hazel syntax via a �xed list of input/output pairs of sketches
and program completions (few-shot prompting). We show one example below:

• Sketch

let List.length: [(String , Bool)] -> Int =

fun xs -> ?? end in

• Completion

case xs

| [] => 0

| _::xs => 1 + List.length(xs)

end

For the smaller completion model (StarCoder2-15B) discussed below, which has a longer context
window (16k versus 8k for GPT-4-0613) but is not instruction-tuned, we omit the �rst two sections,
in lieu of providing a longer list of syntax examples, which are provided simply as a list of de�nitions
rather than input-output pairs.

2.5 Type Retrieval

Fig. 6. A programmer requests a hole filling (A) by typing ?? , either intentionally or in a fit of frustration.

The Hazel Language Server provides codebase-wide (B) semantic information relevant to the hole, collecting

types based on the expected type (C) and selecting type-relevant headers from the context (D). These are

combined into a contextualized text prompt (E) which is sent (F) to the LLM resulting in hole filling (G).

The base EmojiPaint update function program sketch is as follows:

(* Update the EmojiPaint app model based on an action *)

let update: (Model , Action) -> Model = ?? in
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We augment this sketch with additional static information obtained via the Hazel Language
Server, serialized into text, displayed as a kind of projected view of the codebase – a static program
slice contextualized to the relevant program hole. Speci�cally, we retrieve the following static
information (diagrammed in Figure 6):

• Type Retrieval: The expected type at the cursor, along with the de�nitions of any types aliases
occurring in that type, and the de�nitions of aliases occurring in that de�nition, and so on
recursively until we arrive at base types.

• Header Retrieval: A selection of values, annotated with their types, �ltered from the typing
context based on a type-directed metric of relatedness to the expected type described below.

While we use Hazel to illustrate our approach, our goal is to outline an approximate API which
could be implemented by any language server for a typed language which could drive a similar
system in another language. We’ll de�ne the approximate methods for such an API as we go, and
later collect them in section 5.

2.5.1 Relevant Type Definitions. Given the above program sketch, the expected type of the hole
?? is (Model, Action) -> Model. While in this example, adding the expected type to the prompt
is strictly redundant, as it already appears as the function’s type annotation, in general Hazel’s
bidirectional type system [51, 87] allows a similar expected type to be extracted in any position for
which there exists type constraints, such as in function argument position, or in a module signature
including update.

Absent this sort of context, this type is elucidatory on its own. Based on the provided comment,
a language model might and likely will ‘guess’ that these refer to the state and state changes of an
Model-View-Update application. But as we shall see, it is unlikely to guess the precise structures of
the types the programmer has actually used. An example demonstrating the common case is show
in Figure 7:

Fig. 7. A typical completion with no static retrieval. Here, the language model hallucinates plausible but

incorrect constructors for the Action type, and hallucinates Model as a record type using syntax not supported

in Hazel.

Hence we do automatically what a programmer in an unfamiliar codebase might do manually:
recursively pursue type de�nitions to unwind the local semantic context hinted at by the type
expectation. Providing this list to a language model is analogous to a human using the IDE to hover
over types and jump iteratively to their de�nitions. First, we extract relevant type aliases:

• Model

• Action

Then, we retrieve their de�nitions:

• type Model = (Grid, Emoji, [Emoji])

• type Action = SelectEmoji(Emoji) + StampEmoji(Row, Col) + ...
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And �nally, we transitively complete this process, retrieving any additional aliases which occur
in those de�nitions: the aliases Grid and Emoji from the Model de�nition and the aliases Row, and
Col from the Action de�nition:

• type Emoji = String

• type Row = Int

• type Col = Int

• type Grid = [[Emoji]]

Note that even though these type de�nitions are, from the point of view of the Language Server,
abstract entries in the typing context, we are speci�cally electing to reproduce them in format
resembling their original lexical concrete syntax. We have noticed that attempting this kind of
naturalistic reproduction increases that chance that language model generations stay on-task,
generating code in the relevant concrete syntax without reverting to prose or ill-formed syntax.

To support the above method, a language server could implement the following methods, which
may be implementable as thin glosses on top of existing methods such as ’Go to type de�nition’:

• getExpectedType: (Program, LexicalLocation) -> Type

• extractAliases: Type -> [Type]

• getTypeDefinition: TypeAlias -> Type

To brie�y contrast this process to embedding-vector-based retrieval augmented generation:

• While vector retrieval might �ag these de�nitions as possibly relevant, note that they are
necessarily relevant. Our knowledge of the language semantics means we know that any
completion must respect these types, an assurance which allows us to o�oad burden from
the more expensive and imprecise associative lookup.

• This necessary relevance also increases the chance that subsequent recursive retrievals will
be relevant, addressing the issue of reliablemulti-hop lookups noted by industry implementers
[6]

• Static retrieval necessarily respects scope. Vector retrieval may return related-seeming de�-
nitions, but without exact knowledge of the language semantics, there is no guarantee that
these will be the de�nitions relevant to this lexical context.

2.6 Relevant Headers from the Typing Context

In addition to relevant type de�nitions, we augment the prompt with the names and types (which
together we term the headers) of relevant values – typically functions – from the typing context.
From a user interface perspective, this is analogous to a type-directed autocomplete menu.
Our extraction method divides into three stages:

(1) Use the expected type to identify a list of target types
(2) Filter the typing context for values with types related in a certain way to these target types
(3) Assign scores to each element of the resulting list, and return the pre�x of that list truncated

at some scoring and length thresholds (here, score > 0.0 and 10 items respectively)

The resulting context entries are formatted as code sketches, again to facilitate language model
ingestion. For example the pair (string_of_int, Int -> String) is formatted as:

let string_of_int : Int -> String = in

Here, the body of the de�nition is simply omitted. Interestingly, we originally used ellipsis (...)
in place of the body, but this resulted in an increased chance the model (especially the smaller
StarCoder2 model) would itself emit the token ... in lieu of a full completion.
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2.6.1 Identification of Target Types. First, we deconstructing the expected type to identify relevant
sub-components which could be used, in conjunction with their relevant elimination forms, to
construct the target. Our initial target type is simply the type of the hole itself:

Target types = (Model, Action) -> Model

Then, if that type is a compound type, we consider its components. In particular, if the type is a
product type, we consider its components to be targets, and if the type is an arrow type (as it is
here), we consider its return type to be a target.

Target types = (Model, Action) -> Model, Model, ...

In principle, we could continue this deconstruction recursively inde�nitely, but for our immediate
purpose of identifying likely-relevant types, we’ve found it su�ces to extend one more iteration;
that is, product/arrow types containing product/arrow types. It simpli�es our calculations to
internally normalize all type de�nitions (Hazel is structurally typed). Here, we will only do so
opportunistically for clarity of presentation:

Type of hole = ((String, (Grid, Emoji, [Emoji])), Action) -> (Grid, Emoji, [Emoji])

Target types = (Model, Action) -> Model, Model, Grid, Emoji, [Emoji]

One can likely see other ways of extending target type extraction. Possibilities included destruc-
turing more compound types such as records, or for function types, also considering the input
types as a kind of negative target, in that we may want to prioritize types that consume a relevant
type from the local context. For now we proceed with the simple approach outlined.
We do not, however, return unaliased base types such as Bool or String as target types. Early

experimentation indicated that, given that there are typically many standard library functions on
base types, often with no a priori way to distinguish their relevance based on types, such functions
would often act as confounders, since which happened to be included was incidental. In practice, a
standard library would already be well-understood by an LLM from the pre-training or �ne-tuning
step. For Hazel, we replicate much of the OCaml standard library to sidestep this need.

2.6.2 Filtering the Context. For each target type, we �lter the typing context to retrieve types
which can be used, again in conjunction with appropriate elimination forms, to produce the target.

This is essentially similar to target type extraction. In particular, we return types which are
consistent with the target, arrow types whose return type is consistent with the target, and product
types whose have a component consistent with the target. For example:

Target type Grid yields

• updateGrid: (Grid, Row, Col, Emoji) -> Grid

• clearGrid: Grid -> Grid

• fillRowInGrid: (Grid, Row, Emoji) -> Grid

2.6.3 Sorting and scoring the filtered context. Prior work [12] has surveyed various ways in which
semantic information can be used to sort typing-context-originating suggestions for relevance. For
our purposes here we use a simple scheme intended as a proof-of-concept to establish a baseline
for more sophisticated methods.

By default, Hazel context entries are sorted by locality of de�nition, which provides a reasonable
default for relevance. Thus we sort stably with respect to the locality ordering for context entries
having the same score.
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By default, all entries are assigned a score of 1.0. However, if a type contains the (gradual)
unknown type (?), a multiplier is applied based on the ratio of unknown to known type constructors
in the type (for example, the type [?] – a list of unknown type – would receive a multiplier of 0.5,
since the list constructor is known). This acts simply to de-prioritize incomplete implementations,
about which not enough information is available to make it a good suggestion.
Here are the relevant headers from the EmojiPainter example:

"Consider using these variables relevant to the expected type:"

let model_init: Model = in

let fillRowInGrid: ((Grid , Row , Emoji) -> Grid) = in

let clearGrid: (Grid -> Grid) = in

let updateGrid: ((Grid , Row , Col , Emoji) -> Grid) = in

In order to implement relevant header extraction in an arbitrarily language server, one could
provide the following methods:

• getTargetTypes: Type -> [Type]

• filterContext: Context, Type -> [(Name, Type)]

• scoreEntry: (Name, Type) -> Float

2.7 Syntactic and Semantic Error Correction

The use of instruction-tuned language models makes available a lightweight form of program
repair based on an iterative loop of generating completions and retrieving error messages from
compilers or static analyzers. The general technique of looping LLM code generation on compiler
errors appears to have emerged in tandem with early LLM code generation experiments [59] [84]
and has been examined in greater detail by Joshi et al. [33].
After receiving a response from the model, we substitute the received completion into the

original program sketch. We then query the Hazel Language Server to parse the resulting program.
Hazel parsing is strongly incremental, enabling the (partial) type-checking of programs even in the
presence of unrecognized or missing delimiters. We then query the language server for a list of
static errors, which include syntax and type errors. If there are any such errors, we serialize them
to a string, and send them to the language model.

In order to maintain model context, we append the errors to a growing log of messages beginning
with the original prompt. The number of correction rounds which can be performed in this way
is thus limited by the length of the context window; in our case, using the 8k token window of
GPT4-0613, we are e�ectively capped at 5 rounds. However, we have noticed that 2 rounds are
often su�cient to eliminate static errors, and that rounds in excess of 2 tend to show diminishing
returns, so we have capped the maximum number of rounds at 2.
To support this in another language, its language server must be able to localize static errors,

reporting locations and error messages. Ideally, it would produce a list of errors, rather than just
the �rst error encountered, as is supported by Hazel’s total type error localization and recovery
system [87]. This could be achieved by implementing the following method:

• getStaticErrors: Program -> [StaticError]

2.8 Experimental Evaluation

We now evaluate the e�ectiveness of this method of proactive static contextualization and retro-
spective correction for LLM code completion.
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2.8.1 MVUBench. Hazel is a low-resource language, so we are unable to conduct an at-scale
evaluation in this context. Instead, as previously motivated, we construct a benchmark suite of �ve
MVU applications including the EmojiPainter example from the previous sections:

• Todo (TO): Maintains a list of tasks
• Room Booking (BO): Manages a room booking schedule
• Emoji Painter (EM): Paints emoji stamps on a small canvas
• Playlist Manager (PL): Manages a music playlist
• Password Strength Checker (PA): Rates a password via a dynamic set of properties

The baseline program sketch provided to the language model for each of these programs is
simply the type-annotated function header for its corresponding update function, along with a
single-line comment describing that function’s purpose, including the name of the application, in
line with the running example.

Each application also comes with a simulated repository containing relevant (and less relevant)
type and utility function de�nitions.

We also provide a small test suite for each example, consisting of 10-15 tests ensuring that each
MVU action behaves as a user might reasonably expect without additional speci�cation.
In such a situation, a naive language model completion would be informed only by the update

function type aliases (which are often generic terms such as Model) and the single-line comment
(which only hints at the intended functionality). While it is still possible that in very typical
situations, the model might correctly guess appropriate types and names, more likely (as we shall
see) it will hallucinate plausible-but-incorrect completions. By varying the methods through which
additional context is provided, and the corrective methods applied to resulting completions, we
provide a baseline analysis for the relative e�ects and interactions of these methods on LLM code
completion.

2.8.2 Feature Ablation Experiment. Our main experiment consisted of 320 completions trials, each
of which makes between one and three calls to the language model. These 320 trials divide as
follows:

• 8 feature ablation con�gurations

– Type Retrieval: Whether to include expected type and type de�nitions
– Header Retrieval: Whether to include relevant headers from the typing context
– Error Rounds: Whether to perform up to 2 static error correction

• 5 program sketches (TO, BO, EM, PL, PA)

• 20 completion trials per combination (to account for model non-determinism [56]). We
ran these experiments at temperature 0.6 (a hyperparameter e�ecting the stochasticity of
token sampling), selected based on trial experiments as a balance between noisy variance
and producing a range of interestingly distinct completions

2.8.3 Comparison Baseline 1: No Context. The ablation con�gurations lacking all static retrieval
feature serves as a lower bound baseline – without any context except the brief comment on
the update function, we would expect even high-performing models to perform poorly due to
lack of context. This is the current reality for AI programming assistants that do not attempt
repository-level retrieval.

2.8.4 Comparison Baseline 2: Exhaustive Retrieval. An additional baseline con�guration, beyond
those outlined above, is to perform exhaustive retrieval of all application code, excluding tests, up
to the context window limit. This serves as a token-ine�cient upper bound on performance.
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2.8.5 Comparison Baseline 3: Vector Retrieval with Confounds. Finally, we compare our approach
to vector retrieval. Given that our test corpus consists of 5 relatively small programs, we have
emulated a larger more realistic codebase by combining those �ve programs, minus tests and
update functions, along with Hazel’s standard library, to create a 1000-line simulated codebase from
which context can be drawn. Combining these programs has the e�ect of creating some possible
lexical confounders, e.g. two types having the same name; we contend that this construction, albeit
synthetic, nonetheless emulates a legitimate source of confusion for a scope-unaware method like
vector retrieval.

We have used the simplest standard RAG strategy, uniformly dividing the codebase into 150-
character chunks, which were submitted to OpenAI’s Ada (text-embedding-ada-002), a commercial
embeddings model [49]. The retrieved 1536-element vectors, along with their associated text chunks,
are then stored locally in a JSON �le acting as a basic vector database.

In order to retrieve chunks relevant to a provided sketch (our function headers and comments),
we submit that sketch to the same API endpoint, and then search our vector database for the top 6
chunks with the highest cosine similarity [49].

The above parameters (150 character chunks, 6 entries) are chosen so that the total (900 characters)
lines up with the average length of the total static retrieval context (types + relevant context) for
our 5 examples, with the chunk size being set as small as possible while still being able to fully
contain most type de�nitions in our corpus.
It should be noted that there exist a variety of more advanced chunking strategies which may

yield better results, including overlapping windows, chunks aligned to inferred authorial intent [76],
and semantic chunking which takes into account source syntax. However, all these strategies have
complex trade-o�s which take us beyond our immediate comparative goals; for example, chunking
by top-level de�nitions (a language-aware approach) might prevent issues with a poorly-truncated
de�nition being included in a prompt, but seeing as de�nitions can range widely in size, being
forced to include an entire de�nition may prevent multiple chunks which are together more relevant
from being included.
As such, we have elected to leave the RAG baseline structurally agnostic, so as to more cleanly

contrast it with semantic methods, while noting it is likely that ultimately these two methods are
not exclusive and can be used synergistically in a production setting (for example, balancing the
ratio of typed semantic versus associative RAG depending on the amount of static information
available at a given lexical location). We return to this theme in section 6.

2.9 Hazel GPT-4 Results

Fig. 8. Hazel GPT-4: Results for guided completion (20 trials per, temperature 0.6)
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Figure 8 shows the results of our evaluation for GPT-4. We see a clear trend of more semantic
information yielding better results on the held-out tests. The no-context baseline (no/no/no) alone
does not su�ce to yield meaningful generations, often returning syntactically incorrect code as
the model hallucinates data types and syntax (such as OCaml-style records) which do not exist in
Hazel, despite the inclusion of the Hazel Crash Course.
Including type de�nitions seem absolutely necessary to allow the model to sca�old the update

function. Without this sca�olding, relevant function headers alone show little e�ect on correctness.
However, in combination with types, function headers have a large multiplicative e�ect, increasing
test performance threefold. Figure 9 provides concrete examples of this interaction:

Fig. 9. Some sample completions for various configurations. In (a), without any supporting context, we see

reasonable-but-incorrect guesses at both the Action constructors and the Model type; furthermore, the

model completion uses record syntax which does not exist in Hazel. (b) uses the provided types correctly

but hallucinates helper names. In (c) we see uses of appropriate helpers, but (mostly) incorrect guesses for

Action constructors. (d) exploits the provided context to produce a fully correct solution.

Similarly, error rounds on their own are ine�ective on code consisting largely of hallucinated types
and functions. But given the sca�olding e�ect of relevant static information, they act multiplicatively,
increasing performance by a factor of 4 for types without headers, and a factor of 1.5 for both types
and headers. Error rounds were particularly e�ective at transforming almost-correct completions
to fully correct ones, as shown in Figure 10.
One phenomenon of note was that sometimes even poor error messages proved e�ective; the

error in Figure 11 is an at-most partially accurate characterization of the syntax error, but knowing
there was a syntax error proved su�cient for the model to correct it, perhaps due to the additional
context provided in the Hazel Crash Course.
The combination of types and headers performed well against the Vector Retrieval baseline,

though it should be noted that this was disproportionately due to a single confounding chunk
which was retrieved for each example, even though it is only relevant to the Todo application (see
Figure 12). We believe that, due to the fact that this chunk coincidentally includes the word symbol
Model twice alongside Action, it is deemed relevant to each update sketch. The inclusion of this
snippet often resulted in the language model attempting to implement a Todo application, or some
hybrid thereof. We debated re�ning the chunking strategy to remove this confounder, but found it
easy to inadvertently create similar scenarios; ultimately, it is a representative artefact of a process
which is fundamentally non-scope-aware. See section 4 for further discussion.
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Fig. 10. Error rounds were generally very e�ective at correcting an almost-correct program. Here, the error

round reply included a type inconsistency error on model and an unbound variable error in grid, both of

which were corrected in the model’s reply

Fig. 11. Here, a parse error (match/with used instead of case) was corrected, even though the Hazel error

message in this case is somewhat unclear: “The parser has detected unmatched delimiters: => , => , => , => .

The presence of a => in the list likely indicates that a -> was mistakenly used in a case expression.”

Fig. 12. A confounding snippet commonly retrieved by vector retrieval

See Figure 13 for additional examples of more atypical completions.
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Fig. 13. Some more exotic completions: (a) is an excerpt of a very long solution which, not having access to

headers, almost successfully managed to re-implement the required logic in-line. In (b) we see an example of

a completion containing explicit holes, likely due to their presence in our few-shot example sketches. In (c),

the LLM somewhat quixotically suggests substituting a di�erent emoji in lieu of the empty string.

It is worth nothing that although the results for types + headers are similar to those for exhaustive
retrieval, with exhaustive retrieval performing somewhat better, our experiments are not powerful
enough to signi�cantly distinguish between these cases, as the sizes of our programs are small
enough that the context size delta is not re�ective of real-world use cases. Speci�cally, the size of
the retrieval context averaged 890 characters for our programs, whereas the exhaustive context
averaged 1370 characters. As it stands the performance delta seems to compare positively to the
context length (and hence cost) delta, but more data is needed to make this conclusive.

Fig. 14. Hazel GPT-4: Time elapsed for guided completion (20 trials per, temperature 0.6)

2.9.1 Token and Time Performance. Figure 14 shows the time taken in seconds for all trials. The
time taken is dominated by the number of round trips through the API, with each round scaling in
proportion to the sum of the length of the context and the length of the generation. Generally these
times are too long for use in a practical completion setting; our intention is to determine a ceiling
on current performance with respect to correctness rather than present a practical system. Note
however that these times will likely decrease quickly with hardware and software advances. As of
May 2024 GPT-4o[53] performs on average twice as fast as the GPT-4-0613 model checkpoint used
for our experiments. However, the long worst-case times for error rounds suggests that capping at
a single correction round may be more practical, or motivate the use of summarization to reduce
token count during error rounds.
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Fig. 15. Hazel GPT-4: Tokens used for guided completion (20 trials per, temperature 0.6)

Figure Figure 15 shows the total tokens used, both sent and received from the API. These are
roughly proportional to the time taken, and precisely proportional to the total cost.

2.10 Hazel StarCoder2-15B Results

Fig. 16. Hazel StarCoder2: Results for guided completion (20 trials per, temperature 0.6)

To assess the e�ectiveness of static retrieval with smaller completion models, we conducted tests
using StarCoder2-15B, a model small enough to be run locally on consumer hardware. The average
percentage of tests passed, shown in the rightmost column of Figure 16, exhibits a consistent trend
with the GPT-4 results. In the absence of any type or header information, StarCoder2 performed
poorly. The addition of type information drastically improves performance, increasing the percent-
age of correct solutions by an order of magnitude. Furthermore, incorporating headers leads to an
additional 50% increase in relative performance.
However, two examples, BO and TO, experienced degraded performance after the inclusion of

headers. After close examination of the headers and the output programs, we discovered that the
completions tending to use type-appropriate but in-fact irrelevant retrieved headers.We hypothesize
that smaller completion models, such as StarCoder2, are more sensitive to code that appears near the
end of the context window, making themmore susceptible to the in�uence of irrelevant information.
We touch on this failure mode again when we consider related work in section 6.

Vector retrieval baseline performance was signi�cantly worse (in absolute and relative terms)
than with the larger model. We conjecture that this is due to a heightened sensitivity to erroneous
syntax in the prompt created by chunk truncation.

3 Static Retrieval in TypeScript

To con�rm that the above results are not an artefact of using a low-resource language, we also
experimented with static retrieval in TypeScript.
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3.1 TypeScript Methodology

Our methodology roughly follows the Hazel experiments. As TypeScript is a high resource language,
well-represented in training sets, we did not need to provide a syntax crash course as we did for
Hazel. TypeScript lacks the explicit support for typed holes and thus a convenient way to extract
semantic information. We emulated typed holes using a previously established approach [14] using
generic functions (Figure 17).

Fig. 17. Hovering over a simulated program hole in TypeScript

Speci�cally, we pre�x the sketch �le with the declaration: declare function _<T>(): T. Then,
we represent a program hole as an application of that generic function: _() . Calling the TypeScript
language server’s hover method on the hole gives us a corresponding type signature. It should be
noted that this method of emulating typed holes is not fully general. While it works consistently
for holes replacing the bodies of function de�nitions, it fails in some syntactic positions, including
as an operand of in�x operators.

Static retrieval of type de�nitions is performed via the TypeScript language server. In particular
we use coordinated calls to the Go to Type De�nition and Hover methods to recursively retrieve
relevant types from the source lexically.
There does not appear to be any direct way of retrieving a typing context given a lexical

location, or even a complete list of variables in scope using the TypeScript language server. We
experimented with di�erent methods to retrieve relevant headers, including scanning the repository
using CodeQL, but were did not �nd a fully satisfactory general approach. Rather than incurring
the engineering cost of a compiler-level intervention, we simulated the retrieval of relevant headers
manually, emulating the same methodology as the Hazel Language Server. As such, our TypeScript
implementation should be considered a rough proof-of-concept; our experience here motivated our
prospective LSP extension outlined in section 5.
We used the TypeScript compiler to collate static errors for correction rounds.
Adapting MVUBench to TypeScript was done with the aid of Claude [4], an LLM chat agent (See

section 9 for more about our supporting LLM usage). Transliterated code was manually adjusted to
establish basic conformance to TypeScript idioms, for example adding elements to array at the end,
versus at the start is standard for linked lists in functional languages like Hazel. Our experience
here suggests that MVUBench can be ported with relative ease to other similar languages.

3.2 TypeScript GPT-4 Results

In broad strokes the TypeScript results (Figure 18) are similar to the Hazel results. We see, somewhat
unsurprisingly, that a higher-resource language, well represented in the training set, achieves better
overall completions from the language model. Unlike with Hazel, some trials passed some tests
even with no type information provided. With type de�nitions included, the TypeScript results are
�atter than the Hazel results.
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Fig. 18. TypeScript GPT-4: Results for guided completion (20 trials per, temperature 0.6)

The ratio of tests passed with-versus-without headers is 3 for Hazel, and 1.5 for TypeScript. From
examining the generated completions, we see that the model, when not provided with relevant
headers, is signi�cantly more able to produce equivalent working logic inline than it was in Hazel.

The TypeScript performance proved less dependent on error rounds. In Hazel, the ratio of tests
passing with-versus-without error rounds was about 2, whereas for TypeScript it is about 1.2. Again,
this is likely due to the fact that the model is far more familiar with TypeScript syntax, and unlikely
to make the kind of syntax errors which the error rounds were vital for correcting in the Hazel
experiment.
Performance relative to the exhaustive and vector retrieval baselines, including the high per-

example variance of the latter, are relatively in line with the Hazel results.

3.3 TypeScript StarCoder2-15B Results

Fig. 19. TypeScript StarCoder2: Results for guided completion (20 trials per, temperature 0.6)

The TypeScript StarCoder2 results (Figure 19) appear roughly in line with the Hazel results
modulo the considerations of the previous section.

4 Threats to Validity

The improvement seen from the inclusion of relevant function headers is highly contingent on
the fact that many relevant functions have already been implemented. While we believe that this
approximates a common case in programming practice for which naive contextualization strategies
fail, validating this claim would require larger-scale study, using at-scale programs which are more
neutrally selected.
More broadly, MVUBench is not (and is not meant to) be representative of all coding tasks, but

rather to present a challenge to contemporary techniques and help evaluate approaches to semantic
contextualization (e.g. vector retrieval, which we evaluate in subsubsection 2.8.5).
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Our TypeScript MVUBench is a very close translation of the Hazel code; although the MVU
paradigm is in use in the TypeScript world [8], there is a question as to the applicability of these
methods to a broader range of TypeScript programming styles.

The appropriateness of our baselines is arguable. This is an idealized setup in which the baseline
case is to provide no information beyond the function header; it is unsurprising that adding related
context drastically improves the result. In many real cases the cursor window would contain a
large amount of relevant code. We have chosen here to focus on the situation where the window
does not contain much relevant code, but it remains to validate the relative rate of occurrence of
these scenarios in the wild.
Our RAG baseline is relatively simplistic, and practical implementations are increasingly inte-

grating more sophisticated methods which may more closely approximate static retrieval. The fact
that we compensated for the small size of our examples by creating a conjoined codebase to create
our embedding vector database may not be adequately representative of a real large-scale codebase.

5 ChatLSP

Here we sketch a conservative extension to the Language Server Protocol to support static con-
textualization, motivated in part the awkwardness of implementing static contextualization in
TypeScript using its existing language server. The interface di�ers somewhat from the API we
sketched incrementally in section 2, as the LSP is presentation-centric, operating in terms of strings
and a�ordances rather than language-speci�c semantic data types.
Immediately following, we will sketch how one might implement this ChatLSP API in terms

of our Static Contextualization API, the latter serving more as an internal interface for language
server implementers.

5.1 ChatLSP API Methods

(1) aiTutorial: A constant (lexical-context-independent) method for low resource languages (like
Hazel) to specify a textual tutorial intended for LLMs having robust support for in-context
learning. For high resource languages, the default implementation will simply return a string
stating which language is in use.

(2) expectedType: Returns a string specifying the expected type at the cursor, if available
(3) retrieveRelevantTypes: Returns a string containing type de�nitions that may be relevant

at the cursor location
(4) retrieveRelevantHeaders: Returns a string containing headers that may be relevant at the

cursor location
(5) errorReport: Returns an error report that can be used to determine if an error round is

needed, and if so, how the feedback should be presented to the LLM.

This API gives leeway to the language server to decide how to implement these commands. For a
language with a rich static analyzer, e.g. GHC (Haskell) with its support for hole-oriented program-
ming and existing functionality to retrieve relevant headers (e.g. see the work of Gissurarson[26]),
it should be very straightforward to implement these �ve ChatLSP-speci�c commands.

To sketch the language server side of this interface, we collect the section 2 static contextualization
API below. First, we de�ne the following types aliases:

• type Header = (Name, Type)

• type Context = [Header]
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5.2 Static Contextualization Language Server API

• getExpectedType: (Program, LexicalLocation) -> Type

• getTypingContext: (Program, LexicalLocation) -> Context

• extractAliases: Type -> [TypeAlias]

• getTypeDefinition: TypeAlias -> Type

• getTargetTypes: Type -> [Type]

• filterContext: Context, Type -> Context

• scoreEntry: Header -> Float

• getStaticErrors: Program -> [StaticError]

ChatLSP API methods (2) and (5) correspond directly to getExpectedType and getStaticErrors.
The following pseudocode outlines how methods (3) and (4) could be implemented using the Static
Contextualization Language Server API:

retrieveRelevantTypes : Type → [Type]

retrieveRelevantTypes t = concatMap (\alias →

let def = getTypeDefinition alias

in def : getRelevantTypes def) (extractAliases t)

retrieveRelevantHeaders : Type → Context → [Header]

retrieveRelevantHeaders t context =

let relevantTypes = retrieveRelevantTypes t

filteredHeaders = concatMap (filterContext context) relevantTypes

sortedHeaders = sortBy scoreEntry filteredHeaders

in take NUMHEADERS sortedHeaders

-- Usage (given a Program and a LexicalLocation)

retrieveRelevantTypes(getExpectedType(Program , LexicalLocation))

relevantHeaders = retrieveRelevantHeaders

(getExpectedType Program LexicalLocation)

(getTypingContext Program LexicalLocation)

6 Related work

The introduction covered the broader literature on LLMs for code, so we focus here speci�cally on
other methods for semantic contextualization of LLM-based code generation systems.

Error correction using instruction-tuned models is a widespread technique and not itself a novel
contribution of this paper, e.g. much work on program repair with LLMs is fundamentally rooted
in this idea [33, 63]. The contribution of this paper is the observation that error looping alone is
not su�cient in a context-poor setting, and that error looping together with contextualization is
the most e�ective technique, particularly for a low-resource language like Hazel.
The observation that LLMs perform poorly when they lack repository-level context has been

made in a number of recent papers, which have approached it in a variety of ways. We discussed
the benchmarks used in these papers in subsubsection 1.1.2 so we do not repeat the discussion here.

RepoCoder [83] uses vector retrieval to contextualize Python code. Our experiments demonstrate
that vector retrieval is sensitive to semantic confounds easily handled by static retrieval.

The Repo-Level Prompt Generator [67] uses machine learning to decide how to construct a useful
prompt, drawing information from coarse-grained static information like imports and parent-child
relationships between classes. Even this level of contextualization showed substantial promise
relative to baselines.
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Pei et al. [60] tackle the di�cult problem of contextualizing Python function calls using a static
analyzer from Python, which can provide function implementations and function usage examples.
Again, even this level of contextualization is quite helpful. Our focus here was on gradually typed
languages, andwe did not include function implementations or usage examples, suggesting potential
future work.

CodeTrek [58] also uses program analyses, generated from task- and error-relevant queries and
expressed in CodeQL, to generate semantic contextualization for program repair tasks in Python.
This too was quite e�ective and suggests that richer static analyses might be of interest in particular
settings. For hole �lling, however, it may be that lightweight static methods, like type checking,
are more e�cient. However, we look forward to future direct comparisons of these methods.
Li et al. [38] also identify the semantic contextualization problem and propose IDECoder, a

system that uses the static information tracked by an IDE or language server to contextualize LLM
code completion. This is an outline of early experiments in this direction which have not yet been
fully evaluated, but we agree with the thrusts of the argument made here and look forward to
additional experimentation in this direction by the community.
CoCoMIC [19] is a framework that learns in-�le and cross-�le context jointly atop an LLM.

This di�ers from our approach in that it deploys a learning step to decide which cross-�le context
to attend to, which may be subject to similar issues as vector retrieval approaches when given
confounding contexts. However, this represents a fascinating future direction when combined with
static retrieval, which can often lead to too much information to include in a token window.
In a similar vein, RLCoder [76] uses reinforcement learning to rank retrieved code snippets

for repository-level code completion. Seemingly uniquely, they do not simply return the top k
candidates, but impose a stop threshold, which may result in no candidates being added to the
prompt if they are deemed of negative worth. Our StarCoder results suggest smaller models are
especially sensitive to plausible but irrelevant inclusions, further supporting this line of investigation.
A similar RL-based approach using statically derived candidates seems a promising future direction.

Dehallucinator [22] is an approach that performs semantic lookup after an initial generation
phase to lookup potentially relevant de�nitions that were invalid, e.g. not in scope. This is a
more sophisticated form of error correction and could be combined with the kind of proactive
contextualization that we’ve described.
Agrawal et al. [2] and Wei et al. [77] propose an approach that modi�es token sampling by

leveraging the semantic code completion systems already available in modern IDEs, which implicitly
provide some context. One issue with this approach is that they can only sample from tokens that
the model has assigned some baseline level of probability, but without semantic context this may
not be the case. There is likely substantial room for future work in combining static retrieval with
this sort of structure-guided sampling, and perhaps with providing more �ne-grained retrieval at
each token rather than once at the onset of code completion.

Zan et al. [82] retrieves potentially relevant code from API documentation, then further proposes
a continuous training approach to incorporate this information into the model weights. In contrast,
our approach is focused on black-box pre-trained models. In the future, incorporating commonly
used private APIs into a continuous training loop would improve token e�ciency, leaving more
room in the context for truly novel de�nitions.
Zhang et al. [86] builds a prompt context for program repair by retrieving class signatures and

method implementations based on model-extracted keywords from GitHub issue descriptions. This
is similar (and likely complementary) to our approach in that the authors de�ne an LSP-like API for
retrieval, but base this retrieval on inferring intent from unstructured text rather than cursor-local
derived semantics.
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Chakraborty et al. [16] uses RAG-based methods to retrieve relevant types from a large corpus to
support synthesis of programs/proofs in the dependently-typed F* language. Corpus-based RAG on
types is complementary to our approach, as it provides an avenue to retrieve semantically-similar
code in cases where there are no local values with appropriate types.

Parasaram et al. [57] examines the issue of ‘fact selection’ for program repair prompt construction:
How to decide which context to include and how that decision e�ects performance. They consider
multiple types of static and dynamic information, with particular focus on localized dynamics,
complementary to our more speci�c treatment of localized static information.
Liu et al. [39] have very recently proposed a general framework for applying static analysis

to repository-level code completion. They consider integration across three phases: prompting,
decoding, and post-processing, the �rst and last corresponding to our static contextualization
and correction approaches. In particular, their ‘token-level dependency analysis’, which uses
Java/Python static analyzers to add a list of plausible next tokens to the prompt, is similar to our
header retrieval strategy.

Signi�cant industry work in contextualizing code generation includes the now-standard keyword
and vector embeddings approaches (as used for example by Sourcegraph Cody [70]), but many
recognize new approaches are needed: the authors of the Cursor AI Code Editor call for better
multi-hop retrieval [6], a natural �t for structured scope-and-semantics-aware contextualization.
The Zed editor features a�ordances for programmers to manually build and inspect prompt contexts
[69] which may facilitate exploration of the relative bene�ts of di�erent contextualization methods.
The Aider ‘AI pair programmer’ uses Tree-sitter ASTs to augment prompts with a condensed
whole-codebase map [3], an approach we believe may synergize with using cursor-local semantic
information to control the granularity of such a projection.
Finally, we note that there is also a vast literature on non-LLM-based code generation systems,

some of which also use types to restrict the search space [55]. Our approach helps bring these two
worlds together, e.g. by using a form of typed term enumeration to generate the relevant headers.
We hope that our results will lead to more interactions between the programming languages and
the AI communities.

7 Discussion and Conclusion

An AI model, no matter how powerful, cannot determine a human’s intent without access to
necessary context. Most existing attempts to provide this contextualization are lexically grounded,
deriving from loose, associative methods developed for natural language. We believe that typed
holes provide a bridge between local expressions of human intent and broader semantic context,
and that type theory provides a formal characterization of contextualization, rooted fundamentally
in the notion of typing contexts. In particular, contextual modal type theory (CMTT) [48] and
gradual type theory [68] provide a foundation for program sketching with holes, where expression
holes corresponding to metavariables with a corresponding type and typing context and type holes
correspond to unknown types. The Hazel programming environment, with its roots in gradual
CMTT [50] as a foundational theory of holes and its support for total syntax and type error recovery
with holes [47, 87], therefore presents an ideal environment for statically contextualizing large

language models with typed holes. Our results demonstrate that this form of contextualization,
together with some in-context prompting about the speci�c choices made in Hazel, a low-resource
language, can take amodel incapable of even basic MVU tasks up to, or nearly up to, the performance
observed in a fully contextualized setting for a high resource language like TypeScript. These ideas
have been realized in a functional programming assistant, the Hazel Assistant.
These ideas can also be ported directly to other languages, like TypeScript, albeit with some

di�culty due to limitations of standard language servers.
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Our comparisons to vector retrieval, a language-agnostic approach, suggests that language-aware
programming assistants may signi�cantly outperform language-agnostic retrieval systems in the
short- and medium-term, and perhaps far into the future.

Additional forms of semantic contextualization, e.g. using dynamic test results passed backwards
to holes [45], the results of various static and dynamic analyses, and the result of library searches
to �nd helpers that may not yet be imported are interesting avenues for future work.

8 Data Availability

An artefact [11] containing the MVUBench program sketches and solutions, the raw data of our
experiments, our testing harness, the source of the Hazel IDE and Language Server, and a copy of
the StarCoder2 model used is available on Zenodo. The artefact is password-protected to prevent
automatic scrapping of the benchmark suite; the password can be found in the artefact description.
Hazel can be accessed online at https://hazel.org, with source available at https://github.com/
hazelgrove/hazel/.
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