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Abstract
Atomic frequency comb (AFC) quantummemories are a promising technology
for quantum repeater networks because they enable multi-mode, long-time, and
high-昀椀delity storage of photons with on-demand retrieval. The optimization
of the retrieval ef昀椀ciency of an AFC memory is important because it strongly
impacts the entanglement distribution rate in quantum networks. Despite ini-
tial theoretical analyses and recent experimental demonstrations, a rigorous
proof of the universally optimal con昀椀guration for the highest AFC retrieval
ef昀椀ciency has not been presented. In this paper we present a simple analyt-
ical proof which shows that the optimized square tooth offers the highest
retrieval ef昀椀ciency among all tooth shapes, under the physical constraint of
昀椀nite optical depth of an atomic ensemble. The optimality still holds when the
non-zero background absorption and the 昀椀nite optical linewidth of atoms are
considered. We further compare square, Lorentzian and Gaussian tooth shapes
to reinforce the practical advantage of the square-tooth AFC in retrieval ef昀椀-
ciency. Our proof lays rigorous foundation for the recipe of creating optimal
AFC under realistic experimental conditions.
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1. Introduction

Quantum memories capable of storing quantum states for long periods of time are essential
components of quantum communication networks [1, 2]. Quantum networks are receiving
signi昀椀cant attention in the science and engineering community because they are expected to
enable new important applications such as distributed quantum computing [3, 4], distributed
sensing [5, 6], and secure key distribution [7, 8].

Atomic frequency comb (AFC) [9, 10] is a promising optical quantum memory pro-
tocol [11, 12] which allows the absorption and retrieval of photons transmitted within quantum
networks [13, 14], and enables entanglement distribution between remote network nodes [15–
27] when combined with common single- or entangled-photon sources [28]. Incoming optical
signals to AFC memories are stored in a delocalized form within the atomic ensemble. The
retrieval of stored photons in AFCmemories is achieved due to the comb-like density function
of atomic transition frequency, or in classical terms, the comb-like absorption pro昀椀le in the fre-
quency domain. This results in the rephasing of all emitters’ optical transition dipoles after a
昀椀xed storage time determined by the comb period, leading to re-emission of the stored photons.
Furthermore, the retrieval from the AFC memory can be achieved on-demand by introducing
control pulses that convert atomic ensemble excitation between the optical transition and the
long-lived spin-wave [29, 30].

AFC memories have one signi昀椀cant advantage over many other absorptive quantum
memories such as electromagnetically induced transparency [31, 32] and Raman storage [33,
34]. The temporal multimodality of AFC memories [35] is in principle independent of optical
depth [10], but instead is determined by the storage time and the duration of the signal to
store, and more speci昀椀cally the ratio of inhomogeneous broadening to homogeneous broad-
ening. We note that the temporal multimodality of other photon-echo quantum memory proto-
cols [36, 37] are also less limited by optical depth, such as controlled inhomogeneous broaden-
ing (CRIB) [38–41], gradient echomemory [40], and revival of silenced echo signal [42], while
there is still evidence that AFC has a better support for multimodality under identical optical
depth [43]. Multi-mode quantum memories are important for quantum network architectures
due to the requirement of multiplexing [28, 44, 45]. Moreover, the multimodality of AFC
memories goes beyond temporal modes, and extends to spatial and spectral degrees of free-
dom. These modes can be combined, as has been reported in experiments [46–52]. Notably,
the distribution of entanglement between AFC quantum memories has been experimentally
demonstrated [53, 54]. Furthermore, one-hour coherent storage of optical signal via a spin-
wave AFC memory has been realized with dynamical decoupling for noise-mitigation [55].
Due to the promising potential of their integration into quantum networks, models of AFC
memories have been included in quantum network simulators that model the quantum net-
work physical layer, such as NetSquid [56] and SeQUeNCe [57, 58].

The retrieval ef昀椀ciency of AFC memories is a potential limiting factor of the entanglement
generation rate for distributed quantum information processing. For AFC memories without
cavity enhancement as considered in this work, the upper bound of forward retrieval ef昀椀ciency
is 54% and the upper bound of backward retrieval ef昀椀ciency is 100% [10]. However, such
theoretical upper bounds do not explicitly instruct experimentalists how to achieve the best
possible performance under realistic constraints. The AFC tooth shape optimization was 昀椀rst
reported more than a decade ago [59, 60], where the results imply that AFC memories with
square teeth could achieve the highest retrieval ef昀椀ciency. However, to the best of our know-
ledge, no rigorous proof of the optimality for square-tooth AFC has been presented since.
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In this work we use the semi-classical theoretical framework from [59] to rigorously prove
that AFCs with square teeth provide the highest achievable retrieval ef昀椀ciency when the height
of comb teeth is upper bounded, i.e. when the optical depth is 昀椀nite. We show that this optim-
ality still holds when the spectral pro昀椀le has non-zero background absorption and the intrinsic
line shape of an atom has 昀椀nite width. The paper is organized as follows. Our proof covers all
integrable functions which arguably include all physically relevant tooth shapes. Therefore,
this work reinforces physical intuition with mathematical rigor by eliminating the existence
of any potential corner cases. Moreover, the proof itself could inspire other studies of optim-
ality. In section 2 we brie昀氀y review the semi-classical theory describing the physical mod-
els of AFC memories and the analytical expression of forward retrieval ef昀椀ciency, as shown
in [59]. We then prove the optimality of the retrieval ef昀椀ciency for AFCs with square teeth in
section 3, both in the ideal case and when considering non-zero background absorption and
optical linewidth. After the proofs, in section 4 we compare the square tooth with two other
typical lineshapes, namely Lorentzian and Gaussian, to demonstrate the robust advantage of
square tooth. Section 5 concludes the paper.

2. Semi-classical theory of the atomic frequency comb

The periodic comb structure in the distribution of the atomic transition frequency for AFC
memories allows us to interpret the absorption and retrieval processes of optical AFC memor-
ies as diffraction of a spectral grating [59, 61, 62] under a semi-classical theoretical frame-
work. Therefore, the analytical expression of AFC retrieval ef昀椀ciency can be derived from
semi-classical Maxwell-Bloch equations [63, 64], which describe the absorption and retrieval
processes of AFC by incorporating the coupled dynamics of both the propagating electromag-
netic 昀椀eld and the two-level system ensemble in the medium.

The 昀椀rst-order Maxwell-Bloch equations are derived under the slowly varying envel-
ope approximation and the rotating wave approximation [65], and in the weak input signal
limit [66]. The two equations are:

∂zΩ(z, t)+
1
c
∂tΩ(z, t) =−

i
2π

ˆ

dωf(ω)P(ω;z, t) ,

∂tP(ω;z, t) =−(iω+ γ)P(ω;z, t)− iΩ(z, t) ,
(1)

where Ω(z, t) is the Rabi frequency proportional to the propagating 昀椀eld in the medium,
P(ω;z, t) is the atomic polarization for two-level systems with frequency detuning ω, f(ω) is
the frequency-dependent absorption coef昀椀cient which represents the effect of inhomogeneous
broadening [41], and the effect of homogeneous broadening is accounted phenomenologically
by the parameter γ [64]. We further assume a periodic absorption coef昀椀cient

f(ω) =
∑

n⩽0

Fne
−inωT (2)

to account for the comb structure, where 2π/T is the AFC comb period, and the requirement
of n⩽ 0 is for a causality reason [62]. The periodic structure also implies successive retrieval
‘echoes’ centered at times t= pT, p= 0,1,2, . . . , i.e.

Ω(z, t) =
∑

p⩾0

ap (z)Ω(0, t− pT) , (3)

where the requirement on p⩾ 0 comes again from causality.
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The retrieval ef昀椀ciency is de昀椀ned as η(L) := |a1(L)|2 corresponding to the 昀椀rst retrieved
pulse at the output end of the sample with length L. While the detailed solution of equation (1)
is presented in appendix A, we note that from the solution we have the analytical expression
for the AFC retrieval ef昀椀ciency:

η (L) = |F−1L|
2e−F0L, (4)

where F0 and F−1 are the 0th and (−1)-th Fourier coef昀椀cients, respectively, for a periodic
function f(ω) which de昀椀nes the shape of the periodic comb. Explicitly they are calculated as:

F0 =
T
2π

ˆ π/T

−π/T
f(ω)dω, (5)

F−1 =
T
2π

ˆ π/T

−π/T
f(ω)eiωTdω. (6)

3. Proof of optimality of the square-tooth atomic frequency comb

For the rest of the paper we will focus on the mathematical proofs, before which we would
like to emphasize the connection between the abstract mathematical formulation and the phys-
ical scenario. We consider the scenario where experimentalists perform optical pumping on a
speci昀椀c atomic ensemble to create AFC with a 昀椀xed periodicity in frequency domain δ = π/T
(and the full period is 2δ), which is determined by the retrieval time T required by the quantum
information process task to achieve. Besides the 昀椀xed period, the created AFC tooth shape will
also be subject to constraints which are determined by the physical properties of the atomic
ensemble itself: maximum absorption αM , background absorption αbg, and optical linewidth
from 昀椀nite optical coherence time T2 together with spectral diffusion and broadening due to
the hole-burning laser. Under the assumption of periodic comb, we can focus on a single period
[−π/T,π/T] (i.e. [−δ,δ]), in which the shape of comb tooth is described by a real-valued func-
tion f(ω) s.t. αbg ⩽ f(ω)⩽ αM.

In the following, we 昀椀rst ignore background absorption, i.e. assuming αbg = 0, and prove
the optimality of square tooth among all symmetric tooth shapes s.t. f(ω) = f(−ω), which
will be the basis of proving the optimality of square tooth among arbitrary tooth shapes after
coordinate rede昀椀nition. Then, we show that the inclusion of non-zero background absorption
does not affect the optimality of square tooth above the background. Finally, we consider 昀椀nite
optical linewidth which will make it impossible to create arbitrary comb tooth shapes. We
demonstrate that taking the optimized square-tooth as the target tooth shape will give the best
ef昀椀ciency among all realizable tooth shapes, under the assumption that the actual tooth shape
is the convolution of the target tooth shape and the single-atom line shape [59].

3.1. Proof of optimality among all symmetric tooth shapes

We 昀椀rst consider symmetric tooth shapes s.t. f(ω) = f(−ω), because they allow us to ignore
the imaginary part of F−1 which naturally vanishes due to the symmetry of f(ω), and we can
also restrict ourselves to positive ω. Notice that tooth shapes subject to the maximal absorption
constraint αM can have varying area F0 ∈ [0,αM]. Therefore, the proof of the optimality of the
optimized square tooth is achieved in two steps. We 昀椀rst prove that for all symmetric combs
with identical area (thus identical F0), the square one is the best. Then we can optimize the
width for all allowed square teeth, and the square tooth with optimized width is then obviously
the best among all possible tooth shapes even with different areas.
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Proposition 1. Among all symmetric tooth shapes de昀椀ned on [−π/T,π/T] with 昀椀xed area and
subject to 0⩽ f(ω)⩽ αM, the square tooth provides the highest retrieval ef昀椀ciency.

Here we explain the sketch of the proof, while the details can be found in appendix B. The
square tooth shape fs(ω) takes value αM , i.e. the maximal absorption, on [−Γ,Γ], where Γ
is the half-width of square tooth, and is zero on [−π/T,−Γ]∪ [Γ,π/T]. We then consider an
arbitrary symmetric shape f(ω) with the same area as the square tooth, which means that f(ω)
satis昀椀es:

ˆ π/T

0
f(ω)dω =

ˆ Γ

0
αMdω = αMΓ. (7)

To prove the proposition, we would like to show that f(ω) cannot achieve higher retrieval
ef昀椀ciency than the square shape fs(ω), i.e.

∣

∣

∣

∣

∣

ˆ π/T

0
f(ω)cos(ωT)dω

∣

∣

∣

∣

∣

⩽

ˆ Γ

0
αM cos(ωT)dω, (8)

which is then proved based on bounding of the integrands on the interval [0,π/T]. The proof
is divided into two scenarios: (i) Γ⩽ π/2T, i.e. when the 昀椀nesse of the comb is greater than
2, and (ii) Γ> π/2T, i.e. when the 昀椀nesse of the comb is smaller than 2.

This proposition means that we cannot 昀椀nd another symmetric tooth shape f(ω) that can
achieve a higher retrieval ef昀椀ciency than the square shape when they have the same area. In
other words, for any possible symmetric tooth shape f(ω), there at least exists one square tooth
which can achieve an ef昀椀ciency that is not lower than f(ω), and this square tooth has the same
area as f(ω). As a result, the symmetric tooth shape which can achieve the highest ef昀椀ciency
must be a square tooth, and then we can straightforwardly optimize the width of square tooth
to obtain the optimal square tooth [59], which offers the highest ef昀椀ciency among all possible
symmetric combs subject to the constraint 0⩽ f(x)⩽ αM.

Mathematically, the above proposition means that for any bounded function 0⩽ f(ω)⩽ αM

de昀椀ned on [0,π/T] with area
´ π/T
0 f(ω)dω = αMΓ, we always have

∣

∣

∣

´ π/T
0 f(ω)cos(ωT)dω

∣

∣

∣
⩽

´ Γ

0 αM cos(ωT)dω. This will help the proof of optimality among arbitrary shapes in the next
section.

3.2. Proof of optimality among all tooth shapes

For an arbitrary tooth shape function, the Fourier coef昀椀cient F−1 will in general contain ima-
ginary part. According to equation (4) we are interested in the modulus of F−1.

Geometrically, for ω ∈ [−π/T,π/T] the integral kernel of F−1, e−iωT, represents a vector
with unit length pointing towards the direction determined by the phaseωT with respect to the
polar axis. The integral can then be understood as an addition of vectors pointing to the polar
angle ωT with length f(ω), under the standard Riemann integral interpretation. It is certain
that the integral will also result in a vector pointing to certain polar angle ω0T. Since we are
only interested in the length of this vector to evaluate the AFC ef昀椀ciency, the exact phase of
F−1 does not matter. We can rede昀椀ne the origin of the polar angle as ω = ω0.

In this way, |F−1| equals the integral of the vector component that is parallel to the new
zero-angle orientation, as now we are sure that the integral of the orthogonal component will
vanish:
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|F−1|=
T
2π

∣

∣

∣

∣

∣

ˆ π/T

−π/T
f(x)cos(ωT−ω0T)dω

∣

∣

∣

∣

∣

=
T
2π

∣

∣

∣

∣

∣

ˆ π/T−ω0

−π/T−ω0

f(ω ′ +ω0)cos(ω
′T)dω ′

∣

∣

∣

∣

∣

=
T
2π

∣

∣

∣

∣

∣

ˆ π/T

−π/T
f ′ (ω ′)cos(ω ′T)dω ′

∣

∣

∣

∣

∣

, (9)

where we have de昀椀ned a new shape function f ′(ω ′) using translation of the coordinate ω ′ =
ω−ω0:

f ′ (ω ′) =

{

f(ω ′ +ω0) ω ′ ∈
[

−π
T ,

π
T −ω0

]

f
(

ω ′ +ω0 −
2π
T

)

ω ′ ∈
[

π
T −ω0,

π
T

] . (10)

Because of the assumption that the comb is periodic, for a single tooth the de昀椀nition of f ′(ω ′)
is equivalent to left translating the original tooth shape f(ω) by ω0 under a periodic boundary at
ω =±π/T. Therefore, the new function f ′(ω ′) still satis昀椀es the constraint which f(ω) satis昀椀es,
i.e. 0⩽ f ′(ω ′)⩽ αM, and its integral on [−π/T,π/T] is identical to the original shape function,

i.e.
´ π/T
−π/T f(ω)dω =

´ π/T
−π/T f

′(ω ′)dω ′.
We emphasize that the coordinate translation ω0 is determined by the condition

´ ω0

−π/T f(ω)sin[(ω−ω0)T]dω =−
´ π/T
ω0

f(ω)sin[(ω−ω0)T]dω, but this does not guarantee that
the area of the original shape function f(ω) has equal areas on both sides of ω0, i.e. in gen-

eral
´ ω0

−π/T f(ω)dx ̸=
´ π/T
ω0

f(ω)dω, or in terms of the newly de昀椀ned function
´ 0
−π/T f

′(ω ′)dω ′ ̸=
´ π/T
0 f ′(ω ′)dω ′. Therefore, before we prove that the square tooth shape is optimal among arbit-
rary shapes with an identical area, we need the following lemma.

Lemma 2. Among all square shape functions f(Γ,c)(ω) on [−π/T,π/T] with 昀椀xed half width
0⩽ Γ⩽ π/T centered at −π/T+Γ⩽ c⩽ π/T−Γ that take the maximal possible value αM
for ω ∈ [c−Γ,c+Γ] and zero otherwise, the one centered at c= 0 will provide the highest

I(Γ,c) :=
ˆ π/T

−π/T
f(Γ,c) (ω)cos(ωT)dω. (11)

The proof is straightforward, and can be found in appendix B. Using this lemma we can
obtain the optimality of the square tooth shape among arbitrary shapes with a 昀椀xed area.

Proposition 3. Among all tooth shapes de昀椀ned on [−π/T,π/T] with a 昀椀xed area and subject
to 0⩽ f(ω)⩽ αM, the square tooth provides the highest retrieval ef昀椀ciency.

The proof is based on the aforementioned coordinate rede昀椀ntion, from which we can
express |F−1| as the absolute value of an integral in equation (9). The form of integral is almost
the same as the one we encounter in the proof of optimality among all symmetric shapes, and
we can upper bound the absolute value by dividing the integral into two parts, on [−π/T,0] and
[0,π/T], respectively. Therefore, we are able to use the results from the last section to prove
the upper bound of |F−1| for arbitrary tooth shape. The details can be found in appendix B.

Hence, we have established that among all tooth shapes with the same area, the square tooth
offers the highest retrieval ef昀椀ciency. Then similar to the argument at the end of section 3.1,
to obtain the globally optimal tooth shape we only need to optimize the square tooth, and the
optimal half width for the square tooth can be easily obtained [59]. We also present it explicitly
in appendix C.
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3.3. Effect of background absorption

The optimality naturally extends to the scenario where the tooth shape has a non-zero back-
ground absorption, i.e. the minimum value of the shape function is a constant αbg > 0.

We start by clarifying that when there exists a non-zero background absorption, the tooth
shape refers to the shape above the background. We thus decompose the tooth shape function
as f(ω) = fbg(ω)+ fabg(ω), where subscript ‘bg’ refers to the constant background and ‘abg’
denotes above-background. Then we can write the retrieval ef昀椀ciency as:

η (L) = |(Fbg,−1 +Fabg,−1)L|
2e−(Fbg,0+Fabg,0)L, (12)

where Fbg,−1 and Fbg,0 are real constants. Then, following the previous proofs, we consider
tooth shapes with identical areas, so that we only need to maximize |(Fbg,−1 +Fabg,−1)|

2.
According to proposition 3, square fabg(ω)will achieve the highest |Fabg,−1|. Moreover,Fabg,−1

is real for square fabg(ω). Therefore, by the vector addition argument, it is obvious that square
fabg(ω) will achieve the highest |(Fbg,−1 +Fabg,−1)|.

We comment that with a 昀椀nite background optical depth OD0 = d0L, the tooth width needs
to be optimized for a new effective optical depth OD ′ = OD−OD0. The effect of background
in AFC absorption pro昀椀le was 昀椀rst considered in [9], where the authors approximate the effect
of the background as a reduction factor on the expected ef昀椀ciency. However, according to
equation (12) it is clear that the effect of a constant background may depend on shape of comb
above it. Nonetheless, we manage to show that it does not affect the optimality of above-
background square tooth shape.

3.4. Effect of optical linewidth

We have proved the retrieval ef昀椀ciency optimality of the square-tooth AFC. However, in prac-
tice where the optical linewidth is always 昀椀nite so the ideal square-tooth is never achievable. It
has been commonly considered [59] that the actual observable tooth shape will be the convo-
lution of the ideal target tooth shape f(ω) that we aim at generating and the normalized optical
line shape L(ω), i.e. f(ω)→ f(ω) ∗L(ω). Note that the line shape should be normalized since
the actual tooth shape should be identical to the target tooth shape when the optical linewidth is
zero. In fact, we can show that if we 昀椀x L(ω), such convolution does not affect the optimality
of the square shape.

Recall the ef昀椀ciency functional in equation (4). Now we want to replace f(ω)
with f(ω) ∗L(ω):

η (L) =

∣

∣

∣

∣

∣

LT
2π

ˆ π/T

−π/T
f(ω) ∗L(ω)eiωTdω

∣

∣

∣

∣

∣

2

e−
LT
2π

´ π/T
−π/T f(ω)∗L(ω)dω

≈

∣

∣

∣

∣

∣

LT
2π

(

ˆ π/T

−π/T
L(ω)eiωTdω

)(

ˆ π/T

−π/T
f(ω)eiωTdω

)∣

∣

∣

∣

∣

2

× e
− LT

2π

(

´ π/T
−π/TL(ω)dω

)(

´ π/T
−π/T f(ω)dω

)

=|F−1L
′|2e−F0L

′ ′

, (13)

where for the approximation we have used the convolution theorem to decouple the integrals,
and assumed that the intrinsic line shape is not too wide. In the end, we have de昀椀ned L ′ =

L
∣

∣

∣

´ π/T
−π/TL(ω)e

iωTdω
∣

∣

∣
and L ′ ′ = L

´ π/T
−π/TL(ω)dω, which are constants as long as the line shape
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L(ω) is a 昀椀xed function, and thus do not affect the previous proof. Therefore, the square tooth
shape is still the most desirable target tooth shape. Although the 昀椀nal observable tooth shape
will be different from the perfect square shape, it still gives the highest achievable ef昀椀ciency,
as long as the intrinsic line shape does not vary.

We can re-write the ef昀椀ciency as:

η (L) =

∣

∣

∣

∣

L ′

L ′ ′

∣

∣

∣

∣

2

|F−1L
′ ′|2e−F0L

′ ′

≈

∣

∣

∣

∣

ˆ ∞

−∞

L(ω)eiωTdω

∣

∣

∣

∣

2

|F−1L|
2e−F0L,

(14)

where we have used the approximate normalization condition
´ π/T
−π/TL(ω)dω ≈

´∞

−∞
L(ω)dω = 1, and

´ π/T
−π/TL(ω)e

iωTdω ≈
´∞

−∞
L(ω)eiωTdω, both assuming that the

intrinsic line width is much smaller than the comb period 2π/T. It is then obvious that,
as long as the actual shape can be expressed as a convolution of the target shape and a 昀椀xed
kernel, the effect of the 昀椀nite optical linewidth is simply to scale the ideal ef昀椀ciency by a
multiplicative constant determined by the Fourier transform of the intrinsic line shape. We
note that in practice the convolution kernel can have complicated form, but in general it will
depend on optical coherence time of the atoms. In addition, the retrieval ef昀椀ciency’s depend-
ence on the square-tooth width, comb period and optical depth is unchanged, which makes
the optimal width of the square tooth unchanged as well, independent of the optical linewidth.
We emphasize again that in experimental scenarios, after the optical depth and the desired
comb period are determined, the corresponding optimized square-tooth width can be obtained
analytically [59].

4. Comparison with Lorentzian and Gaussian tooth shapes

In practice, errors in the control of optical pumping may result in deviation from the optimal
tooth shape as target. For instance, suppose we want to create the optimal square-tooth AFC
under a certain optical depth constraint. The actual tooth widthmight be different fromwhat we
intend to create. Therefore, it is important to examine how robust and practical is the advantage
of the square-tooth AFC in retrieval ef昀椀ciency. Here we make a direct comparison among
square, Lorentzian, and Gaussian shapes of AFC teeth by evaluating the achievable retrieval
ef昀椀ciency under different tooth widths and optical depths. Recall that we have shown that
the inclusion of 昀椀nite optical linewidth only scales the ef昀椀ciency by a multiplicative constant
determined by the intrinsic line shape. For the three tooth shapes considered in this section
which are symmetric, the effect of 昀椀nite background absorption is also just a reduction factor.
Therefore, without loss of generality, we focus on the ideal tooth shapes.

4.1. Retrieval efficiencies under different tooth widths and optical depths

We still impose a physical constraint on maximal height of the comb shape αM . In this case,
we consider Lorentzian and Gaussian line shapes with FWHM Γ (then half FWHM is Γ/2)
described by

LαM,Γ (ω) =
αMΓ

2

Γ2 + 4ω2
, (15)

GαM,Γ (ω) = αMe
−4 ln2ω2

Γ2 , (16)

8
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respectively. In order to obtain their corresponding retrieval ef昀椀ciencies according to
equation (4), we need to evaluate two de昀椀nite integrals which do not result in analytical expres-
sions that consist of elementary functions, but involve non-elementary integrals such as error
function, cosine and sine integrals. Therefore, wewould like to evaluate the ef昀椀ciencies numer-
ically and thus we would like to make the functions dimensionless to get rid of the in昀氀uence
of storage time T and crystal length L:

η [f(ω)] =

(

TL
2π

ˆ π/T

−π/T
f(ω)cos(ωT)dx

)2

e−
TL
2π

´ π/T
−π/T f(ω)dω

=

(

L
2π

ˆ π/T

−π/T
f(ω)cos(ωT)d(ωT)

)2

e−
L
2π

´ π/T
−π/T f(ω)d(ωT)

=

(

L
2π

ˆ π

−π

f̄(t)cos(t)dt

)2

e−
L
2π

´ π
−π

f̄(t)dt (17)

where t := ωT and f̄(t) = f̄(ωT) = f(ω), while we have also assumed symmetric comb shapes
s.t. f(ω) = f(−ω) which is satis昀椀ed by L(ω) and G(ω). Then for Lorentzian and Gaussian
shapes the numerics-friendly expressions of retrieval ef昀椀ciencies are

ηL (p,OD) =

(

1
2π

ˆ π

−π

p2OD
p2 + 4t2

cos(t)dt

)2

e
− 1

2π

´ π
−π

p2OD
p2+4t2

dt
, (18)

ηG (p,OD) =

(

1
2π

ˆ π

−π

ODe
−4 ln2 t2

p2 cos(t)dt

)2

e−
1
2π

´ π
−π

ODe
−4 ln 2 t

2

p2 dt, (19)

respectively, where the effect of storage time T is represented by a phase factor p := ΓT ∈
[0,2π] (dimensionless width which is proportional to the inverse 昀椀nesse), while the effect
of crystal length L is represented by the maximum optical depth OD := αML⩾ 0. For the
square tooth with FWHM Γ and OD constraint αML the ef昀椀ciency is [59] (for review of other
analytical properties of square-tooth AFC see appendix C)

ηS (p,OD) =
OD2 sin2 (p)

π2
e−

pOD
π . (20)

The retrieval ef昀椀ciencies for AFCs with square, Lorentzian and Gaussian teeth under differ-
ent optical depths OD and dimensionless widths p are visualized in 昀椀gure 1 to offer a more
comprehensive view of the AFC performance under varying experimental conditions. There is
a noteworthy feature of AFC retrieval ef昀椀ciencies that emerges for different tooth shapes: As
the maximum optical depth OD increases, the desired range of tooth widths decreases, outside
which the retrieval ef昀椀ciency will decrease quickly as the width deviates from the optimal
width. Among the three typical tooth shapes considered here, the Lorentzian tooth is argu-
ably the ‘worst’, in that it achieves the lowest ef昀椀ciency under a 昀椀xed OD, while the desirable
range of the tooth width is the narrowest. On the other hand, the advantage of the square tooth
is conspicuous visually, which will be further elaborated in the following.

4.2. Robust advantage of square tooth

We demonstrate the robustness of the square-tooth AFC’s advantage in retrieval ef昀椀ciency.
Speci昀椀cally, we compare the retrieval ef昀椀ciency of the square-tooth AFCwith different widths

9
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Figure 1. Retrieval ef昀椀ciencies of AFC with Lorentzian, Gaussian, and square teeth,
for different tooth widths p= ΓT ∈ [0,2π] and optical depths OD= αML ∈ [0,20]. The
color map is identical for all three 昀椀gures, with the darkest blue color corresponding to
zero ef昀椀ciency and the brightest yellow color corresponding to 0.54 which is the upper
limit for forward retrieval ef昀椀ciency of AFC memories.

and the optimal retrieval ef昀椀ciency of AFCs with Lorentzian or Gaussian teeth, under 昀椀xed
optical depths. The retrieval ef昀椀ciencies of AFCs with Lorentzian or Gaussian teeth as func-
tions of p and OD do not have simple closed forms, but their maximum values given 昀椀xed OD
can be determined numerically.

We 昀椀rst examine the absolute difference between the retrieval ef昀椀ciency of square-tooth
AFC with different widths and the optimal retrieval ef昀椀ciency of Lorentzian-tooth and
Gaussian-tooth AFCs, under 昀椀xed maximum optical depth OD. Speci昀椀cally, we calculate the
following quantity

DL/G (p,OD) = ηS (p,OD)− max
p′∈[0,2π]

ηL/G (p
′,OD) . (21)

We visualizeDL(p,OD) andDG(p,OD) in the upper panel of 昀椀gure 2.We also consider the rel-
ative difference between the retrieval ef昀椀ciency of square-tooth AFC and the optimal retrieval
ef昀椀ciency of Lorentzian-tooth and Gaussian-tooth AFCs, under 昀椀xed OD. Speci昀椀cally, we
calculate the following quantity

RL/G (p,OD) =
ηS (p,OD)−maxp′∈[0,2π] ηL/G (p ′,OD)

maxp′∈[0,2π] ηL/G (p ′,OD)
. (22)

RL(p,OD) and RG(p,OD) are visualized in the lower panel of 昀椀gure 2, to complement
DL(p,OD) and DG(p,OD).

It is noteworthy that for the visualization we have normalized any negative value to zero,
which corresponds to the darkest blue that is uniform in most areas in each sub昀椀gure. For each
sub昀椀gure any value higher than the maximum value in the color bar is also normalized to the
maximum for the color bar, corresponding to the brightest yellow, with the lower right panel
for RG(p,OD) as an example. Therefore, in the region where the color is green or yellow we
have that D/RL/G(p,OD)> 0, i.e. the retrieval ef昀椀ciency of square-tooth AFC with relative
tooth width p is higher than the optimal retrieval ef昀椀ciency that can be achieved by Lorentzian-
tooth and Gaussian-tooth AFCs under the same maximum optical depth OD. The existence of

10
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Figure 2. Comparison between the retrieval ef昀椀ciency of square-tooth AFC and the
optimal retrieval ef昀椀ciency of Lorentzian-tooth and Gaussian-tooth AFC, under 昀椀xed
maximum optical depth OD. The upper panel demonstrates the absolute differences
DL(p,OD) and DG(p,OD). The lower panel demonstrates the relative differences
RL(p,OD) and RG(p,OD). All functions are visualized for p ∈ [0,2π] and OD ∈ [0,20].
Any negative value is normalized to zero, which corresponds to the darkest blue, while
for each subplot any value higher than the maximum value of the color bar is also nor-
malized to brightest yellow.

such regions means that in practice we do not have to create square teeth with optimal widths
to demonstrate advantage over other practical tooth shapes such as Lorentzian and Gaussian
using the same atomic ensemble (such that OD is unchanged), i.e. the advantage is robust. It
can be observed that as the maximum optical depth OD increases the range of tooth widths
which support advantage in retrieval ef昀椀ciency decreases, which is justi昀椀ed by the feature of
retrieval ef昀椀ciencies.

5. Conclusion and discussion

We offer a rigorous proof which shows that the square tooth with an optimized width is the
best tooth shape for AFC memories, based on a semi-classical model of AFC absorption and
retrieval processes. It achieves the highest retrieval ef昀椀ciency, even when 昀椀nite background

11
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absorption and optical linewidth are considered. Although the ideal square-tooth AFC is not
obtainable in practice, our results suggest that a target square-tooth comb will still lead to the
highest retrieval ef昀椀ciency. We further reinforce the realistic advantage of square-tooth AFC
through explicit comparison with two other common tooth shapes, Lorentzian and Gaussian,
which reveals the robustness of square-tooth AFC’s retrieval ef昀椀ciency advantage even when
the tooth width deviates a bit from the optimal width.

This work demonstrates an interesting example of applying mathematical analysis tech-
niques to quantummemory theory.We have also identi昀椀ed generalized functional optimization
problems towhich the proof technique can be immediately applied, as presented in appendixD.
The techniques used in this work are expected to 昀椀nd use in or inspire mathematically rigorous
studies of the optimal con昀椀guration for other physical scenarios, especially different quantum
memory protocols which have higher ef昀椀ciency upper bounds, such as backward retrieval of
AFC and cavity-enhanced AFC [67, 68]. Notably, cavity enhancement could potentially result
in additional requirement on pulse engineering as imposed by the cavity mode, so the optim-
ization of cavity-enhanced quantum memories still requires detailed analysis, which we leave
for future work. Nevertheless, cavities whose mode line widths are larger than the AFC band-
width can still be used for enhancing AFC memories [67] as demonstrated experimentally in
[69, 70], and in such cases our results are still directly applicable. Moreover, it is interesting
to take into account further realistic details in the quantum memory protocols. For instance,
recent studies, e.g. [35], have discovered more subtle and non-trivial interplay between optical
pumping schemes and the observed tooth shape. The interplay between the spectral width of
the AFC structure and the spectral width of the signal 昀椀elds could also limit the ef昀椀ciency
and accuracy of the AFC protocol in contrast to the CRIB protocol [71–73]. In addition, we
would like to reemphasize that we have assumed ideal periodic comb in our analysis, which is
not exactly the same in practice where the tooth height will change depending on the distance
from the center of the inhomogeneous broadening spectrum. The impact of realistic aperiod-
icity in the comb can be an interesting topic to study from both mathematical and practical
perspectives. We leave the exploration of these aspects for future works.
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Appendix A. Detailed solution to the Maxwell-Bloch equations (1)

For completeness and pedagogical bene昀椀ts, we provide a detailed solution to the Maxwell-
Bloch equations used in both [59] and this work.

We consider that when the incoming signal pulse has a characteristic time τ that is much
longer than the time it travels through the medium L/c, we can ignore the temporal retardation
effects [10], i.e. we can neglect the temporal derivative in the 昀椀rst equation in equation (1)

12
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which describes the 昀椀eld (Rabi frequency) dynamics. Then it is natural to work in the frequency
domain by performing the Fourier transform on both sides of the equations, where ω̃ denote
the frequency domain argument to differentiate from the frequency detuning ω. Subsequently
the equations are reduced to:

∂zΩ(z, ω̃) =−
i
2π

ˆ

dωf(ω)P(ω;z, ω̃) ,

iω̃P(ω;z, ω̃) =− (iω+ γ)P(ω;z, ω̃)− iΩ(z, ω̃) ,
(A.1)

where the Fourier transform Ω(z, ω̃) has a series expansion due to our previous retrieval pulse
sequence ansatz:

Ω(z, ω̃) =F





∑

p⩾0

ap (z)Ω(0, t− pT)





=
∑

p⩾0

ap (z)e
−ipω̃TF [Ω(0, t)]

=Ω(0, ω̃)
∑

p⩾0

ap (z)e
−ipω̃T,

(A.2)

where F [·] denotes the Fourier transform from the time domain to the frequency domain,
and Ω(0, ω̃) := F [Ω(0, t)]. The integral on the right hand side of the 昀椀rst equation can be
expanded as:

ˆ ∞

−∞

dωf(ω)P(ω;z, ω̃) =
∑

n⩽0

Fn

ˆ ∞

−∞

dωe−inωTP(ω;z, ω̃) , (A.3)

where the in昀椀nite lower limit of the integral is an approximation, as given a 昀椀nite center res-
onance frequency, the lower bound on detuning is 昀椀nite. From the second equation above we
obtain the relation between the 昀椀eld and the polarization:

P(ω;z, ω̃) =
−1

ω̃+ω− iγ
Ω(z, ω̃) . (A.4)

Then the integral in equation (A.3) can be further written as:

∑

n⩽0

Fn

ˆ ∞

−∞

dωe−inωTP(ω;z, ω̃) =−Ω(z, ω̃)
∑

n⩽0

Fn

ˆ ∞

−∞

dω
e−inωT

ω̃+ω− iγ
. (A.5)

One can notice that the integral on the right hand side is closely related to the Hilbert trans-
form [74, 75] which is de昀椀ned as

H [u(t)] :=
1
π
pv
ˆ ∞

−∞

dτ
u(τ)
t− τ

, (A.6)

where pv denotes the Cauchy principal value. Besides the Hilbert transform, we note another
widely-used identity

1
x+ i0±

= pv
1
x
∓ iπδ (x) . (A.7)
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To utilize this identity for deriving analytical formulae, we consider another approximation of
small homogeneous broadening, i.e. γ → 0+ [61]. Then we explicitly evaluate the aforemen-
tioned integral for two cases: n= 0 and n< 0. When n= 0 we have:

ˆ ∞

−∞

dω
1

ω̃+ω− iγ
= pv

ˆ ∞

−∞

dω
1

ω̃+ω
+ iπ
ˆ ∞

−∞

dωδ (ω̃+ω) = iπ. (A.8)

When n< 0 we have:

ˆ ∞

−∞

dω
e−inωT

ω̃+ω− iγ
= pv

ˆ ∞

−∞

dω
e−inωT

ω̃+ω
+ iπ
ˆ ∞

−∞

dωe−inωTδ (ω̃+ω)

= πH
[

e−i(nT)ω
]

+ iπ einω̃T = 2iπ einω̃T. (A.9)

Equipped with the above results, we return to the Maxwell-Bloch equations which have been
reduced to:

∑

p⩾0

[∂zap (z)]e
−ipω̃T =

∑

p⩾0

ap (z)e
−ipω̃T i

2π

∑

n⩽0

Fn

ˆ ∞

−∞

dω
e−inωT

ω̃+ω− iγ
. (A.10)

According to the de昀椀nition of retrieval ef昀椀ciency η(L) := |a1(L)|2, to obtain a1(z) we only
need to solve for two equations corresponding to p= 0,1:

∂za0 (z) =−
1
2
F0a0 (z) , (A.11)

∂za1 (z) =−
1
2
F0a1 (z)−F−1a0 (z) , (A.12)

which must satisfy two boundary conditions: zero decay of input signal at z= 0, i.e. a0(0) = 1;
zero forward retrieval signal at z= 0, i.e. a1(0) = 0. Then it is easy to derive their explicit
expressions:

a0 (z) = e−F0z/2, (A.13)

a1 (z) =−F−1e
−F0z/2z. (A.14)

Appendix B. Detailed proofs

In this section we provide detailed proofs of propositions in the main text.

B.1. Proof of proposition 1

Proof. First recall that the square tooth shape fs(ω) takes value αM on [−Γ,Γ], and is zero on
[−π/T,−Γ]∪ [Γ,π/T].

We consider an arbitrary symmetric shape f(ω) with the same area as the square tooth,
which means that f(ω) satis昀椀es:

ˆ π/T

0
f(ω)dω =

ˆ Γ

0
αMdω = αMΓ. (B.1)
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To prove the proposition, we would like to show that f(ω) cannot achieve higher retrieval
ef昀椀ciency than the square shape fs(ω), i.e.

ˆ π/T

0
f(ω)cos(ωT)dω ⩽

ˆ Γ

0
αM cos(ωT)dω. (B.2)

Note that in principle we need to account for f(ω) satisfying
´ π/T
0 f(ω)cos(ωT)dω ⩽ 0, which

corresponds to the case where the tooth is more concentrated on [π/2T,π/T]. However, in such
cases we can always rede昀椀ne coordinate for one single tooth under periodic boundary condi-

tion, so that under the new coordinate
´ π/T
0 f(ω)cos(ωT)dω ⩾ 0, which we focus on without

loss of generality.
For simplicity we de昀椀ne a function f̃(ω) as the difference between the function f(ω) and the

square function fs(ω):

f̃(ω) := f(ω)− fs (ω)

=

{

f(ω)−αM ω ∈ [0,Γ]

f(ω) ω ∈ [Γ,π/T]
,

(B.3)

which satis昀椀es
´ π/T
0 f̃(ω)dω = 0 according to the assumption of identical area. The proof is

then divided two scenarios: (i) Γ⩽ π/2T, and (ii) Γ> π/2T.
In scenario (i) we have:

ˆ π/T

0
f̃(ω)cos(ωT)dω =

ˆ Γ

0
f̃(ω)cos(ωT)dω+

ˆ π/T

Γ

f̃(ω)cos(ωT)dω

⩽ cos(ΓT)
ˆ Γ

0
f̃(ω)dω+ cos(ΓT)

ˆ π/T

Γ

f̃(ω)dω

= cos(ΓT)
ˆ π/T

0
f̃(ω)dω = 0, (B.4)

where for the inequality we used the following facts:

f̃(ω)⩽ 0, ω ∈ [0,Γ] , (B.5)

cos(ωT)⩾ cos(ΓT)⩾ 0, ω ∈ [0,Γ] , (B.6)

cos(ωT)⩽ cos(ΓT) , ω ∈ [Γ,π/2T] , (B.7)

Then we have:
ˆ π/T

0
f(ω)cos(ωT)dω ⩽

ˆ Γ

0
αM cos(ωT)dω. (B.8)

In scenario (ii), we have:

ˆ π/T

0
f̃(ω)cos(ωT)dω =

ˆ π/2T

0
f̃(ω)cos(ωT)dω+

ˆ Γ

π/2T
f̃(ω)cos(ωT)dω

+

ˆ π/T

Γ

f̃(ω)cos(ωT)dω ⩽ 0+ cos(ΓT)
ˆ Γ

π/2T
f̃(ω)dω

+ cos(ΓT)
ˆ π/T

Γ

f̃(ω)dω ⩽ 0. (B.9)
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In the above, for the 昀椀rst inequality we have considered the following facts.

f̃(ω)⩽ 0, ω ∈ [0,π/2T] , (B.10)

because f(ω)⩽ αM when ω ∈ [0,Γ], while Γ> π/2T in scenario (ii). This gives the upper
bound for the 昀椀rst term in equation (B.9).

cos(ΓT) f̃(ω)⩾ cos(ωT) f̃(ω)⩾ 0, ω ∈ [π/2T,Γ] , (B.11)

because on this interval we have 0⩾ cos(ωT)⩾ cos(ΓT) while again f̃(ω)⩽ 0. This gives the
upper bound for the second term.

0⩾ cos(ΓT) f̃(ω)⩾ cos(ωT) f̃(ω) , ω ∈ [Γ,π/T] , (B.12)

because f̃(ω)⩾ 0 while 0⩾ cos(ΓT)⩾ cos(ωT) on this interval, which gives the upper bound
for the third term.

For the second inequality we have used:

cos(ΓT)< 0, Γ> π/2T, (B.13)
ˆ π/T

π/2T
f̃(ω)dω =

ˆ π/T

0
f̃(ω)dω−

ˆ π/2T

0
f̃(ω)dω = 0−

ˆ π/2T

0
f̃(ω)dω ⩾ 0. (B.14)

In the end we have:
ˆ π/T

0
f(ω)cos(ωT)dω ⩽

ˆ Γ

0
αM cos(ωT)dω. (B.15)

The proposition is thus proved.

B.2. Proof of lemma 2

Proof. The family of square shapes can be explicitly formulated as a piecewise function:

f(Γ,c) (ω) =

{

0 if ω ∈
[

−π
T ,c−Γ

]

∪
[

c+Γ, πT
]

αM if ω ∈ [c−Γ,c+Γ]
. (B.16)

Then the objective integral can be evaluated directly as:

I(Γ,c) = αM

ˆ c+Γ

c−Γ

cos(ωT)dω =
2αM sin(ΓT)cos(cT)

T
. (B.17)

And we can evaluate its partial derivative against the center c to get:

∂

∂c
I(Γ,c) =−

2αM sin(ΓT)sin(cT)
T

(B.18)

which takes zero value at c= 0 and is negative for all c ∈ [0,π/T−Γ], positive for all c ∈
[−π/T+Γ,0], as 0⩽ Γ⩽ π/T results in sin(ΓT)⩾ 0. Therefore we conclude that for a 昀椀xed
half widthΓ, for−π/T+Γ⩽ c⩽ π/T−Γ the integral has themaximal value when c= 0.
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B.3. Proof of proposition 3

Proof. Recall that we have expressed |F−1| as

|F−1|=
T
2π

∣

∣

∣

∣

∣

ˆ π/T

−π/T
f ′ (ω ′)cos(ω ′T)dω ′

∣

∣

∣

∣

∣

, (B.19)

and the rede昀椀ned f ′(ω ′) is still a valid shape function. Moreover, after the rede昀椀n-
ition, f ′(ω ′) will satisfy the following condition that

´ 0
−π/T f

′(ω ′)sin(ω ′T)dω ′ =

−
´ π/T
0 f ′(ω ′)sin(ω ′T)dω ′. Therefore, in the following we will focus on f ′(ω ′), and denote it

as f(ω) for simplicity.

For f(ω) s.t.
´ π/T
−π/T f(ω)dω = S, we can denote their integral on [0,π/T] and [−π/T,0] as Sr

and Sl, respectively, s.t. S= Sr+ Sl. Then we de昀椀ne two square shapes on either side of x= 0
with the areas being Sr and Sl:

fl (ω) =







0 if ω ∈
[

−π
T ,−

Sl
αM

]

∪
[

0, πT
]

αM if ω ∈
[

− Sl
αM

,0
] ,

fr (ω) =







0 if ω ∈
[

−π
T ,0
]

∪
[

Sr
αM

, πT

]

αM if ω ∈
[

0, Sr
αM

] ,

(B.20)

so that fs(ω) := fr(ω)+ fl(ω) has an identical area as the tooth shape f(ω). |F−1| can be easily
upper bounded by separating the ω ⩾ 0 and ω ⩽ 0 parts, respectively:

|F−1|=
T
2π

∣

∣

∣

∣

∣

ˆ π/T

−π/T
f(ω)cos(ωT)dω

∣

∣

∣

∣

∣

⩽
T
2π

∣

∣

∣

∣

∣

ˆ 0

−π/T
f(ω)cos(ωT)dω

∣

∣

∣

∣

∣

+
T
2π

∣

∣

∣

∣

∣

ˆ π/T

0
f(ω)cos(ωT)dω

∣

∣

∣

∣

∣

. (B.21)

Then according to the result of proposition 1, we have that:
∣

∣

∣

∣

∣

ˆ 0

−π/T
f(ω)cos(ωT)dω

∣

∣

∣

∣

∣

⩽

ˆ 0

−π/T
fl (ω)cos(ωT)dω, (B.22)

∣

∣

∣

∣

∣

ˆ π/T

0
f(ω)cos(ωT)dω

∣

∣

∣

∣

∣

⩽

ˆ π/T

0
fr (ω)cos(ωT)dω, (B.23)

which leads to

|F−1|⩽
T
2π

ˆ π/T

−π/T
fs (ω)cos(ωT)dω. (B.24)

Moreover, according to lemma 2 we have

T
2π

ˆ π/T

−π/T
fs (ω)cos(ωT)dω

⩽
T
2π

ˆ π/T

−π/T
fΓ=S/(2αM),c=0 (ω)cos(ωT)dω

(B.25)
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where the upper bound is achieved by a square tooth. Therefore, there does not exist a tooth
shape that can achieve a higher retrieval ef昀椀ciency than the square toothwith the 昀椀xed area.

Appendix C. Properties of the square-tooth AFC retrieval efficiency

We have shown that the inclusion of 昀椀nite optical linewidth only scales the ef昀椀ciency by a
multiplicative constant determined by the intrinsic line shape. Therefore, without loss of gen-
erality, we focus on the ideal square-tooth AFC. For completeness and ease of reference, in this
appendix we present some properties of the square-tooth AFC retrieval ef昀椀ciency as shown
in [59].

For the ideal square-tooth AFC with a tooth half width Γ and height constraint αM
(i.e. optical depth OD= αML) the ef昀椀ciency can be derived as:

ηS (Γ,OD) =
1
π2

OD2 sin2 (ΓT)e−
ΓT
π OD, (C.1)

which gives the optimal tooth half width for the square tooth:

ΓSopt (OD) =
1
T
arctan

(

2π
OD

)

. (C.2)

We see that the ratio between ΓS
opt and a quarter of the comb period π/2T satis昀椀es:

0⩽
2
π
arctan

(

2π
OD

)

⩽ 1, (C.3)

for any positive optical depth OD. That is, the optimal width of the square tooth will never
extend beyond π/2T, which is intuitive both physically and mathematically. Physically, if the
comb is too wide the frequency difference between the emitters within one comb is large which
will lead to dephasing, an undesirable outcome that will harm the transition dipole rephasing.
Mathematically, cosx is above zero on [0,π/2T] while below zero on [π/2T,π/T], therefore if
f(ω)⩾ 0 on [π/2T,π/T] the shape will actually result in a lower value of the 昀椀rst integral in
the de昀椀nition of F−1 (and for the square tooth which is symmetric with respect to ω= 0 the
second integral in F−1’s de昀椀nition is simply zero).

The retrieval ef昀椀ciency of the optimized square-tooth AFC as function of the optical
depth is:

ηS,opt (OD) =
4e−

OD
π arctan 2π

OD

1+ 4π2

OD2

. (C.4)

It can be easily proved that the above function increases monotonically as the optical depth
increases. Then by taking the limit of the retrieval ef昀椀ciency as the optical depth approaches
in昀椀nity, we can 昀椀nd its maximal value:

ηmax = lim
OD→+∞

ηS,opt (OD) =
4
e2

≈ 54.1%, (C.5)

which agrees with the upper bound derived in [10].

Appendix D. Proof review and generalization

The optimization of the AFC tooth shape is a functional optimization problem. The retrieval
ef昀椀ciency is a functional of the tooth shape function, which in general requires calculus of vari-
ations or numerical techniques. Our approach only utilizes elementary analytical techniques,

18



J. Phys. A: Math. Theor. 58 (2025) 105303 A Zang et al

and only basic properties of the objective functional are relevant. Therefore, the proof proced-
ures can be easily generalized. Here we review the proof from a high-level perspective, and
discuss the form of the functionals to which the techniques can be readily applied.

First, recall that the argument of the objective functional (the AFC retrieval ef昀椀ciency in
the above example) is required to be bounded and non-negative. Second, the functional has
a structure which can be decomposed as a product of two sub-functionals: (i) the 昀椀rst sub-
functional is a monotonically increasing function of the inner product of the argument function
f (x) (the AFC shape function in the above example), and another basis function g(x) (sinus-
oidal function for Fourier series in the above example),

´ b
a f(x)g(x)dx, and (ii) the second

sub-functional is an arbitrary function of
´ b
a f(x)dx. In fact, it is the product structure that

allows us to simplify the proof by focusing on the maximization of
´ b
a f(x)g(x)dx. For the

proof that the square function maximizes
´ b
a f(x)g(x)dx under the assumed constraints of pos-

itivity and boundedness, we have only utilized the boundedness and monotonicity of the basis
function g(x).

According to the above review, we arrive at the generalized statement about the optimality
of the square-function as follows:

Theorem 4. Consider real-valued functionals in the following form:

F [f(x)] = G

(

ˆ b

a
f(x)g(x)dx

)

H

(

ˆ b

a
f(x)dx

)

, (D.1)

where the real-valued function G(x) is monotonically increasing and the function H(x) is also
real-valued; the real-valued function g(x) is bounded and monotonically decreasing on x ∈
[a,b], while the real-valued argument function satis昀椀es 0⩽ f(x)⩽ α, s.t. f(x) and f(x)g(x) are
both integrable on x ∈ [a,b]. The square function

fs (x) =

{

0 x ∈ [c,b]

α x ∈ [a,c]
, (D.2)

with optimized width (c− a) will achieve the maximal value of F[f(x)].
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