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Abstract
Atomic frequency comb (AFC) quantum memories are a promising technology
for quantum repeater networks because they enable multi-mode, long-time, and
high-fidelity storage of photons with on-demand retrieval. The optimization
of the retrieval efficiency of an AFC memory is important because it strongly
impacts the entanglement distribution rate in quantum networks. Despite ini-
tial theoretical analyses and recent experimental demonstrations, a rigorous
proof of the universally optimal configuration for the highest AFC retrieval
efficiency has not been presented. In this paper we present a simple analyt-
ical proof which shows that the optimized square tooth offers the highest
retrieval efficiency among all tooth shapes, under the physical constraint of
finite optical depth of an atomic ensemble. The optimality still holds when the
non-zero background absorption and the finite optical linewidth of atoms are
considered. We further compare square, Lorentzian and Gaussian tooth shapes
to reinforce the practical advantage of the square-tooth AFC in retrieval effi-
ciency. Our proof lays rigorous foundation for the recipe of creating optimal
AFC under realistic experimental conditions.
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1. Introduction

Quantum memories capable of storing quantum states for long periods of time are essential
components of quantum communication networks [1, 2]. Quantum networks are receiving
significant attention in the science and engineering community because they are expected to
enable new important applications such as distributed quantum computing [3, 4], distributed
sensing [5, 6], and secure key distribution [7, 8].

Atomic frequency comb (AFC) [9, 10] is a promising optical quantum memory pro-
tocol [11, 12] which allows the absorption and retrieval of photons transmitted within quantum
networks [13, 14], and enables entanglement distribution between remote network nodes [ 15—
27] when combined with common single- or entangled-photon sources [28]. Incoming optical
signals to AFC memories are stored in a delocalized form within the atomic ensemble. The
retrieval of stored photons in AFC memories is achieved due to the comb-like density function
of atomic transition frequency, or in classical terms, the comb-like absorption profile in the fre-
quency domain. This results in the rephasing of all emitters’ optical transition dipoles after a
fixed storage time determined by the comb period, leading to re-emission of the stored photons.
Furthermore, the retrieval from the AFC memory can be achieved on-demand by introducing
control pulses that convert atomic ensemble excitation between the optical transition and the
long-lived spin-wave [29, 30].

AFC memories have one significant advantage over many other absorptive quantum
memories such as electromagnetically induced transparency [31, 32] and Raman storage [33,
34]. The temporal multimodality of AFC memories [35] is in principle independent of optical
depth [10], but instead is determined by the storage time and the duration of the signal to
store, and more specifically the ratio of inhomogeneous broadening to homogeneous broad-
ening. We note that the temporal multimodality of other photon-echo quantum memory proto-
cols [36, 37] are also less limited by optical depth, such as controlled inhomogeneous broaden-
ing (CRIB) [38—41], gradient echo memory [40], and revival of silenced echo signal [42], while
there is still evidence that AFC has a better support for multimodality under identical optical
depth [43]. Multi-mode quantum memories are important for quantum network architectures
due to the requirement of multiplexing [28, 44, 45]. Moreover, the multimodality of AFC
memories goes beyond temporal modes, and extends to spatial and spectral degrees of free-
dom. These modes can be combined, as has been reported in experiments [46—52]. Notably,
the distribution of entanglement between AFC quantum memories has been experimentally
demonstrated [53, 54]. Furthermore, one-hour coherent storage of optical signal via a spin-
wave AFC memory has been realized with dynamical decoupling for noise-mitigation [55].
Due to the promising potential of their integration into quantum networks, models of AFC
memories have been included in quantum network simulators that model the quantum net-
work physical layer, such as NetSquid [56] and SeQUeNCe [57, 58].

The retrieval efficiency of AFC memories is a potential limiting factor of the entanglement
generation rate for distributed quantum information processing. For AFC memories without
cavity enhancement as considered in this work, the upper bound of forward retrieval efficiency
is 54% and the upper bound of backward retrieval efficiency is 100% [10]. However, such
theoretical upper bounds do not explicitly instruct experimentalists how to achieve the best
possible performance under realistic constraints. The AFC tooth shape optimization was first
reported more than a decade ago [59, 60], where the results imply that AFC memories with
square teeth could achieve the highest retrieval efficiency. However, to the best of our know-
ledge, no rigorous proof of the optimality for square-tooth AFC has been presented since.
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In this work we use the semi-classical theoretical framework from [59] to rigorously prove
that AFCs with square teeth provide the highest achievable retrieval efficiency when the height
of comb teeth is upper bounded, i.e. when the optical depth is finite. We show that this optim-
ality still holds when the spectral profile has non-zero background absorption and the intrinsic
line shape of an atom has finite width. The paper is organized as follows. Our proof covers all
integrable functions which arguably include all physically relevant tooth shapes. Therefore,
this work reinforces physical intuition with mathematical rigor by eliminating the existence
of any potential corner cases. Moreover, the proof itself could inspire other studies of optim-
ality. In section 2 we briefly review the semi-classical theory describing the physical mod-
els of AFC memories and the analytical expression of forward retrieval efficiency, as shown
in [59]. We then prove the optimality of the retrieval efficiency for AFCs with square teeth in
section 3, both in the ideal case and when considering non-zero background absorption and
optical linewidth. After the proofs, in section 4 we compare the square tooth with two other
typical lineshapes, namely Lorentzian and Gaussian, to demonstrate the robust advantage of
square tooth. Section 5 concludes the paper.

2. Semi-classical theory of the atomic frequency comb

The periodic comb structure in the distribution of the atomic transition frequency for AFC
memories allows us to interpret the absorption and retrieval processes of optical AFC memor-
ies as diffraction of a spectral grating [59, 61, 62] under a semi-classical theoretical frame-
work. Therefore, the analytical expression of AFC retrieval efficiency can be derived from
semi-classical Maxwell-Bloch equations [63, 64], which describe the absorption and retrieval
processes of AFC by incorporating the coupled dynamics of both the propagating electromag-
netic field and the two-level system ensemble in the medium.

The first-order Maxwell-Bloch equations are derived under the slowly varying envel-
ope approximation and the rotating wave approximation [65], and in the weak input signal
limit [66]. The two equations are:

0.0 (z,1) + %atﬂ (z,1) = —i /dwf(w)P(w;z,t),
OP (wiz,1) = — (iw +7) P(w;z,1) — (1),

where €)(z,7) is the Rabi frequency proportional to the propagating field in the medium,
P(w;z,t) is the atomic polarization for two-level systems with frequency detuning w, f{w) is
the frequency-dependent absorption coefficient which represents the effect of inhomogeneous
broadening [41], and the effect of homogeneous broadening is accounted phenomenologically
by the parameter vy [64]. We further assume a periodic absorption coefficient

flw)=> Fpe ™7 2)

n<0

ey

to account for the comb structure, where 27 /T is the AFC comb period, and the requirement
of n < 0 s for a causality reason [62]. The periodic structure also implies successive retrieval

‘echoes’ centered at times t = pT, p=10,1,2,...,1.e.
Qz,0) = a,(2)2(0,1—pT), 3)
p=0

where the requirement on p > 0 comes again from causality.
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The retrieval efficiency is defined as 7(L) := |a;(L)|* corresponding to the first retrieved
pulse at the output end of the sample with length L. While the detailed solution of equation (1)
is presented in appendix A, we note that from the solution we have the analytical expression

for the AFC retrieval efficiency:
(L) = |F_iLPe~"", o)

where F and F_; are the Oth and (—1)-th Fourier coefficients, respectively, for a periodic
function f{w) which defines the shape of the periodic comb. Explicitly they are calculated as:

T 7T/T ( )
Fo=— f(w)dw, (5)
2m —n/T
T TF/T X T
F_= 271_/W/Tf((,u)e“" dw. (6)

3. Proof of optimality of the square-tooth atomic frequency comb

For the rest of the paper we will focus on the mathematical proofs, before which we would
like to emphasize the connection between the abstract mathematical formulation and the phys-
ical scenario. We consider the scenario where experimentalists perform optical pumping on a
specific atomic ensemble to create AFC with a fixed periodicity in frequency domain 6 = 7 /T
(and the full period is 29), which is determined by the retrieval time T required by the quantum
information process task to achieve. Besides the fixed period, the created AFC tooth shape will
also be subject to constraints which are determined by the physical properties of the atomic
ensemble itself: maximum absorption s, background absorption awg, and optical linewidth
from finite optical coherence time T, together with spectral diffusion and broadening due to
the hole-burning laser. Under the assumption of periodic comb, we can focus on a single period
[—7/T,7/T] (i.e. [—6,6]), in which the shape of comb tooth is described by a real-valued func-
tion flw) s.t. apg < flw) < ay.

In the following, we first ignore background absorption, i.e. assuming oy, = 0, and prove
the optimality of square tooth among all symmetric tooth shapes s.t. flw) = f(—w), which
will be the basis of proving the optimality of square tooth among arbitrary tooth shapes after
coordinate redefinition. Then, we show that the inclusion of non-zero background absorption
does not affect the optimality of square tooth above the background. Finally, we consider finite
optical linewidth which will make it impossible to create arbitrary comb tooth shapes. We
demonstrate that taking the optimized square-tooth as the target tooth shape will give the best
efficiency among all realizable tooth shapes, under the assumption that the actual tooth shape
is the convolution of the target tooth shape and the single-atom line shape [59].

3.1 Proof of optimality among all symmetric tooth shapes

We first consider symmetric tooth shapes s.t. flw) = f(—w), because they allow us to ignore
the imaginary part of F_; which naturally vanishes due to the symmetry of f(w), and we can
also restrict ourselves to positive w. Notice that tooth shapes subject to the maximal absorption
constraint vy, can have varying area Fyy € [0, ayy]. Therefore, the proof of the optimality of the
optimized square tooth is achieved in two steps. We first prove that for all symmetric combs
with identical area (thus identical Fy), the square one is the best. Then we can optimize the
width for all allowed square teeth, and the square tooth with optimized width is then obviously
the best among all possible tooth shapes even with different areas.

4
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Proposition 1. Among all symmetric tooth shapes defined on [—x /T, /T| with fixed area and
subject to 0 < flw) < ayy, the square tooth provides the highest retrieval efficiency.

Here we explain the sketch of the proof, while the details can be found in appendix B. The
square tooth shape f;(w) takes value ayy, i.e. the maximal absorption, on [—T',T’|, where T’
is the half-width of square tooth, and is zero on [—n/T,—I'| U [[',w/T]. We then consider an
arbitrary symmetric shape f{w) with the same area as the square tooth, which means that f{w)
satisfies:

/T T
/ fw)dw = / aydw = oyl @)
0 0

To prove the proposition, we would like to show that f{w) cannot achieve higher retrieval
efficiency than the square shape f;(w), i.e.

w/T r
/ f(w)cos (wT)dw| < / aycos (wT) dw, 8)
0 0

which is then proved based on bounding of the integrands on the interval [0, 7/T]. The proof
is divided into two scenarios: (i) I' < 7/2T, i.e. when the finesse of the comb is greater than
2, and (ii) T > 7/2T, i.e. when the finesse of the comb is smaller than 2.

This proposition means that we cannot find another symmetric tooth shape f{w) that can
achieve a higher retrieval efficiency than the square shape when they have the same area. In
other words, for any possible symmetric tooth shape f(w), there at least exists one square tooth
which can achieve an efficiency that is not lower than f(w), and this square tooth has the same
area as f(w). As a result, the symmetric tooth shape which can achieve the highest efficiency
must be a square tooth, and then we can straightforwardly optimize the width of square tooth
to obtain the optimal square tooth [59], which offers the highest efficiency among all possible
symmetric combs subject to the constraint 0 < f(x) < ay.

Mathematically, the above proposition means that for any bounded function 0 < flw) < ay

defined on [0,7/T] with area foﬂ/Tf(w)dw = ayl’, we always have ‘fow/Tf(w)cos(wT)dw <

fOF apcos(wT)dw. This will help the proof of optimality among arbitrary shapes in the next
section.

3.2. Proof of optimality among all tooth shapes

For an arbitrary tooth shape function, the Fourier coefficient F_; will in general contain ima-
ginary part. According to equation (4) we are interested in the modulus of F_;.

Geometrically, for w € [—7/T,7/T] the integral kernel of F_;, e~™“T, represents a vector
with unit length pointing towards the direction determined by the phase w7 with respect to the
polar axis. The integral can then be understood as an addition of vectors pointing to the polar
angle w7 with length f{w), under the standard Riemann integral interpretation. It is certain
that the integral will also result in a vector pointing to certain polar angle w(7. Since we are
only interested in the length of this vector to evaluate the AFC efficiency, the exact phase of
F_ does not matter. We can redefine the origin of the polar angle as w = wy.

In this way, |F_;| equals the integral of the vector component that is parallel to the new
zero-angle orientation, as now we are sure that the integral of the orthogonal component will
vanish:
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T /T
|F_] =7 F(x)cos (wT — wyT) dw
m —n/T
T w/T—wo
= / flw’ +wo)cos (w'T)dw’
2'/T —TI'/T—UJO
T /T
7 /f’(w’)cos(w’T)dw’ , )
—n/T

where we have defined a new shape function f'(w’) using translation of the coordinate w’ =
W — wp:

f(w —&—wo—z—") w E[f—wo, T]

Because of the assumption that the comb is periodic, for a single tooth the definition of /' (w’)
is equivalent to left translating the original tooth shape f{w) by wq under a periodic boundary at
w = +7/T. Therefore, the new function " (w’) still satisfies the constraint which f{w) satisfies,
ie.0 < f'(w’) < au, and its integral on [—7 /T, 7/T] is identical to the original shape function,
ie. ffgrf(w)dw = l/r;r "(w”)dw'

We emphasize that the coordinate translation wg is determined by the condition
ffﬁr/T (w)sin[(w — wo)T]dw = — f;}ﬂf(w) sin[(w — wp)T]dw, but this does not guarantee that
the area of the original shape function f{w) has equal areas on both sides of wy, i.e. in gen-
eral [ Jpflw)dx # fwo w)dw, or in terms of the newly defined function f . /Tf (w')dw' #

Fw)= {f(‘*’/"'wO) w' € [ T?T_WO] ' (10)

foﬂ/ i (w’)dw'. Therefore, before we prove that the square tooth shape is optimal among arbit-
rary shapes with an identical area, we need the following lemma.

Lemma 2. Among all square shape functions f(r ¢)(w) on [—m /T, /T] with fixed half width
0 < T < 7/Tcentered at —w/T+T < ¢ < /T —T that take the maximal possible value oy
forw € [c —T',c+T'| and zero otherwise, the one centered at ¢ = 0 will provide the highest
/T
I(T)c):= fir,e) (w)cos (wT) dw. (11)
—n/T
The proof is straightforward, and can be found in appendix B. Using this lemma we can
obtain the optimality of the square tooth shape among arbitrary shapes with a fixed area.

Proposition 3. Among all tooth shapes defined on [—m /T, w/T| with a fixed area and subject
t0 0 < flw) < ayy, the square tooth provides the highest retrieval efficiency.

The proof is based on the aforementioned coordinate redefintion, from which we can
express |F_;| as the absolute value of an integral in equation (9). The form of integral is almost
the same as the one we encounter in the proof of optimality among all symmetric shapes, and
we can upper bound the absolute value by dividing the integral into two parts, on [— /T, 0] and
[0,70/T], respectively. Therefore, we are able to use the results from the last section to prove
the upper bound of |F_| for arbitrary tooth shape. The details can be found in appendix B.

Hence, we have established that among all tooth shapes with the same area, the square tooth
offers the highest retrieval efficiency. Then similar to the argument at the end of section 3.1,
to obtain the globally optimal tooth shape we only need to optimize the square tooth, and the
optimal half width for the square tooth can be easily obtained [59]. We also present it explicitly
in appendix C.
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3.3. Effect of background absorption

The optimality naturally extends to the scenario where the tooth shape has a non-zero back-
ground absorption, i.e. the minimum value of the shape function is a constant ay,g > 0.

We start by clarifying that when there exists a non-zero background absorption, the tooth
shape refers to the shape above the background. We thus decompose the tooth shape function
as flw) = fog(w) + favg (W), Where subscript ‘bg’ refers to the constant background and ‘abg’
denotes above-background. Then we can write the retrieval efficiency as:

(L) = | (Fog,—1 + Fapg,—1) L™ a0t Fao)k (12)

where Fy, 1 and Fyg o are real constants. Then, following the previous proofs, we consider
tooth shapes with identical areas, so that we only need to maximize |(Fog,—1 + Fapg,—1)|*-
According to proposition 3, square fy,, (w) will achieve the highest |Fypg, — 1 |. Moreover, Fypg,
is real for square fyps (w). Therefore, by the vector addition argument, it is obvious that square
fabg(w) will achieve the highest |(Fug,—1 + Fabg,—1)|-

We comment that with a finite background optical depth OD( = d,L, the tooth width needs
to be optimized for a new effective optical depth OD’ = OD — ODy. The effect of background
in AFC absorption profile was first considered in [9], where the authors approximate the effect
of the background as a reduction factor on the expected efficiency. However, according to
equation (12) it is clear that the effect of a constant background may depend on shape of comb
above it. Nonetheless, we manage to show that it does not affect the optimality of above-
background square tooth shape.

3.4. Effect of optical linewidth

We have proved the retrieval efficiency optimality of the square-tooth AFC. However, in prac-
tice where the optical linewidth is always finite so the ideal square-tooth is never achievable. It
has been commonly considered [59] that the actual observable tooth shape will be the convo-
lution of the ideal target tooth shape f(w) that we aim at generating and the normalized optical
line shape £(w), i.e. flw) — flw) * L(w). Note that the line shape should be normalized since
the actual tooth shape should be identical to the target tooth shape when the optical linewidth is
zero. In fact, we can show that if we fix £(w), such convolution does not affect the optimality
of the square shape.

Recall the efficiency functional in equation (4). Now we want to replace f(w)
with flw) * L(w):

2
o T @) L (@) de

/T )
n(L) = H/ flw)* L (w)e“Tdw

27 —n/T

/T ) /T ) 2
LT / L (w)e™Tdw flw)e™Tdw
27 —n/T —x/T

— B (L Lw)dw ) (ST f(w)dw )

~
~

xXe

=|F_L'|?e~ Tt (13)

where for the approximation we have used the convolution theorem to decouple the integrals,
and assumed that the intrinsic line shape is not too wide. In the end, we have defined L’ =

L ffgrﬁ(w)ewdw‘ andL'' = Lffgrﬁ(w)dw, which are constants as long as the line shape

7
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L(w) is a fixed function, and thus do not affect the previous proof. Therefore, the square tooth
shape is still the most desirable target tooth shape. Although the final observable tooth shape
will be different from the perfect square shape, it still gives the highest achievable efficiency,
as long as the intrinsic line shape does not vary.
We can re-write the efficiency as:
2
|F_1L//‘267F0L”

, (14)
‘F_IL‘Ze—FnL7

L/
X

n(L)Z‘

A ‘/ L(w)e™Tdw

where we have used the approximate normalization condition f:/r ;Tﬁ(w)dw R~

[ L(w)dw=1, and fngE(w)ei‘*’wa ~ [7 L(w)e*Tdw, both assuming that the
intrinsic line width is much smaller than the comb period 27 /T. It is then obvious that,
as long as the actual shape can be expressed as a convolution of the target shape and a fixed
kernel, the effect of the finite optical linewidth is simply to scale the ideal efficiency by a
multiplicative constant determined by the Fourier transform of the intrinsic line shape. We
note that in practice the convolution kernel can have complicated form, but in general it will
depend on optical coherence time of the atoms. In addition, the retrieval efficiency’s depend-
ence on the square-tooth width, comb period and optical depth is unchanged, which makes
the optimal width of the square tooth unchanged as well, independent of the optical linewidth.
We emphasize again that in experimental scenarios, after the optical depth and the desired
comb period are determined, the corresponding optimized square-tooth width can be obtained
analytically [59].

4. Comparison with Lorentzian and Gaussian tooth shapes

In practice, errors in the control of optical pumping may result in deviation from the optimal
tooth shape as target. For instance, suppose we want to create the optimal square-tooth AFC
under a certain optical depth constraint. The actual tooth width might be different from what we
intend to create. Therefore, it is important to examine how robust and practical is the advantage
of the square-tooth AFC in retrieval efficiency. Here we make a direct comparison among
square, Lorentzian, and Gaussian shapes of AFC teeth by evaluating the achievable retrieval
efficiency under different tooth widths and optical depths. Recall that we have shown that
the inclusion of finite optical linewidth only scales the efficiency by a multiplicative constant
determined by the intrinsic line shape. For the three tooth shapes considered in this section
which are symmetric, the effect of finite background absorption is also just a reduction factor.
Therefore, without loss of generality, we focus on the ideal tooth shapes.

4.1. Retrieval efficiencies under different tooth widths and optical depths

We still impose a physical constraint on maximal height of the comb shape ay,. In this case,
we consider Lorentzian and Gaussian line shapes with FWHM T (then half FWHM is I'/2)
described by

. CYMF2
T2 4407’

w2
Goyr (w) = age 217 (16)

Lo, r (w) 15)
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respectively. In order to obtain their corresponding retrieval efficiencies according to
equation (4), we need to evaluate two definite integrals which do not result in analytical expres-
sions that consist of elementary functions, but involve non-elementary integrals such as error
function, cosine and sine integrals. Therefore, we would like to evaluate the efficiencies numer-
ically and thus we would like to make the functions dimensionless to get rid of the influence
of storage time 7 and crystal length L:

2

TL /T Y

W) = == (w)cos (wT)dx | e~ # [ Twnf)d
2n —n/T

2
L w/T L/

:<2/ f(W)Cos(wT)d(wT)> R ONC)
T J 7T

L [T >
<27T/ f(t)cos(t)dt) P QL .

where ¢ := wT and f(t) = f(wT) = f(w), while we have also assumed symmetric comb shapes
s.t. flw) =f(—w) which is satisfied by L(w) and G(w). Then for Lorentzian and Gaussian
shapes the numerics-friendly expressions of retrieval efficiencies are

2
1 & szD _ 1w pfop g
w.00) = (3= [~ E P cos(gar) e A 19)
1 s B 2 2 . 74]n2’]i
ng(p,OD):<2ﬂ_/ ODe *"?12 cos(t)dt) e /T 0D (g

respectively, where the effect of storage time 7T is represented by a phase factor p:=I'T €
[0,27] (dimensionless width which is proportional to the inverse finesse), while the effect
of crystal length L is represented by the maximum optical depth OD := ay,L > 0. For the
square tooth with FWHM I' and OD constraint ay/L the efficiency is [59] (for review of other
analytical properties of square-tooth AFC see appendix C)

OD?sin? (p)
2

pOD

ns (p,OD) = e 20)
The retrieval efficiencies for AFCs with square, Lorentzian and Gaussian teeth under differ-
ent optical depths OD and dimensionless widths p are visualized in figure 1 to offer a more
comprehensive view of the AFC performance under varying experimental conditions. There is
a noteworthy feature of AFC retrieval efficiencies that emerges for different tooth shapes: As
the maximum optical depth OD increases, the desired range of tooth widths decreases, outside
which the retrieval efficiency will decrease quickly as the width deviates from the optimal
width. Among the three typical tooth shapes considered here, the Lorentzian tooth is argu-
ably the ‘worst’, in that it achieves the lowest efficiency under a fixed OD, while the desirable
range of the tooth width is the narrowest. On the other hand, the advantage of the square tooth
is conspicuous visually, which will be further elaborated in the following.

4.2. Robust advantage of square tooth

We demonstrate the robustness of the square-tooth AFC’s advantage in retrieval efficiency.
Specifically, we compare the retrieval efficiency of the square-tooth AFC with different widths

9
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Lorentzian Gaussian Square

0 5 10 15 20 0 5 10 15 20
oD oD

Figure 1. Retrieval efficiencies of AFC with Lorentzian, Gaussian, and square teeth,
for different tooth widths p = I'T € [0, 2] and optical depths OD = ayL € [0,20]. The
color map is identical for all three figures, with the darkest blue color corresponding to
zero efficiency and the brightest yellow color corresponding to 0.54 which is the upper
limit for forward retrieval efficiency of AFC memories.

and the optimal retrieval efficiency of AFCs with Lorentzian or Gaussian teeth, under fixed
optical depths. The retrieval efficiencies of AFCs with Lorentzian or Gaussian teeth as func-
tions of p and OD do not have simple closed forms, but their maximum values given fixed OD
can be determined numerically.

We first examine the absolute difference between the retrieval efficiency of square-tooth
AFC with different widths and the optimal retrieval efficiency of Lorentzian-tooth and
Gaussian-tooth AFCs, under fixed maximum optical depth OD. Specifically, we calculate the
following quantity

Dy ;6 (p,OD) = ns(p,0D) — max /G (p',OD). 2h
P S 2T0
We visualize Dy (p,OD) and Dg(p, OD) in the upper panel of figure 2. We also consider the rel-
ative difference between the retrieval efficiency of square-tooth AFC and the optimal retrieval
efficiency of Lorentzian-tooth and Gaussian-tooth AFCs, under fixed OD. Specifically, we
calculate the following quantity

1s (p, OD) — maxp/e[oyzw] ’}’]L/G (p/, OD)

(22)
maxp c(o,2x] "L/G (p’,0OD)

RL/G (p7 OD) =

R.(p,0OD) and Rg(p,0OD) are visualized in the lower panel of figure 2, to complement
Dy (p,0D) and Dg(p,OD).

It is noteworthy that for the visualization we have normalized any negative value to zero,
which corresponds to the darkest blue that is uniform in most areas in each subfigure. For each
subfigure any value higher than the maximum value in the color bar is also normalized to the
maximum for the color bar, corresponding to the brightest yellow, with the lower right panel
for Rg(p,0D) as an example. Therefore, in the region where the color is green or yellow we
have that D/R; ;;(p,0OD) > 0, i.e. the retrieval efficiency of square-tooth AFC with relative
tooth width p is higher than the optimal retrieval efficiency that can be achieved by Lorentzian-
tooth and Gaussian-tooth AFCs under the same maximum optical depth OD. The existence of
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Figure 2. Comparison between the retrieval efficiency of square-tooth AFC and the
optimal retrieval efficiency of Lorentzian-tooth and Gaussian-tooth AFC, under fixed
maximum optical depth OD. The upper panel demonstrates the absolute differences
Di(p,0OD) and Dg(p,OD). The lower panel demonstrates the relative differences
R:(p,0D) and Rg(p,OD). All functions are visualized for p € [0,27] and OD € [0,20].
Any negative value is normalized to zero, which corresponds to the darkest blue, while
for each subplot any value higher than the maximum value of the color bar is also nor-
malized to brightest yellow.

such regions means that in practice we do not have to create square teeth with optimal widths
to demonstrate advantage over other practical tooth shapes such as Lorentzian and Gaussian
using the same atomic ensemble (such that OD is unchanged), i.e. the advantage is robust. It
can be observed that as the maximum optical depth OD increases the range of tooth widths
which support advantage in retrieval efficiency decreases, which is justified by the feature of
retrieval efficiencies.

5. Conclusion and discussion

We offer a rigorous proof which shows that the square tooth with an optimized width is the
best tooth shape for AFC memories, based on a semi-classical model of AFC absorption and
retrieval processes. It achieves the highest retrieval efficiency, even when finite background

1
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absorption and optical linewidth are considered. Although the ideal square-tooth AFC is not
obtainable in practice, our results suggest that a target square-tooth comb will still lead to the
highest retrieval efficiency. We further reinforce the realistic advantage of square-tooth AFC
through explicit comparison with two other common tooth shapes, Lorentzian and Gaussian,
which reveals the robustness of square-tooth AFC’s retrieval efficiency advantage even when
the tooth width deviates a bit from the optimal width.

This work demonstrates an interesting example of applying mathematical analysis tech-
niques to quantum memory theory. We have also identified generalized functional optimization
problems to which the proof technique can be immediately applied, as presented in appendix D.
The techniques used in this work are expected to find use in or inspire mathematically rigorous
studies of the optimal configuration for other physical scenarios, especially different quantum
memory protocols which have higher efficiency upper bounds, such as backward retrieval of
AFC and cavity-enhanced AFC [67, 68]. Notably, cavity enhancement could potentially result
in additional requirement on pulse engineering as imposed by the cavity mode, so the optim-
ization of cavity-enhanced quantum memories still requires detailed analysis, which we leave
for future work. Nevertheless, cavities whose mode line widths are larger than the AFC band-
width can still be used for enhancing AFC memories [67] as demonstrated experimentally in
[69, 70], and in such cases our results are still directly applicable. Moreover, it is interesting
to take into account further realistic details in the quantum memory protocols. For instance,
recent studies, e.g. [35], have discovered more subtle and non-trivial interplay between optical
pumping schemes and the observed tooth shape. The interplay between the spectral width of
the AFC structure and the spectral width of the signal fields could also limit the efficiency
and accuracy of the AFC protocol in contrast to the CRIB protocol [71-73]. In addition, we
would like to reemphasize that we have assumed ideal periodic comb in our analysis, which is
not exactly the same in practice where the tooth height will change depending on the distance
from the center of the inhomogeneous broadening spectrum. The impact of realistic aperiod-
icity in the comb can be an interesting topic to study from both mathematical and practical
perspectives. We leave the exploration of these aspects for future works.
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Appendix A. Detailed solution to the Maxwell-Bloch equations (1)

For completeness and pedagogical benefits, we provide a detailed solution to the Maxwell-
Bloch equations used in both [59] and this work.

We consider that when the incoming signal pulse has a characteristic time 7 that is much
longer than the time it travels through the medium L/c, we can ignore the temporal retardation
effects [10], i.e. we can neglect the temporal derivative in the first equation in equation (1)
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which describes the field (Rabi frequency) dynamics. Then it is natural to work in the frequency
domain by performing the Fourier transform on both sides of the equations, where & denote
the frequency domain argument to differentiate from the frequency detuning w. Subsequently
the equations are reduced to:

9.0(z :——/dwf P(w;z,@),
iCDP(w,Z,LU):—(ZUJ—F’)/)P(OJ,Z,(JJ)—iQ(Z,LZJ),

(A.1)

where the Fourier transform §2(z,&) has a series expansion due to our previous retrieval pulse
sequence ansatz:

0)=F | Y ap(2)Q2(0,1—pT)

p=0

=>4, (x) e PTF(Q(0,1)] (A2)

p=0

w) de (z) e~ 7T,

p=0

where F|-] denotes the Fourier transform from the time domain to the frequency domain,
and Q(0,&) := F[£2(0,7)]. The integral on the right hand side of the first equation can be
expanded as:

/ dwf(w) ZF/ dwe™ ™ TP (w;7,0), (A3)

n<0 B

where the infinite lower limit of the integral is an approximation, as given a finite center res-
onance frequency, the lower bound on detuning is finite. From the second equation above we
obtain the relation between the field and the polarization:
P(wizd) = ———0(28) (Ad)
Wiz, W)= ——— Z,w). .
3 <y ) _|_ w— iy 9
Then the integral in equation (A.3) can be further written as:

—inwT

—inwT . e
;F/ dwe P(w;z,0 (z,@ ;F/ dwm. (A.5)

One can notice that the integral on the right hand side is closely related to the Hilbert trans-
form [74, 75] which is defined as

o0

dTM

t—T

Hlu()i= ov [

— 00

, (A.6)

where pv denotes the Cauchy principal value. Besides the Hilbert transform, we note another
widely-used identity

1

|
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To utilize this identity for deriving analytical formulae, we consider another approximation of
small homogeneous broadening, i.e. v — 07 [61]. Then we explicitly evaluate the aforemen-
tioned integral for two cases: n =0 and n < 0. When n =0 we have:

dyp————= d j L =1im. .
/_DO wd)—kw—iy pv/_ ww+w+z7r/ dwd (O +w) =im. (A.8)

o0 —00

When n < 0 we have:

oo e—ian oS} e—ian es} )
/ dw———= pv/ dw— +i7r/ dwe™ ™75 (& + w)
oo WHw—Iy o w+w oo

— N [e—i(nT)w} L ir ST = i ot (A.9)

Equipped with the above results, we return to the Maxwell-Bloch equations which have been
reduced to:

—inwT

D [0y Qe =Y ay (e T F, / o (A10)

p=0 p=0 n<0 -

According to the definition of retrieval efficiency 1(L) := |a;(L)|?, to obtain a; (z) we only
need to solve for two equations corresponding to p =0, 1:

1

d:ap(z) = — 5 Foao (2), (A.11)
1

d.a1(z) = — 5 Foa (z) = F_1a0(2), (A.12)

which must satisfy two boundary conditions: zero decay of input signal at z =0, i.e. ap(0) = 1;
zero forward retrieval signal at z=0, i.e. a;(0) = 0. Then it is easy to derive their explicit
expressions:

ao (z) = e~ /2, (A.13)
a) (z) = —F_je T2, (A.14)
Appendix B. Detailed proofs

In this section we provide detailed proofs of propositions in the main text.

B.1. Proof of proposition 1

Proof. First recall that the square tooth shape f;(w) takes value ayy on [—T',T'], and is zero on
[—7/T,-TU [T, 7/T].

We consider an arbitrary symmetric shape f(w) with the same area as the square tooth,
which means that f{w) satisfies:

w/T T
/ fw)dw = / aydw = ayl. (B.1)
0 0

14



J. Phys. A: Math. Theor. 58 (2025) 105303 A Zang et al

To prove the proposition, we would like to show that f{w) cannot achieve higher retrieval
efficiency than the square shape f;(w), i.e.

w/T r
/ f(w)cos (wT)dw < / ayrcos (wT) dw. (B.2)
0 0

. . . . T .
Note that in principle we need to account for f(w) satisfying foﬂ/ flw) cos(wT)dw < 0, which
corresponds to the case where the tooth is more concentrated on [7 /2T, 7 /T]. However, in such
cases we can always redefine coordinate for one single tooth under periodic boundary condi-

tion, so that under the new coordinate foﬂ/ ! flw) cos(wT)dw > 0, which we focus on without
loss of generality.

For simplicity we define a function f(w) as the difference between the function f(w) and the
square function f;(w):

Fw) =fw) —f W)

~Jfw)—ay wel0,T] (B.3)
| fw) we [T,n/T)’

which satisfies foﬂ/ Tf(w)dw =0 according to the assumption of identical area. The proof is
then divided two scenarios: (i) I' < 7/2T, and (ii) " > 7/2T.
In scenario (i) we have:

/T _ r_ /T _
/o f(w)cos(wT)dw:/O f(w)cos(cuT)duH—/F f(w)cos (wT) dw
r W/T~
< cos (FT)/0 f(cu)dqurcos(FT)/F f(w)dw

/T _
= cos (FT)/ f(w)dw =0, (B.4)
0

where for the inequality we used the following facts:

fw) <0, we 0,17, (B.5)
cos (wT) > cos(I'T) =0, w € 0,17, (B.6)
cos (wT) < cos(I'T), w e [I',7/2T], (B.7)
Then we have:
/T r
/ f(w)cos (wT)dw < / aycos (wT) dw. (B.8)
0 0
In scenario (ii), we have:
/T _ /2T _ r
/ f(w)cos (wT)dw = (w)cos (wT) dw +/ f(w)cos (wT) dw
0 0 /2T
7T/T~ r
+ / F(w)cos (WT)dw < 0+ cos(IT) [ F(w)dw
T 7 /2T
/T _
+ cos (I'T) / F(w)dw < 0. (B.9)
r
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In the above, for the first inequality we have considered the following facts.
f(w) <0, we0,7/21], (B.10)

because f(w) < ay when w € [0,T], while T" > 7/2T in scenario (ii). This gives the upper
bound for the first term in equation (B.9).

cos(I'T) f(w) = cos (wT) f(w) 20, w € [7/2T,T7, (B.11)

because on this interval we have 0 > cos(wT) > cos(I'T) while again f(w) < 0. This gives the
upper bound for the second term.

0> cos(I'T)f(w) = cos (wT)f(w), we [I',7/T], (B.12)

because f(w) > 0 while 0 > cos(I'T) > cos(wT) on this interval, which gives the upper bound
for the third term.
For the second inequality we have used:

cos(I'T) <0, T > m/2T, (B.13)
/T _ /T _ /2T _ /2T _
fw)dw = f(w)dw — (w)dw:Of/ f(w)dw > 0. (B.14)
/2T 0 0 0

In the end we have:

/T r
/ f(w)cos (wT) dw </ aycos (wT) dw. (B.15)
0 0

The proposition is thus proved. O

B.2. Proof of lemma 2

Proof. The family of square shapes can be explicitly formulated as a piecewise function:

0 ifwe |—Z,c—T|U|c+T,%
fro (W)= . -7 Jul d : (B.16)
ay fwelc—T,c+T]
Then the objective integral can be evaluated directly as:
erl 2apsin (I'T T
I(T,c) :aM/ cos (wT) do — 228N ( T)COS (D). (B.17)
c—TI
And we can evaluate its partial derivative against the center c to get:
0 20y sin (I'T) sin (cT)
—I(T,c)=— B.18
) - (B.18)

which takes zero value at ¢ =0 and is negative for all ¢ € [0,7/T —I'], positive for all ¢ €
[-7/T+T,0],as 0 < T < 7/Tresults in sin(I'T) > 0. Therefore we conclude that for a fixed
half width T, for — /T4 T < ¢ < /T — T the integral has the maximal value whenc=0. O
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B.83. Proof of proposition 3

Proof. Recall that we have expressed |F_;| as

w/T
f (w)cos (w'T)dw’], (B.19)
—n/T

Fy| =
71_271'

and the redefined f'(w’) is still a valid shape function. Moreover, after the redefin-
ition, f'(w’) will satisfy the following condition that ffﬂ /Tf’ (w”)sin(w'T)dw’ =
T or e N o / ’ : : : (0 :
;S % : ]f‘o(rws ii;;rlli(gtyT)dw . Therefore, in the following we will focus on f'(w’), and denote it
For f(w) s.t. f ~/ T w)dw = S, we can denote their integral on [0, 7 /7] and [—7 /T, 0] as S,

and S;, respectlvely, S. t S S, + S;. Then we define two square shapes on either side of x =0
with the areas being S, and S;:

L ifwe:—’;—o}&]u[qﬂ]’

ay ifwe|—=L
- (B.20)

p o s [_—T;,(i] uls5] |

ay ifwell

so that f(w) :=f,(w) + fi(w) has an identical area as the tooth shape f{w). |F_;| can be easily
upper bounded by separating the w > 0 and w < 0 parts, respectively:

|F_q| = )cos (wT) dw 27r / f(w)cos (wT) dw
w)cos (wT)dw (B.21)
Then according to the result of proposition 1, we have that:
0
Yeos (wT) dw| < Si(w)cos (wT)dw, (B.22)
_ﬂ-/T —n/T
)cos (wT)d / Sr(w)cos (wT) dw (B.23)
which leads to
T w/T
|F_1| < — / S5 (w)cos (wT) dw. (B.24)
27 —n/T
Moreover, according to lemma 2 we have
T w/T
— fs (w)cos (wT) dw
2wyt B.25
T (B.25)

= % _ﬂ_/TfF:S/(zaM),CZO (LU) Ccos ((,UT) dw
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where the upper bound is achieved by a square tooth. Therefore, there does not exist a tooth
shape that can achieve a higher retrieval efficiency than the square tooth with the fixed area. [

Appendix C. Properties of the square-tooth AFC retrieval efficiency

We have shown that the inclusion of finite optical linewidth only scales the efficiency by a
multiplicative constant determined by the intrinsic line shape. Therefore, without loss of gen-
erality, we focus on the ideal square-tooth AFC. For completeness and ease of reference, in this
appendix we present some properties of the square-tooth AFC retrieval efficiency as shown
in [59].

For the ideal square-tooth AFC with a tooth half width I' and height constraint ay,
(i.e. optical depth OD = ay,L) the efficiency can be derived as:

1
15 (I,0D) = —OD?sin® (I'T) e~ = °P, (C.1)
T
which gives the optimal tooth half width for the square tooth:
1 2T
I, (OD) = 7 arctan (OD) ) (C.2)
We see that the ratio between F(S)pt and a quarter of the comb period 7 /27T satisfies:
2 27
0 < —arct — | <1, C3
- arctan (OD) (C.3)

for any positive optical depth OD. That is, the optimal width of the square tooth will never
extend beyond 7 /2T, which is intuitive both physically and mathematically. Physically, if the
comb is too wide the frequency difference between the emitters within one comb is large which
will lead to dephasing, an undesirable outcome that will harm the transition dipole rephasing.
Mathematically, cosx is above zero on [0, 7/27] while below zero on [ /2T, 7 /T], therefore if
Aw) =0 on [r/2T, 7 /T] the shape will actually result in a lower value of the first integral in
the definition of F_; (and for the square tooth which is symmetric with respect to w =0 the
second integral in F'_;’s definition is simply zero).
The retrieval efficiency of the optimized square-tooth AFC as function of the optical
depth is:
—9ob arctan pud
ns,0pt (OD) = %WWOD- (C4)
1+ 55
It can be easily proved that the above function increases monotonically as the optical depth
increases. Then by taking the limit of the retrieval efficiency as the optical depth approaches
infinity, we can find its maximal value:

. 4
Mmax = 01)1ng1roo ns,0pt (OD) = o~ 54.1%, (C.5)

which agrees with the upper bound derived in [10].

Appendix D. Proof review and generalization

The optimization of the AFC tooth shape is a functional optimization problem. The retrieval
efficiency is a functional of the tooth shape function, which in general requires calculus of vari-
ations or numerical techniques. Our approach only utilizes elementary analytical techniques,
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and only basic properties of the objective functional are relevant. Therefore, the proof proced-
ures can be easily generalized. Here we review the proof from a high-level perspective, and
discuss the form of the functionals to which the techniques can be readily applied.

First, recall that the argument of the objective functional (the AFC retrieval efficiency in
the above example) is required to be bounded and non-negative. Second, the functional has
a structure which can be decomposed as a product of two sub-functionals: (i) the first sub-
functional is a monotonically increasing function of the inner product of the argument function
f(x) (the AFC shape function in the above example), and another basis function g(x) (sinus-
oidal function for Fourier series in the above example), fab f(x)g(x)dx, and (ii) the second
sub-functional is an arbitrary function of fab flx)dx. In fact, it is the product structure that
allows us to simplify the proof by focusing on the maximization of fab f(x)g(x)dx. For the

proof that the square function maximizes fab f(x)g(x)dx under the assumed constraints of pos-
itivity and boundedness, we have only utilized the boundedness and monotonicity of the basis
function g(x).

According to the above review, we arrive at the generalized statement about the optimality
of the square-function as follows:

Theorem 4. Consider real-valued functionals in the following form:

F[J‘(X)]=G</ f(X)g(X)dx>H</ f(x)dx>, D.1)

where the real-valued function G(x) is monotonically increasing and the function H(x) is also
real-valued; the real-valued function g(x) is bounded and monotonically decreasing on x €
[a,b], while the real-valued argument function satisfies 0 < f(x) < a, s.t. fix) and f(x)g(x) are
both integrable on x € [a,D]. The square function

£(x) = {0 X € [c,b]

) (D.2)
a x€a,c]

with optimized width (¢ — a) will achieve the maximal value of FIf(x)].
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