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Abstract—We consider a supervised classification problem of
categorizing e-commerce products based on just the words in
the title. If done in real-time, the categorization can greatly
benefit sellers by enabling them to offer immediate feedback.
We present a deterministic algorithm by constructing weighted
word co-occurrence graphs from the listing/item titles. We empir-
ically evaluate this algorithm on two publicly available product
listing datasets, Etsy and Amazon. Our method’s accuracy is
comparable to that of a supervised classifier constructed using
the fastText library. The inference time of our model is up to
2.9× faster than the fastText classifier and has small training
times. The training and inference of our model scales well for
big datasets performing large-scale classification on millions of
listings. We perform a detailed analysis and provide insights into
our method and the product categorization task.

Index Terms—Sentence classification, word co-occurrence
graphs, e-commerce product categorization, large-scale classifi-
cation.

I. INTRODUCTION

Automated product categorization in marketplaces such as
Amazon, Etsy, and eBay, is of interest to sellers. As the sellers
may upload information corresponding to multiple listings, and
may not be aware of the category tree the marketplace is using.
It may be difficult for sellers to manually enter the appropriate
category for each listing. Another related application is detect-
ing fraud. To sell certain electronic products such as software
licenses, sellers may intentionally classify the listing to be
in an unrelated category (e.g., souvenirs), in order to evade
checks based on price and other information.

Consider the following scenario; while a seller is setting up
their inventory, as the first step the listing requires the item’s
title. Upon entering the title, the seller can be shown a small
subset of categories to choose from depending on the title.
If the seller doesn’t choose any option then the top-ranking
recommendation can be used. While providing suggestions to
the seller, this process can also limit fraud by restricting the
seller’s choices. Such predictions need to be done in real time
so as to not hinder the seller’s experience of inventory setup.

A transparent method can help improve subsequent fraud
detection by finding its root causes in the model’s decision
process and/or misinformation in the data. For instance, a
method can show how certain words in an item’s title can

*Supported by NSF grants 1955971 and 2120361.

lead to miscategorization of the listing. We focus on listing
titles only and do not use other information provided with
listings, to assess how well we can classify without using
auxiliary information. We formulate the problem of classifying
short sentences, where the inputs are sentences (short text)
corresponding to the titles of products.

The predominant approach to solving the sentence classifi-
cation problem is to learn word vectors and build a classifier.
However, such methods typically lack interpretability, i.e.,
it is difficult to ascertain why a sentence was correctly or
incorrectly classified. Another issue is that Large Language
Models (LLMs) like BERT, GPT, and others have high training
and inference times [1], [2]. Thus their predictions are difficult
to serve in real-time and would require a weekly batched cat-
egorization. Also, the inferences generally require expensive
hardware like GPUs and TPUs which aren’t guaranteed to
be available at the time of inferencing.1 Such resource-heavy
models conflict with the goals of facilitating real-time or high-
throughput applications. The models have difficulty scaling
on very large datasets with hundreds of millions of inputs
and are problematic for latency-sensitive applications [3], [4].
Frequent model re-training (or model refresh) is a crucial goal
that can include newer data points with many products being
listed regularly.

In this work, we develop an alternate method that does
not require learning vector representations of words. Instead,
we construct weighted word co-occurrence graphs and use
these graphs directly for classifying listings. The primary
advantage of this method is the improved interpretability.
However, the burden shifts from learning to developing an
appropriate classification strategy that makes effective use of
the word co-occurrence graphs. Also, deterministic strategies
can be implemented efficiently, thus achieving faster execution
times. We present a principled approach to classification based
on graph structure.

Another commonly used graph-based approach is to de-
fine a similarity measure to relate two sentences, compute
similarities for all sentence pairs, use a threshold to filter
low-similarity pairs, and then execute a graph-based semi-

1Due to sharing in cloud systems. A single GPU for an application is
expensive.
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supervised learning method. However, such a method would
require quadratic work in the number of listings to compute
pairwise similarities and is computationally expensive for
data with millions of listings. Our word co-occurrence graph
construction approach avoids this quadratic cost.

At a high level, our method works by constructing multiple
weighted word co-occurrence graphs, one for each category.
Given a new sentence/listing, we look for occurrences of the
words in this sentence in each of the graphs and predict
the category based on a scoring mechanism. We show that
for two publicly available datasets with millions of listings
(from Etsy and Amazon), our approach’s veracity is at par
with a classifier built using the fastText library. Our model is
faster than fastText and also scales well for big datasets. Our
method could thus be used to provide fast recommendations
and simple post-hoc explanations using probabilistic methods
and complex schemes. We also develop an ensemble classifier
combining the fastText classifier with our classifier.

II. RELATED WORK

Constructing word-occurrence graphs for information re-
trieval problems is an established and well-studied tech-
nique [5]. Recent graph-based approaches focus on generating
quantified weights for each word (i.e., term weights), instead
of using word frequencies, to signify the importance of each
word in the text. The weights generated are based on in-degree
[6], random walks [7], [8] or using centrality measures [9],
[10]. In the end, a TF-IDF based scoring function [6]–[8] or a
classifier such as SVM [10] is used to generate a score for each
document or sentence which can be used for text classification
or sentiment analysis. The initial ranking of vertices can also
be used for tasks such as text summarization or keyword
detection [9], [11]. These approaches indirectly encode the co-
occurrence relations into weights associated with each word.
In contrast, our approach uses the co-occurrence relations
explicitly, which aids interpretability.

In recent years, models based on deep neural networks have
emerged as the preferred technique for multi-task learning.
Prior neural network models for single-sentence classification
tasks include [12]–[14]. Due to the infeasibility of real-time
or high throughput inference, LLMs are generally replaced
with shallow perceptrons. To further mitigate inference times,
these models typically employ techniques such as quantization,
distillation, and pruning. Conversely, while simpler methods
like Support Vector Machines (SVMs) and Decision Trees
offer faster and more interpretable results, they generally
exhibit lower accuracy. CPUs-only models are favorable as the
cores/memory can be easily shared among applications while
avoiding overheads like CPU-GPU transfer times.

We primarily compare our approach to a classifier built with
the fastText library [15], specifically one using a subword
model enhancement [16] of the skipgram model [17]. The
subword approach learns the representation of character n-
grams aggregating them to generate word embeddings. This
helps in recognizing words not encountered in the training
data. By mapping the contextual meaning of the unseen words

to words in vocabulary improves fastText’s performance. The
fastText classifier’s linear model is shown to be significantly
faster than several deep neural network models for a variety
of natural language processing tasks [18]. While pre-trained
models such as BERT [19] provide embeddings with better
representation [20], fastText is known to scale well for datasets
with millions of inputs and even for millions of labels [21].

The LinearSVC package for Support Vector Machines
(SVM) is an efficient implementation based on the LIB-
LINEAR [22] library. Its solver for the linear optimization
problem utilizes the Coordinate Descent algorithm that iter-
atively performs approximate minimization along coordinate
directions or hyperplanes. Thus, it scales wells for big datasets
resulting in faster training times. The inference of SVM is a
simple matrix (weights) and vector (feature) multiplication to
determine its sign.

The Decision Tree model creates a tree structure where each
node makes a binary decision on each input based on one or
more features. The tree is grown starting with the root adding
nodes one by one. Each node splits the training inputs into
left or right groups. The goal is to improve the homogeneity
such that each group belongs to the same class. We use the
entropy loss which measures the amount of training inputs in
each leaf that belong to different classes. Leaves are tagged
with the true class of the majority of the inputs that follow
the path from the root to that leaf. Similarly, during inference,
an input follows the path from the root until it reaches a leaf
tagged with a single class thereby classifying the input.

The Random Forest technique builds multiple decision trees
as a forest where each tree is also built from a random subset
of the training dataset. During inference, each tree predicts
one class for each input, and voting on the outputs of multiple
trees determines the final recommendation.

In general, works on e-commerce product categorization
look at assigning multi-level categories based on a taxonomy
tree [23]–[25]. As in this work, we focus on categorizing
listings at a single level in such a tree, where prior work would
not be directly applicable. While these models use neural
networks to perform text classification, we do direct compar-
isons with fastText and above mentioned models along with
BERT. Prior methods on categorizing e-commerce listings in
supervised settings include [26]–[28]. Another related problem
is sentiment analysis of sentences and paragraphs [29]–[31].

III. OUR GRAPH-BASED APPROACH

Suppose we are given s sentences belonging to one of
k categories. Let the number of unique words/tokens after
preprocessing be n, the sum of the lengths of each sentence be
r, and the sum of the squares of the lengths of each sentence
be r′. The average number of words per sentence is thus r/s.
Suppose we map each unique word to a 4-byte integer and
also store the category of each sentence as a 4-byte integer.
Thus, the input size is 4(s+ r) bytes.

A. Constructing Word Co-occurrence Graphs
Consider processing sentences one at a time. For a sentence

i of length li belonging to category j, we generate two triples
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for each pair of words (say, w1 and w2) in this sentence:
⟨j, w1, w2⟩ and ⟨j, w2, w1⟩. The total number of triples we
generate for a sentence is li(li − 1), representing a clique
with the words as vertices and co-occurrences as edges. If the
triples are stored in a contiguous array, we can sort this array
using the concatenated fields as the key and then deduplicate
this array to get the co-occurrence count of each word pair
in a category. Assuming 4-byte integers, the array before
sorting is of size 6(r′ − r) bytes. Using the sorted array,
we can construct k weighted graphs, one for each category.
Suppose the number of edges (word pair co-occurrences) in
each category is mj . Then, the space required to store all
graphs in the compressed sparse row (CSR) sparse matrix
storage format is

∑k
j=1 4(2mj+n+1) bytes, or 8m+4nk+4k

bytes (defining m to be
∑k

j=1 mj).
The model size is characterized by the value of m, which

is input-dependent. A mathematically equivalent viewpoint
is that for each of the k categories, we create a matrix of
dimensions n × n, with the entry in row i and column j
denoting the number of co-occurrences of words i and j. Since
we expect these matrices to be sparse, we use a sparse matrix
storage format. For the weighted graphs, a vertex weight is
defined as the number of occurrences of a word, whereas an
edge weight is the number of co-occurrence of each word pair
in the training data. These weights are computed per-category
and denoted as local weights. In contrast, the global weights
are frequencies across all categories in the training set.

Figure 1 shows the graphs constructed for a toy example
(two categories with three sentences each). Category 1 is
similar to a category for “Cellphones” while Category 2 is
similar to a category for “Cellphone Accessories”. k = 2, n =
11,m = 19, r = 18. Tokenized words are given unique
non-negative integer identifiers across all categories. These
identifiers are the vertices of the graphs for each category.
An edge is marked between two vertices in a category graph
if they co-occur in the same sentence for that category.

Category 1: Category 2:
Apple0 iPhone1 122 new3 iPhone1 canvas6

new3 Apple0 iPhone1 XS4 wall7 art8

Apple0 phone5 stylish9 phone5 art8 (used)10

0 1
2

3 4

5 2
1 3

6

5

789

10

Fig. 1: Example word co-occurrence graphs. Superscripts
indicate word to vertex integer identifier mapping. Unit weight
edges are not labeled.

B. Classification

Given a new sentence, we want to use the k weighted
co-occurrence graphs/matrices and classify this sentence. We
first describe our rule-based classification technique and then
provide some intuition behind its design. Suppose the sentence

we wish to classify is of length l. We form an unweighted
clique using words in the sentence. We then check each of the
k graphs for the existence of l(l − 1)/2 edges (or word pair
occurrences). For each category, we store the matched edges
and then assign an integer score between 0 and l(l − 1)/2,
corresponding to the number of occurrences of these edges.
If there is no tie for the category with the highest value, then
the unique highest-value category is returned as the prediction.
In case of a tie and a non-zero highest value, we consider a
second rule, given by the sum of the logarithm of the non-
zero local weights of the matched edges (or equivalently, the
product of non-zero local edge weights) minus the logarithm
of the number of listings in the category. As a third rule, we
consider the sum of the logarithm of non-zero local vertex
weights in each category.

C. Illustration

Before understanding the significance behind our rule-based
let’s look an example to better under the classification process.
Let’s take a test listing title “new phone canvas” to classify
into one of the categories in Figure 1. Ideally, the item should
belong to the “Cellphone Accessories” category (Category 2).
The first step is to map the words to their IDs, which are 3, 5,
and 6 for the words new, phone, and canvas respectively. We
first construct a clique using the words in the title which gives
us three edges (3, 5), (5, 6) and (3, 6) as shown in Figure 2.
To apply the first rule we match the three edges with the
graphs in Category 1 and Category 2. There is only one edge
match (3, 6) with Category 2 while Category 1 has zero edge
matches. Thus Category 2 is predicted for the test listing.

Test title:
new3 phone5 canvas6

3 5

6

Fig. 2: Example test listing’s title and the clique corresponding
to the words in the title.

D. Discussion on Rules

In the example described in the previous section, only the
first rule (number of matching edges) was used. In order
to come up with the above scheme, we first experimented
with single rules. We considered sums, products, and ratios of
vertex and edge weights with various normalization schemes.
Many of these rules have an underlying probabilistic interpre-
tation. Our experimentation revealed that using the unweighted
edge existence count outperformed other single-rule schemes.
This is because it is challenging to normalize weights. In fact,
as shown in our analysis in section IV-F1 the first rule is
sufficient to classify the majority of the listings in the datasets
that we consider.

For the remaining set of listings where there is a tie
in the number of edges matched. We then considered a
second rule to break ties. The second rule is based on the
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conditional probability of finding a listing given a category,
P (listing|category) = P (listing∧category)/P (category).
The listing can be viewed as a group of words or a group
of word occurrences (edges) thus the probability of a listing
occurring in a category can be approximated as a probability
of the listing’s words co-occurring in the category. Therefore,
the term P (listing ∧ category) can be computed as the
product of the count of edge weights in the category to the
product of the count of edge weights across all categories
(assuming conditional independence). If we apply logarithm
to the equation above we get our second rule the log of the
sum of edge weights minus the log of the number of listings in
the category (probability of the category) with an additional
term. Thus the logarithm of the sum (or product) operation
as described above can be viewed as taking joint probabilities
where each probability is the ratio of local weight to the global
weight. The additional term is the negative of the logarithm of
global weights or (denominator product of weights) is common
for all categories which can be ignored. Please note that the
global weights are used for illustration and we do not store
them.

Here, considering the sum of the logarithms of the weights
performed better than taking the product of the weights. This
may be due to the distribution of edge weights in a category,
and applying the log operation lowers the impact of the
very high-frequency co-occurrences on the eventual selection.
Another benefit is that the product is a large value requiring
more bits to store increasing execution time. The third filter
using vertex weights is a fallback option in case there are
no edge matches, and thus all edge weights are zero. Other
heuristics are possible (which we discuss in the empirical
evaluation section), but in order to aid interpretability, we
wanted to the keep the method as simple as possible.

The per-query cost is proportional to kl2 because we require
O(l2) edge lookups in k graphs. Since adjacencies of a vertex
are stored as a sorted array in the CSR format, we can use
binary search. If the average adjacency length is d, then the
edge lookup cost is proportional to O(log d).

E. Modified Graph Construction

In the graph construction described in Section III-A, the
word order in a sentence does not affect the undirected graph
structure. Further, all word pairs are given equal weight. Also,
generating O(l2) word pairs may be expensive for large l. To
address these issues, we modify the graph construction to use a
sliding window approach. Consider a window of length w ≤ l.
We generate tuples corresponding to word pairs in this window
and then slide the window to the right by one unit. The number
of tuples generated per listing is (l−w+ 1)w(w− 1). When
w = l, this scheme is the same as the original scheme. When
w = 2, only l−1 edges are generated per listing and adjacent
words are given more importance. The value of w could be set
based on the maximum listing length and the main memory
capacity of the system.

An alternative would be to construct the graphs as described
in Section III-A and then remove vertices and edges with

weights lower than some thresholds. This change will also
sparsify the graphs.

F. Implementation Details

We develop a C++ implementation using OpenMP for
thread-based parallelization. The sorting phase is the dominant
compute-intensive step in graph construction. We use a coarse-
grained parallelization approach to graph construction, where
each thread constructs a graph corresponding to one category
after the sort. A fine-grained approach of multiple threads
constructing a graph in parallel is left for future work. An
alternative to the sort, deduplication, and graph construction
is to use k hash tables and not explicitly construct graph
structures. Another alternative is to construct just one graph,
but have a dense k-dimensional vector associated with each
edge. Although such representation might require more mem-
ory, the classification phase could be faster due to fewer edge
lookups. We also parallelize the classification step with threads
working independently on different test sentences to compute
rule values for all categories and ranking them.

G. Avoiding quadratic-cost graph construction

We construct graphs where words, and not listing titles, are
the vertices. This approach averts the quadratic complexity
associated with all-pairs similarity calculations, which in turn
reduces the time taken for training phase. The sliding window
construction adds the window size as a tuning parameter and
the optimal size depends on the importance of word order in a
sentence and distribution of the sentence lengths in a dataset.
Even though a window of size two can be restrictive, it can be
useful if we were to use a directed graph representation and
thereby consider word order. The graph structure is chosen
assuming k is in the range of 20 to 50. For larger values of k,
a hash table-based representation may be more appropriate.

H. Interpretability

Neural network models generally use interpretable linear
models to generate post-hoc explanations for predictions. The
interpretation models compare the difference in their outputs
based on input variation, which shows the importance of
the words in the input. Our approach can serve a similar
purpose. We can examine the true and mispredicted categories
by comparing the edge counts and weights to determine
possible co-occurrences that resulted in the misclassification.
Section IV-F2 shows a way of such interpretation with a test
example.

I. Unseen Words

It is possible that new words that do not occur in the
training data appear in the test data. Neural network models
incorporate subword information to generate word vectors,
which enables matching unseen words to word in vocabulary.
While the unseen word problem was not a significant issue for
the datasets we consider, we also implement a simple prefix-
and suffix-based matching scheme to match unseen words to
words in the vocabulary. Given an unseen word of size w
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characters that is not present in our vocabulary, we check for
the prefix and suffix of size w − k in the vocabulary (for a
small k). If a successful match is found, the corresponding
word is used as a replacement for the unseen word.

J. Alternate Rules

We considered replacing the edges matched rule with other
connectivity-related topological features that do not rely on
weights, such as connected components, largest clique size,
and number of triangles. In the ideal scenario, the true category
of a test sentence would have the maximum possible value
for clique size, the number of triangles, and the there would
just be one connected component in the induced subgraph.
Alternately, the largest (or smallest) value of a graph property
can be used as the deciding factor. Each property can be broken
down into the following cases (assuming maximization). Case
1: The true category of the test sample has the maximum
possible value for the property, while all other categories
have a lower value. Case 2: The true category has a value
lower than max value, while some other category has a larger
value. Case 3: None of the categories have the maximum
value, but the true category does not have the highest value.
Case 4: None of the categories have the max value, but the
true category still has the largest value. Case 5: There are
multiple categories with contending values. Cases 1 and 4
correspond to correct predictions, while Cases 2 and 3 pertain
to misprediction. In case 5, there are multiple categories and it
is difficult to distinguish between them without a second rule.
The evaluations are shown in Section IV-F1 for each scenario.

K. Ensemble Strategy

Typically, an ensemble of similar models is formed based
on some criteria such as majority agreement among all predic-
tions. Other factors, like the confidence level in the model’s
predictions, can also be used to select the prediction with the
highest confidence. However, since our model does not provide
a confidence level, majority voting serves as the primary
strategy.

Luckily, since our model is transparent we can somewhat
determine the scenarios where mispredictions will occur. If
we can reliably identify such scenarios (of low confidence),
we can preemptively switch the recommendation to another
model, which might be more accurate. Our analysis in sec-
tion IV-C attempts to determine the scenarios where our model
has a tendency to misclassify. Based on the analysis we
devised a strategy for an ensemble of our model and fastText
which is described in section IV-C5 determined based on this
analysis.

IV. EVALUATION

A. Test Setup

We use two large publicly available e-commerce datasets to
evaluate our method. The first dataset contains listing metadata
for products sold on Etsy in March 2015 [15]. The second
dataset has a sampling of reviews for products sold on Amazon
[32]. For both the datasets, we extract the product/listing

title and the top-level category for the listing. We process
titles by keeping all ASCII characters except spaces and full
stop, remove tokens of unit length, and convert HTML codes
to corresponding characters wherever possible. Further, we
remove words present in the NLTK [33] stop word list and
keep only the first occurrence of a repeating word. We also
remove categories with a relatively low listings/product count,
and remove listings of length less than six.

Using the accuracy metric (i.e., percentage of test sentences
correctly classified), we compare our method primarily to fast-
Text. We additionally show results with Recall@k for different
k values. Following a linear search for the hyperparameters,
we found the following values to work best with fastText:
15 training epochs, learning rate of 0.1, n-gram value of 2,
subword size between 3-6, loss function “ova”, and word
vector dimension of 128.

The running time results are reported on a dual-socket Intel
server with 2.8 GHz Intel Xeon E5-2650 v4 processors. Each
socket has 12 cores and the server has 126 GB DDR4 memory.

Additionally, we compare our approach to BERT [19]
and DistilBERT [34] using the huggingface [35] framework
with pre-trained models bert-base-uncased and distilbert-base-
uncased respectively. The BERT models are run on a Nvidia
Tesla V100 GPU with 32 GB of memory. We use a large batch
size of 90 to speed up the training along with 5 epochs and
4e-05 learning rate.

We also compare to a linear Support Vector Machine (SVM)
classifier implementation with TF-IDF vectorization enabled
through LinearSVC [22] classifier of scikit-learn [36] that
runs on multi-cores. Similarly, we also compare with two
other models from scikit-learn; DecisionTreeClassifier using
the entropy loss function and RandomForestClassifier with 50
estimator trees using the above vectorization scheme. The max
depth parameter is not set to improve the accuracy of the tree
models.

B. Dataset Characteristics and Summary

We show results when creating the vocabulary from all
words in the training dataset, which includes tokens with
alphanumeric and punctuation characters. We perform an 80-
20 split of the datasets after randomly shuffling the input. More
details of the 80% split used as training data are given in
Table I. We also consider other 80-20 splits of the original
data as well as other splits of the data (50-50 and 90-10), but
most of the results in this section are with the training data in
Table I. The test data is also preprocessed in a manner similar
to the training data.

The three most frequently occurring words in the Etsy
training data are baby (100 583), hand (80 679), and art
(78 037). For Amazon, the words are women’s (355 194), case
(311 281), and black (299 009). For the 80-20 split training
data given in Table I, our method achieves an accuracy of
87.5% for the Etsy dataset and 90.4% for the Amazon
dataset. With fastText, we get 87.4% for Etsy and 90.1% for
Amazon. We achieve the best performance with a window
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TABLE I: Training data after preprocessing.

Attribute Value
Etsy Amazon

# sentences s 1 360 826 6 348 428
# categories k 28 23
# vertices n 1 106 600 3 789 268
# edges
(combined) m 22 219 516 92 002 197
# edges mean
(Coeff. of Var.) 793 554 (0.6) 4 000 095 (0.9)
Sentence length l range [6,23] [6,29]
Input size in GB 0.05 0.24
Tuple array size in GB 1.3 6.5
Graph size in GB 0.28 1.01

size of 10 corresponding to the sliding window as discussed
in section III-E. We use this window size for all our results.

C. Performances on Accuracy

In this section, we show the various analyses we conducted
to compare the accuracy of our model with fastText.

1) Accuracy with different splits: We consider alternate 80-
20 splits first. With nine additional splits, the standard devia-
tions for accuracy with the Etsy dataset are 0.05 (our method)
and 0.06 (fastText). For Amazon, the standard deviations are
0.04 (our method) and 0.03 (fastText). Thus, both methods
show similar variation with alternate shuffling of the data, and
the variation is low.

We next consider two alternate splits of the data, 50-50
and 90-10. These accuracy results, along with the 80-20 split
above, are summarized in Table II. The results show a similar
trend to the 80-20 split, with fastText slightly trailing in all
cases. We do not report the standard deviation, but it is similar
to 80-20 runs. As expected, the accuracy drops when there is
a relatively smaller size of training to test data.

TABLE II: Accuracy with alternate splits.

Split Etsy Amazon
Our fastText Our fastText

50-50 86.1 % 85.9% 89.5% 89.4%
80-20 87.5 % 87.4% 90.4% 90.1%
90-10 88.7 % 88.5% 90.5% 90.2%

2) Accuracy across sentence lengths: In Figure 3, we show
the accuracy of both our method and fastText for different
listing title lengths. The performance is somewhat higher for
larger lengths and lower for smaller lengths on Etsy. This
might be due to our method’s primary focus on word co-
occurrences, which might be limited on smaller length inputs.
As smaller length inputs tend to form generic subgraphs
which are more common and thus easier to misclassify into
other categories unless the words are unique to the category.
However, many of the listings have more than 8 tokens where
our method performs superior to fastText.

On the other hand, our method performs better on Amazon
on the smaller-length titles. This is due to a large number
of unique titles or listings in each category providing more

6 10 15 20 25
Sentence Lengths

82
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Amazon

ourMethod
fastText

Fig. 3: Accuracy variation with sentence length.

unique words and co-occurrences per category. Listings of size
>20 are quite small in amount as long-length titles can be
distracting to buyers. Such a test listing will have an almost
exact match or no matching training listing, leading to erratic
performance (especially in Amazon).

3) Agreement of predictions: We also look at the percentage
of listings for which our method and fastText give identical
predictions. These results are summarized in Table III. Both
methods agree for most of the correctly classified listings,
while fastText performs slightly worse than our model on
individual performance.

TABLE III: Prediction agreement results.

Prediction type Etsy Amazon

Both correct 82.4% 86.2%
Our method only 5.1% 4.2%
fastText only 5.0% 3.9%
Neither correct 4.7% 4.4%

For the use case defined in section I, where a seller has been
presented with options to categorize during their inventory
setup, the second or third-rank predictions are important.
Figure 4 shows the recall scores for R@k where k ranges
from 1 to 10. The scores show whether the true label is
among the kth predictions. As expected both models scale
well towards 100% prediction. While both models have similar
recall scores for Etsy, our model performs slightly better for
larger k. Whereas, in Amazon, our model performs noticeably
better with increasing k. The performance gap is evident from
the second-rank prediction which is crucial as it provides better
choices to the seller.
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Fig. 4: Recall@k for k = 1− 10 for both models.
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4) Per-category Analysis: Next, we consider Recall@1 vari-
ation by category. Figure 5 shows the per-category recall
scores for both datasets. In the x-axis, the categories are
ordered left to right in the descending order of the number
of listings belonging to each category. In both the datasets,
fastText and our model, in general, both perform better for
large-size categories than smaller ones due to more training
data. The high accuracy of both models is primarily due to
the large-size categories with many listings.

(a) Etsy dataset

(b) Amazon dataset

Fig. 5: Recall scores per category on our method and fastText.
The percentage difference between both models is shown for
the top 3 best and worst performing categories.

For our method, we look at mispredictions (with the 80-
20 split) and list the top categories that were mispredicted as
another category for both datasets in Table IV. The reasons
for the dips in accuracy for our models for medium-sized
categories “Needlecraft”, “Crochet” and “Toys” shown in
Figure 5 can be found in the table. Such as the category
“Crochet” has some similar listings to “Clothing” leading to
mispredictions into that category.

There seems to be some correlation between “Sports &
Outdoors” and “Clothing & Shoes” for Amazon. There are
relatively higher mispredictions of the “Sports & Outdoors”
category which are classified as “Clothing & Shoes” than
the other way round. Since both the categories are quite
large, these are the majority of the mispredictions for those
categories leading to their higher accuracy as seen in Fig-

TABLE IV: Top mispredicted categories of our model.

Etsy
True Predicted Perc. of.
Cat. Cat. mispred.

Crochet Clothing 2.5%
Children Clothing 1.8%
Toys Children 1.7%
Patterns Needlecraft 1.5%

Amazon
True Predicted Perc. of.
Cat. Cat. mispred.

Sports & O. Clothing & S. 7.8%
Kindle S. Books 7.2%
Clothing & S. Sports & O. 3.1%
Books Kindle S. 2.9%

ure 5b. Equivalently, “Kindle Store” is generally mispredicted
(especially by our model) into “Books” due to their similar
nature. Special post-processing can be performed on such co-
related categories to minimize mispredictions.

5) Results with Ensemble: The analysis done in the previ-
ous section shows that our model performs worse on small-
length inputs and on those categories that are a bit similar to
each other. In other terms, we have low confidence in our
model’s predictions in such scenarios. So, we can use the
strategy described in section III-K.

The methodology for the ensemble is as follows; if a title
length is small (<= 7 only on Etsy) then we recommend
fastText’s predictions instead of our model. Also, if fastText’s
top prediction is one of the specific categories where our
model performs worse, then we also recommend fastText’s
predictions. Table V shows the accuracy achieved with the
ensemble strategy along with the percentage of listings where
each model’s predictions were used in the final recommenda-
tion on the entire dataset (80-20 split). The gain in accuracy
of the ensemble with respect to our model is close to 0.5% for
both datasets. It is noteworthy that for Amazon our model’s
predictions are majorly used while still achieving a high
accuracy.

TABLE V: Ensemble of both models with the percentage of
the total items predicted with each model.

Dataset Ensemble
Accuracy

% Items predicted
with our model

% Items predicted
with fastText model

Etsy 88.1% 63.7% 36.3%
Amazon 90.8% 94.1% 5.9%

6) Comparison with various models: We show in Table VI,
the accuracies of models from scikit-learn and BERT models
with the previous models. We use 80-20 training/test splits
of the entire Etsy dataset and also of a 25% sample of the
Amazon dataset. The sampled dataset for Amazon is due
to the large training times of BERT models. As expected,
the performance of BERT is superior due to their model
complexity. DistilBERT is a faster version of BERT that uses
knowledge distillation to compress the large BERT model to
a smaller model. This results in some drop in accuracy in
contrast to BERT.

For the scikit-learn models, we use TF-IDF vectorization
for transforming the text into numeric vectors. It is noteworthy
that the Random Forest technique performs better than SVM
and also Decision Tree. It has a large number of decision
trees each generating a prediction that is ensembled for final

Authorized licensed use limited to: Penn State University. Downloaded on May 25,2025 at 22:46:12 UTC from IEEE Xplore.  Restrictions apply. 



627

TABLE VI: Accuracy comparison using different baselines. A
25% sample of the Amazon dataset was used.

Models Datasets
Etsy Amazon

Our model 87.5% 90.2%
fastText 87.4% 90.1%
Ensemble 88.1% 90.6%
SVM 84.8% 89.6%
DecisionTree 78.4% 77.9%
RandomForest 87.3% 89.2%
BERT 90.1% 91.2%
DistilBERT 89.4% 91.0%

recommendation. Such a large group of trees are able to pro-
vide a discrete representation that is similar in complexity to
the non-linear higher-order continuous representation of neural
networks on these datasets. The ensemble model described in
the previous section performs better than all models (except
BERT models) on both datasets. Our transparent model and the
ensemble with fastText is able to provide a more deterministic
reasoning of the text classification process with better accuracy
than all models described here. We discuss the execution times
of all models next in the section IV-D.

D. Execution Performances

In this section, we compare the execution performances of
our model first with fastText highlighting the nuances, and
then we provide a comprehensive comparison with all models.
We focus on the time taken for training and inference on the
datasets.

1) Comparison with fastText: Table VII shows the execu-
tion times of both models. For our method, the preprocessing
time is shown separately. In the case of fastText, it is included
in both the training and test times. Our method has a faster
test phase than fastText by 2.9× on Etsy and 2.3× on
Amazon. Our model’s amortized per input inference latency
is approximately 0.01 ms for both datasets. Though fastText’s
inference time also qualifies for real-time prediction with
approximately 0.02 ms. Our model reduces the daily batch
prediction (categorization of all products) time by more than
half.

TABLE VII: Execution time comparison.

Time Etsy Amazon
(s) Our fastText Our fastText

Preprocessing 17.4 - 80.6 -
Training 1.2 77.9 6.4 324.8
Test 2.8 8.1 14.6 33.7

Even if we include the preprocessing time, our model’s
training is still significantly faster by 4.2× on Etsy and
3.7× on Amazon than fastText. Such faster training times
enable frequent model refreshes (model re-training) which can
accommodate newly listed products and new taxonomy for
categorization which in our case takes only a few minutes.
Frequent model refreshes are also beneficial for applying
customized engineering to datasets for reducing mispredictions

and fraud detection. Even with real-world data where there
are hundreds of millions of listings, our method can scale to
perform daily model refreshes.

2) Performances of various models: Table VIII shows the
test and training times of all models in different units. Test
times for all models except BERT models show that they are
suitable for real-time inferencing on a per-input basis. Even
the reduction in time by DistilBERT is not sufficient for real-
time prediction. Despite their high accuracy, this is the primary
drawback of Large Language Models (LLMs) which we had
discussed before. The inference time is also not scalable for a
daily batch prediction on hundreds of millions of products.

TABLE VIII: Execution times of different baselines.

Models Test Time Training Time
Etsy Amazon Etsy Amazon

Our model 2.8 secs 14.6 secs 18.6 secs 28.8 secs
fastText 8.1 secs 33.7 secs 1.3 mins 3.1 mins
SVM 3.2 secs 17.7 secs 2.6 mins 2.7 mins
DecisionTree 3.3 secs 18.2 secs 1.3 hrs 2.2 hrs
RandomForest 14.3 secs 49.1 secs 15.9 mins 1.5 hrs
BERT 52 mins 1.1 hrs 29.3 hrs 34.1 hrs
DistilBERT 30.3 mins 36.1 mins 15.7 hrs 18.4 hrs

The training times of BERT take more than a day. Although
this is mitigated by DistilBERT which reduces the time taken
by half, there is some drop in accuracy as shown in Table VI.
The scaling on very big datasets is still a concern. Such
training times can hamper frequent model refreshes.

In fact, the increase in inference and training times offsets
the difference in accuracy for practical applications. While
LLMs come with heavy resource usage, the accuracies of
CPU-based models such as our method and Random Forest
can be improved by ensemble or domain-specific techniques.
SVM’s implementation LinearSVC scales quite well for large-
scale classification as discussed in section II.

Decision Tree by design follows sequential execution which
is difficult to parallelize. The tree is grown node by node
depending on the criteria that direct the inputs towards more
homogeneous groups. Hence the training times run into hours
and are difficult to scale. Conversely, though a Random Forest
is a collection of Decision Trees, it can be trained in parallel
by different threads. Its training time is limited by the tree
taking the largest time. On the contrary, both Decision Tree’s
and Random Forest’s inferences can be done in parallel so the
prediction is fast even if individual inference is sequential.
Using Gini impurity instead of entropy can exacerbate the
computational expense. Thus, both tree model’s inference
times can scale for very big datasets whereas their training
will not scale.

E. Level 2 categories

We show the accuracy and execution times for the second-
level categories on Etsy in Table IX for 80-20 split of the
data. Our model is approximately 1% more accurate to fastText
despite the drop in both their accuracies. In spite of the large of
number categories (199) at the second level, the training time
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of fastText is not significantly higher than its training time
at the first level. This is due to its hierarchical softmax layer
which allows more parallel weight updates for each classifier
(One-vs-all). This is beneficial because there are fewer weight
updates per class at the second level as each category contains
fewer listings compared to the first level. Our model’s training
scales linearly and there are no parameter updates or training
epochs. Thus, we achieve a substantial speed of 6.3× over
fastText in training time. Although the gap in both model’s
inference times is now smaller, it can be easily improved with
a fine-grained implementation of our model’s inference. This
will enable threads to parallelly match the test listing with all
categories.

TABLE IX: Second-level classification (Etsy k = 199).

Metric Etsy
Our fastText

Accuracy 81.67% 80.73%
Preprocessing time(s) 17.3 -
Training time (s) 2.3 123.6
Test time (s) 13.6 14.7

F. Results on Smaller Vocabulary

In this section, we present additional results with a smaller
word vocabulary (370K words) containing only alphabetic
characters. We also remove words with frequency ≤ 3 and
> 100, and remove all non-alphabetic characters from the
datasets. We show results on a sampled dataset on Etsy to
better understand our methodology. The edge weights are mod-
ified to give higher weight to contiguous words, and unseen
words are mapped as in Section III-I. We give performance
results for the analysis method described in Section III-J. Also,
we investigate the interpretability of our model by looking at
sentences that are mispredicted, which consist of recognizable
English words, unlike the previous vocabulary.

1) Analysis of graph properties: We evaluate each case
mentioned in Section III-J for various graph properties on
the Etsy dataset mentioned above with an 80-20 train-test
split. Table X shows the percentage of listings in Etsy falling
in each case. The last row shows the accuracy obtained
when using each property as the first rule. For best accuracy,
most of the sentences should belong to cases 1 and 4, with
minimal sentences in cases 2 and 3. Case 5 sentences require
classification using a second rule to break the ties. We can see
that the edges matched and the number of triangles performed
the best even though they have a larger percentage for case
4 than connected components and largest clique sizes. While
the number of triangles is a better choice than edges matched,
it is more expensive than simply checking edge matches.

2) Interpretability: As discussed in section III-H, we ana-
lyze an example of misprediction in the Etsy dataset. Given
the sentence “indulge poodle recycled tee shirt back pack”
belonging to category “Bags and Purses”, our model mispre-
dicts it as “Clothing”. The product describes a back pack
make of recycled tee shirt and the intuitive tendency for

TABLE X: Case analysis of different graph properties
with percentage of test data for Etsy. EdMat=Edges
matched, CC=Connected Components, LCS=Largest Clique
Size, NumTri=Number of Triangles.

Cases % Test Data
EdMat CC LCS NumTri

Case 1 28.69 17.68 28.69 28.69
Case 2 1.67 5.52 1.67 1.67
Case 3 10.61 1.44 6.92 10.72
Case 4 49.26 2.35 41.1 49.82
Case 5 11.19 76.96 24.11 10.29

Accuracy 82.12 2.06 78.22 82.26

misprediction is evident. Table XI lists the 10 and 8 co-
occurrences matches with Clothing and Bags and Purses,
respectively. Even though the true category has an additional
co-occurrence in row 5, the missing rows 1, 7 and 8 result
in the misprediction. If we remove the words poodle and tee,
which are more clothing related design terms than bags, the
sentence is correctly classified as Bags and Purses with 6 co-
occurrences.

TABLE XI: An example sentence and the co-occurrences
matched by our model to categories Clothing and Bags(and
Purses).

Sl. no Clothing Bags
1 poodle shirt - -
2 recycled tee recycled tee
3 recycled shirt recycled shirt
4 recycled back recycled back
5 - - recycled pack
6 tee shirt tee shirt
7 tee back - -
8 tee pack - -
9 shirt back shirt back
10 shirt pack shirt pack
11 back pack back pack

V. CONCLUSIONS AND FUTURE WORK

We devised a simple sentence classification model based
on word co-occurrence graphs and analysed its performance
on e-commerce datasets for the product categorization task.
The model achieves better accuracy than the popular model
fastText and is faster for both training and inference. The
performance gap is similar across multiple variations and splits
for the e-commerce datasets Etsy and Amazon. fastText’s use
of subword information leads to good accuracy, especially on
the smaller length inputs and it can distinguish product titles of
similar categories. We overcome the limitations of our model
by performing an ensemble of both our model and fastText
based on specific scenarios. This ensemble provides better
accuracy than all non-LLM models under consideration and is
very close to DistilBERT’s performance. Our model is adept
for real-time inferencing and will scale well for 100× larger
datasets. Its training time is in minutes allowing daily model
refresh.

In the future, we will focus on enriching input tokens
through contextual and semantic connections with other tokens
from training vocabulary. This could help our model perform
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on par with LLMs like BERT, especially on smaller length
inputs and smaller categories. We aim to extend our approach
to other sentence classification tasks and datasets such as sen-
timent analysis of tweets, classification of question banks, and
larger text data. We plan to do a comprehensive analysis with
smaller LLMs that are faster, while also improving the running
time of our model by implementing fine-grained parallelization
(especially useful for a larger number of categories).
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