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Approximate message passing (AMP) algorithms provide a valuable tool
for studying mean-field approximations and dynamics in a variety of appli-
cations. Although these algorithms are often first derived for matrices having
independent Gaussian entries or satisfying rotational invariance in law, their
state evolution characterizations are expected to hold over larger universality
classes of random matrix ensembles.

We develop several new results on AMP universality. For AMP algorithms
tailored to independent Gaussian entries, we show that their state evolutions
hold over broadly defined generalized Wigner and white noise ensembles, in-
cluding matrices with heavy-tailed entries and heterogeneous entrywise vari-
ances that may arise in data applications. For AMP algorithms tailored to
rotational invariance in law, we show that their state evolutions hold over de-
localized sign-and-permutation-invariant matrix ensembles that have a limit
distribution over the diagonal, including sensing matrices composed of sub-
sampled Hadamard or Fourier transforms and diagonal operators.

We establish these results via a simplified moment-method proof, reduc-
ing AMP universality to the study of products of random matrices and diago-
nal tensors along a tensor network. As a by-product of our analyses, we show
that the aforementioned matrix ensembles satisfy a notion of asymptotic free-
ness with respect to such tensor networks, which parallels usual definitions
of freeness for traces of matrix products.
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1. Introduction. Approximate message passing (AMP) algorithms are a general family
of iterative algorithms, driven by a random matrix W, whose iterates admit a simple distribu-
tional characterization in the asymptotic limit of increasing dimensions. Their origins may be
traced separately in the engineering, statistics, and probability literatures [11, 29, 45], where
these algorithms have since provided an important tool for studying mean-field phenomena in
many probabilistic models. Without seeking to be exhaustive, we mention here their applica-
tions to analyses of spin glass and perceptron models [12, 13, 25, 38, 39], recovery thresholds
and asymptotic phenomena in high-dimensional statistical models [5, 15, 26, 28, 29, 49, 56,
58, 61, 62, 68, 76], and mean-field dynamics of other first-order optimization algorithms in-
cluding discrete-time and continuous-time gradient descent [20, 21]. We refer readers to [40]
for a recent review.

Asymptotic distributional characterizations of the AMP iterates, known as their state evo-
lutions, are often first proved for orthogonally invariant matrices W using an inductive con-
ditioning technique. For W with i.i.d. Gaussian entries, this method was developed in [7, 11]
and has been extended to analyze AMP algorithms of increasing generality in [9, 41, 43, 58,
61]. For W satisfying rotational invariance in law, a similar technique has been applied to
analyze various AMP algorithms in [37, 50, 51, 63, 67, 69–71], with a parallel line of work
[17–19, 60] deriving related algorithms using nonrigorous methods of dynamic functional
theory.

It is expected—and in some settings known—that the state evolution characterizations of
AMP algorithms should extend beyond orthogonally invariant matrices, to describe also the
limit distributions of iterates when applied to broader universality classes of random matrix
ensembles. For example, it was shown in [6] that AMP algorithms designed for i.i.d. Gaus-
sian matrices and having polynomial nonlinearities admit state evolutions that are universal
across matrices with sub-Gaussian entries of common variance. In [22], universality over a
similar matrix class for AMP with Lipschitz nonlinearities was proven using a different Gaus-
sian interpolation method, and extended to spectrally initialized algorithms for spiked matrix
models. Moving beyond matrices with independent entries, in [32] it was shown that the state
evolution of a linear AMP algorithm for phase retrieval holds universally for sub-sampled
Hadamard matrices. Recently, results of [33, 34]—fruit of parallel research efforts—showed
universality for AMP algorithms having divergence-free nonlinearities over a broad model
of semi-random matrices with randomly signed rows/columns and delocalized entries. The
latter work [34] also applied these results to establish universality classes of matrices for
more general first-order iterative algorithms, including proximal gradient methods and gen-
eral versions of AMP. We discuss the relation of these results to our work in more detail at
the conclusion of the following section.

1.1. Contributions. Our current work has the two-fold goal of extending the scope of
some of these universality results of [6, 22, 33], and of presenting a more direct and elemen-
tary proof for AMP universality. We summarize our contributions as follows:

1. For AMP algorithms designed for i.i.d. Gaussian matrices, we show that their state evo-
lutions hold more broadly over generalized Wigner and white noise ensembles, with entries
having potentially heteroskedastic variances and higher moments growing rapidly with the
dimension n. This includes standardized adjacency matrices of sparse random graphs down
to sparsity levels of (logn)/n, as well as data matrices arising in contexts of count-valued
and missing observations after applying practical row and column normalization schemes.
We discuss two motivating applications in Examples 2.24 and 2.25 of Section 2.4. In the ran-
dom matrix theory literature, global spectral laws and spectral CLTs for related ensembles
were studied in [2], and universality of local spectral statistics in [35, 36].
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2. For AMP algorithms designed for rotationally invariant matrix ensembles, we show
that their state evolutions hold over universality classes of “generalized invariant matrices”
that satisfy only invariances of permutation and sign and whose generated algebra over the
diagonal, in the sense of [4], consists of matrices with delocalized entries and common nor-
malized trace. Importantly, this includes matrices composed of subsampled Hadamard or
discrete Fourier transforms and diagonal operators, which admit fast matrix-vector multipli-
cation for signal processing applications. We discuss a specific application to universality of
the compressed sensing phase transition for AMP [6, 27] in Example 2.26 of Section 2.4.
Related models of permutation-and-sign-invariant matrices have been studied in the context
of asymptotic liberation in [1].

3. We introduce a simplified two-step proof of AMP universality, in the first step reducing
universality to the study of products of W with diagonal tensors along a tensor network, and
in the second step establishing universality of the values of these matrix-tensor products. The
second step admits a simple combinatorial analysis for all of the preceding matrix ensembles.
Our argument for the first step is general and holds irrespective of the specific matrix ensem-
ble. We propose this two-step proof framework in part to enable easier extensions of AMP
universality to other random matrix models (e.g., having sufficiently weak or short-range
correlation across entries) as this need arises in applications.

4. For symmetric matrices W ∈ R
n×n, our definition of a tensor network is a natural gen-

eralization of expressions of the form

1

n
u�WT1WT2 · · ·TkWv

for deterministic vectors u, v and diagonal matrices T1, . . . ,Tk to expressions involving
higher-order diagonal tensors. As a by-product of our analyses, we show for both the pre-
ceding classes of generalized Wigner and generalized invariant matrices W that they satisfy
a notion of asymptotic freeness with respect to such tensor networks, namely, that if all diag-
onal tensors have asymptotically vanishing normalized trace, then evaluations of expressions
of this form are also 0 in the asymptotic limit. This is parallel to notions of asymptotic free-
ness [74], usually defined with respect to normalized traces of matrix products, in settings of
products with higher-order tensors. Our analysis of tensor networks has also similarities to
the analysis of graph observables in the theory of traffic freeness developed in [52].

Our proofs use a moment-method and polynomial approximation strategy, similar to [6].
In heuristic derivations of AMP algorithms from belief propagation for matrices in the Gaus-
sian universality class, the Onsager correction terms arise from the removal of single-step-
backtracking messages. The arguments of [6] showed a corresponding equivalence between
such AMP algorithms and a tensorial unfolding of AMP using nonbacktracking paths. To our
knowledge, the correction terms in the algorithms of [37] for rotationally-invariant ensembles
do not have a similar combinatorial interpretation, motivating us to analyze a simpler tenso-
rial unfolding without nonbacktracking structure. Our results for the Gaussian universality
class may be obtained via either approach; we take the opportunity to present unified proofs
for both the Gaussian and non-Gaussian universality classes using the same unfolding, and
to simplify the polynomial approximation arguments of [6] using more recent state evolu-
tion results of [37] for AMP with non-Lipschitz functions. We remark that, as in the AMP
universality analysis of [22] which developed a different continuous interpolation argument,
our method of proof applies also to more general first-order iterative algorithms of the form
studied in [21] that are characterizable by an asymptotic state evolution.

Our analyses for generalized invariant ensembles (Definitions 2.6 and 2.20) are comple-
mentary to those of the recent works [33, 34], which studied an important family of Vector-
AMP style methods that have divergence-free nonlinearities [17, 51, 67, 69]. As discussed in
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[34], the universality classes for these algorithms are broader than that of the more general
AMP algorithms we study here, for example, containing matrices with differing spectral dis-
tributions having common second moment. [33, 34] prove universality of these algorithms
for semi-random sign-invariant matrices and i.i.d. side information vectors, by developing a
Hermite-polynomial unfolding of the AMP iterations and leveraging the vanishing of certain
terms in this unfolding due to the divergence-free form. The latter work [34] extends this
result to also derive certain spectral and strongly semi-random universality classes for first-
order algorithms that do not have this divergence-free structure. Our methods here establish
universality over a class of matrices that has similarities to, and is partially inspired by, these
latter classes studied in [34] (cf. Proposition 2.7(b)). We obtain these results via an alternative
analysis of a simpler tensorial unfolding in the standard monomial basis. As we discuss in
Remark 2.15, our proofs also establish the existence and universality of the limit empirical
distribution of iterates for first-order methods applied to matrices beyond the orthogonally
invariant universality class, suggesting the possible development of new iterative algorithms
with characterizable state evolutions for such matrices.

1.2. Notation. We denote entries of x ∈ R
n and W ∈ R

n×n as x[i] and W [i, j ]. For vec-
tors x1, . . . ,xk ∈R

n and a random vector (X1, . . . ,Xk), we write

(x1, . . . ,xk)
Wp→ (X1, . . . ,Xk) as n → ∞

for the Wasserstein-p convergence of the empirical distribution of rows of (x1, . . . ,xk) ∈
R

n×k to the joint law of (X1, . . . ,Xk). This means, for any continuous function f : Rk → R

satisfying

(1.1)
∣∣f (x1, . . . , xk)

∣∣ ≤ C
(
1 + ∥∥(x1, . . . , xk)

∥∥p
2

)
for a constant C > 0,

we have as n → ∞

(1.2)
1

n

n∑
i=1

f
(
x1[i], . . . , xk[i]) → E

[
f (X1, . . . ,Xk)

]
.

We write

(x1, . . . ,xk)
W→ (X1, . . . ,Xk)

to mean that the above Wasserstein-p convergence holds for every order p ≥ 1.
For a function f :Rk →R and vectors x1, . . . ,xk ∈ R

n, we denote by f (x1, . . . ,xk) ∈R
n

the evaluation of f (·) on each row of (x1, . . . ,xk) ∈ R
n×k . We write 〈·〉 for the empirical

average of the coordinates of a vector, and introduce the shorthand x1:k = (x1, . . . ,xk) and
X1:k = (X1, . . . ,Xk). Thus (1.2) may be expressed as 〈f (x1:k)〉 → E[f (X1:k)].

For vectors x,y ∈ R
n, x 
 y ∈ R

n is their entrywise product. diag(x) ∈ R
n×n or diag(x) ∈

R
n×···×n denotes the diagonal matrix or tensor with x along the main diagonal, that is,

diag(x)[i, . . . , i] = x[i] and diag(x) has all other entries equal to 0. For x ∈ R
min(m,n), we

write also diag(x) ∈ R
m×n for the rectangular diagonal matrix where each (i, i) entry is

x[i]; we will indicate the dimensions if needed to disambiguate these notation. ‖W‖op is
the �2 → �2 operator norm of the matrix W. We denote [n] = {1, . . . , n}, and reserve Roman
letters i, j, . . . for indices in [n] and Greek letters α,β, . . . for indices in [m].

2. Main results.

2.1. Universality of AMP algorithms for symmetric matrices. Let W ∈ R
n×n be a sym-

metric random matrix. Consider an initialization u1 ∈ R
n and auxiliary “side information”
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vectors f1, . . . , fk ∈ R
n, independent of W. In applications, such side information vectors

may play the role of the external field in spin glass models, the true signal vector in spiked
matrix models, or the signal and residual error vectors in regression models. We refer to [7,
61, 62] for several examples. Let u2, u3, u4, . . . be a sequence of nonlinear functions, where
ut+1 :Rt+k →R. We study a general form for an AMP algorithm with separable nonlineari-
ties that computes, for t = 1,2,3, . . .

zt = Wut −
t∑

s=1

btsus,(2.1a)

ut+1 = ut+1(z1, . . . , zt , f1, . . . , fk),(2.1b)

where {bts}s≤t are deterministic scalar “Onsager correction” coefficients. We will character-
ize the iterates of this algorithm in the large system limit as n → ∞, for fixed k ≥ 0.

We assume throughout the following conditions for (u1, f1, . . . , fk).

ASSUMPTION 2.1. Almost surely as n → ∞,

(2.2) (u1, f1, . . . , fk)
W→ (U1,F1, . . . ,Fk)

for a joint limit law (U1,F1, . . . ,Fk) having finite moments of all orders, where E[U2
1 ] > 0.

Furthermore, multivariate polynomials are dense in the real L2-space of functions f :
R

k+1 →R with inner-product

(f, g) �→ E
[
f (U1,F1, . . . ,Fk)g(U1,F1, . . . ,Fk)

]
.

REMARK 2.2. The convergence (2.2) holds, for example, if rows of (u1, f1, . . . , fk) ∈
R

n×(k+1) are i.i.d. and equal in law to (U1,F1, . . . ,Fk). The density of polynomials holds if
‖(U1,F1, . . . ,Fk)‖2 has finite moment generating function in a neighborhood of 0; see [66],
Section 14.1 and Corollary 14.24.

In an AMP algorithm, the coefficients {bts} of (2.1) are defined so that the iterates
{zt } are described by a simple state evolution in the asymptotic limit as n → ∞. For
W ∼ GOE(n) (cf. Definition 2.3), this may be done as follows: Set �1 = E[U2

1 ] ∈ R
1×1.

Inductively, having defined �t ∈ R
t×t , let Z1:t ∼ N (0,�t ) be independent of (U1,F1:k), set

Us+1 = us+1(Z1:s,F1:k) for each s = 1, . . . , t , and define

(2.3) �t+1 = (
E[UrUs])t+1

r,s=1 ∈R
(t+1)×(t+1).

Let btt = 0, and for each s < t , define the coefficient bts as

(2.4) bts = E
[
∂sut (Z1:t−1,F1:k)

]
,

where ∂sut is the partial derivative of ut (·) in its sth argument. We will call (2.3) and (2.4)
the GOE prescriptions for �t and bts . Results of [7, 43] (see also [57], Proposition 2.1, for
this form) then imply that, for any Lipschitz functions ut (·), the iterates of (2.1) satisfy the
state evolution, almost surely as n → ∞ for any fixed t ≥ 1,

(u1, f1, . . . , fk, z1, . . . , zt )
W→ (U1,F1, . . . ,Fk,Z1, . . . ,Zt ).

We note that a variant of this algorithm may instead use the empirical average bts =
〈∂sut (z1:t−1, f1:k)〉, for which the same state evolution continues to hold (cf. Remark 2.9).

In [37], building upon work of [60], an extension of this result was proven for a larger
class of orthogonally invariant matrices and nonlinear functions: We say that W is orthogo-
nally invariant if it has spectral decomposition W = ODO� where O ∼ Haar(O(n)) is Haar-

distributed on the orthogonal group and independent of D = diag(d). Suppose that d
W→ D as
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n → ∞, where D represents the limit spectral law of W. Set �1 = Var[D] · E[U2
1 ] ∈ R

1×1.
Having defined �t ∈ R

t×t , let Z1:t ∼ N (0,�t ) be independent of (U1,F1:k), let Us+1 =
us+1(Z1:s,F1:k) for each s = 1, . . . , t , and define

(2.5) �t+1 = �t+1
({
E[UrUs]}1≤r,s≤t+1,

{
E

[
∂rus+1(Z1:s,F1:k)

]}
1≤r≤s≤t

) ∈ R
(t+1)×(t+1)

for a continuous function �t+1(·) whose form depends only on the law of D. For each s ≤ t

and a continuous function bts(·) whose form also depends only on the law of D, define

(2.6) bts = bts

({
E[UqUr ]}1≤q,r≤t ,

{
E

[
∂qur+1(Z1:r ,F1:k)

]}
1≤q≤r<t

)
.

We will call (2.5) and (2.6) the orthogonally invariant prescriptions for �t and bts . We refer
to [37], Section 4, for their precise functional forms, which will not be important for our
current work. When W ∼ GOE(n) and D has Wigner’s semicircle law on [−2,2], these
reduce to the previous GOE prescriptions of (2.3) and (2.4). It was shown in [37] that for
weakly differentiable functions ut (·) whose derivatives have at most polynomial growth, the
iterates of (2.1) again satisfy the state evolution, almost surely as n → ∞ for any fixed t ≥ 1,

(u1, f1, . . . , fk, z1, . . . , zt )
W→ (U1,F1, . . . ,Fk,Z1, . . . ,Zt ).

Our main results are universality statements that extend the state evolution characteriza-
tions of these AMP algorithms to more general random matrix ensembles. Corresponding
to W ∼ GOE(n), we study the following universality class of generalized Wigner matrices,
having possibly heteroskedastic entrywise variances and heavy-tailed entries.

DEFINITION 2.3. W ∈ R
n×n is a generalized Wigner matrix with (deterministic) vari-

ance profile S ∈ R
n×n if

(a) W is symmetric, and entries on and above the diagonal (W [i, j ] : 1 ≤ i ≤ j ≤ n) are
independent.

(b) Each W [i, j ] has mean 0, variance n−1S[i, j ], and higher moments satisfying, for each
integer p ≥ 3,

lim
n→∞n · n

max
i,j=1

E
[∣∣W [i, j ]∣∣p] = 0.

(c) For a constant C > 0 independent of n,

n
max
i,j=1

S[i, j ] ≤ C and lim
n→∞

n
max
i=1

∣∣∣∣∣1

n

n∑
j=1

S[i, j ] − 1

∣∣∣∣∣ = 0.

We write W ∼ GOE(n) for the special case where W [i, j ] ∼ N (0,1/n) and S[i, j ] = 1 for
all i < j , and W [i, i] ∼ N (0,2/n) and S[i, i] = 2 for all i.

The moment assumption in condition (b) weakens a uniform sub-Gaussianity condition
for

√
nW [i, j ] that is assumed in the previous AMP universality results of [6, 22] and that

would require instead E[|W [i, j ]|p] � n−p/2 for all p ≥ 3. This condition (b) is weak enough
to encompass centered and normalized adjacency matrices of sparse random graphs with
slowly growing average vertex degree. Condition (c) allows general patterns of entrywise
variances whose rows and columns have approximately the same sum, where we also require
in (2.7) of Theorem 2.4 below that these rows and columns are “asymptotically unaligned”
with the initialization and side information vectors u1, f1, . . . , fk . We discuss two applications
in Examples 2.24 and 2.25 of Section 2.4.

The following theorem shows that the state evolution of AMP algorithms for GOE random
matrices remains valid for matrices W in this generalized Wigner universality class.
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THEOREM 2.4. Let W ∈ R
n×n be a generalized Wigner matrix with variance profile S,

and let u1, f1, . . . , fk be independent of W and satisfy Assumption 2.1. Suppose that

1. Each function ut+1 : Rt+k →R is continuous, satisfies the polynomial growth condition
(1.1) for some order p ≥ 1, and is Lipschitz in its first t arguments.

2. ‖W‖op < C for a constant C > 0 almost surely for all large n.
3. Let si be the ith row of S. For any fixed polynomial function q : Rk+1 → R, almost

surely as n → ∞,

(2.7)
n

max
i=1

∣∣〈q(u1, f1, . . . , fk) 
 si

〉 − 〈
q(u1, f1, . . . , fk)

〉 · 〈si〉
∣∣ → 0.

Let {bts} and {�t } be defined by the GOE prescriptions (2.3) and (2.4), where each matrix �t

is nonsingular. Then for any fixed t ≥ 1, almost surely as n → ∞, the iterates of (2.1) satisfy

(u1, f1, . . . , fk, z1, . . . , zt )
W2→ (U1,F1, . . . ,Fk,Z1, . . . ,Zt ),

where (Z1, . . . ,Zt ) ∼ N (0,�t ) is independent of (U1,F1, . . . ,Fk), that is, this limit has the
same joint law as described by the AMP state evolution for W ∼ GOE(n).

Next, corresponding to orthogonal invariance, we study universality classes of matrices
that are permutation-and-sign-invariant in law and that have limit distributions over the diag-
onal, in the following sense inspired by [4]: Let � : Rn×n → R

n×n be the diagonal map that
preserves only the entries on the diagonal, that is,

�(M) = diag
(
M[1,1], . . . ,M[n,n]) ∈R

n×n.

Let �〈x〉 denote the set of all words in x and �(·), for example,

xx, x�(xx)x, �
(
xx�(x)

)
x, xxx�

(
�(x)

)
�(xx).

We refer to �〈x〉 as the set of diagonal monomials in x. For p(x) ∈ �〈x〉 and M ∈ R
n×n, we

write p(M) ∈ R
n×n for its evaluation at x = M.

DEFINITION 2.5. The distribution over the diagonal of M is the mapping1

p(x) ∈ �〈x〉 �→ 1

n
Trp(M).

Matrices M ∈ R
n×n converge in diagonal distribution a.s. if limn→∞ 1

n
Trp(M) exists almost

surely (and is finite) for every fixed p(x) ∈ �〈x〉. The limit diagonal distribution of M, which
we will refer to as Ddiag, is then the mapping

p(x) ∈ �〈x〉 �→ lim
n→∞

1

n
Trp(M).

We remark that Ddiag specifies the limit of 1
n

Tr Mν for each fixed integer ν ≥ 1, and hence
also the limit spectral distribution of M when this distribution has compact support.

We call � = P� ∈ R
n×n a uniformly random signed permutation matrix if � =

diag(ξ [1], . . . , ξ [n]) ∈ R
n×n where each diagonal entry ξ [i] is independently chosen from

{+1,−1} with equal probability, and P ∈ R
n×n is a uniformly random permutation matrix

independent of �. Note that for any symmetric matrix M and signed permutation matrix �,
we have �(�M��) = ��(M)��, so also p(�M��) = �p(M)�� for every diagonal
monomial p(x) ∈ �〈x〉. In particular, M and �M�� have the same distributions over the
diagonal. The following then defines our universality class.

1We define the distribution over the diagonal by the values of 1
n Trp(M) ∈ R rather than �(p(M)) ∈ Rn×n as

might be more standard in operator-valued free probability.
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DEFINITION 2.6. W = �M�� ∈ R
n×n is a symmetric generalized invariant matrix2

with limit diagonal distribution Ddiag if, as n → ∞,

(a) M ∈R
n×n converges in diagonal distribution a.s. to a limit Ddiag.

(b) For any ε > 0 and any fixed p(x) ∈ �〈x〉, almost surely for all large n,

max
i �=j

∣∣p(M)[i, j ]∣∣ < n−1/2+ε.

(c) � ∈R
n×n is a uniformly random signed permutation, independent of M.

Our result on AMP universality will pertain specifically to such matrices W whose limit
diagonal distribution Ddiag coincides with that of an orthogonally invariant matrix. In this
setting, the next proposition clarifies that Ddiag is determined uniquely by the limit spectral
law of W, and it also provides simpler conditions inspired by the spectral universality class
in [34] that imply Definition 2.6. We have stated Definition 2.6 for more general limits Ddiag
because, as discussed in Remark 2.15 to follow, we will in fact prove a general lemma show-
ing the existence and universality of the limit empirical distribution of iterates for first-order
iterative algorithms applied to any such matrix W, even if Ddiag does not correspond to an
orthogonally-invariant model.

PROPOSITION 2.7. Let W ∈ R
n×n be a symmetric matrix with eigenvalues d ∈ R

n sat-

isfying d
W→ D almost surely as n → ∞, where D has finite moments of all orders.

(a) If W is orthogonally invariant, then W is a symmetric generalized invariant matrix in the
sense of Definition 2.6, and its limit diagonal distribution Ddiag is determined uniquely
by the law of D.

(b) Suppose that either:

1. W = ODO� where D = diag(d) and O = �V H�E , such that �V ,�E ∈ R
n×n

are uniformly random signed permutations independent of each other and of (D,H), and
H is an orthogonal matrix with entries satisfying

(2.8) max
i,j∈[n]

∣∣H [i, j ]∣∣ < n−1/2+ε

for any fixed ε > 0, almost surely for all large n.
2. W = �M�� such that � is a uniformly random signed permutation independent

of M (which has eigenvalues d), and for each fixed integer ν ≥ 1, the matrix Mν satisfies

(2.9)
n

max
i=1

∣∣∣∣Mν[i, i] − 1

n
Tr Mν

∣∣∣∣ < n−1/2+ε, max
i �=j

∣∣Mν[i, j ]∣∣ < n−1/2+ε

for any fixed ε > 0, almost surely for all large n.

Then W is a generalized invariant matrix in the sense of Definition 2.6, and its limit
diagonal distribution Ddiag coincides with that of the orthogonally invariant matrix in
part (a).

We prove Proposition 2.7 in Appendix B. Important examples for applications are when
W is a composition of permutations, deterministic Hadamard/Fourier matrices, and diago-
nal operators. We discuss one such application to compressed sensing in Example 2.26 of
Section 2.4.

2More formally, these definitions of generalized Wigner and generalized invariant matrices are describing se-
quences of matrices W ∈ R

n×n of increasing dimensions n → ∞, rather than a single matrix. We will choose not
make this terminological distinction in our work.
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The following is our main theorem on AMP universality in this context, showing that the
state evolution of AMP algorithms for orthogonally invariant matrices holds universally over
the class of generalized invariant matrices with matching limit diagonal distribution.

THEOREM 2.8. Let W ∈ R
n×n be a symmetric generalized invariant matrix whose limit

diagonal distribution Ddiag coincides with that of an orthogonally invariant matrix G. Let
u1, f1, . . . , fk be independent of W and satisfy Assumption 2.1. Suppose that

1. Each function ut+1 : Rt+k →R is continuous, satisfies the polynomial growth condition
(1.1) for some order p ≥ 1, and is Lipschitz in its first t arguments.

2. ‖W‖op < C for a constant C > 0 almost surely for all large n.

Let {bts} and {�t } be defined by the orthogonally invariant prescriptions (2.5) and (2.6) for
the limit spectral distribution D specified by Ddiag. Suppose that Var[D] > 0 and each matrix
�t is nonsingular. Then for any fixed t ≥ 1, almost surely as n → ∞, the iterates of (2.1)
satisfy

(u1, f1, . . . , fk, z1, . . . , zt )
W2→ (U1,F1, . . . ,Fk,Z1, . . . ,Zt ),

where (Z1, . . . ,Zt ) ∼ N (0,�t ) is independent of (U1,F1, . . . ,Fk), that is, this limit has the
same joint law as described by the AMP state evolution for G.

REMARK 2.9. Theorems 2.4 and 2.8 hold equally for AMP algorithms where, in the
prescriptions (2.4) and (2.6) for bts , the quantities E[∂rus+1(Z1:s,F1:k)] and E[UrUs] are
replaced by the empirical averages

〈
∂rus+1(z1:s, f1:k)

〉 = 1

n

n∑
i=1

∂rus+1
(
z1:s[i], f1:k[i]), 〈ur 
 us〉 = 1

n

n∑
i=1

ur [i]us[i].

For example, such an AMP algorithm for GOE matrices W and nonlinearities ut+1(z1:t ,
f1:k) = ut+1(zt ) consists of the iterations

zt = Wut − 〈
u′

t (zt−1)
〉
ut−1, ut+1 = ut+1(zt ).

To see this, note that b11 depends only on E[U2
1 ], so these prescriptions for b11 asymptoti-

cally coincide by Assumption 2.1. Then the state evolution holds for z1. Inductively, validity
of the state evolution for z1:t ensures that, almost surely as n → ∞,〈

∂rus+1(z1:s, f1:k)
〉 → E

[
∂rus+1(Z1:s,F1:k)

]
for all r ≤ s ≤ t,

〈ur 
 us〉 → E[UrUs] for all r, s ≤ t + 1,

where the first statement follows from Wasserstein-2 convergence of (z1:s, f1:k) and Stein’s
lemma (cf. [37], Proposition E.5). Then the presciptions of (2.4) and (2.6) for {bt+1,s}s≤t+1
asymptotically coincide with their empirical versions defined by 〈∂rus+1(z1:s, f1:k)〉 and
〈ur 
 us〉, which in turn implies validity of the state evolution for z1:(t+1).

REMARK 2.10. Theorems 2.4 and 2.8 show universality of AMP algorithms with an
initialization u1 that is independent of W. For spiked matrix models with a low-rank signal
component, alternative AMP algorithms with spectral initializations have been studied for
example, in [56, 58, 76]. Universality for such algorithms may be shown using the preced-
ing results, by approximating the spectral initialization with a large number of linear AMP
iterations starting from an initialization u1 that is, independent of W but correlated with the
true signal; we refer to [22], Section 8, and [76], Section A.2, for examples of this type of
argument.
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Since we allow the nonlinearities ut+1(·) to be functions of all preceding iterates z1, . . . , zt ,
universality of AMP with matrix-valued iterates in R

n×J for a fixed dimension J ≥ 1 may
also be deduced from the preceding results, by simulating each iteration of any such algorithm
using J iterations of an algorithm with iterates in R

n. We leave the further study of these
extensions to future work, as the need arises in applications.

2.2. Tensor networks and strategy of proof. We describe here our high-level strategy of
proof for Theorems 2.4 and 2.8. The full proofs of these results are contained in Section 3.

DEFINITION 2.11. A diagonal tensor network T = (V,E, {qv}v∈V) in k variables is an
undirected tree graph with vertices V and edges E ⊂ V × V , each of whose vertices v ∈ V
is labeled by a polynomial function qv : Rk → R. The value of T on a symmetric matrix
W ∈R

n×n and vectors x1, . . . ,xk ∈R
n is

valT (W;x1, . . . ,xk) = 1

n

∑
i∈[n]V

qi|T · Wi|T ,

where, for each index tuple i = (iv : v ∈ V) ∈ [n]V , we set

qi|T = ∏
v∈V

qv

(
x1[iv], . . . , xk[iv]), Wi|T = ∏

(u,v)∈E
W [iu, iv].

This value may be understood as:

1. Associating to each vertex v ∈ V a diagonal tensor Tv = diag(qv(x1, . . . ,xk)) ∈
R

n×···×n, where the order of this tensor equals the degree of v in the tree.3

2. Associating to each edge the symmetric matrix W.
3. Iteratively contracting all tensor-matrix-tensor products represented by the edges of the

tree.

For example, if V = [w+1] and T is the line graph 1−2−· · ·−w−(w+1), then T1,Tw+1 ∈
R

n are vectors, Tv ∈ R
n×n is a diagonal matrix for each vertex v ∈ {2, . . . ,w}, and the value

(in usual matrix-vector product notation) is

valT (W;x1, . . . ,xk) = 1

n
T�

1 WT2W · · ·WTwWTw+1.

When each tensor Tv has all 1’s along the main diagonal, this definition is an example of the
graph sum used to show asymptotic freeness of Wigner and diagonal matrices in [53, 54],
and it is also a specific case of a “graph monomial” in the notion of traffic freeness in [52].

We will show in Lemma 3.10 that for any AMP algorithm (or more generally, any first-
order iterative algorithm of the form (2.1)) with polynomial nonlinearities u2, u3, u4, . . ., and
for any polynomial test function p(·), the coordinate average

〈
p(u1:t , z1:t , f1:k)

〉 = 1

n

n∑
i=1

p
(
u1:t [i], z1:t [i], f1:k[i])

of p(·) evaluated on the AMP iterates and side information vectors is a linear combination of
values of different tensor networks on W and u1, f1, . . . , fk . Then, leveraging state evolution
results of [37] to perform an inductive polynomial approximation argument, the proof re-
duces the universality of AMP for Lipschitz nonlinearities to the universality of these tensor
network values. This reduction is encapsulated in the following lemma.

3We remind readers our notation that qv(x1, . . . ,xk) ∈ Rn indicates the application of qv : Rk → R row-wise

to (x1, . . . ,xk) ∈ R
n×k , and Tv is then a diagonal tensor with qv(x1, . . . ,xk) ∈ R

n along its main diagonal.
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LEMMA 2.12. Let u1, f1, . . . , fk ∈ R
n satisfy Assumption 2.1. Let W,G ∈ R

n×n be sym-
metric random matrices independent of u1, f1, . . . , fk such that

1. G = ODO� is an orthogonally invariant matrix, where D = diag(d) and d
W→ D for a

limit law D with compact support and Var[D] > 0.
2. ‖W‖op < C for a constant C > 0, almost surely for all large n.
3. For every diagonal tensor network T in k + 1 variables, almost surely as n → ∞,

valT (W;u1, f1, . . . , fk) − valT (G;u1, f1, . . . , fk) → 0.

Let ut+1 : Rt+k → R be continuous functions which satisfy the polynomial growth condition
(1.1) for some order p ≥ 1, and are Lipschitz in their first t arguments. Let {bts} and {�t } be
defined by the orthogonally invariant prescriptions (2.5) and (2.6) for the limit law D, where
each �t is nonsingular. Then the iterates (2.1) applied to W satisfy, almost surely as n → ∞
for any fixed t ≥ 1,

(u1, f1, . . . , fk, z1, . . . , zt )
W2→ (U1,F1, . . . ,Fk,Z1, . . . ,Zt ),

where this limit has the same joint law as described by the AMP state evolution for G.

This lemma applies also in the special case of G ∼ GOE(n), where the definitions of {bts}
and {�t } reduce to the GOE prescriptions of (2.3) and (2.4). The lemma does not assume any
particular matrix model for W, and thus may be used as a tool to establish AMP universality
for matrix models beyond the ones we consider in this work.

Theorems 2.4 and 2.8 then follow from the next two lemmas, which verify the universal-
ity of tensor network values for the classes of generalized Wigner matrices and symmetric
generalized invariant matrices.

LEMMA 2.13. Let x1, . . . ,xk ∈ R
n be (random or deterministic) vectors and let

(X1, . . . ,Xk) have finite moments of all orders, such that almost surely as n → ∞,

(2.10) (x1, . . . ,xk)
W→ (X1, . . . ,Xk).

Let W ∈ R
n×n be a generalized Wigner matrix, independent of x1, . . . ,xk , with variance

profile matrix S. Let si be the ith row of S, and suppose for each fixed polynomial function
q :Rk →R that

(2.11)
n

max
i=1

∣∣〈q(x1, . . . ,xk) 
 si

〉 − 〈
q(x1, . . . ,xk)

〉 · 〈si〉
∣∣ → 0.

Then for any diagonal tensor network T in k variables, there is a deterministic value
lim-valT (X1, . . . ,Xk) depending only on T and the joint law of (X1, . . . ,Xk) such that al-
most surely,

lim
n→∞ valT (W;x1, . . . ,xk) = lim-valT (X1, . . . ,Xk).

In particular, this limit value is the same for W as for G ∼ GOE(n).

LEMMA 2.14. Let x1, . . . ,xk ∈ R
n be (random or deterministic) vectors and let

(X1, . . . ,Xk) have finite moments of all orders, such that almost surely as n → ∞,

(2.12) (x1, . . . ,xk)
W→ (X1, . . . ,Xk).

Let W ∈ R
n×n be a symmetric generalized invariant matrix, independent of x1, . . . ,xk , with

limit diagonal distribution Ddiag. Then for any diagonal tensor network T in k variables,
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there is a deterministic limit value lim-valT (X1, . . . ,Xk,Ddiag) depending only on T , the
joint law of (X1, . . . ,Xk), and Ddiag such that almost surely,

lim
n→∞ valT (W;x1, . . . ,xk) = lim-valT (X1, . . . ,Xk,Ddiag).

In particular, if there exists an orthogonally invariant matrix G having the same limit diago-
nal distribution Ddiag, then this limit value is the same for W as for G.

REMARK 2.15. Lemma 2.14 applies to any class of symmetric generalized invariant
matrices satisfying Definition 2.6, where the limit diagonal distribution Ddiag does not nec-
essarily coincide with that of an orthogonally invariant model.

This has the following implication: Consider any first-order iterative algorithm having the
structure (2.1), where bts are arbitrary fixed constants and ut+1 : Rt+k → R are polynomial
functions applied entrywise. Then for any polynomial test function p(·), the value

1

n

n∑
i=1

p
(
u1:t [i], z1:t [i], f1:k[i])

is a linear combination of tensor network values (cf. Lemma 3.10) and hence has a universal
limit as n → ∞. Under mild moment assumptions, this implies that there exists a limit law
for the empirical distribution of each iterate ut and zt , and this law is universal across such
matrices having the same limit diagonal distribution Ddiag.

When Ddiag is not described by an orthogonally invariant model, we believe it may be
an interesting open question to develop such an algorithm that has a more succinct state-
evolution characterization of its iterates in terms of this limit diagonal law.

The proofs of Lemmas 2.13 and 2.14 result in forms for the limit tensor network values that
are, in general, combinatorially complex. However, a by-product of the proofs is that these
forms reduce to 0 when all diagonal tensors of the tensor network have vanishing normalized
trace. This may be viewed as a version of asymptotic freeness for tensor networks, and we
state the result here for independent interest.

PROPOSITION 2.16.

(a) In the setting of Lemma 2.13, let T be a diagonal tensor network such that, for every
vertex of v of T , almost surely

(2.13) lim
n→∞

〈
qv(x1, . . . ,xk)

〉 = lim
n→∞

1

n

n∑
i=1

qv

(
x1[i], . . . , xk[i]) = 0.

Then lim-valT (X1, . . . ,Xk) = 0.
(b) In the setting of Lemma 2.14, suppose T is a diagonal tensor network for which (2.13)

holds almost surely for every vertex v. Suppose also that there exists an orthogonally invariant
matrix having the same limit diagonal distribution Ddiag as W, and limn→∞ 1

n
Tr W = 0.

Then lim-valT (X1, . . . ,Xk,Ddiag) = 0.

2.3. Universality of AMP algorithms for rectangular matrices. Let W ∈ R
m×n be a

rectangular random matrix. Consider an initialization u1 ∈ R
m and vectors of side infor-

mation f1, . . . , fk ∈ R
m and g1, . . . ,g� ∈ R

n, all independent of W. Let v1, v2, v3, . . . and
u2, u3, u4, . . . be two sequences of nonlinear functions where vt : Rt+� → R and ut+1 :
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R
t+k →R. We study an AMP algorithm that computes, for t = 1,2,3, . . .

zt = W�ut −
t−1∑
s=1

btsvs,(2.14a)

vt = vt (z1, . . . , zt ,g1, . . . ,g�),(2.14b)

yt = Wvt −
t∑

s=1

atsus,(2.14c)

ut+1 = ut+1(y1, . . . ,yt , f1, . . . , fk),(2.14d)

where {bts}s<t and {ats}s≤t are deterministic “Onsager correction” coefficients. We will
characterize the iterates of this algorithm in the limit as m,n → ∞ proportionally with
m/n → γ ∈ (0,∞), for fixed k, � ≥ 0. For Gaussian and bi-orthogonally invariant matrices
W (see the definition after Definition 2.20), we review the forms for these correction coeffi-
cients and the corresponding state evolutions in (D.1)–(D.2) and (D.4)–(D.5) of Appendix D
(see the Supplementary Material [75]).

We assume the following condition for (u1, f1, . . . , fk) and (g1, . . . ,g�), which is analo-
gous to Assumption 2.1.

ASSUMPTION 2.17. Almost surely as m,n → ∞,

(u1, f1, . . . , fk)
W→ (U1,F1, . . . ,Fk) and (g1, . . . ,g�)

W→ (G1, . . . ,G�)

for joint limit laws (U1,F1, . . . ,Fk) and (G1, . . . ,G�) having finite moments of all orders,
where E[U2

1 ] > 0. Multivariate polynomials are dense in the real L2-spaces of functions
f :Rk+1 →R and g :R� →R with the inner-products

(f, f̃ ) �→ E
[
f (U1,F1, . . . ,Fk)f̃ (U1,F1, . . . ,Fk)

]
,

(g, g̃) �→ E
[
g(G1, . . . ,G�)g̃(G1, . . . ,G�)

]
.

Our main results show that the state evolution characterizations of AMP algorithms for
Gaussian and orthogonally invariant matrices are universal across the following matrix en-
sembles, analogous to Definitions 2.3 and 2.6 in the symmetric setting.

DEFINITION 2.18. W ∈ R
m×n is a generalized white noise matrix with (deterministic)

variance profile S ∈ R
m×n if

(a) All entries W [α, i] are independent.
(b) Each entry W [α, i] has mean 0, variance n−1S[α, i], and higher moments satisfying,

for each integer p ≥ 3,

lim
m,n→∞n · m

max
α=1

n
max
i=1

E
[∣∣W [α, i]∣∣p] = 0.

(c) For a constant C > 0 independent of m, n,

m
max
α=1

n
max
i=1

S[α, i] ≤ C, lim
m,n→∞

m
max
α=1

∣∣∣∣∣1

n

n∑
i=1

S[α, i] − 1

∣∣∣∣∣ = 0,

lim
m,n→∞

n
max
i=1

∣∣∣∣∣ 1

m

m∑
α=1

S[α, i] − 1

∣∣∣∣∣ = 0.
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We call W a Gaussian white noise matrix in the special case where W [α, i] ∼ N (0,1/n) and
S[α, i] = 1 for all (α, i) ∈ [m] × [n].

Next, we introduce a notion of diagonal distribution for rectangular matrices, analogous to
Definition 2.5. Recall the diagonal map �(·), and let �〈x, Im, In〉 be the set of all words in x,
Im, In and �(·), for example,

xIm, x�(Inx)Im, �
(
xx�(In)

)
x, ImxIn�

(
�(x)

)
�(xIm).

For p(x) ∈ �〈x, Im, In〉 and M ∈ R
m×n, we write p(M̃) ∈R

(m+n)×(m+n) for its evaluation at
x = M̃,

Im =
(

Idm 0
0 0

)
∈ R

(m+n)×(m+n), In =
(

0 0
0 Idn

)
∈ R

(m+n)×(m+n),

where we define the symmetric embedding

(2.15) M̃ =
(

0 M
M� 0

)
∈R

(m+n)×(m+n)

and the identity matrices Idm ∈ R
m×m and Idn ∈ R

n×n.

DEFINITION 2.19. The distribution over the diagonal of a rectangular matrix M ∈R
m×n

is the mapping

p(x) ∈ �〈x, Im, In〉 �→ 1

m + n
Trp(M̃).

Matrices M ∈ R
m×n converge in diagonal distribution a.s. if limm,n→∞ 1

m+n
Trp(M̃) exists

almost surely (and is finite) for every fixed p(x) ∈ �〈x, Im, In〉, as m,n → ∞ with m/n →
γ ∈ (0,∞). The limit diagonal distribution of M, which we will refer to as Ddiag, is then the
mapping

p(x) ∈ �〈x, Im, In〉 �→ lim
m,n→∞

1

m + n
Trp(M̃).

Note that Ddiag and γ specify the limit of 1
m

Tr(MM�)ν for each fixed integer ν ≥ 1,
and hence also the limit singular value distribution of M when this distribution has compact
support. Note also that, similar to the symmetric setting, M and �U M��

V must have the
same limit diagonal distribution Ddiag for any signed permutation matrices �U ∈ R

m×m and
�V ∈ R

n×n.

DEFINITION 2.20. W = �U M��
V ∈ R

m×n is a rectangular generalized invariant ma-
trix with limit diagonal distribution Ddiag if, as m,n → ∞ with m/n → γ ∈ (0,∞),

(a) M converges in diagonal distribution a.s. to a limit Ddiag.
(b) For any ε > 0 and any fixed p(x) ∈ �〈x, Im, In〉, almost surely for all large m, n,

max
i �=j

∣∣p(M̃)[i, j ]∣∣ < n−1/2+ε,

where M̃ is the symmetric embedding (2.15).
(c) �U ∈R

m×m and �V ∈ R
n×n are uniformly random signed permutations independent

of each other and of M.
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We call W ∈ R
m×n bi-orthogonally invariant if it has singular value decomposition W =

ODQ� where O ∼ Haar(O(m)) and Q ∼ Haar(O(n)) are Haar-distributed on the orthogonal
groups independently of each other and of D = diag(d) ∈ R

m×n. We verify in Proposition D.1
of Appendix D that such bi-orthogonally invariant matrices satisfy Definition 2.20, where
Ddiag is determined uniquely by γ = limm,n→∞ m/n and the limit singular value distribution
of D.

The following theorems show that the state evolution of AMP algorithms for Gaussian
white noise matrices holds universally for generalized white noise matrices as in Defini-
tion 2.18, and the state evolution for bi-orthogonally invariant matrices holds universally for
rectangular generalized invariant matrices as in Definition 2.20.

THEOREM 2.21. Let W ∈ R
m×n be a generalized white noise matrix with variance

profile matrix S, and let u1, f1, . . . , fk,g1, . . . ,g� be independent of W and satisfy Assump-
tion 2.17. Suppose that

1. Each function vt : Rt+� → R and ut+1 : Rt+k → R is continuous, satisfies the polyno-
mial growth condition (1.1) for some order p ≥ 1, and is Lipschitz in its first t arguments.

2. ‖W‖op < C for a constant C > 0 almost surely for all large m, n.
3. Let sα be the αth row of S and si be the ith column of S. For any fixed polynomial

functions p : Rk+1 →R and q :R� →R, almost surely as m,n → ∞,

(2.16)

m
max
α=1

∣∣〈p(u1, f1, . . . , fk) 
 sα

〉 − 〈
p(u1, f1, . . . , fk)

〉 · 〈sα〉∣∣ → 0,

n
max
i=1

∣∣〈q(g1, . . . ,g�) 
 si 〉 − 〈
q(g1, . . . ,g�)

〉 · 〈
si 〉∣∣ → 0.

Let {ats}, {bts}, {�t }, {�t } be defined by the white noise prescriptions (D.1) and (D.2), where
each matrix �t and �t is nonsingular. Then for any fixed t ≥ 1, almost surely as m,n → ∞
with m/n → γ ∈ (0,∞), the iterates of (2.14) satisfy

(u1, f1, . . . , fk,y1, . . . ,yt )
W2→ (U1,F1, . . . ,Fk, Y1, . . . , Yt ),

(g1, . . . ,g�, z1, . . . , zt )
W2→ (G1, . . . ,G�,Z1, . . . ,Zt ),

where (Z1, . . . ,Zt ) ∼ N (0,�t ) and (Y1, . . . , Yt ) ∼ N (0,�t ) are independent of (U1,F1,

. . . ,Fk) and (G1, . . . ,G�), that is, these limits have the same joint laws as described by the
AMP state evolution for a Gaussian white noise matrix W.

THEOREM 2.22. Let W ∈ R
m×n be a rectangular generalized invariant matrix whose

limit diagonal distribution Ddiag coincides with that of a bi-orthogonally invariant matrix G.
Let u1, f1, . . . , fk,g1, . . . ,g� be independent of W and satisfy Assumption 2.17. Suppose that

1. Each function vt : Rt+� → R and ut+1 : Rt+k → R is continuous, satisfies the polyno-
mial growth condition (1.1) for some order p ≥ 1, and is Lipschitz in its first t arguments.

2. ‖W‖op < C for a constant C > 0 almost surely for all large m, n.

Let {ats}, {bts}, {�t }, {�t } be defined by the bi-orthogonally invariant prescriptions (D.4)
and (D.5) for the limit singular value distribution D specified by Ddiag and γ . Suppose that
E[D2] > 0 and each �t and �t is nonsingular. Then for any fixed t ≥ 1, almost surely as
m,n → ∞ with m/n → γ ∈ (0,∞), the iterates of (2.14) satisfy

(u1, f1, . . . , fk,y1, . . . ,yt )
W2→ (U1,F1, . . . ,Fk, Y1, . . . , Yt ),

(g1, . . . ,g�, z1, . . . , zt )
W2→ (G1, . . . ,G�,Z1, . . . ,Zt ),
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where (Z1, . . . ,Zt ) ∼ N (0,�t ) and (Y1, . . . , Yt ) ∼ N (0,�t ) are independent of (U1,F1,

. . . ,Fk) and (G1, . . . ,G�), that is, these limits have the same joint laws as described by the
AMP state evolution for G.

REMARK 2.23. As in Remark 2.9, Theorems 2.21 and 2.22 hold equally for AMP
algorithms where, in the prescriptions (D.2) and (D.5) for ats and bts , the quantities
E[∂rvs(Z1:s,G1:�)], E[∂rus+1(Y1:s,F1:k)], E[UrUs], and E[VrVs] are replaced by the em-
pirical averages〈

∂rvs(z1:s,g1:�)
〉
,

〈
∂rus+1(y1:s, f1:k)

〉
, 〈ur 
 us〉, 〈vr 
 vs〉.

For example, such an AMP algorithm for Gaussian white noise matrices W and nonlinearities
vt (z1:t , g1:�) = v(zt ) and ut+1(y1:t , f1:k) = u(yt ) consists of the iterations

zt = W�ut − γ
〈
u′(yt−1)

〉
vt−1, vt = v(zt ),

yt = Wvt − 〈
v′(zt )

〉
ut , ut+1 = u(yt ).

The proofs of Theorems 2.21 and 2.22 are similar to those of Theorems 2.4 and 2.8 for
symmetric matrices, and we defer them to Appendix D.

2.4. Applications.

EXAMPLE 2.24. AMP algorithms for the Gaussian universality class may be heuristi-
cally derived by approximating belief propagation on dense graphical models [30, 45]. Our
assumptions in Theorems 2.4 and 2.21 are sufficiently weak to show that their state evolutions
remain valid in sparse random graphs down to sparsity levels of (logn)/n.

As a concrete example, consider the symmetric stochastic block model where G is an
undirected graph over n vertices, divided into two communities V+ and V− of equal sizes
n/2. For two n-dependent probabilities pn > qn, each pair of vertices (i, j) in G (including
self-loops, for simplicity of discussion) is independently connected with probability

P[i is connected to j ] =
{
pn if i, j ∈ V+ or i, j ∈ V−,

qn if i ∈ V+ and j ∈ V− or if i ∈ V− and j ∈ V+.

Let A ∈ {0,1}n×n be the adjacency matrix of G, and let p̄n = (pn + qn)/2 be the mean
connectivity. Then the centered and normalized adjacency matrix takes the form

(2.17)
A − p̄n√

np̄n(1 − p̄n)
=

√
λn

n
ff� + W,

where λn = n(pn − qn)
2/[4p̄n(1 − p̄n)] is a parameter representing the signal-to-noise ratio

of the model, f ∈ {+1,−1}n is the binary indicator vector representing the membership of
the vertices, and W is a symmetric noise matrix with independent entries. It may checked for
each (i, j) ∈ [n] × [n] that

E
[
W [i, j ]] = 0, E

[
W [i, j ]2] ∈

{
pn(1 − pn)

np̄n(1 − p̄n)
,

qn(1 − qn)

np̄n(1 − p̄n)

}
,

∣∣W [i, j ]∣∣ ≤ 1√
np̄n(1 − p̄n)

.

In the asymptotic regime where np̄n(1 − p̄n) → ∞ and λn → λ a positive constant, we
have that S[i, j ] := n ·E[W [i, j ]2] → 1 uniformly over (i, j) ∈ [n] × [n], so that W is a gen-
eralized Wigner matrix in the sense of Definition 2.3 (with variance profile S approximately
constant in every entry). Furthermore, under a slightly stronger assumption

(2.18) np̄n(1 − p̄n) ≥ c logn
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for any constant c > 0, [8], Theorem 2.7 and eq. (2.4), implies that ‖W‖op < C almost surely
for all large n. This encompasses the stochastic block model in regimes with sparsity p̄n �
(logn)/n.4

It was shown in [24] that the mutual information between G and f has an asymptotic limit
depending only on the limit signal-to-noise ratio λ, which is nontrivial when λ > 1. This was
proven by interpolating between the model (2.17) and a “Z2-synchronization” model where
W ∼ GOE(n), and applying an AMP analysis in the latter model. Our result of Theorem 2.4
implies that, under the additional condition (2.18), this AMP analysis may instead be directly
applied to the model (2.17), bypassing interpolation to the GOE.

EXAMPLE 2.25. Let Y ∈ R
m×n be a signal-plus-noise data matrix modeled as

Y = X + E,

where X = E[Y] = ∑k
j=1 fj g�

j ∈ R
m×n is a low-rank signal matrix, and E = Y − X is a

mean-zero matrix of residual noise. We assume that E has independent entries, although in
many applications involving count observations or missing data, these entries may have a
heteroskedastic variance profile V where

V [α, i] := Var
[
E[α, i]].

Such models where the variance V [α, i] is a quadratic function a + bX[α, i] + cX[α, i]2 of
the mean were discussed recently in [46], including Poisson and negative-binomial models
for Y in the context of single-cell RNA sequencing applications [42, 65, 72]. Such mod-
els encompass also simple models of missing data, where Y is a partial observation of an
underlying low-rank signal matrix X̃ so that

Y [α, i] =
{
X̃[α, i] with probability p,

0 with probability 1 − p,

independently for each entry. Then X[α, i] = p · X̃[α, i] and V [α, i] = p(1 − p) · X̃[α, i]2

are the corresponding means and variances.
When the entries V [α, i] are heteroskedastic, the singular value spectrum of E does not

generally conform to the Marcenko–Pastur law. However, row and column normalization is
typically applied in practice prior to data analysis, with [46] suggesting the following nor-
malization scheme: Determine via Sinkhorn iteration two diagonal matrices D1 ∈ R

m×m and
D2 ∈ R

n×n for which S = D1VD2 has all rows summing to n and all columns summing to m,
and use these to standardize Y into the biwhitened matrix

Ỹ = 1√
n

· D1/2
1 YD1/2

2 = 1√
n

· D1/2
1 XD1/2

2 + W, W = 1√
n

· D1/2
1 ED1/2

2 .

[46] proved that such biwhitened count matrices have singular value spectra asymptotically
described by the Marcenko–Pastur law, and showed a remarkable empirical agreement with
the Marcenko–Pastur law for matrices arising in several domains of application, from single-
cell biology to topic modeling of text.

In this standardized model Ỹ, the error matrix W now has variance profile S = D1VD2
which satisfies by construction 1

n

∑n
i=1 S[α, i] = 1

m

∑m
α=1 S[α, i] = 1, and Theorem 2.21 de-

scribes conditions under which state evolution holds for Gaussian AMP algorithms applied

4Our universality result for AMP with polynomial nonlinearities does not require the operator norm bound
‖W‖op < C and hence holds for any sparsity p̄n � 1/n, cf. Remark 3.12. We believe that the operator norm
requirement in Condition 2 of Theorem 2.4 may be an artifact of our polynomial approximation proof.

In contrast, we do not expect AMP universality to hold for random graph models with sparsity p̄n � 1/n,
where the belief propagation recursions on such graphs may not admit asymptotic Gaussian approximations.
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to this matrix W. We note that to analyze AMP applied instead to Ỹ, the condition (2.16) rep-
resents a potentially strong restriction on the relation between the variance profile matrix S
and the low-rank mean signal. A modified analysis of AMP may be needed in settings where
this restriction does not hold, and we leave this as a direction to explore in future work.

EXAMPLE 2.26. Much of the early development of AMP algorithms was motivated by
compressed sensing applications of reconstructing sparse signals from linear measurements.
Consider a model of m measurements

y = Wx + ε ∈ R
m,

where x ∈ R
n is the underlying signal, W ∈ R

m×n is a random sensing matrix, and ε is
measurement noise. For i.i.d. Gaussian sensing matrices W, pioneering work of [29, 30] pro-
posed an AMP algorithm for reconstructing x, where the nonlinearities are soft-thresholding
functions tailored to the sparsity of x. Analysis of the dynamics of this algorithm leads to a
derivation of a sparsity-undersampling phase transition curve that matches a phase transition
for �1-based reconstruction in this model [6, 7, 29, 31].

Extensive numerical experiments performed in [27, 55] suggested that this phase transi-
tion curve is universal across broad classes of non-Gaussian sensing matrices. Theorem 2.8
provides an extension of the AMP universality shown in [6] for this application, broadening
the universality class to matrices composed of subsampled Fourier or Hadamard transforms
and diagonal operators. Importantly, matrix-vector multiplication operations for such matri-
ces may be computed in O(n logn) time without explicitly storing the matrices in memory,
allowing applications of AMP at much larger scales than would be possible with i.i.d. sensing
designs.

As an example, consider

(2.19) W = (�U H�E)D(�V K�F )� ∈ R
m×n,

where D ∈ R
m×n is diagonal with its diagonal entries sampled i.i.d. from a Marcenko–Pastur

law; H,K ∈ R
n×n are orthogonal matrices representing deterministic Hadamard or discrete

Fourier transforms; and �U , �E , �V , �F are independent random signed permutations.
We verify in Proposition D.1(b1) that this class of matrices satisfies Definition 2.20. If the
signal vector x, residual error ε, and initialization x1 are each comprised of i.i.d. entries, then
the random permutations in �U , �V may be further absorbed into x1, x, ε. Thus the AMP
iterates are equal in law to those of AMP applied with a simpler sensing matrix

W̃ = �U HD̃K̃��V ,

where �U , �V are diagonal matrices of i.i.d. {+1,−1} signs, K̃� ∈ R
m×n is a random sub-

sampling of m rows of K�, and D̃ ∈ R
m×m is a diagonal matrix whose diagonal entries are

given by those of D also multiplied by i.i.d. {+1,−1} signs.
Theorem 2.22 implies that AMP applied to the above matrix W admits the same state

evolution as when applied to an i.i.d. Gaussian sensing matrix G. This universality extends
beyond the Gaussian setting, to sensing matrices (2.19) where the diagonal entries of D are
sampled from an arbitrary compactly supported singular value distribution. Theorem 2.22
then shows that the state evolution characterizations for the more general AMP algorithms
of [37]—derived originally for bi-orthogonally invariant ensembles—are valid in such set-
tings. For this compressed sensing application, we note that the resulting AMP algorithms
are similar to the convolutional AMP algorithms developed and studied recently in [70, 71].

3. Proofs for symmetric matrices.

3.1. Universality for generalized Wigner matrices. In this section, we prove Lemma 2.13
on the universality of the tensor network value for generalized Wigner matrices.
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Fix a tensor network T = (V,E, {qv}v∈V). Let P be the set of all partitions of V . For each
index tuple i ∈ [n]V , define its induced partition π(i) ∈ P such that vertices u, v ∈ V belong
to the same block of π(i) if and only if iu = iv . Then we can decompose the value of T as

valT (W;x1, . . . ,xk) = 1

n

∑
π∈P

∑
i∈[n]V :π(i)=π

qi|T · Wi|T .(3.1)

DEFINITION 3.1. Let (V,E) be an undirected graph. For any partition π of V , the image
of (V,E) under π is the undirected multi-graph Gπ = (Kπ ,Fπ) that is the image of (V,E)

under the graph homomorphism sending each vertex u ∈ V to the block of π containing u.
That is, the vertices Kπ ≡ π of Gπ are the blocks of π , and Gπ has the same number of

edges |Fπ | (counting multiplicity and self-loops) as |E |. For each edge (u, v) ∈ E , there is a
corresponding edge (U,V ) ∈Fπ where U,V ∈ π are the blocks for which u ∈ U and v ∈ V .

For each π ∈ P , let Gπ = (Kπ ,Fπ) be the image of (V,E) under π . For each block U ∈
Kπ , define the polynomial QU = ∏

u∈U qu, and for each unique (undirected) edge (U,V ) of
Gπ , let e(U,V ) be the number of times it appears in Fπ . Then, identifying the sum over
{i : π(i) = π} as a sum over one distinct index in [n] for each block U ∈ Kπ , we have∑

i∈[n]V :π(i)=π

qi|T · Wi|T =
∗∑

i∈[n]Kπ

Qi|Gπ
· We

i|Gπ
,

where
∗∑

denotes the restriction of the summation to index tuples i = (iU : U ∈ Kπ) ∈ [n]Kπ

having all indices distinct, and

Qi|Gπ
= ∏

U∈Kπ

QU

(
x1[iU ], . . . , xk[iU ]), We

i|Gπ
= ∏

unique edges (U,V ) of Gπ

W [iU , iV ]e(U,V ).

Applying this to (3.1), we obtain

valT (W;x1, . . . ,xk) = 1

n

∑
π∈P

∗∑
i∈[n]Kπ

Qi|Gπ
· We

i|Gπ
.(3.2)

We will compute the expectation of (3.2), and see that the only nonvanishing contributions
in the limit n → ∞ arise from partitions π where Gπ is itself a tree and e(U,V ) = 2 for
each unique edge (U,V ) of Gπ . These nonvanishing terms may be related to the values of a
reduced tensor network associated to Gπ , evaluated on the matrix S/n in place of W.

In anticipation of this computation, we first show the following lemma which establishes
universality of the value of any tensor network evaluated on S/n.

LEMMA 3.2. Under the assumptions of Lemma 2.13, for any diagonal tensor network
T = (V,E, {qv}v∈V) in k variables,

lim
n→∞ valT (S/n;x1, . . . ,xk) = ∏

v∈V
E

[
qv(X1, . . . ,Xk)

]
.

PROOF. Observe first that for any diagonal tensor network T = (V,E, {qv}v∈V), we have

(3.3)
1

n

∑
i∈[n]V

∏
v∈V

∣∣qv(x1:k)[iv]
∣∣ · ∏

(u,v)∈E

1

n
≤ C

for a constant C := C(T ) > 0, almost surely for all large n. Indeed, since T is a tree, we
have 1

n

∏
(u,v)∈E 1

n
= n−|V| in the above. Each function |qv| is continuous and satisfies the

polynomial growth condition (1.1), so (3.3) follows from the assumption (2.10).
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Now note that since T is a tree, we can order its vertices as 1,2, . . . , |V| such that removing
one vertex at a time in this order, the remaining graph is always still a tree. Denote the
remaining tensor network after removing vertices 1, . . . , h − 1 by Th = (Vh,Eh, {qv}v≥h).
The vertex h has only one neighbor in Th, which we denote by uh ∈ {h + 1, . . . , |V|}. Then

valT (S/n;x1:k)

= 1

n

∑
i∈[n]V

∏
v∈V

qv

(
x1:k[iv]) ∏

(u,v)∈E

S[iu, iv]
n

= 1

n

n∑
i2,...,i|V |=1

( ∏
v∈V2

qv

(
x1:k[iv]) ∏

(u,v)∈E2

S[iu, iv]
n

)
·
(

n∑
i1=1

q1
(
x1:k[i1])S[i1, iu1]

n

)

= 1

n

n∑
i2,...,i|V |=1

( ∏
v∈V2

qv

(
x1:k[iv]) ∏

(u,v)∈E2

S[iu, iv]
n

)
· (〈

q1(x1:k)
〉 · 〈siu1

〉 + δ(iu1)
)

= 1

n

n∑
i2,...,i|V |=1

( ∏
v∈V2

qv

(
x1:k[iv]) ∏

(u,v)∈E2

S[iu, iv]
n

)
· (
E

[
q1(X1:k)

] + δ′(iu1)
)
.

Here, δ(i), δ′(i) denote errors that satisfy limn→∞ maxi∈[n] |δ(i)|, |δ′(i)| = 0, as follows from
(2.11), the conditions of Definition 2.3(c), and (2.10). Note that∣∣∣∣∣1

n

n∑
i2,...,i|V |=1

( ∏
v∈V2

qv

(
x1:k[iv]) ∏

(u,v)∈E2

S[iu, iv]
n

)
· δ′(iu1)

∣∣∣∣∣ → 0

as n → ∞ by the condition |S[iu, iv]| ≤ C of Definition 2.3(c), the bound (3.3) applied to the
network T2 with vertex 1 removed, and the convergence maxi∈[n] |δ′(i)| → 0. Thus

lim
n→∞ valT (S/n;x1:k) = lim

n→∞
1

n

n∑
i2,...,i|V |=1

( ∏
v∈V2

qv

(
x1:k[iv]) ∏

(u,v)∈E2

S[iu, iv]
n

)
·E[

q1(X1:k)
]
.

Repeating the above procedure by removing vertices 1,2, . . . , |V| − 1 sequentially, we are
left with the single vertex |V| and no edges, and

lim
n→∞ valT (S/n;x1:k) = lim

n→∞
1

n

n∑
i|V |=1

q|V|
(
x1:k[i|V|]) ·

|V|−1∏
v=1

E
[
qv(X1:k)

] =
|V|∏
v=1

E
[
qv(X1:k)

]
.

�

The next lemma relates summations over distinct indices to ones without the distinctness
requirement.

LEMMA 3.3. Let x1, . . . ,xk ∈ R
n and (X1, . . . ,Xk) be such that

(x1, . . . ,xk)
W→ (X1, . . . ,Xk).

For a finite index set S , let (qs : s ∈ S) be |S| continuous functions satisfying the polynomial
growth condition (1.1) for some order p ≥ 1. Then

lim
n→∞

1

n|S|
∗∑

i∈[n]S

∏
s∈S

qs

(
x1[is], . . . , xk[is]) = lim

n→∞
1

n|S|
∑

i∈[n]S

∏
s∈S

qs

(
x1[is], . . . , xk[is])

= ∏
s∈S

E
[
qs(X1, . . . ,Xk)

]
.
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PROOF. Let P be the set of partitions of S , and let π(i) ∈ P be the partition induced
by i ∈ [n]S . Let 0P the partition having |S| singleton blocks, corresponding to i having all
indices distinct. Then for the first equality, it suffices to show that

(3.4) � := 1

n|S|
∑

π∈P:π �=0P

∑
i∈[n]S :π(i)=π

∏
s∈S

∣∣qs

(
x1:k[is])∣∣

vanishes as n → ∞.
For any π ∈ P and block R ∈ π , define QR = ∏

u∈R qu, and let |π | be the number of
blocks of π . Then, identifying the sum over {i : π(i) = π} with the sum over one distinct
index in [n] for each block of π ,

1

n|π |
∑

i∈[n]S :π(i)=π

∏
s∈S

∣∣qs

(
x1:k[is])∣∣ = 1

n|π |
∗∑

i∈[n]π

∏
R∈π

∣∣QR

(
x1:k[iR])∣∣.

As an upper bound, adding back the excluded index tuples i ∈ [n]π where some indices
coincide,

1

n|π |
∑

i∈[n]S :π(i)=π

∏
s∈S

∣∣qs

(
x1:k[is])∣∣ ≤ ∏

R∈π

(
1

n

n∑
i=1

∣∣QR

(
x1:k[i])∣∣

)
.

Since x1:k
W→ X1:k and |QR| is a continuous function satisfying the polynomial growth con-

dition (1.1), this upper bound is at most a constant C(π) for all large n. For any π �= 0P , we
have |π | ≤ |S| − 1. As the number of partitions π ∈ P is independent of n, applying these
observations to (3.4) shows � ≤ C/n for a constant C > 0 and all large n, and hence � → 0
as desired.

The second equality of the lemma follows from the given condition x1:k
W→ X1:k , hence

1

n|S|
∑

i∈[n]S

∏
s∈S

qs

(
x1:k[is]) = ∏

s∈S

1

n

n∑
i=1

qs

(
x1:k[i]) → ∏

s∈S
E

[
qs(X1:k)

]
.

�

We now show that the limit tensor network value is universal in expectation over W.

LEMMA 3.4. Let E denote the expectation over W, conditional on x1, . . . ,xk . Then
Lemma 2.13 holds for E[valT (W;x1, . . . ,xk)] in place of valT (W;x1, . . . ,xk).

PROOF. Recall the decomposition of valT (W;x1, . . . ,xk) in (3.2), where P is the set of
partitions of the vertices V of T . Taking expectation on both sides yields

(3.5) E
[
valT (W;x1:k)

] = 1

n

∑
π∈P

∗∑
i∈[n]Kπ

Qi|Gπ
·E[

We
i|Gπ

]
.

First note that, since the indices of i are distinct and all entries of W have mean 0, E[We
i|Gπ

]
is nonzero only if each unique edge of Gπ = (Kπ ,Fπ) appears at least twice. Let |Kπ | and
|Fπ |∗ be the number of vertices and number of unique (undirected) edges of Gπ . The graph
Gπ must be connected since the original tree T was connected, so |Kπ | ≤ |Fπ |∗ + 1. Then
any Gπ where each unique edge appears at least twice has |Kπ | ≤ |Fπ |∗ + 1 ≤ |E |/2 + 1,
where |E | is the number of edges of the original tree T .
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Furthermore, we claim that the contribution from partitions π where |Kπ | ≤ |E |/2 is neg-
ligible. To see this, we apply Definition 2.3(b) to get∣∣E[

We
i|Gπ

]∣∣ = ∏
(U,V ):e(U,V )=2

E
[
W [iU , iV ]2] ∏

(U,V ):e(U,V )>2

∣∣E[
W [iU , iV ]e(U,V )]∣∣

≤ ∏
(U,V ):e(U,V )=2

C

n

∏
(U,V ):e(U,V )>2

o(1)

n
.

If there is an edge (U,V ) of Gπ with e(U,V ) > 2, then this shows |E[We
i|Gπ

]| ≤
o(1)/n|Fπ |∗ ≤ o(1)/n|Kπ |−1. If, conversely, every edge in Gπ appears exactly twice, then by
assumption |Fπ |∗ = |E |/2 ≥ |Kπ |, so this shows |E[We

i|Gπ
]| ≤ (C/n)|Fπ |∗ ≤ o(1)/n|Kπ |−1

also. Therefore, ∣∣∣∣∣1

n

∗∑
i∈[n]Kπ

Qi|Gπ
·E[

We
i|Gπ

]∣∣∣∣∣ ≤ o(1)

n|Kπ |
∗∑

i∈[n]Kπ

|Qi|Gπ
|.

As an upper bound, adding back the excluded tuples i ∈ [n]Kπ where not all indices are
distinct, we have

1

n|Kπ |
∗∑

i∈[n]Kπ

|Qi|Gπ
| ≤ ∏

U∈Kπ

1

n

n∑
i=1

∣∣QU

(
x1:k[i])∣∣.(3.6)

By (2.10), this upper bound is at most a constant C(π) for all large n, so∣∣∣∣∣1

n

∗∑
i∈[n]Kπ

Qi|Gπ
·E[

We
i|Gπ

]∣∣∣∣∣ → 0

as claimed.
Thus the only nonvanishing contributions to (3.5) come from partitions π where |Kπ | =

|Fπ |∗ + 1 = |E |/2 + 1. Then each unique edge of Gπ appears exactly twice, and these edges
form a tree. In this case, we have

(3.7)
1

n

∗∑
i∈[n]Kπ

Qi|Gπ
·E[

We
i|Gπ

] = 1

n

∗∑
i∈[n]Kπ

Qi|Gπ
· ∏

unique edges (U,V ) of Gπ

S[iU , iV ]
n

.

Let I∗ be the set of tuples i ∈ [n]Kπ where all indices are distinct. Then, applying
|S[iU , iV ]| ≤ C from Definition 2.3(c), for a constant C′ = C(π) > 0,∣∣∣∣1

n

∑
i∈[n]Kπ \I∗

Qi|Gπ

∏
unique edges (U,V ) of Gπ

S[iU , iV ]
n

∣∣∣∣ ≤ C′

n1+|Fπ |∗
∑

i∈[n]Kπ \I∗

|Qi|Gπ
|.

Since |Kπ | = |Fπ |∗ + 1, the first equality of Lemma 3.3 shows that this vanishes as n → ∞.
Then the right side of (3.7) has the same limit as

1

n

∑
i∈[n]Kπ

Qi|Gπ
· ∏

unique edges (U,V ) of Gπ

S[iU , iV ]
n

.

This is the limit value of the tensor network Tπ = (Kπ ,unique edges of Fπ , {QU }U∈Kπ ) ap-
plied to S/n, which by Lemma 3.2 equals

∏
U∈Kπ

E[QU(X1:k)]. Applying this back to (3.7)
and (3.5),

lim
n→∞E

[
valT (W;x1:k)

] = ∑
π∈P:|Kπ |=|Fπ |∗+1=|E|/2+1

∏
U∈Kπ

E
[
QU(X1:k)

]
=: lim-valT (X1, . . . ,Xk).

(3.8)

This limit depends only on T and the joint law of X1, . . . ,Xk , concluding the proof. �
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We make a brief interlude to show here the asymptotic freeness result of Proposi-
tion 2.16(a).

PROOF OF PROPOSITION 2.16(A). From the preceding proof, only partitions π where
|Kπ | = |E |/2 + 1 contribute to lim-valT (X1, . . . ,Xk). For every such partition, since T has
|E | + 1 vertices, this implies that some vertex of Kπ , that is, some block U of π , contains
only a single vertex v of T . For this block U , we have

E
[
QU(X1:k)

] = E
[
qv(X1:k)

] = 0

by the condition (2.13). Therefore, every summand in (3.8) vanishes, implying as desired
lim-valT (X1, . . . ,Xk) = 0. �

To complete the proof of Lemma 2.13, it remains to establish the concentration of the
value of any tensor network around its mean as n → ∞.

LEMMA 3.5. Let E denote the expectation over W, conditional on x1, . . . ,xk . Under the
setting of Lemma 2.13, almost surely as n → ∞,

valT (W;x1, . . . ,xk) −E
[
valT (W;x1, . . . ,xk)

] → 0.

PROOF. We write val(W) = valT (W;x1, . . . ,xk). We will bound the fourth moment of
val(W) − E[val(W)] and apply the Borel–Cantelli lemma. (Note that val(W) − E[val(W)]
typically fluctuates on the order of 1/

√
n, so that bounding the variance would not suffice to

show almost-sure convergence.)
First, we expand

E
[(

val(W) −E
[
val(W)

])4]
= E

[
val(W)4] − 4E

[
val(W)3]

E
[
val(W)

]
+ 6E

[
val(W)2]

E
[
val(W)

]2 − 3E
[
val(W)

]4
.

(3.9)

We introduce four independent copies of the matrix W as W(1), W(2), W(3), W(4), define
four index tuples i1, i2, i3, i4 ∈ [n]V , and write as shorthand

qi1:4 = qi1|T · qi2|T · qi3|T · qi4|T , W
(a1,a2,a3,a4)
i1:4 = W

(a1)
i1|T · W(a2)

i2|T · W(a3)
i3|T · W(a4)

i4|T ,

where each W
(a)
i|T is defined by the copy W(a). Then

E
[
val(W)4] = 1

n4

∑
i1,...,i4∈[n]V

qi1:4 ·E[
W

(1,1,1,1)
i1:4

]
,

E
[
val(W)3]

E
[
val(W)

] = 1

n4

∑
i1,...,i4∈[n]V

qi1:4 ·E[
W

(1,1,1,2)
i1:4

]
,

E
[
val(W)2]

E
[
val(W)

]2 = 1

n4

∑
i1,...,i4∈[n]V

qi1:4 ·E[
W

(1,1,2,3)
i1:4

]
,

E
[
val(W)

]4 = 1

n4

∑
i1,...,i4∈[n]V

qi1:4 ·E[
W

(1,2,3,4)
i1:4

]
.

(3.10)

Corresponding to each index tuple i1:4, consider a multi-graph G(i1:4) whose vertices
are the unique index values in i1:4, with one edge (ia,u, ia,v) for every combination of
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a = 1,2,3,4 and edge (u, v) ∈ E , counting multiplicity. (One may visualize G(i1:4) as a
multi-graph whose vertices are a subset of [n], and having edges of 4 colors corresponding
to a = 1,2,3,4.) Then the edges of G(i1:4) corresponding to each single index a = 1,2,3,4
must belong to a single connected component, so the number of connected components in
G(i1:4) can be either 1, 2, 3, or 4. Let us partition the index tuples i1, i2, i3, i4 ∈ [n]V into the
three sets

I2 = {
i1:4 : G(i1:4) has 1 or 2 connected components

}
,

I3 = {
i1:4 : G(i1:4) has 3 connected components

}
,

I4 = {
i1:4 : G(i1:4) has 4 connected components

}
,

and define correspondingly for j = 2,3,4,

Aj = 1

n4

∑
i1:4∈Ij

qi1:4
(
E

[
W

(1,1,1,1)
i1:4

] − 4 ·E[
W

(1,1,1,2)
i1:4

]
+ 6 ·E[

W
(1,1,2,3)
i1:4

] − 3 ·E[
W

(1,2,3,4)
i1:4

])
.

(3.11)

Then by (3.9) and (3.10), we have E[(val(W) − E[val(W)])4] = A2 + A3 + A4. Below, we
will show that A3 = A4 = 0 and A2 = O(1/n2) as n → ∞.

For A4, observe that since G(i1:4) has 4 connected components, the tuples i1, i2, i3, i4 have
no common indices. Then due to the independence between entries of W, we have

E
[
W

(a1,a2,a3,a4)
i1:4

] = E
[
W

(a1)
i1

] ·E[
W

(a2)
i2

] ·E[
W

(a3)
i3

] ·E[
W

(a4)
i4

]
= E

[
W

(1)
i1

] ·E[
W

(1)
i2

] ·E[
W

(1)
i3

] ·E[
W

(1)
i4

] = E
[
W

(1,1,1,1)
i1:4

]
for any a1, a2, a3, a4. Applying this to A4 defined in (3.11), we get A4 = 0.

Next, for A3, we write ij ‖ ij ′ if ij and ij ′ share at least one index. Note that for any
i1:4 ∈ I3, there is a unique pair ij , ij ′ such that ij ‖ ij ′ , so

I3 = ⊔
1≤j<j ′≤4

{i1:4 ∈ I3 : ij ‖ ij ′ }.

We will repeatedly apply this six-fold decomposition of I3 and the independence between
the different copies of W. If i3 ‖ i4, we have

E
[
W

(1,1,1,1)
i1:4

] = E
[
W

(1)
i1

] ·E[
W

(1)
i2

] ·E[
W

(1)
i3

W
(1)
i4

] = E
[
W

(1,2,3,3)
i1:4

]
which together with permutation symmetry between the labels 1, 2, 3, and 4 further implies
that ∑

i1:4∈I3

qi1:4 ·E[
W

(1,1,1,1)
i1:4

] = 6
∑

i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,1,1,1)
i1:4

]
= 6

∑
i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,3)
i1:4

]
.

(3.12)

Similarly, considering the two cases i3 ‖ i4 and i2 ‖ i3 and their symmetric equivalents,∑
i1:4∈I3

qi1:4 ·E[
W

(1,1,1,2)
i1:4

]
= 3

∑
i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,4)
i1:4

] + 3
∑

i1:4∈I3,i2‖i3

qi1:4 ·E[
W

(1,2,2,3)
i1:4

]
= 3

∑
i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,4)
i1:4

] + 3
∑

i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,3)
i1:4

]
.

(3.13)



UNIVERSALITY OF AMP 3967

Considering the three cases i3 ‖ i4, i2 ‖ i4, i1 ‖ i2 and their symmetric equivalents,∑
i1:4∈I3

qi1:4 ·E[
W

(1,1,2,3)
i1:4

]
= ∑

i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,4)
i1:4

] + 4
∑

i1:4∈I3,i2‖i3

qi1:4 ·E[
W

(1,2,3,4)
i1:4

]
+ ∑

i1:4∈I3,i1‖i2

qi1:4 ·E[
W

(1,1,2,3)
i1:4

]
= 5

∑
i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,4)
i1:4

] + ∑
i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,3)
i1:4

]
.

(3.14)

Finally, by symmetry,∑
i1:4∈I3

qi1:4 ·E[
W

(1,2,3,4)
i1:4

] = 6
∑

i1:4∈I3,i3‖i4

qi1:4 ·E[
W

(1,2,3,4)
i1:4

]
.(3.15)

Collecting (3.12), (3.13), (3.14), and (3.15) and applying them to A3 defined in (3.11), we
get A3 = 0.

Finally, we bound A2. Let |VG(i1:4)| and |EG(i1:4)|∗ be the number of vertices and number
of unique (undirected) edges of G(i1:4). Since G(i1:4) has at most 2 connected components,
we have |VG(i1:4)| ≤ |EG(i1:4)|∗ + 2. By Definition 2.3(b), for a constant C > 0 and any a1, a2,

a3, a4, we have |E[W(a1,a2,a3,a4)
i1:4 ]| ≤ C/n|EG(i1:4)|∗ ≤ C/n|VG(i1:4)|−2. Therefore,

1

n4

∣∣∣∣ ∑
i1:4∈I2

qi1:4E
[
W(a1,a2,a3,a4)

i1:4
]∣∣∣∣ ≤ 1

n4

4|V|∑
v=1

C

nv−2

∑
i1:4∈I2:|VG(i1:4)|=v

|qi1:4 |.

Stratifying the inner summation over {i1:4 ∈ I2 : |VG(i1:4)| = v} by its induced partition π(i1:4)
of the 4|V| total indices (having exactly v blocks), and applying the same argument as in
(3.6), this inner summation may be bounded as

∑
i1:4∈I2:|VG(i1:4)|=v |qi1:4 | ≤ Cnv for a constant

C > 0. Applying this bound for each term of A2, we obtain |A2| ≤ C/n2.
Combining the analyses of A2, A3, and A4, we get E[(val(W) − E[val(W)])4] ≤ C/n2.

Then by Markov’s inequality, for any ε > 0, P[|val(W)−E[val(W)]| > ε] ≤ C/(ε4n2). This
bound is summable over all n ≥ 1, so almost-sure convergence follows by the Borel–Cantelli
lemma. �

Combining Lemmas 3.4 and 3.5 concludes the proof of Lemma 2.13.

3.2. Universality for symmetric generalized invariant matrices. In this section, we prove
Lemma 2.14 on the universality of tensor network values for generalized invariant matrices.

Fix the tensor network T = (V,E, {qv}v∈V). Expanding the product W = �M��, the
tensor network value is given by

valT (W;x1:k) = 1

n

∑
i∈[n]V

∑
j,l∈[n]E

∏
v∈V

qv

(
x1:k[iv]) ∏

e=(u,v)∈E
�[iu, je]M[je, le]�[iv, le].

The matrix � may be written as � = �P where � is a random sign matrix and P is a
random permutation matrix independent of �. Let σ denote the permutation of [n] for which
P [i, σ (i)] = 1 for all i ∈ [n]. Then �[iu, je] is nonzero if and only if je = σ(iu). Therefore,
the tensor network value is equivalently expressed as

(3.16) valT (W;x1:k) = 1

n

∑
i∈[n]V

∏
v∈V

qv

(
x1:k[iv]) ∏

e=(u,v)∈E
�[iu] · �[iv] · M[

σ(iu), σ (iv)
]
.
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Let P be the set of partitions of V . For each π ∈ P , let Gπ = (Kπ ,Fπ) be the image of
(V,E) under π , in the sense of Definition 3.1. For each i ∈ [n]V , let π(i) ∈ P be the partition
induced by i. Stratifying the summation over i ∈ [n]V by its induced partition π(i),

valT (W;x1:k) = ∑
π∈P

1

n

∑
i∈[n]V :π(i)=π

∏
v∈V

qv

(
x1:k[iv]) ∏

e=(u,v)∈E
�[iu] · �[iv] · M[

σ(iu), σ (iv)
]
.

Then, defining QR = ∏
u∈R qu for the blocks R ∈ Kπ ≡ π , and identifying the sum over

{i ∈ [n]V : π(i) = π} as a sum over one distinct index for each block R ∈ Kπ , we have

valT (W;x1:k) = ∑
π∈P

1

n

∗∑
i∈[n]Kπ

∏
R∈Kπ

QR

(
x1:k[iR]) ∏

(R,S)∈Fπ

�[iR] · �[iS] · M[
σ(iR), σ (iS)

]
,

where we recall the notation that
∗∑

restricts the summation to index tuples i having all
indices distinct. For every R ∈ Kπ , let degext(R) be its external degree in Gπ , that is, the
total number of edges of Fπ containing R (counting multiplicity) that are not self-loops.
Then for every R ∈ Kπ , the number of times the factor �[iR] appears in the above product is
exactly degext(R) plus twice the number of self-loops on R. Since �[iR]2 = 1, this implies

valT (W;x1:k)

= ∑
π∈P

1

n

∗∑
i∈[n]Kπ

∏
R∈Kπ

QR

(
x1:k[iR])�[iR]degext(R)

∏
(R,S)∈Fπ

M
[
σ(iR), σ (iS)

]
.

(3.17)

LEMMA 3.6. Let E be the expectation over � conditional on M and x1, . . . ,xk . Then
Lemma 2.14 holds for E[valT (W;x1, . . . ,xk)] in place of valT (W;x1, . . . ,xk).

PROOF. Taking expectations in (3.17) with respect to the independent signs � and per-
mutation σ , observe that

• If R ∈ Kπ is such that degext(R) is odd, then E[�[iR]degext(R)] = 0. Thus by independence
of the diagonal entries of � and distinctness of the indices of i,

E

[ ∏
R∈Kπ

�[iR]degext(R)

]
= 1

{
degext(R) is even for all R ∈Kπ

}
.(3.18)

• Since σ is a uniformly random permutation on [n], for any fixed tuple i ∈ [n]Kπ with all
entries distinct,

E

[ ∏
(R,S)∈Fπ

M
[
σ(iR), σ (iS)

]] = (n − |Kπ |)!
n!

∗∑
j∈[n]Kπ

∏
(R,S)∈Fπ

M[jR, jS],(3.19)

where n!/(n − |Kπ |)! counts the total number of tuples j ∈ [n]Kπ having distinct entries,
and the right side represents a uniform average over such tuples j.

Let us call a partition π ∈ P even if every vertex of Kπ has even external degree. Then
applying the above observations to take the expectation in (3.17), we obtain

(3.20) E
[
valT (W;x1:k)

] = ∑
even π∈P

Bn(π) · Qn(π) · Mn(π),
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where we set

Bn(π) = n|Kπ | · (n − |Kπ |)!
n! ,(3.21)

Qn(π) = 1

n|Kπ |
∗∑

i∈[n]Kπ

∏
R∈Kπ

QR

(
x1:k[iR]),(3.22)

Mn(π) = 1

n

∗∑
j∈[n]Kπ

∏
(R,S)∈Fπ

M[jR, jS].(3.23)

It is clear that limn→∞ Bn(π) = 1 for every fixed π . For Qn(π), we may apply Lemma 3.3
with the identifications S ↔ Kπ and {qs : s ∈ S} ↔ {QR : R ∈ Kπ }. Then

lim
n→∞Qn(π) = ∏

R∈Kπ

E
[
QR(X1:k)

]
.

For Mn(π), since the original tensor network is connected, the graph Gπ = (Kπ ,Fπ) corre-
sponding to each partition π must also be connected. Consequently, applying Lemma 3.7 be-
low (with pe(M) = M for every edge e), there exists a deterministic limit value M(Gπ,Ddiag)

depending only on Gπ and Ddiag such that, almost surely, limn→∞ Mn(π) = M(Gπ,Ddiag).
Applying these statements to every π in (3.20), we obtain

lim
n→∞E

[
valT (W;x1:k)

] = ∑
even π∈P

( ∏
R∈Kπ

E
[
QR(X1:k)

])
M(Gπ,Ddiag)

=: lim-valT (X1:k,Ddiag).

This limit value depends only on T , the joint law of (X1, . . . ,Xk), and the limit diagonal
distribution Ddiag, and does not depend on the specific matrix M, concluding the proof. �

LEMMA 3.7. Let M ∈R
n×n be a deterministic symmetric matrix with limit diagonal dis-

tribution Ddiag, satisfying the following condition: For any fixed ε > 0, any diagonal mono-
mial p(x) ∈ �〈x〉, and all large n,

max
i �=j

∣∣p(M)[i, j ]∣∣ < n−1/2+ε.

Let G = (K,F) be a connected multi-graph such that the external degree degext(R) is even
for every vertex R ∈ K. For every edge e ∈ F , let pe(x) be a diagonal monomial labeling this
edge. Then there exists a value M(G,Ddiag) depending only on G and Ddiag such that

lim
n→∞

1

n

∗∑
j∈[n]K

∏
e=(R,R′)∈F

pe(M)[jR, jR′ ] = M(G,Ddiag).

PROOF. For convenience, we denote

Mn(G) := 1

n

∗∑
j∈[n]K

∏
e=(R,R′)∈F

pe(M)[jR, jR′ ].

We proceed by induction over the number of vertices |K|. For the base case |K| = 1, all edges
of F must be self-loops, and we have

Mn(G) = 1

n

n∑
j=1

∏
e∈F

pe(M)[j, j ] = 1

n
Tr

∏
e∈F

�
(
pe(M)

)
.
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Here
∏

e∈F �(pe(x)) is a diagonal monomial. Then, since M has a limit diagonal distribution,
the above quantity admits a limit value as n → ∞.

Next, supposing that the result is true for every multi-graph G = (K,F) with |K| ≤ K , we
prove the result for |K| = K + 1. Define K∗ := {R ∈K : degext(R) = 2}.

First, consider the case where |K∗| = 0. Then

• Since every degext(R) is even, we must have degext(R) ≥ 4 for all R ∈ K. Therefore, de-
noting by Fext ⊆ F those edges that are not self-loops, we have 4|K| ≤ 2|Fext|.

• We may assume without loss of generality that each vertex R ∈ K has exactly one self-
loop: For R without a self-loop, we may add the self-loop e = (R,R) with the identity
label pe(M) = Id. For R with multiple self-loops {e ∈ F : e = (R,R)}, we may replace
these by a single self-loop e′ = (R,R) having label pe′(M) = ∏

e∈F :e=(R,R) �(pe(M)).
These operations do not change the value of Mn(G).

We denote by eR the unique self-loop on each vertex R ∈ K. Then it follows that

∣∣Mn(G)
∣∣ ≤ 1

n

∗∑
j∈[n]K

∏
e=(R,R′)∈F

∣∣pe(M)[jR, jR′ ]∣∣
≤ 1

n

∑
j∈[n]K

∏
R∈K

∣∣peR
(M)[jR, jR]∣∣ · ∏

e∈Fext

max
i �=j

∣∣pe(M)[i, j ]∣∣
≤ 1

n
· n(−1/2+ε)|Fext| · ∑

j∈[n]K

∏
R∈K

∣∣peR
(M)[jR, jR]∣∣

≤ n−1+ε|Fext| ∏
R∈K

(
1

n

n∑
j=1

∣∣peR
(M)[j, j ]∣∣).

Here, the second inequality uses the constraint that indices jR , jR′ are distinct if R �= R′, the
third inequality holds for any fixed ε > 0 and all large n by the given assumption on M, and
the last inequality applies n−|Fext|/2 ≤ n−|K| as follows from the above bound 4|K| ≤ 2|Fext|.
By Cauchy–Schwarz, we have(

1

n

n∑
j=1

∣∣peR
(M)[j, j ]∣∣)2

≤ 1

n

n∑
j=1

peR
(M)[j, j ]2 = 1

n
Tr�

(
peR

(M)
)
�

(
peR

(M)
)
,

where �(peR
(x))�(peR

(x)) is a diagonal monomial. Then this quantity has a limit value as
n → ∞, for each R ∈ K. Choosing ε < 1/|Fext|, we conclude that Mn(G) → 0.

Next, consider the case where |K∗| > 0. We pick an arbitrary vertex R∗ ∈ K∗, and let
R1,R2 ∈ K be its two neighbors (where R1 �= R∗ and R2 �= R∗, but possibly R1 = R2).
Denote e1 = (R∗,R1), e2 = (R∗,R2), and assume without loss of generality as above that R∗
has a unique self-loop e∗ = (R∗,R∗). Then

Mn(G) = 1

n

∗∑
j∈[n]K\R∗

∏
e=(R,R′)∈F\{e1,e2}

pe(M)[jR, jR′ ]

×
n∑

jR∗=1
jR∗ /∈{jS :S∈K\R∗}

pe1(M)[jR∗, jR1]pe2(M)[jR∗, jR2]pe∗(M)[jR∗, jR∗]

:= I − ∑
S∈K\R∗

II(S),
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where we set

I = 1

n

∗∑
j∈[n]K\R∗

( ∏
e=(R,R′)∈F\{e1,e2}

pe(M)[jR, jR′ ]
)

· (
pe1�(pe∗)pe2

)
(M)[jR1, jR2],

II(S) = 1

n

∗∑
j∈[n]K\R∗

( ∏
e=(R,R′)∈F\{e1,e2}

pe(M)[jR, jR′ ]
)

× pe1(M)[jS, jR1]pe2(M)[jS, jR2]pe∗(M)[jS, jS].
Here I corresponds to the full summation over jR∗ ∈ [n] without restriction, and each term
−II(S) removes the contribution from the case jR∗ = jS .

The term I is exactly equal to Mn(G
′) for a multi-graph G′ obtained from G by re-

moving vertex R∗ and the edges e1, e2, adding a new edge between R1 and R2 with label
pe1(x)�(pe∗(x))pe2(x). This graph G′ is connected and has one fewer vertex than G. Each
remaining vertex in G′ has the same external degree as in G if R1 �= R2, and if R1 = R2
then the external degree of R1 = R2 is reduced by 2. In both cases, all external degrees in
G′ remain even. Then applying the inductive hypothesis to G′, limn→∞ I exists and depends
only on (G′,Ddiag).

Each term II(S) is exactly equal to Mn(G
′) for a multi-graph G′ that merges the vertices

S and R∗ of G into a single vertex S∗ in G′, and preserves all edges and their labels. The new
vertex S∗ in G′ has external degree equal to degext(S)+degext(R∗)−2|{e ∈ F : e = (S,R∗)}|,
which is even. It is clear that G′ remains connected, and the external degrees of all other
vertices of G′ remain the same as in G. Then applying the inductive hypothesis to G′, also
limn→∞ II(S) exists and depends only on (G′,Ddiag), completing the induction. �

REMARK 3.8. In the language of [52], our proof of Lemma 3.6 shows that if W is invari-
ant in law under conjugation by permutations, then the expected tensor network value has a
limit if W converges in traffic distribution, and this value is universal across matrices having
the same limiting traffic distribution. Our arguments of Lemmas 3.6 and 3.7 further establish
that if W is also invariant under conjugation by random signs and satisfies the additional de-
localization conditions of Definition 2.6, then it has a limit traffic distribution that is uniquely
determined by its limit diagonal law.

We provide in Appendix C an alternative computation of lim-valT (X1, . . . ,Xk,Ddiag) for
the special case where W is orthogonally invariant in law, using the orthogonal Weingarten
calculus [23]. We establish the asymptotic freeness statement of Proposition 2.16(b) also in
Appendix C via this computation.

Finally, we conclude the proof of Lemma 2.14 by showing concentration of the tensor
network value.

LEMMA 3.9. Let E be the expectation over � conditional on M and x1, . . . ,xk . Under
the setting of Lemma 2.14, almost surely as n → ∞,

valT (W;x1, . . . ,xk) −E
[
valT (W;x1, . . . ,xk)

] → 0.

PROOF. Let us write as shorthand val(W) = valT (W;x1:k). By Jensen’s inequality,

E
[(

val(W) −Eval(W)
)4] ≤ E

[(
val(W) − val(W̄)

)4]
,

where W̄ = �̄M�̄
�

, �̄ is an independent copy of �, and the expectation on the right side is
over (�, �̄). We proceed to bound this expectation.
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Recall the tensor network T = (V,E, {qv}v∈V). Let (V(1),E (1)), . . . , (V(4),E (4)) denote
four copies of the tree (V,E). For any subset A ⊆ {1,2,3,4}, let

(VA,EA) ∼= ⊔
a∈A

(
V(a),E (a))

denote the graph that is the disjoint union of those copies corresponding to a ∈ A, that
is, (VA,EA) has |A| connected components, each a copy of (V,E). We label each ver-
tex v ∈ V(a) ⊆ VA with the same label qv as in the original tensor network T . We write
Ā = {1,2,3,4} \ A as the complement of A, and �̄ and σ̄ for the random sign matrix and
random permutation corresponding to �̄. Then we have, similar to (3.16),(

val(W) − val(W̄)
)4

= ∑
A⊆{1,2,3,4}

(−1)|A| ∏
a∈A

val(W)
∏
a∈Ā

val(W̄)

= ∑
A⊆{1,2,3,4}

(−1)|A| 1

n4

∑
i∈[n]VA

∏
v∈VA

qv

(
x1:k[iv])

× ∏
(u,v)∈EA

�[iu] · �[iv] · M[
σ(iu), σ (iv)

]
× ∑

j∈[n]VĀ

∏
v∈VĀ

qv

(
x1:k[jv]) ∏

(u,v)∈EĀ

�̄[ju] · �̄[jv] · M[
σ̄ (ju), σ̄ (jv)

]
.

(3.24)

Let PA be the set of partitions of VA, and denote by π(i) ∈ PA the partition induced by
i ∈ [n]VA . For each π ∈ PA, let Gπ = (Kπ ,Fπ) be the image of (VA,EA) under π , in the
sense of Definition 3.1. Note that here, Gπ is not necessarily connected but can consist of up
to |A| ≤ 4 connected components. Define Bn(π) and Qn(π) exactly as in (3.21)–(3.22), let
C(π) denote the set of connected components of Gπ , and define

(3.25) Mn(π) = 1

n|C(π)|
∗∑

j∈[n]Kπ

∏
(R,S)∈Fπ

M[jR, jS].

This coincides with our previous definition of (3.23) when C(π) = 1. Define similarly Bn(π̄),
Qn(π̄), Mn(π̄) via the graph Gπ̄ = (Kπ̄ ,Fπ̄ ) that is, the image of (VĀ,EĀ) under π̄ ∈ PĀ.
Then, stratifying the sums over i and j by π(i) ∈ PA and π(j) ∈ PĀ, and taking the expecta-
tion in (3.24) over (�, �̄) using (3.18)–(3.19), we get analogously to (3.20)

E
[(

val(W) − val(W̄)
)4]

= ∑
A⊆{1,2,3,4}

(−1)|A| ∑
even π∈PA

even π̄∈PĀ

n|C(π)|+|C(π̄)|

n4

× Bn(π)Bn(π̄) · Qn(π)Qn(π̄) · Mn(π)Mn(π̄).

(3.26)

For π ∈PA and π̄ ∈PĀ, we define τ = π ⊕ π̄ ∈ P{1,2,3,4} as the combined partition of all
vertices in V{1,2,3,4} given by taking the blocks of both π and π̄ . We write Gτ = (Kτ ,Fτ )

as the image of (V{1,2,3,4},E{1,2,3,4}) under τ ; this is the disjoint union of Gπ and Gπ̄ , so in
particular

|Kτ | = |Kπ | + |Kπ̄ |, ∣∣C(τ )
∣∣ = ∣∣C(π)

∣∣ + ∣∣C(π̄)
∣∣.
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We now proceed to approximate Bn(π)Bn(π̄), Qn(π)Qn(π̄), and Mn(π)Mn(π̄) by quanti-
ties that depend only on τ , and not on the individual partitions π , π̄ . We write O(n−ν) for
any error of magnitude at most C/nν for a constant C := C(π, π̄) > 0 and all large n.

For Bn, observe from the definition (3.21) that

Bn(τ) = n

n
· n

n − 1
· n

n − 2
· . . . · n

n − |Kτ | + 1

= 1 +
∑|Kτ |−1

k=0 k

n
+ O

(
n−2) = 1 + n−1

(|Kτ |
2

)
+ O

(
n−2)

.

Similarly,

Bn(π)Bn(π̄) = 1 + n−1
((|Kπ |

2

)
+

(|Kπ̄ |
2

))
+ O

(
n−2)

.

In particular,

(3.27) Bn(π)Bn(π̄) = Bn(τ) + O
(
n−1) = 1 + O

(
n−1)

.

In the case where Gτ = (Kτ ,Fτ ) has 4 connected components, that is, each block of both
π and π̄ is contained within a single copy V(a) of V , let us write Gτ(a) = (Kτ (a),Fτ (a))

for the component corresponding to the partition of V(a). Given any π ∈ PA, π̄ ∈ PĀ, and
τ = π ⊕ π̄ , we then have(|Kτ |

2

)
=

(|Kπ |
2

)
+

(|Kπ̄ |
2

)
+ ∑

a∈A,b/∈A

∣∣Kτ (a)
∣∣ · ∣∣Kτ (b)

∣∣
because to choose two elements of Kτ , we may choose them both from Kπ , both from Kπ̄ ,
or one from Kτ (a) ⊆ Kπ and the other from Kτ (b) ⊆ Kπ̄ for some a ∈ A, b ∈ Ā. This gives
a refinement of (3.27),

(3.28) Bn(π)Bn(π̄) = Bn(τ) + ∑
a∈A,b/∈A

Bn(τ, a, b) + O
(
n−2)

,

where we define Bn(τ, a, b) = −n−1|Kτ (a)| · |Kτ (b)|. Here Bn(τ, a, b) = O(n−1).
For Qn, observe from the definition (3.22) that the distinction between Qn(π)Qn(π̄) and

Qn(τ) is that the former does not restrict indices of summation corresponding to π to be
distinct from those corresponding to π̄ , that is,

Qn(π)Qn(π̄) = Qn(τ) + 1

n|Kτ |
∗∑

i∈[n]Kπ

∗∑
j∈[n]Kπ̄

1{there is at least 1 pair of coinciding

indices between i and j} × ∏
R∈Kπ

QR

(
x1:k[iR]) ∏

R′∈Kπ̄

QR′
(
x1:k[jR′ ]).

By Lemma 3.3, the quantities Qn(π), Qn(π̄), and Qn(τ) all have deterministic limit values
as n → ∞. Furthermore, by a simple inclusion-exclusion argument together with Lemma 3.3,
in the above double summation the contribution from pairs (i, j) coinciding in exactly k pairs
of indices is of size O(n−k). Then in particular,

(3.29) Qn(π)Qn(π̄) = Qn(τ) + O
(
n−1) = O(1).
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In the case where Gτ has 4 connected components, let us write more explicitly

Qn(π)Qn(π̄)

= Qn(τ) + 1

n|Kτ |
∗∑

i∈[n]Kπ

∗∑
j∈[n]Kπ̄

1{there is exactly 1 pair of coinciding

indices between i and j} × ∏
R∈Kπ

QR

(
x1:k[iR]) ∏

R′∈Kπ̄

QR′
(
x1:k[jR′ ]) + O

(
n−2)

.

We may choose the coinciding index pair by choosing 1 vertex R ∈ Kτ (a) ⊆ Kπ for some
a ∈ A, and 1 vertex R′ ∈ Kτ (b) ⊆ Kπ̄ for some b ∈ Ā. Now viewing R ∈ π and R′ ∈ π̄

as disjoint blocks of vertices of V , note that if S = R ∪ R′ ⊆ V is the block obtained upon
merging R, R′, then by definition QS = QR · QR′ . Thus, the above is equivalent to

(3.30) Qn(π)Qn(π̄) = Qn(τ) + ∑
a∈A,b/∈A

Qn(τ, a, b) + O
(
n−2)

,

where we define

Qn(τ, a, b) = 1

n|Kτ |
∑

j∈[n]Kτ

1
{
j has |Kτ | − 1 distinct indices, and 1 index from

Kτ (a) coincides with 1 index from Kτ (b)
} × ∏

R∈Kτ

QR

(
x1:k[jR]).

By the preceding arguments, Qn(τ, a, b) = O(n−1).
For Mn, consider any A ⊆ {1,2,3,4} and π ∈ PA. Recall that C(π) is the set of connected

components of Gπ . Each component in C(π) takes the form Gσ = (Kσ ,Fσ ) where σ is a
partition that contains a subset of the blocks of π . Let us write

∑∗∗
j∈[n]Kπ

for the summation
over tuples j such that indices corresponding to each component Kσ ⊆ Kπ are distinct, but
they are not necessarily distinct across different components. Recalling (3.25), define

M∗∗
n (π) := ∏

Gσ ∈C(π)

Mn(σ ) = 1

n|C(π)|
∗∗∑

j∈[n]Kπ

∏
(R,S)∈Fπ

M[jR, jS],

where M∗∗
n (π) is now a multiplicative function over connected components of π . Since each

Gσ is connected, Lemma 3.7(a) implies the existence of the limit

(3.31) M∗∗
n (π) → ∏

Gσ ∈C(π)

M(Gσ ,Ddiag).

Comparing the definitions of M∗∗
n (π) and Mn(π), we have M∗∗

n (π) = Mn(π) if Gπ has a
single connected component |C(π)| = 1, and more generally

Mn(π) = M∗∗
n (π) − 1

n|C(π)|
∗∗∑

j∈[n]Kπ

1{some indices of j for different connected

components of Gπ coincide} × ∏
(R,S)∈Fπ

M[jR, jS].

For each j where this summand is nonzero, define π ′(j) ∈ PA as the partition that merges
those blocks of π where the corresponding indices of j coincide. Let P(π) be the set of all
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possible such partitions π ′(j). (If |C(π)| = 1, then P(π) = ∅.) Then, stratifying the summa-
tion over j by π ′(j) ∈ P(π), letting Gπ ′ = (Kπ ′,Fπ ′) be the image of (VA,EA) under π ′, and
identifying the sum over {j : π ′(j) = π ′} as a sum over one distinct index for each R ∈Kπ ′ ,

Mn(π) = M∗∗
n (π) − 1

n|C(π)|
∑

π ′∈P(π)

∗∑
j∈[n]Kπ ′

∏
(R,S)∈Fπ ′

M[jR, jS]

= M∗∗
n (π) − ∑

π ′∈P(π)

1

n|C(π)|−|C(π ′)| Mn

(
π ′).

(3.32)

For any π ′ ∈ P(π), its number of connected components satisfies |C(π ′)| ≤ |C(π)| − 1. In
particular, if |C(π)| = 2, then |C(π ′)| = 1 for all π ′ ∈ P(π), so Mn(π

′) = M∗∗
n (π ′) on the

right side of (3.32). If |C(π)| ≥ 3, then we may apply this identity (3.32) recursively to further
approximate Mn(π

′) on the right side of (3.32) by M∗∗
n (π ′), until only instances of M∗∗

n and
no instances of Mn remain. Applying (3.31) to each instance of M∗∗

n in this final expression,
this shows that

Mn(π) = M∗∗
n (π) + O

(
n−1) = O(1).

Applying this for π ∈ PA, π̄ ∈ PĀ, and τ = π ⊕ π̄ , and recalling that M∗∗
n is multiplicative

across connected components so that M∗∗
n (τ ) = M∗∗

n (π)M∗∗
n (π̄), this yields

(3.33) Mn(π)Mn(π̄) = Mn(τ) + O
(
n−1) = O(1).

When Gτ has 4 connected components, let us derive a more explicit expression for this
O(n−1) error. Applying (3.32) and the above arguments to τ , we have

Mn(τ) = M∗∗
n (τ ) − 1

n

∑
τ ′∈P(τ ):|C(τ ′)|=|C(τ )|−1

M∗∗
n

(
τ ′) + O

(
n−2)

.

If τ ′ ∈ P(τ ) and |C(τ ′)| = |C(τ )| − 1, then τ ′ is obtained by picking exactly two connected
components of Gτ , say Gτ(a) = (Kτ (a),Fτ (a)) and Gτ(b) = (Kτ (b),Fτ (b)), and merging
one or more pairs of blocks R ∈ Kτ (a) with R′ ∈ Kτ (b). We write the set of such partitions
τ ′ ∈ P(τ ) corresponding to the two fixed indices a �= b as P(τ, a, b). Then

Mn(τ) = M∗∗
n (τ ) − 1

n

∑
1≤a<b≤4

∑
τ ′∈P(τ,a,b)

M∗∗
n

(
τ ′) + O

(
n−2)

.

Similarly

Mn(π) = M∗∗
n (π) − 1

n

∑
a<b

a,b∈A

∑
π ′∈P(π,a,b)

M∗∗
n

(
π ′) + O

(
n−2)

,

Mn(π̄) = M∗∗
n (π̄) − 1

n

∑
a<b

a,b∈Ā

∑
π̄ ′∈P(π̄,a,b)

M∗∗
n

(
π̄ ′) + O

(
n−2)

.

Taking the product of these two expressions and applying multiplicativity of M∗∗
n , we deduce

(3.34) Mn(π)Mn(π̄) = Mn(τ) + ∑
a∈A,b∈Ā

Mn(τ, a, b) + O
(
n−2)

,

where we define Mn(τ, a, b) = 1
n

∑
τ ′∈P(τ,a,b) M

∗∗
n (τ ′). Here again, Mn(τ, a, b) = O(n−1).

Equipped with these approximations, we now bound (3.26). Given τ ∈ P{1,2,3,4}, let A(τ )

be the set of A ⊆ {1,2,3,4} for which τ = π ⊕ π̄ for some π ∈ PA and π̄ ∈ PĀ, that is,
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A ∈ A(τ ) if and only if each connected component of Gτ corresponds to vertices belonging
entirely to VA or entirely to VĀ. Note that given τ = π ⊕ π̄ and A ∈ A(τ ), this uniquely
determines π ∈ PA and π̄ ∈ PĀ. Then, stratifying the summation in (3.26) by the number of
connected components |C(τ )| = |C(π)| + |C(π̄)|, we have

E
[(

val(W) − val(W̄)
)4] = E1 + E2 + E3 + E4,

where

Ej = 1

n4−j

∑
even τ∈P{1,2,3,4}

|C(τ )|=j

∑
A∈A(τ )

(−1)|A|Bn(π)Bn(π̄) · Qn(π)Qn(π̄) · Mn(π)Mn(π̄).

Here, π and π̄ on the right side denote those partitions that are uniquely determined by
τ = π ⊕ π̄ and A ∈ A(τ ); we omit their dependence on (τ,A) for brevity.

Applying the simple the bound Bn(π)Bn(π̄)Qn(π)Qn(π̄)Mn(π)Mn(π̄) = O(1) from
(3.27), (3.29), and (3.33), we get E1 = O(n−3) and E2 = O(n−2).

For E3, applying the approximation Bn(π)Bn(π̄) = Bn(τ) + O(n−1), Qn(π)Qn(π̄) =
Qn(τ) + O(n−1), and Mn(π)Mn(π̄) = Mn(τ) + O(n−1) from (3.27), (3.29), and (3.33), we
have

E3 = 1

n

∑
even τ∈P{1,2,3,4}:|C(τ )|=3

Bn(τ)Qn(τ)Mn(τ)
∑

A∈A(τ )

(−1)|A| + O
(
n−2)

.

Importantly, the leading term Bn(τ)Qn(τ)Mn(τ) does not depend on A, so we have fac-
tored it outside of the sum over A, and the lower order terms all contribute to the O(n−2)

error. For any τ where |C(τ )| = 3, we have
∑

A∈A(τ )(−1)|A| = 0: For example, if the 3
connected components of Gτ correspond to vertices in V1, V2, and V{3,4}, then A(τ ) =
{∅, {1}, {2}, {1,2}, {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}. Thus, we get E3 = O(n−2).

Finally, for E4, we apply the finer approximations (3.28), (3.30), and (3.34) which hold
when |C(τ )| = 4. In this case A(τ ) consists of all subsets of {1,2,3,4}, so

E4 = ∑
even τ∈P{1,2,3,4}:|C(τ )|=4

(
Bn(τ)Qn(τ)Mn(τ)

∑
A⊆{1,2,3,4}

(−1)|A|

+ ∑
a �=b∈{1,2,3,4}

[
Bn(τ)Qn(τ)Mn(τ, a, b) + Bn(τ)Qn(τ, a, b)Mn(τ)

+ Bn(τ, a, b)Qn(τ)Mn(τ)
] ∑
A⊆{1,2,3,4}
a∈A,b∈Ā

(−1)|A|
)

+ O
(
n−2)

.

Importantly, we have exchanged the order of summations over A and over (a ∈ A,b ∈ Ā), and
used that each term Bn(τ, a, b), Qn(τ, a, b), Mn(τ, a, b) does not depend on the assignment
of the remaining indices {1,2,3,4}\{a, b} to A and Ā. Then, applying

∑
A⊆{1,2,3,4}(−1)|A| =

0 and also
∑

A⊆{1,2,3,4}:a∈A,b∈Ā(−1)|A| = 0 for each fixed pair a, b, we get E4 = O(n−2).

Combining the above, we have E[(val(W) − Eval(W))4] ≤ C/n2 for a constant C > 0
and all large n. Then Lemma 3.9 follows from Markov’s inequality and the Borel–Cantelli
lemma. �

Combining Lemmas 3.6 and 3.9 completes the proof of Lemma 2.14.
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3.3. Universality of AMP via polynomial approximation. We now prove Lemma 2.12,
showing that the universality of AMP for Lipschitz nonlinearities5 can be obtained from
universality of tensor network values by polynomial approximation.

For the given AMP algorithm with Lipschitz nonlinearities ut+1(·), we approximate it by
an auxiliary AMP algorithm with polynomial nonlinearities ũt+1(·), where each ũt+1 is an
L2-approximation for ut+1 with respect to the state evolution of its arguments. A similar
method of approximation was recently used in [33]. Combining this approximation, the va-
lidity of state evolution for polynomial AMP applied to G, and the universality of tensor
network values for G and W, we show that iterates of the Lipschitz and polynomial AMP
algorithms applied to W are close in (normalized) �2 distance. This will imply the desired
W2-convergence of the AMP iterates (2.1) to their state evolution.

We construct the auxiliary AMP algorithm as follows: Fix any ε > 0. For the same ini-
tialization ũ1 = u1 and vectors of side information f1, . . . , fk as in the given Lipschitz AMP
algorithm (2.1), define the iterates for t = 1,2,3, . . .

z̃t = Wũt −
t∑

s=1

b̃ts ũs,

ũt+1 = ũt+1(z̃1, . . . , z̃t , f1, . . . , fk)

(3.35)

such that

1. Each coefficient b̃ts is defined by ũ2, ũ3, . . . , ũt and the orthogonally invariant prescrip-
tion (2.6).

2. Let �̃t be the orthogonally invariant prescription (2.5), and let (U1,F1:k, Z̃1:t ) be the
state evolution where Z̃1:t ∼ N (0, �̃t ) is independent of (U1,F1:k). Then each polynomial
ũt+1(·) is chosen to satisfy

(3.36) E
[(

ũt+1(Z̃1:t , F1:k) − ut+1(Z̃1:t , F1:k)
)2]

< ε.

3. For any fixed arguments z1:(t−1) and f1:k , the function zt �→ ũt+1(z1:t , f1:k) has non-
linear dependence in zt .

We write the iterates as z̃t (W), ũt (W) if we want to make explicit that the algorithm is
evaluated on the matrix W.

The choice of ũt+1 in condition (2) above is possible by the polynomial density condition
in Assumption 2.1, and by Lemma A.1 which ensures that the same density condition holds
for (U1,F1:k, Z̃1:t ). If condition (3) does not hold for this polynomial ũt+1, then it must hold
upon adding to ũt+1 a small multiple of z2

t . The conditions of [37], Assumption 4.2, are
verified by Assumption 2.1, the condition Var[D] > 0 given in Lemma 2.12, and the above
condition (3). Then [37], Theorem 4.3, ensures, almost surely as n → ∞,

(3.37)
(
u1, f1, . . . , fk, z̃1(G), . . . , z̃t (G)

) W→ (U1,F1, . . . ,Fk, Z̃1, . . . , Z̃t ).

LEMMA 3.10. Fix any t ≥ 1. Let (ũ1, z̃1, . . . , z̃t , ũt ) be the iterates of any algorithm
of the form (3.35), where {b̃ts} are scalar constants and ũt+1 : Rt+k → R are polynomial
functions applied row-wise. Then for any polynomial p : R2t+k → R and for some finite set
F of diagonal tensor networks in k + 1 variables,〈

p(ũ1, . . . , ũt , z̃1, . . . , z̃t , f1, . . . , fk)
〉 = ∑

T ∈F
valT (W;u1, f1, . . . , fk).

5By this we mean that each nonlinearity ut+1(·) is Lipschitz in its first t arguments z1, . . . , zt .
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PROOF. First note that〈
p(ũ1:t , z̃1:t , f1:k)

〉 = valT (W; ũ1:t , z̃1:t , f1:k),

where T is a tensor network with only one vertex v whose associated polynomial is qv = p.
We claim that given any tensor network T = (V,E, {qv}v∈V) in the variables (ũ1:t , z̃1:t ,

f1:k), we can decompose

valT (W; ũ1:t , z̃1:t , f1:k) = ∑
T ′∈F

valT ′(W; ũ1:t , z̃1:(t−1), f1:k),(3.38)

where F is a finite set of tensor networks in the variables (ũ1:t , z̃1:(t−1), f1:k). To show this,
recall that

valT (W; ũ1:t , z̃1:t , f1:k) = 1

n

∑
i∈[n]V

∏
v∈V

qv

(
ũ1:t [iv], z̃1:t [iv], f1:k[iv])Wi|T .

Applying z̃t = Wũt − ∑t
s=1 b̃ts ũs and expanding each qv in terms of (ũ1:t , z̃1:(t−1), f1:k) and

Wũt , we have

qv

(
ũ1:t [iv], z̃1:t [iv], f1:k[iv])
=

�v∑
θ=0

qv,θ

(
ũ1:t [iv], z̃1:(t−1)[iv], f1:k[iv]) ·

(
n∑

j=1

W [iv, j ]ũt [j ]
)θ

,

where �v is the maximum degree of qv in z̃t , and qv,0, qv,1, . . . , qv,�v are polynomials that
depend on qv and {b̃ts}. Therefore

valT (W; ũ1:t , z̃1:t , f1:k) = 1

n

∑
θ∈∏

v∈V {0,...,�v}

∑
i∈[n]V

∏
v∈V

qv,θv

(
ũ1:t [iv], z̃1:(t−1)[iv], f1:k[iv])

·
(

n∑
j=1

W [iv, j ]ũt [j ]
)θv ∏

(u,v)∈E
W [iu, iv].

For each θ ∈ ∏
v∈V{0, . . . ,�v}, we define a new tensor network Tθ from T as follows:

(1) for each v ∈ V , replace the associated polynomial qv by qv,θv ; (2) for each v ∈ V ,
connect v with θv new vertices, where the associated polynomial for each new vertex is
q(ũ1:t , z̃1:(t−1), f1:k) = ũt . Then the above is precisely

valT (W; ũ1:t , z̃1:t , f1:k) = ∑
θ∈∏

v∈V {0,...,�v}
valTθ

(W; ũ1:t , z̃1:(t−1), f1:k)

which shows the claim (3.38).
We next claim that for any tensor network T in the variables (ũ1:t , z̃1:(t−1), f1:k), we have

valT (W; ũ1:t , z̃1:(t−1), f1:k) = valT ′(W; ũ1:(t−1), z̃1:(t−1), f1:k)(3.39)

for a tensor network T ′ in the variables (ũ1:(t−1), z̃1:(t−1), f1:k). This holds because ũt =
ũt (z̃1:(t−1), f1:k) is itself a polynomial of (z̃1:(t−1), f1:k), so for each vertex v of T , we may
write

qv

(
ũ1:(t−1), ũt (z̃1:(t−1), f1:k), z̃1:(t−1), f1:k

) = q̃v(ũ1:(t−1), z̃1:(t−1), f1:k)

for some polynomial q̃v . Then we can define T ′ by replacing each polynomial qv with q̃v and
preserving all other structures of T .

Having shown the reductions (3.38) and (3.39), the proof is completed by recursively ap-
plying these reductions for t, t − 1, t − 2, . . . ,1. �
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Combining the above lemma, the state evolution (3.37) for the polynomial AMP algorithm
applied to G, and the given condition in Lemma 2.12 that tensor network values have the same
limit for G and W, we obtain the following state evolution guarantee for the polynomial AMP
algorithm applied to W.

LEMMA 3.11. In the setting of Lemma 2.12, for any fixed t ≥ 1, almost surely as n → ∞(
u1, f1, . . . , fk, z̃1(W), . . . , z̃t (W)

) W→ (U1,F1, . . . ,Fk, Z̃1, . . . , Z̃t ).

PROOF. By Lemma 3.10, for any polynomial p :Rt+k+1 →R, we have〈
p

(
u1, f1:k, z̃1:t (W)

)〉 = ∑
T ∈F

valT (W;u1, f1:k),

where F is a finite set of diagonal tensor networks, and the same decomposition holds for
G in place of W. Then by the condition given in Lemma 2.12 and the state evolution (3.37),
almost surely

(3.40) lim
n→∞

〈
p

(
u1, f1:k, z̃1:t (W)

)〉 = lim
n→∞

〈
p

(
u1, f1:k, z̃1:t (G)

)〉 = E
[
p(U1,F1:k, Z̃1:t )

]
.

In particular, this shows that on an event E having probability 1, all mixed moments of the
empirical distribution of rows of (u1, f1:k, z̃1:t (W)) converge to those of (U1,F1:k, Z̃1:t ).
Lemma A.1 implies that the joint law of (U1,F1:k, Z̃1:t ) is uniquely determined by its
mixed moments, so on this event E , the empirical distribution of rows converges weakly
to (U1,F1:k, Z̃1:t ) (cf. [10], Theorem 30.2, which extends to the multivariate setting by the
same proof). On this event E , also

lim
n→∞

1

n

n∑
i=1

∥∥(
u1[i], f1:k[i], z̃1:t (W)[i])∥∥2d

2 = E
[∥∥(U1,F1:k, Z̃1:t )

∥∥2d
2

]
for each integer d ≥ 1, which shows (cf. [73], Definition 6.8 and Theorem 6.9) that(

u1, f1:k, z̃1:t (W)
) W→ (U1,F1:k, Z̃1:t ). �

REMARK 3.12. Lemmas 3.11, 2.13, and 2.14 already imply universality of the state
evolution for polynomial AMP algorithms, without requiring the assumption ‖W‖op < C.

We now proceed with an inductive comparison of the given Lipschitz AMP algorithm
(2.1) and the polynomial AMP algorithm (3.35), both applied to W. For each t ≥ 1,
let (U1,F1:k,Z1:t ) describe the state evolution of the given Lipschitz AMP algorithm
(2.1), where Z1:t ∼ N (0,�t ) and �t is nonsingular by assumption in Lemma 2.12. Let
(U1,F1:k, Z̃1:t ) describe the state evolution of the auxiliary AMP algorithm (3.35) where
Z̃1:t ∼ N (0, �̃t ). We write as shorthand

Us+1 = us+1(Z1:s,F1:k), ∇Us+1 = (∂1us+1, . . . , ∂sus+1)(Z1:s,F1:k),

Ũs+1 = ũs+1(Z̃1:s,F1:k), ∇Ũs+1 = (∂1ũs+1, . . . , ∂sũs+1)(Z̃1:s,F1:k),

where the gradients are with respect to the first s arguments.
All subsequent constants may depend on the Lipschitz nonlinearities u2, u3, u4, . . ., the

corresponding Onsager coefficients {bts} and state evolution covariances {�t }, and joint laws
of (U1,F1:k,Z1:t ), which we treat as fixed throughout this argument.
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LEMMA 3.13. Fix t ≥ 1. Suppose (3.36) holds for ε > 0 and every polynomial
ũ2, . . . , ũt+1. Suppose also ‖�t − �̃t‖op < δ for δ > 0. Then for any sufficiently small δ,
ε, we have

t
max
s=1

∥∥E[∇Us+1] −E[∇Ũs+1]
∥∥

2 < ι(δ, ε),
t+1
max
r,s=1

∣∣E[UrUs] −E[Ũr Ũs]
∣∣ < ι(δ, ε)

for a constant ι(δ, ε) > 0 satisfying ι(δ, ε) → 0 as (δ, ε) → (0,0).

PROOF. We write ι(δ, ε) for any positive constant satisfying ι(δ, ε) → 0 as (δ, ε) →
(0,0) and changing from instance to instance. Since ‖�t −�̃t‖op < δ, �t is invertible, and �s

is the upper-left submatrix of �t for s ≤ t , for sufficiently small δ > 0 and each s = 1, . . . , t

we have

(3.41)
∥∥�−1

s − �̃
−1
s

∥∥
op < ι(δ, ε), E

[‖Z1:s − Z̃1:s‖2
2
]
< ι(δ, ε)

for a coupling of Z1:s and Z̃1:s .
We introduce the additional abbreviations for the intermediate quantities

Us+1 = us+1(Z̃1:s,F1:k), ∇Us+1 = (∂1us+1, . . . , ∂sus+1)(Z̃1:s,F1:k).

Then for any s ∈ [t],

(3.42)

∥∥E[∇Us+1] −E[∇Ũs+1]
∥∥

2

≤ ∥∥E[∇Us+1] −E[∇Us+1]
∥∥

2 + ∥∥E[∇Us+1] −E[∇Ũs+1]
∥∥

2.

Applying Stein’s lemma, (a +b+ c)2 ≤ 3(a2 +b2 + c2), and Cauchy–Schwarz, the first term
of (3.42) is bounded as∥∥E[∇Us+1] −E[∇Us+1]

∥∥2
2

= ∥∥E[
Us+1 · �−1

s Z�
1:s

] −E
[
Us+1 · �̃−1

s Z̃�
1:s

]∥∥2
2

≤ 3E
[
(Us+1 − Us+1)

2] ·E[∥∥�−1
s Z�

1:s
∥∥2

2

] + 3E
[
U

2
s+1

] ·E[∥∥(
�−1

s − �̃
−1
s

)
Z�

1:s
∥∥2

2

]
+ 3E

[
U

2
s+1

] ·E[∥∥�̃−1
s

(
Z�

1:s − Z̃�
1:s

)∥∥2
2

]
.

The latter two terms are at most ι(δ, ε) by (3.41), and for the first term we have

(3.43) E
[
(Us+1 − Us+1)

2] ≤ L2
s ·E[‖Z1:s − Z̃1:s‖2

2
]
< ι(δ, ε),

where Ls is the Lipschitz constant of us+1(·). The second term of (3.42) is bounded similarly
as ∥∥E[∇Us+1] −E[∇Ũs+1]

∥∥2
2 = ∥∥E[

Us+1 · �̃−1
s Z̃�

1:s
] −E

[
Ũs+1 · �̃−1

s Z̃�
1:s

]∥∥2
2

≤ E
[
(Us+1 − Ũs+1)

2] ·E[∥∥�̃−1
s Z̃�

1:s
∥∥2

2

]
,

where by (3.36) we have

(3.44) E
[
(Us+1 − Ũs+1)

2] = E
[(

us+1(Z̃1:s,F1:K) − ũs+1(Z̃1:s,F1:K)
)2]

< ε.

Combining these bounds and applying them to (3.42) yields the first claim of the lemma,
‖E[∇Us+1] −E[∇Ũs+1]‖2 < ι(δ, ε). For the second claim, for any r, s ∈ [t + 1], we have∣∣E[Ur+1Us+1] −E[Ũr+1Ũs+1]

∣∣ ≤ ∣∣E[
(Ur+1 − Ũr+1)Us+1

]∣∣ + ∣∣E[
Ũr+1(Us+1 − Ũs+1)

]∣∣.
Applying again Cauchy–Schwarz and the bounds (3.43) and (3.44) yields the second claim
|E[Ur+1Us+1] −E[Ũr+1Ũs+1]| < ι(δ, ε). �
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LEMMA 3.14. Fix t ≥ 1. Suppose (3.36) holds for ε > 0 and every polynomial
ũ2, . . . , ũt+1. Then for any sufficiently small ε, almost surely for all large n, we have

t
max
s=1

1√
n

∥∥zs(W) − z̃s(W)
∥∥

2 < ι(ε),
t

max
s=1

1√
n

∥∥zs(W)
∥∥

2 < C, ‖�t − �̃t‖op < ι(ε)

for constants C > 0 and ι(ε) > 0 satisfying ι(ε) → 0 as ε → 0.

PROOF. We write zt , z̃t , ut , ũt for the iterates of the Lipschitz and polynomial AMP
algorithms applied to W. We prove the extended claim that there are constants ι(ε) > 0 and
C > 0, satisfying ι(ε) → 0 as ε → 0, for which almost surely for all large n,

(a) maxt
s=1 |bts − b̃ts | < ι(ε);

(b) maxt
s=1

1√
n
‖zs − z̃s‖2 < ι(ε) and maxt

s=1
1√
n
‖zs‖2 < C;

(c) ‖�t − �̃t‖op < ι(ε);
(d) maxt

s=0
1√
n
‖us+1 − ũs+1‖2 < ι(ε) and maxt

s=0
1√
n
‖us+1‖2 < C.

We induct on t . For the base case t = 0, statements (a–c) are vacuous, and (d) holds by the
equality of initializations ũ1 = u1 and by the convergence of u1 in Assumption 2.1.

Consider any t ≥ 1, and suppose inductively that claims (a–d) all hold for t − 1. Denoting
the constants in this inductive claim for t − 1 as ιt−1(ε) and Ct−1, let us write ιt (ε) and Ct

for any positive constants depending on ιt−1(ε) and Ct−1, satisfying ιt (ε) → 0 as ε → 0 and
ιt−1(ε) → 0, and changing from instance to instance.

For (a), by the prescription (2.6), each bts is a continuous function of E[∇Us+1] for s ≤
t − 1 and E[UrUs] for 1 ≤ r ≤ s ≤ t . Then maxt

s=1 |bts − b̃ts | < ιt (ε) by statement (c) of the
inductive hypothesis and Lemma 3.13.

For (b), by the definition of zt and z̃t , we have

‖zt − z̃t‖2√
n

≤ ‖W(ut − ũt )‖2√
n

+
t∑

s=1

|bts | · ‖us − ũs‖2√
n

+
t∑

s=1

|bts − b̃ts | · ‖ũs‖2√
n

.

By the assumption that ‖W‖op ≤ C almost surely for all large n, by claim (d) of the inductive
hypothesis, and by claim (a) already shown, this is at most ιt (ε). Also,

‖zt‖2√
n

≤ ‖Wut‖2√
n

+
t∑

s=1

|bts | · ‖us‖2√
n

which similarly is at most Ct .
For (c), by the prescription (2.5), the matrix �t is (as in the proof of (a) above) a continuous

function of E[∇Us+1] for s ≤ t −1 and E[UrUs] for 1 ≤ r ≤ s ≤ t . Then ‖�t −�̃t‖op < ιt(ε)

again by statement (c) of the inductive hypothesis and Lemma 3.13.
For (d), it follows from the definitions of ut+1 and ũt+1 that

‖ut+1 − ũt+1‖2√
n

= ‖ut+1(z1:t , f1:k) − ũt+1(z̃1:t , f1:k)‖2√
n

≤ ‖ut+1(z1:t , f1:k) − ut+1(z̃1:t , f1:k)‖2√
n

+ ‖ut+1(z̃1:t , f1:k) − ũt+1(z̃1:t , f1:k)‖2√
n

.

The first term is at most ιt (ε) by statement (b) already proved and the fact that ut+1(·) is

Lipschitz. For the second term, Lemma 3.11 shows (z̃1:t , f1:k)
W→ (Z̃1:t , F1:k) almost surely
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as n → ∞, and the function (ut+1(·) − ũt+1(·))2 satisfies the polynomial growth condition
(1.1) by the given conditions for ut+1(·). Then

lim
n→∞

‖ut+1(z̃1:t , f1:k) − ũt+1(z̃1:t , f1:k)‖2
2

n

= E
[(

ut+1(Z̃1:t , F1:k) − ũt+1(Z̃1:t , F1:k)
)2]

< ε,

(3.45)

where the inequality is due to (3.36) in the construction of ũt+1. Thus ‖ut+1 − ũt+1‖2/
√

n <

ιt (ε). Similarly,

‖ut+1‖2√
n

≤ ‖ut+1(z1:t , f1:k) − ut+1(0, f1:k)‖2√
n

+ ‖ut+1(0, f1:k)‖2√
n

.

The first term is at most Ct by statement (b) already proved and the fact that ut+1(·) is Lips-
chitz. For the second term, we have limn→∞ 1

n
‖ut+1(0, f1:k)‖2

2 = E[ut+1(0,F1:k)2] which is
also at most a constant Ct . This concludes the proof of (d) and completes the induction. �

Finally, we apply Lemma 3.14 to prove Lemma 2.12.

PROOF OF LEMMA 2.12. Let u1:t , ũ1:t , z1:t , z̃1:t be the iterates of the Lipschitz AMP
algorithm and polynomial AMP algorithm applied to W. We write ι(ε) for a positive constant
such that ι(ε) → 0 as ε → 0, and changing from instance to instance.

To show W2-convergence of (u1, f1:k, z1:t ), consider any function g :Rt+k+1 →R satisfy-
ing |g(x) − g(y)| ≤ C(1 + ‖x‖2 + ‖y‖2)‖x − y‖2 for a constant C > 0. Then∣∣〈g(u1, f1:k, z1:t ) − g(u1, f1:k, z̃1:t )

〉∣∣
≤ C

n

n∑
i=1

(
1 + ∥∥(

u1[i], f1:k[i], z1:t [i])∥∥2 + ∥∥(
u1[i], f1:k[i], z̃1:t [i])∥∥2

) · ∥∥z1:t [i] − z̃1:t [i]
∥∥

2

≤ C

n

√√√√3
n∑

i=1

(
1 + ∥∥(

u1[i], f1:k[i], z1:t [i])∥∥2
2 + ∥∥(

u1[i], f1:k[i], z̃1:t [i])∥∥2
2

)

·
√√√√ n∑

i=1

∥∥z1:t [i] − z̃1:t [i]
∥∥2

2

= C

n

√√√√√3n + 6‖u1‖2
2 + 6

k∑
j=1

‖fj‖2
2 + 3

t∑
s=1

(‖zs‖2
2 + ‖z̃s‖2

2

) ·
√√√√ t∑

s=1

‖zs − z̃s‖2
2.

This implies, by the statements for z1:t in Lemma 3.14 and the convergence of (u1, f1, . . . , fk)
in Assumption 2.1, that almost surely for all large n,

(3.46)
∣∣〈g(u1, f1:k, z1:t ) − g(u1, f1:k, z̃1:t )

〉∣∣ < ι(ε).

Since (u1, f1:k, z̃1:t )
W→ (U1,F1:k, Z̃1:t ) by Lemma 3.11, we have

lim
n→∞

〈
g(u1, f1:k, z̃1:t )

〉 = E
[
g(U1,F1:k, Z̃1:t )

]
.(3.47)
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By the statement for �t in Lemma 3.14, there is a coupling of Z1:t and Z̃1:t such that
E[‖Z1:t − Z̃1:t‖2

2] < ι(ε). Then similarly∣∣E[
g(U1,F1:k,Z1:t )

] −E
[
g(U1,F1:k, Z̃1:t )

]∣∣
≤ C ·E[(

1 + ∥∥(U1,F1:k,Z1:t )
∥∥

2 + ∥∥(U1,F1:k, Z̃1:t )
∥∥

2

) · ‖Z1:t − Z̃1:t‖2
]

≤ C

√
E[3 + 6U2

1 + 6‖F1:k‖2
2 + 3‖Z1:t‖2

2 + 3‖Z̃1:t‖2
2 ·

√
E

[‖Z1:t − Z̃1:t‖2
2

]
< ι(ε).

(3.48)

Combining (3.46), (3.47), and (3.48), we obtain for a (different) constant ι(ε) > 0, almost
surely for all large n, |〈g(u1, f1:k, z1:t )〉−E[g(U1,F1:k,Z1:t )]| < ι(ε). Since ε > 0 is arbitrary
and ι(ε) → 0 as ε → 0, we conclude that limn→∞〈g(u1, f1:k, z1:t )〉 = E[g(U1,F1:k,Z1:t )].
This holds for all bounded Lipschitz functions g(·) as well as for g(U1,F1:k,Z1:t ) =
‖(U1,F1:k,Z1:t )‖2

2, which implies (u1, f1:k, z1:t )
W2→ (U1,F1:k,Z1:t ) (cf. [73], Definition 6.8

and Theorem 6.9). �

Combining Lemmas 2.12 and 2.13 for G ∼ GOE(n) concludes the proof of Theorem 2.4,
and combining Lemmas 2.12 and 2.14 for an orthogonally invariant matrix G with limit
spectral distribution D concludes the proof of Theorem 2.8.

4. Discussion. In this work, we have established universality of the state evolution for
AMP algorithms applied to ensembles of matrices in both Gaussian and non-Gaussian uni-
versality classes, using an unfolding of polynomial AMP algorithms into linear combinations
of matrix-tensor networks. Our analyses also reveal universality classes of matrices for which
these tensor networks have common limiting values, but where a more succinct characteriza-
tion of the limiting behavior of first-order iterative algorithms is currently unknown. We hope
that our work may inspire the development of dynamical mean-field theory descriptions of
such algorithms for these broader matrix ensembles.

Recently, motivated by statistical applications, a burgeoning line of work [16, 47, 48, 64]
has studied nonasymptotic guarantees for AMP algorithms, in settings where the underlying
structure (e.g., sparsity) and the nonlinearities applied may depend on the dimension n, and
for a number of iterations of the algorithm that may also grow with the dimension n. The
study of AMP universality in such settings falls outside the scope of our current analyses,
and we believe this is an interesting direction for future work.

APPENDIX A: DENSITY OF POLYNOMIALS

LEMMA A.1. Let μX and μY be probability laws on R
m and R

n having finite moments
of all orders, such that multivariate polynomials are dense in the real L2-spaces L2(μX) and
L2(μY ). Then multivariate polynomials are also dense in L2(μX × μY ).

PROOF. Consider any measurable A ⊆ R
m and B ⊆ R

n, and let χA, χB , χA×B be the
indicator functions of A, B , and A × B . For any ε > 0, by the density conditions for L2(μX)

and L2(μY ), we may take polynomials pA, pB such that ‖χA −pA‖L2(μX) < ε/2 and ‖χB −
pB‖L2(μY ) < ε/(2‖pA‖L2(μX)). Then

‖χA×B − pApB‖L2(μX×μY )

≤ ‖χA − pA‖L2(μX)‖χB‖L2(μY ) + ‖pA‖L2(μX)‖χB − pB‖L2(μY ) < ε.

Taking ε → 0 shows that polynomials are dense in the linear span of indicator functions
{χA×B : measurable A ⊆ R

m,B ⊆ R
n}. This linear span is in turn dense in L2(μX × μY ),

showing the lemma. �
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APPENDIX B: SUFFICIENT CONDITIONS FOR GENERALIZED INVARIANCE

In this appendix, we prove Proposition 2.7, providing examples of matrix models that
satisfy the generalized invariance condition of Definition 2.6.

LEMMA B.1. Let M ∈ R
n×n be a symmetric matrix having eigenvalues d ∈ R

n. Suppose

d
W→ D almost surely as n → ∞, where D has finite moments of all orders. Suppose M

satisfies (2.9) almost surely for all large n. Then for any p(x) ∈ �〈x〉,
(a) limn→∞ 1

n
Trp(M) exists almost surely, is finite, and depends only on the law of D.

(b) For any ε > 0 and all large n, we have

n
max
i=1

∣∣∣∣p(M)[i, i] − 1

n
Trp(M)

∣∣∣∣ < n−1/2+ε, max
i �=j

∣∣p(M)[i, j ]∣∣ < n−1/2+ε.

PROOF. By the definition of diagonal monomials, every p(x) ∈ �〈x〉 is a word of the
form

p(x) = xr1�
(
p1(x)

)
xr2�

(
p2(x)

) · · ·xrL�
(
pL(x)

)
xrL+1,(B.1)

where each p�(x) ∈ �〈x〉 and each r� ≥ 0. We define the depth of p(x), denoted by δ(p), as
δ(p) = 0 if L = 0 (so that p(x) = xr for some r ≥ 0), and δ(p) = 1 + maxL

�=1 δ(p�) if L ≥ 1.
Thus δ(p) is the maximum number of “nested” applications of �(·). We induct on δ(p).

For the base case where δ(p) = 0 and p(x) = xr , we have

1

n
Trp(M) = 1

n
Tr

(
Mr) = 1

n

n∑
i=1

d[i]r → E
[
Dr ]

almost surely, by the assumption d
W→ D. Thus statement (a) holds, and statement (b) holds

by the assumed condition (2.9).
Suppose inductively that the lemma is true for all p(x) with δ(p) ≤ K , and consider p(x)

with δ(p) = K + 1. Fix any ε > 0. By the definition of depth, every p�(x) in (B.1) satisfies
δ(p�) ≤ K . Then for every � = 1,2, . . . ,L, by claim (b) of the induction hypothesis, we can
decompose p�(M) = 1

n
Trp�(M) · Id + E� where E� satisfies maxi,j∈[n] |E�[i, j ]| < n−1/2+ε

almost surely for all large n. Fix any i, j ∈ [n] and write i0 ≡ i and iL+1 ≡ j . Then, applying
this decomposition to every p�(M), we obtain

p(M)[i, j ] = ∑
i∈[n]L

Mr1[i0, i1]p1(M)[i1, i1]Mr2[i1, i2] · · ·pL(M)[iL, iL]MrL+1[iL, iL+1]

= ∑
i∈[n]L

L+1∏
�=1

Mr�[i�−1, i�]
L∏

�=1

(
1

n
Trp�(M) + E�[i�, i�]

)

= ∑
J⊆[L]

( ∏
�∈[L]\J

1

n
Trp�(M)

) ∑
i∈[n]L

L+1∏
�=1

Mr�[i�−1, i�]
∏
�∈J

E�[i�, i�].

By the induction hypothesis, the limit

(B.2) MJ := lim
n→∞

∏
�∈[L]\J

1

n
Trp�(M)

exists, is finite, and depends only on the law of D. We set MJ = 1 if J = [L]. Note that this
convergence is uniform over pairs i, j ∈ [n]. Therefore, for an error ξJ = o(1) independent
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of i and j ,

p(M)[i, j ] = ∑
J⊆[L]

(MJ + ξJ )
∑

i∈[n]L

L+1∏
�=1

Mr�[i�−1, i�]
∏
�∈J

E�[i�, i�].

We first sum over all indices {i� : � /∈ J }: Write explicitly J = {�1, . . . , �|J |} where 1 ≤ �1 <

· · · < �|J | ≤ L. Let �0 = 0 and �|J |+1 = L + 1, and denote Rρ = r�ρ−1+1 + · · · + r�ρ . Then
this gives

p(M)[i, j ] = ∑
J⊆[L]

(MJ + ξJ )
∑

i∈[n]J

|J |+1∏
ρ=1

MRρ [i�ρ−1, i�ρ ]
∏
�∈J

E�[i�, i�].(B.3)

We denote by C > 0 a constant depending only on p(x), J , and the law of D, and changing
from instance to instance. By (2.9), we have maxi∈[n] |MRρ [i, i]| < 1

n
Tr MRρ +n−1/2+ε < C

and maxi �=j |MRρ [i, j ]| < n−1/2+ε for each ρ ∈ [|J | + 1], almost surely for all large n. For
any i ∈ [n]J , define �(i) = {ρ ∈ [|J | + 1] : i�ρ−1 �= i�ρ }. Then this implies

(B.4)
|J |+1∏
ρ=1

∣∣MRρ [i�ρ−1, i�ρ ]
∣∣ ∏
�∈J

∣∣E�[i�, i�]
∣∣ ≤ Cn(−1/2+ε)(|�(i)|+|J |).

Moreover, if ψ ≥ 1, then note that |{i ∈ [n]J : |�(i)| = ψ}| ≤ Cnψ−1, because i�0 = i0 = i

and i�|J |+1 = iL+1 = j are fixed, so there is freedom to choose ψ −1 remaining index values.
Combining this with (B.4), for any ψ ≥ 1,

(B.5)

∑
i∈[n]J :|�(i)|=ψ

|J |+1∏
ρ=1

∣∣MRρ [i�ρ−1, i�ρ ]
∣∣ ∏
�∈J

∣∣E�[i�, i�]
∣∣ ≤ Cnψ−1 · n(−1/2+ε)(ψ+|J |)

≤ Cn−1/2+ε(2|J |+1),

where the last inequality follows from the observation that we always have |�(i)| ≤ |J | + 1.
For ψ = 0, we must have i = j and |{i ∈ [n]J : |�(i)| = ψ}| = 1. Then by (B.4), this bound
(B.5) still holds as long as |J | ≥ 1, that is, J �= ∅.

Applying (B.5) for all nonempty J ⊆ [L], it follows from (B.3) that

(B.6)
∣∣p(M)[i, j ] − 1{i = j}(M∅ + ξ∅)MR[i, i]∣∣ ≤ Cn−1/2+ε(2L+1),

where we set R = r1 + · · · + rL+1. The above bounds all hold uniformly over i, j ∈ [n], and
hence (B.6) holds simultaneously for all pairs i, j ∈ [n], almost surely for all large n. Thus,
combining with the condition (2.9) for MR[i, i], we conclude that both maxi �=j |p(M)[i, j ]|
and maxn

i=1 |p(M)[i, i]−(M∅+ξ∅) · 1
n

Tr MR| are at most n−1/2+ε(2L+2) for all large n. Then
{p(M)[i, i] : i ∈ [n]} are uniformly close to a value independent of i ∈ [n], which implies also
maxn

i=1 |p(M)[i, i] − 1
n

Trp(M)| < 2n−1/2+ε(2L+2). These statements hold for any ε > 0,
showing the inductive claim (b) for p(x). Moreover, averaging (B.6) over i = j gives

lim
n→∞

1

n
Trp(M) = lim

n→∞(M∅ + ξ∅) · 1

n
TrMR = M∅ ·E[

DR]
,

and we recall from (B.2) that M∅ depends only on the law of D. This shows the inductive
claim (a) for p(x), completing the induction. �

PROOF OF PROPOSITION 2.7. Lemma B.1 implies that the matrix model in Proposi-
tion 2.7(b2) satisfies Definition 2.6, where the limit diagonal law Ddiag is determined uniquely
by the limit spectral distribution D. To complete the proof of Proposition 2.7, it suffices to
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verify that the orthogonally invariant matrix model of part (a) and the model of part (b1) are
both special cases of the model in part (b2).

If W = ODO� is orthogonally invariant, that is, O ∼ Haar(O(n)) is independent of D, then

also O L= �V O�E where �V , �E are uniformly random signed permutations independent
of O. The entries of O satisfy the delocalization condition (2.8) almost surely for all large n,
as is implied by [44], Theorem 1. Thus W is a special case of the model in part (b1).

Now suppose W is any matrix satisfying the description of part (b1). Then W has the
simpler form W = �M�� where � = �V ,

M = HPDP�H�,

and P = PE is the random permutation corresponding to �E = PE�E . Here, we have elimi-
nated the diagonal sign matrices �E from the expression using �ED��

E = D. To show that
W is an example of the model in part (b2), it remains to show that this matrix M satisfies the
condition (2.9) almost surely for all large n.

Consider Mν for any fixed integer ν ≥ 1. Let hi ∈ R
n denote the ith row of H, and let σ

be the permutation of [n] for which P [i, σ (i)] = 1 for all i ∈ [n]. Then

(B.7) Mν[i, j ] = (
HPDνP�H�)[i, j ] =

n∑
k=1

hi[k]Dν[
σ(k), σ (k)

]
hj [k].

We condition on (D,H), and write E for the expectation over only the permutation σ . Then
for each fixed k ∈ [n], we have E[Dν[σ(k), σ (k)]] = n−1 Tr Dν , so

E
[
Mν[i, j ]] = 1

n
Tr Dν · h�

i hj = 1

n
Tr Mν · 1{i = j}.

We now show concentration of Mν[i, j ] around this expectation by computing its high mo-
ments: Consider first any fixed i �= j ∈ [n], and abbreviate h̃[k] = hi[k]hj [k] and d̃[k] =
Dν[k, k]. Then from (B.7), Mν[i, j ] = ∑n

k=1 h̃[k]d̃[σ(k)], so for any even integer p ≥ 2,

E
[(

Mν[i, j ])p] = ∑
k∈[n]p

h̃[k1] · · · h̃[kp]E[
d̃
[
σ(k1)

] · · · d̃[
σ(kp)

]]
.

Let P be the lattice of partitions of [p], endowed with the usual partial ordering by refine-
ment. For each k ∈ [n]p , let π(k) ∈P be the partition induced by k, that is, i, j ∈ [p] belong
to a common block of π if and only if ki = kj . Then

E
[(

Mν[i, j ])p] = ∑
π∈P

∑
k∈[n]p :π(k)=π

h̃[k1] · · · h̃[kp]E[
d̃
[
σ(k1)

] · · · d̃[
σ(kp)

]]
= ∑

π∈P

∑
k∈[n]p
π(k)=π

h̃[k1] · · · h̃[kp] · (n − |π |)!
n!

∑
l∈[n]p
π(l)=π

d̃[l1] · · · d̃[lp],(B.8)

the second equality using that the permutation σ is uniformly random, so the expectation over
σ yields a uniform average over new choices for the |π | distinct index values of k.

Let μ(π,π ′) for π ≤ π ′ be the Möbius function over P , satisfying the inversion relation
(see, e.g., [59], eq. (10.10))

∑
τ∈P:π≤τ≤π ′ μ(π, τ) = 1{π = π ′}. Then for any function f ,

(B.9)
∑

k∈[n]p
π(k)=π

f (k) = ∑
k∈[n]p
π(k)≥π

f (k) · ∑
τ∈P

π≤τ≤π(k)

μ(π, τ ) = ∑
τ∈P
τ≥π

μ(π, τ)
∑

k∈[n]p
π(k)≥τ

f (k).

Applying this to the term involving h̃ in (B.8),∑
k∈[n]p :π(k)=π

h̃[k1] . . . h̃[kp] = ∑
τ∈P:τ≥π

μ(π, τ)
∏
R∈τ

n∑
k=1

h̃[k]|R|.
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Recalling h̃[k] = hi[k]hj [k] where i �= j , we have
∑n

k=1 h̃[k] = h�
i hj = 0. Thus the sum-

mand for τ vanishes if τ has a singleton block. For all other partitions τ ∈ P , its number of
blocks satisfies |τ | ≤ p/2. Then applying |h̃[k]| ≤ n2(−1/2+ε) by the delocalization condition
(2.8) for H, for any fixed ε > 0 and all large n,∣∣∣∣∣ ∏

R∈τ

n∑
k=1

h̃[k]|R|
∣∣∣∣∣ ≤ n2p(−1/2+ε) · n|τ | ≤ n−p/2+2pε.

Thus |∑k∈[n]p :π(k)=π h̃[k1] . . . h̃[kp]| ≤ Cn−p/2+2pε where, here and below, we denote by
C > 0 a (π,D)-dependent constant that may change from instance to instance. By the as-

sumption d
W→ D and Lemma 3.3 (applied with S being the blocks of π and qS(x) = d̃(x)|S|

for S ∈ π ), also n−|π ||∑l∈[n]p:π(l)=π d̃[l1] . . . d̃[lp]| ≤ C. Applying these to (B.8), we obtain
E[(Mν[i, j ])p] ≤ Cn−p/2+2pε , so P[|Mν[i, j ]| > n−1/2+3ε] ≤ Cn−pε by Markov’s inequal-
ity. Choosing even p ≥ 2 sufficiently large and taking a union bound over all i �= j , this shows
that the second condition of (2.9) holds almost surely for all large n.

The case i = j is similar: Fix i ∈ [n] and now abbreviate h̃[k] = hi[k]2 and d̃[k] =
Dν[k, k] − n−1 Tr Dν . Then from (B.7), Mν[i, i] − n−1 Tr Mν = ∑

k h̃[k]d̃[k], so we obtain
analogously to (B.8)

E
[(

Mν[i, i] − n−1 Tr Mν)p] = ∑
k∈[n]p
π(k)=π

h̃[k1] · · · h̃[kp] · (n − |π |)!
n!

∑
l∈[n]p
π(l)=π

d̃[l1] · · · d̃[lp].

Applying the Möbius inversion relation (B.9) now to the second summation over l,∑
l∈[n]p :π(l)=π

d̃[l1] · · · d̃[lp] = ∑
τ∈P:τ≥π

μ(π, τ)
∏
R∈τ

n∑
l=1

d̃[l]|R|.

Using that
∑n

k=1 d̃[k] = 0, the summand for τ vanishes if τ has a singleton block. For all

other partitions τ ∈P , applying d
W→ D, we obtain∣∣∣∣∣ ∏

R∈τ

n∑
l=1

d̃[l]|R|
∣∣∣∣∣ ≤ Cn|τ | ≤ Cnp/2.

Then |∑l∈[n]p :π(l)=π d̃[l1] . . . d̃[lp]| ≤ Cnp/2. From (2.8), we have also

n−|π | ∑
k∈[n]p :π(k)=π

∣∣h̃[k1] · · · h̃[kp]∣∣ ≤ n−2p(1/2+ε).

Then E[(Mν[i, i] − n−1 Tr Mν)p] ≤ Cn−p/2+2pε , so the first condition of (2.9) follows also
by Markov’s inequality and a union bound. This verifies that W satisfying part (b1) also
satisfies part (b2), as desired. �

APPENDIX C: TENSOR NETWORK VALUE UNDER ORTHOGONAL INVARIANCE

In this Appendix, we derive a more explicit combinatorial form for the tensor network
value of Lemma 2.14 when W is an orthogonally invariant matrix, using the orthogonal
Weingarten calculus. We then prove the asymptotic freeness statement of Proposition 2.16(b).

Let T be a tensor network with w+1 vertices and w edges. Then there are 2w vertex-edge
pairs (v, e) where edge e is incident to vertex v. We label these vertex-edge pairs arbitrarily
as 1,2, . . . ,2w. Let P be the lattice of partitions of [2w], endowed with the usual partial
ordering by refinement. We define two distinguished partitions πV ,πE ∈ P , such that vertex-
edge pairs ρ, τ ∈ [2w] belong to the same block of πV if and only if they have the same
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vertex v, and to the same block of πE if and only if they have the same edge e. (Thus πV has
w + 1 blocks, one for each vertex of T , and πE is a pairing with w pairs, one for each edge
of T .)

Define a metric over P by

(C.1) d
(
π,π ′) = |π | + ∣∣π ′∣∣ − 2

∣∣π ∨ π ′∣∣,
where π ∨ π ′ is the join (i.e., least upper bound) of π and π ′. This is shown in [3, 14] to
be equivalent to the smallest number of merge and divide operations needed to transform
π into π ′, where a merge operation combines any two blocks into one block, and a divide
operation splits any one block into two blocks. From this characterization, it is immediate
that d(·, ·) satisfies the triangle inequality d(π,π ′) + d(π ′, π ′′) ≥ d(π,π ′′). We call a path
π0 → π1 → ·· · → πk of partitions a d-geodesic if it is a shortest path from π0 to πk in the
metric d(·, ·), that is, if

d(π0, πk) = d(π0, π1) + d(π1, π2) + · · · + d(πk−1, πk).

The main result of this Appendix is the following proposition.

PROPOSITION C.1. In the setting of Lemma 2.14, suppose in addition that W = ODO�

is orthogonally invariant, where D = diag(d) and d
W→ D almost surely as n → ∞. For

π ≥ πV and π ′ ≥ πE , define

q(π) = ∏
S∈π

E

[ ∏
distinct vertices v in vertex-edge pairs of S

qv(X1, . . . ,Xk)

]
,(C.2)

D
(
π ′) = ∏

S∈π ′
E

[
Dnumber of distinct edges in vertex-edge pairs of S]

.(C.3)

Then

lim
n→∞ valT (W;x1, . . . ,xk)

= ∑
j≥0

∑
distinct pairings π0,...,πj of [2w]

πV →π0→···→πj→πE is a d-geodesic

(−1)j q(πV ∨ π0)D(πE ∨ πj ).

(Here πj is not required to be distinct from πE .)

To show this result, we apply the following statements derived from the orthogonal Wein-
garten calculus of [23] for mixed moments of entries of Haar-orthogonal random matrices.

LEMMA C.2. Let O ∼ Haar(O(n)). Let i = (i1, . . . , i2w) and j = (j1, . . . , j2w) be any
index tuples in [n]2w . Then

(C.4) E

[ 2w∏
p=1

O[ip, jp]
]

= ∑
pairings π,π ′ of [2w]

π≤π(i),π ′≤π(j)

Wgn

[
π,π ′],

where Wgn is the orthogonal Weingarten function. For fixed w, as n → ∞, this satisfies

(C.5) Wgn

[
π,π ′] = n−w−d(π,π ′)/2 · μNC

(
π,π ′) + O

(
n−w−d(π,π ′)/2−1)

,

where d(π,π ′) is the metric (C.1), and μNC(π,π ′) is the Möbius function on the noncrossing
partition lattice, given by

(C.6) μNC
(
π,π ′) = ∑

k≥0

∑
distinct pairings π0,π1,...,πk of [2w]

π0→π1→···→πk is a d-geodesic from π0=π to πk=π ′

(−1)k.
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PROOF. We may identify pairings π , π ′ of [2w] as permutations in the symmetric group
S2w , each a product of w disjoint transpositions corresponding to the w pairs. The cycle
decomposition of their product ππ ′ in S2w has exactly two cycles for each set of their join
partition π ∨π ′. Then, the metric l(π,π ′) = |ππ ′|/2 used in [23], Section 3, (where | · | is the
Cayley distance to the identity permutation in S2w , given by 2w minus the number of cycles)
is equivalently

(C.7) l
(
π,π ′) = 2w − 2|π ∨ π ′|

2
= d(π,π ′)

2
,

where the right side is our metric d(·, ·) restricted to pairings. The statements (C.4) and
(C.5) then follow from [23], Corollary 3.4 and Theorem 3.13. The form (C.6) for the Möbius
function follows from comparing [23], Theorem 3.13, with [23], Lemma 3.12, noting that the
leading-order terms of [23], Lemma 3.12, come from paths of pairings satisfying πi �= πi+1
for each i = 0, . . . , k − 1 and also l(π0, π1) + · · · + l(πk−1, πk) = l(π0, πk). Any such path
must be a geodesic of k + 1 unique pairings in the metric l(·, ·), and hence also in the metric
d(·, ·) by the equivalence (C.7), and this shows (C.6). �

PROOF OF PROPOSITION C.1. Expanding the product W = ODO�, the tensor network
value is given by

valT (W;x1:k) = 1

n

∑
i∈[n]V

∑
j∈[n]E

∏
v∈V

qv

(
x1:k[iv]) ∏

e=(u,v)∈E
O[iu, je]D[je, je]O[iv, je].

For each vertex v or edge e, let ρ(v), ρ(e) ∈ [2w] be an arbitrary choice of vertex-edge pair
containing this vertex or this edge. Then this is equivalently expressed as

(C.8) valT (W;x1:k) = 1

n

∑
i∈[n]2w

π(i)≥πV

∑
j∈[n]2w

π(j)≥πE

∏
v∈V

qv

(
x1:k[iρ(v)]) ∏

e∈E
D[jρ(e), jρ(e)]

2w∏
ρ=1

O[iρ, jρ].

Note that by the constraints π(i) ≥ πV and π(j) ≥ πE , this expression is the same for any
choices of vertex-edge pairs ρ(v), ρ(e) ∈ [2w].

Let E be the expectation over O, conditional on x1, . . . ,xk and D. By Lemma C.2, we have

E

[ 2w∏
p=1

O[ip, jp]
]

= ∑
pairings π,π ′ of [2w]

1π(i)≥π1π(j)≥π ′ · n−w−d(π,π ′)(μNC
(
π,π ′) + o(1)

)
.

Note that

1π(i)≥πV
1π(i)≥π = 1π(i)≥πV ∨π , 1π(j)≥πE

1π(j)≥π ′ = 1π(j)≥πE∨π ′ .

Identifying summations over i, j ∈ [n]2w with π(i) ≥ πV ∨ π and π(j) ≥ πE ∨ π ′ as a sum-
mation over one index in [n] for each block of πV ∨ π and πE ∨ π ′, and applying the given

conditions that x1:k
W→ X1:k and diag(D)

W→ D almost surely, observe that

1

n|πV ∨π |
∑

i∈[n]2w

1π(i)≥πV ∨π

∏
v∈V

qv

(
x1:k[iρ(v)]) → q(πV ∨ π),

1

n|πE∨π |
∑

j∈[n]2w

1π(j)≥πE∨π ′
∏
e∈E

D[jρ(e), jρ(e)] → D
(
πE ∨ π ′),
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where q(·) and D(·) are as defined in (C.2) and (C.3). Then, taking the expectation over O in
(C.8) and applying these observations,

E
[
valT (W;x1:k)

] = ∑
pairings π,π ′ of [2w]

1

n
· n|πV ∨π | · n|πE∨π ′| · n−w−d(π,π ′)

· (
μNC

(
π,π ′) · q(πV ∨ π) · D(

πE ∨ π ′) + o(1)
)
.

(C.9)

Recall that |πV | = w +1 and |π | = |π ′| = |πE| = w as these are all pairings of [2w]. Then
by definition of the metric d(·, ·),

|πV ∨ π | = 2w + 1 − d(πV ,π)

2
, |πE ∨ π | = 2w − d(πE,π)

2
.

So the above value simplifies to∑
pairings π,π ′ of [2w]

n
2w−1−d(πV ,π)−d(π,π ′)−d(π ′,πE)

2
(
μNC

(
π,π ′)q(πV ∨ π)D

(
πE ∨ π ′) + o(1)

)
.

Applying the triangle inequality for d(·, ·) and the identity |πV ∨ πE| = 1 since T is a con-
nected tree, we have

d(πV ,π) + d
(
π,π ′) + d

(
π ′, πE

) ≥ d(πV ,πE) = (w + 1) + w − 2 = 2w − 1,

and equality holds if and only if πV → π → π ′ → πE is a d-geodesic. Thus, we obtain the
limit value

(C.10)

lim
n→∞E

[
valT (W;x1:k)

]
= ∑

pairings π,π ′ of [2w]
πV →π→π ′→πE is a d-geodesic

μNC
(
π,π ′)q(πV ∨ π)D

(
πE ∨ π ′).

Here, π and π ′ are pairings of [2w] that may coincide with each other and/or with πE .
Finally, we apply (C.6) to express μNC(π,π ′) also as a summation over geodesic paths of

pairings from π to π ′, giving

lim
n→∞E

[
valT (W;x1:k)

] = ∑
j≥0

∑
distinct pairings π0,...,πj of [2w]

πV →π0→···→πj→πE is a d-geodesic

(−1)j q(πV ∨ π0)D(πE ∨ πj ).

We have set π0 = π and πj = π ′, and the terms of the sum with j = 0 correspond to π = π ′.
This shows that the stated form is the almost-sure limit of E[valT (W;x1:k)] where E is the
expectation over O. Comparing with the result of Lemma 2.14, we conclude that this must
be lim-valT (X1:k,Ddiag). �

PROOF OF PROPOSITION 2.16(b). By the universality established in Lemma 2.14, it
suffices to check that the limit of E[valT (W;x1:k)] for orthogonally invariant matrices W, as
computed in the preceding Proposition C.1, equals 0 under the given conditions.

The given condition 1
n

Tr W → 0 implies E[D] = 0. If πE ∨ π ′ has any block containing
only the two vertex-edge pairs for a single edge, then this implies D(πE ∨ π ′) = 0 in (C.3).
Otherwise, each block must correspond to at least two edges, so |πE ∨ π ′| ≤ w/2. Similarly,
if πV ∨ π is such that any block contains the vertex-edge pairs for only a single vertex, then
the condition (2.13) implies q(π) = 0 in (C.2). Otherwise,each block must correspond to at
least two vertices, so |πV ∨ π | ≤ (w + 1)/2. Thus if q(πV ∨ π)D(πE ∨ π ′) �= 0, then

1

n
· n|πV ∨π | · n|πE∨π ′| · n−w−d(π,π ′) ≤ n−1+(w+1)/2+w/2−w ≤ n−1/2.

Applying this to (C.9), we get E[valT (W;x1:k)] → 0 as desired. �
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SUPPLEMENTARY MATERIAL

Supplementary Appendix (DOI: 10.1214/24-AAP2056SUPP; .pdf). The supplementary
appendix contains additional details about AMP algorithms for rectangular matrices and the
rectangular generalized invariant universality class of Definition 2.20, and proofs of Theo-
rems 2.21 and 2.22 on universality of AMP for rectangular matrices.
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