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Approximate message passing (AMP) algorithms provide a valuable tool
for studying mean-field approximations and dynamics in a variety of appli-
cations. Although these algorithms are often first derived for matrices having
independent Gaussian entries or satisfying rotational invariance in law, their
state evolution characterizations are expected to hold over larger universality
classes of random matrix ensembles.

We develop several new results on AMP universality. For AMP algorithms
tailored to independent Gaussian entries, we show that their state evolutions
hold over broadly defined generalized Wigner and white noise ensembles, in-
cluding matrices with heavy-tailed entries and heterogeneous entrywise vari-
ances that may arise in data applications. For AMP algorithms tailored to
rotational invariance in law, we show that their state evolutions hold over de-
localized sign-and-permutation-invariant matrix ensembles that have a limit
distribution over the diagonal, including sensing matrices composed of sub-
sampled Hadamard or Fourier transforms and diagonal operators.

We establish these results via a simplified moment-method proof, reduc-
ing AMP universality to the study of products of random matrices and diago-
nal tensors along a tensor network. As a by-product of our analyses, we show
that the aforementioned matrix ensembles satisfy a notion of asymptotic free-
ness with respect to such tensor networks, which parallels usual definitions
of freeness for traces of matrix products.
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1. Introduction. Approximate message passing (AMP) algorithms are a general family
of iterative algorithms, driven by a random matrix W, whose iterates admit a simple distribu-
tional characterization in the asymptotic limit of increasing dimensions. Their origins may be
traced separately in the engineering, statistics, and probability literatures [11, 29, 45], where
these algorithms have since provided an important tool for studying mean-field phenomena in
many probabilistic models. Without seeking to be exhaustive, we mention here their applica-
tions to analyses of spin glass and perceptron models [12, 13, 25, 38, 39], recovery thresholds
and asymptotic phenomena in high-dimensional statistical models [5, 15, 26, 28, 29, 49, 56,
58, 61, 62, 68, 76], and mean-field dynamics of other first-order optimization algorithms in-
cluding discrete-time and continuous-time gradient descent [20, 21]. We refer readers to [40]
for a recent review.

Asymptotic distributional characterizations of the AMP iterates, known as their state evo-
lutions, are often first proved for orthogonally invariant matrices W using an inductive con-
ditioning technique. For W with i.i.d. Gaussian entries, this method was developed in [7, 11]
and has been extended to analyze AMP algorithms of increasing generality in [9, 41, 43, 58,
61]. For W satisfying rotational invariance in law, a similar technique has been applied to
analyze various AMP algorithms in [37, 50, 51, 63, 67, 69-71], with a parallel line of work
[17-19, 60] deriving related algorithms using nonrigorous methods of dynamic functional
theory.

It is expected—and in some settings known—that the state evolution characterizations of
AMP algorithms should extend beyond orthogonally invariant matrices, to describe also the
limit distributions of iterates when applied to broader universality classes of random matrix
ensembles. For example, it was shown in [6] that AMP algorithms designed for i.i.d. Gaus-
sian matrices and having polynomial nonlinearities admit state evolutions that are universal
across matrices with sub-Gaussian entries of common variance. In [22], universality over a
similar matrix class for AMP with Lipschitz nonlinearities was proven using a different Gaus-
sian interpolation method, and extended to spectrally initialized algorithms for spiked matrix
models. Moving beyond matrices with independent entries, in [32] it was shown that the state
evolution of a linear AMP algorithm for phase retrieval holds universally for sub-sampled
Hadamard matrices. Recently, results of [33, 34]—fruit of parallel research efforts—showed
universality for AMP algorithms having divergence-free nonlinearities over a broad model
of semi-random matrices with randomly signed rows/columns and delocalized entries. The
latter work [34] also applied these results to establish universality classes of matrices for
more general first-order iterative algorithms, including proximal gradient methods and gen-
eral versions of AMP. We discuss the relation of these results to our work in more detail at
the conclusion of the following section.

1.1. Contributions. Our current work has the two-fold goal of extending the scope of
some of these universality results of [6, 22, 33], and of presenting a more direct and elemen-
tary proof for AMP universality. We summarize our contributions as follows:

1. For AMP algorithms designed for i.i.d. Gaussian matrices, we show that their state evo-
lutions hold more broadly over generalized Wigner and white noise ensembles, with entries
having potentially heteroskedastic variances and higher moments growing rapidly with the
dimension n. This includes standardized adjacency matrices of sparse random graphs down
to sparsity levels of (logn)/n, as well as data matrices arising in contexts of count-valued
and missing observations after applying practical row and column normalization schemes.
We discuss two motivating applications in Examples 2.24 and 2.25 of Section 2.4. In the ran-
dom matrix theory literature, global spectral laws and spectral CLTs for related ensembles
were studied in [2], and universality of local spectral statistics in [35, 36].
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2. For AMP algorithms designed for rotationally invariant matrix ensembles, we show
that their state evolutions hold over universality classes of “generalized invariant matrices”
that satisfy only invariances of permutation and sign and whose generated algebra over the
diagonal, in the sense of [4], consists of matrices with delocalized entries and common nor-
malized trace. Importantly, this includes matrices composed of subsampled Hadamard or
discrete Fourier transforms and diagonal operators, which admit fast matrix-vector multipli-
cation for signal processing applications. We discuss a specific application to universality of
the compressed sensing phase transition for AMP [6, 27] in Example 2.26 of Section 2.4.
Related models of permutation-and-sign-invariant matrices have been studied in the context
of asymptotic liberation in [1].

3. We introduce a simplified two-step proof of AMP universality, in the first step reducing
universality to the study of products of W with diagonal tensors along a tensor network, and
in the second step establishing universality of the values of these matrix-tensor products. The
second step admits a simple combinatorial analysis for all of the preceding matrix ensembles.
Our argument for the first step is general and holds irrespective of the specific matrix ensem-
ble. We propose this two-step proof framework in part to enable easier extensions of AMP
universality to other random matrix models (e.g., having sufficiently weak or short-range
correlation across entries) as this need arises in applications.

4. For symmetric matrices W € R"*" our definition of a tensor network is a natural gen-
eralization of expressions of the form

%uTWT1WT2 Ty Wv

for deterministic vectors u, v and diagonal matrices Ty, ..., Ty to expressions involving
higher-order diagonal tensors. As a by-product of our analyses, we show for both the pre-
ceding classes of generalized Wigner and generalized invariant matrices W that they satisfy
a notion of asymptotic freeness with respect to such tensor networks, namely, that if all diag-
onal tensors have asymptotically vanishing normalized trace, then evaluations of expressions
of this form are also 0 in the asymptotic limit. This is parallel to notions of asymptotic free-
ness [74], usually defined with respect to normalized traces of matrix products, in settings of
products with higher-order tensors. Our analysis of tensor networks has also similarities to
the analysis of graph observables in the theory of traffic freeness developed in [52].

Our proofs use a moment-method and polynomial approximation strategy, similar to [6].
In heuristic derivations of AMP algorithms from belief propagation for matrices in the Gaus-
sian universality class, the Onsager correction terms arise from the removal of single-step-
backtracking messages. The arguments of [6] showed a corresponding equivalence between
such AMP algorithms and a tensorial unfolding of AMP using nonbacktracking paths. To our
knowledge, the correction terms in the algorithms of [37] for rotationally-invariant ensembles
do not have a similar combinatorial interpretation, motivating us to analyze a simpler tenso-
rial unfolding without nonbacktracking structure. Our results for the Gaussian universality
class may be obtained via either approach; we take the opportunity to present unified proofs
for both the Gaussian and non-Gaussian universality classes using the same unfolding, and
to simplify the polynomial approximation arguments of [6] using more recent state evolu-
tion results of [37] for AMP with non-Lipschitz functions. We remark that, as in the AMP
universality analysis of [22] which developed a different continuous interpolation argument,
our method of proof applies also to more general first-order iterative algorithms of the form
studied in [21] that are characterizable by an asymptotic state evolution.

Our analyses for generalized invariant ensembles (Definitions 2.6 and 2.20) are comple-
mentary to those of the recent works [33, 34], which studied an important family of Vector-
AMP style methods that have divergence-free nonlinearities [17, 51, 67, 69]. As discussed in
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[34], the universality classes for these algorithms are broader than that of the more general
AMP algorithms we study here, for example, containing matrices with differing spectral dis-
tributions having common second moment. [33, 34] prove universality of these algorithms
for semi-random sign-invariant matrices and i.i.d. side information vectors, by developing a
Hermite-polynomial unfolding of the AMP iterations and leveraging the vanishing of certain
terms in this unfolding due to the divergence-free form. The latter work [34] extends this
result to also derive certain spectral and strongly semi-random universality classes for first-
order algorithms that do not have this divergence-free structure. Our methods here establish
universality over a class of matrices that has similarities to, and is partially inspired by, these
latter classes studied in [34] (cf. Proposition 2.7(b)). We obtain these results via an alternative
analysis of a simpler tensorial unfolding in the standard monomial basis. As we discuss in
Remark 2.15, our proofs also establish the existence and universality of the limit empirical
distribution of iterates for first-order methods applied to matrices beyond the orthogonally
invariant universality class, suggesting the possible development of new iterative algorithms
with characterizable state evolutions for such matrices.

1.2. Notation. We denote entries of x € R” and W € R"*" as x[i] and Wi, j]. For vec-

tors X1, ..., X € R" and a random vector (X1, ..., Xi), we write
W]’

xX1,...,Xx) > (X1,..., X)) asn— o0
for the Wasserstein-p convergence of the empirical distribution of rows of (xi,...,Xx) €
R"*K to the joint law of (X1, ..., Xi). This means, for any continuous function f : RF 5> R
satisfying
(1.1) |fCer, x| <C(+|(xr, ..., x0)|)  for aconstant C > 0,
we have as n — o0

1 & . .

(1.2) ;Zf(m[l],...,xk[z])—>E[f(X1,...,Xk)].

i=1
We write

W
(X1, X)) = (X1, .0, Xp)

to mean that the above Wasserstein-p convergence holds for every order p > 1.

For a function f : R*¥ — R and vectors X, . .., Xx € R", we denote by f(x1,...,Xx) €R"
the evaluation of f(-) on each row of (xq,...,Xy) € R™k We write (-) for the empirical
average of the coordinates of a vector, and introduce the shorthand x;.x = (x1,...,Xx) and

X1 = (X1, ..., Xg). Thus (1.2) may be expressed as { f (X1:x)) = E[f(X1:4)].

For vectors x,y € R, x © y € R” is their entrywise product. diag(x) € R"*" or diag(x) €
R > denotes the diagonal matrix or tensor with x along the main diagonal, that is,
diag(x)[i, ..., i] = x[i] and diag(x) has all other entries equal to 0. For x € RMin.1) e
write also diag(x) € R™*" for the rectangular diagonal matrix where each (i, i) entry is
x[i]; we will indicate the dimensions if needed to disambiguate these notation. [|W|q, is
the £o — £, operator norm of the matrix W. We denote [n] = {1, ..., n}, and reserve Roman
letters i, j, ... for indices in [n] and Greek letters «, 8, ... for indices in [m].

2. Main results.

2.1. Universality of AMP algorithms for symmetric matrices. Let W € R"*" be a sym-
metric random matrix. Consider an initialization u; € R” and auxiliary “side information”
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vectors fq, ..., fy € R", independent of W. In applications, such side information vectors
may play the role of the external field in spin glass models, the true signal vector in spiked
matrix models, or the signal and residual error vectors in regression models. We refer to [7,
61, 62] for several examples. Let us, us, u4, ... be a sequence of nonlinear functions, where
uip1 : R R. We study a general form for an AMP algorithm with separable nonlineari-
ties that computes, forr =1,2,3, ...

t
(2.1a) z,=Wu; — ) buy,
s=1

(2.1b) Wy =u1(Z1, ..., 2, 8, ),

where {b;}s<; are deterministic scalar “Onsager correction” coefficients. We will character-
ize the iterates of this algorithm in the large system limit as n — oo, for fixed £ > 0.
We assume throughout the following conditions for (uy, fy, ..., f).

ASSUMPTION 2.1. Almost surely as n — oo,

w
(2.2) (up,fy,....6) — (U, Fi, ..., Fy)

for a joint limit law (Uy, Fi, ..., Fi) having finite moments of all orders, where E[U 12] > 0.

Furthermore, multivariate polynomials are dense in the real L2-space of functions f :
R¥*+! — R with inner-product

(f,8) = E[f(Uy, Fi,..., F)g(U, Fi, ..., Fy)].

REMARK 2.2. The convergence (2.2) holds, for example, if rows of (u,fq,...,fx) €
R7><*+D are i.i.d. and equal in law to (Uy, Fi, ..., Fx). The density of polynomials holds if
[(Uy, Fi, ..., Fr)l|l2 has finite moment generating function in a neighborhood of 0; see [66],
Section 14.1 and Corollary 14.24.

In an AMP algorithm, the coefficients {b;s} of (2.1) are defined so that the iterates
{z;} are described by a simple state evolution in the asymptotic limit as n — oo. For
W ~ GOE(n) (cf. Definition 2.3), this may be done as follows: Set X; = E[U?] € R!*!.
Inductively, having defined X, € R/, let Z1., ~ N (0, X,) be independent of (Uy, Fi ), set

Usy1 =us+1(Zy5, F1) foreach s =1, ..., ¢, and define

(2.3) T = (E[UrUs])ﬁs_lzl c RE+Dx@+1)
Let b;; =0, and for each s < t, define the coefficient b, as

(2.4) bis =E[dsu/(Z1:4—1, Fi:)],

where dsu; is the partial derivative of u,(-) in its s’h argument. We will call (2.3) and (2.4)
the GOE prescriptions for X; and b;s. Results of [7, 43] (see also [57], Proposition 2.1, for
this form) then imply that, for any Lipschitz functions u, (-), the iterates of (2.1) satisfy the
state evolution, almost surely as n — oo for any fixed ¢ > 1,

w
(ul’fla'--afkvzh--"zt)_)(UlvFla---kaaZI""azl)'

We note that a variant of this algorithm may instead use the empirical average b;; =
(0sus(Z1:+—1, £1.1)), for which the same state evolution continues to hold (cf. Remark 2.9).

In [37], building upon work of [60], an extension of this result was proven for a larger
class of orthogonally invariant matrices and nonlinear functions: We say that W is orthogo-
nally invariant if it has spectral decomposition W = ODO " where O ~ Haar(Q(n)) is Haar-

distributed on the orthogonal group and independent of D = diag(d). Suppose that d W Das
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n — oo, where D represents the limit spectral law of W. Set X| = Var[D] - E[Ulz] e RIX1,
Having defined X; € R™', let Z1.; ~ N (0, ;) be independent of (Uj, Fy.x), let Ugy) =
uUs+1(Z1:s, Frx) foreachs =1, ..., ¢, and define

235 Zip1 = et ({BU U <y o< (BlOrus11(Ziss, Fi)]) < <) € ROFDXOHD

for a continuous function X, 1(-) whose form depends only on the law of D. For each s <t
and a continuous function by, (-) whose form also depends only on the law of D, define

(26) bis = btv({E[Uq Ur]}lfq,rft’ {E[aqur—l—l(zl:r’ Fl:k)]}15q5r<l)~

We will call (2.5) and (2.6) the orthogonally invariant prescriptions for X, and b;s. We refer
to [37], Section 4, for their precise functional forms, which will not be important for our
current work. When W ~ GOE(n) and D has Wigner’s semicircle law on [—2, 2], these
reduce to the previous GOE prescriptions of (2.3) and (2.4). It was shown in [37] that for
weakly differentiable functions u,(-) whose derivatives have at most polynomial growth, the
iterates of (2.1) again satisfy the state evolution, almost surely as n — oo for any fixed r > 1,

w
(ulvfl’---’fkazla~"szl)_)(UlaFl"~~aFk’Zla~~~’Zl‘)‘

Our main results are universality statements that extend the state evolution characteriza-
tions of these AMP algorithms to more general random matrix ensembles. Corresponding
to W ~ GOE(n), we study the following universality class of generalized Wigner matrices,
having possibly heteroskedastic entrywise variances and heavy-tailed entries.

DEFINITION 2.3. W e R"™" is a generalized Wigner matrix with (deterministic) vari-
ance profile S € R"*" if

(a) W is symmetric, and entries on and above the diagonal (W[i, j]1:1 <i < j <n) are
independent.
(b) Each W[i, j] has mean 0, variance n=S[i, Jj1, and higher moments satisfying, for each
integer p > 3,
lim 7 - maxIE[|W[z ilf]=o.

n— 00 i,j=1

(c) For a constant C > 0 independent of n,

max Sli,jl1<C and lim max
ij=1 n—00 j—

—ZS[Z ]]—1‘20

We write W ~ GOE(n) for the special case where W[i, j] ~ N (0, 1/n) and S[i, j]=1 for
alli < j,and W[i,i]~N(0,2/n) and S[i,i] =2 forall i.

The moment assumption in condition (b) weakens a uniform sub-Gaussianity condition
for /nW[i, j] that is assumed in the previous AMP universality results of [6, 22] and that
would require instead E[|W[i, j]|7] < n~P/% for all p > 3. This condition (b) is weak enough
to encompass centered and normalized adjacency matrices of sparse random graphs with
slowly growing average vertex degree. Condition (c) allows general patterns of entrywise
variances whose rows and columns have approximately the same sum, where we also require
in (2.7) of Theorem 2.4 below that these rows and columns are “asymptotically unaligned”
with the initialization and side information vectors up, fi, ..., fy. We discuss two applications
in Examples 2.24 and 2.25 of Section 2.4.

The following theorem shows that the state evolution of AMP algorithms for GOE random
matrices remains valid for matrices W in this generalized Wigner universality class.
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THEOREM 2.4. Let W € R"™" be a generalized Wigner matrix with variance profile S,
and letuy,fy, ..., £y be independent of W and satisfy Assumption 2.1. Suppose that

1. Each function u; 41 : R'* — R is continuous, satisfies the polynomial growth condition
(1.1) for some order p > 1, and is Lipschitz in its first t arguments.

2. IWllop < C for a constant C > 0 almost surely for all large n.

3. Let s; be the i'h row of S. For any fixed polynomial function q : R*T! — R, almost
surely as n — 00,

2.7) rlnEllqu(ul, fi,....80) Osi)— (g, fi,....f)- (s:)] = 0.

Let {b;s} and {X;} be defined by the GOE prescriptions (2.3) and (2.4), where each matrix X,
is nonsingular. Then for any fixed t > 1, almost surely as n — 00, the iterates of (2.1) satisfy

W
(ulvfly"'7fkazla"'9zt)_§(UlaF]v"'aFkvzlv"'9Zl‘)’

where (Z1, ..., Z;) ~N(0, X,) is independent of (Uy, Fi, ..., F}), that is, this limit has the
same joint law as described by the AMP state evolution for W ~ GOE(n).

Next, corresponding to orthogonal invariance, we study universality classes of matrices
that are permutation-and-sign-invariant in law and that have limit distributions over the diag-
onal, in the following sense inspired by [4]: Let A : R"*" — R"*" be the diagonal map that
preserves only the entries on the diagonal, that is,

AM) =diag(M[1,1],..., M[n,n]) e R"".
Let A(x) denote the set of all words in x and A(-), for example,
XX, XA (XX)X, A(XXA(X))X, XXXA (A (X)) A (Xx).

We refer to A(x) as the set of diagonal monomials in x. For p(x) € A(x) and M € R"*", we
write p(M) € R"*" for its evaluation at x = M.

DEFINITION 2.5. The distribution over the diagonal of M is the mapping!
1
p(x) € A(x) > —Tr p(M).
n

Matrices M € R"*" converge in diagonal distribution a.s. if lim,_, s % Tr p(M) exists almost
surely (and is finite) for every fixed p(x) € A(x). The limit diagonal distribution of M, which
we will refer to as Dyiag, is then the mapping

1
p(xX) € A(x) —~ lim —Trp(M).
n—-oon

We remark that Dyiae specifies the limit of % TrM" for each fixed integer v > 1, and hence
also the limit spectral distribution of M when this distribution has compact support.

We call I = PE € R™" a uniformly random signed permutation matrix if E =
diag(&[1], ..., &[n]) € R™™" where each diagonal entry £[i] is independently chosen from
{+1, —1} with equal probability, and P € R"*" is a uniformly random permutation matrix
independent of Z. Note that for any symmetric matrix M and signed permutation matrix II,
we have A(IMITT) = MAM)I T, so also p(IIMII ") = I p(M)ITT for every diagonal
monomial p(x) € A(x). In particular, M and IIMII " have the same distributions over the
diagonal. The following then defines our universality class.

IWe define the distribution over the diagonal by the values of % Tr p(M) € R rather than A(p(M)) € R"*" as
might be more standard in operator-valued free probability.
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DEFINITION 2.6. W = IIMII' € R"*" is a symmetric generalized invariant matrix*
with limit diagonal distribution Dy, if, as n — oo,

(a) M e R™" converges in diagonal distribution a.s. to a limit Dgjqg.
(b) For any ¢ > 0 and any fixed p(x) € A(x), almost surely for all large n,

max|p(MD[i, j1| < n~'/>*%,
i#]

(c) I € R*" is a uniformly random signed permutation, independent of M.

Our result on AMP universality will pertain specifically to such matrices W whose limit
diagonal distribution Dyj,g coincides with that of an orthogonally invariant matrix. In this
setting, the next proposition clarifies that Dyg;,e is determined uniquely by the limit spectral
law of W, and it also provides simpler conditions inspired by the spectral universality class
in [34] that imply Definition 2.6. We have stated Definition 2.6 for more general limits D;ag
because, as discussed in Remark 2.15 to follow, we will in fact prove a general lemma show-
ing the existence and universality of the limit empirical distribution of iterates for first-order
iterative algorithms applied to any such matrix W, even if Dgiag does not correspond to an
orthogonally-invariant model.

PROPOSITION 2.7. Let W € R"™ " be a symmetric matrix with eigenvalues d € R" sat-

. o w .
isfying d — D almost surely as n — 0o, where D has finite moments of all orders.

(a) If W is orthogonally invariant, then W is a symmetric generalized invariant matrix in the
sense of Definition 2.6, and its limit diagonal distribution Dgiyg is determined uniquely
by the law of D.

(b) Suppose that either:

1. W=0DO" where D = diag(d) and O = OyHI g, such that My, O g € R"*"
are uniformly random signed permutations independent of each other and of (D, H), and
H is an orthogonal matrix with entries satisfying

(2.8) max |H[i, j]| <n~1/?+¢
i,j€ln]

for any fixed ¢ > 0, almost surely for all large n.

2. W=TMI" such that 1 is a uniformly random signed permutation independent
of M (which has eigenvalues d), and for each fixed integer v > 1, the matrix M" satisfies

2.9 max|M"[i, i —lTrM" <n”1/2FE max|M"[i, jl| <n~!/?2*+¢
(2.9) na i, 1] ; na [, j]
1= n 17]

for any fixed ¢ > 0, almost surely for all large n.

Then W is a generalized invariant matrix in the sense of Definition 2.6, and its limit
diagonal distribution Dgiag coincides with that of the orthogonally invariant matrix in
part ().

We prove Proposition 2.7 in Appendix B. Important examples for applications are when
W is a composition of permutations, deterministic Hadamard/Fourier matrices, and diago-
nal operators. We discuss one such application to compressed sensing in Example 2.26 of
Section 2.4.

ZMore formally, these definitions of generalized Wigner and generalized invariant matrices are describing se-
quences of matrices W € R"*" of increasing dimensions n — 00, rather than a single matrix. We will choose not
make this terminological distinction in our work.
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The following is our main theorem on AMP universality in this context, showing that the
state evolution of AMP algorithms for orthogonally invariant matrices holds universally over
the class of generalized invariant matrices with matching limit diagonal distribution.

THEOREM 2.8. Let W € R"™" be a symmetric generalized invariant matrix whose limit
diagonal distribution Dgiag coincides with that of an orthogonally invariant matrix G. Let
uy, fy, ..., fx be independent of W and satisfy Assumption 2.1. Suppose that

1. Each function us41 : R'* — R is continuous, satisfies the polynomial growth condition
(1.1) for some order p > 1, and is Lipschitz in its first t arguments.
2. [|Wllop < C for a constant C > 0 almost surely for all large n.

Let {bss} and {X,} be defined by the orthogonally invariant prescriptions (2.5) and (2.6) for
the limit spectral distribution D specified by Dyiag. Suppose that Var[ D] > 0 and each matrix
Y., is nonsingular. Then for any fixed t > 1, almost surely as n — 00, the iterates of (2.1)

satisfy
W,
(ul,fl,...,f[(,zl,...,zl‘)_>(Ul,Fl,...,Fk,Zl,...,Z[),

where (Z1, ..., Z;) ~N(0, X,) is independent of (U1, Fi, ..., F}), that is, this limit has the
same joint law as described by the AMP state evolution for G.

REMARK 2.9. Theorems 2.4 and 2.8 hold equally for AMP algorithms where, in the
prescriptions (2.4) and (2.6) for by, the quantities E[0d,us+1(Z1:5, F1:x)] and E[U, U] are
replaced by the empirical averages

(01541215, F10)) = Za uss1(zislil, filil),  (u, Oug) = Zur[l]u
i=1
For example, such an AMP algorithm for GOE matrices W and nonlinearities u;41(z1:,
Sf1:k) = us+1(z) consists of the iterations

z; = Wu; — (M;(Zt—l))ut—l, Wy =ur41(2).

To see this, note that by depends only on E[U 12], so these prescriptions for by asymptoti-
cally coincide by Assumption 2.1. Then the state evolution holds for z;. Inductively, validity
of the state evolution for z;.; ensures that, almost surely as n — oo,

(arus+1(Z1:Sa fl:k)) - E[arus—l—l(zl:s, Fl:k)] forallr <s <t,
(u Oug) > E[U,Ug] forallr,s <t+1,

where the first statement follows from Wasserstein-2 convergence of (zp.s, f1.x) and Stein’s
lemma (cf. [37], Proposition E.5). Then the presciptions of (2.4) and (2.6) for {b;+1 s}s<s+1
asymptotically coincide with their empirical versions defined by (d,us+1(z1.s,f1:x)) and
(u, © uyg), which in turn implies validity of the state evolution for zy.(1).

REMARK 2.10. Theorems 2.4 and 2.8 show universality of AMP algorithms with an
initialization u; that is independent of W. For spiked matrix models with a low-rank signal
component, alternative AMP algorithms with spectral initializations have been studied for
example, in [56, 58, 76]. Universality for such algorithms may be shown using the preced-
ing results, by approximating the spectral initialization with a large number of linear AMP
iterations starting from an initialization u; that is, independent of W but correlated with the
true signal; we refer to [22], Section 8, and [76], Section A.2, for examples of this type of
argument.
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Since we allow the nonlinearities u;1(-) to be functions of all preceding iterates zy, .. ., Z;,
universality of AMP with matrix-valued iterates in R"* for a fixed dimension J > 1 may
also be deduced from the preceding results, by simulating each iteration of any such algorithm
using J iterations of an algorithm with iterates in R”. We leave the further study of these
extensions to future work, as the need arises in applications.

2.2. Tensor networks and strategy of proof. We describe here our high-level strategy of
proof for Theorems 2.4 and 2.8. The full proofs of these results are contained in Section 3.

DEFINITION 2.11. A diagonal tensor network T = (V, £, {qy}vey) In k variables is an
undirected tree graph with vertices )V and edges £ C V x V, each of whose vertices v € V
is labeled by a polynomial function g, : R¥ — R. The value of T on a symmetric matrix
W e R"™ " and vectors Xq, ..., X; € R" is

1
valr (W Xy, ..., Xg) = ” Z air - Wi,
ie[n]V

where, for each index tuplei= (i, :v e V) € [n]V, we set

gir = [[av(ilivl, .. .oxliv]),  Wir= [ Wl il
vey (u,v)e€

This value may be understood as:

1. Associating to each vertex v € V a diagonal tensor T, = diag(q,(X1,...,Xz)) €
R™**1 where the order of this tensor equals the degree of v in the tree.’

2. Associating to each edge the symmetric matrix W.

3. Iteratively contracting all tensor-matrix-tensor products represented by the edges of the
tree.

For example, if V = [w+ 1] and T is the line graph 1 —2—--- —w —(w+1),then Ty, T4 €
R" are vectors, T, € R"*" is a diagonal matrix for each vertex v € {2, ..., w}, and the value
(in usual matrix-vector product notation) is

1
valr (WX, ..., %) = —T] WI,W .. WT,,WT,, 4.
n

When each tensor T, has all 1’s along the main diagonal, this definition is an example of the
graph sum used to show asymptotic freeness of Wigner and diagonal matrices in [53, 54],
and it is also a specific case of a “graph monomial” in the notion of traffic freeness in [52].

We will show in Lemma 3.10 that for any AMP algorithm (or more generally, any first-
order iterative algorithm of the form (2.1)) with polynomial nonlinearities us, u3, ua, ..., and
for any polynomial test function p(-), the coordinate average

n
<P(u1:t, 71y, fl:k)> = % Zp(ul:t[i]’ Z1li], fl:k[i])
i=1

of p(-) evaluated on the AMP iterates and side information vectors is a linear combination of
values of different tensor networks on W and uy, fy, ..., fr. Then, leveraging state evolution
results of [37] to perform an inductive polynomial approximation argument, the proof re-
duces the universality of AMP for Lipschitz nonlinearities to the universality of these tensor
network values. This reduction is encapsulated in the following lemma.

3We remind readers our notation that qv(X1, ..., Xx) € R" indicates the application of gy : R¥ — R row-wise
to (Xg,..., Xy) € R"*K and T, is then a diagonal tensor with gy (X1, ..., x;) € R" along its main diagonal.
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LEMMA 2.12. Letuy,fy,...,f; € R" satisfy Assumption 2.1. Let W, G € R"*" be sym-
metric random matrices independent of uy, fy, ..., fi such that

1. G=0DO is an orthogonally invariant matrix, where D = diag(d) and d L)) for a
limit law D with compact support and Var[ D] > 0.

2. |Wllop < C for a constant C > 0, almost surely for all large n.

3. For every diagonal tensor network T in k + 1 variables, almost surely as n — oo,

valp (W uy, £y, ..., f) —valp (G;uy, £y, ..., ) — 0.

Let u;41 : R — R be continuous functions which satisfy the polynomial growth condition
(1.1) for some order p > 1, and are Lipschitz in their first t arguments. Let {b;s} and {X,} be
defined by the orthogonally invariant prescriptions (2.5) and (2.6) for the limit law D, where
each X; is nonsingular. Then the iterates (2.1) applied to W satisfy, almost surely as n — 0o
for any fixed t > 1,

1%
(ul’flv"'afkvzlv"'9zt)4(UlvFla"'vFkazla"~’Z[)’

where this limit has the same joint law as described by the AMP state evolution for G.

This lemma applies also in the special case of G ~ GOE(n), where the definitions of {b;}
and {X;} reduce to the GOE prescriptions of (2.3) and (2.4). The lemma does not assume any
particular matrix model for W, and thus may be used as a tool to establish AMP universality
for matrix models beyond the ones we consider in this work.

Theorems 2.4 and 2.8 then follow from the next two lemmas, which verify the universal-
ity of tensor network values for the classes of generalized Wigner matrices and symmetric
generalized invariant matrices.

LEMMA 2.13. Let Xi,...,X;x € R" be (random or deterministic) vectors and let
(X1, ..., X) have finite moments of all orders, such that almost surely as n — o0,

(2.10) (X1, X0) S (X, XD,

Let W € R™" be a generalized Wigner matrix, independent of X, ..., Xy, with variance
profile matrix S. Let s; be the i'h row of S, and suppose for each fixed polynomial function
g :R¥ = R that

(2.11) I?Ell)(|(q(x1, X)) Osi) = (g(x1, ..., X)) - (si)| = 0.

Then for any diagonal tensor network T in k variables, there is a deterministic value
lim-val7 (X1, ..., Xx) depending only on T and the joint law of (X1, ..., Xx) such that al-
most surely,

lim valy (W;Xxq,...,X;) =lim-valp (Xq, ..., Xi).
n—oo

In particular, this limit value is the same for W as for G ~ GOE(n).

LEMMA 2.14. Let Xi,...,X;x € R" be (random or deterministic) vectors and let
(X1, ..., Xr) have finite moments of all orders, such that almost surely as n — o0,
w
(2.12) X1, ...,x0) = (X1,..., Xp).
Let W € R"™" be a symmetric generalized invariant matrix, independent of X1, ..., Xy, with

limit diagonal distribution Dgjag. Then for any diagonal tensor network T in k variables,
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there is a deterministic limit value lim-valy (X1, ..., X, Ddiag) depending only on T, the
Jjoint law of (X1, ..., Xy), and Dyiag such that almost surely,

lim valy (W; x1,...,Xx;) =lim-valy (X1, ..., X, Daiag)-

n—oo

In particular, if there exists an orthogonally invariant matrix G having the same limit diago-
nal distribution Dgiag, then this limit value is the same for W as for G.

REMARK 2.15. Lemma 2.14 applies to any class of symmetric generalized invariant
matrices satisfying Definition 2.6, where the limit diagonal distribution Dg;,e does not nec-
essarily coincide with that of an orthogonally invariant model.

This has the following implication: Consider any first-order iterative algorithm having the
structure (2.1), where by, are arbitrary fixed constants and u;41 : R“** — R are polynomial
functions applied entrywise. Then for any polynomial test function p(-), the value

—Zp i, 214li1, fralil)

t—l

is a linear combination of tensor network values (cf. Lemma 3.10) and hence has a universal
limit as n — oo. Under mild moment assumptions, this implies that there exists a limit law
for the empirical distribution of each iterate u; and z,;, and this law is universal across such
matrices having the same limit diagonal distribution Dgigg.

When Dyiyg is not described by an orthogonally invariant model, we believe it may be
an interesting open question to develop such an algorithm that has a more succinct state-
evolution characterization of its iterates in terms of this limit diagonal law.

The proofs of Lemmas 2.13 and 2.14 result in forms for the limit tensor network values that
are, in general, combinatorially complex. However, a by-product of the proofs is that these
forms reduce to 0 when all diagonal tensors of the tensor network have vanishing normalized
trace. This may be viewed as a version of asymptotic freeness for tensor networks, and we
state the result here for independent interest.

PROPOSITION 2.16.

(a) In the setting of Lemma 2.13, let T be a diagonal tensor network such that, for every
vertex of v of T, almost surely

(2.13) Jim {gy(x1, ..., x0)) = lim ~ Zlqv (x1lil, ..., xli]) =0
1=
Then lim-valr (X1, ..., Xx) =0
(b) In the setting of Lemma 2.14, suppose T is a diagonal tensor network for which (2.13)
holds almost surely for every vertex v. Suppose also that there exists an orthogonally invariant

matrix having the same limit diagonal distribution Dgiag as W, and lim,_, %TrW =0.
Then lim-valy (X1, ..., Xk, Ddiag) =0

2.3. Universality of AMP algorithms for rectangular matrices. Let W € R™*" be a
rectangular random matrix. Consider an initialization u; € R™ and vectors of side infor-
mation f,...,f € R" and g, ..., g, € R”, all independent of W. Let vy, vp, v3, ... and
us, u3, uq, ... be two sequences of nonlinear functions where v; : R+t — R and Uigl -
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R!*+* — R. We study an AMP algorithm that computes, forr =1,2,3, ...

(2.14a) 7, =W u — gbmvs,
s=1
(2.14b) Vi =V (Z1,...,2,81,...,80),
(2.14¢) y: =Wy, — zl:atsus,
s=1
(2.14d) W =urr1 (Y1, - Yo £1, oo B,

where {bss}s<; and {a;5}s<; are deterministic “Onsager correction” coefficients. We will
characterize the iterates of this algorithm in the limit as m,n — oo proportionally with
m/n — y € (0, 00), for fixed k, £ > 0. For Gaussian and bi-orthogonally invariant matrices
W (see the definition after Definition 2.20), we review the forms for these correction coeffi-
cients and the corresponding state evolutions in (D.1)—(D.2) and (D.4)—(D.5) of Appendix D
(see the Supplementary Material [75]).

We assume the following condition for (up, fy, ..., fx) and (g1, ..., g¢), which is analo-
gous to Assumption 2.1.

ASSUMPTION 2.17. Almost surely as m, n — oo,

W W
(ui,fr,.... ) > (Ui, Fr,..., Fy) and (g1,...,8) = (G1,...,Gy)

for joint limit laws (Uy, F1, ..., Fy) and (G, ..., G;) having finite moments of all orders,
where IE[UIZ] > 0. Multivariate polynomials are dense in the real L?-spaces of functions
f R 5 R and g : R — R with the inner-products

(f, H > E[fUL, Fr, ..., B) f(UL Fr, ..., B,
(8.8~ E[g(G1,...,GE(Gy,...,Gp)].

Our main results show that the state evolution characterizations of AMP algorithms for
Gaussian and orthogonally invariant matrices are universal across the following matrix en-
sembles, analogous to Definitions 2.3 and 2.6 in the symmetric setting.

DEFINITION 2.18. W e R™*" is a generalized white noise matrix with (deterministic)
variance profile S € R”*" if

(a) All entries W|e, i] are independent.
(b) Each entry W/, i] has mean 0, variance n~!S[w,i], and higher moments satisfying,
for each integer p > 3,

lim n- mrglxm%x]EHW[a, il|’]=0.
mn—o0o  g=1 i=1

(c) For a constant C > 0 independent of m, n,

1 n
—ZS[a,i]—l’:O,

i=1

m n . . m
max max S[e, i] < C, lim max
a=1 i=1 m,n—o0 g=1|n

. n
lim max
m,n—o0 j—1

1 m
—ZS[oz,i]—l‘:O.
m

a=1
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We call W a Gaussian white noise matrix in the special case where W[a, i] ~ N (0, 1/n) and
Sla,i] =1 for all (o, i) € [m] x [n].

Next, we introduce a notion of diagonal distribution for rectangular matrices, analogous to
Definition 2.5. Recall the diagonal map A(-), and let A(x, I,,;, I;) be the set of all words in x,
I, I, and A(-), for example,

xI,, xA(I,x)L,, A(xxAI,))x, L, xL, A(A (X)) A(XLy).

For p(x) € A(x, Iy, I,) and M € R"*", we write p(M) € Rn+mxm+n) for jts evaluation at
X = M,

_ Id, O (m~+n)x (m+n) _ 0 0 (m~+n)x (m+n)
Im_<0 O)ER , I, = 0 Id, eR ,

where we define the symmetric embedding

~ 0 M
— (m+n)x (m+n)
(2.15) M= (MT 0) eR
and the identity matrices Id,, € R™*™ and Id,, € R"*".

DEFINITION 2.19. The distribution over the diagonal of a rectangular matrix M € R"*"
is the mapping

Tr p(M).

1
p(x) € AX, Ly, 1) —
m-+n

Matrices M € R™*" converge in diagonal distribution a.s. if lim,, ,— o m+un Tr p(1\~/[) exists
almost surely (and is finite) for every fixed p(x) € A(x, I, 1), as m,n — oo with m/n —

y € (0, 00). The limit diagonal distribution of M, which we will refer to as Dgi,g, is then the
mapping

p(x) € Alx, L, L) — lim Tr p(M).

m,n—>o0 m +n

Note that Dgiag and y specify the limit of %Tr(MMT)U for each fixed integer v > 1,
and hence also the limit singular value distribution of M when this distribution has compact
support. Note also that, similar to the symmetric setting, M and l'IUMl'[g must have the
same limit diagonal distribution Dygj,e for any signed permutation matrices Iy € R™*™ and
HV e R"x",

DEFINITION 2.20. W = HUMH—‘E € R™*" is a rectangular generalized invariant ma-
trix with limit diagonal distribution Dy if, as m, n — oo with m/n — y € (0, 00),

(a) M converges in diagonal distribution a.s. to a limit Dy;ag.
(b) For any ¢ > 0 and any fixed p(x) € A(x, I, I,), almost surely for all large m, n,

max|p(1\~/l)[i,j]| <n~l2+e
i#]
where M is the symmetric embedding (2.15).

(c) Oy e R™*™ and Iy € R"*" are uniformly random signed permutations independent
of each other and of M.
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We call W € R™*" bi-orthogonally invariant if it has singular value decomposition W =
ODQ' where O ~ Haar(Q(m)) and Q ~ Haar(Q(n)) are Haar-distributed on the orthogonal
groups independently of each other and of D = diag(d) € R™*". We verify in Proposition D.1
of Appendix D that such bi-orthogonally invariant matrices satisfy Definition 2.20, where
Diiag is determined uniquely by y = limy, oo m/n and the limit singular value distribution
of D.

The following theorems show that the state evolution of AMP algorithms for Gaussian
white noise matrices holds universally for generalized white noise matrices as in Defini-
tion 2.18, and the state evolution for bi-orthogonally invariant matrices holds universally for
rectangular generalized invariant matrices as in Definition 2.20.

THEOREM 2.21. Let W € R™*" be a generalized white noise matrix with variance
profile matrix S, and let uy, {1, ..., £, 81, ..., 8 be independent of W and satisfy Assump-
tion 2.17. Suppose that

1. Each function v; : R'T* — R and u; 11 : R"t% — R is continuous, satisfies the polyno-
mial growth condition (1.1) for some order p > 1, and is Lipschitz in its first t arguments.
2. IW]lop < C for a constant C > 0 almost surely for all large m, n.

3. Let sy be the o'h row of S and s' be the i'h column of S. For any fixed polynomial
functions p : RF! - R and q : R — R, almost surely as m, n — 00,

max|(p(ur. f1. ... £) © sa) = {pQur. f1. ... £0)) - (s0)] > 0.
(2.16) - . : .
max|(g (g1, ... g) O) — (g (@1, ... g0) - (') > 0.

Let {a;s}, {bis}, {2}, {X;} be defined by the white noise prescriptions (D.1) and (D.2), where
each matrix ; and X, is nonsingular. Then for any fixed t > 1, almost surely as m,n — oo
withm/n — y € (0, 00), the iterates of (2.14) satisfy

1%
(u17f17"‘7fk7y17""yl)_§(UlaFl""vFk’Yla"‘vyt)a

W
(gls"'9gf’z17"'azl)_§(G19""G[7zlv-~~’zl)v

where (Zi,...,Z;) ~ N0, ;) and (Y1,...,Y;) ~N(0, X,) are independent of (Uy, Fy,
..., Fy)and (G, ..., Gy), that is, these limits have the same joint laws as described by the
AMP state evolution for a Gaussian white noise matrix W.

THEOREM 2.22. Let W € R™*" be a rectangular generalized invariant matrix whose
limit diagonal distribution Dygiag coincides with that of a bi-orthogonally invariant matrix G.
Letuy,fy, ..., T, 81,..., 8 beindependent of W and satisfy Assumption 2.17. Suppose that

1. Each function v; : R'T* — R and u, 11 : R"t% — R is continuous, satisfies the polyno-
mial growth condition (1.1) for some order p > 1, and is Lipschitz in its first t arguments.
2. |Wllop < C for a constant C > 0 almost surely for all large m, n.

Let {ass}, {bss}, {2}, {2} be defined by the bi-orthogonally invariant prescriptions (D.4)
and (D.5) for the limit singular value distribution D specified by Dgiag and y . Suppose that
E[D?] > 0 and each R, and X, is nonsingular. Then for any fixed t > 1, almost surely as
m,n — oo withm/n — y € (0, 00), the iterates of (2.14) satisfy

%
(ul’fl’"‘7fk’yl7""yt)%2(UI’Fl""’Fk’YI""’YZ)’

L%
(glv"'7g67zl"“1zl)_§(le"’7G€’Zl""7Z1)7
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where (Z1,...,2Z;) ~N(0, ;) and (Y1,...,Y;) ~N(0, X;) are independent of (U, Fy,
.., Fy) and (Gy, ..., Gy), that is, these limits have the same joint laws as described by the
AMP state evolution for G.

REMARK 2.23. As in Remark 2.9, Theorems 2.21 and 2.22 hold equally for AMP
algorithms where, in the prescriptions (D.2) and (D.5) for a;; and by, the quantities
E[0,v5(Z1:5, Gr1:0)], Elorus11 (Y1, F1)], E[U,Us], and E[V, V] are replaced by the em-
pirical averages

(arvs(zl:S7 gl:ﬂ))a <8rus+1(y1:s» fl:k))» (0, O uy), (Vr O vy).

For example, such an AMP algorithm for Gaussian white noise matrices W and nonlinearities
v (Z1:5 81:0) = v(z¢) and uy41 (Y1, f1:k) = u(yr) consists of the iterations

=Wy -y y_Dvi1, vi=v),

yi = Wy, — (V' (z))uy, w1 = u(ys).

The proofs of Theorems 2.21 and 2.22 are similar to those of Theorems 2.4 and 2.8 for
symmetric matrices, and we defer them to Appendix D.

2.4. Applications.

EXAMPLE 2.24. AMP algorithms for the Gaussian universality class may be heuristi-
cally derived by approximating belief propagation on dense graphical models [30, 45]. Our
assumptions in Theorems 2.4 and 2.21 are sufficiently weak to show that their state evolutions
remain valid in sparse random graphs down to sparsity levels of (logn)/n.

As a concrete example, consider the symmetric stochastic block model where G is an
undirected graph over n vertices, divided into two communities V1 and V_ of equal sizes
n/2. For two n-dependent probabilities p, > g,, each pair of vertices (i, j) in G (including
self-loops, for simplicity of discussion) is independently connected with probability

pn ifi,jeVyiori,jeV_,

IP[i is connected to j] = e . e .
qgn ifieViandjeV_orifieV_andjeV,.

Let A € {0, 1}"*" be the adjacency matrix of G, and let p, = (p, + ¢gn)/2 be the mean
connectivity. Then the centered and normalized adjacency matrix takes the form
A—p VA

2.17) S P _NnyT L w,

% npn(l - pn) n
where A, = n(p, — qn)2 /14pn (1 — py)] is a parameter representing the signal-to-noise ratio
of the model, f € {+1, —1}" is the binary indicator vector representing the membership of
the vertices, and W is a symmetric noise matrix with independent entries. It may checked for
each (i, j) € [n] x [n] that

E[W[i, ]]] =0, E[W[i, ]]2] c { pn(l - Pn) Qn(l - Qn)) }’

npn(1 — py) ' npn(1— py

1
W .v j Sf
Wi = =

In the asymptotic regime where np, (1 — p,) — oo and A, — A a positive constant, we
have that S[i, j]:=n-E[W]i, j]2] — 1 uniformly over (i, j) € [rn] x [n], so that W is a gen-
eralized Wigner matrix in the sense of Definition 2.3 (with variance profile S approximately
constant in every entry). Furthermore, under a slightly stronger assumption

(2.18) npp(l — py) >clogn
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for any constant ¢ > 0, [8], Theorem 2.7 and eq. (2.4), implies that [|W||op < C almost surely
for all large n. This encompasses the stochastic block model in regimes with sparsity p, =
(logn)/n.*

It was shown in [24] that the mutual information between G and f has an asymptotic limit
depending only on the limit signal-to-noise ratio A, which is nontrivial when A > 1. This was
proven by interpolating between the model (2.17) and a “Z;-synchronization” model where
W ~ GOE(n), and applying an AMP analysis in the latter model. Our result of Theorem 2.4
implies that, under the additional condition (2.18), this AMP analysis may instead be directly
applied to the model (2.17), bypassing interpolation to the GOE.

EXAMPLE 2.25. Let Y € R™*" be a signal-plus-noise data matrix modeled as
Y=X+E,

where X = E[Y] = Zl;‘:l fjg;!— e R™ " is a low-rank signal matrix, and E=Y — X is a
mean-zero matrix of residual noise. We assume that E has independent entries, although in
many applications involving count observations or missing data, these entries may have a
heteroskedastic variance profile V where

Vla, i]:= Var[E[a, i]].

Such models where the variance V[w, i] is a quadratic function a + bX[e, i1+ cX[a, i]* of
the mean were discussed recently in [46], including Poisson and negative-binomial models
for Y in the context of single-cell RNA sequencing applications [42, 65, 72]. Such mod-
els encompass also simple models of missing data, where Y is a partial observation of an
underlying low-rank signal matrix X so that

Vil X[a,i] with probability p,
a,l]= . -
0 with probability 1 — p,

independently for each entry. Then X[«,i]=p - }?[a, iland V]a,i]l= p(1 — p) - )?[oz, i?
are the corresponding means and variances.

When the entries V[«, i] are heteroskedastic, the singular value spectrum of E does not
generally conform to the Marcenko—Pastur law. However, row and column normalization is
typically applied in practice prior to data analysis, with [46] suggesting the following nor-
malization scheme: Determine via Sinkhorn iteration two diagonal matrices Dy € R™*™ and
D; € R"*" for which S = D; VD5 has all rows summing to » and all columns summing to m,
and use these to standardize Y into the biwhitened matrix

Y= % .D}*YD)? = % D/’XDyY*+W, W= % .D;’ED}?.
[46] proved that such biwhitened count matrices have singular value spectra asymptotically
described by the Marcenko—Pastur law, and showed a remarkable empirical agreement with
the Marcenko—Pastur law for matrices arising in several domains of application, from single-
cell biology to topic modeling of text.

In this standardized model Y, the error matrix W now has variance profile S = D; VD,
which satisfies by construction % i Sla,i]l= % v—1Sla,i]=1, and Theorem 2.21 de-
scribes conditions under which state evolution holds for Gaussian AMP algorithms applied

40ur universality result for AMP with polynomial nonlinearities does not require the operator norm bound
[Wllop < C and hence holds for any sparsity p, > 1/n, cf. Remark 3.12. We believe that the operator norm
requirement in Condition 2 of Theorem 2.4 may be an artifact of our polynomial approximation proof.
In contrast, we do not expect AMP universality to hold for random graph models with sparsity p, < 1/n,
where the belief propagation recursions on such graphs may not admit asymptotic Gaussian approximations.
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to this matrix W. We note that to analyze AMP applied instead to Y, the condition (2.16) rep-
resents a potentially strong restriction on the relation between the variance profile matrix S
and the low-rank mean signal. A modified analysis of AMP may be needed in settings where
this restriction does not hold, and we leave this as a direction to explore in future work.

EXAMPLE 2.26. Much of the early development of AMP algorithms was motivated by
compressed sensing applications of reconstructing sparse signals from linear measurements.
Consider a model of m measurements

y=Wx+eecR",

where x € R” is the underlying signal, W € R™*" is a random sensing matrix, and & is
measurement noise. For i.i.d. Gaussian sensing matrices W, pioneering work of [29, 30] pro-
posed an AMP algorithm for reconstructing x, where the nonlinearities are soft-thresholding
functions tailored to the sparsity of x. Analysis of the dynamics of this algorithm leads to a
derivation of a sparsity-undersampling phase transition curve that matches a phase transition
for £1-based reconstruction in this model [6, 7, 29, 31].

Extensive numerical experiments performed in [27, 55] suggested that this phase transi-
tion curve is universal across broad classes of non-Gaussian sensing matrices. Theorem 2.8
provides an extension of the AMP universality shown in [6] for this application, broadening
the universality class to matrices composed of subsampled Fourier or Hadamard transforms
and diagonal operators. Importantly, matrix-vector multiplication operations for such matri-
ces may be computed in O (nlogn) time without explicitly storing the matrices in memory,
allowing applications of AMP at much larger scales than would be possible with i.i.d. sensing

designs.
As an example, consider
(2.19) W= MyHOz)D(MyKMNz)" e R™¥",

where D € R”*" is diagonal with its diagonal entries sampled i.i.d. from a Marcenko—Pastur
law; H, K € R"*" are orthogonal matrices representing deterministic Hadamard or discrete
Fourier transforms; and Iy, g, Iy, Iy are independent random signed permutations.
We verify in Proposition D.1(b1) that this class of matrices satisfies Definition 2.20. If the
signal vector x, residual error €, and initialization x; are each comprised of i.i.d. entries, then
the random permutations in IIy, IIy may be further absorbed into xi, X, €. Thus the AMP
iterates are equal in law to those of AMP applied with a simpler sensing matrix
W=EyHDK Ey,

where Ey, Ey are diagonal matrices of i.i.d. {+1, —1} signs, KT € R™*" ig a random sub-
sampling of m rows of KT, and D € R”*" is a diagonal matrix whose diagonal entries are
given by those of D also multiplied by i.i.d. {+1, —1} signs.

Theorem 2.22 implies that AMP applied to the above matrix W admits the same state
evolution as when applied to an i.i.d. Gaussian sensing matrix G. This universality extends
beyond the Gaussian setting, to sensing matrices (2.19) where the diagonal entries of D are
sampled from an arbitrary compactly supported singular value distribution. Theorem 2.22
then shows that the state evolution characterizations for the more general AMP algorithms
of [37]—derived originally for bi-orthogonally invariant ensembles—are valid in such set-
tings. For this compressed sensing application, we note that the resulting AMP algorithms
are similar to the convolutional AMP algorithms developed and studied recently in [70, 71].

3. Proofs for symmetric matrices.

3.1. Universality for generalized Wigner matrices. In this section, we prove Lemma 2.13
on the universality of the tensor network value for generalized Wigner matrices.
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Fix a tensor network T = (V, &€, {¢gv}vey). Let P be the set of all partitions of V. For each
index tuple i € [n]V, define its induced partition 7 (i) € P such that vertices u, v € V belong
to the same block of 7 (i) if and only if i, = i,. Then we can decompose the value of T as

1
(3.1 valp (Wixi, ..., xp) = p > > air-Wir.

7€Pien]V:n()=n

DEFINITION 3.1. Let (V, £) be an undirected graph. For any partition 7 of V, the image
of (V, &) under m is the undirected multi-graph G, = (K5, F) that is the image of (V, £)
under the graph homomorphism sending each vertex u € V to the block of 7w containing u.

That is, the vertices K, = m of G are the blocks of 7, and G, has the same number of
edges |Fr| (counting multiplicity and self-loops) as |£]|. For each edge (u, v) € £, there is a
corresponding edge (U, V) € F where U, V € r are the blocks for whichu e U andv e V.

For each m € P, let G, = (K, Fr) be the image of (V, £) under 7. For each block U €
K, define the polynomial Oy =[], ey qu, and for each unique (undirected) edge (U, V') of
Gy, let e(U, V) be the number of times it appears in F5. Then, identifying the sum over
{i: 7w (i) =7} as a sum over one distinct index in [n] for each block U € K;;, we have

*
Yo qir-Wir= ) Qic, Wi,
ienV:m()=n ie[n]kn

*
where Y denotes the restriction of the summation to index tuplesi= (iy : U € k) € [n]fx

having all indices distinct, and

Qic, = [] Qulnlivl.....xliv]), G, = I Wiy, iv]“Y).
Uek, unique edges (U,V) of G

Applying this to (3.1), we obtain

1 *
(3.2) ValT(W;xl,...,xk)zzz Y. Qi Wi, -

7 €P je[n]Cn

We will compute the expectation of (3.2), and see that the only nonvanishing contributions
in the limit n — oo arise from partitions = where G is itself a tree and e(U, V) = 2 for
each unique edge (U, V) of G. These nonvanishing terms may be related to the values of a
reduced tensor network associated to G, evaluated on the matrix S/» in place of W.

In anticipation of this computation, we first show the following lemma which establishes
universality of the value of any tensor network evaluated on S/n.

LEMMA 3.2. Under the assumptions of Lemma 2.13, for any diagonal tensor network
T =, &, {qgv}vey) in k variables,

Jim valr(S/n;xi, ... x¢) = g}E[C]v(Xls---,Xk)]-
v

PROOF. Observe first that for any diagonal tensor network 7= (V, &£, {gy }vey), We have
1 ) 1
(3.3) - J[lewobll- [ -=<c
n
ie[n]V vev (u,v)e€

for a constant C := C(T) > 0, almost surely for all large n. Indeed, since T is a tree, we
have %H(u,v)e g% =n~Mlin the above. Each function |g,| is continuous and satisfies the
polynomial growth condition (1.1), so (3.3) follows from the assumption (2.10).
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Now note that since 7T is a tree, we can order its vertices as 1, 2, ..., |V| such that removing
one vertex at a time in this order, the remaining graph is always still a tree. Denote the
remaining tensor network after removing vertices 1,..., 7 — 1 by T, = (Vp, En, {qu}vsh)-
The vertex h has only one neighbor in 7}, which we denote by up € {h + 1, ..., |V|}. Then

valT(S/n; X1:4)

S‘Lh.v
LS Moty 7 et

le[n]V vey (u,v)e€ n
1 z S ‘le v u
== ¥ (1‘[ go(rialiv]) ] [l—’) (Z g1 Geraelin]) 20 ‘])
n. - n
i2,..,0jy=1 "WEWV) (u,v)e& i1=1
R | Sli iv] s
=- 2 ([Taokui) TT =) (&) ,) +86))
02,00y =1 vEV, (u,v)e&
1 z , Sliu, iv] i
= Z < l_[ QU(xlzk[lv]) 1_[ 7) : (E[(II(XI:I{)] +46 (lul))-
n , n
..... l|v| 1 veV, (u,v)e&

Here, §(i), 8’ (i) denote errors that satisfy lim,,_, oo max;en |8(0)|, |8'(i)| = 0, as follows from
(2.11), the conditions of Definition 2.3(c), and (2.10). Note that

I < . Sliu, iv]
'; Z (l_[ CIv(xlzk[lv]) 1_[ ZT) 8(lu1)

i2,...ijp;=1 “veV, (u,v)e&

—0

as n — oo by the condition |S[i,, iy]| < C of Definition 2.3(c), the bound (3.3) applied to the
network 7> with vertex 1 removed, and the convergence max;ep,] |8’ (/)| — 0. Thus

S .I/lv .v
u) E[q1(X1:4)]-

xXn . X
i2,....,ijp;=1 eV, (u,v)e&

1 n
nli)l’roloValT(S/n; X1k) = nli)m - Z ( 1_[ QU(xlzk[iv]) 1_[

Repeating the above procedure by removing vertices 1,2, ..., |V| — 1 sequentially, we are
left with the single vertex |)’| and no edges, and

V-1 VI
Jim valy (S/n; x14) = lim Z g (x1lipy]) - H E[gy(X1:40)] = HE[Qv(Xlzk)]-
l|v| 1 v=1 v=1 ]

The next lemma relates summations over distinct indices to ones without the distinctness
requirement.

LEMMA 3.3. Letxy,..., Xy € R" and (Xy, ..., Xy) be such that

w
(Xl,...,Xk)—>(X1,...,Xk).

For a finite index set S, let (qs : s € S) be |S| continuous functions satisfying the polynomial
growth condition (1.1) for some order p > 1. Then

ngngom Z [1as(alisl. ... xli]) = hngom o T as(eilisl. .. xelis])

ie[n]S s€S ig[n]S s€S

= HE[qs(Xl, e, Xk)].
seS
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PROOF. Let P be the set of partitions of S, and let 7 (i) € P be the partition induced
by i € [n]5. Let Op the partition having |S| singleton blocks, corresponding to i having all
indices distinct. Then for the first equality, it suffices to show that

1
(3.4) A= > > TTlas(erxlis))]

7 €P:w#0p jc[n]S 7w (i)=n SES

vanishes as n — oo.

For any m € P and block R € &, define Qr = [[,cr qu. and let || be the number of
blocks of 7. Then, identifying the sum over {i : 7 (i) = v} with the sum over one distinct
index in [n] for each block of 7,

1

nll Z ﬂ|qs x1:x[is]) |ﬂ| Z H|QR x1:klir])|-

ie[n]S:m(i)=n SES ie[n]™ Ren

As an upper bound, adding back the excluded index tuples i € [#]” where some indices
coincide,

1

Ll Z H}qs(m:k[is]ﬂ = l_[ ( Z|QR xlk[lm)

ie[n]S:w(i)=n SES Rem i=1

Since X1 K X1.x and |Qg]| is a continuous function satisfying the polynomial growth con-
dition (1.1), this upper bound is at most a constant C(;r) for all large n. For any 7w # Op, we
have || <|S| — 1. As the number of partitions = € P is independent of n, applying these
observations to (3.4) shows A < C/n for a constant C > 0 and all large n, and hence A — 0
as desired.

The second equality of the lemma follows from the given condition X% L4 X1k, hence

n|3| Z 1_[‘15 X1k Lis] :1_[ qu x1:x[i] —>1_[E[qs(X1;k)].

ic[n]S s€sS ses seS
We now show that the limit tensor network value is universal in expectation over W.

LEMMA 3.4. Let E denote the expectation over W, conditional on X, ...,Xy. Then
Lemma 2.13 holds for E[valy (W; X1, ..., Xg)] in place of valr (W; X1, ..., Xg).

PROOF. Recall the decomposition of valy (W; xy, ..., Xx) in (3.2), where P is the set of
partitions of the vertices V of T. Taking expectation on both sides yields

(3.5) E[valr (W; x10)] = Z Z Qiig,. - E[Wig, |-

yreP ie[n]Kx

First note that, since the indices of i are distinct and all entries of W have mean 0, E[W¢ {Gx ]
is nonzero only if each unique edge of G, = (K, Fr) appears at least twice. Let || and
| Fr |« be the number of vertices and number of unique (undirected) edges of G . The graph
G must be connected since the original tree T was connected, so |K;| < |Fr|« + 1. Then
any G, where each unique edge appears at least twice has |ICp| < |Frls + 1 <|E]/2 41,
where |£] is the number of edges of the original tree T'.
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Furthermore, we claim that the contribution from partitions 7 where || < |£|/2 is neg-
ligible. To see this, we apply Definition 2.3(b) to get

EWic =TI EWiw.wP] ] [BWiy, i)
(U,V):e(U,V)=2 (U.V):e(U,V)>2
C o(1)
S | T B

W Vyew, =2 W, vyew,vys2

If there is an edge (U,V) of G, with e(U,V) > 2, then this shows |E[WiTG7,]| <
o(1)/n=l < o(1)/n=1=1 1f, conversely, every edge in G, appears exactly twice, then by
assumption |Fy |« = |€]/2 > [Kx|, so this shows [E[W'; 1| < (C/m)=lx < o(1)/nl=I71
also. Therefore,

o)
Z Qijc, - E[Wjg, ] < KAl > 1Qic, |-
" itk ie[n]<x

As an upper bound, adding back the excluded tuples i € [2]** where not all indices are
distinct, we have

1 *
(3.6) 7 2 1Que.l =[] Z\QU x1:xli])

ie[n]<n Ueky " i=l

By (2.10), this upper bound is at most a constant C (r) for all large n, so

Z Qiig, - E 1|G l[—0

.e[n]’Cn

as claimed.

Thus the only nonvanishing contributions to (3.5) come from partitions = where |K| =
|Frl« +1=1&]/2 4+ 1. Then each unique edge of G, appears exactly twice, and these edges
form a tree. In this case, we have

(- Sliv,iv]
(3.7) - > Qi\Gn'E[WﬁGﬂ]Z; Y. Qi I1 -,
ic[n]kn ie[n]Cn unique edges (U, V) of G

Let Z, be the set of tuples i € [n]* where all indices are distinct. Then, applying
|S[iv,iv]| < C from Definition 2.3(c), for a constant C' = C () > 0,

1 Sliv.i
; Z QilGn l_[ liv,iv]

ie[n)Xr\7, unique edges (U, V) of G n

/

C
= 7 > 10i6,!-

ie[n]K=\Z,

Since || = |Frl« + 1, the first equality of Lemma 3.3 shows that this vanishes as n — oo.
Then the right side of (3 7) has the same limit as

Sliy, iv]
Z QilG, - [1 —Y
16[n]’<77 unique edges (U,V) of G

This is the limit value of the tensor network 7 = (K, unique edges of 7, {Qu}vek,) ap-
plied to S/n, which by Lemma 3.2 equals [ [y¢x, E[Qu (X1:4)]. Applying this back to (3.7)
and (3.5),

ligoE[valT(W;X];k)] = Z H E[Qu(X1x)]

38 TP K | = Frlet1=IE]/241  Ueky
=:lim-valp (X1, ..., Xz).
This limit depends only on 7 and the joint law of X1, ..., X, concluding the proof. [
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We make a brief interlude to show here the asymptotic freeness result of Proposi-
tion 2.16(a).

PROOF OF PROPOSITION 2.16(A). From the preceding proof, only partitions 7 where
IKz|=1&]/2 + 1 contribute to lim-valy (X1, ..., Xi). For every such partition, since 7" has
|E| 4+ 1 vertices, this implies that some vertex of /C, that is, some block U of &, contains
only a single vertex v of T'. For this block U, we have

E[Qu(X1:0] = E[qy(X1:6)] =0
by the condition (2.13). Therefore, every summand in (3.8) vanishes, implying as desired

lim-valy (X1, ..., Xx)=0. O

To complete the proof of Lemma 2.13, it remains to establish the concentration of the
value of any tensor network around its mean as n — oo.

LEMMA 3.5. Let E denote the expectation over W, conditional on Xy, ..., Xy. Under the
setting of Lemma 2.13, almost surely as n — oo,
valy (W; xq, ..., xx) — E[valr (W; xq, ..., x¢)] = 0.
PROOF. We write val(W) = valr (W; X1, ..., X¢). We will bound the fourth moment of
val(W) — E[val(W)] and apply the Borel-Cantelli lemma. (Note that val(W) — E[val(W)]
typically fluctuates on the order of 1/4/n, so that bounding the variance would not suffice to

show almost-sure convergence.)
First, we expand

E[(val(W) — E[val(W)])*]
(3.9) = E[val(W)*] — 4E[val(W)*|E[val(W)]
+ 6E[val(W)2]E[val(W)]* — 3E[val(W)]".

We introduce four independent copies of the matrix W as W), W® W3 W®  define
four index tuples iy, ip, i3,14 € [n]V, and write as shorthand

@ranasan) _ @) @) ) )
Giva = GuIT Gl T " GisiT Qg Wy = Wil W Wir - g

where each Wi(‘aT) is defined by the copy W@ . Then

1
]E[Val(W)4] = n—4 Z iy - ]E[W(l,l,l,l)]’

i

1
Bl WIEl W] = g 3 gy EIW)

(3.10)
1

IE‘,[val(W)2][E[val(w)]2=n_4 Z qh;wE[Wi(lZl’zﬁ)],
1

IE[val(W)]“:n_4 S iy B[W23).

Corresponding to each index tuple ij.4, consider a multi-graph G(ij.4) whose vertices
are the unique index values in ij.4, with one edge (isu,i4,) for every combination of
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a=1,2,3,4 and edge (u,v) € £, counting multiplicity. (One may visualize G(ij.4) as a
multi-graph whose vertices are a subset of [n], and having edges of 4 colors corresponding
toa =1,2,3,4.) Then the edges of G(ij.4) corresponding to each single index a = 1,2, 3,4
must belong to a single connected component, so the number of connected components in
G (i1.4) can be either 1, 2, 3, or 4. Let us partition the index tuples iy, iz, i3, 14 € [n] into the
three sets

I = {i1:4 : G(i1:4) has 1 or 2 connected components},
73 = {i14 : G(i1.4) has 3 connected components},
Is = {i1:4 : G(i1:4) has 4 connected components},

and define correspondingly for j =2,3,4,

1,1,1,1 1,1,1,2
4 Z qll4 Wl(|4 )] 4- E[Wl(l4 )]
(3.11) ij4eZ;
+6-E[w 12V — 3. mlw>>Y)),

1.4 1.4
Then by (3.9) and (3.10), we have E[(val(W) — E[val(W)])*] = A» + A3 + A4. Below, we
will show that A3 = A4 =0and A = O(I/nz) as n — oo.
For A4, observe that since G (i1.4) has 4 connected components, the tuples iy, iy, i3, i4 have
no common indices. Then due to the independence between entries of W, we have
( ) (a1) (a2) (a3) (aq)
E[W; @@ =E[wW "] - E[Wy,™'] - E[W, ] - E[Wy,™]

ij4
=E[w;]-E[W;,']-E[W '] E[w, 1 =E[w; ;"]
for any ay, a», a3, as. Applying this to A4 defined in (3.11), we get A4 =0.
Next, for Az, we write i; || i, if i; and i J' share at least one index. Note that for any
i1:4 € 73, there is a unique pair ij, i; such thati; || i/, so

= || fisaeZz:ijlip).
I<j<j'<4
We will repeatedly apply this six-fold decomposition of 73 and the independence between
the different copies of W. If i3 || i4, we have

1,1,1,1 1 1 1 1 1,2,3,3
E[W( )] E[Wi(] )] 'E[Wi(z )] -E[Wii )Wii )] = E[W( )]

19:4 1.4
which together with permutation symmetry between the labels 1, 2, 3, and 4 further implies

that
w L LLD (1,1,1,1)
Z qll 4" l] 4 ] 6 Z qil:4 : E[Wi1:4 ]
i1.4€Z3 i1:4€73,i3]lig
(3.12) (1.2.3.3)
:6 Z qi1:4 ']E[Wll;; ]
i1:4€73,i3|ig

Similarly, considering the two cases i3 || i4 and i || i3 and their symmetric equivalents,

1,1,1,2
Z iy - E W1(14 )]

i14€73

1,2,3,4 1,2,2,3
(3.13) =3 > g BWV43 Y g B

i1:4€73,i3|ig ij4€73,10li3

=3 Y g B4 g B2

i14€73,i3]lig i14€73,i3]lig
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Considering the three cases i3 || is, I || i1, i1 || i> and their symmetric equivalents,

11,23
> e 1(14 )]

i14€l3
(1,2,3,4) (1,2,3,4)
= Z qi1;4 ‘]E[Wi]A ] +4 Z Qi1:4 ']E[Wl]4 ]
314 i1:4€73,i3 iy i14€73,10li3
( ' ) E W(l 1,2,3)
+ Z qil:4 ’ [ 11:4 ]
i1:4€75,11 iz
(1,2,3,4) (1,2,3,3)
= 5 Z qil:4 : E[Wi|:4 ] + Z qi1:4 : ]E[Wl] -4 ]
i14€75,i3lig i14€73,i3lig

Finally, by symmetry,
(1,2,3,4) (1,2,3,4)
(315) Z qil:4 ’ Wll -4 ] 6 Z qil:4 ’ IE[‘4/11 4 ]

ij4€ls i1:4€73,i3lis
Collecting (3.12), (3.13), (3.14), and (3.15) and applying them to Az defined in (3.11), we
get A3 =0.
Finally, we bound A;. Let [V, | and |EG, )|« be the number of vertices and number
of unique (undirected) edges of G(i1.4). Since G(ij.4) has at most 2 connected components,
we have |Vg,.,)| < 1€6,.4) |« + 2. By Definition 2.3(b), for a constant C > 0 and any a1, az,

a3, as, we have |[E[W. 14947 < ¢ /plécirpl < € /Y6602 Therefore,

ir4
1 41V
_4 Z Z |C]i1;4|-

11:46125\V6(i1:4)|:v
Stratifying the inner summation over {ii.4 € Z5 : |Vgi,,)| = v} by its induced partition 7 (i;.4)
of the 4|V total indices (having exactly v blocks), and applying the same argument as in
(3.6), this inner summation may be bounded as } <7,V 1) |=0 |gi,.s] < Cn" for a constant

(ay,az,a3, a4)
Z qll4 Wl]4

11 A€y

C > 0. Applying this bound for each term of A», we obtain |A;| < C/n>.

Combining the analyses of A,, A3z, and A4, we get E[(val(W) — E[Val(W)])4] < C/nz.
Then by Markov’s inequality, for any € > 0, P[| val(W) — E[val(W)]| > ¢] < C/ (*n?). This
bound is summable over all n > 1, so almost-sure convergence follows by the Borel-Cantelli
lemma. [

Combining Lemmas 3.4 and 3.5 concludes the proof of Lemma 2.13.

3.2. Universality for symmetric generalized invariant matrices. In this section, we prove
Lemma 2.14 on the universality of tensor network values for generalized invariant matrices.

Fix the tensor network T = (V, &, {¢v}vey). Expanding the product W = IIMIT ", the
tensor network value is given by

valT(w;XI:w—— Y73 THavxliv) [ Mlivs jelMUje, LTy, L].

1e[n]VJ le[n)€ veV e=(u,v)e€

The matrix IT may be written as II = EP where E is a random sign matrix and P is a
random permutation matrix independent of Z. Let o denote the permutation of [r] for which
Pli,o(i)] =1 for all i € [n]. Then I1[i,, j] is nonzero if and only if j, = o (i,,). Therefore,
the tensor network value is equivalently expressed as

(3.16) vah(w;xl;k)— Yo [Mavli]) [ Eliul: Elivl- Mo @), o ()]

1e[n]V veV e=(u,v)e€
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Let P be the set of partitions of V. For each 7 € P, let G, = (K, F5) be the image of
(V, &) under 7, in the sense of Definition 3.1. For each i € [1]Y, let 7 (i) € P be the partition
induced by i. Stratifying the summation over i € [n]Y by its induced partition 7 (i),

valy (W; X1k)—Z— > Tlavkliv) [ Elinl- Elivl- Mo (), 0 ().

neP ic[n]V:x(i)=r veV e=(u,v)e€

Then, defining Qg = [[,cr qu for the blocks R € K; = m, and identifying the sum over
{i € [n]V : w(i) = 7} as a sum over one distinct index for each block R € K, we have

valr (W; xlk)—Z Z [T @r(xixlirl) ] Elirl- Elisl- Mo (ir). o (is)].

7eP " icinlkn Reks (R,S)eFx

where we recall the notation that i restricts the summation to index tuples i having all
indices distinct. For every R € K, let deg,,,(R) be its external degree in G, that is, the
total number of edges of F, containing R (counting multiplicity) that are not self-loops.
Then for every R € K, the number of times the factor E[ig] appears in the above product is
exactly deg.,(R) plus twice the number of self-loops on R. Since E[i r)? = 1, this implies

valy (W; x14)

(3.17) . . .
= Z Z [1 Qr(xixlirl) Elig1*ex® T Mo(ir), o s)].
neP ie[n)Kr ReKy (R,S)eFr
LEMMA 3.6. Let E be the expectation over Il conditional on M and Xy, ..., Xy. Then

Lemma 2.14 holds for E[valy (W; X1, ...,X¢)] in place of valp (W; X1, ..., Xg).

PROOF. Taking expectations in (3.17) with respect to the independent signs E and per-
mutation o, observe that

e If R € K is such that deg,,(R) is odd, then E[E[i r19€8ex(®)] = 0. Thus by independence
of the diagonal entries of E and distinctness of the indices of i,

(3.18) IE[ I E[iR]degext(R)] = 1{deg.,((R) is even for all R € K, }.
ReK,

e Since o is a uniformly random permutation on [n], for any fixed tuple i € [n]% with all
entries distinct,

IC [
(3.19) E[ I1 M[o(im,o(z‘s)ﬂ Y ' ) > I MU sl

(R,S)eF, jelnlr (R,S)eFr

where n!/(n — |Ky|)! counts the total number of tuples j € [n]%

and the right side represents a uniform average over such tuples j.

having distinct entries,

Let us call a partition = € P even if every vertex of X, has even external degree. Then
applying the above observations to take the expectation in (3.17), we obtain

(3.20) E[valy (Wi xi0)]= Y Bu(m) - Qu(r) - My (),

even TP
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where we set

3.21) B, () =n'frl . %{C”D'
1 *

(3.22) On(m) = > [ Qr(xixlirl),
" ie[n)n Reky
1 *

(3.23) My () = ~ > J1 M. jsl

je[nKr (R, S)eFx

It is clear that lim,,—, oo B, (7r) = 1 for every fixed 7. For Q, (;r), we may apply Lemma 3.3
with the identifications S <> C; and {g; : s € 5} <> {Qr : R € K }. Then

lim Q, () = RI;ICN E[Qr(X14)]-
For M,, (), since the original tensor network is connected, the graph G, = (IC;, F5) corre-
sponding to each partition 7 must also be connected. Consequently, applying Lemma 3.7 be-
low (with p,(M) = M for every edge e), there exists a deterministic limit value M (G, Dgiag)
depending only on G and Dgjag such that, almost surely, lim;, . oo My, (1) = M (G, Ddiag)-
Applying these statements to every m in (3.20), we obtain

Jim Efvalr(Wixio]= 3 ( [T E[Qr(X1:0] )M (G, Dus)

even teP “Rel,
=: lim-val7 (X 1., Ddiag)-

This limit value depends only on T, the joint law of (X1, ..., Xx), and the limit diagonal
distribution Dy;ae, and does not depend on the specific matrix M, concluding the proof. []

LEMMA 3.7. Let M € R"™" be a deterministic symmetric matrix with limit diagonal dis-
tribution Dyiag, satisfying the following condition: For any fixed ¢ > 0, any diagonal mono-

mial p(x) € A(x), and all large n,
max|p(M)[i, j]| < n=1/24e,
i#]

Let G = (K, F) be a connected multi-graph such that the external degree deg.,,(R) is even
for every vertex R € IC. For every edge e € F, let p.(X) be a diagonal monomial labeling this
edge. Then there exists a value M (G, Dgiag) depending only on G and Dgiag such that

N o
A - Yo Il peDljr, jr]=M(G, Daiag)-
jeln€ e=(R,RHeF

PROOF. For convenience, we denote
1 *
My (G) =~ > I1  peDLjr, jr]-
jeln)K e=(R,ReF

We proceed by induction over the number of vertices |X|. For the base case || = 1, all edges
of F must be self-loops, and we have

1 & 1
My(G) == [] peDLj, j1=~Tr [T A(p.(MD).

j=leeF ecF
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Here [[,c» A(p.(x)) is adiagonal monomial. Then, since M has a limit diagonal distribution,
the above quantity admits a limit value as n — oo.

Next, supposing that the result is true for every multi-graph G = (IC, F) with || < K, we
prove the result for |[C| = K 4 1. Define K, := {R € K : deg.(R) = 2}.

First, consider the case where |/C,| = 0. Then

e Since every deg.,(R) is even, we must have deg.,,(R) > 4 for all R € K. Therefore, de-
noting by Fex¢ C F those edges that are not self-loops, we have 4|IC| < 2| Fext/.

e We may assume without loss of generality that each vertex R € K has exactly one self-
loop: For R without a self-loop, we may add the self-loop e = (R, R) with the identity
label p.(M) = Id. For R with multiple self-loops {e € F : e = (R, R)}, we may replace
these by a single self-loop ¢/ = (R, R) having label p, (M) = [leere=(r.R) A(Pe(M)).
These operations do not change the value of M, (G).

We denote by e the unique self-loop on each vertex R € KC. Then it follows that

1 *
|Mn(G>|§ZZ [T |peODLjr. jr]|

jeln)K e=(R,R)eF

=

S| =

> [ 1pex™DLjr. jr1l - ] max|pe (ML, j]]

je[n]’C Rek e€Fext

1
< — - nC12FZad S T | peg MDLigs gl

n
je[n]’C ReK

1 n
<n~FelFul I (; 2_|Pex DL, j]|>.

ReK j=I

Here, the second inequality uses the constraint that indices jg, jg are distinct if R # R’, the
third inequality holds for any fixed ¢ > 0 and all large n by the given assumption on M, and
the last inequality applies n~7ext!/2 < =Kl a5 follows from the above bound 4|K| < 2| Fexq|.
By Cauchy—Schwarz, we have

2
1< . 1< . 1
(; > | Per DL, J]}) = > Per D], j1* = - Tt A(per (M) A(pey (M),
j=I j=1
where A(p., (X)) A(pe, (X)) is a diagonal monomial. Then this quantity has a limit value as
n — 0o, for each R € K. Choosing ¢ < 1/|Fext|, we conclude that M, (G) — 0.

Next, consider the case where |[K,| > 0. We pick an arbitrary vertex R, € K,, and let
R1, R» € K be its two neighbors (where R; # R, and Ry # R,, but possibly R = R»).
Denote e; = (R, R1), e2 = (R4, R2), and assume without loss of generality as above that R,
has a unique self-loop e, = (Ry, R.). Then

1 * .
My(G)=— ) [1 pe(WDLjR, jr]

je[n]K\Rx e=(R,R")eF\[e1,e2}
n
x > Pei MR, jR1Pe; MR, jRy1Pe. MR, , JR,]
JRy=1
JR #lJs:Se\ Ry}

=1- > II(S),

Sek\R,
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where we set

== 3 ( I1 pe(M)Ljr. jR’]) (Pey A(Pe,) Per) MR, s JR, 1

" jeln]F\Re Ne=(R,R)eF\fe1.e2}

*

1
=2 Y (I pljnd)

je[n]C\R« “e=(R,R")eF\{e1,e2}

X Pe, (M)[.]S’ le]Pez (M)[159 ij]pe* (M)[.]S7 .]S]

Here I corresponds to the full summation over jg, € [r] without restriction, and each term
—II(S) removes the contribution from the case jg, = js.

The term I is exactly equal to M,(G’) for a multi-graph G’ obtained from G by re-
moving vertex R, and the edges e, e, adding a new edge between R and R, with label
Pe; X)A(Pe, (X)) pe, (X). This graph G’ is connected and has one fewer vertex than G. Each
remaining vertex in G’ has the same external degree as in G if Ry # Ry, and if R| = R;
then the external degree of Ry = R; is reduced by 2. In both cases, all external degrees in
G’ remain even. Then applying the inductive hypothesis to G’, lim,,_, », I exists and depends
only on (G’, Dgiag)-

Each term II(S) is exactly equal to M, (G") for a multi-graph G’ that merges the vertices
S and R, of G into a single vertex S, in G’, and preserves all edges and their labels. The new
vertex S, in G” has external degree equal to deg,,(S) +deg., (Rs) —2|{e € F : e = (S, R},
which is even. It is clear that G’ remains connected, and the external degrees of all other
vertices of G’ remain the same as in G. Then applying the inductive hypothesis to G’, also
lim,,_, 5 II(S) exists and depends only on (G’, Ddiag), completing the induction. [

REMARK 3.8. Inthe language of [52], our proof of Lemma 3.6 shows that if W is invari-
ant in law under conjugation by permutations, then the expected tensor network value has a
limit if W converges in traffic distribution, and this value is universal across matrices having
the same limiting traffic distribution. Our arguments of Lemmas 3.6 and 3.7 further establish
that if W is also invariant under conjugation by random signs and satisfies the additional de-
localization conditions of Definition 2.6, then it has a limit traffic distribution that is uniquely
determined by its limit diagonal law.

We provide in Appendix C an alternative computation of lim-valy (X1, ..., Xk, Dgjag) for
the special case where W is orthogonally invariant in law, using the orthogonal Weingarten
calculus [23]. We establish the asymptotic freeness statement of Proposition 2.16(b) also in
Appendix C via this computation.

Finally, we conclude the proof of Lemma 2.14 by showing concentration of the tensor
network value.

LEMMA 3.9. Let E be the expectation over Il conditional on M and X1, ..., Xy. Under
the setting of Lemma 2.14, almost surely as n — oo,

valy (W; xq, ..., xx) — E[valr (W; xq, ..., x¢)] = 0.
PROOF. Let us write as shorthand val(W) = valr (W; x1.;). By Jensen’s inequality,
E[(val(W) — E val(W))*] < E[(val(W) — val(W))"],

where W = l:[Ml:IT, M is an independent copy of IT, and the expectation on the right side is
over (I1, IT). We proceed to bound this expectation.
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Recall the tensor network 7 = (V, &, {gv}vey). Let YWD My (Y@ €@y denote
four copies of the tree (V, £). For any subset A C {1, 2, 3, 4}, let

(Va, Ex) = |_| (V(a)’ 5(a))
acA

denote the graph that is the disjoint union of those copies corresponding to a € A, that
is, (V4,&4) has |A| connected components, each a copy of (V,E). We label each ver-
tex v € V@ C V, with the same label g, as in the original tensor network 7. We write
A= {1,2,3,4} \ A as the complement of A, and = and & for the random sign matrix and
random permutation corresponding to IT. Then we have, similar to (3.16),

(val(W) — val(W))*
= > (=DAT] val(W) J] valw)

AC{1,2,3,4} acA acA

_ _plar L ;

= Z (=D 1 Z 1_[ QU(xl:k[lv])

(3.24) AC{1,2.3.4} " ietnVa veva

x 1 Eliul- Eliv]- M[o(in), 0 (iv)]
(u,v)e€y
x Y ] awtnxliv) T[] ELil- ELi]- M[6 (). 5 ()]
je[n]vﬁ veV; (u,v)e&

Let P4 be the set of partitions of V4, and denote by 7 (i) € P4 the partition induced by
i e [n]VA. For each m € Py, let G, = (K, Fr) be the image of (V4, £4) under 7, in the
sense of Definition 3.1. Note that here, G is not necessarily connected but can consist of up
to |A| <4 connected components. Define B, () and Q, (;r) exactly as in (3.21)-(3.22), let
C(r) denote the set of connected components of G, and define

1 * .
(3.25) My () = iy > IT MU js).
je[nKr (R, S)eFx

This coincides with our previous definition of (3.23) when C(;r) = 1. Define similarly B, (77),
0, (), My(7) via the graph G7 = (K5, F7) that is, the image of (V 7, £;) under 7 € Pj.
Then, stratifying the sums over i and j by 7 (i) € P4 and 7 (j) € Py, and taking the expecta-
tion in (3.24) over (I1, IT) using (3.18)—(3.19), we get analogously to (3.20)

E[ (val(W) — val(W))*]

_ _1)/Al
(3.26) = Z (=D Z
AC{1,2,3,4} even T €Py
even T€P;

X By () Bu(70) - Qn (1) Qn () - My (70) My (7).

Form € P4 and m € Pz, we define T =7 @ 7 € Py ,2,3,4) as the combined partition of all
vertices in V(1,2,3,4) given by taking the blocks of both 7 and 7. We write G, = (K¢, F7)
as the image of (V(1,2,3,4}, £(1,2,3,4)) under t; this is the disjoint union of G and Gz, so in
particular

plC@+e@)]

n4

1Kol = 1Kel + 1K), IC()|=[Cm)| +|CT)]|.
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We now proceed to approximate B, () B, (7w), On(w) 0, (), and M, ()M, () by quanti-
ties that depend only on 7, and not on the individual partitions 7, 7. We write O (n™") for
any error of magnitude at most C/n" for a constant C := C (s, 7) > 0 and all large n.

For B,,, observe from the definition (3.21) that

B() n n n n
T)=—- .
" n n—1 n=2 n— K| +1
Ko |1
Tk _ 1[Ik _
:1+—Z"—’;’ +0(n ) =1+4n ‘(' 2’|)+0(n 2.

Similarly,

By()By(7) =1+ n~" (("2”') 4 ("Cj')) + oM.
In particular,
(3.27) B,(m)B,(7) = By(t) + O(n =1+ 0(n7").

In the case where G; = (K;, F;) has 4 connected components, that is, each block of both
7 and 7 is contained within a single copy V@ of V, let us write G (a) = (K;(a), Fr(a))
for the component corresponding to the partition of V. Given any = € Py, 7 € P 1> and
T =7 @ 7, we then have

(5)-(5)+ () 5, oo

acA,b¢A

because to choose two elements of ;, we may choose them both from K, bo_th from Kz,
or one from K; (a) C K and the other from K (b) C K5 for some a € A, b € A. This gives
a refinement of (3.27),

(3.28) By(m)By()=Buy(t)+ Y Bu(t,a,b)+ 0(n"?),
acA,bgA

where we define B, (1, a, b) = —n~ YK, (a)| - | (b)|. Here By(t,a,b) = O(n~ ).

For Q,, observe from the definition (3.22) that the distinction between Q, (7)Q,(7) and
0, (7) is that the former does not restrict indices of summation corresponding to 7 to be
distinct from those corresponding to 7, that is,

*

_ 1 * . . C
0,(@)0, () = 0,(7) + KT Z Z 1{there is at least 1 pair of coinciding

ic[n]’7 je[n)Fz

indices between i and j} x 1_[ Or(x1x[ir]) l_[ Or (x14[jr]).
ReK, R ekxz

By Lemma 3.3, the quantities Q, (), Q, (), and Q,(t) all have deterministic limit values
as n — oo. Furthermore, by a simple inclusion-exclusion argument together with Lemma 3.3,
in the above double summation the contribution from pairs (i, j) coinciding in exactly k pairs
of indices is of size O (n~¥). Then in particular,

(3.29) Qu(m) (@) = Qu(t) + O(n~") = 0(D).
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In the case where G, has 4 connected components, let us write more explicitly

On () Qn(m)
1 * *
= Q0n(7) + el Z Z 1{there is exactly 1 pair of coinciding
ie[nln je[n)<n

indices between i and j} x l_[ Or(x1xlir]) l_[ QR/(xl:k[jR/])—i—O(n_z).
ReK, R'eksx

We may choose the coinciding index pair by choosing 1 vertex R € K (a) € K for some
a € A, and 1 vertex R’ € K. (b) € K; for some b € A. Now viewing R € = and R’ €
as disjoint blocks of vertices of V, note that if S = R U R’ C V is the block obtained upon
merging R, R’, then by definition Qg = Qg - Q. Thus, the above is equivalent to

(3.30) 0n(M)0w(@) = Cu(@) + Y Ou(r,a,b)+0(n72),

acA,b¢A

where we define

1
On(r.a,b) = —— > 1{jhas |K¢| 1 distinct indices, and 1 index from
n T
jelnike

K+ (a) coincides with 1 index from K, (b)} x 1_[ Or(x1k[Jjr]).
ReK:

By the preceding arguments, Q, (7, a, b) = omnh.

For M,,, consider any A C {1, 2, 3,4} and w € P4. Recall that C(sr) is the set of connected
components of G,. Each component in C(rr) takes the form G, = (K, F,) where o is a
partition that contains a subset of the blocks of m. Let us write Z;‘:[n] x,, for the summation
over tuples j such that indices corresponding to each component K, C K are distinct, but
they are not necessarily distinct across different components. Recalling (3.25), define

K%

1
M:*(T[)iz 1_[ Mn(G)ZW Z l_[ Mljr, jsl,

GyeC(m) je[n]’CJT (R,S)eFx

where M (rr) is now a multiplicative function over connected components of 7. Since each
G, is connected, Lemma 3.7(a) implies the existence of the limit

3.31) My*)— [] M(Go, Daiag)-
GoeC(m)

Comparing the definitions of M,*(r) and M, (xr), we have M,;* () = M, (x) if G has a
single connected component |C(7)| = 1, and more generally

Kk

My () =M;*() — Z 1{some indices of j for different connected

[C ()]
" jelnikn
components of G, coincide} x l_[ MIjr, jsl
(R,S)eFr

For each j where this summand is nonzero, define 7’(j) € P4 as the partition that merges
those blocks of w where the corresponding indices of j coincide. Let PP () be the set of all
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possible such partitions 7’ (j). (If |C(;r)| = 1, then P(7r) = &.) Then, stratifying the summa-
tion over j by 7' (j) € P(x), letting G- = (K, F,/) be the image of (V4, £4) under 7/, and
identifying the sum over {j : 7'(j) = 7’} as a sum over one distinct index for each R € K/,

1 *
M) =My* () = —zer >, > [1 Ml Js]

”/GP(”)je[n]Kﬂ/ (R,S)eF,

1
— * /
=M= ) n|C(n>|—|C<n/>|M"(” )-

7' eP(r)

(3.32)

For any 7’/ € P(r), its number of connected components satisfies |C(x")| < |C()| — 1. In
particular, if |C(7)| = 2, then |C(x")| = 1 for all 7" € P(x), so M, (x") = M}*(x’) on the
right side of (3.32). If |C(s;r)| > 3, then we may apply this identity (3.32) recursively to further
approximate M, (") on the right side of (3.32) by M, (r’), until only instances of M;* and
no instances of M, remain. Applying (3.31) to each instance of M,™* in this final expression,
this shows that

My(m) = M* @)+ 0(n~ ") =0q).
Applying this for m € Pa, m € P, and T = @ 7, and recalling that M,* is multiplicative
across connected components so that M, (t) = M* () M,* (i), this yields
(3.33) M, (m)M,(7) = M, (1) + O(n_l) =0(Q).

When G; has 4 connected components, let us derive a more explicit expression for this
O (n~Y) error. Applying (3.32) and the above arguments to 7, we have

M, (1) = M* (1) — ! > M (') + 0(n2).
M ep@yie)i=e()|-1
If t/ € P(t) and |C(t")| = |C(t)| — 1, then 7’ is obtained by picking exactly two connected
components of G, say G;(a) = (K;(a), Fz(a)) and G, (b) = (K;(b), F; (b)), and merging
one or more pairs of blocks R € K (a) with R € K. (b). We write the set of such partitions
7’ € P(t) corresponding to the two fixed indices a # b as P(t, a, b). Then

1
M, =M o) -~ Y Y M) +0@m)
My <a<b<dt'eP(.a.b)

Similarly

1
Mym) =M ) —~ Y Y M)+ 0@n),
n a<b w'eP(m,a,b)
a,beA

1
M@ =M@ —— > Y MFR)+0@w).
b #eP@.a.b)
a,beA

Taking the product of these two expressions and applying multiplicativity of M,™*, we deduce

(3.34) M, (m)M, () = M,(t) + Z Mn(r,a,b)+0(n_2),
acA,beA

where we define M,,(t,a,b) = % > P (r.ab) M;*(t"). Here again, M, (t,a,b) = omn™h.
Equipped with these approximations, we now bound (3.26). Given t € Py 2 3,4}, let A(7)
be the set of A C {1,2, 3,4} for which t =7 @ 7 for some 7 € P4 and 7w € Py, that is,
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A € A(r) if and only if each connected component of G, corresponds to vertices belonging
entirely to V4 or entirely to V;. Note that given T =7 @ 7 and A € A(7), this uniquely
determines 7 € P4 and 7w € Pj;. Then, stratifying the summation in (3.26) by the number of
connected components [C(t)| = |C(r)| + |C()|, we have

E[(val(W) — val(W))*] = E| + E» + E3 + E4,

where
1
Ej=—r 3 Y (=DMB,(m)Bu(7) - Qun() 0 () - My () My (7).
even T€P(1 23,4} AcA(T)
IC(D)=Jj

Here, m and 7 on the right side denote those partitions that are uniquely determined by
T=x &7 and A € A(r); we omit their dependence on (z, A) for brevity.

Applying the simple the bound B, () B,(7)Qn(7)Qn(@)My(m)M,(7) = O(1) from
(3.27), (3.29), and (3.33), we get E; = O(n™3) and E» = O(n™?).

For E3, applying the approximation B, (w)B,(7w) = B,(t) + on", 0,(0)0,(7) =
0,(0)+0®m™"), and M,,(w)M,,(7) = My, (7) + O(n~") from (3.27), (3.29), and (3.33), we
have

E= L ) Bu(0)Qu(MMa(v) Y (=D +0(n7?).

" even 1Py 23.4):1C(0)|=3 AcA(r)

Importantly, the leading term B,(t)Q,(t)M,(t) does not depend on A, so we have fac-
tored it outside of the sum over A, and the lower order terms all contribute to the O (n~2)
error. For any t where |C(t)| = 3, we have ZAGA(,)(—I)M' = 0: For example, if the 3
connected components of G, correspond to vertices in Vi, V», and Vi3 4y, then A(7) =
(@, {1}, {2}, {1, 2}, {3,4}, {1, 3,4}, {2,3,4}, {1, 2, 3, 4}}. Thus, we get E3 = O(n"2).

Finally, for E4, we apply the finer approximations (3.28), (3.30), and (3.34) which hold
when |C(t)| = 4. In this case A(t) consists of all subsets of {1, 2, 3,4}, so

Eq= Z (Bn(T)Qn(T)Mn(T) Z (=1l

even T€P(y 2,3,4):|C(7)|=4 AC{1,2,3,4}

+ > [Bu(®)Qu(D)My(t,a,b) + Bu(1) Qu(t, a, b)My(7)
a#be{l1,2,3,4)

+ Bu(t,a,b) 0n (DM, (D)] Y (—1)“") +0(n?).
AC{1,2,3,4}
acA,beA

Importantly, we have exchanged the order of summations over A and over (a € A, b € A), and
used that each term By, (t, a, b), O,(t,a,b), M, (z, a, b) does not depend on the assignment
of the remaining indices {1, 2, 3,4}\ {a, b} to A and A. Then, applying }_4c(1.2.3.4)(— D41 =
0 and also ZAg{1,2,3,4}:aeA,beA(_l)lAl = 0 for each fixed pair a, b, we get E4 = 0(n2).

Combining the above, we have E[(val(W) — Eval(W))*]1 < C / n? for a constant C > 0
and all large n. Then Lemma 3.9 follows from Markov’s inequality and the Borel-Cantelli
lemma. [

Combining Lemmas 3.6 and 3.9 completes the proof of Lemma 2.14.
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3.3. Universality of AMP via polynomial approximation. We now prove Lemma 2.12,
showing that the universality of AMP for Lipschitz nonlinearities® can be obtained from
universality of tensor network values by polynomial approximation.

For the given AMP algorithm with Lipschitz nonlinearities u;1(-), we approximate it by
an auxiliary AMP algorithm with polynomial nonlinearities i;41(-), where each ;4 is an
Ly-approximation for u;1; with respect to the state evolution of its arguments. A similar
method of approximation was recently used in [33]. Combining this approximation, the va-
lidity of state evolution for polynomial AMP applied to G, and the universality of tensor
network values for G and W, we show that iterates of the Lipschitz and polynomial AMP
algorithms applied to W are close in (normalized) ¢, distance. This will imply the desired
W,-convergence of the AMP iterates (2.1) to their state evolution.

We construct the auxiliary AMP algorithm as follows: Fix any ¢ > 0. For the same ini-
tialization @; = u; and vectors of side information fy, ..., f; as in the given Lipschitz AMP
algorithm (2.1), define the iterates fort = 1,2, 3, ...

t
it = Wﬁz - thsﬁs,
s=1

(3.35)
U1 =121, ..., 2,81, ... f))
such that
1. Each coefficient by, is defined by iis, i3, . . ., ii; and the orthogonally invariant prescrip-
tion (2.6).

2. Let X; be the ort~hogonally inxariant prescription (2.5), and let (U, Fi, Zl;,) be the
state evolution where Z;.; ~ N (0, X;) is independent of (Uy, Fi.x). Then each polynomial
y+1(+) is chosen to satisfy

(3.36) E[(iirs1(Zra, Fia) — et (Zia, Fi)’] < e

3. For any fixed arguments z1.;—1) and fi.x, the function z; — #t,41(z1+, f1:k) has non-
linear dependence in z;.

We write the iterates as z;(W), u,(W) if we want to make explicit that the algorithm is
evaluated on the matrix W.

The choice of i, in condition (2) above is possible by the polynomial density condition
in Assumption 2.1, and by Lemma A.1 which ensures that the same density condition holds
for (U1, F1, 4 1:¢). If condition (3) does not hold for this polynomial i; 1, then it must hold
upon adding to ;41 a small multiple of 2,2. The conditions of [37], Assumption 4.2, are
verified by Assumption 2.1, the condition Var[D] > 0 given in Lemma 2.12, and the above
condition (3). Then [37], Theorem 4.3, ensures, almost surely as n — oo,

~ ~ w [ =
(3‘37) (ul?fl?""fk7z1(G)""’zt(G))% (Ul’Flﬁ""Fk’ Zl""’Zt)'

LEMMA 3.10. Fix any t > 1. Let (01,21, ...,Z,0;) be the iterates of any algorithm
of the form (3.35), where {b;s} are scalar constants and ii;41 : R"t* — R are polynomial
functions applied row-wise. Then for any polynomial p : R*** — R and for some finite set
F of diagonal tensor networks in k + 1 variables,

(p@r, ... 0,71, & fL . f0)= Y valr (Wi, 1, o).
TeF

5By this we mean that each nonlinearity u, 1 (-) is Lipschitz in its first f arguments zp, ..., Zt.
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PRrROOF. First note that

(P, Z1, £1:0)) = valgr (W; yy, 21, £10),

where T is a tensor network with only one vertex v whose associated polynomial is g, = p.
We claim that given any tensor network 7 = (V, &, {gy}vey) in the variables (11, Z1:1,
f1:k), we can decompose

(3.33) valr (Wi, 214, f1p) = Z valy (Wi ay, Z1.¢—1), f16),

T eF
where F is a finite set of tensor networks in the variables (it1., Z1:(:—1), f1:k). To show this,
recall that

valy (Wi i, 21, fia) = — 3 [ qu(@ali], Zualiv], fralin]) Wirr-

ic[n]V veV

Applying z, = Wa, — Y& _, b5ty and expanding each g, in terms of (., Z1.;—1), f1.x) and
Wi, we have

Qv(ﬁlzz[iv], Z1:liv], fl:k[iv])

[CH n 0
= Z qv,0 (ﬁlzt[iv], Zl:(t—l)[ivL fl:k[iv]) : (Z Wliy, ]]’L[]]) ,
=0 j=1

where ©, is the maximum degree of ¢, in Z;, and ¢y,0, qv.1, - - -, gv,©, are polynomials that
depend on g, and {b;s}. Therefore

- 1 Y . .
ValT(W;ulzt,letaflzk):; > 3 T v @reliv), Zie—nliv], fixliv)

0€nvev{0,‘-.,@v} ie[n]V vey

n Oy
: (Z Wiy, j]ﬂz[j]> [T Wi, il
j=l1 (u,v)e€

For each 0 € [[,c{0, ..., ®,}, we define a new tensor network 7y from 7 as follows:
(1) for each v € V, replace the associated polynomial g, by ¢y4,; (2) for each v € V,
connect v with 6, new vertices, where the associated polynomial for each new vertex is
q(U1:,Z1:(—1), f1:k) = u;. Then the above is precisely

valr (Wi ayy, 21y, f14) = Z valg, (W; 1., Z1.—1), f1:40)
0<1,ep{0,....04}
which shows the claim (3.38).
We next claim that for any tensor network 7 in the variables (i1, Z1.¢—1), f1:k), we have

(3.39) valr (Wi ayy, 2. —1), f1:0) = valpr (Wi -1y, Zi:g—1y, F1)

for a tensor network 7 in the variables (ii1.;—1), Z1:(—1), f1:k). This holds because u, =
i (Z1:—1y, f1:1) is itself a polynomial of (Z1.;—1), f1:x), so for each vertex v of T, we may
write

Go(Ur:—1y, dr (Z1:—1), £1:6) Zize—1ys £1:6) = Go Wree— 15 Z1:0— 1), F1:6)

for some polynomial g,. Then we can define T’ by replacing each polynomial ¢, with g, and
preserving all other structures of T'.

Having shown the reductions (3.38) and (3.39), the proof is completed by recursively ap-
plying these reductions for ¢, — 1, —2,...,1. U
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Combining the above lemma, the state evolution (3.37) for the polynomial AMP algorithm
applied to G, and the given condition in Lemma 2.12 that tensor network values have the same
limit for G and W, we obtain the following state evolution guarantee for the polynomial AMP
algorithm applied to W.

LEMMA 3.11. In the setting of Lemma 2.12, for any fixed t > 1, almost surely as n — o0

~ ~ w [ =
(u],f],...,fk,z](W),...,Zt(W))—>(U],Fl,...,Fk,Z],---,Z[)-

PROOF. By Lemma 3.10, for any polynomial p : R‘**+1 — R, we have

(p(ur, fia, 21, (W))) = > valp (Wi uy, fry),
TeF

where F is a finite set of diagonal tensor networks, and the same decomposition holds for
G in place of W. Then by the condition given in Lemma 2.12 and the state evolution (3.37),
almost surely

(3.40) nli{go(l?(ul, f14, 214 (W))) = nlilgo@(“l’ fi4,7214(G))) =E[p(U1, Fix, Z10)]-

In particular, this shows that on an event £ having probability 1, all mixed moments of the
empirical distribution of rows of (uy, fi.x, Z;.;(W)) converge to those of (Uy, Fi, Zl;,).
Lemma A.l implies that the joint law of (Uj, F14, Zl;,) is uniquely determined by its
mixed moments, so on this event &£, the empirical distribution of rows converges weakly
to (Uy, Fix, Zl;,) (cf. [10], Theorem 30.2, which extends to the multivariate setting by the
same proof). On this event &, also

o1
lim —
n—o00 p

S @kl fralil 2 (WD |2 = B[ U1, Fis, Zi) | 2]
i=l1

for each integer d > 1, which shows (cf. [73], Definition 6.8 and Theorem 6.9) that
- w =
(w1, fik, Z1.:(W)) = (U1, Fix, Z14). O

REMARK 3.12. Lemmas 3.11, 2.13, and 2.14 already imply universality of the state
evolution for polynomial AMP algorithms, without requiring the assumption [|[W|lop < C.

We now proceed with an inductive comparison of the given Lipschitz AMP algorithm
(2.1) and the polynomial AMP algorithm (3.35), both applied to W. For each ¢ > 1,
let (Uy, F1k, Z1+) describe the state evolution of the given Lipschitz AMP algorithm
(2.1), where Z1; ~ N (0, X;) and X, is nonsingular by assumption in Lemma 2.12. Let
(U, Fix, Z1+) describe the state evolution of the auxiliary AMP algorithm (3.35) where
Z14 ~N(0, X,). We write as shorthand

Ust1 =us1(Z1s, Fra), VU1 = O1us41, ..., Osus11)(Zis, Fra),
Ug1 =iig+1(Z1s, F14), VU1 = @it ..., dsiis+1)(Z1s, F14),

where the gradients are with respect to the first s arguments.

All subsequent constants may depend on the Lipschitz nonlinearities u», u3, u4, ..., the
corresponding Onsager coefficients {b;;} and state evolution covariances {X;}, and joint laws
of (U1, F1x, Z1.+), which we treat as fixed throughout this argument.



3980 T. WANG, X. ZHONG AND Z. FAN

LEMMA 3.13. Fix t > 1. Suppose (3.36) holds for & > 0 and every polynomial
uz,...,u;y1. Suppose also |X; — Xl|lop < 8 for § > 0. Then for any sufficiently small §,
g, we have

t ~ t+1 ~ o~
max|E[VUs41] = E[VOsill, <t@oe).  max|EU,Uy] — BT, 05| < (3. e)
for a constant 1(8, €) > 0 satisfying (5, &) — 0 as (8, &) — (0, 0).

PROOF. We write (8, ¢) for any positive constant szitisfying t(8,8) > 0 as (6,¢) —
(0, 0) and changing from instance to instance. Since || X; — X, |lop < 8, X, isinvertible, and X

is the upper-left submatrix of X; for s <¢, for sufficiently small 6 > 0 and eachs =1, ...,¢
we have

_ <1 ~
(3.41) 125" =20 o <t@.0), B[l Zis — Zisl3] < (8, )

for a coupling of Z;.; and 2113.
We introduce the additional abbreviations for the intermediate quantities
U1 = s41(Z1s, Fra), VU1 = @rttss1, - - stts+1)(Ziss, Frop)
Then for any s € [¢],
|EIVU 411 — EIVU,11]],
(3.42) _ _ -
< |E[VUs+1]1 = E[VUs111|, + [E[VUs41]1 = E[VUs 411 |,

Applying Stein’s lemma, (a + b + ¢)? < 3(a® + b? + ¢?), and Cauchy—Schwarz, the first term
of (3.42) is bounded as

[EIVUs 111~ BIVT 41113
= |E[Uy+1 - 27" Z,] - E[Tsn1 - £ Z1L] I3
< 3E[Wss1 = Us?] B2 2 3]+ B[00 ] B (50— 20721 )
+ 3800 BlIE (2 - ZL) )
The latter two terms are at most ¢(8, €) by (3.41), and for the first term we have
(3.43) E[(Uy+1 = Use0)’] < LS - B[ Z1ss — Zi513] <1, 0,

where L is the Lipschitz constant of u;1(-). The second term of (3.42) is bounded similarly
as

~—1~

|EIVU 41] = ELVUs111[5 = [E[Us41 - £, Z],] — E[Us41 - ES_IZIS]”%

S
R ~ =—1~
= E[(US-H - US+1)2] ' E[st ZIS ”%]’
where by (3.36) we have
(3.44) E[(Uss1 — Uss1)?] = E[(us1(Z1s, Frix) — iiss1(Z1s, Fiix))’] <&

Combining these bounds and applying them to (3.42) yields the first claim of the lemma,
IE[VUs+1] — E[VUs+1]ll2 < t(6, €). For the second claim, for any r, s € [¢ 4 1], we have

[E[Ur41Us1] — B[U, 41 Us1]| < |E[(Urs1 — Up)Usi1]| + |E[Ur g1 (Us 1 — Uss1)])-

Applying again Cauchy—Schwarz and the bounds (3.43) and (3.44) yields the second claim
IE[Ur+1Us+1] = E[Uy+1Us11]] < u(8,¢). U
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LEMMA 3.14. Fix t > 1. Suppose (3.36) holds for ¢ > O and every polynomial
Uy, ...,us+1. Then for any sufficiently small e, almost surely for all large n, we have

m_achHZ s(W) —z,(W) |, < (o), max—”z W, <C, ||Z,—)~:,||op<t(e)

for constants C > 0 and () > 0 satisfying 1(¢) - 0 as ¢ — 0.

PROOF. We write z;, Z;, u;, 0, for the iterates of the Lipschitz and polynomial AMP
algorithms applied to W. We prove the extended claim that there are constants ¢(¢) > 0 and
C > 0, satisfying t(¢) — 0 as € — 0, for which almost surely for all large n,

(a) max'_, |bys — bys| < 1(e);

(b) max!_, \/LEHZS — Zl2 < t(e) and max/_, ﬁHZsHZ <G

©) I1Z: —Zllop < t(e);

(d) max’_, ﬁ”llsﬂ — U412 < t(e) and max{_, ﬁ s 1fl2 < €.

We induct on ¢. For the base case t = 0, statements (a—c) are vacuous, and (d) holds by the
equality of initializations i = u; and by the convergence of u; in Assumption 2.1.

Consider any ¢ > 1, and suppose inductively that claims (a—d) all hold for ¢t — 1. Denoting
the constants in this inductive claim for ¢t — 1 as ¢;,_1(¢) and C;_1, let us write ;,(g) and C;
for any positive constants depending on ¢;_1(¢) and C;_1, satisfying ¢;,(¢) — 0 as ¢ — 0 and
t;—1(¢) = 0, and changing from instance to instance.

For (a), by the prescription (2.6), each by is a continuous function of E[VU;4 ] for s <
t—1land E[U,Us] for 1 <r <s <t. Then maxgz1 |bes — bys| < 1:(€) by statement (c) of the
inductive hypothesis and Lemma 3.13.

For (b), by the definition of z; and z;, we have

Z; —Z W, —ua ! u; — 0 ! ~ w2
Iz —Z ]2 _ [IW(u, t)||2+Z|bts|' [l S||2+Z|bm—bm|- [ || .

ﬁ B ﬁ s=1 ﬁ s=1 \/ﬁ

By the assumption that |W/|op < C almost surely for all large n, by claim (d) of the inductive
hypothesis, and by claim (a) already shown, this is at most ¢;(¢g). Also,

z: 112 IIWu ll2 [ [|2
NN £3 bl T
n s=1

which similarly is at most C;.

For (c), by the prescription (2.5), the matrix X, is (as in the proof of (a) above) a continuous
function of E[VU; (] fors <t—1and E[U,Us]for1 <r <s <t.Then | X, — §,||Op < 1(¢)
again by statement (c) of the inductive hypothesis and Lemma 3.13.

For (d), it follows from the definitions of w;y| and @, that

w1 —Weprlls Nuegr @i, f1i) — dep1(Z2a, B0 2
Jn Jn
- Nurs1 (2, £1:0) — w1 (Z1g, £ |12
< NG
||ut+1(il:t7 f1.0) — lzl-i—l(il:t’ fi.0l2
vn '

The first term is at most (;(g) by statement (b) already proved and the fact that u;((-) is

Lipschitz. For the second term, Lemma 3.11 shows (Z;., fi:x) K (Z 1:t, F1:x) almost surely
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as n — oo, and the function (u;41(-) — 12,+1(-))2 satisfies the polynomial growth condition
(1.1) by the given conditions for u;41(-). Then

o e G, 1) — ey (B, 1013
m
(3.45) n—00 n

=E[(urs1Zr, Fix) — i1 (Z1a, Fia)?] <,

where the inequality is due to (3.36) in the construction of it;1 1. Thus [Ju;41 — 4 1]l2/4/n <
t;(e). Similarly,

||llz+1||2<||Mz+1(Z1:t,f1:k)—Mz+1(0,f1:k)||2 lluer 4100, F1.0) 12

Vnoo T Vn Vn

The first term is at most C; by statement (b) already proved and the fact that u,,1(-) is Lips-
chitz. For the second term, we have lim,,_, 5o %||u,+1(0, fi10) ||% = E[u;41(0, Flzk)z] which is
also at most a constant C;. This concludes the proof of (d) and completes the induction. [

Finally, we apply Lemma 3.14 to prove Lemma 2.12.

PROOF OF LEMMA 2.12. Let uy,, U1y, Z1y, Z1;; be the iterates of the Lipschitz AMP
algorithm and polynomial AMP algorithm applied to W. We write ¢ (¢) for a positive constant
such that ((¢) — 0 as ¢ — 0, and changing from instance to instance.

To show W,-convergence of (uy, fi.¢, z1.;), consider any function g : R*t*1 — R satisfy-
ing [g(x) — g(y)| = C(1 + Ix[l2 + llyll2) Ix — ylI2 for a constant C > 0. Then

(g (uy, fix, 21:) — g(uy, fi, Z120)))|
n

C
= (0 [ @ealid, fralil zee i) + [ @ealids fialil, 2 |,) - 20 li] = Z0alid]

i=1

C n
< ;J 33 (1 il fralil zie G |5 + | @ilil, fialil, Z1adil)[5)

i=1

: J D llznalil = 214013

i=I

k t t
C - ~
= 3n+6lul3+6> IE13+3D (sl + 1Z13) - | DY llzs — zl3.
j:] s=1 s=1

This implies, by the statements for z;., in Lemma 3.14 and the convergence of (uy, fy, ..., fx)
in Assumption 2.1, that almost surely for all large n,

(3.46) |(g(u1, firx,210) — g(uy, £y, il:t))} <u(e).
Since (uy, f1.1, Z1:1) K Uy, Fr, 21:,) by Lemma 3.11, we have

(3.47) im (g(uy, fix, Z1:0)) = E[g (U1, Fr, Zi)].
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By the statement for ¥; in Lemma 3.14, there is a coupling of Z;.; and Zl;, such that
E[l|Z1 — Z1:113] < t(e). Then similarly

|E[g(U1, Fix, Z1:)] — E[g(Uy, Frut, Z10)]|

< C-E[(1+ (U1, Fie, Zv:o) |y + |U1, Froes Zi) ) - 121 — Ziell2]
(3.48)

< C\EB+6U2+ 6] Frl3 + 312113+ 31 Z1413 - VE[1 Z1s — Z1412]
< t(e).

Combining (3.46), (3.47), and (3.48), we obtain for a (different) constant ¢(e) > 0, almost
surely for all large n, (g (uy, £, 21.1)) —E[g(U1, F1.k, Z1:4)]| < t(¢). Since & > 0 is arbitrary
and ((¢) — 0 as ¢ — 0, we conclude that lim,_, o (g(uy, f1:x, 211)) = Elg(U1, Fik, Z1:1)].
This holds for all bounded Lipschitz functions g(-) as well as for g(Uy, Fi.k, Z11) =

I(Uy, Fik, Z1:0) |13, which implies (uy, f1:¢, Z1:) % (Ui, Fi:ks Z1:) (cf. [73], Definition 6.8
and Theorem 6.9). [

Combining Lemmas 2.12 and 2.13 for G ~ GOE(n) concludes the proof of Theorem 2.4,
and combining Lemmas 2.12 and 2.14 for an orthogonally invariant matrix G with limit
spectral distribution D concludes the proof of Theorem 2.8.

4. Discussion. In this work, we have established universality of the state evolution for
AMP algorithms applied to ensembles of matrices in both Gaussian and non-Gaussian uni-
versality classes, using an unfolding of polynomial AMP algorithms into linear combinations
of matrix-tensor networks. Our analyses also reveal universality classes of matrices for which
these tensor networks have common limiting values, but where a more succinct characteriza-
tion of the limiting behavior of first-order iterative algorithms is currently unknown. We hope
that our work may inspire the development of dynamical mean-field theory descriptions of
such algorithms for these broader matrix ensembles.

Recently, motivated by statistical applications, a burgeoning line of work [16, 47, 48, 64]
has studied nonasymptotic guarantees for AMP algorithms, in settings where the underlying
structure (e.g., sparsity) and the nonlinearities applied may depend on the dimension #, and
for a number of iterations of the algorithm that may also grow with the dimension n. The
study of AMP universality in such settings falls outside the scope of our current analyses,
and we believe this is an interesting direction for future work.

APPENDIX A: DENSITY OF POLYNOMIALS

LEMMA A.1. Let ux and iy be probability laws on R™ and R" having finite moments
of all orders, such that multivariate polynomials are dense in the real L*-spaces L*(ux) and
L?(wy). Then multivariate polynomials are also dense in L*(ux X py).

PROOF. Consider any measurable A C R™ and B C R", and let x4, xp, xAxp be the
indicator functions of A, B, and A x B. For any ¢ > 0, by the density conditions for L (i x)
and L2(uy), we may take polynomials p4, pp such that || x4 — Pallp2(uy) <€/2and | xp —

PBll2uy) <€/ClipallL2(uy))- Then
I xaxB = PAPBI L2y xpuy)

<1154 = Pall L2 X8 20y + 194l 2 18 = PBllL2gay) < &

Taking ¢ — 0 shows that polynomials are dense in the linear span of indicator functions
{xaxp : measurable A C R™, B C R"}. This linear span is in turn dense in Lz(ux X [Ly),
showing the lemma. [J
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APPENDIX B: SUFFICIENT CONDITIONS FOR GENERALIZED INVARIANCE

In this appendix, we prove Proposition 2.7, providing examples of matrix models that
satisfy the generalized invariance condition of Definition 2.6.

LEMMA B.1. Let M € R**" be a symmetric matrix having eigenvalues d € R". Suppose

d % D aimost surely as n — oo, where D has finite moments of all orders. Suppose M
satisfies (2.9) almost surely for all large n. Then for any p(x) € A(x),

(a) limy,— % Tr p(M) exists almost surely, is finite, and depends only on the law of D.
(b) Forany ¢ > 0 and all large n, we have

1
max| pMDLi, 7] = Tr pMD | <n ™25, max| pMDIi, 1| < n™!/27°.
= n i#]

PROOF. By the definition of diagonal monomials, every p(x) € A(x) is a word of the
form

(B.1) p(x) =x"A(p1(X)X?A(pa(x)) - X"EA(pr (X)X,

where each py(x) € A(x) and each r¢ > 0. We define the depth of p(x), denoted by 4(p), as

8(p) =0if L =0 (so that p(x) =x" for some r > 0), and §(p) =1 —I—maxgz1 S(pe)if L > 1.

Thus §(p) is the maximum number of “nested” applications of A(-). We induct on §(p).
For the base case where §(p) =0 and p(x) = X", we have

%Trp(M) lTr(M’ Zd[z] — E[D"]
l 1

almost surely, by the assumption d L4 D. Thus statement (a) holds, and statement (b) holds
by the assumed condition (2.9).

Suppose inductively that the lemma is true for all p(x) with §(p) < K, and consider p(x)
with §(p) = K + 1. Fix any ¢ > 0. By the definition of depth, every p,(x) in (B.1) satisfies
8(pe) < K. Then forevery £ =1,2,..., L, by claim (b) of the induction hypothesis, we can
decompose p;(M) = %Tr pe(M) -1d + E; where Ey satisfies max; e | Eeli, jll < n—l/2te
almost surely for all large n. Fix any i, j € [n] and write ip =i and iz 41 = j. Then, applying
this decomposition to every p,(M), we obtain

P, j1= Y Mo, irlprMD)liv, i1IM™[i1, ia] -+ pL(MD)lir, il M+ [ir, ir11]

ien]t
L+1
= > [] M .- 1,lz]]_[( Trpe(M)JrEe[lz,lz])
ie[n]t €=1
| Lt1
= > ( I1 —Trpe(M)) S T M lie—r.ie] [] Eelie.ie)-
JEIL) MeelL\T "t iclnt €=1 teg
By the induction hypothesis, the limit
B.2 M7= li 1T M
(B.2) gi=Jim [] ~TrpeV)
Le[LNT

exists, is finite, and depends only on the law of D. We set M 7 =1 if 7 =[L]. Note that this
convergence is uniform over pairs i, j € [n]. Therefore, for an error £ = o(1) independent
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of i and j,
L+1
P, jl= Y (Mg+&7) Y [] M lie-r.ie] [ | Eclic.icl-
JCIL] ie[n]t £=1 teg

We first sum over all indices {i; : £ ¢ J}: Write explicitly J = {{1, ..., {7/} where ] <{; <
- <l)7)<L.Letfy=0and £, 741 =L + 1, and denote R, = re, 41+ +re,. Then
this gives

[T 1+1
B3)  pMD,j1= Y, Mg+E7) Y, [ M*lie,,.ie,] [] Eclic. ic].
JEIL] ie[n]d p=I1 teg

We denote by C > 0 a constant depending only on p(x), J, and the law of D, and changing
from instance to instance. By (2.9), we have max;¢[,] IMRe[i,i]| < %TrMRP +n 12t < C
and max; IMRo[i, j1| < n~'/7+¢ for each p € [|J| + 1], almost surely for all large n. For
any ie [n]Y, define W) ={p € [|T|+1]: i, , #1i¢,}. Then this implies

|T1+1
(B.4) [T IM®elie, . ie )| [ ]| Eelie, icl] < Cat= 12+ IYOHITD,
o=1 teJ

Moreover, if ¥ > 1, then note that |{i € [n]7 : |W(@{i)| = ¥}| < Cn¥ !, because gy =1I0=1
andig ;. =ir4+1=jare fixed, so there is freedom to choose i — 1 remaining index values.
Combining this with (B.4), for any ¢ > 1,

|T1+1
> T IMRetic, e, 1| []|Eclic, iel] < Ca¥ =1 p(—1/2+0@+TD
B.5) e qwi)=y o=1 teg

< Cn—1/2+8(2|._7|+1),

where the last inequality follows from the observation that we always have |V ()| < |J| + 1.
For ¢ =0, we must have i = j and |{i € [n]7 : |¥(i)| = ¥}| = 1. Then by (B.4), this bound
(B.5) still holds as long as | 7| > 1, that is, J # &.

Applying (B.5) for all nonempty J < [L], it follows from (B.3) that

(B.6) Ip(MD[i, j1—1{i = j}(Mg + E) MR[i, i]| < Cn~1/2Te@LFTD,

where we set R =r1 + - -+ + rp4+1. The above bounds all hold uniformly over i, j € [r], and
hence (B.6) holds simultaneously for all pairs i, j € [n], almost surely for all large n. Thus,
combining with the condition (2.9) for M R[i,i], we conclude that both max;«; |[p(M)[i, jlI
and max"_, [ p(M)[i, i]— (Mg +§2)- % TrMZ| are at most n~1/2+¢CL+2) for all large 1. Then
{p(M)[i,i]:i € [n]} are uniformly close to a value independent of i € [n], which implies also
max’_, |[p(M)[i,i] — 1 Tr p(M)| < 2n=1/2+#CL+2)_ These statements hold for any & > 0,
showing the inductive claim (b) for p(x). Moreover, averaging (B.6) over i = j gives

1 1
lim —Trp(M) = lim (Mg + &) - — TrM® = My - E[DF],
n—>o0o p n—oo n

and we recall from (B.2) that My depends only on the law of D. This shows the inductive
claim (a) for p(x), completing the induction. [J

PROOF OF PROPOSITION 2.7. Lemma B.1 implies that the matrix model in Proposi-
tion 2.7(b2) satisfies Definition 2.6, where the limit diagonal law Dy is determined uniquely
by the limit spectral distribution D. To complete the proof of Proposition 2.7, it suffices to
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verify that the orthogonally invariant matrix model of part (a) and the model of part (b1) are
both special cases of the model in part (b2).
IfW=0DO" is orthogonally invariant, that is, O ~ Haar(Q(n)) is independent of D, then

also O £ IIyOIlg where Ily, I1g are uniformly random signed permutations independent
of O. The entries of O satisfy the delocalization condition (2.8) almost surely for all large n,
as is implied by [44], Theorem 1. Thus W is a special case of the model in part (b1).

Now suppose W is any matrix satisfying the description of part (bl). Then W has the
simpler form W = IIMII " where IT = ITy,

M=HPDP H',

and P = Pg is the random permutatlon corresponding to 1 =P EE. Here we have elimi-
nated the diagonal sign matrices E ¢ from the expression using Z pDE L g = D. To show that
W is an example of the model in part (b2), it remains to show that this matrix M satisfies the
condition (2.9) almost surely for all large .

Consider M" for any fixed integer v > 1. Let h; € R” denote the i’k row of H, and let o
be the permutation of [#] for which P[i,o(i)] =1 for all i € [n]. Then

n
(B.7) M"[i, j]= (HPD”PTHT)[i, jl= Z hi[k1D"[o (k), o (k)]h [k].
k=1
We condition on (D, H), and write E for the expectation over only the permutation o. Then
for each fixed k € [n], we have E[D"[o (k), o (k)]]=n"! TrD", so

1 1
E[M"[i, j1] = - TrD" h/h; =~ TrM” i = ).
We now show concentration of M “[z Jj] around this expectatlon by computing its high mo-
ments: Consider first any fixed i # j € [n], and abbreviate h[k] = h;[k]h;[k] and d[k] =
D"k, k]. Then from (B.7) MPli, j1=3"%_; h[k [a (k)], so for any even integer p > 2,
E[(M'[i, j1)’]1= Y_ hlki]---hlkplE[d[o (k)] -d[o (kp)]].
ke[n]?

Let P be the lattice of partitions of [p], endowed with the usual partial ordering by refine-
ment. For each k € [n]?, let w (k) € P be the partition induced by Kk, that is, i, j € [p] belong
to a common block of 7 if and only if k; = k;. Then

E[(M'li, j)P]=Y" > hlkil---hlky]E[d[o (k)] d[o (k)]]

mePke[n]?:m(K)=n

(B.8) i i |n|) )
= > kil ik 3 dih]---dlly),

weP ke[n]? ! le[n]?

n(k)=n r()=nr

the second equality using that the permutation o is uniformly random, so the expectation over
o yields a uniform average over new choices for the || distinct index values of k.

Let u(w, ') for m < 7’ be the Mobius function over P, satisfying the inversion relation
(see, e.g., [59], eq. (10.10)) > cpir<r<p m(mw, 7) = Y7 = 7'}. Then for any function f,

(B.9) Yo=Y f®- Y pmo=) w@Eo) Y fk.
ke[n]? ke[n]? TeP TeP ke[n]?
7(K)=7 7 (K)>m r<tr=<m(k) = m(k)=t

Applying this to the term involving h in (B.8),

ookl hlkpl= Y pGno) [ D] AlklRL

ke[n]?:r(K)=m tePit>n Ret k=1
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Recalling A[k] = h;[k]h ;[k] where i # j, we have >7_, h[k] =h/h; = 0. Thus the sum-
mand for 7 vanishes if T has a singleton block. For all other partitions T € P, its number of
blocks satisfies || < p/2. Then applying |i[k]| < n2(—1/2+8) by the delocalization condition
(2.8) for H, for any fixed & > 0 and all large n,

[Tyl
Ret k=1

Thus | kepn)rr k)= hlki].. .fz[kp]| < Cn~P/2%2P¢ where, here and below, we denote by
C>0a(m, D) -dependent constant that may change from instance to instance. By the as-

< n2p(=1/2+e) 7l < n—P/2+2pe

sumption d e D and Lemma 3.3 (applied with S being the blocks of 7w and gs(x) =d (x)'S |
for S e ), alson —lm ‘| Zle[n]p ()=r dlli].. [ pll < C. Applying these to (B.8), we obtain
E[(M"[i, j1)?]1 < Cn~=P/?+2P% g0 P[|M"[i, ]]| > n~1/243¢] < Cn~P¢ by Markov’s inequal-
ity. Choosing even p > 2 sufficiently large and taking a union bound over all i # j, this shows
that the second condition of (2.9) holds almost surely for all large n.
The case i = j is similar: Fix i € [n] and now abbreviate h[k] = h;[k]? and d[k]

DV[k,k] —n~'TrD". Then from (B.7), M"[i,i] —n~' TrM" = ", h[k]d[k], so we obtain
analogously to (B.8)

v v Inl) -
E[(M"[i,i]—n ' TeM")?1 = > hlk]-- h[kp] Y dllh]---dli,].
ke[n]? le[n]?
(K)=m a()=n

Applying the M6bius inversion relation (B.9) now to the second summation over 1,

Yoo dihldil)= ) wo [ D4R

le[n]P:r(D)=m tePir>m Ret =1

Using that Y }_,; d[k] = 0, the summand for t vanishes if T has a singleton block. For all
other partitions 7 € P, applying d ¢ D, we obtain

[T dn™

Ret =1
Then | X iefn)rir)=n dil.. dl1,]] < CnP/2. From (2.8), we have also
n S Rk ] Rlkp)| < P20,

ke[n]?:m(K)=n

Then E[(M"[i,i] — n~ ' TrM")P] < Cn—P/?12P¢ 5o the first condition of (2.9) follows also
by Markov’s inequality and a union bound. This verifies that W satisfying part (b1) also
satisfies part (b2), as desired. [

<cnl'l < cn?/?.

APPENDIX C: TENSOR NETWORK VALUE UNDER ORTHOGONAL INVARIANCE

In this Appendix, we derive a more explicit combinatorial form for the tensor network
value of Lemma 2.14 when W is an orthogonally invariant matrix, using the orthogonal
Weingarten calculus. We then prove the asymptotic freeness statement of Proposition 2.16(b).

Let T be a tensor network with w 4 1 vertices and w edges. Then there are 2w vertex-edge
pairs (v, e) where edge e is incident to vertex v. We label these vertex-edge pairs arbitrarily
as 1,2,...,2w. Let P be the lattice of partitions of [2w], endowed with the usual partial
ordering by refinement. We define two distinguished partitions wy, mg € P, such that vertex-
edge pairs p, T € [2w] belong to the same block of 7y if and only if they have the same



3988 T. WANG, X. ZHONG AND Z. FAN

vertex v, and to the same block of g if and only if they have the same edge e. (Thus 7y has
w + 1 blocks, one for each vertex of T, and wf is a pairing with w pairs, one for each edge
of T.)

Define a metric over P by

(C.1) dm,7)y=|n|+|7'| = 2|7 v’

where 7 v 7’ is the join (i.e., least upper bound) of 7 and 7’. This is shown in [3, 14] to
be equivalent to the smallest number of merge and divide operations needed to transform
7 into 7', where a merge operation combines any two blocks into one block, and a divide
operation splits any one block into two blocks. From this characterization, it is immediate
that d(-, -) satisfies the triangle inequality d(, 7') + d(x', #”") > d (7w, ©""). We call a path
mo —> m; — - -+ — i of partitions a d-geodesic if it is a shortest path from g to 7y in the
metric d(-, -), that is, if

d(mo, mi) = d(mo, m1) +d(mwy, m2) + -+ - +d (w1, k).

The main result of this Appendix is the following proposition.

9’

PROPOSITION C.1. In the setting of Lemma 2.14, suppose in addition that W = ODO "

is orthogonally invariant, where D = diag(d) and d ¢ D almost surely as n — oo. For
7 >mny and 7w’ > wg, define

(C2) gt =[] E I av (X1, ...,Xk)],
Sen distinct vertices v in vertex-edge pairs of S
(C3) D(]‘[/) — 1_[ E[Dnumber of distinct edges in vertex-edge pairs of S] ]
Sen’
Then
lim valy (W;xq,...,Xg)
n— 00
= ) (=Dq(y v mo) D(wp v 7).

Jj=0  distinct pairings mo,...,7w of [2w]
Ty —>mo—>-—>7j—>TE is a d-geodesic

(Here j is not required to be distinct from wg.)

To show this result, we apply the following statements derived from the orthogonal Wein-
garten calculus of [23] for mixed moments of entries of Haar-orthogonal random matrices.

LEMMA C.2. Let O ~ Haar(O(n)). Let i = (i1, ..., iw) and j= (j1, ..., ow) be any
index tuples in [n)*". Then

2w
(C.4) IE[]_[ Olip, jp]} = > We, [, '],

p=1 pairings 7,7’ of [2w]
n<n(i),n' <7 (j)

where Wg, is the orthogonal Weingarten function. For fixed w, as n — 00, this satisfies
(C.5) Wg, [7‘[, 7'[/] = n_w—d(ﬂ,rr’)/Z . MNC(”» 7_[/) + O(n—w—d(ﬂ,n’)/Z—l)’

where d(m, ') is the metric (C.1), and unc(, ') is the Mobius function on the noncrossing
partition lattice, given by

C6)  mnclmr)=)_ > (=D~

k>0 distinct pairings 7g,71,...,7 of [2w]
TO—> T —> -+ —> T}, is a d-geodesic from my=m to m=mn’
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PROOF. We may identify pairings 7, 7’ of [2w] as permutations in the symmetric group
Sow, each a product of w disjoint transpositions corresponding to the w pairs. The cycle
decomposition of their product 77’ in S, has exactly two cycles for each set of their join
partition 7t \V 7. Then, the metric [(;r, 7') = |7 7’| /2 used in [23], Section 3, (where | - | is the
Cayley distance to the identity permutation in Sy,,, given by 2w minus the number of cycles)
is equivalently

2w — 2|7 V| d(n ')
2 2 7

where the right side is our metric d(-, -) restricted to pairings. The statements (C.4) and
(C.5) then follow from [23], Corollary 3.4 and Theorem 3.13. The form (C.6) for the Mobius
function follows from comparing [23], Theorem 3.13, with [23], Lemma 3.12, noting that the
leading-order terms of [23], Lemma 3.12, come from paths of pairings satisfying m; # w4+
foreachi =0,...,k — 1 and also [ (g, 71) + - - - + [ (Wk—1, %) = [ (70, 7x). Any such path
must be a geodesic of k 4 1 unique pairings in the metric (-, -), and hence also in the metric
d(-,-) by the equivalence (C.7), and this shows (C.6). O

(C.7) l(m,7') =

PROOF OF PROPOSITION C.1. Expanding the product W = ODO ", the tensor network
value is given by

va1T<w;xlzk)—— > Y [Mavexliv) ] Oliu. jelDljes jelOliv, jel.

1e[n]VJe[n]5 vey e=(u,v)e€

For each vertex v or edge e, let p(v), p(e) € [2w] be an arbitrary choice of vertex-edge pair
containing this vertex or this edge. Then this is equivalently expressed as

(C.8) valr(W;x1y) = — Z Z H gv(xX1:4lip)]) 1_[ Dljoe) Joce)] H Oliy, jol.
le[n]Zw Je[n]2w vey eec€
r()zny w(j)=ng
Note that by the constraints (i) > wy and 7 (j) > mg, this expression is the same for any
choices of vertex-edge pairs p(v), p(e) € [2w].

Let E be the expectation over O, conditional on X, ..., X; and D. By Lemma C.2, we have
2w ,

E[H Olip, jp]} = > Luyzr Legyzar -0~ (unc (i, ) + 0(1)).
= pairings ,7’ of [2w]

Note that
1ry>ny x> = LnGyzmyvrs LrGyzrelnGyzn = laznpva-

Identifying summations over i, j € [n]?* with (i) > 7y V 7 and 7(j) > g V' as a sum-
mation over one index in [n] for each block of 7y Vv 7 and 7 Vv 7/, and applying the given

conditions that Xi. LV) X1:x and diag(D) K D almost surely, observe that

1 .
W Z ln(i)Zm/\/n l_[ Qv(xlzk[l,o(v)]) —q(wy V),
ie[n]?v vey
1

Tzl Y Ligzagva [ [ Plint)s o] = D(me v '),

jelnp ect
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where g (-) and D(-) are as defined in (C.2) and (C.3). Then, taking the expectation over O in
(C.8) and applying these observations,

E[valy (W; x1.4)] = Z 1 vVl el —w—d(ra)
(C.9 pairings 7,7’ of [2w] n
“(unc(m, ') - gy Vo) - D(ze v ')+ o(1)).
Recall that |ty | =w + 1 and || = |7/| = |mg| = w as these are all pairings of [2w]. Then
by definition of the metric d(-, -),
2w+ 1—d(my, ) 2w —d(mg, )

Ty V| = , lmg V| =
| 2 2

So the above value simplifies to

> n

pairings , 7’ of [2w]

2w—1-d(ry ,m)—d(x,n)—d(x' 7 E)
2

(unc(m, 7")g (v v o) D(e v ') 4+ o(1)).

Applying the triangle inequality for d(-, -) and the identity |7y VvV wg| =1 since T is a con-
nected tree, we have

dwy,m)+d(w,7')+d(n',ng) =dmy, ng)=(w+ 1) +w—-2=2w—1,

and equality holds if and only if 7y — 7 — 7’ — 7E is a d-geodesic. Thus, we obtain the
limit value

lim E[valy (W; xj4)]
n—oo

(C.10) = Z ;,LNc(TL',T[/)q(T[V VT[)D(TL’EVTL'/).
pairings 7,7’ of [2w]
ny—>n—n'—ng is a d-geodesic
Here, 7 and 7’ are pairings of [2w] that may coincide with each other and/or with 7.
Finally, we apply (C.6) to express unc (7, ') also as a summation over geodesic paths of
pairings from 7 to 7/, giving

lim E x10)] = —1)/ »
lim E[valy (W xp0)] =) > (=1 q(wy v m0) D(mg V 7))
j=0  distinct pairings ng,...,7; of [2w]
Ty —m—> =7 ;—>7E is a d-geodesic

We have set 7o = 7 and 7r; = 7/, and the terms of the sum with j = 0 correspond to = = 7".
This shows that the stated form is the almost-sure limit of E[val7 (W; X;.x)] where E is the
expectation over O. Comparing with the result of Lemma 2.14, we conclude that this must
be lim-val7 (X1, Dgiag). U

PROOF OF PROPOSITION 2.16(b). By the universality established in Lemma 2.14, it
suffices to check that the limit of E[val7 (W; x;.x)] for orthogonally invariant matrices W, as
computed in the preceding Proposition C.1, equals O under the given conditions.

The given condition %TrW — 0 implies E[D] = 0. If 7 Vv 7/ has any block containing
only the two vertex-edge pairs for a single edge, then this implies D(7g vV ') =0 in (C.3).
Otherwise, each block must correspond to at least two edges, so |7g V 7’| < w/2. Similarly,
if my Vv 7 is such that any block contains the vertex-edge pairs for only a single vertex, then
the condition (2.13) implies ¢ () = 0 in (C.2). Otherwise,each block must correspond to at
least two vertices, so |7y V| < (w + 1)/2. Thus if g(wy vV 7)D(7g vV 7r’) # 0, then

1

- ,nlﬂvVJT\ ‘n|7TE\/JZ/| .n*UJ*d(ﬂ,n’/) < n71+(w+1)/2+w/27w < nfl/z.
n
Applying this to (C.9), we get E[valy (W; x1.x)] — 0 as desired. [
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SUPPLEMENTARY MATERIAL

Supplementary Appendix (DOI: 10.1214/24-AAP2056SUPP; .pdf). The supplementary
appendix contains additional details about AMP algorithms for rectangular matrices and the
rectangular generalized invariant universality class of Definition 2.20, and proofs of Theo-
rems 2.21 and 2.22 on universality of AMP for rectangular matrices.
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