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Abstract
Many recent works have studied the eigenvalue spectrum of the Conjugate Kernel (CK) de-

fined by the nonlinear feature map of a feedforward neural network. However, existing results only
establish weak convergence of the empirical eigenvalue distribution, and fall short of providing
precise quantitative characterizations of the “spike” eigenvalues and eigenvectors that often capture
the low-dimensional signal structure of the learning problem. In this work, we characterize these
signal eigenvalues and eigenvectors for a nonlinear version of the spiked covariance model, includ-
ing the CK as a special case. Using this general result, we give a quantitative description of how
spiked eigenstructure in the input data propagates through the hidden layers of a neural network
with random weights. As a second application, we study a simple regime of representation learn-
ing where the weight matrix develops a rank-one signal component over training and characterize
the alignment of the target function with the spike eigenvector of the CK on test data.

1. Introduction

Kernel matrices associated with the nonlinear feature map of deep neural networks (NNs) pro-
vide insight into the optimization dynamics (Jacot et al., 2018; Montanari and Zhong, 2020; Fort
et al., 2020) and predictive performance (Lee et al., 2017; Arora et al., 2019; Ortiz-Jiménez et al.,
2021); consequently, properties of these kernel matrices can guide the design of network architec-
ture (Xiao et al., 2018; Martens et al., 2021; Li et al., 2022) and learning algorithms (Karakida and
Osawa, 2020; Zhou et al., 2022). Particular emphasis has been placed on the spectral properties
of kernel matrices, due to their connection with the training and test performance of the underlying
NN (Bordelon et al., 2020; Loureiro et al., 2021; Wei et al., 2022).

In this paper, we focus on the conjugate kernel (CK) (Neal, 1995; Cho and Saul, 2009) defined
as the Gram matrix of the features at the penultimate (or more generally, any intermediate) NN
layer. In the high-dimensional asymptotic setting where the width of the NN and the number of
training samples diverge at the same rate, prior works employed random matrix theory to analyze
the limit eigenvalue distribution of the CK matrix at random initialization (Pennington and Worah,
2017; Louart et al., 2018; Péché, 2019; Fan and Wang, 2020). These and related characterizations
of the CK resolvent enable precise computations of various errors for NNs with random first-layer
weights, known as random features models (Mei and Montanari, 2022; Tripuraneni et al., 2021;
Hassani and Javanmard, 2022).
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It is worth noting that while existing results establish the weak convergence of the empirical
spectral measure, the precise behavior of “spike” eigenvalues that are separated from the spectral
bulk remains largely unexplored. In learning applications, these spike eigenvalues and correspond-
ing eigenvectors are often the primary spectral features (signal) of interest, because they pertain
to low-rank structure of the underlying learning problem (e.g., class labels or the direction of the
target function). For the linearly defined spiked covariance model X = ZΣ1/2 ∈ Rn×d, whose
dependence across features is induced by a linear map Σ1/2(·) applied to Z having i.i.d. coor-
dinates, classical work in random matrix theory provides a quantitative description of the spike
eigenvalue/eigenvector behavior (Johnstone, 2001; Baik and Silverstein, 2006; Benaych-Georges
and Nadakuditi, 2012; Bloemendal et al., 2016). In this paper, we establish an analogous character-
ization of spiked spectral structure for the CK, motivated in part by the following applications:

• Structured input data. Real data often contain low-dimensional structure despite the high am-
bient dimensionality (Lee and Verleysen, 2007; Hastie et al., 2009; Pope et al., 2021), and the
leading eigenvectors of the input covariance matrix may be good predictors of the training labels.
Common examples where the input features exhibit a low-dimensional spiked structure include
Gaussian mixture models (Loureiro et al., 2021; Refinetti et al., 2021; Ben Arous et al., 2023b)
and the block-covariance setting of (Ghorbani et al., 2020; Ba et al., 2023; Mousavi-Hosseini
et al., 2023). Assuming that the input data X has informative spikes eigenvectors, we ask the
natural question:

How does the low-dimensional signal propagate through nonlinear layers of the NN?
When do we observe a similar spiked structure in the CK matrix?

• Spiked weight matrices in early training. It is known that NNs can learn useful representa-
tions that adapt to the learning problem, and outperform the random features model defined by
randomly initialized weights (Ghorbani et al., 2019; Wei et al., 2019; Abbe et al., 2022). Recent
works have shown that when the target function is low-dimensional, the gradient update for two-
layer NNs around initialization is low-rank (Ba et al., 2022; Damian et al., 2022; Wang et al.,
2023), and hence the updated weight matrix W is well-approximated by a spiked model. We
consider the following question on this pre-trained kernel model in NNs:

When gradient descent produces a spiked structure in the weight matrix, how does the feature
representation of the NN change, in terms of spectral properties of the CK?

1.1. Our Contributions

We analyze the spike eigenstructure in a general nonlinear spiked covariance model, which includes
the CK as a special case. Specifically, we characterize the BBP phase transition (Baik et al., 2005)
and first-order limits of the eigenvalues and eigenvector alignments in the proportional asymptotics
regime, for spike eigenvalues of bounded size. Our work makes the following contributions:

• Signal propagation in deep random NNs. Following the setup of Fan and Wang (2020), we con-
sider the CK matrix defined by a multi-layer fully-connected NN at random initialization, where
the width of each layer grows linearly with the sample size. Given spiked input data, we compute
the magnitude of the leading CK eigenvalues and the alignments between the corresponding CK
eigenvectors with those of the input data, across network depth.
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• Feature learning in two-layer NNs. We consider the early-phase feature learning setting in Ba
et al. (2022), where the first-layer weights in a two-layer NN are optimized by gradient descent,
and the learned weight matrix exhibits a rank-one spiked structure. We characterize the spiked
eigenstructure of the corresponding CK matrix for independent test data, and the alignment of
spike eigenvectors with the test labels. This provides a quantitative description of how gradient
descent improves the NN representation.

• Spectral analysis for nonlinear spiked covariance models. We give a general analysis of the
signal eigenvalues/eigenvectors of spiked covariance matrices with arbitrary and possibly nonlin-
ear dependence across features, showing a “Gaussian equivalence” with the quantitative spectral
properties of linear spiked covariance models established by Bai and Yao (2012). We prove a de-
terministic equivalent for the Stieltjes transform and resolvent for any spectral argument separated
from the support of the limit spectral measure, extending recent results for spectral arguments
bounded away from the positive real line (Chouard, 2022, 2023; Schröder et al., 2023).

1.2. Related Works

Eigenvalues of nonlinear random matrices. Global convergence of the empirical eigenvalue dis-
tribution of nonlinear kernel matrices has been studied in both proportional and polynomial scaling
regimes (El Karoui, 2010; Cheng and Singer, 2013; Fan and Montanari, 2019; Lu and Yau, 2022;
Dubova et al., 2023). Building upon related techniques, recent works characterized the spectrum
of the CK matrix (Pennington and Worah, 2017; Louart et al., 2018; Péché, 2019) and the neural
tangent kernel (NTK) matrix (Montanari and Zhong, 2020; Adlam and Pennington, 2020), with
generalizations to deeper networks studied in Fan and Wang (2020) and Chouard (2023).

Benigni and Péché (2022) gave a precise characterization of the largest eigenvalue in a one-
hidden-layer CK matrix when the input data X and weight matrix W both have i.i.d. entries,
identifying possible uninformative spike eigenvalues when the nonlinear activation is not an odd
function. Guionnet et al. (2023) and Feldman (2023) recently characterized spiked eigenstructure
in models where an activation is applied to a spiked Wigner matrix or rectangular information-
plus-noise matrix entrywise, for possibly growing spike sizes and activations having degenerate
information/Hermite coefficients.

Precise error analysis of NNs. An important application of spectral analyses of the CK matrix
is the precise computation of generalization error of random features regression, first performed for
two-layer models in proportional scaling regimes (Louart et al., 2018; Mei and Montanari, 2022)
and later extended to deep random features models (Schröder et al., 2023; Bosch et al., 2023) and
polynomial scaling regimes (Ghorbani et al., 2021; Xiao et al., 2022). These risk analyses reveal
a Gaussian equivalence principle, where generalization error coincides with that of a Gaussian
covariates model, and this equivalence has been extended to other settings of nonlinear (regularized)
empirical risk minimization (Hu and Lu, 2020; Goldt et al., 2021; Montanari and Saeed, 2022).

Going beyond random features, Ba et al. (2022) derived the precise asymptotics of representa-
tion learning in a two-layer NN when the first-layer weights are trained by one (or finitely many)
gradient descent steps; see also Damian et al. (2022); Ba et al. (2023); Dandi et al. (2023). The
computation follows from an information-plus-noise characterization of the weight matrix due to
a low-rank gradient update. Moniri et al. (2023) derived a corresponding information-plus-noise
decomposition of the CK matrix defined by the resulting trained weights, in an asymptotic regime
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different from ours where the learning rate and spike eigenvalues diverge. Ben Arous et al. (2023a)
examined the emerging spike eigenstructure in the NN Hessian that arises during SGD training.

Eigenvalues of sample covariance matrices. Asymptotic spectral analyses of sample covariance
matrices have a long history in random matrix theory (Marčenko and Pastur, 1967; Silverstein,
1995; Silverstein and Bai, 1995; Bai and Silverstein, 1998), with the strongest known results in the
linearly defined model X = ZΣ1/2, see e.g. Bloemendal et al. (2014); Knowles and Yin (2017).
Outside of this linear setting, Srivastava and Vershynin (2013) and Chafaı̈ and Tikhomirov (2018)
develop sharp bounds for the extremal eigenvalues with isotropic population covariance, and Bao
and Xu (2022) develop eigenvalue rigidity and Tracy-Widom fluctuation results for isotropic and
log-concave distributions.

The spiked covariance model was introduced in Johnstone (2001). Baik et al. (2005); Baik
and Silverstein (2006); Paul (2007) initiated the study of spiked eigenstructure and phase transition
phenomena for spiked covariance matrices with isotropic bulk covariance. Péché (2006); Benaych-
Georges and Nadakuditi (2011, 2012); Capitaine (2013, 2018) studied spiked eigenstructure in re-
lated Wigner and information-plus-noise models. Closely related to our work are the results of Bai
and Yao (2012) that characterize spike eigenvalues in linearly defined models X = ZΣ1/2 with
general population covariance Σ, and we extend this characterization to nonlinear settings.

2. Results for neural network models

2.1. Propagation of signal through multi-layer neural networks

Consider input features X = [x1, . . . ,xn] ∈ Rd×n, where xi ∈ Rd are independent samples.
Define a L-hidden-layer feedforward neural network by

Xℓ =
1√
dℓ
σ(W ℓXℓ−1) ∈ Rdℓ×n for ℓ = 1 . . . , L (2.1)

with weight matrices W ℓ ∈ Rdℓ×dℓ−1 , X0 ≡ X and d0 ≡ d, and a nonlinear activation function
σ : R → R applied entrywise. The Conjugate Kernel (CK) at each layer ℓ = 1, . . . , L is given by
the Gram matrix

Kℓ = X⊤
ℓ Xℓ ∈ Rn×n. (2.2)

In the limit n, d0, . . . , dL → ∞ with n/dℓ → γℓ ∈ (0,∞) for each ℓ = 0, . . . , L, under
deterministic conditions for the input data X and for random weight matrices W 1, . . . ,W L as
specified below, it is shown in Fan and Wang (2020) that the empirical eigenvalue distribution µ̂ℓ of
Kℓ for each ℓ = 1, . . . , L satisfies the weak convergence

µ̂ℓ :=
1

n

n∑
i=1

δλi(Kℓ) → µℓ a.s. (2.3)

for limit measures µ1, . . . , µL defined as follows: Let µ0 be the limit eigenvalue distribution of the
input gram matrix K0 = X⊤X (c.f. Assumption 2). Then, for ℓ = 1, . . . , L, let

νℓ−1 = b2σ ⊗ µℓ−1 ⊕ (1− b2σ) (2.4)

denote the law of b2σx+ (1− b2σ) when x ∼ µℓ−1 and bσ := Eξ∼N (0,1)[σ
′(ξ)], and define

µℓ = ρMP
γℓ

⊠ νℓ−1. (2.5)
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Here, ρMP
γ ⊠ ν denotes the deformed Marchenko-Pastur law describing the limit eigenvalue distri-

bution of a sample covariance matrix with limit dimension ratio γ ∈ (0,∞) and population spectral
measure ν, and we review its definition in Appendix A.

In this section, we provide a precise characterization of the spike eigenvalues and eigenvectors
of Kℓ for each ℓ = 1, . . . , L when the input data X has a fixed number of spike singular values of
bounded magnitude. We assume the following conditions on the weights, input data, and activation.

Assumption 1 The number of layers L ≥ 1 is fixed, and n, d0, . . . , dL → ∞ such that

n/dℓ → γℓ ∈ (0,∞) for each ℓ = 0, . . . , L.

The weights W 1, . . . ,W L have entries [W ℓ]ij
iid∼ N (0, 1), independent of each other and of X .

Definition 1 A feature matrix X ∈ Rd×n is τn-orthonormal if∣∣∥xα∥2 − 1
∣∣ ≤ τn,

∣∣∥xβ∥2 − 1
∣∣ ≤ τn,

∣∣x⊤
αxβ

∣∣ ≤ τn

for all pairs α ̸= β ∈ [n], where {xα}nα=1 are the columns of X .

Assumption 2 For some τn > 0 such that limn→∞ τn · n1/3 = 0, X ≡ X0 is τn-orthonormal
almost surely for all large n. Furthermore, K0 = X⊤X has eigenvalues λ1(K0), . . . , λn(K0)
(not necessarily ordered by magnitude) such that for some fixed r ≥ 0, as n, d→ ∞,

(a) There exists a compactly supported probability measure µ0 on [0,∞) such that

1

n− r

n∑
i=r+1

δλi(K0) → µ0 weakly a.s.

and for any fixed ε > 0, almost surely for all large n,

λi(K0) ∈ supp(µ0) + (−ε, ε) for all i ≥ r + 1.

(b) There exist distinct values λ1, . . . , λr > 0 with λ1, . . . , λr ̸∈ supp(µ0) such that

λi(K0) → λi a.s. for each i = 1, . . . , r.

Assumption 3 The activation σ : R → R is twice differentiable with supx∈R |σ′(x)|, |σ′′(x)| ≤ λσ
for some λσ ∈ (0,∞). Under ξ ∼ N (0, 1), we have E[σ(ξ)] = 0 and E[σ2(ξ)] = 1. Furthermore,

bσ := E[σ′(ξ)] ̸= 0, E[σ′′(ξ)] = 0. (2.6)

Assumption 1 defines the linear-width asymptotic regime. Assumption 2 requires an orthogo-
nality condition for the input features that is similar to (Fan and Wang, 2020, Definition 3.1), and
also codifies our spiked eigenstructure assumption for the input data. We briefly comment on (2.6)
in Assumption 3: The condition bσ ̸= 0 ensures that the linear component of σ(·) is non-degenerate;
if bσ = 0, then spiked eigenstructure does not propagate across the NN layers in our studied regime
of bounded spike magnitudes. The condition E[σ′′(ξ)] = 0 ensures that Kℓ does not have uninfor-
mative spike eigenvalues; otherwise, as shown in Benigni and Péché (2022), Kℓ may have spike
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eigenvalues even when the input K0 has no spiked structure. We assume E[σ′′(ξ)] = 0 for clar-
ity, to avoid characterizing also such uninformative spikes across layers. This condition holds, in
particular, for odd activation functions σ(·) such as tanh.

The following theorem first extends (Fan and Wang, 2020, Theorem 3.4) by affirming that the
weak convergence statement (2.3) holds under the above assumptions, and furthermore, each Kℓ has
no outlier eigenvalues outside its limit spectral support when the input K0 has no spike eigenvalues.

Theorem 2 Suppose Assumptions 1, 2, and 3 hold. Then for each ℓ = 1, . . . , L, (2.3) holds weakly
a.s. as n → ∞. Furthermore, if the number of spikes is r = 0 in Assumption 2, then for any fixed
ε > 0, almost surely for all large n,

Kℓ has no eigenvalues outside supp(µℓ) + (−ε, ε).

Remark 3 From Theorem 2 and Fan and Wang (2020) we know that for large n and γℓ < 1, the
minimum eigenvalue of the CK matrix λmin(Kℓ) is bounded away from 0 almost surely. This implies
that the minimum ℓ2-norm interpolator is well-defined, and provides an affirmative answer to the
conjecture in (Mei and Montanari, 2022, Remark 1) regarding the exchangeability of ridgeless limit.

The main result of this section characterizes the eigenvalues of Kℓ outside supp(µℓ) when
r ≥ 1. To describe this characterization, define for each ℓ = 1, . . . , L the domain

Tℓ = {−1/λ : λ ∈ supp(νℓ−1)}

where νℓ−1 is defined by (2.4), and define zℓ, φℓ : (0,∞) \ Tℓ → R by

zℓ(s) = −1

s
+ γℓ

∫
λ

1 + λs
νℓ−1(dλ), φℓ(s) = −

sz′ℓ(s)

zℓ(s)
. (2.7)

It is known from the results of Bai and Yao (2012) and (Yao et al., 2015, Chapter 11) that these
are precisely the functions that characterize the spike eigenvalues and eigenvectors in linear spiked
covariance models. Set

I0 = {1, . . . , r}, si,0 = − 1

b2σλi + (1− b2σ)
for i ∈ I0,

where λi and bσ are defined in Assumptions 2 and 3 respectively. Here, I0 records the indices of
the spike eigenvalues of the input Gram matrix K0. Then define recursively for ℓ = 1, . . . , L

Iℓ =
{
i ∈ Iℓ−1 : z

′
ℓ(si,ℓ−1) > 0

}
, si,ℓ = − 1

b2σzℓ(si,ℓ−1) + (1− b2σ)
for i ∈ Iℓ. (2.8)

The condition z′ℓ(si,ℓ−1) > 0 describes the “phase transition” phenomenon for spike eigenvalues in
this model, where spikes i ∈ Iℓ−1 with z′ℓ(si,ℓ−1) > 0 induce spike eigenvalues in the CK matrix
Kℓ of the next layer, while spikes with z′ℓ(si,ℓ−1) ≤ 0 are absorbed into the bulk spectrum of Kℓ.

Theorem 4 Suppose Assumptions 1, 2, and 3 hold. Then for each ℓ = 1, . . . , L:

(a) si,ℓ−1 ∈ (0,∞) \ Tℓ for each i ∈ Iℓ−1, so zℓ(si,ℓ−1) and Iℓ are well-defined. Furthermore, if
i ∈ Iℓ (i.e. if z′ℓ(si,ℓ−1) > 0) then zℓ(si,ℓ−1) > 0 and φℓ(si,ℓ−1) > 0.
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Figure 1: Spectra of three-layer CK matrices defined by (2.2) with n = 5000, d0 = d1 = d2 = 15000, and
σ ∝ arctan. Input data is a GMM satisfying (2.9) with r = 3, θ1 = 2.0, θ2 = 1.18, and θ3 = 1.0.
(a)-(c) are theoretically predicted (red) and empirical (blue) bulk distributions and spikes of Kℓ

for ℓ = 0, 1, 2. Observe that the number of informative spikes is non-increasing w.r.t. depth.

(b) For any fixed and sufficiently small ε > 0, almost surely for all large n, there is a 1-to-1
correspondence between the eigenvalues of Kℓ outside supp(µℓ) + (−ε, ε) and {i : i ∈ Iℓ}.
Denoting these eigenvalues of Kℓ by {λ̂i,ℓ : i ∈ Iℓ}, for each i ∈ Iℓ as n→ ∞,

λ̂i,ℓ → zℓ(si,ℓ−1) a.s.

(c) Let v̂i,ℓ be a unit-norm eigenvector of Kℓ corresponding to its eigenvalue λ̂i,ℓ, and let vj be
a unit-norm eigenvector of K0 corresponding to its spike eigenvalue λj(K0). Then for each
i ∈ Iℓ and j ∈ I0, as n→ ∞,

|v̂⊤
i,ℓvj |2 →

ℓ∏
k=1

φk(si,k−1) · 1{i = j} a.s.

Moreover, for each i ∈ Iℓ and any unit vector v ∈ Rn independent of W 1, . . . ,W ℓ,

|v̂⊤
i,ℓv|2 −

ℓ∏
k=1

φk(si,k−1) · |v⊤
i v|2 → 0 a.s.

We present the following corollary as a concrete example in which the assumptions of the the-
orem are satisfied. The corollary encompasses, for instance, Gaussian mixture models with a fixed
number r of balanced classes, each class having Θ(n) samples.

Corollary 5 Suppose the input data X is itself a low-rank signal-plus-noise matrix

X =

r∑
i=1

θiaib
⊤
i +Z ∈ Rd×n (2.9)

where θ1, . . . , θr > 0 are fixed distinct signal strengths, a1, . . . ,ar ∈ Rd and b1, . . . , br ∈ Rn are
orthonormal sets of unit vectors, and Z has i.i.d. N (0, 1/d) entries. Assume that b1, . . . , br satisfy
the ℓ∞-delocalization condition: for any sufficiently small ε > 0 and all large n,

r
max
i=1

∥bi∥∞ < n−1/2+ε.
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Figure 2: We consider deep NNs in (2.1) with σ ∝ tanh on Gaussian mixture data (2.9) with r = 1, and
compute the alignment between the largest eigenvector of the CK matrix Kℓ with genuine signal
b1 (class labels) for different layer ℓ. (a) NNs at random initialization with varying hidden widths
N = 2048, 4096, 8192, 10240. (b) NNs trained by gradient descent with learning rate η = 0.1 for
varying steps T = 0, 10, 20, 50; we use the µ-parameterization (Yang and Hu, 2020) to encourage
feature learning. θ1 is 2.5 and 1.8 for (a) and (b), respectively. Dots are empirical values (over 10
runs) and solid curves represent theoretical predictions at random initialization from Theorem 4.

Define φℓ(·) and si,ℓ−1 by (2.7) and (2.8), with the initial measures µ0 = ρMP
γ0 and ν0 = b2σ ⊗ µ0 ⊕

(1− b2σ) and initial spike values λi = (1 + θ2i )(γ0 + θ2i )/θ
2
i for i ∈ I0.

Then for each ℓ = 1, . . . , L, Kℓ has a spike eigenvalue corresponding to the input signal
component θi if and only if θi > γ

1/4
0 and i ∈ Iℓ. In this case, its corresponding unit eigenvector

v̂i,ℓ satisfies, as n→ ∞,

|v̂⊤
i,ℓbi|2 →

ℓ∏
k=1

φk(si,k−1) ·
(
1− γ0(1 + θ2i )

θ2i (θ
2
i + γ0)

)
a.s. (2.10)

Numerical illustration. A simple illustration of this result for a 3-component Gaussian mixture
model is provided in Figure 1. We note that IL ⊆ · · · ⊆ I0 and φℓ(si,ℓ−1) ∈ (0, 1), so the number
of spike eigenvalues of Kℓ induced by K0 and the alignment of the spike eigenvectors of Kℓ with
the true class label vectors {bi}ri=1 are both non-increasing in the network depth, see also Figure 2.
In other words, at random initialization, the input signal diminishes as the depth of the NN increases.

In Figure 2 we highlight two remedies to this “curse of depth” at random initialization.

• In Figure 2(a) we observe that when the width of NN becomes larger, alignment between the
leading eigenvector of Kℓ at random initialization and the signal can be preserved across a larger
depth. This illustrates the benefit of overparameterization by increasing the network width.

• In Figure 2(b) we observe that gradient descent training on the weight matrices also restores and
even amplifies the informative signal in the CK matrix of each layer; specifically, after 50 steps
of GD training (yellow curve), the alignment between the class labels and the leading eigenvec-
tor of Kℓ may increase through depth. This demonstrates the benefit of gradient-based feature
learning. In Section 2.2 we precisely quantify this improved alignment due to gradient descent in
a simplified two-layer setting.
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2.2. CK matrix after Od(1) steps of gradient descent

The preceding section studied the spike eigenstructure of the CK induced by low-rank structure in
the input data. Here, focusing on a two-layer model, we study an alternative setting where spiked
structure arises instead in the weight matrix W from gradient descent training.

We consider an early training regime studied in Ba et al. (2022), with a width-N two-layer
feedforward NN,

fNN(x) =
1√
N

N∑
i=1

aiσ(⟨x,wi⟩) =
1√
N
σ(x⊤W )a. (2.11)

Here x ∈ Rd is the input, and W = [w1, . . . ,wN ] ∈ Rd×N and a ∈ RN are the network weights.
For clarity of the subsequent discussion, we will transpose the notation for X and W from the
preceding section, and incorporate a 1/

√
d scaling into W rather than into the input data X .

Given are an input feature matrix X = [x1, . . . ,xn]
⊤ ∈ Rn×d and labels y ∈ Rn for n samples,

where yi = f∗(xi)+noise. We consider the training of first-layer weights W to minimize the mean
squared error

L(W ) =
1

2n

n∑
i=1

(fNN(xi)− yi)
2,

fixing the second-layer weight vector a. From a random initialization W 0 ∈ Rd×N , and over T
steps with learning rates η1, . . . , ηT scaled by

√
N , the gradient descent (GD) updates take the form

Wt+1 = Wt + ηt+1

√
N ·Gt, Gt = −∇L(W t). (2.12)

Of interest is the information about the label function f∗ that is learned by W trained ≡ W T , which
may be characterized by the spectral alignment of the CK matrix with the class label vector on
independent test data (X̃, ỹ). This use of independent test data may be understood as a pre-training
setup, also considered previously in Ba et al. (2022); Moniri et al. (2023) and studied for real-world
data in Wei et al. (2022).

It was shown in Ba et al. (2022) that in a training regime with initialization ∥W 0∥ ≍ 1 such that
|fNN(xi)| ≪ 1 for each i = 1, . . . , N , and with learning rates η1, . . . , ηT ≍ 1 for a fixed number
T of GD steps, the weight matrix W undergoes a change during training that is O(1) in operator
norm and approximately rank-1,

W trained ≈ W 0 +
ηbσ
n

X⊤ya⊤ where η =

T∑
t=1

ηt.

(Ba et al., 2022, Conjecture 4) conjectured that for the CK matrix

K =
1

N
σ(X̃W trained)σ(X̃W trained)

⊤ ∈ Rn×n (2.13)

defined by the pre-trained weights and test data X̃ , the resulting spike eigenvalue and the alignment
of its spike eigenvector with the test labels ỹ ∈ Rn are accurately predicted by a Gaussian equivalent
model. Our main result of this section is an affirmative verification of this conjecture and precise
characterization of the spike eigenstructure of K, in the following representative setting.
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Figure 3: (a) We set n = 2000, d = 1600, N = 2400, η · t = 2, and σ = σ∗ = erf. (b) We set d =
2048, N = 1024, η = 0.2, σ = tanh, σ∗ = SoftPlus, and vary the sample size n and number of
GD steps t; dots represent empirical simulations (over 10 runs) and solid curves are theoretical
predictions from Theorem 6.

Assumption 4 For a two-layer NN in (2.11) with GD training defined by (2.12), we assume that

(a) n, d,N → ∞ such that N/d→ γ0 ∈ (0,∞) and N/n→ γ1 ∈ (0,∞).

(b) Training features X = [x1, . . . ,xn]
⊤ ∈ Rn×d have entries [X]ij

iid∼ N (0, 1), training labels
y ∈ Rn have entries yi = σ∗(β

⊤
∗ xi) + εi where β∗ ∈ Rd is a deterministic unit vector and

εi
iid∼ N (0, σ2ε), and test data (X̃, ỹ) is an independent copy of (X,y).

(c) The NN activation σ : R → R and label function σ∗ : R → R both satisfy Assumption 3, with
bσ := E[σ′(ξ)] ̸= 0 and bσ∗ := E[σ′∗(ξ)] ̸= 0.

(d) The weight initializations satisfy [W 0]ij
iid∼ N (0, 1/d) and aj

iid∼ N (0, 1/N).

(e) The number of iterations T and learning rates η1, . . . , ηT are fixed independently of n, d,N .

Under these assumptions, the following theorem characterizes the spike eigenvalue of the CK
matrix and the alignment between the corresponding eigenvector and the test labels, as a function
of the learning rate ηt and the number of gradient descent steps T .

Theorem 6 Suppose that Assumption 4 holds, and set η =
∑T

t=1 ηt. Define

θ1 = bση ·
√

(γ1/γ0)(1 + σ2ε) + b2σ∗ , θ2 = bσbσ∗η. (2.14)

Let z(·) and φ(·) be defined by (2.7) for ℓ = 1 with γ1 and ν0 = b2σ ⊗ ρMP
γ0 ⊕ (1− b2σ), and set

λ1 = b2σ
(1 + θ21)(γ0 + θ21)

θ21
+ 1− b2σ.

Then K defined by (2.13) has a spike eigenvalue if and only if θ1 > γ
1/4
0 and z′(−1/λ1) > 0. In

this case, λmax(K) → γ−1
1 z(−1/λ1) a.s., and the leading unit eigenvector û ∈ Rn of K satisfies

1√
n
|ỹ⊤û| → bσbσ∗

√
z(−1/λ1)φ(−1/λ1)

λ1
· θ2
√
(θ41 − γ0)(γ0 + θ21)

θ31
> 0 a.s. (2.15)
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Numerical illustration. Figure 3 empirically validates the predictions of Theorem 6, for a two-
layer NN trained with a small number of GD steps. Figure 3(a) shows that one spike eigenvalue
emerges over training in the test-data CK, the location of which is accurately predicted by Theo-
rem 6; moreover, the leading eigenvector û aligns with the labels ỹ. This is quantified in Figure 3(b),
where above a phase transition threshold, the alignment ⟨û, ỹ⟩2 (predicted by (2.15)) increases with
the learning rate or number of GD steps; in addition, alignment also increases with the training set
size n. Compared with random initialization (η = 0), this illustrates that training improves the NN
representation, and the test-data CK contains information on the label function f∗.

3. Analysis of a nonlinear spiked covariance model

The results of Sections 2.1 and 2.2 rest on an analysis of spiked eigenstructure in a general non-
linear spiked covariance model. We describe the assumptions and statement of this general result
informally here, deferring formal and more quantitative statements to Appendix B.

Let G = 1√
N
[g1, . . . , gN ]⊤ ∈ RN×n have independent rows g1, . . . , gN ∈ Rn with mean 0 and

common covariance Σ ∈ Rn×n. We assume that the law of gi satisfies concentration of quadratic
forms g⊤

i Agj , but has otherwise arbitrary dependence across coordinates. As n,N → ∞ with
n/N → γ ∈ (0,∞), the eigenvalues of Σ satisfy

λi(Σ) → λi for i = 1, . . . , r,
1

n− r

n∑
i=r+1

δλi(Σ) → ν weakly,

for fixed spike values λ1, . . . , λr > 0 and a deterministic limit spectral law ν. Then the empirical
spectral law of the sample covariance matrix K = G⊤G satisfies

1

n

n∑
i=1

δλi(K) → µ = ρMP
γ ⊠ ν weakly a.s.

Under these assumptions, let us define

z(s) = −1

s
+ γ

∫
λ

1 + λs
dν(λ), φ(s) =

z′(s)

(−1/s)z(s)
.

Theorem 7 (informal)

(a) If r = 0, then all eigenvalues of K converge to supp(µ)∪{0}. More generally for r ≥ 0, the
eigenvalues of K asymptotically separated from supp(µ)∪{0} are in 1-to-1 correspondence
with I = {i : z′(−1/λi) > 0}, and λ̂i(K) → z(−1/λi).

(b) For each i ∈ I and any deterministic unit vector v ∈ Rn, (v⊤v̂i)
2−φ(−1/λi)(v

⊤vi)
2 → 0,

where vi, v̂i are the unit eigenvectors of Σ,K for eigenvalues λi(Σ), λ̂i(K).

(c) Let u = 1√
N
(u1, . . . , uN )⊤ ∈ RN be such that [u,G] ∈ RN×(n+1) has i.i.d. rows {[uj , gj ]}Nj=1,

and denote E[ug] = E[ujgj ] for all j ∈ [N ]. Then for each i ∈ I,

(u⊤ûi)
2 − z(−1/λi)φ(−1/λi)

λ2i
(E[ug]⊤vi)

2 → 0

where ûi is the unit eigenvector of GG⊤ for its eigenvalue λ̂i(GG⊤) = λ̂i(K).
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Statements (a–b) are known in a linear setting gi = Σ1/2zi when zi has i.i.d. entries, see e.g.
(Bai and Yao, 2012) and (Yao et al., 2015, Theorems 11.3 and 11.5). The above theorem thus
verifies an exact asymptotic equivalence between spiked spectral phenomena in a nonlinear spiked
covariance model with those of a linearly defined (possibly Gaussian) model.

In Section 2.1, each CK matrix Kℓ has (approximately) the structure of the above matrix K
over the randomness of W ℓ, conditional on the features Xℓ−1 of the preceding layer, and Theorem
4 follows from Theorem 7(a,b). In Section 2.2, the CK matrix K defined by trained weights has
(approximately) this structure over the randomness of X̃ , conditional on W trained, and Theorem 6
follows from Theorem 7(a,c).

Proof ideas. Analyses in the linearly defined model gi = Σ1/2zi commonly stem from block
matrix inversion identities with respect to the block decompositions

Σ =

(
Σr 0
0 Σ0

)
, G =

(
Gr G0

)
where Σr contains the spike eigenvalues of Σ, and Gr is independent of G0. This independence
does not hold in our setting, and we develop a different “master equation” approach.

Let λ̂1/2 be a spike singular value of G with corresponding unit singular vectors (û, v̂). We
consider the linearized equation

0 =

(
−λ̂I G⊤

G −I

)(
v̂

λ̂1/2û

)
. (3.1)

Writing V r ∈ Rn×r for the r spike eigenvectors of Σ, we define a generalized resolvent

R(z, α) =

(
−zI − αV rV

⊤
r G⊤

G −I

)−1

,

add to (3.1) the quantity −α
(
V r

0

)
· V ⊤

r v̂ on both sides for some large α > 0, and rewrite this as

(
v̂

λ̂1/2û

)
= −αR(λ̂, α)

(
V r

0

)
· V ⊤

r v̂. (3.2)

We will show that R(z, α) exists and is bounded in operator norm for any z separated from the
limit bulk spectral support of K and any large enough α > 0. Then, multiplying (3.2) by (V ⊤

r 0)
and applying a block matrix inversion identity,

V ⊤
r v̂ = −α

(
V r

0

)⊤
R(λ̂, α)

(
V r

0

)
· V ⊤

r v̂ = −αV ⊤
r

(
G⊤G− λ̂I − αV rV

⊤
r

)−1
V r · V ⊤

r v̂.

As a result, spike eigenvalues λ̂ are roots z = λ̂ of the master equation

det

(
Ir + αV ⊤

r

(
G⊤G− zI − αV rV

⊤
r

)−1
V r

)
= 0,

for any fixed and large α > 0. Singular vector alignments may be characterized likewise from (3.2).
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The core of the proof is an asymptotic analysis of this master equation via a deterministic equiv-
alent approximation

v⊤
1 R(Γ)v2 := v⊤

1 (G
⊤G− Γ)−1v2 ≈ −v⊤

1 (Γ+ zm̃(z)Σ)−1v2 (3.3)

for any deterministic unit vectors v1,v2 ∈ Rn and low-rank perturbations Γ of zI , where m̃(z)
is the Stieltjes transform of the “companion” limit measure µ̃ for the eigenvalue distribution of
GG⊤ ∈ RN×N . We extend results of Chouard (2022); Schröder et al. (2023) by establishing this
approximation not only for Γ = zI but also perturbations thereof, and for spectral arguments z ∈
C\supp(µ) that may belong to the positive real line. The latter extension requires showing, a priori,
that all eigenvalues of K = G⊤G fall close to supp(µ) in the absence of spiked structure. We show
this by adapting an argument of Bai and Silverstein (1998) and using a fluctuation averaging lemma
described below.

Let us conclude with a brief discussion of our proof of (3.3): From manipulations of the identity

TrB = Tr(G⊤G− Γ)R(Γ)B = −TrR(Γ)BΓ+
1

N

N∑
i=1

g⊤
i R(Γ)Bgi

for appropriately chosen matrices B ∈ Cn×n, the Sherman-Morrison (leave-one-out) formula for
matrix inversion applied to R(Γ), and the concentration of bilinear forms in gi, one may show

v⊤
1 (Γ+ zm̃(z)Σ)−1v2 ≈ −v⊤

1 R(Γ)v2 +
1

1 +N−1TrΣR(Γ)
· 1

N

N∑
i=1

(1− Egi
)Ti (3.4)

where Ti = g⊤
i R

(i)(Γ)v2 · v⊤
1 (Γ+ zm

(i)

K̃
(Γ)Σ)−1gi. Here, R(i)(Γ) and m(i)

K̃
(Γ) are generalized

leave-one-out resolvents and empirical Stieltjes transforms defined by {gj}j ̸=i, and Egi
is the partial

expectation over only gi. Under our assumptions for gi, each error term (1 − Egi
)Ti has mean 0

and O(1) fluctuations. We develop a fluctuation averaging lemma using recursive applications of
the Sherman-Morrison identity to further resolve the dependence of R(i)(Γ) and m(i)

K̃
(Γ) on fixed

subsets of rows {gj}j ̸=i, to show that the errors (1 − Egi
)Ti are weakly correlated across i ∈ [N ].

Hence their average has a mean 0 and fluctuates on the asymptotically negligible scale ofO(N−1/2),
and applying this to (3.4) shows (3.3).
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Organization of the Appendices

• Appendix A introduces relevant notation and background.

• Appendix B states our main results for the general nonlinear spiked covariance model

K = G⊤G,

formalizing the discussion in Section 3. These results are divided into two subsections: Appendix
B.1 gives a “no outliers” statement for K and a deterministic equivalent approximation for its
resolvent, under minimal asymptotic assumptions. Appendix B.2 then states the main characteri-
zations of spike eigenvalues/eigenvectors in an asymptotic setting with a spiked eigenstructure.

• Appendix C develops a general fluctuation averaging lemma for the sample covariance model,
and proves the results of Appendix B.1.

• Appendix D proves the results of Appendix B.2.

• Finally, Appendix E proves the results of Section 2.1 on propagation of spiked eigenstructure
through the layers of a neural network, and Appendix F proves the results of Section 2.2 on the
eigenstructure of the CK after gradient descent training.

Appendix A. Notations and background

A.1. Stochastic domination

We use the following standard notation for stochastic domination of random variables, see e.g.
(Erdős et al., 2013, Definition 2.4): For random variablesX ≡ X(u) and Y ≡ Y (u) ≥ 0 depending
implicitly on N and a parameter u ∈ UN , as N → ∞, we write

X ≺ Y or X = O≺(Y ) uniformly over u ∈ UN

if, for any fixed ε,D > 0 and all large N ,

sup
u∈UN

P
[
|X(u)| > N εY (u)

]
< N−D.

Throughout, “for all large N” means for all N ≥ N0 where N0 may depend on ε,D, any quantities
that are constant in the context of the statement, and convergence rates of the spike eigenvalues and
empirical spectral measures in the given assumptions.

If X = 1{E} is the indicator of an event E ≡ EN , then 1{E} ≺ 0 means P[E ] < N−D for any
fixed D > 0 and all large N . If X and Y are both deterministic, then X ≺ Y means |X| ≤ N εY
(deterministically) for any ε > 0 and all large N . For an event E ≡ EN , we will write

X = O E
≺(Y )

as shorthand for X · 1{E} ≺ Y .
We will use the following basic properties often implicitly.
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Proposition 8 Suppose X ≺ Y uniformly over u ∈ UN .

(a) If |UN | ≤ NC for a constant C > 0, then for any fixed ε,D > 0 and all large N ,

P
[
there exists u ∈ UN with |X(u)| ≥ N εY (u)

]
≤ N−D.

(b) If |UN | ≤ NC for a constant C > 0, then
∑

u∈UN
X(u) ≺

∑
u∈UN

Y (u).

(c) If |UN | ≤ C for a constant C > 0, then
∏

u∈UN
X(u) ≺

∏
u∈UN

Y (u).

(d) If Y is deterministic, and E[X2] ≤ NC and Y ≥ N−C for a constant C > 0, then also
E[|X|] ≺ Y uniformly over u ∈ UN .

Proof. The first three statements follow from a union bound over UN . For the last statement, for
any fixed ε > 0, observe that

E|X| ≤ N ε/2Y + E
[
|X|1{|X| > N ε/2Y }

]
≤ N ε/2Y + E[X2]1/2P[|X| > N ε/2Y ]1/2.

Applying E[X2] ≤ NC , Y ≥ N−C , and P[|X| > N ε/2Y ] < N−D for sufficiently large D > 0
shows that the second term is less than N ε/2Y for all large N , hence E|X| < N εY . ■

A.2. Deformed Marcenko-Pastur law

For a probability measure ν supported on [0,∞) and an aspect ratio parameter γ > 0, consider the
deformed Marcenko–Pastur measure

µ = ρMP
γ ⊠ ν

and its “companion” probability measure

µ̃ = γµ+ (1− γ)δ0.

Here, µ and µ̃ represent the limit eigenvalue distributions of G⊤G ∈ Rn×n and GG⊤ ∈ RN×N

respectively, when G = 1√
N
[g1, . . . , gN ] ∈ RN×n has i.i.d. rows with mean 0 and covariance Σ,

and n,N → ∞ with n/N → γ and 1
n

∑n
i=1 δλi(Σ) → ν weakly.

These measures µ, µ̃ may be defined by their Stieltjes transform

m(z) =

∫
1

x− z
dµ(x), m̃(z) =

∫
1

x− z
dµ̃(x) (A.1)

where m̃(z) = γm(z) + (1− γ)(−1/z). By the results of (Marčenko and Pastur, 1967; Silverstein
and Bai, 1995), for any z ∈ C+, m(z) and m̃(z) are the unique roots in {m ∈ C : γm + (1 −
γ)(−1/z) ∈ C+} and C+, respectively, to the Marcenko-Pastur equations

m(z) =

∫
1

λ(1− γ − γzm(z))− z
dν(λ), z = − 1

m̃(z)
+ γ

∫
λ

1 + λm̃(z)
dν(λ). (A.2)

We definem(z), m̃(z) via (A.1) also on the full domains C\supp(µ) and C\supp(µ̃) respectively,
where the support sets supp(µ) and supp(µ̃) may differ only at the single point {0}.
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In the setting Σ = I (and ν = δ1), the law µ = ρMP
γ is the standard Marcenko-Pastur law, with

explicit density function with respect to Lebesgue measure

dρMP
γ (λ) =

1

2π

√
(λ+ − λ)(λ− λ−)

γλ
· 1λ∈[λ−,λ+] dλ, λ± := (1±√

γ)2

for γ ≤ 1, and an additional point mass (1− 1/γ) at 0 when γ > 1.
In general, µ and µ̃ do not have analytically explicit densities. However, supp(µ̃) is explicitly

characterized in Silverstein and Choi (1995), and we review this characterization here: Define

T = {0} ∪ {−1/λ : λ ∈ supp(ν)}. (A.3)

For m̃ ∈ C \ T , define

z(m̃) = − 1

m̃
+ γ

∫
λ

1 + λm̃
dν(λ). (A.4)

In light of the second equation of (A.2), this may be understood as a formal inverse of m̃(z).
From (Silverstein and Choi, 1995, Theorems 4.1 and 4.2), we have the following properties.

Proposition 9 m̃(·) defines a bijection from {z ∈ R \ supp(µ̃)} to {m̃ ∈ R \ T : z′(m̃) > 0},
whose inverse function is z(·). In particular, x ∈ R does not belong to supp(µ̃) if and only if there
exists m̃ ∈ R \ T such that z′(m̃) > 0 and z(m̃) = x.

A.3. Additional notation

For a probability measure µ, its support is the closed set

supp(µ) = {x ∈ R : µ(O) > 0 for any open neighborhood O ∋ x}.

We write dist(x,A) = inf{|x− y| : y ∈ A} and define the ε-neighborhood

supp(µ) + (−ε, ε) = {x ∈ R : dist(x, supp(µ)) < ε}.

We write δx for the probability measure given by a point mass at x ∈ R, aµ0 + (1 − a)µ1 for the
convex combination of µ0, µ1, and a⊗ µ⊕ b for the law of ax+ b when x ∼ µ.

For vectors, ∥v∥ ≡ ∥v∥2 is the Euclidean norm. For matrices, ∥M∥ is the operator norm
supv:∥v∥=1 ∥Mv∥, ∥M∥F is the Frobenius norm (TrM⊤M)1/2, Tr is the (unnormalized) matrix
trace, and A ⊙B is the entrywise (Hadamard) product. We write diag(v) for the diagonal matrix
with vector v along the main diagonal, and In for the n× n identity matrix.

Appendix B. Results for the nonlinear spiked covariance model

B.1. Deterministic equivalent for the resolvent

We consider the sample covariance and Gram matrix

K = G⊤G ∈ Rn×n, K̃ = GG⊤ ∈ RN×N , where G =
1√
N

[g1, . . . , gN ]⊤ ∈ RN×n.

The following are our basic assumptions, where we recall that 1{E} ≺ 0 means P[E ] ≤ N−D for
any fixed D > 0 and all large N .
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Assumption 5 The rows of G are independent and satisfy E[gi] = 0 and E[gig
⊤
i ] = Σ for all

i ∈ [N ], such that:

(a) There exist constants C, c > 0 such that c < n/N < C and ∥Σ∥ < C.

(b) There exists a constant B > 0 such that 1{∥K∥ > B} ≺ 0.

(c) Uniformly over deterministic matrices A ∈ Cn×n and over i ̸= j ∈ [N ],

g⊤
i Agi − E[g⊤

i Agi] ≺ ∥A∥F , g⊤
i Agj ≺ ∥A∥F .

(d) For any integer α > 0, there exists a constant C = C(α) > 0 such that E[∥gi∥α] ≤ NC .

Denote the finite-N dimension ratio and empirical eigenvalue distribution of Σ by

γN =
n

N
, νN =

1

n

n∑
i=1

δλi(Σ). (B.1)

Let
µN = ρMP

γN
⊠ νN , µ̃N = γNµN + (1− γN )δ0.

Denote the Stieltjes transforms of µN , µ̃N by mN (z), m̃N (z). These are characterized exactly as in
(A.2) with (γN , νN ) in place of (γ, ν).

We first establish that with high probability, K and K̃ have no outlier eigenvalues far from the
support set

SN = supp(µN ) ∪ {0} = supp(µ̃N ) ∪ {0}. (B.2)

Theorem 10 Suppose Assumption 5 holds. Then for any fixed ε > 0,

1
{
K has an eigenvalue outside SN + (−ε, ε)

}
≺ 0.

In asymptotic settings where νN → ν and µN → µ weakly and Σ has no spike eigenvalues, this
set SN will converge to S := supp(µ) ∪ {0}. In general, SN may contain intervals around spike
eigenvalues of K that are separated from supp(µ) ∪ {0} if Σ has a spiked structure, and this will
be clarified in the subsequent section.

Next, we establish a deterministic equivalent approximation for the resolvent of K, for spectral
arguments separated from this support set SN . Let us denote by

R(z) = (K − zI)−1, mK(z) =
1

n
TrR(z)

the resolvent and Stieltjes transform of K for z ̸∈ supp(µN ). For any ε > 0, define the domain

UN (ε) =
{
z ∈ C : |z| ≤ ε−1, dist(z,SN ) ≥ ε

}
. (B.3)

Theorem 11 Suppose Assumption 5 holds. Then for any fixed ε > 0, uniformly over z ∈ UN (ε)
and over deterministic matrices A ∈ Cn×n, we have

mK(z)−mN (z) ≺ 1

N
, Tr

[
R(z)A− (−zm̃N (z)Σ− zI)−1A

]
≺ 1√

N
∥A∥F .
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For spectral arguments z ∈ C \ R+ separated from the positive real line, such a result has been
shown recently in Chouard (2022); Schröder et al. (2023) (using different proof techniques). We
use Theorem 10 as an input to establish this approximation also for spectral arguments in R+ \ SN ,
as such a result (and its extension to a generalized resolvent) is needed for our analysis of spiked
eigenstructure to follow.

B.2. Spike eigenvalues and eigenvectors

Now we consider an asymptotic setting with a specific spiked structure for the population covariance
matrix Σ, having a fixed number of spikes outside the support of the weak limit of its spectral law.
This assumption is summarized as follows.

Assumption 6 Σ has eigenvalues λ1(Σ), . . . , λn(Σ) (not necessarily ordered by magnitude) where,
for a fixed integer r ≥ 0, as N → ∞:

(a) n/N → γ ∈ (0,∞).

(b) There exists a probability measure ν with compact support in (0,∞), such that

1

n− r

n∑
i=r+1

δλi(Σ) → ν weakly.

Furthermore, for any fixed ε > 0 and all large N ,

λi(Σ) ∈ supp(ν) + (−ε, ε) for all i ≥ r + 1.

(c) There exist distinct values λ1, . . . , λr > 0 with λ1, . . . , λr ̸∈ supp(ν) such that

λi(Σ) → λi for all i = 1, . . . , r.

Under this assumption, we analyze the outlier singular values of G and their corresponding
singular vectors. Let

γN,0 =
n− r

N
, νN,0 =

1

n− r

n∑
i=r+1

δλi(Σ)

be the finite-N aspect ratio and population spectral measure corresponding to the bulk component
of Σ. Define the laws

µN,0 = ρMP
γN,0

⊠ νN,0, µ̃N,0 = γN,0µN,0 + (1− γN,0)δ0

and let mN,0(z), m̃N,0(z) be their Stieltjes transforms. In the setting of Assumption 6, we note that
µN,0 → µ = ρMP

γ ⊠ ν and µ̃N,0 → µ̃ = γµ + (1 − γ)δ0 weakly as N → ∞, where the Stieltjes
transforms m(z), m̃(z) of these limits µ, µ̃ are characterized by (A.2).

Denote the limit support set

S = supp(µ) ∪ {0} = supp(µ̃) ∪ {0}. (B.4)

Under Assumption 6 when r = 0, i.e. Σ does not have spike eigenvalues, the following is a corol-
lary of Theorem 10. A similar “no outlier” statement has been shown for linearly defined sample
covariance models in (Bai and Silverstein, 1998).
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Corollary 12 Suppose Assumptions 5 and 6 hold, where r = 0. Then for any fixed ε > 0,

1
{
K has an eigenvalue outside S + (−ε, ε)

}
≺ 0.

We now give a more quantitative version of Theorem 7 stated informally in Section 3, which
describes the spike eigenvalues of K = G⊤G and corresponding singular vectors of G when there
are possibly spike eigenvalues in Σ. Define the domain

TN,0 = {0} ∪ {−1/λ : λ ∈ supp(νN,0)}.

For m̃ ∈ C \ TN,0, define the functions

zN,0(m̃) = − 1

m̃
+ γN,0

∫
λ

1 + λm̃
dνN,0(λ), φN,0(m̃) = −

m̃z′N,0(m̃)

zN,0(m̃)
. (B.5)

We note that under Assumption 6, the domain TN,0 converges in Hausdorff distance to T as defined
in (A.3). We will verify in the proof (c.f. Lemma 24) that zN,0(m̃) → z(m̃) and z′N,0(m̃) → z′(m̃)
for each fixed m̃ ∈ C \ T , where z(·) is as defined in (A.4). Then also φN,0(m̃) → φ(m̃) for the
limiting function

φ(m̃) = −m̃z
′(m̃)

z(m̃)
. (B.6)

Theorem 13 Suppose Assumptions 5 and 6 hold. Let

I =
{
i ∈ {1, . . . , r} : z′(−1/λi) > 0

}
.

(a) For any sufficiently small constant ε > 0 and all large N , on an event E ≡ EN satisfying
1{Ec} ≺ 0, there is a 1-to-1 correspondence between the eigenvalues of K outside S +
(−ε, ε) and {λi : i ∈ I}. Denoting these eigenvalues of K by {λ̂i : i ∈ I}, we have

λ̂i − zN,0(−1/λi(Σ)) = O E
≺

(
1√
N

)
for each i ∈ I, where zN,0(−1/λi(Σ)) → z(−1/λi) > 0 as N → ∞.

(b) On this event E , for each i ∈ I, let v̂i ∈ Rn be a unit-norm eigenvector of K (i.e. right sin-
gular vector of G) corresponding to its eigenvalue λ̂i, and let vi be a unit-norm eigenvector
of Σ corresponding to λi(Σ). Then, uniformly over (deterministic) unit vectors v ∈ Rn,

|v⊤v̂i| −
√
φN,0(−1/λi(Σ)) · |v⊤vi| = O E

≺

(
1√
N

)
(B.7)

where φN,0(−1/λi(Σ)) → φ(−1/λi) > 0 as N → ∞. In particular, for each i ∈ I,
|v⊤

i v̂i|2 → φ(−1/λi) and supj∈[n]:j ̸=i |v⊤
j v̂i|2 → 0 almost surely as N → ∞.

(c) Let u = 1√
N
(u1, . . . , uN )⊤ ∈ RN be a random vector such that [u,G] ∈ RN×(n+1) has

independent rows also satisfying Assumption 5. Denote by E[ug] ∈ Rn the common value of
E[ujgj ] for all j ∈ [N ].

On this event E , for each i ∈ I, let ûi ∈ RN be a unit-norm eigenvector of K̃ (i.e. left
singular vector of G) corresponding to its eigenvalue λ̂i, and let vi be the eigenvector of Σ
as in part (b). Then

|u⊤ûi| −
√
zN,0(−1/λi(Σ))φN,0(−1/λi(Σ))

λi(Σ)
·
∣∣∣E[ug]⊤vi

∣∣∣ = O E
≺

(
1√
N

)
. (B.8)
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Appendix C. Analysis of the resolvent

We prove the results of Appendix B.1. Appendix C.1 first develops a fluctuation averaging lemma
for the sample covariance model. Appendix C.2 applies this lemma within the arguments of Bai and
Silverstein (1998), to prove the “no outliers” result of Theorem 10. Appendix C.3 uses Theorem 10
and a second application of the fluctuation averaging lemma to prove the deterministic equivalent
approximation of Theorem 11.

C.1. Fluctuation averaging lemma

Recall the definitions
K = G⊤G, K̃ = GG⊤.

For S ⊂ [N ], let G(S) ∈ R(N−|S|)×n be the matrix obtained by removing the rows of G corre-
sponding to i ∈ S, and define

K(S) = G(S)⊤G(S) =
1

N

∑
i∈[N ]\S

gig
⊤
i ∈ Rn×n.

Then, for Γ ∈ Cn×n, define

R(S)(Γ) = (K(S) − Γ)−1, m
(S)
K (Γ) =

1

n
TrR(S)(Γ),

m̃
(S)
K (Γ) = γNm

(S)
K (Γ) + (1− γN )

(
−1

z

)
=

1

N
TrR(S)(Γ) +

(
1− n

N

)(
−1

z

)
.

(C.1)

Importantly, these quantities are independent of {gi : i ∈ S}. We say that R(S)(Γ) exists (and
hence also m(S)

K , m̃
(S)
K exist) when K(S) − Γ is invertible. For simplicity, we write R = R∅,

R(i) = R({i}), R(Si) = R(S∪{i}), and similarly for mK and m̃K .

Lemma 14 Suppose Assumption 5 holds. Suppose also that there are constants C0, c0, δ, υ > 0,
N -dependent domains U ⊂ C \ {0} and DΓ,DA ⊆ Cn×n, and N -dependent maps ΦN : DΓ ×
DA → (N−υ, Nυ) and ΨN : DΓ → (N−υ, N1−δ), such that for any fixed L ≥ 1, the events

E(z,Γ,A, S) =
{
R(S)(Γ) exists, ∥R(S)(Γ)A∥F ≤ ΦN (Γ,A), ∥R(S)(Γ)∥F ≤ ΨN (Γ),

∥(z−1Γ+ m̃
(S)
K (Γ)Σ)−1∥ ≤ C0, and |1 +N−1g⊤

j R
(S)(Γ)gj | ≥ c0 for all j ∈ S

}
(C.2)

satisfy 1{E(z,Γ,A, S)c} ≺ 0 uniformly over z ∈ U , Γ ∈ DΓ, A ∈ DA, and S ⊂ [N ] with
|S| ≤ L.

Then, denoting by Egi
the partial expectation over only gi (i.e. conditional on {gj}j ̸=i), also

uniformly over z ∈ U , Γ ∈ DΓ, and A ∈ DA,

1

N

N∑
i=1

(1− Egi
)
[
g⊤
i R

(i)(Γ)A(z−1Γ+ m̃
(i)
K (Γ)Σ)−1gi

]
≺ max

(
ΨN (Γ)

N
,

1√
N

)
· ΦN (Γ,A).

(C.3)
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We remark that applying Assumption 5(c) and the conditions of E(z,Γ,A, i) separately to each
summand of the left side of (C.3) gives the naive bound

1

N

N∑
i=1

(1− Egi
)[g⊤

i R
(i)(Γ)A(z−1Γ+ m̃

(i)
K (Γ)Σ)−1gi]

≺ N
max
i=1

∥R(i)(Γ)A∥F · ∥(z−1Γ+ m̃
(i)
K (Γ)Σ)−1∥ ≺ ΦN (Γ,A).

The content of the lemma is to improve this by the additional factor of max(ΨN (Γ)
N , 1√

N
) ≪ 1.

In this work, we will apply Lemma 14 only to spectral arguments z with O(1)-separation from
supp(µN ) (and matrices Γ = zI or a finite-rank perturbation thereof), in which case we will
take ΨN (Γ) = C/

√
N for a constant C > 0. For full-rank matrices A having bounded operator

norm, we will also take ΦN (Γ,A) = C/
√
N , whereas for finite-rank matrices A we will take

ΦN (Γ,A) = C. We state the result here more abstractly, as it may be of independent interest to
prove local laws in this nonlinear sample covariance model for spectral arguments z that approach
supp(µN ).

In the remainder of this section, we prove Lemma 14. Fix z ∈ U , Γ ∈ DΓ, and A ∈ DA, and
write as shorthand

R(S) = R(S)(Γ), m̃(S) = m̃
(S)
K (Γ), Ω(S) = (z−1Γ+ m̃

(S)
K (Γ)Σ)−1,

ΦN = ΦN (Γ,A), ΨN = ΨN (Γ), E(S) = E(z,Γ,A, S).
All subsequent instances of ≺ will be implicitly uniform over z ∈ U , Γ ∈ DΓ, and A ∈ DA. Define
the quantities, for i ∈ S, j, k ∈ S \ {i}, and d ≥ 0,

Y
(S)
i [d] = Tr(gig

⊤
i −Σ)R(S)AΩ(S)[ΣΩ(S)]d,

Z
(S)
ijk [d] = N−1Tr(gig

⊤
i −Σ)R(S)gjg

⊤
k R

(S)AΩ(S)[ΣΩ(S)]d,

B
(S)
jk = N−1g⊤

j R
(S)gk,

C
(S)
jk = N−2g⊤

j (R
(S))2gk,

Q
(S)
j = (1 +N−1g⊤

j R
(S)gj)

−1.

For each L ≥ 1, define also the event

EL =
⋂

S⊂[N ]:|S|≤L

E(S). (C.4)

Lemma 15 For any fixed L,D ≥ 1, uniformly over S ⊂ [N ] with |S| ≤ L, and over i ∈ S and
j, k ∈ S \ {i} and d ≤ D,

Y
(S)
i [d] = O

E(S)
≺ (ΦN ), Z

(S)
ijk [d] = O

E(S)
≺

(
N−1ΨNΦN

)
,

B
(S)
jk = O

E(S)
≺

(
N−1ΨN

)
for j ̸= k, C

(S)
jk = O

E(S)
≺

(
N−2Ψ2

N

)
, Q

(S)
j = O

E(S)
≺ (1).

(C.5)

Furthermore, for any α > 0, there exists a constant C = C(α,L,D) > 0 such that

E
[
|Y (S)

i [d]|α1{E(S)}
]
< NC , E

[
|Z(S)

ijk [d]|
α1{E(S)}

]
< NC ,

E
[
|B(S)

jk |α1{E(S)}
]
< NC , E

[
|C(S)

jk |α1{E(S)}
]
< NC , E

[
|Q(S)

j |α1{E(S)}
]
< NC .

(C.6)
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Proof. On the event E(S), we have by definition Q(S)
j ≤ 1/c0, so the two statements for Q(S)

j hold
immediately. The remaining statements of (C.6) follow easily from Holder’s inequality, the moment
bounds for ∥gi∥ in Assumption 5(d), the bound ∥Σ∥ < C in Assumption 5(a), and the conditions
∥R(S)A∥ ≤ ΦN ≤ Nυ, ∥R(S)∥F ≤ ΨN ≤ N , and ∥Ω(S)∥ ≤ C0 defining E(S).

For the bounds for B(S)
jk and C(S)

jk in (C.5), note that when j ̸= k, Assumption 5(c) implies

B
(S)
jk ≺ N−1∥R(S)∥F and C(S)

jk ≺ N−2∥(R(S))2∥F ≤ N−2∥R(S)∥2F . When j = k, Assumption
5(c) implies also

C
(S)
jj ≺ N−2|TrΣ(R(S))2|+N−2∥(R(S))2∥F

≤ N−2∥ΣR(S)∥F ∥R(S)∥F +N−2∥R(S)∥2F ≤ N−2(∥Σ∥+ 1)∥R(S)∥2F .

Then these bounds in (C.5) follow from the condition ∥R(S)∥F ≤ ΨN defining E(S).
Finally, for the bounds for Y (S)

i [d] and Z(S)
ijk [d] in (C.5), observe that for any matrix A ∈ Cn×n

independent of gi, we have Tr(gig
⊤
i − Σ)A ≺ ∥A∥F by Assumption 5(c). Then Y

(S)
i [d] ≺

∥R(S)AΩ(S)[ΣΩ(S)]d∥F ≤ ∥R(S)A∥F · ∥Ω(S)∥d+1∥Σ∥d, so the bound for Y (S)
i [d] in (C.5) fol-

lows from the conditions ∥R(S)A∥F ≤ ΦN and ∥Ω(S)∥ ≤ C0 defining E(S). For Z(S)
ijk [d], similarly

by Assumption 5(c),

Z
(S)
ijk ≺ N−1∥R(S)gjg

⊤
k R

(S)AΩ(S)[ΣΩ(S)]d∥F ≤ N−1∥R(S)gj∥·∥g⊤
k R

(S)A∥·∥Ω(S)∥d+1∥Σ∥d.

Applying again Assumption 5(c), we have

∥R(S)gj∥22 = g⊤
j (R

(S))∗R(S)gj ≺ |TrΣ(R(S))∗R(S)|+ ∥(R(S))∗R(S)∥F ≺ ∥R(S)∥2F

and similarly ∥g⊤
k R

(S)A∥22 ≺ ∥R(S)A∥2F . Then the bound for Z(S)
ijk [d] in (C.5) follows from the

conditions ∥R(S)A∥F ≤ ΦN , ∥R(S)∥F ≤ ΨN , and ∥Ω(S)∥ ≤ C0 defining E(S). ■

Lemma 16 Fix any L,D ≥ 1. Then there exist coefficients α(d, d′, D) ∈ R such that the following
holds: Uniformly over S ⊂ [N ] with |S| ≤ L− 1, and over i ∈ S, j, k ∈ S \ {i}, l ∈ [N ] \ S, and
d ≤ D,

Y
(S)
i [d] =

d+⌈D/2⌉∑
d′=d

α(d, d′, D)
[
C

(Sl)
ll Q

(Sl)
l

]d′−d(
Y

(Sl)
i [d′]− Z

(Sl)
ill [d′]Q

(Sl)
l

)
+O EL

≺
(
N−DΨD

NΦN

)
(C.7)

Z
(S)
ijk [d] =

d+⌈D/2⌉∑
d′=d

α(d, d′, D)
[
C

(Sl)
ll Q

(Sl)
l

]d′−d(
Z

(Sl)
ijk [d′]− Z

(Sl)
ilk [d′]B

(Sl)
lj Q

(Sl)
l

− Z
(Sl)
ijl [d′]B

(Sl)
kl Q

(Sl)
l + Z

(Sl)
ill [d′]B

(Sl)
lj B

(Sl)
kl (Q

(Sl)
l )2

)
+O EL

≺
(
N−DΨD

NΦN

)
, (C.8)

B
(S)
jk = B

(Sl)
jk −B

(Sl)
jl B

(Sl)
lk Q

(Sl)
l , (C.9)

C
(S)
jk = C

(Sl)
jk −B

(Sl)
jl C

(Sl)
lk Q

(Sl)
l − C

(Sl)
jl B

(Sl)
lk Q

(Sl)
l +B

(Sl)
jl C

(Sl)
ll B

(Sl)
lk (Q

(Sl)
l )2, (C.10)

Q
(S)
j =

⌈D/2⌉∑
d=1

(
Q

(Sl)
j

)d[
(B

(Sl)
jl )2Q

(Sl)
l

]d−1
+O EL

≺
(
N−DΨD

N

)
. (C.11)
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Proof. By the Sherman-Morrison formula, on the event EL where R(S) and R(Sl) both exist, we
have

R(S) = R(Sl) −N−1R(Sl)glg
⊤
l R

(Sl) ·Q(Sl)
l . (C.12)

Applying this to each copy of R(S) defining B(S)
jk and C(S)

jk yields immediately (C.9) and (C.10), as
well as the identities

z−1Γ+ m̃(S)Σ = z−1Γ+
(
N−1TrR(S) + (1− γN )(−1/z)

)
Σ

= (z−1Γ+ m̃(Sl)Σ)− C
(Sl)
ll Q

(Sl)
l Σ,

1 +B
(S)
jj = 1 +B

(Sl)
jj − (B

(Sl)
jl )2Q

(Sl)
l .

Taking inverses and applying the expansion

(A−∆)−1 =

⌈D/2⌉∑
d=1

A−1(∆A−1)d−1 + (A−∆)−1(∆A−1)⌈D/2⌉,

we obtain

Ω(S) =

⌈D/2⌉∑
d=1

Ω(Sl)[C
(Sl)
ll Q

(Sl)
l ΣΩ(Sl)]d−1 +E, (C.13)

Q
(S)
j =

⌈D/2⌉∑
d=1

Q
(Sl)
j [(B

(Sl)
jl )2Q

(Sl)
l Q

(Sl)
j ]d−1 + e, (C.14)

for remainder terms E ∈ Cn×n and e ∈ C satisfying, by the bounds of Lemma 15,

∥E∥ = O EL
≺

(
|C(Sl)

ll |D/2
)
= O EL

≺
(
(N−1Ψ)D

)
, |e| = O EL

≺

(
|(B(Sl)

jl )2|D/2
)
= O EL

≺
(
(N−1Ψ)D

)
.

In particular, (C.14) shows (C.11). Applying (C.13) to the definitions of Y (S)
i [d] and Z(S)

ijk [d], we
get

Y
(S)
i [d] = Tr(gig

⊤
i −Σ)R(S)A

⌈D/2⌉∑
d′=1

Ω(Sl)[C
(Sl)
ll Q

(Sl)
l ΣΩ(Sl)]d

′−1 +E


·

Σ

⌈D/2⌉∑
d′=1

Ω(Sl)[C
(Sl)
ll Q

(Sl)
l ΣΩ(Sl)]d

′−1 +E

d

,

Z
(S)
ijk [d] =

1

N
Tr(gig

⊤
i −Σ)R(S)gjg

⊤
k R

(S)A

⌈D/2⌉∑
d′=1

Ω(Sl)[C
(Sl)
ll Q

(Sl)
l ΣΩ(Sl)]d

′−1 +E


·

Σ

⌈D/2⌉∑
d′=1

Ω(Sl)[C
(Sl)
ll Q

(Sl)
l ΣΩ(Sl)]d

′−1 +E

d

.
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For any matrix B ∈ Cn×n independent of gi, observe that Tr(gig
⊤
i −Σ)R(S)AB = O

E(S)
≺ (ΦN∥B∥)

and Tr(gig
⊤
i − Σ)R(S)gjg

⊤
k R

(S)AB = O
E(S)
≺ (ΨNΦN∥B∥) by the same arguments as those

bounding Y
(S)
i [d] and Z

(S)
ijk [d] in the proof of Lemma 15. Then, expanding the above and ab-

sorbing all terms containing E and all terms with combined power of C(Sl)
ll larger than D/2 into

O
E(S)
≺

(
N−DΨD

NΦN

)
remainders, we obtain for some coefficients α(d, d′, D) ∈ R that

Y
(S)
i [d] = Tr(gig

⊤
i −Σ)R(S)A

⌈D/2⌉∑
d′=0

α(d, d′, D)[C
(Sl)
ll Q

(Sl)
l ]d

′
Ω(Sl)[ΣΩ(Sl)]d+d′

+O
E(S)
≺

(
N−DΨD

NΦN

)
,

Z
(S)
ijk [d] =

1

N
Tr(gig

⊤
i −Σ)R(S)gjg

⊤
k R

(S)A

⌈D/2⌉∑
d′=0

α(d, d′, D)[C
(Sl)
ll Q

(Sl)
l ]d

′
Ω(Sl)[ΣΩ(Sl)]d+d′

+O
E(S)
≺

(
N−DΨD

NΦN

)
.

Finally, applying the Sherman-Morrison formula (C.12) to expand each copy of R(S), and re-
indexing the summations by d+ d′ 7→ d′, we get (C.7) and (C.8). ■

Lemma 17 Fix any L,D ≥ 1. Uniformly over S ⊂ [N ] with |S| ≤ L and over i ∈ S, the
following holds: Denote S̄ = S \ {i}. Then there exists a collection of monomials Mi,S such that
Y

(i)
i [0] can be approximated as

Y
(i)
i [0] =

∑
q∈Mi,S

q

(
{Y (S)

i [d]}d≤⌊D/2⌋, {Z
(S)
ijk [d]}j,k∈S̄,d≤⌊D/2⌋, {B

(S)
jk }j ̸=k∈S̄ ,

{C(S)
jk }j,k∈S̄ , {Q

(S)
j }j∈S̄

)
+O EL

≺
(
N−DΨD

NΦN

)
. (C.15)

Each monomial q ∈ Mi,S is a product of a real-valued scalar coefficient and one or more factors
of the form Y

(S)
i [d], Z(S)

ijk [d], B
(S)
jk with j ̸= k, C(S)

jk , Q(S)
j for j, k ∈ S̄ and d ≤ ⌊D/2⌋. We have

q = O EL
≺ (ΦN ) uniformly over q ∈ Mi,S , and the number of monomials |Mi,S | is most a constant

depending on L,D. Furthermore:

(a) There is exactly one factor of the form Y
(S)
i [d] or Z(S)

ijk [d] appearing in q.

(b) The number of factors Z(S)
ijk [d], B

(S)
jk , and C(S)

jk appearing in q is no less than the number of
distinct indices of S̄ (not including i) that appear as lower indices across all factors of q.

Proof. We arbitrarily order the indices of S̄ = S \ {i} as l1, l2, . . . , l|S|−1. Beginning with the

monomial Y (i)
i [0], iteratively for j = 1, 2, . . . , |S| − 1, we replace all factors with superscript

(il1 . . . lj−1) by a sum of terms with superscript (il1 . . . lj), using the recursions (C.7)–(C.11). It is
then direct to check that this gives a representation of the form (C.15), where:

• Each application of (C.7)–(C.8) replaces a factor Y (...)
i [d] or Z(...)

ijk [d] by terms having exactly

one such factor. Thus, each monomial q ∈ Mi,S has exactly one factor Y (S)
i [d] or Z(S)

ijk [d].
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• The number of total applications of (C.7)–(C.11) is bounded by a constant depending onL,D,
so |Mi,S | and the scalar coefficient of each q ∈ Mi,S are both bounded by constants depend-
ing on L,D. Then, by the bounds of (C.5), each q ∈ Mi,S satisfies q = O EL

≺ (ΦN ), and the
remainder in (C.15) is at most O EL

≺
(
N−DΨD

NΦN

)
. If q has the term Y

(S)
i [d] or Z(S)

i [d], then

it also has combined power of {C(S)
jk }j,k∈S̄ equal to d, and hence may be absorbed into the

remainder of (C.15) if d > D/2.

• Each term on the right side of (C.7)–(C.11) that contains the new lower index l has at least
one more factor of the form Z

(...)
ijk [d], B(...)

jk , or C(...)
jk than the left side. Thus, each monomial

q ∈ Mi,S is such that the number of distinct lower indices of S̄ across all of its factors is no
greater than the number of its factors of the form Z

(...)
ijk [d], B(...)

jk , or C(...)
jk .

Combining these observations yields the lemma. ■

Proof of Lemma 14. For each ε,D > 0, let us fix an even integer L = L(ε,D) > D/ε. The
assumption of this lemma guarantees 1{E(S)c} ≺ 0 uniformly over S ⊂ [N ] with |S| ≤ L. Since
the number of such subsets is at most NL, we may take a union bound (c.f. Proposition 8(a)) to
obtain 1{Ec

L} ≺ 0 for the intersection event EL of (C.4). Noting that (1 − Egi
)[g⊤

i R
(i)AΩgi] =

Y
(i)
i [0], to prove the lemma, it suffices to show for any ε,D > 0 and all sufficiently large N that

P

[(
1

N

N∑
i=1

Y
(i)
i [0]

)
1{EL} > max

(
ΨN

N
,

1√
N

)
ΦN ·N ε

]
< N−D. (C.16)

In anticipation of applying Markov’s inequality, we analyze

E

( N∑
i=1

Y
(i)
i [0]

)L

1{EL}

 =
N∑

i1,...,iL=1

E

[
L∏
l=1

Y
(il)
il

[0]1{EL}

]
︸ ︷︷ ︸

:=E[m(i1,...,iL)]

. (C.17)

Fix any index tuple (i1, . . . , iL). Letting S = {i1, . . . , iL} be the set of distinct indices in this tuple,
we apply Lemma 17 to each term Y

(il)
il

[0], with this set S and with D = L. This gives

m(i1, . . . , iL) =
∑

q(1)∈M(i1,S)

. . .
∑

q(l)∈M(il,S)

L∏
l=1

q(l) · 1{EL}+O≺
(
(N−1ΨN )LΦL

N

)
, (C.18)

where each M(il, S) is the collection of monomials arising in the approximation of Y (il)
il

[0], and we
have applied q(l) = O EL

≺ (ΦN ) to bound the remainder. Observe that by (C.6) and Holder’s inequal-
ity, we have E[|m(i1, . . . , iL)|2] ≤ NC and E[|

∏L
l=1 q

(l) · 1{EL}|2] ≤ NC for all q(1), . . . , q(L)

and a constant C > 0. By this and the given condition ΨN ,ΦN ≥ N−υ, we may take expectations
in (C.18) using Proposition 8(d) to get

E[m(i1, . . . , iL)] =
∑

q(1)∈M(i1,S)

. . .
∑

q(l)∈M(il,S)

E

[
L∏
l=1

q(l) · 1{EL}

]
+O≺

(
(N−1ΨN )LΦL

N

)
.

(C.19)
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Now to bound E[
∏L

l=1 q
(l) ·1{EL}], we consider separately two cases, focusing on those indices

il which appear exactly once in (i1, . . . , iL). In the first case, suppose there is some such index il
that does not appear as a lower index of q(l

′) for any l′ ̸= l. Fixing this set S = {i1, . . . , iL} and
index il ∈ S, let us introduce

E ′ =

{
R(S) exists, ∥R(S)A∥F ≤ ΦN , ∥R(S)∥F ≤ ΨN , ∥(z−1Γ+ m̃(S)Σ)−1∥ ≤ C0,

and |1 +N−1g⊤
j R

(S)gj | ≥ c0 for all j ∈ S \ {il}
}
.

Comparing with the definition of E(S) from (C.2), observe that only the last condition defining E ′

is different (where we do not require the bound for j = il), so that this event E ′ is independent of
gil

. Then EL ⊆ E(S) ⊆ E ′, and

E

[
L∏
l=1

q(l) · 1{EL}

]
= E

[
L∏
l=1

q(l) · 1{E ′}

]
− E

[
L∏
l=1

q(l) · 1{E ′}1{Ec
L}

]
. (C.20)

For the first term of (C.20), observe that both {q(l′) : l′ ̸= l} and E ′ are independent of gil
, and

only the one factor Y (S)
il

[d] or Z(S)
iljk

[d] in q(l) depends on gil
. Then, noting that Egi

[Y
(S)
i [d]] = 0

and Egi
[Z

(S)
ijk [d]] = 0, the first term of (C.20) is 0. For the second term of (C.20), observe that

all statements of (C.6) continue to hold with E(S) replaced by E ′, except for the bound on Q(S)
il

.

But Q(S)
il

appears neither in {q(l′) : l′ ̸= l} nor in q(l), so we may apply Holder’s inequality to
get E[|

∏L
l=1 q

(l)|21{E ′}] ≤ NC for a constant C > 0. Then, applying Cauchy-Schwarz and
1{Ec

L} ≺ 0, the second term of (C.20) is bounded by N−D′
for any fixed constant D′ > 0 and all

large N . Thus,

E

[
L∏
l=1

q(l) · 1{EL}

]
≤ N−D′

. (C.21)

In the second case, every index il that appears exactly once in (i1, . . . , iL) appears as a lower
index of q(l

′) for some l′ ̸= l. Call the number of such indices K. Then condition (b) of Lemma 17
implies that the total number of factors of the forms Z(S)

ijk [d], B
(S)
jk for j ̸= k, and C(S)

jk across all
monomials q(1), . . . , q(L) is at least K. Then, by the bounds of Lemma 15 and Proposition 8(d), we
have

E

[
L∏
l=1

q(l) · 1{EL}

]
≺ (N−1ΨN )KΦL

N . (C.22)

Under the given condition ΦN ,ΨN ≥ N−υ, we haveN−D′ ≤ (N−1ΨN )KΦL
N for large enough

D′. Then, combining the two cases (C.21) and (C.22) and applying this back to (C.19), we get

E[m(i1, . . . , iL)] ≺ (N−1ΨN )KΦL
N (C.23)

where K is the number of indices in S = {i1, . . . , iL} that appear exactly once in (i1, . . . , iL). Let
J be the number of distinct indices in S = {i1, . . . , iL} that appear at least twice in (i1, . . . , iL).
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Then 2J +K ≤ L, and the number of index tuples (i1, . . . , iL) ∈ [N ]L with these values of (J,K)
is at most CNJ+K , for a constant C = C(J,K) > 0. Then, applying (C.23) back to (C.17) yields

E

( N∑
i=1

Y
(i)
i [0]

)L

1{EL}

 ≺ max
J,K≥0: 2J+K≤L

NJ+K · (N−1ΨN )KΦL
N

= max
J,K≥0: 2J+K≤L

(
√
N)2JΨK

NΦL
N ≤ max(ΨN ,

√
N)LΦL

N .

Finally, by Markov’s inequality, the probability in (C.16) is at most

max(ΨN ,
√
N)−LΦ−L

N N−εL · E

( N∑
i=1

Y
(i)
i [0]

)L

1{EL}

 ≺ N−εL,

and (C.16) follows as desired under our initial choice L = L(ε,D) > D/ε. ■

C.2. No eigenvalues outside the support

We now prove Theorem 10. Let mN (z), m̃N (z) be the Stieltjes transform of the N -dependent
deterministic measures µN , µ̃N . For each z ∈ C+, m̃N (z) is the unique root in C+ to the equation

z = − 1

m̃N (z)
+ γN

∫
λ

1 + λm̃N (z)
dνN (λ), (C.24)

and mN (z), m̃N (z) are related by m̃N (z) = γNmN (z) + (1− γN )(−1/z). Define the discrete set

TN = {0} ∪ {−1/λ : λ ∈ supp(νN )}. (C.25)

On the domain C \ TN , we may define the formal inverse of (C.24),

zN (m̃) = − 1

m̃
+ γN

∫
λ

1 + λm̃
dνN (λ), (C.26)

which is a finite-N analogue of (A.4). Let SN be the deterministic support defined in (B.2), and let
UN (ε) be the spectral domain (B.3). The following basic properties of SN and m̃N (z) are known.

Proposition 18 Suppose Assumption 5(a) holds, and fix any ε > 0. Then there exist constants
C0, c0 > 0, depending only on ε and the constants C, c of Assumption 5(a), such that for all x ∈ SN

we have |x| ≤ C, and for all z = x+ iη ∈ UN (ε) we have

c < |m̃N (z)| < C, cη ≤ | Im m̃N (z)| ≤ Cη, min
λ∈supp(νN )

|1 + λ m̃N (z)| ≥ c

Proof. See (Fan and Johnstone, 2022, Propositions A.3, B.1, B.2). ■

Let mK̃(z) = N−1Tr(K̃ − zI)−1 be the Stieltjes transform of the empirical eigenvalue distri-
bution of K̃ = GG⊤. Since K̃ and K = G⊤G have the same eigenvalues up to |N − n| 0’s, we
have

mK̃(z) = γNmK(z) + (1− γN )(−1/z), (C.27)
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so in particular mK̃ coincides with m̃(∅)
K from (C.1). We begin with a preliminary estimate for

the Stieltjes transform mK̃(z) when Im z ≥ N−1/11. Similar statements have been shown in
(Silverstein, 1995; Bai and Silverstein, 1998), and we provide an argument here following ideas of
(Bai and Silverstein, 1998, Section 3) for later reference.

Lemma 19 Fix any ε > 0, and suppose Assumption 5 holds. Then, uniformly over z = x + iη ∈
UN (ε) with Im z ≥ N−1/11,

mK̃(z)− m̃N (z) ≺ 1√
Nη4

.

Proof. Let R(i) and m̃(i)
K be as defined in (C.1) with Γ = zI . Applying the Sherman-Morrison

formula

R = R(i) − N−1R(i)gig
⊤
i R

(i)

1 +N−1g⊤
i R

(i)gi

, (C.28)

for any matrix B ∈ Cn×n we have

TrB = Tr(K − zI)RB = −zTrRB +
1

N

N∑
i=1

g⊤
i RBgi

= −zTrRB +
1

N

N∑
i=1

g⊤
i R

(i)Bgi

1 +N−1g⊤
i R

(i)gi

. (C.29)

Choosing B = I in (C.29), applying TrR = nmK = N mK̃ + (n − N)(−1/z), and rear-
ranging, we obtain the identity

mK̃ = − 1

Nz

N∑
i=1

1

1 +N−1g⊤
i R

(i)gi

. (C.30)

Now fix any deterministic matrix A ∈ Cn×n, define

di =
1

N
g⊤
i R

(i)A(I +mK̃Σ)−1gi −
1

N
TrRA(I +mK̃Σ)−1Σ,

and choose B = A(I +mK̃Σ)−1 in (C.29). Then, applying also the identity (C.30), we get

TrA(I +mK̃Σ)−1

= −zTrRA(I +mK̃Σ)−1 − zmK̃ TrRA(I +mK̃Σ)−1Σ+

N∑
i=1

di

1 +N−1g⊤
i R

(i)gi

= −zTrRA+

N∑
i=1

di

1 +N−1g⊤
i R

(i)gi

. (C.31)

We proceed to bound di, where (for later purposes) we derive estimates in terms of the Frobenius
norms of R,RA,R(i),R(i)A rather than their operator norms. Note that Assumption 5(c) implies,
for any matrix B ∈ Cn×n independent of gi,

∥Bgi∥2 = g⊤
i B

∗Bgi ≺ TrΣB∗B + ∥B∗B∥F ≺ ∥B∥2F . (C.32)
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We have also, by Assumption 5(c) and the Sherman-Morrison formula (C.28),

N−1|TrRB − TrR(i)B| = N−2|1 +N−1g⊤
i R

(i)gi|−1|g⊤
i R

(i)BR(i)gi|

≺ N−2|1 +N−1g⊤
i R

(i)gi|−1
(
|TrΣR(i)BR(i)|+ ∥R(i)BR(i)∥F

)
≺ N−2|1 +N−1g⊤

i R
(i)gi|−1∥R(i)B∥F ∥R(i)∥F . (C.33)

Define di = di,1 + di,2 + di,3 + di,4 where

di,1 = N−1g⊤
i R

(i)A(I +mK̃Σ)−1gi −N−1g⊤
i R

(i)A(I + m̃
(i)
KΣ)−1gi,

di,2 = N−1g⊤
i R

(i)A(I + m̃
(i)
KΣ)−1gi −N−1TrΣR(i)A(I + m̃

(i)
KΣ)−1,

di,3 = N−1TrΣR(i)A(I + m̃
(i)
KΣ)−1 −N−1TrΣRA(I + m̃

(i)
KΣ)−1,

di,4 = N−1TrΣRA(I + m̃
(i)
KΣ)−1 −N−1TrΣRA(I +mK̃Σ)−1.

(C.34)

Applying the identity A−1 − B−1 = A−1(B − A)B−1, the definition of m̃(i)
K in (C.1), and the

bounds (C.32) and (C.33) (the latter with B = I),

|di,1| ≤ N−1∥g⊤
i R

(i)A∥∥(I +mK̃Σ)−1∥∥(m̃(i)
K −mK̃)Σ∥∥(I + m̃

(i)
KΣ)−1∥∥gi∥

≺ N−5/2|1 +N−1g⊤
i R

(i)gi|−1∥R(i)A∥F ∥R(i)∥2F ∥(I +mK̃Σ)−1∥∥(I + m̃
(i)
KΣ)−1∥.

(C.35)

Applying Assumption 5(c),

|di,2| ≺ N−1∥R(i)A(I + m̃
(i)
KΣ)−1∥F ≤ N−1∥R(i)A∥F ∥(I + m̃

(i)
KΣ)−1∥. (C.36)

Applying the Sherman-Morrison identity (C.28), |Truv⊤| ≤ ∥u∥∥v∥, and (C.32),

|di,3| ≤ N−2|1 +N−1g⊤
i R

(i)gi|−1∥ΣR(i)gi∥∥g⊤
i AR(i)(I + m̃

(i)
KΣ)−1∥

≺ N−2|1 +N−1g⊤
i R

(i)gi|−1∥R(i)A∥F ∥R(i)∥F ∥(I + m̃
(i)
KΣ)−1∥. (C.37)

Finally, applying A−1 − B−1 = A−1(B − A)B−1, (C.33) (with B = I), and |TrAB| ≤
∥A∥F ∥B∥F ≤

√
N∥A∥F ∥B∥,

|di,4| = N−1
∣∣∣TrΣRA(I + m̃

(i)
KΣ)−1(m̃

(i)
K −mK̃)Σ(I +mK̃Σ)−1

∣∣∣
≺ N−5/2|1 +N−1g⊤

i R
(i)gi|−1∥RA∥F ∥R∥2F ∥(I + m̃

(i)
KΣ)−1∥∥(I +mK̃Σ)−1∥. (C.38)

For the current proof, we apply (C.31) and the definitions (C.34) with A = I . Recalling
TrR = nmK = N mK̃ +(n−N)(−1/z) and rearranging (C.31) with A = I , we get the identity

zN (mK̃)− z = − 1

mK̃

· 1

N

N∑
i=1

di

1 +N−1g⊤
i R

(i)gi

(C.39)

where zN (m) = −(1/m) + N−1TrΣ(I + mΣ)−1 is the function defined in (C.26). For any
z = x+ iη with η > 0, we have

|z(1 +N−1g⊤
i R

(i)gi)| ≥ Im[z(1 +N−1g⊤
i R

(i)gi)] ≥ Im z = η, (C.40)
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max(∥R∥F , ∥R(i)∥F ) ≤ N1/2max(∥R∥, ∥R(i)∥) ≤ N1/2η−1. (C.41)

Here, the second inequalities of both (C.40) and (C.41) follow from the spectral representations of
R,R(i), i.e. writing (λj ,vj)

n
j=1 for the eigenvalues and unit eigenvectors of K(i), we have

Im[zg⊤
i R

(i)gi] = Im

zg⊤
i

 n∑
j=1

1

λj − z
vjv

⊤
j

gi

 =
n∑

j=1

Im
z

λj − z
· (g⊤

i vj)
2

=
n∑

j=1

λj Im z

|λj − z|2
· (g⊤

i vj)
2 ≥ 0,

∥R(i)∥ =

∥∥∥∥∥∥
n∑

j=1

1

λj − z
vjv

⊤
j

∥∥∥∥∥∥ =
n

max
j=1

|λj − z|−1 ≤ η−1,

and similarly for ∥R∥. In particular, (C.40) and (C.41) imply

(1 +N−1g⊤
i R

(i)gi)
−1 ≺ η−1, ∥R∥F , ∥R(i)∥F ≺ N1/2η−1. (C.42)

Next, observe that if m(z) =
∫

1
λ−zdµ(λ) is the Stieltjes transform of any probability measure µ

supported on [−B,B], then for z = x+ iη with η > 0 and |z| ≤ ε−1, we have

Imm(z) =

∫
η

|λ− z|2
dµ(λ) ≥ cη, |Rem(z)| ≤

∫
|λ− x|
|λ− z|2

dµ(λ) ≤ (C/η) Imm(z)

for some constantsC, c > 0 depending on ε,B. Consequently, for any λ ≥ 0, either λ·|Rem(z)| <
1/2 or λ · Imm(z) ≥ 2η/C, so |1 + λm(z)| ≥ max(2, 2η/C). By Assumption 5(b) and Weyl’s
inequality, we have 1{∥K∥ > B} ≺ 0 and 1{∥K(i)∥ > B} ≺ 0, and on the event where
∥K∥, ∥K(i)∥ ≤ B, we have that mK̃ , m̃

(i)
K are Stieltjes transforms of probability measures sup-

ported on [−B,B]. Thus, this implies

|mK̃ |−1 ≤ | ImmK̃ |−1 ≺ η−1, max(∥(I +mK̃Σ)−1∥, ∥(I + m̃
(i)
KΣ)−1∥) ≺ η−1. (C.43)

Applying these bounds (C.42) and (C.43) to (C.35)–(C.38), we get di ≺ N−1η−6 +N−1/2η−2 ≤
2N−1/2η−2 for η ≥ N−1/11. Then, applying these bounds (C.42) and (C.43) also to (C.39), we get

zN (mK̃)− z ≺ 1√
Nη4

. (C.44)

The proof is completed by the following stability argument: When η ≥ N−1/11, we have
1/(

√
Nη4) ≪ η = Im z, so (C.44) implies in particular that

1{zN (mK̃) /∈ C+} ≺ 0. (C.45)

On the event zN (mK̃) ∈ C+, recalling the implicit definition of m̃N : C+ → C+ by (C.24), the
value m̃N (zN (mK̃)) must be the unique root u ∈ C+ to the equation

zN (mK̃) = −1

u
+ γN

∫
λ

1 + λu
dνN (λ),
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i.e. to the equation zN (mK̃) = zN (u). This equation is satisfied by u = mK̃ ∈ C+, so we
deduce that m̃N (zN (mK̃)) = mK̃ . Then, applying that z ∈ UN (ε) and that m̃N : C+ → C+ is
(4/ε2)-Lipschitz over the domain UN (ε/2), we obtain from (C.44) that

1{zN (mK̃) ∈ C+}
(
mK̃−m̃N (z)

)
= 1{zN (mK̃) ∈ C+}

(
m̃N (zN (mK̃))−m̃N (z)

)
≺ 1√

Nη4
.

Together with (C.45), this yields the lemma. ■

Corollary 20 Fix any ε > 0, and suppose Assumption 5 holds. Then there is a constant C > 0
such that uniformly over z ∈ UN (ε) with Im z ≥ N−1/11,

1{∥R(z)∥F > C
√
N} ≺ 0.

Proof. SincemK̃(z) = γNmK(z)+(1−γN )(−1/z) and m̃N (z) = γNmN (z)+(1−γN )(−1/z),
Lemma 19 implies also

mK(z)−mN (z) ≺ 1√
Nη4

≪ η.

Observe that ImmN (z) =
∫
η/|λ − z|2dµN (λ) ≤ ηε−2 for z ∈ UN (ε), so 1{ImmK(z) >

(1 + ε−2)η} ≺ 0. Then by the identity ∥R(z)∥2F =
∑

i 1/|z − λi(K)|2 = (n/η) ImmK(z), we
get 1{∥R(z)∥F > C

√
N} ≺ 0 for a constant C = C(ε) > 0, as desired. ■

We may now apply Corollary 20 and the fluctuation averaging result of Lemma 14 to improve
the estimate of Lemma 19 to the following result.

Lemma 21 Fix any ε > 0, and suppose Assumption 5 holds. Then, uniformly over z = x + iη ∈
UN (ε) with Im z ≥ N−1/11,

mK̃(z)− m̃N (z) ≺ 1

N
.

Proof. We derive an improved estimate for (C.39). First, combining Lemma 19 with the bounds
for m̃N (z) in Proposition 18, there are constants C0, c0 > 0 for which

1{|mK̃ | > C0} ≺ 0, 1{|mK̃ | < c0} ≺ 0, 1{∥(I +mK̃Σ)−1∥ > C0} ≺ 0 (C.46)

uniformly over z ∈ UN (ε) with Im z ≥ N−1/11. Next, applying Assumption 5(c), we have also
uniformly over i ∈ [N ],

N−1g⊤
i R

(i)gi = N−1TrΣR(i) +O≺

(
N−1∥R(i)∥F

)
= N−1TrΣR+O≺

(
N−2|1 +N−1g⊤

i R
(i)gi|−1∥R(i)∥2F

)
+O≺

(
N−1∥R(i)∥F

)
where the second line follows from (C.33) applied with B = Σ. Applying ∥R(i)∥F ≺ N1/2 by
Corollary 20 and the estimate |1 +N−1g⊤

i R
(i)gi|−1 ≺ η−1 from (C.42), this gives

1 +N−1g⊤
i R

(i)gi = 1 +N−1TrΣR+O≺

(
N−1/2

)
. (C.47)
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Then, applying this and |1 +N−1g⊤
i R

(i)gi|−1 ≺ η−1 to (C.30),

mK̃ = −1

z
· 1

1 +N−1TrΣR
+O≺

(
N−1/2η−2

)
.

Together with the first bound of (C.46) and the bound |z| ≤ ε−1 for z ∈ UN (ε), this implies for a
constant c0 > 0 that 1{|1 +N−1TrΣR| < c0} ≺ 0, and thus 1{|1 +N−1g⊤

i R
(i)gi| < c0} ≺ 0.

Applying Corollary 20 and the above arguments now for K(S) and R(S) in place of K and
R, we obtain for any fixed L ≥ 1 and some constants C0, c0 > 0, uniformly over S ⊂ [N ] with
|S| ≤ L, over i ∈ S, and over z ∈ UN (ε) with Im z ≥ N−1/11,

1{|m̃(S)
K | > C0} ≺ 0, 1{|m̃(S)

K | < c0} ≺ 0, 1{∥(I + m̃
(S)
K Σ)−1∥ > C0} ≺ 0,

1{∥R(S)∥F > C
√
N} ≺ 0, 1{|1 +N−1TrΣR(S)| < c0} ≺ 0,

1{|1 +N−1g⊤
i R

(S)gi| < c0} ≺ 0.

(C.48)

(We remark that a direct application of the above arguments for K(S) yields the first three estimates
of (C.48) for the quantity N

N−|S|m̃
(S)
K = 1

N−|S| TrR
(S) + n

N−|S|(−1/z) in place of m̃(S)
K , and the

estimates for m̃(S)
K then follow for slightly modified constants C0, c0 > 0 because |S| ≤ L.)

Finally, applying (C.47) and (C.48) back to (C.39) and (C.35)–(C.38) with A = I , we get
|di,1|, |di,3|, |di,4| ≺ N−1, |di,2| ≺ N−1/2, and

|zN (mK̃)− z| ≺

∣∣∣∣∣ 1N
N∑
i=1

di,2

1 +N−1g⊤
i R

(i)gi

∣∣∣∣∣+O≺
(
N−1

)
=

1

N
· 1

1 +N−1TrΣR
·

∣∣∣∣∣
N∑
i=1

di,2

∣∣∣∣∣+O≺
(
N−1

)
.

The statements of (C.48) verify the needed assumptions of Lemma 14 with A = I , Γ = zI , and
ΦN = ΨN = C

√
N . Then Lemma 14 gives

∑N
i=1 di,2 ≺ 1, and hence

|zN (mK̃)− z| ≺ N−1.

The proof is then completed by the same stability argument as in the conclusion of the proof of
Lemma 19. ■

Proof of Theorem 10. We apply the idea of (Bai and Silverstein, 1998, Section 6). Let z = x+iη,
where dist(x,SN ) ≥ ε and η = N−1/11. Taking imaginary part in the estimate mK̃(z)− m̃N (z) ≺
N−1 of Lemma 21 and multiplying by η gives

1

N

N∑
j=1

η2

(λj(K̃)− x)2 + η2
−
∫

η2

(λ− x)2 + η2
dµ̃N (λ) ≺ η

N
.

Fix any integer P ≥ 1, and apply this instead at the point z = x + i
√
p η for each p = 1, . . . , P .

Then

1

N

N∑
j=1

η2

(λj(K̃)− x)2 + pη2
−
∫

η2

(λ− x)2 + pη2
dµ̃N (λ) ≺ η

N
for all p = 1, . . . , P.
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Taking successive finite differences using

1

r − q + 1

(
1∏r

p=q(λ− x)2 + pη2
− 1∏r+1

p=q+1(λ− x)2 + pη2

)
=

η2∏r+1
p=q(λ− x)2 + pη2

,

we then obtain

1

N

N∑
j=1

η2P∏P
p=1[(λj(K̃)− x)2 + pη2]

−
∫

η2P∏P
p=1[(λ− x)2 + pη2]

dµ̃N (λ) ≺ η

N
. (C.49)

Since dist(x,SN ) ≥ ε, the second integral term of (C.49) is bounded by Cη2P for a constant
C := C(ε, P ) > 0. Thus, we get

1

N

N∑
j=1

1{λj(K̃) ∈ (x− η, x+ η)} ≤ C

N

N∑
j=1

η2P∏P
p=1[(λj(K̃)− x)2 + pη2]

≺ η

N
+ η2P

where the first inequality holds for a constant C := C(P ) > 0. Finally, recalling η = N−1/11 and
taking any P ≥ 6, we get η/N + η2P ≪ 1/N , hence

1
{

there exists an eigenvalue of K̃ in (x− η, x+ η)
}
≺ 0.

Recalling Assumption 5(b) and taking a union bound over x belonging to a η-net of [−B,B] \
(SN + (−ε, ε)) (with cardinality at most CN1/11), we obtain

1
{

there exists an eigenvalue of K̃ in SN + (−ε, ε)
}
≺ 0.

The theorem follows from the observation that K has the same non-zero eigenvalues as K̃, and all
0 eigenvalues belong by definition to SN . ■

C.3. Deterministic equivalent for the resolvent

In this section, we prove Theorem 11.

Lemma 22 Suppose Assumption 5 holds. Let

γ
(S)
N =

n

N − |S|
, µ

(S)
N = ρMP

γ
(S)
N

⊠ νN , µ̃
(S)
N = γ

(S)
N µ

(S)
N + (1− γ

(S)
N )δ0

be the analogues of γN , µN , µ̃N defined with the dimension N − |S| in place of N . Then for any
fixed ε > 0 and L ≥ 1, all large N , and all S ⊂ [N ] with |S| ≤ L,

supp(µ̃
(S)
N ) ⊆ supp(µ̃N ) + (−ε, ε)

Proof. Let TN and zN : C \ TN → C be as defined by (C.25) and (C.26). Define similarly

z
(S)
N (m̃) = − 1

m̃
+ γ

(S)
N

∫
λ

1 + λm̃
dνN (λ), z

(S)
N : C \ TN → C.

39



WANG WU FAN

We recall from Proposition 9 that x ∈ R \ supp(µ̃N ) if and only if there exists m̃ ∈ R \ TN where
zN (m̃) = x and z′N (m̃) > 0; the analogous characterization holds for R\ supp(µ̃(S)N ) and z(S)N (m̃).

Now fix any ε, L > 0. By Proposition 18, there is a constant C0 > 0 such that supp(µ̃(S)N ) ⊆
[−C0, C0] for all |S| ≤ L and all large N . Consider any x ∈ [−C0, C0] \ (supp(µ̃N ) + (−ε, ε)).
Then [x−ε/2, x+ε/2] ⊂ R\supp(µ̃N ), so m̃N is well-defined and increasing on [x−ε/2, x+ε/2].
Define [m̃−, m̃+] = [m̃N (x−ε/2), m̃N (x+ε/2)]. Then Proposition 9 implies that zN is increasing
on [m̃−, m̃+], and zN ([m̃−, m̃+]) = [x−ε/2, x+ε/2]. Again by Proposition 18, there is a constant
c > 0 such that, for any such x ∈ [−C0, C0] \ (supp(µ̃N ) + (−ε, ε)), we have

min
y∈[x−ε/2,x+ε/2]

min
λ∈supp(νN )

|1 + λm̃N (y)| > c.

This then implies that there is a constant C > 0 for which

|z(S)N (m̃)− zN (m̃)| = |γ(S)N − γN | ·
∣∣∣∣∫ λ

1 + λm̃
dνN (λ)

∣∣∣∣ ≤ C

N
< ε/2

for all m̃ ∈ [m̃−, m̃+], |S| ≤ L, and large N . Then z
(S)
N (m̃−) < zN (m̃−) + ε/2 = x and

z
(S)
N (m̃+) > zN (m̃+) − ε/2 = x. (Silverstein and Choi, 1995, Theorem 4.3) shows that if

m1,m2 ∈ [m̃−, m̃+] satisfy z(S)N

′
(m1) ≥ 0 and z(S)N

′
(m2) ≥ 0, then z(S)N

′
(m) > 0 strictly for

all m ∈ [m1,m2]. By this and the continuity and differentiability of z(S)N on [m̃−, m̃+], there must

be a point m̃ ∈ (m̃−, m̃+) where z(S)N (m̃) = x and z(S)N

′
(m̃) > 0 strictly. Then Proposition 9

implies that x /∈ supp(µ̃
(S)
N ). This holds for all x ∈ [−C0, C0] \ (supp(µ̃N ) + (−ε, ε)), implying

supp(µ̃
(S)
N ) ⊆ supp(µ̃N ) + (−ε, ε) as desired. ■

The following now applies Lemma 22 and Theorem 10 to extend the estimates (C.48) previously
obtained over {z ∈ UN (ε) : Im z ≥ N−1/11} to all of UN (ε).

Lemma 23 Fix any ε > 0 and L ≥ 1. Then for some constants C0, c0 > 0, uniformly over
z ∈ UN (ε), S ⊂ [N ] with |S| ≤ L, and i ∈ S, we have

1{|m̃(S)
K (z)| > C0} ≺ 0, 1{|m̃(S)

K (z)| < c0} ≺ 0, 1{∥(I + m̃
(S)
K (z)Σ)−1∥ > C0} ≺ 0,

1{∥R(S)(z)∥ > C0} ≺ 0, 1{|1 +N−1TrΣR(S)(z)| < c0} ≺ 0,

1{|1 +N−1g⊤
i R

(S)(z)gi| < c0} ≺ 0.

Proof. By conjugation symmetry, it suffices to show the statements for z ∈ UN (ε) with Im z ≥ 0.
Denote for simplicity R(S) = R(S)(z) and m̃(S)

K = m̃
(S)
K (z). Let S(S)

N = supp(µ
(S)
N ) ∪ {0} =

supp(µ̃
(S)
N )∪{0} where µ(S)N , µ̃

(S)
N are as defined in Lemma 22. Then Theorem 10 applied to K(S)

guarantees that

1{K(S) has an eigenvalue outside S(S)
N + (−ε/4, ε/4)} ≺ 0,

uniformly over all S ⊂ [N ] with |S| ≤ L. Note that S(S)
N + (−ε/4, ε/4) ⊆ SN + (−ε/2, ε/2) by

Lemma 22. Then, applying the bound ∥R(S)∥ ≤ 1/dist(z,S(S)
N ) and the condition z ∈ UN (ε), we

get
1{∥R(S)∥ > 2/ε} ≺ 0. (C.50)
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The remaining statements have already been shown for z ∈ UN (ε) with Im z ≥ N−1/11

in (C.48). For z = x + iη where η ∈ [0, N−1/11], define z′ = x + iN−1/11. On the event
that K(S) has no eigenvalues outside SN + (−ε/2, ε/2), both N−1TrΣR(S)(z) and m̃(S)

K (z) =

N−1TrR(S)(z) + γN (−1/z) are C-Lipschitz over z ∈ UN (ε) for a constant C = C(ε) > 0, and
N−1g⊤

i R
(S)(z)gi is CN−1∥gi∥2-Lipschitz where N−1∥gi∥2 ≺ 1 by Assumption 5. Then

N−1TrΣR(S)(z)−N−1TrΣR(S)(z′) ≺ N−1/11, m̃
(S)
K (z)− m̃

(S)
K (z′) ≺ N−1/11,

N−1g⊤
i R

(S)(z)gi −N−1g⊤
i R

(S)(z′)gi ≺ N−1/11,

so the remaining statements of the lemma hold also for z ∈ UN (ε) with Im z ∈ [0, N−1/11]. ■

Proof of Theorem 11. Again by conjugation symmetry, it suffices to show the result for z ∈ UN (ε)

with Im z ≥ 0. Denote for simplicity R(S) = R(S)(z) and m̃(S)
K = m̃

(S)
K (z). The first estimate of

Lemma 23 implies

1{∥R(S)∥F > C
√
N} ≺ 0, 1{∥R(S)A∥F > C∥A∥F } ≺ 0 (C.51)

uniformly over z ∈ UN (ε) and A ∈ Cn×n. Then also, by Assumption 5(c) and (C.33) applied with
B = Σ,

1 +N−1g⊤
i R

(i)gi = 1 +N−1TrΣR+O≺

(
N−2|1 +N−1g⊤

i R
(i)gi|−1∥R(i)∥2F + ∥R(i)∥F

)
= 1 +N−1TrΣR+O≺

(
N−1/2

)
. (C.52)

Let di = di,1 + di,2 + di,3 + di,4 be as defined in (C.34) with A = I . Then, applying (C.51),
(C.52), and the bounds of Lemma 23, we obtain exactly as in the proof of Lemma 21 (using
again the fluctuation averaging result of Lemma 14) that, uniformly over z ∈ UN (ε), we have
|di,1|, |di,3|, |di,4| ≺ N−1, |di,2| ≺ N−1/2, and

|zN (mK̃)− z| ≺ 1

N
· 1

1 +N−1TrΣR
·

∣∣∣∣∣
N∑
i=1

di,2

∣∣∣∣∣+O≺
(
N−1

)
= O≺

(
N−1

)
.

Fix any ι > 0. If Im z ≥ N−1+ι, then this implies 1{zN (mK̃) /∈ C+} ≺ 0. By the same
stability argument as in Lemma 19, we get mK̃(z) − m̃N (z) ≺ N−1 uniformly over z ∈ UN (ε)
with Im z ≥ N−1+ι. For Im z ∈ [0, N−1+ι], on the event that all eigenvalues of K belong to
SN +(−ε/2, ε/2), we may apply that both mK̃(z) and m̃N (z) are C(ε)-Lipschitz over z ∈ UN (ε)
to compare values at z = x + iη and z′ = x + iN−1+ι. Applying mK̃(z′) − m̃N (z′) ≺ N−1, we
then get for any D > 0, all z ∈ UN (ε), some constant C > 0, and all large N ,

P[|mK̃(z)− m̃N (z)| > CN−1+ι] ≤ N−D.

Since ι > 0 is arbitrary, this shows mK̃(z) − m̃N (z) ≺ N−1 uniformly over z ∈ UN (ε). The
bound mK(z) −mN (z) ≺ N−1 then follows from mK̃(z) = γNmK(z) + (1 − γN )(−1/z) and
m̃N (z) = γNmN (z) + (1− γN )(−1/z).
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For the estimate of TrRA, we apply the definition of di = di,1 + di,2 + di,3 + di,4 from (C.34)
and the identity (C.31) now with this matrix A. Then (C.31) gives

Tr
[
RA− (−zI − zmK̃Σ)−1A

]
=

1

z

N∑
i=1

di

1 +N−1g⊤
i R

(i)gi

.

Applying (C.51), (C.52), and the bounds of Lemma 23 to (C.35)–(C.38), uniformly over z ∈ UN (ε)
and A ∈ Cn×n, we have |di,1|, |di,3|, |di,4| ≺ N−3/2∥A∥F , |di,2| ≺ N−1∥A∥F , and hence∣∣∣∣∣

N∑
i=1

di

1 +N−1g⊤
i R

(i)gi

∣∣∣∣∣ ≺ 1

1 +N−1TrΣR

∣∣∣∣∣
N∑
i=1

di,2

∣∣∣∣∣+O≺

(
N−1/2∥A∥F

)
.

Finally, applying Lemma 14 with Γ = zI , ΨN (Γ) = C
√
N , and ΦN (Γ,A) = C∥A∥F (where

we may assume without loss of generality ∥A∥F ∈ (N−υ, Nυ) by scale invariance of the desired
estimate with respect to A), we get |

∑
i di,2| ≺ N−1/2∥A∥F . Thus,

Tr
[
RA− (−zI − zmK̃Σ)−1A

]
≺ 1√

N
∥A∥F .

■

Appendix D. Analysis of spiked eigenstructure

We now consider the asymptotic setup of Appendix B.2 and prove Corollary 12 and Theorem 13.
As all the desired statements are invariant under conjugation of Σ by an orthogonal matrix, we may
assume without loss of generality that Σ is diagonal and of the form

Σ =

(
Σr 0
0 Σ0

)
, Σr = diag(λ1(Σ), . . . , λr(Σ)), Σ0 = diag(λr+1(Σ), . . . , λn(Σ)).

Denote the block decomposition of G corresponding to Σr,Σ0 as

G = [Gr,G0], Gr ∈ RN×r, G0 ∈ RN×(n−r).

We remind the reader that Gr and G0 need not be independent.

D.1. No outliers outside the limit support

We consider first the setting of r = 0, and prove Corollary 12 together with some uniform conver-
gence properties of m̃N and zN that will be used in the later analysis.

Recall the domain TN and function zN : C \ TN → C from (C.25) and (C.26), and their
asymptotic analogues T and z : C \ T → C from (A.3) and (A.4).

Lemma 24 Suppose Assumption 5 holds, and Assumption 6 holds with r = 0. Then, as N → ∞,

(a) zN (m̃) and its derivative z′N (m̃) converge uniformly over compact subsets of C \ T to z(m̃)
and z′(m̃).
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(b) For any ε > 0 and all large N ,

supp(µ̃N ) ⊆ supp(µ̃) + (−ε, ε).

(c) m̃N (z) and its derivative m̃′
N (z) converge uniformly over compact subsets of C \ supp(µ̃) to

m̃(z) and m̃′(z).

Proof. For part (a), let K ⊂ C \ T be any fixed compact set. Then K does not intersect some
sufficiently small open neighborhood of the compact domain T . If Assumption 6 holds with r = 0,
then TN is contained in this open neighborhood of T for all large N , so K ⊂ C \ TN , and both zN
and z are well-defined on K. The pointwise convergences zN (m̃) → z(m̃) and z′N (m̃) → z′(m̃)
on K then follow from γN → γ, the weak convergence νN → ν, and the uniform boundedness of
the functions λ 7→ λ/(1 + λm̃) and λ 7→ λ2/(1 + λm̃)2 on an open neighborhood of supp(ν), for
m̃ ∈ K. This convergence is furthermore uniform because {zN} and {z′N} are both equicontinuous
over K.

For part (b), consider any x /∈ supp(µ̃)+(−ε, ε). Then [x−ε/2, x+ε/2] ⊂ R\supp(µ̃), so m̃
is well-defined and increasing on [x− ε/2, x+ ε/2]. Let [m̃−, m̃+] = [m̃(x− ε/2), m̃(x+ ε/2)].
Then by Proposition 9, z′(m̃) > 0 for all m̃ ∈ [m̃−, m̃+], and z([m̃−, m̃+]) = [x− ε/2, x+ ε/2].
The uniform convergence in part (a) implies for all large N that zN (m̃−) < x, zN (m̃+) > x, and
z′N (m̃) > 0 for all m̃ ∈ [m̃−, m̃+]. Then there exists m̃ ∈ [m̃−, m̃+] where zN (m̃) = x and
z′N (m̃) > 0, implying by Proposition 9 that x /∈ supp(µ̃N ). So supp(µ̃N ) ⊆ supp(µ̃) + (−ε, ε) as
desired.

For part (c), let K ⊂ C \ supp(µ̃) be any fixed compact set. Then K does not intersect some
sufficiently small open neighborhood of the compact set supp(µ̃), so the inclusion of part (b) im-
plies K ⊂ C \ supp(µ̃N ) for all large N , and both m̃N and m̃ are well-defined on K. The uniform
convergence m̃N (z) → m̃(z) and m̃′

N (z) → m̃′(z) on K then follow from the weak convergence
µ̃N → µ̃, the uniform boundedness of the functions λ 7→ 1/(λ − z) and λ 7→ 1/(λ − z)2 on an
open neighborhood of supp(µ̃) for z ∈ K, and the equicontinuity of {m̃N} and {m̃′

N} on K. ■

Proof of Corollary 12. By Lemma 24(b), for any fixed ε > 0, we have SN + (−ε/2, ε/2) ⊆
S + (−ε, ε) for all large N . Then by Theorem 10,

1{K has an eigenvalue in R \ (S + (−ε, ε))
≤ 1{K has an eigenvalue in R \ (SN + (−ε/2, ε/2))} ≺ 0.

■

D.2. Deterministic equivalents for generalized resolvents

We next introduce two generalized resolvents for the matrix K, and extend Theorem 11 to establish
deterministic equivalents for these generalized resolvents.

Define the spectral domain

U(ε) =
{
z ∈ C : |z| ≤ ε−1, dist(z,S) ≥ ε

}
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where S is the limit support set defined in (B.4). Given z ∈ U(ε) and α ∈ C, define a diagonal
matrix

Γ := Γ(z, α) = zIn + αV rV
⊤
r =

(
(z + α)Ir 0

0 zIn−r

)
∈ Cn×n, V r =

(
Ir

0

)
∈ Rn×r.

(D.1)
Define the first generalized resolvent

R(z, α) =

(
−Γ G⊤

G −IN

)−1

∈ C(n+N)×(n+N). (D.2)

This matrix inverse exists if and only if the Schur complement G⊤G − Γ = K − Γ for its lower
right block is invertible, in which case the upper-left block of R(z, α) is R(Γ) = (K −Γ)−1. The
following provides a deterministic equivalent for this block of R(z, α).

Lemma 25 Under the assumptions of Theorem 13, for any fixed ε > 0, there exist C0, α0 > 0
(depending on ε) such that fixing any α ∈ C with |α| > α0, the following hold:

(a) The event
E =

{
R(z, α) exists and ∥R(z, α)∥ ≤ C0 for all z ∈ U(ε)

}
satisfies 1{Ec} ≺ 0.

(b) Uniformly over z ∈ U(ε) and deterministic unit vectors v1,v2 ∈ Rn,∥∥∥∥(v⊤
1 0

)
R(z, α)

(
v2

0

)
+ v⊤

1 (Γ+ z · m̃N,0(z)Σ)−1v2

∥∥∥∥ ≺ 1√
N
. (D.3)

In the setting of Theorem 13(c), let u = 1√
N
(u1, . . . , uN ) ∈ RN be the additional given vector

for which {(uj , g⊤
j )}Nj=1 are independent vectors in Rn+1. For z ∈ U(ε) and α ∈ C, define

Σ̃ =

(
E[u2] E[ug]⊤
E[ug] Σ

)
∈ R(n+1)×(n+1), (D.4)

Γ̃ = Γ̃(z, α) =

(
z + α 0
0 Γ

)
∈ C(n+1)×(n+1)

where E[u2] and E[ug] denote the common values of E[u2j ] and E[ujgj ] for j = 1, . . . , N . Define
the second generalized resolvent

R̃(z, α) =

(
−Γ̃ [u,G]⊤

[u,G] −I

)−1

=

−(z + α) 0 u⊤

0 −Γ G⊤

u G −IN

−1

∈ C(n+1+N)×(n+1+N).

(D.5)
We have the following deterministic equivalent for the upper-left block of R̃(z, α), which is analo-
gous to Lemma 25.

Lemma 26 Under the assumptions of Theorem 13(c), for any fixed ε > 0, there exist C0, α0 > 0
(depending on ε) such that fixing any α ∈ C with |α| > α0, the following hold:
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(a) The event
Ẽ =

{
R̃(z, α) exists and ∥R̃(z, α)∥ ≤ C0 for all z ∈ U(ε)

}
satisfies 1{Ẽc} ≺ 0.

(b) Uniformly over z ∈ U(ε) and deterministic unit vectors v1,v2 ∈ Rn+1,∥∥∥∥(v⊤
1 0

)
R̃(z, α)

(
v2

0

)
+ v⊤

1

(
Γ̃+ z · m̃N,0(z)Σ̃

)−1
v2

∥∥∥∥ ≺ 1√
N
. (D.6)

In the remainder of this section, we prove Lemmas 25 and 26. Recall

µN,0 = ρMP
γN,0

⊠ νN,0, µ̃N,0 = γN,0µN,0 + (1− γN,0)δ0.

Define the bulk components of the sample covariance and Gram matrices

K0 = G⊤
0 G0 ∈ R(n−r)×(n−r), K̃0 = G0G

⊤
0 ∈ RN×N . (D.7)

Define also the N -dependent bulk spectral support and spectral domain

SN,0 = supp(µN,0) ∪ {0} = supp(µ̃N,0) ∪ {0},
UN,0(ε) = {z ∈ C : |z| ≤ ε−1, dist(z,SN,0) ≥ ε}. (D.8)

Lemma 24(b) shows SN,0 ⊆ S + (−ε/2, ε/2) for any fixed ε > 0 and all large N , so also U(ε) ⊆
UN,0(ε/2) for all large N . Thus, the results of Appendix C applied to K0, which hold uniformly
over z ∈ UN,0(ε/2) for any fixed ε > 0, also hold uniformly over z ∈ U(ε). In particular, the
following is an immediate consequence of Corollary 12 and Theorem 11, which we record here for
future reference.

Lemma 27 Suppose Assumptions 5 and 6 hold. Then for any fixed ε > 0,

1{K0 has an eigenvalue outside S + (−ε, ε)} ≺ 0.

Furthermore, uniformly over z ∈ U(ε),

mK0 −mN,0(z) ≺ 1/N, mK̃0
− m̃N,0(z) ≺ 1/N.

We now check that for sufficiently large |α|, the generalized resolvent R(z, α) exists and has
bounded operator norm with high probability.

Proof of Lemma 25(a). Let

E ′ =
{

all eigenvalues of K0 belong to S + (−ε/2, ε/2), and ∥G∥ <
√
B
}
.

By Assumption 5(b) and Lemma 27, 1{E ′c} ≺ 0, so it suffices to show E ′ ⊆ E . On this event E ′,
for any z ∈ U(ε), we have that each eigenvalue of K0 is separated by at least ε/2 from z. Then

R0(z) :=

(
−zIn−r G⊤

0

G0 −IN

)−1

∈ C(n−r+N)×(n−r+N) (D.9)
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exists for all z ∈ U(ε) because the Schur complement K0 − zIn−r of its lower-right block is
invertible. Furthermore, denoting R0 = (K0 − zIn−r)

−1, we have ∥R0∥ ≤ 2/ε and ∥G0∥ ≤
∥G∥ <

√
B, so

∥R0(z)∥ =

∥∥∥∥( R0 R0G
⊤
0

G0R0 G0R0G
⊤
0 − IN

)∥∥∥∥ ≤ C1 (D.10)

for some constant C1 depending only on ε,B.
Now write R(z, α) as defined in (D.2) in its block decomposition with blocks of sizes r and

n− r +N . Then the Schur complement of the upper left block of size r × r is given by

S = −
(
0 G⊤

r

)
R0(z)

(
0
Gr

)
− (α+ z)Ir. (D.11)

Notice that

SS∗ = |α+ z|2Ir +
(
0 G⊤

r

)
R0(z)

(
0
Gr

)(
0 G⊤

r

)
R0(z)

(
0
Gr

)
(D.12)

+ (ᾱ+ z̄)
(
0 G⊤

r

)
R0(z)

(
0
Gr

)
+ (α+ z)

(
0 G⊤

r

)
R0(z)

(
0
Gr

)
(D.13)

where the first two terms are positive semi-definite. Therefore, applying (D.10) and ∥Gr∥ ≤ ∥G∥ <√
B on the event E ′, there exist α0, c0 > 0 depending only on ε,B, such that

λmin(SS
∗) ≥ |α+ z|2 − 2(|α|+ |z|)∥Gr∥2∥R0(z)∥ > c0 (D.14)

for any z ∈ U(ε) and |α| > α0. Consequently, under the event E ′, the Schur complement S in
(D.11) is invertible with ∥S−1∥ < c

−1/2
0 . Then R(z, α) exists, and

∥R(z, α)∥ =

∥∥∥∥∥∥
 S−1 −S−1

(
0 G⊤

r

)
R0(z)

−R0(z)

(
0
Gr

)
S−1 R0(z) +R0(z)

(
0
Gr

)
S−1

(
0 G⊤

r

)
R0(z)

∥∥∥∥∥∥ ≤ C0

(D.15)

for a constant C0 > 0 depending only on ε,B. This shows E ′ ⊆ E as desired. ■

For the matrix Γ = Γ(z, α) in (D.1), recall the definitions of R(S)(Γ) and m̃(S)
K (Γ) from (C.1).

The following provides an analogue of Lemma 23 for these quantities.

Lemma 28 Fix any ε > 0 and L ≥ 1. Then there exist C0, c0, α0 > 0 such that for any fixed
α ∈ C with |α| > α0, uniformly over S ⊂ [N ] with |S| ≤ L, over j ∈ S, and over z ∈ U(ε),

1{|m̃(S)
K (Γ)| > C0} ≺ 0, 1{|m̃(S)

K (Γ)| < c0} ≺ 0, 1{∥(z−1Γ+ m̃
(S)
K (Γ)Σ)−1∥ > C0} ≺ 0,

1{∥R(S)(Γ)∥ > C0} ≺ 0, 1{|1 +N−1TrΣR(S)(Γ)| < c0} ≺ 0,

1{|1 +N−1g⊤
j R

(S)(Γ)gj | < c0} ≺ 0.
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Proof. Suppose |α| is large enough so that Lemma 25(a) holds. Since R(Γ) is the upper-left block
of R(z, α), Lemma 25(a) applied with G(S) in place of G shows that 1{∥R(S)(Γ)∥ > C0} ≺ 0
for a constant C0 > 0, uniformly over S ⊂ [N ] with |S| ≤ L and over z ∈ U(ε). For the remaining
statements, let G(S)

0 ∈ R(N−|S|)×(n−r) be the submatrix of G0 with the rows of S removed, and
define

K
(S)
0 = G

(S)
0

⊤
G

(S)
0 , K̃

(S)

0 = G
(S)
0 G

(S)
0

⊤
,

R
(S)
0 = (K

(S)
0 − zIn−r)

−1, m
(S)
K0

=
1

n− r
TrR

(S)
0 , m̃

(S)
K0

= γN,0m
(S)
K0

+ (1− γN,0)
(
−1

z

)
.

Then by Lemma 27 applied to K
(S)
0 , also 1{∥R(S)

0 ∥ > C0} ≺ 0 for a constant C0 > 0.
Using these bounds, we first show the comparisons

|m̃(S)
K (Γ)− m̃

(S)
K0

| ≺ 1/N,
∣∣∣N−1TrΣR(S)(Γ)−N−1TrΣ0R

(S)
0

∣∣∣ ≺ 1/N. (D.16)

For the first comparison, notice that in the decompositions into blocks of sizes r and n− r,

n− r

n
m

(S)
K0

=
1

n
Tr

(
0 0

0 R
(S)
0

)
and

m
(S)
K (Γ) =

1

n
TrR(S)(Γ)

=
1

n
Tr

(
G

(S)⊤
r G

(S)
r − (α+ z)Ir G

(S)⊤
r G

(S)
0

G
(S)⊤
0 G

(S)
r K

(S)
0 − zIN−|S|

)−1

=
1

n
Tr

(
(S

(S)
r )−1 −(S

(S)
r )−1G

(S)⊤
r G

(S)
0 R

(S)
0

−R
(S)
0 G

(S)⊤
0 G

(S)
r (S

(S)
r )−1 R

(S)
0 +R

(S)
0 G

(S)⊤
0 G

(S)
r (S

(S)
r )−1G

(S)⊤
r G

(S)
0 R

(S)
0

)
,

where
S(S)

r := G(S)⊤
r G(S)

r − (α+ z)Ir −G(S)⊤
r G

(S)
0 R

(S)
0 G

(S)⊤
0 G(S)

r (D.17)

is the Schur complement of the lower-right block. We have ∥(S(S)
r )−1∥ ≤ ∥R(S)(Γ)∥ ≺ 1,

∥R(S)
0 ∥ ≺ 1, and by Assumption 5, ∥G(S)

0 ∥ ≺ 1 and ∥G(S)
r ∥ ≺ 1. Combining these bounds

and using |TrA| ≤ r∥A∥ when A has rank r (as follows from the von Neumann trace inequality),∣∣∣∣m(S)
K (Γ)− n− r

n
m

(S)
K0

∣∣∣∣
=

∣∣∣∣∣ 1n Tr

(
(S

(S)
r )−1 −(S

(S)
r )−1G

(S)⊤
r G

(S)
0 R

(S)
0

−R
(S)
0 G

(S)⊤
0 G

(S)
r (S

(S)
r )−1 R

(S)
0 G

(S)⊤
0 G

(S)
r (S

(S)
r )−1G

(S)⊤
r G

(S)
0 R

(S)
0

)∣∣∣∣∣
≤ 1

n
|Tr(S(S)

r )−1|+ 1

n
|TrR(S)

0 G
(S)⊤
0 G(S)

r (S(S)
r )−1G(S)⊤

r G
(S)
0 R

(S)
0 |

≤ r

n
∥(S(S)

r )−1∥+ r

n
∥G(S)

r ∥2∥G(S)
0 ∥2∥R(S)

0 ∥2∥(S(S)
r )−1∥ ≺ 1/N.

Then also |m(S)
K (Γ)−m

(S)
K0

| ≺ 1/N since |m(S)
K0

| ≤ ∥R(S)
0 ∥ ≺ 1 and (n− r)/n = 1 +O≺(1/N).

Hence |m̃(S)
K (Γ)− m̃

(S)
K0

| ≺ 1/N from the definitions m̃(S)
K (Γ) = γNm

(S)
K (Γ) + (1− γN )(−1/z)
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and m̃(S)
K0

= γN,0m
(S)
K0

+(1−γN,0)(−1/z), as |1/z| ≤ ε for z ∈ U(ε) and γN,0 = γN +O≺(1/N).
The proof of the second comparison of (D.16) is analogous, considering in addition

1

n
Tr

(
Σ−

(
0 0
0 Σ0

))
R(S)(Γ) =

1

n
Tr

(
Σr 0
0 0

)
R(S)(Γ) ≤ r

n
∥Σr∥∥R(S)(Γ)∥ ≺ 1

N
.

(D.18)
Now, Lemma 23 applied with K0 shows, uniformly over S ⊂ [N ] with |S| ≤ L and over

z ∈ U(ε),

1{|m̃(S)
K0

| > C0} ≺ 0, 1{|m̃(S)
K0

| < c0} ≺ 0, 1{|1 +N−1TrΣ0R
(S)
0 | < c0} ≺ 0,

which together with (D.16) implies

1{|m̃(S)
K (Γ)| > C0} ≺ 0, 1{|m̃(S)

K (Γ)| < c0} ≺ 0, 1{|1 +N−1TrΣR(S)(Γ)| < c0} ≺ 0

for adjusted constants C0, c0 > 0. Also by Assumption 5, uniformly over j ∈ S,

N−1g⊤
j R

(S)(Γ)gj −N−1TrΣR(S)(Γ) ≺ N−1∥R(S)(Γ)∥F ≤ N−1/2∥R(S)(Γ)∥ ≺ N−1/2,
(D.19)

so 1{|1 + N−1g⊤
j R

(S)(Γ)gj | < c} ≺ 0 for a constant c > 0. Lastly, from the definition of
Γ = Γ(z, α) in (D.1), we have

z−1Γ+ m̃
(S)
K (Γ)Σ =

(
m̃

(S)
K (Γ)Σr + (αz + 1)Ir 0

0 m̃
(S)
K (Γ)Σ0 + In−r

)
. (D.20)

By (D.16) and Lemma 23, we have

1

{∥∥∥∥(m̃(S)
K (Γ)Σ0 + In−r

)−1
∥∥∥∥ > C

}
≺ 0 (D.21)

for some constant C > 0. We have already proved 1{|m̃(S)
K (Γ)| > C0} ≺ 0, and applying ∥Σr∥ ≤

C under Assumption 5, we can deduce for the smallest singular value that

σmin

(
m̃

(S)
K (Γ)Σr + (α/z + 1)Ir

)
≥ |α|

|z|
− 1− |m̃(S)

K (Γ)|∥Σr∥ ≥ c (D.22)

on the event {|m̃(S)
K (Γ)| ≤ C0}, for any z ∈ U(ε), |α| ≥ α0, and some α0, c > 0 depending on

ε, C0. Thus also
1{∥(z−1Γ+m

(S)

K̃
(Γ)Σ)−1∥ > C} ≺ 0 (D.23)

for a constant C > 0, showing all statements of the lemma. ■

Proof of Lemma 25(b). Recalling the form of R(z, α) in (D.2), the quantity we wish to approxi-
mate is (

v⊤
1 0

)
R(z, α)

(
v2

0

)
= v⊤

1 R(Γ)v2 = v⊤
1 (K − Γ)−1v2.
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Analogous to (C.29) in the proof of Lemma 19, for any matrix B ∈ Cn×n, we have

TrB = Tr(K − Γ)R(Γ)B = −TrR(Γ)BΓ+
1

N

N∑
i=1

g⊤
i R

(i)(Γ)Bgi

1 +N−1g⊤
i R

(i)(Γ)gi

. (D.24)

Applying the definition mK̃(Γ) = N−1TrR(Γ) + (1 − γN )(−1/z) and the identity (D.24) with
B = I , we obtain analogously to (C.30) that

mK̃(Γ) = (1− γN )(−1/z) +
1

Nz
TrR(Γ)Γ− 1

N
Tr(z−1Γ− I)R(Γ)

= − 1

Nz

N∑
i=1

1

1 +N−1g⊤
i R

(i)(Γ)gi

− 1

N
Tr(z−1Γ− I)R(Γ).

Then, noting that z−1Γ − I has rank r and hence |N−1Tr(z−1Γ − I)R(Γ)| ≤ r
N

|α|
|z| ∥R(Γ)∥ ≺

N−1, this gives

mK̃(Γ) = − 1

Nz

N∑
i=1

1

1 +N−1g⊤
i R

(i)(Γ)gi

+O≺
(
N−1

)
. (D.25)

Fixing the unit vectors v1,v2 ∈ Rn, let us now choose A = v2v
⊤
1 and B = A(z−1Γ +

mK̃(Γ) ·Σ)−1 in (D.24), and define

di =
1

N
g⊤
i R

(i)(Γ)Bgi −
1

N
TrR(Γ)BΣ

=
1

N
g⊤
i R

(i)(Γ)A
(
z−1Γ+mK̃(Γ)Σ

)−1
gi −

1

N
TrR(Γ)A

(
z−1Γ+mK̃(Γ)Σ

)−1
Σ.

Then, combining (D.24) and (D.25), we get

v⊤
1 (z

−1Γ+mK̃(Γ)Σ)−1v2 = TrB

= −TrR(Γ)BΓ+TrR(Γ)BΣ ·
(
−zmK̃(Γ) +O≺

(
N−1

))
+

N∑
i=1

di

1 +N−1g⊤
i R

(i)(Γ)gi

= −z · v⊤
1 R(Γ)v2 +

N∑
i=1

di

1 +N−1g⊤
i R

(i)(Γ)gi

+O≺
(
N−1

)
, (D.26)

where the last equality applies the definition of B to combine the first two terms, and applies also
|TrR(Γ)BΣ| ≤ ∥(z−1Γ + mK̃(Γ)Σ)−1ΣR(Γ)∥ ≺ 1 by Lemma 28 to obtain the O≺

(
N−1

)
remainder.

Considering a similar decomposition as in Lemma 19, we define di = di,1 + di,2 + di,3 + di,4
where

di,1 =
1

N
g⊤
i R

(i)(Γ)A(z−1Γ+mK̃(Γ)Σ)−1gi −
1

N
g⊤
i R

(i)(Γ)A(z−1Γ+m
(i)

K̃
(Γ)Σ)−1gi,

di,2 =
1

N
g⊤
i R

(i)(Γ)A(z−1Γ+m
(i)

K̃
(Γ)Σ)−1gi −

1

N
TrΣR(i)(Γ)A(z−1Γ+m

(i)

K̃
(Γ)Σ)−1,

di,3 =
1

N
TrΣR(i)(Γ)A(z−1Γ+m

(i)

K̃
(Γ)Σ)−1 − 1

N
TrΣR(Γ)A(z−1Γ+m

(i)

K̃
(Γ)Σ)−1,

di,4 =
1

N
TrΣR(Γ)A(z−1Γ+m

(i)

K̃
(Γ)Σ)−1 − 1

N
TrΣR(Γ)A(z−1Γ+mK̃(Γ)Σ)−1.

(D.27)
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For A = v2v
⊤
1 , by the bound 1{∥R(S)(Γ)∥ > C0} ≺ 0 from Lemma 28, we have for a constant

C > 0 that
1
{∥∥∥R(S)(Γ)

∥∥∥
F
> C

√
N
}
≺ 0, 1

{∥∥∥R(S)(Γ)A
∥∥∥
F
> C

}
≺ 0 (D.28)

uniformly over z ∈ U(ε). Then, employing Lemma 28 and the same bounds as (C.35)–(C.38) from
the proof of Lemma 23 (where here, the bounds for ∥R(i)A∥F , ∥RA∥F are improved by a factor
of N−1/2 because A is low-rank), we conclude that |di,1|, |di,3|, |di,4| ≺ N−3/2 and |di,2| ≺ N−1.
Hence, applying also 1+N−1g⊤

i R
(i)(Γ)gi = 1+N−1TrΣR(Γ)+O≺

(
N−1/2

)
as follows from

(D.19) and the bound (C.33),

N∑
i=1

di

1 +N−1g⊤
i R

(i)(Γ)gi

=
1

1 +N−1TrΣR(Γ)
·

N∑
i=1

di,2 +O≺

(
N−1/2

)
.

By Lemma 14 applied with ΨN (Γ) = C
√
N and ΦN (Γ,A) = C for a constant C > 0, we have

|
∑

i di,2| ≺ N−1/2. Thus the above quantity is of sizeO≺
(
N−1/2

)
, so applying this back to (D.26),

v⊤
1 (Γ+ zmK̃(Γ) ·Σ)−1v2 + v⊤

1 R(Γ)v2 ≺ N−1/2.

Finally, from (D.16) and Lemma 27 we have mK̃(Γ) = m̃N,0(z) + O≺
(
N−1

)
, and applying this

above completes the proof. ■

Proof of Lemma 26. The proof is similar to Lemma 25, replacing r and n throughout by r + 1

and n+ 1, G(S)
r by [u(S),G

(S)
r ], Σ by Σ̃, and R(S)(Γ) and m̃(S)

K (Γ) by

R(S)(Γ̃) =
(
[u(S),G(S)]⊤[u(S),G(S)]−Γ̃

)−1
, m̃

(S)
K (Γ̃) =

1

N
TrR(S)(Γ̃)+

(
1−n+ 1

N

)(
−1

z

)
.

The only difference here is that Σ̃ is no longer diagonal, leading to the following minor modifica-
tions of the preceding proof: The bound

1

n+ 1
Tr

Σ̃−

0 0 0
0 0 0
0 0 Σ0

R(S)(Γ̃) ≺ 1

N

analogous to (D.18) follows upon noting that (with E[ug]⊤ =
(
E[ugr]

⊤ E[ug0]
⊤))

Σ̃−

0 0 0
0 0 0
0 0 Σ0

 =

 E[u2] E[ugr]
⊤ E[ug0]

⊤

E[ugr] Σr 0
E[ug0] 0 0


still is of low rank, with rank at most r + 2. Writing as shorthand m̃(S)

K = m̃
(S)
K (Γ̃), the bound

1{∥(z−1Γ̃+ m̃
(S)
K Σ̃)−1∥ > C0} ≺ 0

analogous to (D.23) follows from

(z−1Γ̃+ m̃
(S)
K Σ̃)−1 =

m̃
(S)
K E[u2] + α

z + 1 m̃
(S)
K E[ugr]

⊤ m̃
(S)
K E[ug0]

⊤

m̃
(S)
K E[ugr] m̃

(S)
K Σr + (αz + 1)Ir 0

m̃
(S)
K E[ug0] 0 m̃

(S)
K Σ0 + I


−1

,
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the bound 1{∥m̃(S)
K Σ0 + I∥−1 > C} ≺ 0 for the lower-right block as follows from (D.21), and the

bound for the inverse of its Schur-complement

1

{∥∥∥∥∥
[(

m̃
(S)
K E[u2] + α

z + 1 m̃
(S)
K E[ugr]

⊤

m̃
(S)
K E[ugr] m̃

(S)
K Σr + (αz + 1)Ir

)

−

(
m̃

(S)
K E[ug0]

⊤

0

)
(m̃

(S)
K Σ0 + I)−1

(
m̃

(S)
K E[ug0] 0

)]−1∥∥∥∥∥ > C

}
≺ 0

which holds uniformly over z ∈ U(ε) for any |α| > α0 sufficiently large, by an argument analogous
to (D.22). The remainder of the proof is identical to that of Lemma 25, and we omit the details. ■

D.3. Analysis of outliers

Let V r,Γ(z, α),R(z, α), R̃(z, α) be as defined in the preceding section. Consider the decompo-
sition of R̃(z, α) as in (D.5) into its blocks of dimensions 1, n, and N , and define

R̃11(z, α) :=

1
0
0

⊤

R̃(z, α)

1
0
0

 =
1

−z − α+ u⊤u− u⊤G(G⊤G− Γ(z, α))−1G⊤u
,

(D.29)

R̃1V (z, α) :=

1
0
0

⊤

R̃(z, α)

 0
V r

0

 = −R̃11(z, α) · u⊤G
(
G⊤G− Γ(z, α)

)−1
V r, (D.30)

where the second equalities follow from block matrix inversion of the lower 2×2 blocks of R̃(z, α),
followed by block matrix inversion of the full matrix R̃(z, α). Set

MK(z, α) = Ir + α
(
V ⊤

r 0
)
R(z, α)

(
V r

0

)
. (D.31)

Proposition 29 Fix any ε > 0 and any α ∈ R sufficiently large that satisfies Lemmas 25 and 26.
Then on the event E ∩ Ẽ of Lemmas 25 and 26, for all sufficiently large N ,

(a) λ̂ ∈ U(ε)∩R is an eigenvalue of G⊤G if and only if detMK(λ̂, α) = 0, and its multiplicity
as an eigenvalue of G⊤G equals the dimension of kerMK(λ̂, α).

(b) Let v̂ ∈ Rn be a unit eigenvector of G⊤G (i.e. right singular vector of G) corresponding to
an eigenvalue λ̂ ∈ U(ε) ∩ R. Then V ⊤

r v̂ is a non-zero vector in kerMK(λ̂, α), and

1

α2
= v̂⊤V r

(
V r

0

)⊤
R(λ̂, α)

(
In 0
0 0

)
R(λ̂, α)

(
V r

0

)
V ⊤

r v̂ (D.32)

For any vector v ∈ Rn, we have

v⊤v̂ + α
(
v⊤ 0

)
R(λ̂, α)

(
V r

0

)
V ⊤

r v̂ = 0. (D.33)

51



WANG WU FAN

(c) Let u be as in Theorem 13(c), and let û ∈ RN be a unit eigenvector of GG⊤ (i.e. left singular
vector of G) corresponding to the eigenvalue λ̂ ∈ U(ε) ∩ R. Then

u⊤û =
α

λ̂1/2 R̃11(λ̂, α)
R̃1V (λ̂, α)V

⊤
r v̂. (D.34)

Proof. For part (a), note that if λ̂ is an eigenvalue of G⊤G, i.e. λ̂1/2 is a singular value of G with
left and right unit singular vectors û and v̂, then

0 =

(
−λ̂In G⊤

G −IN

)(
v̂

λ̂1/2û

)
which implies, for any α ∈ R,

−α
(
V r

0

)
· V ⊤

r v̂ =

(
−λ̂In − αV rV

⊤
r G⊤

G −IN

)(
v̂

λ̂1/2û

)
.

Fixing α ∈ R large enough, on the event E of Lemma 25, the generalized resolvent

R(λ̂, α) =

(
−λ̂In − αV rV

⊤
r G⊤

G −IN

)−1

exists, and multiplying both sides by R(λ̂, α) gives(
v̂

λ̂1/2û

)
= −αR(λ̂, α)

(
V r

0

)
· V ⊤

r v̂. (D.35)

Then, multiplying by (V ⊤
r 0) on both sides and re-arranging, we get MK(λ̂, α) · V ⊤

r v̂ = 0.
We remark that if λ̂ is an eigenvalue of multiplicity k, and G has corresponding linearly in-

dependent left singular vectors û1, . . . , ûk and right singular vectors v̂1, . . . , v̂k, then the vec-
tors {(v̂j , λ̂

1/2ûj)}kj=1 on the left side of (D.35) are linearly independent, implying that the vec-
tors {V ⊤

r v̂j}kj=1 on the right side must also be (non-zero and) linearly independent vectors in
kerMK(λ̂, α). Conversely, if {yj}kj=1 are linearly independent vectors in kerMK(λ̂, α), then
defining (

v̂j

λ̂1/2ûj

)
= −αR(λ̂, α)

(
V r

0

)
· yj

and multiplying by (V ⊤
r 0), we must have V ⊤

r v̂j = (−MK(λ̂, α) + I)yj = yj . Thus the
pairs (v̂j , λ̂

1/2ûj) are linearly independent vectors satisfying (D.35), and multiplying by R(λ̂, α)−1

and rearranging shows that λ̂1/2 must be a singular value of G with multiplicity at least k, with
corresponding singular vectors {(v̂j , ûj)}kj=1. This establishes part (a).

For part (b), the above argument has shown V ⊤
r v̂ ∈ kerMK(λ̂, α). Multiplying (D.35) on the

left by (
In 0
0 0

)
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and taking the squared norm (noting that λ̂, α and R(λ̂, α) here are real) shows (D.32). Multiplying
(D.35) on the left by (v⊤ 0) shows (D.33). For part (c), multiplying (D.35) by (0 u⊤), we have

λ̂1/2 u⊤û = −α
(
0
u

)⊤
R(λ̂, α)

(
V r

0

)
· V ⊤

r v̂ = −αu⊤G
(
G⊤G− Γ(λ̂, α)

)−1
V r · V ⊤

r v̂

where the second equality follows from the block matrix inversion of R(λ̂, α). Then, recalling the
forms of R̃11 and R̃1V from (D.29) and (D.30), this gives

u⊤û =
αR̃1V (λ̂, α)

λ̂1/2 R̃11(λ̂, α)
· V ⊤

r v̂

which is (D.34). ■

For notational convenience, let us now introduce the shorthand

ψN,0(z) = zm̃N,0(z), ψ(z) = zm̃(z).

By Lemma 25(b) applied with (v1,v2) being the columns of V r, we see that MK(z, α) is well-
approximated by the (deterministic, N -dependent) matrix

MN (z, α) := Ir − α
(
(α+ z)Ir + ψN,0(z) diag(λ1(Σ), . . . , λr(Σ))

)−1
. (D.36)

To show Theorem 13(a), we translate this approximation into a comparison of the roots of 0 =
detMK(z, α) and 0 = detMN (z, α), where the latter are explicitly given by zN,0(−1/λi(Σ))
for the function zN,0(·) defined in (B.5).

Proof of Theorem 13(a). Let us fix any ε > 0 and α ∈ R satisfying Lemmas 25 and 26, and
denote

fN,i(z, α) = 1− α

α+ z + ψN,0(z)λi(Σ)

for each i ∈ [r]. Then detMN (z, α) =
∏r

i=1 fN,i(z, α). Define also the limiting functions

fi(z, α) = 1− α

α+ z + ψ(z)λi
, M(z, α) = Ir − α

(
(α+ z)Ir + ψ(z) diag(λ1, . . . , λr)

)−1

so detM(z, α) =
∏r

i=1 fi(z, α). We first analyze the roots of 0 = detM(z, α): By the definition
ψ(z) = zm̃(z), observe that z ∈ R \ supp(µ̃) satisfies 0 = detM(z, α) if and only if either z = 0
or

m̃(z) = −1/λi for some i ∈ [r].

(This condition is the same for any non-zero α ∈ R.) Let T = {0} ∪ {−1/λ : λ ∈ supp(ν)}
be as in (A.3) where ν is the limit spectral law of Σ0. Then −1/λi ∈ R \ T for all i ∈ [r] under
Assumption 6, so Proposition 9 implies that m̃(z) = −1/λi holds for some z ∈ R \ supp(µ̃) if
and only if z′(−1/λi) > 0, i.e. i ∈ I. If i ∈ I, then m̃(z) = −1/λi holds for z = z(−1/λi),
and we must have z(−1/λi) > 0 strictly because for any z ≤ 0, we have m̃(z) > 0 (and hence
m̃(z) ̸= −1/λi) by the definition m̃(z) =

∫
1

x−zdµ̃(x). Thus the roots of 0 = detM(z, α) in
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R \ S = R \ (supp(µ̃) ∪ {0}) — and hence in U(ε) ∩ R for any sufficiently small ε > 0 — are
given precisely by

zi := z(−1/λi) for i ∈ I.

Since m̃′(z) =
∫

1
(x−z)2

dµ̃(x) > 0 for all z ∈ R \ S , and {λi : i ∈ I} are distinct by assumption,
these values {zi : i ∈ I} are simple roots of 0 = detM(zi, α). Then (detM)′(zi, α) ̸= 0 where
(detM)′ denotes the derivative in z.

Lemma 24(c) implies m̃N,0(z) → m̃(z) and m̃′
N,0(z) → m̃′(z) uniformly over z ∈ U(ε). Since

also λi(Σ) → λi, we have detMN (z, α) → detM(z, α) and (detMN )′(z, α) → (detM)′(z, α)
uniformly over z ∈ U(ε). This, together with the above condition (detM)′(zi, α) ̸= 0, imply
that for all large N , the roots zN,i ∈ U(ε) ∩ R of 0 = detMN (z, α) are in 1-to-1 correspon-
dence with, and converge to, the above roots zi ∈ U(ε) ∩ R of 0 = detM(z, α). We note that
0 = detMN (z, α) if and only if either z = 0 or

m̃N,0(z) = −1/λi(Σ) for some i ∈ [r]. (D.37)

For each i ∈ I, we have λi(Σ) → λi where z′(−1/λi) > 0. Recall from Lemma 24(a) that
zN,0(m̃) → z(m̃) and z′N,0(m̃) → z′(m̃) uniformly over compact subsets of R \ T . Then
z′N,0(−1/λi(Σ)) → z′(−1/λi), so also z′N,0(−1/λi(Σ)) > 0 for all large N . Then Proposi-
tion 9 implies that (D.37) holds for zN,i := zN,0(−1/λi(Σ)). We have zN,i → zi = z(−1/λi), so
these must be the roots of detMN (z, α) in U(ε)∩R. Thus we have shown that for any sufficiently
small ε > 0 and all large N , the roots z ∈ U(ε) ∩ R of 0 = detMN (z, α) are precisely the values

zN,i := zN,0(−1/λi(Σ)) for i ∈ I,

and zN,i → zi > 0 for each i ∈ I.
Finally, we apply Lemma 25(b) with (v1,v2) being the columns of V r. On the event E of

Lemma 25(a), we have

∥MK(z, α)∥ ≤ C,
∥∥MK(z, α)−MK(z′, α)

∥∥ ≤ C|z − z′| (D.38)

for some C > 0 and all z, z′ ∈ U(ε/2). Also |m̃N,0(z)|, |m̃′
N,0(z)| < C for a constant C > 0, all

z ∈ U(ε), and all large N , and thus

∥MN (z, α)∥ ≤ C,
∥∥MN (z, α)−MN (z′, α)

∥∥ ≤ C|z − z′| (D.39)

for some C > 0 and all z, z′ ∈ U(ε/2). Then, applying Lemma 25(b) and the Lipschitz bounds of
(D.38) and (D.39) to take a union bound over a sufficiently fine covering net of U(ε/2), we get

sup
z∈U(ε/2)

∥MN (z, α)−MK(z, α)∥ ≺ 1/
√
N. (D.40)

Applying also the first bounds of (D.38) and (D.39), this gives

sup
z∈U(ε/2)

|detMN (z, α)− detMK(z, α)| ≺ 1/
√
N. (D.41)

Since detMN (z, α) and detMK(z, α) are both holomorphic over z ∈ U(ε/2) on this event E ,
the Cauchy integral formula then implies

sup
z∈U(ε)

|(detMN )′(z, α)− (detMK)′(z, α)| ≺ 1/
√
N.
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In particular, combining with the uniform convergence statements detMN (z, α) → detM(z, α)
and (detMN )′(z, α) → (detM)′(z, α) over z ∈ U(ε) as argued above, this shows that on an
event E satisfying 1{Ec} ≺ 0 and for some δN → 0, we have

sup
z∈U(ε)∩R

|detM(z, α)− detMK(z, α)|, |(detM)′(z, α)− (detMK)′(z, α)| < δN .

Thus, on this event E and as N → ∞, the roots λ̂i ∈ U(ε) ∩ R of 0 = detMK(z, α) are also in
1-to-1 correspondence with, and converge to, the roots zi ∈ U(ε)∩R of 0 = detM(z, α). Further-
more, the condition (detM)′(zi, α) ̸= 0 implies that |(detMN )′(z, α)| and |(detMK)′(z, α)|
are bounded away from 0 in a neighborhood of each such root zi, so (D.41) then implies that the
corresponding roots λ̂i and zN,i of 0 = detMK(z, α) and 0 = detMN (z, α) satisfy

|λ̂i − zN,i| ≺ 1/
√
N.

Proposition 29 shows that on this event E , these roots {λ̂i : i ∈ I} are precisely the eigen-
values of G⊤G in U(ε) ∩ R. By the definition of M(zi, α), each root zi of detM(zi, α) is such
that kerM(zi, α) has dimension 1. Since 1{E}(λ̂i − zi) → 0, we have 1{E}∥MK(λ̂i, α) −
M(zi, α)∥ → 0, so kerMK(λ̂i, α) also has dimension 1 on this event E for all large N . Then
Proposition 29 implies that the eigenvalues {λ̂i : i ∈ I} of G⊤G are simple, and thus in 1-to-1
correspondence with {λi : i ∈ I}. This proves part (a) of the theorem. ■

Lemma 30 Under the assumptions of Theorem 13, for any fixed ε > 0, there exists α0 > 0 such
that fixing any α ∈ C with |α| > α0, uniformly over z ∈ U(ε),∥∥∥∥∥
(
V r

0

)⊤
R(z, α)

(
In 0
0 0

)
R(z, α)

(
V r

0

)

− ((α+ z)Ir + ψN,0(z)Σr)
−2(Ir + ψ′

N,0(z)Σr

)∥∥∥∥∥ ≺ 1√
N
.

Proof. Fix any α ∈ C satisfying Lemma 25, and denote

fN (z, α) :=
(
V ⊤

r 0
)
R(z, α)

(
V r

0

)
, gN (z, α) := −((α+ z)Ir + ψN,0(z)Σr)

−1.

Applying Lemma 25(b) and the Lipschitz continuity statements of (D.38) and (D.39) to take a union
bound over a sufficiently fine covering net of U(ε/2), we have

sup
z∈U(ε/2)

∥fN (z, α)− gN (z, α)∥ ≺ 1/
√
N.

Then by the Cauchy integral formula, supz∈U(ε) ∥f ′N (z, α) − g′N (z, α)∥ ≺ 1/
√
N where f ′N and

g′N denote the entrywise derivatives in z. The lemma follows, since differentiating R(z, α) in (D.2)
shows

f ′N (z, α) =
(
V ⊤

r 0
)
R(z, α)

(
I 0
0 0

)
R(z, α)

(
V r

0,

)
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while g′N (z, α) = ((α+ z)Ir + ψN,0(z)Σr)
−2(Ir + ψ′

N,0(z)Σr). ■

Proof of Theorem 13(b). Let v̂i be the given unit-norm eigenvector of K with eigenvalue λ̂i.
Let zN,i = zN,0(−1/λi(Σ)) and zi = z(−1/λi). Then, fixing any α ∈ R large enough to satisfy
Lemmas 25 and 26, Proposition 29(b) shows that V ⊤

r v̂i ∈ kerMK(λ̂i, α). By (D.40), (D.39), and
the bound |λ̂i − zN,i| ≺ N−1/2 of part (a) of the theorem already proven, we have∥∥∥MK(λ̂i, α)−MN (zN,i, α)

∥∥∥ ≤
∥∥∥MK(λ̂i, α)−MN (λ̂i, α)

∥∥∥+ ∥∥∥MN (λ̂i, α)−MN (zN,i, α)
∥∥∥

≺ N−1/2. (D.42)

Let v1, . . . ,vr denote the columns of V r, which are the unit eigenvectors of Σ. Then, applying
V ⊤

r v̂i ∈ kerMK(λ̂i, α), (D.42), and the definition of MN (z, α), and noting that ψN,0(zN,i) =
zN,im̃N,0(zN,i) = −zN,i/λi(Σ), we have∥∥∥MN (zN,i, α) · V ⊤

r v̂i

∥∥∥2 = r∑
j=1

(
1− α

α+ zN,i(1− λj(Σ)/λi(Σ))

)2

(v⊤
j v̂i)

2 ≺ 1/N.

For each j ∈ [r] \ {i}, we have that zN,i(1 − λj(Σ)/λi(Σ)) is bounded away from 0 as N → ∞
because zN,i → zi > 0 and λj(Σ)/λi(Σ) → λj/λi ̸= 1. So this implies

|v⊤
j v̂i|2 ≺ 1/N for all j ∈ [r] \ {i}. (D.43)

At the same time, applying Lemma 30 and |λ̂i − zN,i| ≺ N−1/2 to bound (D.32) in Proposi-
tion 29(b), we have

1

α2
= v̂⊤

i V r

(
V r

0

)⊤
R(zN,i, α)

(
In 0
0 0

)
R(zN,i, α)

(
V r

0

)
V ⊤

r v̂i +O≺

(
N−1/2

)
= v̂⊤

i V r

(
(α+ zN,i)Ir + ψN,0(zN,i)Σr

)−2(
Ir + ψ′

N,0(zN,i)Σr

)
V ⊤

r v̂i +O≺

(
N−1/2

)
= |v⊤

i v̂i|2 ·
1 + ψ′

N,0(zN,i)λi(Σ)

α2

+
∑
j ̸=i

|v⊤
j v̂i|2 ·

1 + ψ′
N,0(zN,i)λj(Σ)

(α+ zN,i(1− λj(Σ)/λi(Σ)))2
+O≺

(
N−1/2

)
= |v⊤

i v̂i|2 ·
1 + ψ′

N,0(zN,i)λi(Σ)

α2
+O≺

(
N−1/2

)
, (D.44)

the last equality applying (D.43). Observe that

1 + ψ′
N,0(zN,i)λi(Σ) = 1 + zN,im̃

′
N,0(zN,i)λi(Σ) + m̃N,0(zN,i)λi(Σ)

= zN,im̃
′
N,0(zN,i)λi(Σ) = zN,iλi(Σ)/z′N,0(−1/λi(Σ)),

where the last two equalities use zN,i = zN,0(−1/λi(Σ)) and m̃N,0(·) is the inverse function of
zN,0(·). Then, multiplying by α2/(1 + ψ′

N,0(zN,i)λi(Σ)) we obtain

|v⊤
i v̂i|2 =

z′N,0(−1/λi(Σ))

zN,iλi(Σ)
+O≺

(
N−1/2

)
= φN,0(−1/λi(Σ)) +O≺

(
N−1/2

)
,
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where we recall φN,0 from (B.5). We have φN,0(−1/λi(Σ)) → φ(−1/λi) = z′(−1/λi)/(λizi) >
0, so taking a square root gives

|v⊤
i v̂i| =

√
φN,0(−1/λi(Σ)) +O≺

(
N−1/2

)
. (D.45)

Finally, for any unit vector v ∈ Rn, by (D.33) in Proposition 29(b), Lemma 25(b), and the
bound |λ̂i − zN,i| ≺ N−1/2 in part (a) of the theorem already shown, we know that

v⊤v̂i = −α ·
(
v⊤ 0

)
R(zN,i, α)

(
V r

0

)
· V ⊤

r v̂i +O≺

(
N−1/2

)
= −α

r∑
j=1

v⊤vj · v⊤
j v̂i

α+ zN,i + ψN,0(zN,i)λj(Σ)
+O≺

(
N−1/2

)
= −α

r∑
j=1

v⊤vj · v⊤
j v̂i

α+ zN,i · (1− λj(Σ)/λi(Σ))
+O≺

(
N−1/2

)
.

Applying (D.43) and (D.45), only the summand with j = i contributes, and we obtain as desired

|v⊤v̂i| =
√
φN,0(−1/λi(Σ)) · |v⊤vi|+O≺

(
N−1/2

)
.

■

Proof of Theorem 13(c). Applying Lemma 26(b) and block matrix inversion of Γ̃+ψN,0(z)Σ̃ to
the definitions of R̃11 and R̃1V in (D.29) and (D.30), we have∣∣∣∣R̃11(z, α) +

(
z + α+ ψN,0(z) · E[u2]− ψN,0(z)

2 · E[ug]⊤(Γ+ ψN,0(z)Σ)−1E[ug]
)−1

∣∣∣∣ ≺ 1√
N
,∥∥∥∥∥R̃1V (z, α)−

ψN,0(z) · E[ug]⊤(Γ+ ψN,0(z)Σ)−1V r

z + α+ ψN,0(z) · E[u2]− ψN,0(z)2 · E[ug]⊤(Γ+ ψN,0(z)Σ)−1E[ug]

∥∥∥∥∥ ≺ 1√
N
.

Hence, ∥∥∥∥∥R̃1V (z, α)

R̃11(z, α)
+ ψN,0(z) · E[ug]⊤V r · ((α+ z)Ir + ψN,0(z)Σr)

−1

∥∥∥∥∥ ≺ 1√
N
.

Applying this and the bound |λ̂i − zN,i| ≺ N−1/2 to Proposition 29(c),

u⊤ûi =
α

λ̂
1/2
i

R̃1V (λ̂i, α)

R̃11(λ̂i, α)
· V ⊤

r v̂i = − α
√
zN,i

r∑
j=1

ψN,0(zN,i) · E[ug]⊤vj · v⊤
j v̂i

α+ zN,i + ψN,0(zN,i)λj(Σ)
+O≺

(
N−1/2

)
= − α

√
zN,i

r∑
j=1

ψN,0(zN,i) · E[ug]⊤vj · v⊤
j v̂i

α+ zN,i(1− λj(Σ)/λi(Σ))
+O≺

(
N−1/2

)
.

Then, applying again (D.43) and (D.45), only the summand with j = i contributes, and this gives

|u⊤ûi| =
|E[ug]⊤vi| · |ψN,0(zN,i)|

√
φN,0(−1/λi(Σ))

√
zN,i

+O≺

(
N−1/2

)
.

Recalling ψN,0(zN,i) = −zN,i/λi(Σ), this yields part (c) of the theorem. ■
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Appendix E. Proofs for propagation of spiked eigenstructure in deep NNs

We next prove Theorems 2 and 4. Appendix E.1 first establishes these results for a one-hidden-layer
NN, L = 1. We then apply this result for L = 1 inductively in Appendix E.2 to obtain these results
for general L. Appendix E.3 proves Corollary 5.

E.1. Spike analysis for one-hidden-layer CK

Consider the setup in Section 2.1 with a single hidden layer L = 1. In this setting, let us simplify
notation and denote

X = X0, W = W 0, d = d0, N = d1,

Y = X1 =
1√
N
σ(WX), K = K1 = Y ⊤Y .

We denote the rows of W and columns of X respectively by

w⊤
i ∈ Rd for i ∈ [N ], xα ∈ Rd for α ∈ [n].

We write Ew for the expectation over a standard Gaussian vector w ∼ N (0, I) in Rd.
Note that for a sufficiently large constant B > 0 (depending on supp(ν) and λ1, . . . , λr), As-

sumption 2 implies that the event

E(X) =
{
∥X∥ < B, |x⊤

αxβ| < τn and |∥xα∥2 − 1| < τn for all α ̸= β ∈ [n]
}

(E.1)

holds almost surely for all large n. We will use throughout this section the following argument:
Since W ≡ W (n) is independent of X ≡ X(n), and E(X(n)) holds for all large n with probability
1 over {X(n)}∞n=1, to prove any almost-sure statement, it suffices to show that the statement holds
with probability 1 over {W (n)}∞n=1, for any deterministic matrices {X(n)}∞n=1 satisfying E(X(n)).
Thus, we assume in the remainder of this section that X is deterministic and satisfies E(X) for all
large n, and write E,P for the expectation and probability over only the random weight matrix W .

We will apply Theorem 13 to a centered version of Y ,

G := Y − EY =
1√
N

[g1, . . . , gN ]⊤, g⊤
i := σ(w⊤

i X)− Ew[σ(w
⊤X)].

Note that these rows g⊤
i are i.i.d. with mean 0 and covariance

Σ := Ew[σ(w
⊤X)⊤σ(w⊤X)]− Ew[σ(w

⊤X)]⊤Ew[σ(w
⊤X)] ∈ Rn×n. (E.2)

Lemma 31 Suppose Assumptions 1, 2, and 3 hold, with L = 1 and deterministic X . Then

∥Ew[σ(w
⊤X)]∥2 → 0, ∥EY ∥ → 0.

Proof. Denote ξ ∼ N (0, 1). Applying E[σ(ξ)] = 0, E[σ′(ξ)ξ] = E[σ′′(ξ)] = 0, and a Taylor
approximation of σ, for any α ∈ [n],

Ew[σ(w
⊤xα)] = E[σ(∥xα∥ξ)]− E[σ(ξ)]

= E[σ′(ξ)ξ(∥xα∥ − 1)] + E[σ′′(η)ξ2(∥xα∥ − 1)2] = E[σ′′(η)ξ2(∥xα∥ − 1)2]
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for some η between ξ and ∥xi∥ξ. Then, applying |σ′′(x)| ≤ λσ and the τn-orthonormality of X
under E(X),

|Ew[σ(w
⊤xα)]| ≤ λστ

2
n.

This gives ∥Ew[σ(w
⊤X)]∥2 ≤ λστ

2
n

√
n → 0, so also ∥EY ∥ =

∥∥∥ 1√
N
1N · Ew[σ(w

⊤X)]
∥∥∥ → 0.

■

Next, we recall from Wang and Zhu (2021) an approximation of Σ by the linearized matrix

Σlin := b2σX
⊤X + (1− b2σ)In (E.3)

in the operator norm.

Lemma 32 Suppose Assumptions 1, 2, and 3 hold, with L = 1 and deterministic X .

∥Σ−Σlin∥ → 0.

Consequently, ordering λ1(Σ), . . . , λn(Σ) in the same order as λ1(X⊤X), . . . , λn(X
⊤X),

sup
i∈[n]

∣∣∣b2σλi(X⊤X) + (1− b2σ)− λi(Σ)
∣∣∣→ 0. (E.4)

Proof. Denote ξ ∼ N (0, 1). Let ζk(σ) = E[σ(ξ)hk(ξ)] be the k-th Hermite coefficient of σ, where
hk(x) is the k-th Hermite polynomial normalized so that E[hk(ξ)2] = 1. Note that by Gaussian
integration by parts and the assumption E[σ′′(ξ)] = 0,

ζ1(σ) = E[ξσ(ξ)] = E[σ′(ξ)] = bσ,
√
2 ζ2(σ) = E[(ξ2−1)σ(ξ)] = E[ξσ′(ξ)] = E[σ′′(ξ)] = 0.

Then by (Wang and Zhu, 2021, Lemma 5.2) and the first statement of Lemma 31, we have

∥Σ0 −Σ∥ ≤ ∥Σ0 − Ew[σ(w
⊤X)⊤σ(w⊤X)]∥+ ∥Ew[σ(w

⊤X)⊤σ(w⊤X)]−Σ∥ → 0

where
Σ0 = ζ1(σ)

2X⊤X + ζ3(σ)
2(X⊤X)⊙3 + (1− ζ1(σ)

2 − ζ3(σ)
2)In.

(Here, examination of the proof of (Wang and Zhu, 2021, Lemma 5.2) shows that the condition∑
α(∥xα∥2 − 1)2 ≤ B2 for (ε,B)-orthonormality is not used when ζ2(σ) = 0, and the remaining

conditions of (ε,B)-orthonormality hold under E(X).) The lemma then follows upon observing
that under E(X),∥∥∥(X⊤X)⊙3 − In

∥∥∥ ≤
∥∥∥diag((X⊤X)⊙3 − In)

∥∥∥+ ∥∥∥offdiag(X⊤X)⊙3
∥∥∥
F

≤ max
α∈[n]

∣∣∣∥xα∥6 − 1
∣∣∣+ n · max

α ̸=β∈[n]
|x⊤

αxβ|3 ≤ C(τn + nτ3n),

so that ∥Σlin −Σ0∥ = ζ3(σ)
2
∥∥(X⊤X)⊙3 − In

∥∥→ 0 when limn→∞ τn · n1/3 = 0. ■

Theorem 13 will provide a characterization of outlier eigenvalues of K that are separated from
S1 = supp(µ1)∪{0}, which is different from supp(µ1) when γ1 < 1. For γ1 < 1, we augment this
statement with a small-ball argument to bound the smallest eigenvalue of K, using the following
result of (Yaskov, 2016, Theorem 2.1).
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Lemma 33 (Yaskov (2016)) Let G = 1√
N
[g1, . . . , gN ]⊤ ∈ RN×n where the rows gi ∈ Rn are

i.i.d. and equal in law to g ∈ Rn. Define

Σ = Egg⊤, cg = inf
v∈Rn:∥v∥2=1

E|g⊤v|, Lg(δ, ι) = sup
Π:rank(Π)≥ιn

P
[
|Πg|2 ≤ δ rank(Π)

]
where the latter supremum is taken over all orthogonal projections Π ∈ Rn×n with rank at least
ι · n.

Suppose λmax(Σ) ≤ 1, c(g) ≥ c, and n/N ≤ y for some constants c > 0 and y ∈ (0, 1). Then
there exist constants s0, ι > 0 depending only on (c, y) such that for any δ ∈ (0, 1) and s > 0,

P[λmin(G
⊤G) ≥ (s0 − L(δ, ι; g)− s)δ] ≥ 1− 2e−yns2/2.

Lemma 34 Suppose Assumptions 1, 2, and 3 hold, with L = 1 and deterministic X . Let G =
Y − EY .

(a) If γ1 ≥ 1, then 0 ∈ supp(µ1).

(b) If γ1 < 1, then there is a constant c > 0 such that λmin(G
⊤G) > c almost surely for all

large n.

Proof. If γ1 > 1 strictly, then by definition

µ1 =
1

γ1
µ̃1 +

γ1 − 1

γ1
δ0

is a mixture of µ̃1 and a point mass at 0, so 0 ∈ supp(µ1). If γ = 1, then µ1 = µ̃1. In this case,
recall from Proposition 9 that supp(µ̃1) is characterized by the function

z(m̃) = − 1

m̃
+ γ1

∫
λ

1 + λm̃
dν0(λ).

When γ1 = 1, we have for all m̃ ∈ (0,∞) that

z(m̃) < 0, z′(m̃) =
1

m̃2
−
∫

λ2

(1 + λm̃)2
dν(λ) > 0,

so z(m̃) increases from −∞ to 0 over the positive line m̃ ∈ (0,∞). Suppose by contradiction that
0 /∈ supp(µ̃). Then by Proposition 9, there must be a point m̃ ∈ R \ T where z(m̃) = 0 and
z′(m̃) > 0 strictly, implying that there is an open interval (m̃−, m̃+) ∋ m̃ on which z(·) increases
from z(m̃−) < 0 to z(m̃+) > 0. We must have m̃ < 0 by the above behavior of z(·) on (0,∞), and
the range [z(m̃−), z(m̃+)] must overlap with [z(a), z(b)] for some sufficiently large a, b ∈ (0,∞).
But this contradicts the non-intersecting property shown in (Silverstein and Choi, 1995, Theorem
4.4). So also in this case 0 ∈ supp(µ̃1) = supp(µ1), showing part (a).

For part (b), we apply Lemma 33. Under E(X), the condition bσ ̸= 0 implies c0 < λmin(Σlin) ≤
λmax(Σlin) < C0 for some constants C0, c0 > 0. Hence also

c0 < λmin(Σ) ≤ λmax(Σ) < C0 (E.5)

60



NONLINEAR SPIKED COVARIANCE MATRICES IN DEEP LEARNING

for all large n, by Lemma 32. We may assume without loss of generality that λmax(Σ) ≤ 1 as
needed in Lemma 33; otherwise, the following argument may be applied to a rescaling of Σ and G.

To lower bound cg in Lemma 33, observe that for any unit vector v ∈ Rn we have

E[(g⊤v)2] = v⊤Σv > c0.

Viewing F (w) = g⊤v = σ(w⊤X)v =
∑n

α=1 vασ(w
⊤xα) as a function of w ∼ N (0, I), we

have ∇F (w) =
∑n

α=1 vασ
′(w⊤xα)xα = X(v ⊙ σ′(w⊤X)) where σ′(·) is applied coordinate-

wise and ⊙ is the coordinatewise product. Then, applying |σ′(x)| ≤ λσ, observe that ∥∇F (w)∥2 ≤
∥X∥ · ∥v ⊙ σ′(w⊤X)∥2 ≤ λσ∥X∥, so F (w) is C-Lipschitz in w for a constant C > 0 (not de-
pending on v) on the event E(X). This implies by Gaussian concentration-of-measure that g⊤v is
sub-gaussian, i.e. for some constants C, c > 0 and any t > 0, P[|g⊤v| ≥ t] ≤ Ce−ct2 . Integrating
this tail bound, for some constant t > 0 sufficiently large, we have E[(g⊤v)21{|g⊤v|>t}] ≤ c0/2,
and hence

c0 < E[(g⊤v)2] ≤ E[(g⊤v)21{|g⊤v|≤t}] +
c0
2

≤ t · E|g⊤v|+ c0
2
.

So E|g⊤v| ≥ c0/(2t), and hence cg ≥ c0/(2t) > c for a constant c > 0.
Now let s0, ι > 0 be the constants depending on (c, γ1) in the statement of Lemma 33. By

the nonlinear Hanson-Wright inequality of (Wang and Zhu, 2021, Eq. (3.3)), for any orthogonal
projection Π ∈ Rn×n, any t > 0, and some constant c > 0, we have

P
[
|g⊤Πg − Eg⊤Πg| > t

]
≤ 2e−cmin(t2/∥Π∥2F ,t/∥Π∥).

Here Eg⊤Πg = TrΠΣ > c0rank(Π), ∥Π∥2F = rank(Π), and ∥Π∥ = 1, so applying this with
t = (c0/2)rank(Π) yields

P[|Πg|2 ≤ (c0/2)rank(Π)] ≤ 2e−c′rank(Π).

Then, choosing δ = c0/2, we get Lg(δ, ι) → 0 as n→ ∞. Then Lemma 33 implies λmin(G
⊤G) >

s0δ/2 almost surely for all large n, as desired. ■

The following is the main result of this section, showing that Theorems 2 and 4 hold in this
setting of L = 1.

Lemma 35 Theorems 2 and 4 hold for a single layer L = 1. Furthermore, Y is Cτn-orthonormal
for some constant C > 0, almost surely for all large n.

Proof. We condition on X as discussed at the start of this section, and apply Theorem 13 to the
centered matrix G = Y − EY = 1√

N
[g1, . . . , gN ]⊤. Let us verify Assumption 5 for G: We have

shown Assumption 5(a) in (E.5). The rows gi are sub-gaussian as shown in the above proof of
Lemma 34(b), so Assumption 5(b) holds by (Vershynin, 2010, Eq. (5.26)), and Assumption 5(d)
holds by (Jin et al., 2019, Lemma 2). The nonlinear Hanson-Wright inequality of (Wang and Zhu,
2021, Eq. (3.3)) implies

|g⊤
i Agi − TrAΣ| ≺ ∥A∥F

uniformly over i ∈ [N ] and deterministic matrices A ∈ Cn×n. Furthermore, it is clear from the
argument preceding (Wang and Zhu, 2021, Eq. (3.3)) that for any i ̸= j ∈ [N ], the joint vector
(gi, gj) ∈ R2n also satisfies Lipschitz concentration, hence∣∣∣∣(g⊤

i g⊤
j

)
B

(
gi

gj

)
− TrB

(
Σ 0
0 Σ

)∣∣∣∣ ≺ ∥B∥F
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uniformly over i ̸= j ∈ [N ] and deterministic matrices B ∈ C2n×2n. Applying this with

B =

(
0 A
A 0

)
verifies both statements of Assumption 5(c).

Next, we check Assumption 6 for the population covariance matrix Σ. Combining Assump-
tion 2 and (E.4) from Lemma 32, we have

1

n− r

n∑
i=r+1

δλi(Σ) → ν0 := b2σ ⊗ µ0 ⊕ (1− b2σ) weakly, (E.6)

λi(Σ) → − 1

si,0
:= b2σλi + (1− b2σ) ̸∈ supp(ν0) for i = 1, . . . , r. (E.7)

Here, the statement −1/si,0 /∈ supp(ν0) in (E.7) follows from the assumptions λi /∈ supp(µ0) and
bσ ̸= 0. This then implies by the definition of T1 that si,0 ∈ R \ T1, as claimed in Theorem 4(a).
Furthermore, for any fixed ε > 0 and all large n, Assumption 2 and (E.4) imply also that

λi(Σ) ∈ supp(ν0) + (−ε, ε) for all i ≥ r + 1.

Thus Assumption 6 holds for Σ as n→ ∞.
Then we can apply Theorems 11 and 13 for K̄ := G⊤G. The Stieltjes transform approximation

in Theorem 11 and Lemma 24(c) together imply mK̄(z) → m1(z) almost surely for each fixed
z ∈ C+, where m1(z) is the Stieltjes transform of the measure µ1 = ρMP

γ1 ⊠ ν0. This implies the
weak convergence

1

n

n∑
i=1

δλi(K̄) → µ1 a.s. (E.8)

Theorem 13(a,b) further justifies:

• Let z1(·) and I1 be defined by (2.7) and (2.8) with ℓ = 1. Then for any sufficiently small
constant ε > 0, almost surely for all large n, there is a 1-to-1 correspondence between the
eigenvalues of K̄ outside S1 + (−ε, ε) and {i : i ∈ I1}. Furthermore, for each i ∈ I1,

λi(K̄) → z1(si,0) > 0. (E.9)

almost surely as n→ ∞.

• Let φ1(·) be defined by (2.7) with ℓ = 1. For each i ∈ I1, let vi(K̄) ∈ Rn be a unit-norm
eigenvector of K̄ corresponding to λi(K̄), and for each j ∈ [r], let vj(Σ) be a unit-norm
eigenvector of Σ corresponding to λj(Σ). Then almost surely as n → ∞, for each i ∈ I1
and j ∈ [r],

|vj(Σ)⊤vi(K̄)| →
√
φ1(si,0) · 1{i = j} (E.10)

where φ1(si,0) > 0. Moreover, letting v ∈ Rn be any unit vector independent of W , almost
surely

|v⊤vi(K̄)| −
√
φ1(si,0) · |v⊤vi(Σ)| → 0. (E.11)
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If γ1 ≥ 1, then Lemma 34(a) shows that supp(µ1) = supp(µ1) ∪ {0} = S1. If γ1 < 1, then
Lemma 34(b) shows that for any sufficiently small constant ε > 0, K̄ has no eigenvalues in [0, ε)
almost surely for all large n. Thus, in both cases, the first statement above in fact establishes a 1-to-1
correspondence between {i : i ∈ I1} and all eigenvalues of K̄ outside supp(µ1) + (−ε, ε), almost
surely for all large n.

To translate these statements to the non-centered matrix K = Y ⊤Y , recall from Lemma 31 that
∥Y −G∥ → 0 almost surely, and from Assumption 5(b) verified above that 1{∥G⊤G∥ > B′} ≺ 0
for a constant B′ > 0. Then, almost surely as n→ ∞,∥∥K − K̄

∥∥→ 0.

Therefore, by Weyl’s inequality and (E.8), the empirical eigenvalue distribution µ̂1 of K converges
also to µ1 weakly a.s., as claimed in Theorem 2. Furthermore, by (E.9), almost surely for all large
n, the eigenvalues λ̂i,1 of K outside supp(µ1) + (−ε, ε) are also in 1-to-1 correspondence with
{i : i ∈ I1}, where λ̂i,1 → z1(si,0) for each i ∈ I1. In particular, if r = 0, then also |I1| = 0, so
K has no eigenvalues outside supp(µ1) + (−ε, ε). This proves Theorem 2.

For each i ∈ I1, let v̂i,1 ∈ Rn be a unit-norm eigenvector of K corresponding to λ̂i,1. Then by
the Davis-Kahan Theorem Davis and Kahan (1970), we may choose a sign for v̂i,1 such that

∥∥v̂i,1 − vi(K̄)
∥∥ ≤

√
2∥K − K̄∥

dist(λ̂i,1, spec (K̄) \ {λi(K̄)})
.

We note that λ̂i,1 → z1(si,0) a.s., which is distinct from the limit values {z1(sj,0) : j ∈ I1 \ {i}}
of {λj(K̄) : I1 \ {i}} by bijectivity of the map z1(·) in Proposition 9. Furthermore z1(si,0) falls
outside supp(µ1)+ (−ε, ε) for sufficiently small ε > 0, which contains all other eigenvalues of K̄.
Thus dist(λ̂i,1, spec (K̄) \ {λi(K̄)}) ≥ c for a constant c > 0 almost surely for all large n, so∥∥v̂i,1 − vi(K̄)

∥∥→ 0 a.s.

Similarly, by the convergence ∥Σ−Σlin∥ → 0 and the assumption bσ ̸= 0, we have ∥vj(Σ)− vj∥ →
0 for each j ∈ [r], where vj is the unit-norm eigenvector of Σlin corresponding to its eigenvalue
b2σλj(X

⊤X) + (1 − b2σ), i.e. the eigenvector of X⊤X corresponding to λj(X⊤X). Then (E.10)
and (E.11) imply also

|v⊤
j v̂i|2 → φ1(si,0) · 1{i = j}, |v⊤v̂i|2 − φ1(si,0) · |v⊤vi|2 → 0.

This shows all claims of Theorem 4 for L = 1.
Finally, on E(X), the matrix Y is Cτn-orthonormal for a constant C > 0 by (Fan and Wang,

2020, Lemma D.3(b)). (The proof of (Fan and Wang, 2020, Lemma D.3(b)) again does not use the
condition

∑
α(∥xα∥22 − 1)2 ≤ B2 of (ε,B)-orthonormality therein, and the remaining conditions

of (ε,B)-orthonormality hold under E(X).) This shows the last claim of the lemma. ■

E.2. Spike analysis for multiple layers

We now prove Theorem 4 by inductively applying the result for L = 1 through multiple layers. We
follow the notations of Section 2.1.
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Proof of Theorem 4. Suppose inductively that Assumption 2 holds with Xℓ−1 in place of X0,
and all conclusions of Theorem 4 hold for Kℓ. The base case of ℓ = 1 follows from Lemma 35.

Then the last statement of Lemma 35 implies that Xℓ is τ ′n-orthonormal almost surely for all
large n, for some τ ′n satisfying τ ′n · n1/3 → 0. Furthermore, the conclusions of Theorem 4(b,c) for
Kℓ imply that statements (a) and (b) of Assumption 2 also hold for Xℓ, in the following sense: Let
rℓ = |Iℓ|. Then

1

n− |rℓ|
∑
i/∈Iℓ

δλi(X
⊤
ℓ Xℓ)

→ µℓ weakly a.s.

For any fixed ε > 0, almost surely for all large n, λ̂i,ℓ := λi(X
⊤
ℓ Xℓ) ∈ supp(µℓ) + (−ε, ε) for all

i /∈ Iℓ. Furthermore, for each i ∈ Iℓ, λ̂i,ℓ → zℓ(si,ℓ−1) /∈ supp(µℓ).
Then we may apply Lemma 35 with input data X = Xℓ in place of X0. This shows that for

any fixed ε > 0 and all large n, there is a 1-to-1 correspondence between the eigenvalues λ̂i,ℓ+1 of
Kℓ+1 outside supp(µℓ+1) + (−ε, ε) and {i : i ∈ Iℓ+1}, where λ̂i,ℓ+1 → zℓ+1(si,ℓ) > 0 a.s., and
si,ℓ ∈ R \ Tℓ+1. Moreover, for any unit vector v ∈ Rn independent of W 1, . . . ,W ℓ+1,

|v̂⊤
i,ℓ+1v|2 − φℓ+1(si,ℓ) · |v̂⊤

i,ℓv|2 → 0,

where also φℓ+1(si,ℓ) > 0. Then by the induction hypothesis for |v̂⊤
i,ℓv|2,

|v̂⊤
i,ℓ+1v|2 →

ℓ+1∏
k=1

φk(si,k−1) · |v⊤
i v|2,

and specializing to v = vj for j ∈ [r] gives

|v̂⊤
i,ℓ+1vj |2 →

ℓ+1∏
k=1

φk(si,k−1) · 1{i = j}.

This verifies all conclusions of Theorem 4 for Kℓ+1, completing the induction. ■

E.3. Corollary for signal-plus-noise input data

Proof of Corollary 5. It is shown in (Benaych-Georges and Nadakuditi, 2012, Section 3.1) that
asymptotically as d, n → ∞ with n/d → γ0, the data matrix X has a spike singular value corre-
sponding to θi if and only if θi > γ

1/4
0 , in which case

λi(K0) → λi :=
(1 + θ2i )(γ0 + θ2i )

θ2i
, |b⊤i vi|2 → 1− γ0(1 + θ2i )

θ2i (θ
2
i + γ0)

where vi is the unit eigenvector of the input Gram matrix K0 = X⊤X . Thus claims (a) and (b) of
Assumption 2 hold with r = |{i : θi > γ

1/4
0 }|, µ0 = ρMP

γ0 being the standard Marcenko-Pastur law,
and λi = (1 + θ2i )(γ0 + θ2i )/θ

2
i being the above values.

We note that X is n−1/2+ε-orthonormal for any ε > 0 almost surely for all large n, by the given
condition maxri=1 ∥bi∥∞ < n−1/2+ε and the bounds, for any α, β ∈ [n],

∥xα∥2 = ∥zα∥2 +
r∑

i=1

O≺(∥ai∥2|θi||bi,α|) = ∥zα∥2 +O≺

(
n−1/2+ε

)
= 1 +O≺

(
n−1/2+ε

)
,
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x⊤
αxβ = z⊤

αzβ +

r∑
i=1

O≺

(
|θi|
(
|a⊤

i zα||bi,α|+ |a⊤
i zβ||bi,β|

)
+ θ2i ∥ai∥22|bi,αbi,β|

)
= O≺

(
n−1/2+ε

)
.

Hence Theorem 4 applies, showing that Kℓ has an outlier eigenvalue corresponding to each input
signal θi if and only if θi > γ

1/4
0 and i ∈ Iℓ. The statement (2.10) follows from Theorem 4(c)

applied with v = bi. ■

Appendix F. Proofs for spiked eigenstructure of the trained CK

In this section, we prove Theorem 6. The proof is an application of Theorem 13 as in the one-layer
setting of the preceding section, but now reversing the roles of X and W . We abbreviate

W = W trained, Y =
1√
N
σ(X̃W ), K = Y Y ⊤

where K is the CK matrix of interest. In contrast to the preceding section, the theorem requires
characterizing the left spike singular vector of Y , and we will do so using Theorem 13(c).

We first recall the following approximation of W from Ba et al. (2022).

Proposition 36 Under Assumption 4, set η =
∑T

t=1 ηt, and let θ1, θ2 be as defined in (2.14). Then

∥W − W̃ ∥ ≺ N−1/2 where W̃ = W 0 +
bση

n
X⊤ya⊤. (F.1)

The largest singular value smax(W ) falls outside the limit of its empirical singular value distribu-
tion if and only if θ1 > γ

1/4
0 , in which case smax(W ) and its unit-norm left singular vector u(W )

satisfy

smax(W ) → s1 :=

√
(1 + θ21)(γ0 + θ21)

θ21
, |u(W )⊤β∗|2 →

θ22
θ21

(
1− γ0 + θ21

θ21(θ
2
1 + 1)

)
a.s. (F.2)

Proof. Notice that each gradient update matrix Gt of (2.12) takes the form

Gt =
1

n
X⊤

[(
1√
N

(
y − 1√

N
σ(XWt)a

)
a⊤
)
⊙ σ′(XWt)

]
,

From the proof of (Ba et al., 2022, Lemma 16), for each t = 1, . . . , T , this matrix Gt satisfies the
same rank-one approximation ∥∥∥√N Gt −

bσ
n
X⊤ya⊤

∥∥∥ ≺ N−1/2.

This implies (F.1) in light of (2.12), and the statements of (F.2) then follow from (Ba et al., 2022,
Theorem 3). ■

We denote the columns of W ≡ W trained ∈ Rd×N and of the initialization W 0 ∈ Rd×N by

wi ∈ Rd, wi,0 ∈ Rd for i ∈ [N ]

respectively. Fixing a large constant B > 0 and small constant ε > 0, define the event

E(W ) =
{
∥W ∥ < B, |w⊤

i wj | < n−1/2+ε and |∥wi∥2 − 1| < n−1/2+ε for all i ̸= j ∈ [N ]
}
.

65



WANG WU FAN

Lemma 37 Under Assumption 4, for some sufficiently large constant B > 0 and any fixed ε > 0,
E(W ) holds almost surely for all large n and any fixed T ∈ N.

Proof. By the assumption [W 0]ij
iid∼ N (0, 1/d), it is immediate to check that E(W 0) holds almost

surely for all large n. To show that E(W ) holds, we apply the approximation (F.1). Here, under
Assumption 4, we have by standard tail bounds for Gaussian vectors and matrices that

1{∥X⊤y∥ > Cn} ≤ 1{∥X∥ · (λσ∗∥Xβ∗∥+ ∥ε∥2) > Cn} ≺ 0, 1{∥a∥2 > C} ≺ 0

for a sufficiently large constant C > 0, and also ∥a∥∞ ≺ N−1/2. Then this implies

N
max
i=1

∥wi −wi,0∥2 ≤
N

max
i=1

∥w̃i −wi,0∥2 + ∥W − W̃ ∥ ≺ N−1/2 (F.3)

and 1{∥W −W 0∥ > C ′} ≺ 0 for a constant C ′ > 0. Then E(W ) also holds almost surely for all
large n, as claimed. ■

Analogous to the argument of Appendix E.1, we may now condition on W , i.e. we assume that
W is deterministic and satisfies E(W ) for all large n, and we write E for the expectation over only
the randomness of the new data (X̃, ỹ). Defining

G =

√
N

n
(Y − EY ) ∈ Rn×N , u =

1√
n
ỹ ∈ Rn where Y =

1√
N
σ(X̃W ), (F.4)

observe that [u,G] ∈ Rn×(N+1) has centered i.i.d. rows with respect to the randomness of (X̃, ỹ).
We will write Ex for the expectation with respect to a standard Gaussian vector x ∼ N (0, Id).

Lemma 38 Suppose W satisfies E(W ) for all large n. Then

∥Ex[σ(x
⊤W )]∥2 → 0, ∥EY ∥ → 0, ∥Σ−Σlin∥ → 0 (F.5)

where

Σ := Ex[σ(x
⊤W )⊤σ(x⊤W )]− Ex[σ(x

⊤W )]⊤Ex[σ(x
⊤W )] (F.6)

Σlin := b2σ(W
⊤W ) + (1− b2σ)IN . (F.7)

Proof. The proof is the same as Lemmas 31 and 32. ■

Proof of Theorem 6. We condition on W satisfying E(W ) for all large n, and we apply The-
orem 13(c) for [u,G] ∈ R(n+1)×N (exchanging n and N ). It may be checked that Assumption 5
holds for [u,G] by the same argument as in Lemma 35.

By the convergence ∥Σ − Σlin∥ → 0 in Lemma 38 and Proposition 36, if θ1 > γ
1/4
0 , then

Assumption 6 holds for Σ with r = 1 and

ν = b2σ ⊗ ρMP
γ0 ⊕ (1− b2σ), λ1 = b2σ

(1 + θ21)(γ0 + θ21)

θ21
+ (1− b2σ) /∈ supp(ν),

where ρMP
γ0 is the standard Marcenko-Pastur limit for the empirical eigenvalue distribution of W⊤W ,

hence ν is the limit empirical eigenvalue distribution of Σ, and λ1 is the limit of λmax(Σ). If instead
θ1 ≤ γ

1/4
0 , then Assumption 6 holds with r = 0.

Then Theorem 13(a,c) characterizes the outlier eigenvalue and eigenvector of GG⊤, showing:
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• GG⊤ has a spike eigenvalue if and only if θ1 > γ
1/4
0 and z′(−1/λ1) > 0, where z(·) is

defined by (A.4) with γ = γ1 and the measure ν given above. In this case, λmax(GG⊤) →
z(−1/λ1) almost surely.

• When θ1 > γ
1/4
0 and z′(−1/λ1) > 0, letting u(G),v(Σ) be the leading unit-norm left

singular vector of G and leading unit-norm eigenvector of Σ, almost surely

|u⊤u(G)| −
√
z(−1/λ1)φ(−1/λ1)

λ1
·
∣∣∣Ex[σ∗(β

⊤
∗ x)σ(x

⊤W )]v(Σ)
∣∣∣→ 0.

where φ(·) is defined by (B.6) also with γ = γ1 and the above measure ν.

By an application of Weyl’s inequality and the Davis-Kahan Theorem as in the proof of Theo-
rem 4, this implies for K = Y Y ⊤ that if θ1 > γ

1/4
0 and z′(−1/λ1) > 0, then its leading eigenvalue

λmax(K) and unit eigenvector û satisfy

λmax(K) → γ−1
1 z(−1/λ1),

|u⊤û| −
√
z(−1/λ1)φ(−1/λ1)

λ1
·
∣∣∣Ex[σ∗(β

⊤
∗ x)σ(x

⊤W )]v(W )
∣∣∣→ 0,

(F.8)

where v(W ) is the leading unit eigenvector of Σlin, i.e. the leading right singular vector of W .
If θ1 ≤ γ

1/4
0 or z′(−1/λ1) ≤ 0, then all eigenvalues of K converge to the support of its limiting

empirical eigenvalue law.
Finally, in the case of θ1 > γ

1/4
0 and z′(−1/λ1) > 0, we may conclude the proof by showing∥∥∥Ex[σ∗(β
⊤
∗ x)σ(x

⊤W )]− bσbσ∗β
⊤
∗ W

∥∥∥
2
→ 0 a.s. (F.9)

For each column i ∈ [N ], we have from (F.3) that ∥wi − wi,0∥2 ≺ N−1/2, where wi,0 ∼
N (0, d−1I) and β∗ is deterministic. Hence (wi,β∗) satisfy the approximate orthonormality con-
ditions |∥wi∥2 − 1| ≺ N−1/2, ∥β∗∥2 − 1 = 0, and |w⊤

i β∗| ≺ N−1/2. Then (Fan and Wang, 2020,
Lemma D.3(a)) implies ∣∣∣Ex[σ∗(β

⊤
∗ x)σ(x

⊤wi)]− bσbσ∗β
⊤
∗ wi

∣∣∣ ≺ N−1.

(We note that (Fan and Wang, 2020, Lemma D.3(a)) assumes σ = σ∗, but the proof is identical
for σ ̸= σ∗ both satisfying Assumption 3.) Applying this to each coordinate i ∈ [N ] yields (F.9).
Observe that β⊤

∗ Wv(W ) = smax(W ) · β⊤
∗ u(W ) where smax(W ) and u(W ) are the leading

singular value and left singular vector of W , and recall from the definitions (F.4) that u = 1√
n
ỹ.

Then we can apply (F.9) and Proposition 36 to (F.8) to conclude that

1√
n
|ỹ⊤û| → bσbσ∗

√
z(−1/λ1)φ(−1/λ1)

λ1
· θ2
√
(θ41 − γ0)(γ0 + θ21)

θ31
> 0 a.s.

■
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