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Abstract

We study a variant of the Sherrington–Kirkpatrick (S–K) spin glass model with external

field, where the random symmetric couplings matrix does not consist of i.i.d. entries but

is instead orthogonally invariant in law. For sufficiently high temperature, we prove

a replica-symmetric formula for the first-order limit of the model free energy. Our

analysis is an adaptation of a conditional second-moment-method argument previously

introduced by Bolthausen for studying the high-temperature regime of the S–K model,

where one conditions on the iterates of an Approximate Message Passing (AMP)

algorithm for solving the TAP equations for the model magnetization. We apply this

method using a memory-free version of AMP that is tailored to the orthogonally

invariant structure of the model couplings.

Keywords Mean-field spin glasses · Free probability · AMP algorithms

Mathematics Subject Classification 60F10 · 60K35

1 Introduction

We study a probability model on the hypercube σ ∈ {+1,−1}n given by

P(σ ) =
1

Z
exp

(
β

2
σ� Jσ + h�σ

)

. (1.1)
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2 Z. Fan, Y. Wu

Here h ∈ R
n is a deterministic vector, J ∈ R

n×n is a random symmetric matrix which

we will assume satisfies the orthogonal invariance in law

J
L= O� J O for any orthogonal matrix O ∈ R

n×n,

and Z is the partition function

Z =
∑

σ∈{+1,−1}n
exp

(
β

2
σ� Jσ + h�σ

)

.

We will refer to J as the couplings matrix, h as the external field, and β as the inverse

temperature.

The specific example of the Sherrington–Kirkpatrick (S–K) model [49], where J

has i.i.d. Gaussian entries above the diagonal, is well-studied and known to exhibit

rich phenomena. At high temperatures, P(σ ) is “replica-symmetric”, the large-n limit

of the free energy is described by a simple replica-symmetric formula [1, 8, 49], and

the magnetization m =
∑

σ∈{+1,−1}n σ · P(σ ) satisfies in this limit the Thouless-

Anderson-Palmer (TAP) mean-field equations [13, 55, 56]. At low temperatures, the

limit free energy is described more generally by Parisi’s variational formula [25, 43,

44, 54]. The solution of the variational problem may be understood as corresponding to

an ultrametric tree structure for P(σ ), and the TAP equations describe the conditional

means of the “pure states” in this ultrametric tree [35–37]. This picture has been

formalized and proven rigorously for certain mixed p-spin analogues of the S–K

model in [3, 42].

Here, we are interested in the more general setting of (1.1) where J is orthogonally

invariant, but can have arbitrary spectral distribution and dependent entries. Examples

include the random orthogonal model (ROM) [34] where J has all eigenvalues equal to

{+1,−1}, and the Gaussian Hopfield model [27] where J = G�G and G is a rectan-

gular Gaussian matrix. In the physics literature, the replica-symmetric and 1-RSB free

energies for the ROM were computed by Marinari et al. in [34], and extended to mod-

els with general orthogonally invariant couplings in [14]. Parisi and Potters derived

in [45] the TAP mean-field equations for the ROM, using a perturbative expansion

approach of [23, 46] and a conjectured resummation of the terms of this expansion.

Opper and Winther provided in [41] an alternative derivation of the TAP equations

using the cavity method and a system of self-consistent equations for the cavity fields

(which we review in Appendix E), and verified also via a replica calculation that the

TAP free energy evaluated at the model magnetization coincides with the free energy

given by the replica-symmetric formula. At present, few rigorous mathematical results

are known for models with general orthogonally invariant couplings matrices J .

Our work is in large part motivated by a renewed interest in these types of mean-

field models in information theory, statistics, and machine learning [4, 18, 21, 24, 30,

31, 33, 47, 48, 50–53, 57], where orthogonally invariant matrices may serve as more

robust models of regression and sensing designs or more accurate models of noise in

data applications. Indeed, following the initial posting of this work, several dynamical

universality results were obtained in [19, 20, 58] showing that the mean-field dynam-

123



The replica-symmetric free energy for Ising spin... 3

ics of Approximate Message Passing (AMP) and other first-order iterative algorithms

applied to orthogonally invariant matrices are universal across broad classes of matri-

ces with delocalized eigenvectors. In many of these applications, replica predictions

for the model free energy are conjectured, but not rigorously known. Maillard et al.

studied in [32] a class of computational algorithms in the context of such orthogonally

invariant models, extending the diagrammatic expansion method of [23, 45, 46] to

describe the connections between these algorithms and the predicted mean field the-

ory; the authors of [32] highlighted the mathematical verification of these predictions

as an open question.

We study in this work the specific model (1.1), and prove a replica-symmetric

formula for the first-order limit of its free energy in a sufficiently high temperature

regime. This extends previous work of [6], which showed such a result in the absence

of an external field (h = 0). Similar to the S–K model [1], the h = 0 setting is

special in that the quenched free energy n−1
E log Z coincides asymptotically with

the annealed free energy n−1 log EZ , as was verified in [6] using the second moment

method. This no longer holds when h �= 0, and our proof applies instead a conditional

version of this idea developed in [8] for the S–K model, where one establishes that the

quenched and annealed free energies coincide upon conditioning on an appropriately

chosen sigma-field that is informative about the random magnetization. This method

was refined for the S–K model in [11] to cover a large and explicit part of the high-

temperature regime, and is also related to analyses of [9, 16] for the Ising perceptron

model.

Our construction of the conditioning sigma-field relies on recent developments on

iterative algorithms for solving the TAP equations for the model (1.1). We summarize

these developments and the proof strategy in Sect. 1.2 below, after presenting our main

result. Following the initial posting of this work, our analyses have been extended in

[22] to show also the validity of the TAP equations for the magnetization under a similar

high-temperature assumption, and in [29] to obtain analogous results in a statistical

linear model with orthogonally invariant regression design.

1.1 Model andmain result

Consider the Gibbs distribution (1.1) on the binary hypercube, under the following

assumptions for the couplings matrix J and external field h.

Assumption 1.1 Let J = O�DO be the eigen-decomposition of J .

(a) O ∼ Haar(O(n)) is a random Haar-distributed orthogonal matrix.

(b) D = diag(d1, . . . , dn) is a deterministic diagonal matrix of eigenvalues, whose

empirical distribution converges weakly to a limit law

1

n

n
∑

i=1

δdi
→ μD

123



4 Z. Fan, Y. Wu

as n → ∞. This law μD has strictly positive variance and a compact support

supp(μD). Furthermore,

lim
n→∞

max(d1, . . . , dn)

= d+ � max(x : x ∈ supp(μD)), lim inf
n→∞

min(d1, . . . , dn) > −∞.

(c) h = (h1, . . . , hn) ∈ R
n is a deterministic vector, whose empirical distribution of

entries converges weakly to a limit law

1

n

n
∑

i=1

δhi
→ μH

as n → ∞. For every p ≥ 1, the law μH has finite pth moment, and

n−1
∑n

i=1 h
p
i → EH∼μH

[Hp].1

We remark that our results apply also to models with random (D, h) independent of

O which satisfy these conditions almost surely as n → ∞, by applying the results

conditionally on (D, h).

We are interested in the asymptotic free energy

� = lim
n→∞

1

n
log Z . (1.2)

For sufficiently small β > 0, we prove that this limit exists almost surely and is given

by the following replica-symmetric formula: Denote the Cauchy- and R-transforms

of μD by

G(z) =
∫

1

z − x
μD(dx), R(z) = G−1(z) −

1

z
.

We define G(z) for real arguments z ∈ (d+,∞). The function G : (d+,∞) →
(0, G(d+)) is strictly decreasing, where we denote

G(d+) � lim
z↓d+

G(z) ∈ (0,∞].

We define R(z) for real arguments z ∈ (0, G(d+)), where G−1 is the functional inverse

of G over the domain (d+,∞).

Proposition 1.2 Under Assumption 1.1, for some β0 = β0(μD) > 0 and all β ∈
(0, β0), there is a unique solution q∗ ∈ [0, 1) to the fixed-point equation

q∗ = E[tanh(H+ σ∗G)2], σ 2
∗ = β2q∗R′(β(1 − q∗)) (1.3)

where the expectation is over independent random variables G ∼ N (0, 1) and H ∼
μH .

1 This moment condition for h is used to apply the AMP state evolution analysis of [21] to deduce Theorem

2.2, and is not used in the rest of the argument.
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The replica-symmetric free energy for Ising spin... 5

Let q∗, σ 2
∗ and G,H be as above. Then the replica-symmetric prediction for the free

energy � is (see e.g. [41, Eq. (56)])

�RS = E

[

log 2 cosh(H+ σ∗G)
]

+
βq∗

2
R(β(1 − q∗))

−
β2q∗(1 − q∗)

2
R′(β(1 − q∗)) +

1

2

∫ 1−q∗

0

β R(βz)dz. (1.4)

The correctness of this prediction for sufficiently high temperature is justified by the

next theorem, which is the main result of the paper.

Theorem 1.3 Suppose Assumption 1.1 holds. Then for some β0 = β0(μD) > 0

depending only on μD , and for any fixed β ∈ (0, β0), almost surely

lim
n→∞

1

n
log Z = �RS.

We mention that for the spherical counterpart of the Ising model (1.1), the free energy

can be computed directly and also agrees with its replica-symmetric prediction. We

carry out this computation in Appendix D by applying one of the technical results in

Sect. 2.4.

1.2 Overview of the proof

We will adopt the conditional second moment method of [8], and show that

lim
n→∞

1

n
log E[Z | G] ≈ �RS, lim

n→∞
1

n
log E[Z2 | G] ≈ 2�RS (1.5)

for an appropriately chosen sigma-field G. Together with classical concentration-of-

measure results for Haar measure over the orthogonal group, this will be enough to

show Theorem 1.3.

We define G = Gt as the sigma-field generated by a fixed number t of iterations

of an AMP algorithm designed to solve the TAP mean-field equations described in

[41, 45]—see (2.11) below. Such an algorithm was introduced for the S–K model in

[7] and for applications in compressed sensing in [5, 17]. For the Ising model (1.1)

with orthogonally invariant couplings, a general class of AMP-type procedures was

described in [40], including a “single-step memory” algorithm for solving the TAP

equations that reduces to the one of [7] in the S–K setting. Our analyses will rely on

a rigorous characterization of the state evolution of such algorithms obtained in [21].

The specific algorithm we use to construct Gt is not of the single-step memory form

of [7, 40], but rather an alternative “memory-free” form introduced by Çakmak and

Opper in [12], applying the general procedure in [40] with a resolvent of J instead

of the couplings matrix J itself. This memory-free algorithm is related to a class of

Vector/Orthogonal AMP algorithms developed for compressed sensing applications

in [31, 47, 51], and may be derived also from the Expectation Propagation framework
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6 Z. Fan, Y. Wu

of Minka [38]. For our purposes, use of this algorithm leads to two important simpli-

fications: First, its state evolution has a simple description when J is non-Gaussian,

whereas that of alternative iterative procedures may have a complicated dependence

on the spectral free cumulants of J . Second, the analysis of [21] reveals that iterates

of this algorithm have an asymptotic freeness property with respect to J , which we

describe below in Proposition 2.4. Both simplifications are important in enabling our

computations of the conditional moments in (1.5).

The details of our strategy for showing (1.5) are somewhat different from those

presented in [8], and we proceed in two high-level steps: We first apply the AMP

state evolution and a large deviations argument to give exact expressions for the large-

n limits of the conditional moments (1.5) in terms of low-dimensional variational

problems. This leverages and extends some results of Guionnet and Maıda [26] that

relate exponential integrals over the orthogonal group to the R-transform of J . We then

analyze these variational problems, proving upper and lower bounds for their values

that are tight for �RS and 2�RS in the limit as the number of algorithm iterations

t → ∞. The assumption of small β (i.e. sufficiently high temperature) is used in

a crucial way in the upper bounds, to show a global concavity property of these

variational problems.

The remainder of the paper is organized as follows: In Sect. 2, we collect the general

ingredients of the proof, including a more detailed description of the AMP algorithm

and its state evolution, and the evaluations of the required exponential integrals over the

orthogonal group. In Sects. 3 and 4, we analyze the conditional first moment E[Z | Gt ]
and second moment E[Z2 | Gt ] respectively, leading to the proof of Theorem 1.3 in

Sect. 5.

Notation

O(n) and SO(n) are the orthogonal and special orthogonal groups of n × n matrices.

Haar(·) denotes the Haar-measure on these groups.

‖ · ‖ is the �2-norm for vectors and �2 → �2 operator norm for matrices; we may

write the latter as‖·‖op in situations where this is unclear.‖·‖F is the Frobenius norm for

matrices. We use the convention that for scalar values x1, . . . , xk , (x1, . . . , xk) ∈ R
k

denotes the column vector containing these values. We write � for a definition or

assignment. We reserve the sans-serif font G,H,X, Y for scalar random variables.

2 Preliminaries

2.1 Centering and rescaling

Adding a multiple of the identity to J shifts the free energy � and �RS by the same

additive constant. Thus, we may assume without loss of generality that
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The replica-symmetric free energy for Ising spin... 7

∫

x μD(dx) = 0. (2.1)

Since μD has positive variance by Assumption 1.1(b), we may also assume without

loss of generality that

∫

x2 μD(dx) = 1, (2.2)

by rescaling J = O�DO and incorporating this scaling into β.

For most of the proof, it will be notationally convenient to absorb the parameter β

into the couplings matrix J , after this centering and rescaling. We define

J̄ = β J , D̄ = diag(d̄1, . . . , d̄n) = βD, μD̄ = lim
n→∞

1

n

n
∑

i=1

δd̄i
, d̄+ = βd+.

(2.3)

Thus μD̄ is the rescaling of the limit spectral law μD , and d̄+ = max(x : x ∈
supp(μD̄)) is its maximum point of support.

We denote the Cauchy- and R-transforms of μD̄ by

Ḡ(z) =
∫

1

z − x
μD̄(dx), R̄(z) = Ḡ−1(z) −

1

z
, (2.4)

where Ḡ(z) is defined on (d̄+,∞), and R̄(z) on (0, Ḡ(d̄+)). These are related to the

Cauchy- and R-transforms of μD by

Ḡ(z) =
1

β
G

(
z

β

)

, R̄(z) = β R(βz). (2.5)

Let {»k}k≥1 be the free cumulants of the law μD . Since »1 and »2 correspond to the

mean and variance of μD (cf. [39, Examples 11.6]), (2.1) and (2.2) imply that »1 = 0

and »2 = 1. Writing ‖μD‖∞ = max(|x | : x ∈ supp(μD)), we have

|»k | ≤ (16‖μD‖∞)k (2.6)

for all k ≥ 1, and the R-transform admits the convergent series expansion for small z

given by

R(z) =
∑

k≥1

»k zk−1

(cf. [39, Notation 12.6, Proposition 13.15]). The free cumulants of μD̄ are then »̄k =
βk»k , satisfying »̄1 = 0, »̄2 = β2, and |»̄k | ≤ (16‖μD‖∞β)k for k ≥ 3. The R-
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8 Z. Fan, Y. Wu

transform of μD̄ for small z is

R̄(z) =
∑

k≥1

»̄k zk−1. (2.7)

The Gibbs distribution and partition function in (1.1) may be written in this rescaled

notation as

P(σ ) =
1

Z
exp

(
1

2
σ� J̄σ + h�σ

)

, Z =
∑

σ∈{+1,−1}n
exp

(
1

2
σ� J̄σ + h�σ

)

.

(2.8)

The fixed-point equation (1.3) for q∗ is written in terms of R̄(z) as

q∗ = E[tanh(H+ σ∗G)2], σ 2
∗ = q∗ R̄′(1 − q∗) (2.9)

and the replica-symmetric free energy (1.4) is

�RS = E

[

log 2 cosh(H+ σ∗G)
]

+
q∗
2

R̄(1 − q∗) −
q∗(1 − q∗)

2
R̄′(1 − q∗)

+
1

2

∫ 1−q∗

0

R̄(z)dz. (2.10)

2.2 AMP for solving the TAP equations

Denote by

m =
∑

σ∈{+1,−1}n
σ · P(σ ) ∈ (−1, 1)n

the magnetization vector of the Gibbs distribution (2.8). It is predicted that for suf-

ficiently small β > 0, this vector m approximately satisfies the TAP mean-field

equations [41, 45]

m = tanh
(

h + J̄m − R̄(1 − q∗)m
)

. (2.11)

Here and below, tanh(·) is applied coordinatewise. For the S–K model where J̄ is

Gaussian, we have R̄(x) = β2x , and this coincides with the classical TAP equations

of [56]. We provide a brief review of the cavity-method derivation of these TAP

equations from [41] in Appendix E.

Our proof of Theorem 1.3 will compute the first and second moments of the partition

function Z conditioned on a sigma-field generated by an iterative AMP algorithm for

solving the TAP equations. We consider the following algorithm from [12] having
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The replica-symmetric free energy for Ising spin... 9

“memory-free” dynamics: Define

¼∗ = Ḡ−1(1 − q∗) = R̄(1 − q∗) +
1

1 − q∗
(2.12)

so that Ḡ(¼∗) = 1 − q∗. This is well-defined for any β ∈ (0, G(d+)), since 1 − q∗ ≤
1 < Ḡ(d̄+) = G(d+)/β. Consider the matrix

	 =
1

1 − q∗
(¼∗ I − J̄ )−1 − I ,

which admits the eigen-decomposition

	 = O�
O, 
 =
1

1 − q∗
(¼∗ I − D̄)−1 − I . (2.13)

In particular, 	 is also orthogonally invariant in law. Let y0 ∈ R
n be an initialization

of the AMP algorithm with entries

y0
1 , . . . , y0

n

iid∼ N (0, σ 2
∗ ), (2.14)

where σ 2
∗ is defined in (2.9). Then the AMP algorithm is given by the iterations

x t =
1

1 − q∗
tanh(h + yt−1) − yt−1, (2.15)

yt = 	x t . (2.16)

An approximate solution of the TAP equations (2.11) is obtained from the iterates of

this algorithm as mt = (1 − q∗)(x t + yt−1) = tanh(h + yt−1). For any fixed point

(x, y) ∈ R
n × R

n of this algorithm, it is easily checked that m = (1 − q∗)(x + y) =
tanh(h + y) exactly satisfies (2.11).

Applying the diagonalization 	 = O�
O in (2.13), let us write the AMP iterations

in an expanded form

x t =
1

1 − q∗
tanh(h + yt−1) − yt−1, (2.17)

st = Ox t , (2.18)

yt = O�
st . (2.19)

For each fixed t ≥ 1, we define the sigma-field (in the probability space of O)

Gt = G
(

y0, x1, s1, y1, . . . , x t , st , yt
)

(2.20)

generated by all iterates of (2.17–2.19) up to yt . The proof of Theorem 1.3 will compute

the first and second moments of Z conditioned on Gt .
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10 Z. Fan, Y. Wu

A key property of this algorithm is that the scalar function f (h, y) = (1 −
q∗)−1 tanh(h + y) − y applied entrywise in (2.17) is divergence-free in y, in the

sense

E[∂y f (H, σ∗G)] = 0 (2.21)

for independent random variables H ∼ μH and G ∼ N (0, 1), which follows from the

definition of q∗ in (1.3). This substantially simplifies the state evolution that describes

the AMP iterates x t , yt —discussed in the next section—when J̄ is a non-Gaussian

orthogonally invariant couplings matrix.

2.3 State evolution for AMP

The state evolution for general AMP algorithms of this form was described in [12,

21, 40]. We first review the specialization of these results to the specific algorithm

(2.17–2.19). Proofs are deferred to Appendix A.

Define

»∗ = lim
n→∞

1

n
Tr 	2, δ∗ = σ 2

∗ /»∗. (2.22)

These quantities are given more explicitly as follows.

Proposition 2.1 We have

»∗ =
1

1 − (1 − q∗)2 R̄′(1 − q∗)
− 1 (2.23)

and

δ∗ =
q∗

(1 − q∗)2
− σ 2

∗ = E

[
(

1

1 − q∗
tanh(H+ σ∗G) − σ∗G

)2
]

(2.24)

for independent random variables H ∼ μH and G ∼ N (0, 1).

Under Assumption 1.1, let H ∼ μH and Y0 ∼ N (0, σ 2
∗ ) be independent of each

other. Then, iteratively for each s = 1, . . . , t , set

Xs =
1

1 − q∗
tanh(H+ Ys−1) − Ys−1, (2.25)

�s = E[(X1, . . . ,Xs)(X1, . . . ,Xs)
�], (2.26)

and draw Ys independently of (H, Y0) so that (Y1, . . . , Ys) ∼ N (0, »∗�s). This defines

a joint law for the variables (H, Y0, Y1, . . . , Yt ,X1, . . . ,Xt ), for any t ≥ 1.
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The replica-symmetric free energy for Ising spin... 11

Theorem 2.2 Fix any t ≥ 1, and let Yt = (y1, . . . , yt ) ∈ R
n×t and X t =

(x1, . . . , x t ) ∈ R
n×t collect the iterates of (2.17–2.19), starting from the initial-

ization (2.14). Then, under Assumption 1.1, almost surely as n → ∞, the empirical

distribution of rows of (h, y0, Yt , X t ) satisfies the convergence

1

n

n
∑

i=1

δ(hi ,y
0
i ,y1

i ,...,yt
i ,x

1
i ,...,x t

i )
→ (H, Y0, Y1, . . . , Yt ,X1, . . . ,Xt ) (2.27)

weakly and in pth moment for each fixed order p ≥ 1.

Furthermore, �t is non-singular, and almost surely as n → ∞,

n−1 X�
t X t → E[(X1, . . . ,Xt )(X1, . . . ,Xt )

�] = �t , (2.28)

n−1Y�
t Yt → E[(Y1, . . . , Yt )(Y1, . . . , Yt )

�] = »∗�t , (2.29)

n−1 X�
t Yt → E[(X1, . . . ,Xt )(Y1, . . . , Yt )

�] = 0. (2.30)

By definition, the second-moment matrix �t in Theorem 2.2 is the upper-left t × t

submatrix of �t+1. Thus it is unambiguous to write the entries of these matrices as

�t = (δss′)1≤s,s′≤t .

For our purposes, we will require only the following property of the entries of �t .

Proposition 2.3 In the setting of Theorem 2.2, for some β0 = β0(μD) > 0 and all

β ∈ (0, β0), we have

δt t = δ∗ and »∗δt t = σ 2
∗ for all t ≥ 1, lim

min(s,t)→∞
δst = δ∗, lim

min(s,t)→∞
»∗δst = σ 2

∗ .

Thus the algorithm (2.17–2.19) is convergent for sufficiently small β,2 in the sense

lim
min(s,t)→∞

(

lim
n→∞

1

n
‖x t − xs‖2

)

= lim
min(s,t)→∞

(δss + δt t − 2δst ) = 0,

lim
min(s,t)→∞

(

lim
n→∞

1

n
‖yt − ys‖2

)

= lim
min(s,t)→∞

»∗(δss + δt t − 2δst ) = 0.

Defining St = (s1, . . . , st ) = O X t , where the second equality holds by (2.18), the

convergence (2.28) implies that

n−1 X�
t X t = n−1S�

t St → �t .

A second important property of the memory-free dynamics (2.17–2.19) is the following

more general statement.

2 It is shown in [12] that this convergence in fact holds in the entirety of a high-temperature region defined

by an Almeida-Thouless type condition for stability of the replica-symmetric phase, which depends on μD

and μH .
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12 Z. Fan, Y. Wu

Proposition 2.4 In the setting of Theorem 2.2, fix any t ≥ 1, and let X t =
(x1, . . . , x t ) ∈ R

n×t and St = (s1, . . . , st ) ∈ R
n×t collect the iterates of (2.17–2.18).

Let f : R → R be any function which is continuous and bounded in a neighborhood of

supp(μD̄), and define f ( J̄ ) by the functional calculus. Then almost surely as n → ∞,

n−1 X�
t f ( J̄ )X t = n−1S�

t f (D̄)St → �t ·
∫

f (x)μD̄(dx).

Informally, this states that for large n,

n−1 X�
t f ( J̄ )X t ≈ n−1 X�

t X t · n−1 Tr f ( J̄ ).

Thus, in a certain sense, the AMP iterates X t are “free” of the couplings matrix

J̄ , despite being dependent on J̄ . This result is a consequence of the divergence-free

property (2.21), and it follows from the state evolution analysis in [21, Lemma A.4(b)].

We provide a proof in Appendix A.

Finally, we record here the leading-order behaviors of the above constants

q∗, σ 2
∗ , ¼∗, »∗, δ∗ for small β.

Proposition 2.5 Under Assumption 1.1, let O( f (β, z)) denote a quantity having mag-

nitude at most C · f (β, z), for some constants C, β0 > 0 depending only on μD and

for all β ∈ (0, β0) and z ∈ (0, 1). Then

R̄(z) = β2z
(

1 + O(βz)
)

, R̄′(z) = β2
(

1 + O(βz)
)

, R̄′′(z) = O(β3) (2.31)

and

q∗ = E[tanh(H)2] + O(β2), σ 2
∗ = β2q∗ + O(β3),

¼∗ =
1

1 − q∗
+ β2(1 − q∗)

(

1 + O(β(1 − q∗))
)

»∗ = β2(1 − q∗)
2
(

1 + O(β(1 − q∗))
)

, δ∗ =
q∗

(1 − q∗)2
+ O(β2).

2.4 Conditioning and large deviations for Haar-orthogonal matrices

We collect here several results on the conditioning of Haar-orthogonal matrices, and

large deviations for integrals over the orthogonal group.

Proposition 2.6 (Lemma 4 of [47]) Let A, B ∈ R
n×k be deterministic matri-

ces of rank k, such that A = Q B for some orthogonal matrix Q ∈ O(n). Let

VA⊥ , VB⊥ ∈ R
n×(n−k) be matrices with orthonormal columns spanning the orthogo-

nal complements of the column spans of A and B, respectively. Let O ∼ Haar(O(n)).

Then the law of O conditioned on the event A = O B is given by

O|A=O B
L= VA⊥ ÕV�

B⊥ + A(A�A)−1 B� = VA⊥ ÕV�
B⊥ + A(B�B)−1 B�,
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The replica-symmetric free energy for Ising spin... 13

where Õ ∼ Haar(O(n − k)).

Proposition 2.7 Let O ∼ Haar(O(n)). Let D ∈ R
n×n be a deterministic symmetric

matrix whose eigenvalue distribution satisfies Assumption 1.1(b) as n → ∞. Let μD

be its limit eigenvalue distribution, let d+ = max(x : x ∈ supp(μD)), and let G(z)

be the Cauchy transform of μD . Fix any constants C, ε > 0, and define the domain

�n =
{

(a, b) ∈ R
n × R

n : 0 <
‖a‖2

n
≤ G(d+ + ε) − ε,

‖b‖2

n
≤ C

}

.

Then

lim
n→∞

sup
(a,b)∈�n

∣
∣
∣
∣

1

n
log E

[

exp

(

b�Oa +
a�O�DOa

2

)]

−
1

2
En(a, b)

∣
∣
∣
∣
= 0, (2.32)

where

En(a, b) = inf
γ≥d++ε

{
γ ‖a‖2

n
+

b�(γ I − D)−1b

n
−

1

n
log det(γ I − D)

−
(

1 + log
‖a‖2

n

)}

. (2.33)

Proposition 2.8 Let O, D,μD , d+, and G(z)be as in Proposition 2.7. Fix any constants

C, ε > 0, and define the domains

Dε =
{

(γ, ν, ρ) ∈ R
3 :
(

γ ν

ν ρ

)

� (d+ + ε)I2×2

}

, (2.34)

�n =
{

(a, b, c, d) ∈ (Rn)4 : 0 ≺
1

n

(

‖a‖2 a�c

a�c ‖c‖2

)

�
(

G(d+ + ε) − ε
)

I2×2,
‖b‖2

n
,
‖d‖2

n
≤ C

}

.

Then

lim
n→∞

sup
(a,b,c,d)∈�n

∣
∣
∣
∣

1

n
log E

[

exp

(

b�Oa + d�Oc +
a�O�DOa

2
+

c�O�DOc

2

)]

−
1

2
En(a, b, c, d)

∣
∣
∣
∣
= 0 (2.35)

where
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14 Z. Fan, Y. Wu

En(a, b, c, d) = inf
(γ,ν,ρ)∈Dε

{
1

n
Tr

(

γ ν

ν ρ

)(

‖a‖2 a�c

a�c ‖c‖2

)

+
1

n

(

b

d

)� (
γ I − D ν I

ν I ρ I − D

)−1 (
b

d

)

−
1

n
log det

(

γ I − D ν I

ν I ρ I − D

)

−
(

2 + log det
1

n

(

‖a‖2 a�c

a�c ‖c‖2

))}

.

(2.36)

When b = d = 0, the expectations evaluated in Propositions 2.7 and 2.8 are finite-

rank HCIZ integrals over the orthogonal group, and such results were obtained in [26,

Theorems 2 and 7]. The above propositions extend these results to b, d �= 0, and

also establish the approximations in a more uniform sense. We note that the content

of Proposition 2.7 for b �= 0 is essentially the calculation of the limit free energy in

the spherical analogue of the model (1.1) with external field, and we discuss this in

Appendix D.

For b = d = 0, asymptotic versions of the infima in Propositions 2.7 and 2.8 may

be explicitly evaluated, and we record these evaluations here.

Proposition 2.9 Let μD be a compactly supported probability distribution on R. Let

G(z) and R(z) be the Cauchy- and R-transforms of μD , and let d+ = max(x : x ∈
supp(μD)).

(a) Suppose that α ∈ (0, G(d+)). Then

inf
γ>d+

γα −
∫

log(γ − x)μD(dx) − (1 + log α) =
∫ α

0

R(z)dz

and the infimum is achieved at γ = G−1(α) = R(α) + 1/α.

(b) Suppose that A ∈ R
2×2 is symmetric and satisfies 0 ≺ A ≺ G(d+)I . Define

f (A) ∈ R
2×2 for any function f : (0, G(d+)) → R by the functional calculus.

Let

D+ =
{

(γ, ν, ρ) ∈ R
3 :
(

γ ν

ν ρ

)

� d+ I2×2

}

.

Then

inf
(γ,ν,ρ)∈D+

Tr

(

γ ν

ν ρ

)

A −
∫

log det

(

γ − x ν

ν ρ − x

)

μD(dx) − (2 + log det A)

= Tr f (A),

where f (α) =
∫ α

0 R(z)dz. The infimum is achieved at

(

γ ν

ν ρ

)

= G−1(A) =

R(A) + A−1.

We prove Propositions 2.7, 2.8, and 2.9 in Appendix B, building on the large-

deviations arguments of [26].
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The replica-symmetric free energy for Ising spin... 15

3 Conditional first moment

Let Z be the partition function in (2.8), and let Gt be the sigma-field defined by (2.20).

We show in this section the following result.

Lemma 3.1 In the setting of Theorem 1.3,

lim
t→∞

lim
n→∞

1

n
log E[Z | Gt ] = �RS,

where the inner limit as n → ∞ exists almost surely for each fixed t.

3.1 Derivation of the variational formula

For scalar arguments γ > d̄+ and u, U ∈ R, and vector arguments v,w, V , W ∈ R
t

with ‖v‖2 + ‖w‖2 < 1, we define the function

�1,t (u, v, w; γ, U , V , W )

= E

[

log 2 cosh
(

U · H+ V��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ W��

−1/2
t (Y1, . . . , Yt )

)]

− u · U − v�V − w�W + u + R̄(1 − q∗)»
−1/2
∗ v�w +

¼∗ − R̄(1 − q∗)»−1
∗

2
‖w‖2

+
1

2
F(γ )‖v − »

−1/2
∗ w‖2 +

1

2
H(γ, 1 − ‖v‖2 − ‖w‖2) (3.1)

and the variational formula

�1,t = sup
u∈R

v,w∈Rt :‖v‖2+‖w‖2<1

inf
γ>d̄+

inf
U∈R, V ,W∈Rt

�1,t (u, v, w; γ, U , V , W ). (3.2)

Here, the random variables (H, Y1, . . . , Yt ,X1, . . . ,Xt ) and the positive-definite

matrix �t are as described in Theorem 2.2, and the functions F and H are given by

F(γ ) � F22(γ ) − F12(γ )�F11(γ )−1F12(γ ), (3.3)

H(γ, α) � γα −
∫

log(γ − x)μD̄(dx) − (1 + log α) (3.4)

where we set

¼(x) �
1

(1 − q∗)(¼∗ − x)
− 1, θ(x) � x +

R̄(1 − q∗)
»∗

(

1 −
1

(1 − q∗)(¼∗ − x)

)

,

(3.5)

and

F11(γ ) �

∫
1

γ − x

(

1 ¼(x)

¼(x) ¼(x)2

)

μD̄(dx) ∈ R
2×2 (3.6)
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16 Z. Fan, Y. Wu

F12(γ ) �

∫
1

γ − x

(

θ(x)

¼(x)θ(x)

)

μD̄(dx) ∈ R
2 (3.7)

F22(γ ) �

∫
1

γ − x
θ(x)2μD̄(dx). (3.8)

Note that under Assumption 1.1(b),μD̄ is supported on at least two points, and¼∗ > d̄+
by definition so x �→ ¼(x) is one-to-one on supp(μD̄). As a result, F11(γ ) is strictly

positive-definite and invertible for γ > d̄+ and thus F(γ ) is well-defined.

Lemma 3.2 In the setting of Theorem 1.3, for any fixed t ≥ 1, almost surely

lim
n→∞

1

n
log E[Z | Gt ] = �1,t .

Proof Recall the n × t matrices X t = (x1, . . . , x t ), Yt = (y1, . . . , yt ), and St =
(s1, . . . , st ) which collect the AMP iterates. We fix t and write G, X , Y , S,� for

Gt , X t , Yt , St ,�t . From the definition of Z in (2.8),

E[Z | G] =
∑

σ∈{+1,−1}n
exp

(

h�σ +
n

2
· fn(σ )

)

,

fn(σ ) �
2

n
log E

[

exp

(
1

2
σ�O� D̄Oσ

) ∣
∣
∣
∣
G

]

. (3.9)

The function fn(σ ) is well-defined for any σ ∈ R
n . We first approximate fn(σ ) over

the sphere where ‖σ‖2 = n.

Conditional law of O . Theorem 2.2 guarantees that � is non-singular. The assump-

tion of positive variance in (2.2) and the definitions of 	 and »∗ in (2.13) and

(2.22) ensure that »∗ > 0. Then applying (2.28–2.30), almost surely for all large

n, n−1(X , Y )�(X , Y ) ∈ R
2t×2t is also non-singular and (X , Y ) ∈ R

n×2t has full

column rank 2t . Furthermore, we have the bounds

lim sup
n→∞

n−1/2‖X‖ < ∞, lim sup
n→∞

n−1/2‖Y‖ < ∞, lim sup
n→∞

n−1/2‖S‖ < ∞,

(3.10)

which follow from ‖n−1 X�X‖ = ‖n−1S�S‖ → ‖�‖ and ‖n−1Y�Y‖ → ‖»∗�‖.

Conditional on G, the law of O is that of a Haar-orthogonal matrix conditioned on

the event

(S,
S) = O(X , Y ).

By Proposition 2.6, we may represent this conditional law of O as

O|G
L= V(S,
S)⊥ ÕV�

(X ,Y )⊥ + (S,
S)

(

X�X X�Y

Y�X Y�Y

)−1

(X , Y )�,
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The replica-symmetric free energy for Ising spin... 17

where V(X ,Y )⊥ , V(S,
S)⊥ ∈ R
n×(n−2t) have orthonormal columns orthogonal to

the column spans of (X , Y ) ∈ R
n×2t and (S,
S) ∈ R

n×2t respectively, and

Õ ∼ Haar(O(n − 2t)) is an independent Haar-orthogonal matrix. Let us write as

shorthand

V = V(S,
S)⊥ .

For any vector σ ∈ R
n , let us denote

σ⊥ = V�
(X ,Y )⊥σ ∈ R

n−2t , σ‖ = (S,
S)

(

X�X X�Y

Y�X Y�Y

)−1

(X , Y )�σ ∈ R
n .

(3.11)

This yields the equality in conditional law Oσ |G
L= V Õσ⊥ + σ‖, so (3.9) reduces to

fn(σ ) =
1

n
σ�
‖ D̄σ‖ +

2

n
log E

[

exp

(
1

2
σ�
⊥ Õ�V� D̄V Õσ⊥ + σ�

‖ D̄V Õσ⊥

)]

.

(3.12)

Expectation over Õ . We first restrict to the domain

Un = {σ ∈ R
n : ‖σ‖2 = n, σ⊥ �= 0}

and evaluate the expectation over Õ ∼ Haar(O(n − 2t)) using Proposition 2.7.

Throughout the proof, we write rn(σ ) to indicate any σ -dependent scalar, vector,

or matrix remainder term with dimension independent of n, satisfying the uniform

convergence almost surely

lim
n→∞

sup
σ∈Un

‖rn(σ )‖ = 0, (3.13)

and changing from instance to instance. We check the conditions of Proposition 2.7:

• The matrix V = V(S,
S)⊥ has n−2t orthonormal columns, where t is independent

of n. Then by Assumption 1.1(b) and Weyl eigenvalue interlacing, as n → ∞, the

empirical eigenvalue distribution of V� D̄V has the same weak limit μD̄ as that

of D̄. Furthermore, from the conditions on max(d1, . . . , dn) and min(d1, . . . , dn)

in Assumption 1.1(b), the largest eigenvalue of V� D̄V also converges to d̄+, and

the smallest eigenvalue remains bounded away from −∞.

• Take a = σ⊥ in Proposition 2.7. Applying (2.5), we have Ḡ(d̄+) = β−1G(d+),

where G(d+) ∈ (0,∞] depends only on μD . Then for some β0 = β0(μD) > 0,

any β ∈ (0, β0), and any sufficiently small constant ε > 0, we have

Ḡ(d̄+ + ε) − ε > 1 (3.14)

so that ‖σ⊥‖2/n ≤ ‖σ‖2/n = 1 < Ḡ(d̄+ + ε) − ε.
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18 Z. Fan, Y. Wu

• Take b = V� D̄σ‖ in Proposition 2.7. Observe that (S,
S) = O(X , Y ), so σ‖ =
O�X ,Y σ where �X ,Y = I −V(X ,Y )⊥V�

(X ,Y )⊥
∈ R

n×n is the orthogonal projection

onto the column span of (X , Y ). Then ‖V� D̄σ‖‖2/n ≤ ‖D̄‖2 · ‖σ‖‖2/n ≤ ‖D̄‖2 ·
‖σ‖2/n = ‖D̄‖2.

Thus Proposition 2.7 (applied with dimension n − 2t) yields uniformly over σ ∈ Un

fn(σ ) =
1

n
σ�
‖ D̄σ‖ + En(σ ) + rn(σ ) (3.15)

where

En(σ ) = inf
γ≥d̄++ε

{
γ ‖σ⊥‖2

n
+

σ�
‖ D̄V (γ I − V� D̄V )−1V� D̄σ‖

n

−
1

n
log det(γ I − V� D̄V ) −

(

1 + log
‖σ⊥‖2

n

)}

. (3.16)

Approximation by v,w. For σ ∈ Un , define the low-dimensional linear functionals

u(σ ) =
1

n
h�σ,

(

v(σ )

w(σ)

)

=
[

1

n

(

X�X X�Y

Y�X Y�Y

)]−1/2

·
1

n
(X , Y )�σ (3.17)

where u(σ ) ∈ R and v(σ ),w(σ) ∈ R
t . Note that

‖v(σ )‖2 + ‖w(σ)‖2 =
1

n
‖�(X ,Y )σ‖2 = 1 −

‖σ⊥‖2

n
< 1. (3.18)

Let us approximate the terms of (3.15) by functions of v(σ ) and w(σ).

We begin with σ�
‖ D̄σ‖/n: Applying (2.28–2.30) to (3.11),

σ‖ = (S,
S)

[
1

n

(

X�X X�Y

Y�X Y�Y

)]−1/2 (
v(σ )

w(σ)

)

= S · �−1/2v(σ ) + 
S · (»∗�)−1/2w(σ) + (S,
S) · rn(σ ). (3.19)

From the definition of ¼∗ in (2.12) and the definition of the Cauchy-transform in (2.4),

as n → ∞,

n−1 Tr D̄(¼∗ I − D̄)−1 = n−1 Tr
[

¼∗(¼∗ I − D̄)−1 − I
]

→ ¼∗Ḡ(¼∗) − 1

= ¼∗(1 − q∗) − 1. (3.20)

Differentiating the R-transform in (2.4),

R̄′(z) =
1

Ḡ ′(Ḡ−1(z))
+

1

z2
.
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The replica-symmetric free energy for Ising spin... 19

Then applying the form of »∗ in (2.23), also

n−1 Tr D̄(¼∗ I − D̄)−2 = n−1 Tr
[

¼∗(¼∗ I − D̄)−2 − (¼∗ I − D̄)−1
]

→ −¼∗Ḡ ′(¼∗) − Ḡ(¼∗) = ¼∗(»∗ + 1)(1 − q∗)
2 − (1 − q∗).

(3.21)

Let us write as a shorthand

a∗ � R̄(1 − q∗) = ¼∗ −
1

1 − q∗
. (3.22)

Then in view of the definition of 	 in (2.13), applying (2.1), (3.20), and (3.21) yields

n−1 Tr D̄ → 0, n−1 Tr D̄
 → a∗, n−1 Tr D̄
2 → ¼∗»∗ − a∗.

So Proposition 2.4 yields almost surely

1

n
(S,
S)� D̄(S,
S) →

(

0 a∗�
a∗� (¼∗»∗ − a∗)�

)

. (3.23)

Combining this with (3.19), we obtain for the first term of (3.15) that

σ�
‖ D̄σ‖

n
=

2a∗

»
1/2
∗

v(σ )�w(σ) +
(

¼∗ −
a∗
»∗

)

‖w(σ)‖2 + rn(σ ). (3.24)

Next, we approximate En(σ ) in (3.16) by approximating each term inside the

infimum uniformly over γ ≥ d̄+ + ε and σ ∈ Un . Note that for all large n, all

eigenvalues of V� D̄V are contained in a compact interval K ⊂ (−∞, d̄++ ε/2) that

is disjoint from [d̄+ + ε,∞). Fixing γ ≥ d̄+ + ε, the function x �→ log(γ − x) is

bounded and continuous on K, so by weak convergence in Assumption 1.1(b),

1

n
log det(γ I − V� D̄V ) =

∫

log(γ − x)μD̄(dx) + rn(γ )

where rn(γ ) → 0 as n → ∞. The function γ �→ n−1 log det(γ I − V� D̄V ) on the

left side is uniformly Lipschitz over γ ≥ d̄+ + ε for all large n, so by Arzelà-Ascoli,

in fact rn(γ ) → 0 uniformly in γ over any compact subset K′ ⊂ [d̄+ + ε,∞). For

any δ > 0, we may take a sufficiently large such compact subset K′
δ and bound

∣
∣
∣ log(γ − x) − log γ

∣
∣
∣ ≤ |x | ·

1

|γ | − |x |
< δ for all x ∈ K, γ ∈ [d̄+ + ε,∞) \ K′

δ.

Then also |rn(γ )| < 2δ for all γ ∈ [d̄+ + ε,∞)\K′
δ , implying that the convergence

rn(γ ) → 0 is uniform over all γ ≥ d̄+ + ε. Then, applying also ‖σ⊥‖2/n = 1 −
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20 Z. Fan, Y. Wu

‖v(σ )‖2 − ‖w(σ)‖2 from (3.18) and recalling the function H defined in (3.4), we

obtain

γ ‖σ⊥‖2

n
−

1

n
log det(γ I − V� D̄V ) −

(

1 + log
‖σ⊥‖2

n

)

= H(γ, 1 − ‖v(σ )‖2 − ‖w(σ)‖2) + rn(γ ). (3.25)

To analyze the remaining second term of En(σ ) in (3.16), let us introduce

W = (S,
S)

(

S�S S�
S

S�
S S�
2S

)−1/2

= (S,
S)

(

X�X X�Y

Y�X Y�Y

)−1/2

∈ R
n×2t

(3.26)

whose columns are the orthogonalization of (S,
S). Then the columns of (V , W )

form a full orthonormal basis for R
n . We write � = V V� = I − W W� as the

projection orthogonal to (S,
S). Applying (3.19), (3.23) and (2.28–2.30), observe

that

(

X�X X�Y

Y�X Y�Y

)−1

(S,
S)� D̄σ‖

=
(

�−1 0

0 (»∗�)−1

)(

0 a∗�
a∗� (¼∗»∗ − a∗)�

)(

�−1/2v(σ )

(»∗�)−1/2w(σ)

)

+ rn(σ )

=
(

0 a∗ I

a∗»−1
∗ I (¼∗ − a∗»−1

∗ )I

)(

�−1/2v(σ )

(»∗�)−1/2w(σ)

)

+ rn(σ ).

Then applying

� = I − W W� = I − (S,
S)

(

X�X X�Y

Y�X Y�Y

)−1

(S,
S)�,

we obtain

�D̄σ‖ =
(

D̄S − a∗»
−1
∗ 
S

)

· �−1/2v(σ )

+
(

D̄
S − a∗S − (¼∗ − a∗»
−1
∗ )
S

)

· (»∗�)−1/2w(σ)

+ (D̄S, D̄
S, S,
S)rn(σ ).

Substituting


 =
1

1 − q∗
(¼∗ I − D̄)−1 − I , D̄
 =

1

1 − q∗

(

¼∗(¼∗ I − D̄)−1 − I
)

− D̄

and applying the identity (3.22) and some algebraic simplification,

�D̄σ‖ = D̃S ·
(

�−1/2v(σ ) − (»∗�)−1/2w(σ)
)

+ (D̄S, D̄
S, S,
S)rn(σ )
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(3.27)

where D̃ is the diagonal matrix

D̃ � D̄ +
a∗
»∗

(

I −
1

1 − q∗
(¼∗ I − D̄)−1

)

. (3.28)

Now let us apply (V , W )�(V , W ) = I to write

(

γ I − V� D̄V −V� D̄W

−W� D̄V γ I − W� D̄W

)

=
(

V�

W�

)

(γ I − D̄)
(

V W
)

=
[(

V�

W�

)

(γ I − D̄)−1
(

V W
)
]−1

=
(

V�(γ I − D̄)−1V V�(γ I − D̄)−1W

W�(γ I − D̄)−1V W�(γ I − D̄)−1W

)−1

.

Equating the upper-left blocks and applying the Schur-complement formula to the

right side yields

γ I − V� D̄V =
[

V�(γ I − D̄)−1V − V�(γ I − D̄)−1W (W�(γ I

−D̄)−1W )−1W�(γ I − D̄)−1V
]−1

.

Thus, recalling � = V V�, the second term of (3.16) is

1

n
σ�
‖ D̄V (γ I − V� D̄V )−1V� D̄σ‖

=
1

n
σ�
‖ D̄�(γ I − D̄)−1�D̄σ‖

−
1

n
σ�
‖ D̄�(γ I − D̄)−1W (W�(γ I − D̄)−1W )−1W�(γ I − D̄)−1�D̄σ‖.

(3.29)

We apply (3.27) and Proposition 2.4 to approximate these two terms: By Proposition

2.4, we have almost surely

1

n
S� D̃(γ I − D̄)−1 D̃S → F22(γ ) · �

for each fixed γ ≥ d̄+ + ε, where F22(γ ) is as defined in (3.8) and D̃ in (3.28).

Applying (3.10), the left side is a t × t matrix that is entrywise uniformly Lipschitz

as a function of γ ≥ d̄+ + ε for all large n. So this convergence is again uniform in

γ over any compact subset K′ ⊂ [d̄+ + ε,∞) by Arzelà-Ascoli. For any δ > 0, we

may take a sufficiently large such subset K′
δ so that the left side is entrywise bounded
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by δ for all γ outside K′
δ . In all, we conclude the above convergence is uniform over

all γ ≥ d̄+ + ε. Since

1

n
S� D̃(γ I − D̄)−1(D̄S, D̄
S, S,
S),

1

n
(D̄S, D̄
S, S,
S)�(γ I − D̄)−1(D̄S, D̄
S, S,
S)

are also uniformly bounded over γ ≥ d̄++ε for all large n, this combined with (3.27)

shows for the first term of (3.29) that

1

n
σ�
‖ D̄�(γ I − D̄)−1�D̄σ‖ = F22(γ ) · ‖v(σ ) − »

−1/2
∗ w(σ)‖2 + rn(σ, γ )

(3.30)

where rn(σ, γ ) → 0 uniformly over γ ≥ d̄+ + ε and σ ∈ Un as n → ∞.

For the second term of (3.29), recalling 
 = 1
1−q∗

(¼∗ I − D̄)−1 − I from (2.13)

and again applying Proposition 2.4, we have

1

n
(S,
S)�(γ I − D̄)−1(S,
S) → F11(γ ) ⊗ � ∈ R

2t×2t

where

F11(γ ) = lim
n→∞

(
1
n

Tr(γ I − D̄)−1 1
n

Tr(γ I − D̄)−1

1
n

Tr 
(γ I − D̄)−1 1
n

Tr 
(γ I − D̄)−1


)

,

and this coincides with the matrix defined in (3.6). Then, recalling the form of W from

(3.26),

W�(γ I − D̄)−1W →
(

� 0

0 »∗�

)−1/2

[F11(γ ) ⊗ �]
(

� 0

0 »∗�

)−1/2

=
[(

1 0

0 »
−1/2
∗

)

F11(γ )

(
1 0

0 »
−1/2
∗

)]

⊗ I .

Similarly, for F12(γ ) as defined in (3.7),

1
√

n
W�(γ I − D̄)−1 D̃S →

(

� 0

0 »∗�

)−1/2

[F12(γ ) ⊗ �]

=
[(

1 0

0 »
−1/2
∗

)

F12(γ )

]

⊗ �1/2.

Thus

1

n
S� D̃(γ I − D̄)−1W (W�(γ I − D̄)−1W )−1W�(γ I − D̄)−1 D̃S
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→ F12(γ )�F11(γ )−1F12(γ ) · �.

Applying the bounds ‖(W�(γ I − D̄)−1W )−1‖ ≤ γ − d̄− and ‖W�(γ I − D̄)−1‖ ≤
1

γ−d̄+
, we may check that the left side is again uniformly Lipschitz over γ ≥ d̄+ + ε

and, for any δ > 0, is bounded in magnitude by δ when γ lies outside a compact subset

K′
δ ⊂ [d̄+ + ε,∞). Thus this convergence is again uniform over γ ≥ d̄+ + ε. Then,

combining with (3.27) and applying the same argument as leading to (3.30), we have

for the second term of (3.29) that

1

n
σ�
‖ D̄�(γ I − D̄)−1W (W�(γ I − D̄)−1W )−1W�(γ I − D̄)−1�D̄σ‖

= F12(γ )�F11(γ )−1F12(γ ) · ‖v(σ ) − »
−1/2
∗ w(σ)‖2 + rn(σ, γ )

where rn(σ, γ ) → 0 uniformly over γ ≥ d̄+ + ε and σ ∈ Un . Defining F =
F22 − F�

12F
−1
11 F12 as in (3.3), this shows that almost surely as n → ∞, the second

term of (3.16) satisfies

1

n
σ�
‖ D̄V (γ I − V� D̄V )−1V� D̄σ‖ = F(γ ) · ‖v(σ ) − »

−1/2
∗ w(σ)‖2 + rn(σ, γ ).

(3.31)

Observe that this also implies

F(γ ) is non-increasing and convex over γ > d̄+. (3.32)

Indeed, fixing any γ > d̄+, let us take ε above small enough such that γ ≥ d̄++ε. For

each n, let us take σ ∈ Un such that ‖v(σ )‖2 → 1 and ‖w(σ)‖2 → 0 as n → ∞. (For

example, we may choose σ =
√

n(x + δnr)/‖x + δnr‖ where x is the first column

of X , r is a unit vector orthogonal to the column span of (X , Y ), and δn → 0 as

n → ∞.) Then as n → ∞, the right side of (3.31) converges to F(γ ). The left side is

non-increasing and convex at γ for each finite n, so the same properties hold for the

limit F(γ ).

Combining (3.24), (3.25), and (3.31) and applying this to (3.15), we obtain the

approximation for σ ∈ Un

fn(σ ) = inf
γ≥d̄++ε

(
2a∗

»
1/2
∗

v(σ )�w(σ) +
(

¼∗ −
a∗
»∗

)

‖w(σ)‖2

+ F(γ ) · ‖v(σ ) − »
−1/2
∗ w(σ)‖2

+ H(γ, 1 − ‖v(σ )‖2 − ‖w(σ)‖2)

)

+ rn(σ ),

where rn(σ ) → 0 uniformly over σ ∈ Un . Observe that for any fixed σ ∈ Un , we have

‖v(σ )‖2 + ‖w(σ)‖2 < 1 strictly, so the argument to this infimum is a well-defined
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and convex function of γ ∈ (d̄+,∞). Its derivative in γ is

F ′(γ ) · ‖v(σ ) − »
−1/2
∗ w(σ)‖2 + 1 − ‖v(σ )‖2 − ‖w(σ)‖2 − Ḡ(γ ).

For any γ ∈ (d̄+, d̄+ + ε], F ′(γ ) ≤ 0 as shown in (3.32), and 1 < Ḡ(d̄+ + ε) − ε

as previously argued in (3.14), so Ḡ(γ ) > 1 + ε. Thus this derivative is negative for

γ ∈ (d̄+, d̄+ + ε], so it is equivalent to write this infimum over the range γ > d̄+, i.e.

fn(σ ) = f (v(σ ),w(σ)) + rn(σ ) (3.33)

where the function f on the domain V � {(v,w) : ‖v‖2 + ‖w‖2 < 1} is defined by

f (v,w) � inf
γ>d̄+

2a∗

»
1/2
∗

v�w

+
(

¼∗ −
a∗
»∗

)

‖w‖2 + F(γ ) · ‖v − »
−1/2
∗ w‖2 + H(γ, 1 − ‖v‖2 − ‖w‖2).

(3.34)

Finally, observe that fn(σ ) is continuous on the sphere {σ ∈ R
n : ‖σ‖2 = n}, and

the function σ �→ (v(σ ),w(σ)) is continuous, relatively open, and maps the dense

subset Un of this sphere to V for every n. By Proposition C.1 in Appendix C, f (v,w)

admits a continuous extension3 to the closure V̄ = {(v,w) : ‖v‖2 + ‖w‖2 ≤ 1}, and

(3.33) holds uniformly over all σ on this sphere. Thus, we have shown the almost sure

uniform convergence

lim
n→∞

sup
σ∈Rn :‖σ‖2=n

| fn(σ ) − f (v(σ ),w(σ))| = 0. (3.35)

Large deviations analysis. We conclude the proof by applying Varadhan’s Lemma

and the Gärtner-Ellis Theorem: Consider now the discrete uniform law σ ∼
Unif({+1,−1}n) and write 〈·〉 for the expectation over this law. For arguments U ∈ R

and V , W ∈ R
t , define the limiting cumulant generating function

¼(U , V , W )

= lim
n→∞

1

n
log

〈

exp
[

n
(

U · u(σ ) + V�v(σ ) + W�w(σ)
)
]〉

= lim
n→∞

1

n
log

〈

exp

[

U · h�σ + (V�, W�)

[
1

n

(

X�X X�Y

Y�X Y�Y

)]−1/2 (
X�σ

Y�σ

)
]〉

= lim
n→∞

1

n
log

〈

exp
[

U · h�σ + V��−1/2 X�σ + W�(»∗�)−1/2Y�σ + n · rn(σ )
]〉

.

3 Here, it is not hard to show that this extension to ‖v‖2 + ‖w‖2 = 1 is given explicitly by f (v, w) =
2a∗
»

1/2
∗

v�w + (¼∗ − a∗
»∗ )‖w‖2, but this explicit form is not needed for proving the end result in (3.2).
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Here rn(σ ) is a remainder term satisfying rn(σ ) → 0 uniformly over σ ∈ {+1,−1}n

for any fixed arguments U , V , W , and hence is negligible in the large-n limit. Evalu-

ating the average over σ using 〈eaσi 〉 = cosh a, and writing hi ∈ R and xi , yi ∈ R
t

for the entries of h and rows of X , Y , we obtain

¼(U , V , W ) = lim
n→∞

1

n

n
∑

i=1

log cosh
(

U · hi + V��−1/2xi + »
−1/2
∗ W��−1/2 yi

)

Then the weak convergence in law (2.27) from the AMP state evolution of Theorem

2.2 shows that this limit indeed exists almost surely, and is given by

¼(U , V , W )

= E

[

log cosh
(

U · H+ V��−1/2(X1, . . . ,Xt ) + »
−1/2
∗ W��−1/2(Y1, . . . , Yt )

)]

.

Note that the function¼(U , V , W ) is finite and differentiable at all (U , V , W ) ∈ R
2t+1.

Then, denoting by

¼∗(u, v, w) = sup
U∈R, V ,W∈Rt

U · u + V�v + W�w − ¼(U , V , W ) (3.36)

its Fenchel-Legendre dual, the Gärtner-Ellis Theorem shows that (u(σ ), v(σ ),w(σ))

satisfies a large deviations principle with good rate function ¼∗(u, v, w) [15, Theorem

2.3.6].

The function (u, v, w) �→ u + f (v,w)/2 is continuous over {u ∈ R, v, w ∈
R

t : ‖v‖2 + ‖w‖2 ≤ 1}. Here f (v,w) must be bounded over the compact set

{v,w ∈ R
t : ‖v‖2 + ‖w‖2 ≤ 1}, and for any c > 0 we have the exponential

integrability

lim
n→∞

1

n
log

〈

ecnu(σ )
〉

= lim
n→∞

1

n
log

〈

ec·h�σ
〉

= lim
n→∞

1

n

n
∑

i=1

log cosh(chi )

= E[log cosh(cH)] < ∞.

Then by (3.9), (3.35), and Varadhan’s lemma [15, Theorem 4.3.1],

lim
n→∞

1

n
log E[Z | G] = log 2 + lim

n→∞
1

n
log

〈

exp
(

n ·
[

u(σ ) +
1

2
f (v(σ ),w(σ))

])
〉

= sup
u∈R

v,w∈Rt : ‖v‖2+‖w‖2≤1

log 2 + u +
f (v,w)

2
− ¼∗(u, v, w).

The domain ‖v‖2 + ‖w‖2 ≤ 1 in this supremum may now be restricted to ‖v‖2 +
‖w‖2 < 1, by continuity of f (v,w) and lower-semicontinuity of the rate function

¼∗(u, v, w). Substituting the forms of f and ¼∗ from (3.34) and (3.36) concludes the

proof. ��
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3.2 Analysis of the variational formula

Denote by ∂u�1,t ∈ R, ∂v�1,t ∈ R
t , etc. the partial derivatives of the function �1,t in

each argument. We now consider an approximate stationary point of (3.2), given by

u∗ = E[H · tanh(H+ σ∗G)], v∗ = (1 − q∗)�
1/2
t et ,

w∗ = »
1/2
∗ (1 − q∗)�

1/2
t et

γ∗ = Ḡ−1(1 − q∗) = R̄(1 − q∗) + (1 − q∗)
−1, U∗ = 1, V∗ = 0,

W∗ = »
1/2
∗ �

1/2
t et

where et = (0, . . . , 0, 1) is the t th standard basis vector in R
t . We check in two steps

that first, this is approximately stationary for the optimization in (3.2) and yields the

desired value �RS in (2.10), and second, that it is approximately the global solution

to (3.2) when β > 0 is sufficiently small.

For these steps, we require the following properties of F(γ ) defined in (3.3).

Lemma 3.3 (a) F(γ ) is monotonically decreasing and convex over γ > d̄+.

(b) Fix any δ > 0, open neighborhood U ⊂ R, and twice differentiable function

γ : U → (d̄+ + δ,∞). Then for some constants C, β0 > 0 depending only on

μD and δ, any s ∈ U, and all β ∈ (0, β0),

|F(γ (s))| ≤ Cβ4(1 − q∗)
2 · sup

x∈supp(μD̄)

|(γ (s) − x)−1|

|∂sF(γ (s))| ≤ Cβ4(1 − q∗)
2 · sup

x∈supp(μD̄)

|∂s(γ (s) − x)−1|

∂2
s F(γ (s)) ≤ Cβ4(1 − q∗)

2 · sup
x∈supp(μD̄)

|∂2
s (γ (s) − x)−1|.

Proof Part (a) was verified in (3.32).

For part (b), we use the notation O( f (β)) as in Proposition 2.5, and allow the

constant in this notation to depend also on δ throughout the proof. We have x = O(β)

uniformly over x ∈ supp(μD̄). Applying this and Proposition 2.5,

(1 − q∗)(¼∗ − x) = 1 − (1 − q∗)x + O(β2(1 − q∗)
2), R̄(1 − q∗)»

−1
∗

=
1

1 − q∗
+ O(β).

Then for ¼(x) and θ(x) defined in (3.5), uniformly over x ∈ supp(μD̄), we have

¼(x) = O(β(1 − q∗)), θ(x) = O(β2(1 − q∗)).
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Abbreviate ¼ ≡ β(1 − q∗) and θ ≡ β2(1 − q∗). Then differentiating F11,F12,F22

in γ , this implies for k = 0, 1, 2,

∂k
s F11(γ (s)) = O

((

1 ¼

¼ ¼2

))

· sup
x∈supp(μD̄)

|∂k
s (γ (s) − x)−1| (3.37)

∂k
s F12(γ (s)) = O

((

θ

¼θ

))

· sup
x∈supp(μD̄)

|∂k
s (γ (s) − x)−1| (3.38)

∂k
s F22(γ (s)) = O(θ2) · sup

x∈supp(μD̄)

|∂k
s (γ (s) − x)−1|. (3.39)

Here and below, O(·) for a matrix or vector is in the sense of entrywise comparison.

To bound F11(γ )−1 appearing in F(γ ), we first bound det F11(γ ) from below in

terms of the variance of μD as follows: Let D1, D2 be independently drawn from μD .

Let X i = 1
γ−βDi

and Yi = 1
(1−q∗)(¼∗−βDi )

− 1 for i = 1, 2, where X i is positive for

γ > d̄+. Let d̄− = βd− denote the minimum point of support of μD̄ . Then

det F11(γ ) = E[X1]E[X1Y 2
1 ] − (E[X1Y1])2 =

1

2
E[X1 X2(Y1 − Y2)

2]

≥
β2

2(1 − q∗)2(γ − d̄−)2(¼∗ − d̄−)2
E[(D1 − D2)

2]

=
β2

(1 − q∗)2(γ − d̄−)2(¼∗ − d̄−)2
Var(D1).

Using the small-β expansion of ¼∗ in Proposition 2.5, we have (1 − q∗)(¼∗ − d̄−) =
1 + O(β). Then for any γ ≥ d̄+ + δ and some constant c = c(μD, δ) > 0, we

have det F11(γ ) ≥ cβ2/γ 2. Applying the explicit 2 × 2 matrix inverse of F11, and

combining this with (3.37) for k = 0 and the bound |(γ (s) − x)−1| = O(1/γ (s)),

F11(γ (s))−1 = O

(

β−2γ (s)

(

¼2 ¼

¼ 1

))

. (3.40)

Then applying (3.40), (3.38) and (3.39) for k = 0, and |(γ (s) − x)−1| = O(1/γ (s))

again,

F(γ (s)) = F22 − F
�
12F

−1
11 F12

= O(θ2) · sup
x∈supp(μ

D̄
)

|(γ (s) − x)−1| + O(θ2¼2/β2) · γ (s)

⎛

¿ sup
x∈supp(μ

D̄
)

|(γ (s) − x)−1|

À

⎠

2

= O(β4(1 − q∗)2) · sup
x∈supp(μ

D̄
)

|(γ (s) − x)−1|.

Here, the second equality uses θ2 = β4(1 − q∗)2 and ¼2 = β2(1 − q∗)2 = O(β2).

This is the desired bound for |F(γ (s))|.
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For the derivative, let us write as shorthand F ′
11 = ∂sF11(γ (s)) and similarly for

the other terms. Now differentiating F−1
11 and applying (3.40) and (3.37) with k = 1,

[F−1
11 ]′ = −F−1

11 F ′
11F

−1
11 = O

(

β−4

(

¼4 ¼3

¼3 ¼2

))

· γ (s)2 sup
x∈supp(μD̄)

|∂s(γ (s) − x)−1|.

Then applying also (3.38) and (3.39) with k ∈ {0, 1} and |(γ (s)−x)−1| ≤ O(1/γ (s)),

∂sF(γ (s)) = F ′
22 − 2F ′

12
�
F−1

11 F12 − F�
12[F

−1
11 ]′F12

= O

(

θ2

(

1 +
¼2

β2
+

¼4

β4

))

· sup
x∈supp(μD̄)

|∂s(γ (s) − x)−1|.

The desired bound for |∂sF(γ (s))| follows again from θ2 = β4(1 − q∗)2 and ¼2 =
O(β2).

Finally, differentiating F−1
11 again and applying (3.40) and (3.37) with k = 2,

[F−1
11 ]′′ = −F−1

11 F ′′
11F

−1
11 + 2F−1

11 F ′
11F

−1
11 F ′

11F
−1
11

= O

(

β−4

(

¼4 ¼3

¼3 ¼2

))

· γ (s)2 sup
x∈supp(μD̄)

|∂2
s (γ (s) − x)−1|

+ 2F−1
11 F ′

11F
−1
11 F ′

11F
−1
11 .

Then applying (3.40), (3.38) and (3.39) with k ∈ {0, 2},

∂2
s F(γ (s)) = F ′′

22 − 2F ′′
12

�
F−1

11 F12 − F�
12[F

−1
11 ]′′F12 − 2F ′

12
�
F−1

11 F ′
12

− 4F ′
12

�[F−1
11 ]′F12

= O

(

θ2

(

1 +
¼2

β2
+

¼4

β4

))

· sup
x∈supp(μD̄)

|∂2
s (γ (s) − x)−1|

− 2
(

F�
12F

−1
11 F ′

11F
−1
11 F ′

11F
−1
11 F12 + F ′

12
�
F−1

11 F ′
12

+ 2F ′
12

�[F−1
11 ]′F12

)

. (3.41)

Note that for the second term above,

F�
12F

−1
11 F ′

11F
−1
11 F ′

11F
−1
11 F12 + F ′

12
�
F−1

11 F ′
12 + 2F ′

12
�[F−1

11 ]′F12

=
[

F ′
12 − F ′

11F
−1
11 F12

]�
F−1

11

[

F ′
12 − F ′

11F
−1
11 F12

]

≥ 0

where this inequality holds because F−1
11 � 0. Then, applying again θ2 = β4(1−q∗)2

and ¼2 = O(β2), we obtain the desired upper bound for ∂2
s F(γ (s)). ��
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Lemma 3.4 For all t ≥ 1 and each ι ∈ {u, v, w, γ, U , W },

�1,t (u∗, v∗, w∗; γ∗, U∗, V∗, W∗) = �RS, ∂ι�1,t (u∗, v∗, w∗; γ∗, U∗, V∗, W∗) = 0.

Furthermore, for ι = V ,

lim
t→∞

‖∂V �1,t (u∗, v∗, w∗; γ∗, U∗, V∗, W∗)‖ = 0.

Proof Let δt t = e�t �t et be the lower-right entry of �t , and recall that δt t = δ∗ by

Proposition 2.3. Then the function �1,t in (3.1) evaluated at u∗, v∗, w∗, γ∗, U∗, V∗, W∗
is

�1,t = E[log 2 cosh(H+ Yt )] − »∗(1 − q∗)δ∗ + R̄(1 − q∗) · (1 − q∗)
2δ∗

+
¼∗»∗ − R̄(1 − q∗)

2
(1 − q∗)

2δ∗

+
1

2
H
(

Ḡ−1(1 − q∗), 1 − ‖v∗‖2 − ‖w∗‖2
)

.

For the first term, by Theorem 2.2 and Proposition 2.3, Yt ∼ N (0, »∗δt t ) where

»∗δt t = σ 2
∗ , so

E[log 2 cosh(H+ Yt )] = E[log 2 cosh(H+ σ∗G)], G ∼ N (0, 1).

For the second term, applying δ∗»∗ = σ 2
∗ = q∗ R̄′(1 − q∗) by (2.22) and (2.9),

−»∗(1 − q∗)δ∗ = −q∗(1 − q∗)R̄′(1 − q∗).

For the third and fourth terms, applying also ¼∗ = R̄(1−q∗)+ (1−q∗)−1 from (2.12)

and δ∗ = q∗(1 − q∗)−2 − σ 2
∗ from (2.24),

R̄(1 − q∗) · (1 − q∗)2δ∗ +
¼∗»∗ − R̄(1 − q∗)

2
(1 − q∗)2δ∗,

=
R̄(1 − q∗) · (1 − q∗)2

2

(
q∗

(1 − q∗)2
− σ 2

∗

)

+
(

R̄(1 − q∗) +
1

1 − q∗

)
(1 − q∗)2

2
σ 2
∗ ,

=
q∗
2

R̄(1 − q∗) +
q∗(1 − q∗)

2
R̄′(1 − q∗).

For the last term, observe that 1−‖v∗‖2−‖w∗‖2 = 1−(1+»∗)(1−q∗)2δ∗. Applying

δ∗ = σ 2
∗ /»∗ = q∗ R̄′(1 − q∗)/»∗ and the form of »∗ in (2.23), this is

1 − ‖v∗‖2 − ‖w∗‖2 = 1 − (1 + »−1
∗ )(1 − q∗)

2q∗ R̄′(1 − q∗) = 1 − q∗.
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For some β0 = β0(μD) > 0 and all β ∈ (0, β0), we have 1 − q∗ ≤ 1 < Ḡ(d̄+) =
β−1G(d+). Then by Proposition 2.9(a),

H
(

Ḡ−1(1 − q∗), 1 − q∗
)

=
∫ 1−q∗

0

R̄(z)dz.

Combining all of the above yields

�1,t = E[log 2 cosh(H+ σ∗G)] +
q∗
2

R̄(1 − q∗) −
q∗(1 − q∗)

2
R̄′(1 − q∗)

+
1

2

∫ 1−q∗

0

R̄(z)dz = �RS.

To check the stationary conditions, first by the form of H in (3.4), we have

∂γ H(γ, α) = α − Ḡ(γ ) and ∂αH(γ, α) = γ − 1/α. Since γ∗ = Ḡ−1(1 − q∗) =
R̄(1 − q∗) + (1 − q∗)−1 and ‖v∗‖2 + ‖w∗‖2 = q∗, we have

∂γ H(γ∗, 1 − q∗) = 0, ∂αH(γ∗, 1 − q∗) = γ∗ −
1

1 − q∗
= R̄(1 − q∗).

(3.42)

Then evaluating at u∗, v∗, w∗, γ∗, U∗, V∗, W∗ where v∗ = »
−1/2
∗ w∗, V∗ = 0, and

W∗ = (1 − q∗)−1w∗,

∂u�1,t = −U∗ + 1 = 0, (3.43)

∂v�1,t = −V∗ + R̄(1 − q∗)»
−1/2
∗ w∗ − R̄(1 − q∗)v∗ = 0, (3.44)

∂w�1,t = −W∗ + R̄(1 − q∗)»
−1/2
∗ v∗ + (¼∗ − R̄(1 − q∗)»−1

∗ )w∗ − R̄(1 − q∗)w∗ = 0,

(3.45)

∂γ �1,t =
1

2
∂γ H(γ∗, 1 − q∗) = 0. (3.46)

The third line above applies again ¼∗ = R̄(1 − q∗) + (1 − q∗)−1.

For the derivatives in U , V , W , observe that the derivative of log 2 cosh x is tanh x ,

and

tanh(H+ Yt ) = (1 − q∗)(Xt+1 + Yt )

by the definition of the AMP state evolution (2.25). Hence

∂U �1,t = E[H · (1 − q∗)(Xt+1 + Yt )] − u∗, (3.47)

∂V �1,t = E[�−1/2
t (X1, . . . ,Xt ) · (1 − q∗)(Xt+1 + Yt )] − v∗, (3.48)

∂W �1,t = E[»−1/2
∗ �

−1/2
t (Y1, . . . , Yt ) · (1 − q∗)(Xt+1 + Yt )] − w∗. (3.49)
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From the joint law of H, Y1, . . . , Yt ,X1, . . . ,Xt+1 described in Theorem 2.2, we have

E[H ·Yt ] = 0 and E[(1−q∗)H ·Xt+1] = E[H ·tanh(H+σ∗G)], so ∂U �1,t = 0. We have

E[(Y1, . . . , Yt ) · Yt ] = »∗�t et and E[(Y1, . . . , Yt ) · Xt+1] = 0, so also ∂W �1,t = 0.

Finally, writing a block decomposition of �t+1 as

�t+1 =
(

�t δt

δ�t δ∗

)

, δt = (δ1,t+1, . . . , δt,t+1), (3.50)

we have E[(X1, . . . ,Xt ) · Xt+1] = δt and E[(X1, . . . ,Xt ) · Yt ] = 0. Thus

∂V �1,t = (1 − q∗)�
−1/2
t δt − v∗ = (1 − q∗)

[

�
−1/2
t δt − �

1/2
t et

]

, (3.51)

so (recalling that δt+1,t+1 = δt t = δ∗)

(1 − q∗)
−2‖∂V �1,t‖2 = δ�t �−1

t δt − 2e�t δt + δ∗

=
(

δ�t �−1
t δt − δt+1,t+1

)

− 2(δt,t+1 − δ∗).

By Proposition 2.3, limt→∞ δt,t+1 = δ∗. By (2.28) applied at t + 1,

δt+1,t+1 − δ�t �−1
t δt = inf

α∈Rt
E

[(

Xt+1 − α�(X1, . . . ,Xt )
)2]

,

where the infimum is attained at the least-squares coefficients

α = E

[

(X1, . . . ,Xt )(X1, . . . ,Xt )
�
]−1

E

[

(X1, . . . ,Xt ) · Xt+1

]

= �−1
t δt .

Then

0 ≤ δt+1,t+1 − δ�t �−1
t δt ≤ E[(Xt+1 − Xt )

2] = 2δ∗ − 2δt,t+1,

so also limt→∞ δt+1,t+1 − δ�t �−1
t δt = 0. Thus limt→∞ ‖∂V �1,t‖ = 0. ��

Lemma 3.5 For a constant β0 = β0(μD) > 0 and any β ∈ (0, β0),

lim
t→∞

�1,t = �RS.

Proof We will establish separately

lim inf
t→∞

�1,t ≥ �RS, (3.52)

lim sup
t→∞

�1,t ≤ �RS. (3.53)

We write ot (1) for any scalar, vector, or matrix error (with dimension depending

on t) that satisfies limt→∞ ‖ot (1)‖ = 0, where ‖ · ‖ is the Euclidean norm for
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vectors and operator norm for matrices. Note that �1,t takes the max-min form

�1,t = supu,v,w infγ,U ,V ,W �1,t . Here the supremum and the infimum cannot be

interchanged due to the non-concavity in the (u, v, w) parameter. Our strategy is as

follows:

• For the lower bound, we specialize the outer supremum to a fixed choice of

(u, v, w) near (u∗, v∗, w∗) and minimize the resulting (convex) function over

(γ, U , V , W ). This minimizer is shown to be approximately (γ∗, U∗, V∗, W∗).
• For the upper bound, we specialize the inner infimum to a choice of (γ, U , V , W )

depending on (u, v, w) in such a way that the resulting function is globally concave

for sufficiently small β. This concave function is then shown to be approximately

maximized at (u∗, v∗, w∗).

To show the lower bound (3.52), we specialize �1,t to (u, v, w) = (u∗, ṽ∗, w∗)
where

ṽ∗ = v∗ + (1 − q∗)[�−1/2
t δt − �

1/2
t et ] = v∗ + ot (1),

and δt was defined in (3.50). Here the second equality has been verified in the preceding

proof of Lemma 3.4. As defined in (3.1), �1,t (u∗, ṽ∗, w∗; γ, U , V , W ) decomposes as

X(U , V , W )+Y (γ ), where X and Y are both convex functions; specifically, Y (γ ) =
1
2
F(γ )‖ṽ∗ − v∗‖2 + 1

2
H(γ, 1 − ‖ṽ∗‖2 − ‖w∗‖2) which is convex applying Lemma

3.3(a). Then

�1,t ≥ inf
γ>d̄+

inf
U∈R, V ,W∈Rt

�1,t (u∗, ṽ∗, w∗; γ, U , V , W )

= inf
U∈R, V ,W∈Rt

X(U , V , W ) + inf
γ>d̄+

Y (γ ).

In view of (3.47), (3.49), and (3.51), note that ṽ∗ is chosen so that (U∗, V∗, W∗) is now

an exact stationary point of X . Hence by the convexity of X , infU∈R, V ,W∈Rt X(U , V ,

W ) = X(U∗, V∗, W∗). For the infimum over γ , recall from (3.46) that ∂γ H(γ∗, 1 −
‖v∗‖2 − ‖w∗‖2) = 1 − ‖v∗‖2 − ‖w∗‖2 − Ḡ(γ∗) = 0. Since ‖ṽ∗ − v∗‖ = ot (1), we

have that Y ′(γ∗) = 1
2
F ′(γ∗)‖ṽ∗ − v∗‖2 + 1

2
(‖v∗‖2 − ‖ṽ∗‖2) = ot (1). Furthermore,

Y ′′(γ ) = 1
2
F ′′(γ )‖ṽ∗ − v∗‖2 + 1

2
Ḡ ′(γ ). Thus there exist some constants c, δ > 0

independent of t , such that Y ′′(γ ) ≥ c whenever |γ − γ∗| < δ. Applying Proposition

C.2, we conclude that infγ>d̄+ Y (γ ) ≥ Y (γ∗) + ot (1). Combining these two bounds,

�1,t ≥ X(U∗, V∗, W∗) + Y (γ∗) + ot (1)

= �1,t (u∗, ṽ∗, w∗; γ∗, U∗, V∗, W∗) + ot (1) = �RS + ot (1).

Here the last step follows from ‖∂v�1,t (u∗, v, w∗; γ∗, U∗, V∗, W∗)‖ ≤ C for all ‖v−
v∗‖ ≤ δ, where C, δ are constants independent of t . This shows the lower bound

(3.52).

For the upper bound (3.53), we now specialize �1,t to

γ = γ (v,w) = Ḡ−1(1 − ‖v‖2 − ‖w‖2),
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U = U∗ = 1, V = V (v) = β1/2(v − v∗), W = W (w) = β1/2(w − w∗) + W∗.

Here γ (v,w) is well-defined for any (v,w) such that ‖v‖2 + ‖w‖2 < 1, since

Ḡ(d̄+) > 1 in view of (3.14). Note that at (v,w) = (v∗, w∗), this gives

(γ (v∗, w∗), U , V (v∗), W (w∗)) = (γ∗, U∗, V∗, W∗). Furthermore,

�1,t ≤ sup
u∈R

v,w∈Rt :‖v‖2+‖w‖2<1

�1,t

(

u, v, w; γ (v,w), 1, V (v), W (w)
)

.

Due to the choice U = 1, the function on the right no longer depends on u. We denote

it by

�̃1,t (v,w) = �1,t

(

u, v, w; γ (v,w), 1, V (v), W (w)
)

= I + II + III + IV

where

I = E

[

log 2 cosh
(

H+ V (v)��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ W (w)��

−1/2
t (Y1, . . . , Yt )

)]

II = −v�V (v) − w�W (w) + R̄(1 − q∗)»
−1/2
∗ v�w +

¼∗ − R̄(1 − q∗)»−1
∗

2
‖w‖2

III =
1

2
F(γ (v,w))‖v − »

−1/2
∗ w‖2

IV =
1

2
H

(

γ (v, w), 1 − ‖v‖2 − ‖w‖2
)

.

We claim that for some β0 = β0(μD) > 0 and all β ∈ (0, β0), this function

�̃1,t (v,w) is concave over the domain {v,w ∈ R
t : ‖v‖2 + ‖w‖2 < 1}. To show this

claim, we analyze the Hessian of each term I, II, III, IV using the small-β approxi-

mations of Proposition 2.5—the desired concavity will arise from the first two terms

of II. We write O(βk) for a scalar, vector, or matrix whose (Euclidean or operator)

norm is at most Cβk uniformly over {v,w ∈ R
t : ‖v‖2 + ‖w‖2 < 1}, for a constant

C = C(μD) > 0 depending only on μD .

For I, we have

∇2
v,wI = β · E

[

Z t Z�
t ·

(

1 − tanh2
(

H+ V (v)��
−1/2
t (X1, . . . ,Xt )

+»
−1/2
∗ W (w)��

−1/2
t (Y1, . . . , Yt )

)]

where

Z t �

(

�
−1/2
t (X1, . . . ,Xt ), »

−1/2
∗ �

−1/2
t (Y1, . . . , Yt )

)

∈ R
2t . (3.54)

Then 0 � ∇2
v,wI � βE[Z t Z�

t ] = β I2t×2t , the last equality applying (2.28–2.30).

For II, observe that Proposition 2.5 implies

R̄(1 − q∗)»
−1/2
∗ = O(β), ¼∗ − R̄(1 − q∗)»

−1
∗ = O(β).
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Then ∇2
v,wII = −2β1/2 I2t×2t + O(β).

For III, consider any scalar linear parametrization

(v(s), w(s))s∈R = (v,w) + s · (v′, w′)

where ‖(v′, w′)‖ = 1. Write as shorthand

A(s) � 1 − ‖v(s)‖2 − ‖w(s)‖2, B(s) � ‖v(s) − »
−1/2
∗ w(s)‖2.

Applying ‖v‖, ‖w‖, ‖v′‖, ‖w′‖ ≤ 1, it is easily checked that

|A(s)|, |∂s A(s)|, |∂2
s A(s)| = O(1) at s = 0. (3.55)

Applying also »−1
∗ = O(β−2(1 − q∗)−2) by Proposition 2.5, we have

|B(s)|, |∂s B(s)|, |∂2
s B(s)| = O(β−2(1 − q∗)

−2) at s = 0. (3.56)

Now write also as shorthand

F(s) � F(γ (v(s), w(s))) = F
(

Ḡ−1(A(s))
)

.

Then

(v′, w′)� · ∇2
v,wIII · (v′, w′)

= ∂2
s III

∣
∣
∣
s=0

=
1

2

(

∂2
s F(s) · B(s) + 2∂sF(s) · ∂s B(s) + F(s) · ∂2

s B(s)
)∣
∣
∣
s=0

.

(3.57)

Observe that since ‖v‖2+‖w‖2 < 1, we have A(s) ∈ (0, 1] at s = 0. Let d̄− = βd−
be the smallest point of support of μD̄ . For any x > d̄+, since Ḡ(x) ≥ 1/(x − d̄−)

and Ḡ is decreasing, we have x ≤ Ḡ−1(1/(x − d̄−)). Thus

Ḡ−1(A(s)) ≥ Ḡ−1(1) ≥ 1 + d̄− > d̄+ + 0.1,

where the last inequality holds for all sufficiently small β. Then Lemma 3.3(b) implies

|F(s)| ≤ O(β4(1 − q∗)
2) · sup

x∈supp(μD̄)

∣
∣
∣(Ḡ

−1(A(s)) − x)−1
∣
∣
∣, (3.58)

|∂sF(s)| ≤ O(β4(1 − q∗)
2) · sup

x∈supp(μD̄)

∣
∣
∣∂s(Ḡ

−1(A(s)) − x)−1
∣
∣
∣, (3.59)

∂2
s F(s) ≤ O(β4(1 − q∗)

2) · sup
x∈supp(μD̄)

∣
∣
∣∂

2
s (Ḡ−1(A(s)) − x)−1

∣
∣
∣ (3.60)

where this third inequality (3.60) is a one-sided bound without absolute value on the

left side. Here Ḡ−1(A(s)) = R̄(A(s)) + A(s)−1, where A(s) ∈ (0, 1] at s = 0. To
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further bound (3.58–3.60),4 we may apply the series expansion for R̄(z) from (2.7),

recalling »̄1 = 0, to write

(

Ḡ−1(z) − x
)−1 =

(

R̄(z) + z−1 − x
)−1 = z

⎛

¿1 − xz +
∑

k≥2

»̄k zk

À

⎠

−1

= z ·
∑

j≥0

⎛

¿xz −
∑

k≥2

»̄k zk

À

⎠

j

�
∑

k≥0

ck(x)zk+1. (3.61)

Applying |x | ≤ Cβ and |»̄k | ≤ (Cβ)k for a constant C = C(μD) > 0 and all k, we

have

|ck(x)| ≤ 2k−1 · (Cβ)k,

where 2k−1 is the number of ordered partitions of k into positive integers. Then for

sufficiently small β0(μD) > 0 and any β ∈ (0, β0) and z ∈ (0, 1], all summations

of (3.61) are absolutely convergent, and the right side is an analytic power series

for the function (Ḡ−1(z) − x)−1 on the left. The derivatives in z may be computed

term-by-term, to yield

∣
∣
∣

(

Ḡ−1(z) − x
)−1

∣
∣
∣ ,

∣
∣
∣∂z

(

Ḡ−1(z) − x
)−1

∣
∣
∣ ,

∣
∣
∣∂

2
z

(

Ḡ−1(z) − x
)−1

∣
∣
∣ = O(1).

Combining with (3.55) and applying this to (3.58–3.60) using the chain rule, we obtain

that at s = 0, |F(s)|, |∂sF(s)| = O(β4(1 − q∗)2) and ∂2
s F(s) ≤ Cβ4(1 − q∗)2, for

a constant C = C(μD) > 0. Note that B(s) ≥ 0, so this last inequality implies also

∂2
s F(s) ·B(s) ≤ Cβ4(1−q∗)2 ·B(s). Then combining with (3.56) and applying this to

(3.57), we obtain the upper bound ∇2
v,wIII ≺ C ′β2 for a constant C ′ = C ′(μD) > 0.

Finally, for IV, observe that by Proposition 2.9(a),

IV =
1

2
H
(

γ (v,w), 1 − ‖v‖2 − ‖w‖2
)

=
1

2

∫ 1−‖v‖2−‖w‖2

0

R̄(z)dz.

Writing as shorthand f (s) =
∫ A(s)

0 R̄(z)dz with A(s) = 1 − ‖v(s)‖2 − ‖w(s)‖2

previously defined, we have similarly

(v′, w′)�∇2
v,wIV · (v′, w′) = ∂2

s IV

∣
∣
∣
s=0

=
1

2
∂2

s f (s)

∣
∣
∣
s=0

.

4 One may apply more explicit bounds for Ḡ−1 and its derivatives here, such as |Ḡ−1(z)− 1
z | ≤ β‖D‖∞,

but the current argument allows an easier generalization to the second moment computation (cf. Lemma

4.5).
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Applying again (3.55) and the bounds R̄(z), R̄′(z) = O(β2) over z ∈ (0, 1) from

Proposition 2.5, we obtain ∇2
v,wIV = O(β2). Combining I–IV, we conclude

∇2
v,w�̃1,t (v,w) ≺ −2β1/2 I2t×2t + O(β).

Then for some sufficiently small β0 = β0(μD) > 0, all β ∈ (0, β0), and any t , we

have

∇2
v,w�̃1,t (v,w) ≺ −β1/2 I2t×2t (3.62)

over the whole domain {v,w ∈ R
t : ‖v‖2 +‖w‖2 < 1}. In particular, �̃1,t is concave

as claimed.

Finally, we argue that (v,w) = (v∗, w∗) is an approximate maximizer for

�̃1,t (v,w). Indeed,

∂v�̃1,t (v∗, w∗) = ∂v�1,t + ∂γ �1,t · ∂vγ (v∗, w∗) + ∂V �1,t · ∂vV (v∗)

where the derivatives of �1,t are evaluated at (u∗, v∗, w∗; γ∗, U∗, V∗, W∗). Apply-

ing Lemma 3.4, we have ∂v�̃1,t (v∗, w∗) = ot (1). Similarly, ∂w�̃1,t (v∗, w∗) = 0.

In view of (3.62), applying Proposition C.2 yields sup‖v‖2+‖w‖2<1 �̃1,t (v,w) =
�̃1,t (v∗, w∗) + ot (1). Thus

�1,t ≤ �̃1,t (v∗, w∗) + ot (1) = �1,t

(

u∗, v∗, w∗; γ∗, U∗, V∗, W∗
)

+ ot (1)

= �RS + ot (1),

which is the desired (3.53). ��
Lemma 3.1 follows immediately from Lemmas 3.2 and 3.5.

4 Conditional secondmoment

We now provide a similar computation for the conditional second moment.

Lemma 4.1 In the setting of Theorem 1.3,

lim
t→∞

lim
n→∞

1

n
log E[Z2 | Gt ] = 2�RS

where the inner limit as n → ∞ exists almost surely for each fixed t.

4.1 Derivation of the variational formula

Define the domain

D+ =
{

(γ, ν, ρ) ∈ R
3 :
(

γ ν

ν ρ

)

� d̄+ · I2×2

}

. (4.1)
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For scalar arguments (γ, ν, ρ) ∈ D+ and u, k, U , K , P ∈ R and p ∈ [−1, 1], and

vector arguments v,w, �, m, V , W , L, M ∈ R
t satisfying

A(p, v, w, �, m) �

(

1 − ‖v‖2 − ‖w‖2 p − v�� − w�m

p − v�� − w�m 1 − ‖�‖2 − ‖m‖2

)

� 0, (4.2)

we define

�2,t (u, v, w, k, �, m, p; γ, ν, ρ, U , V , W , K , L, M, P)

= E

[

L

(

P, U · H+ V��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ W��

−1/2
t (Y1, . . . , Yt ),

K · H+ L��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ M��

−1/2
t (Y1, . . . , Yt )

)]

− u · U − k · K − v�V − w�W − ��L − m�M − p · P

+ u + k + R̄(1 − q∗)»
−1/2
∗

(

v�w + ��m
)

+
¼∗ − R̄(1 − q∗)»−1

∗
2

(

‖w‖2 + ‖m‖2
)

+
1

2
Tr F(γ, ν, ρ) · B(v, w, �, m)

+
1

2
H

(

γ, ν, ρ; 1 − ‖v‖2 − ‖w‖2, p − v�� − w�m, 1 − ‖�‖2 − ‖m‖2
)

. (4.3)

Here, L is a multivariate analogue of log 2 cosh defined as

L(x, y, z) = log[ex+y+z + ex−y−z + e−x+y−z + e−x−y+z], (4.4)

F(γ, ν, ρ) denotes the univariate function F from (3.3) applied spectrally to (
γ ν
ν ρ )

via the functional calculus, B is the 2 × 2-matrix-valued function

B(v,w, �, m) =
(

‖v − »
−1/2
∗ w‖2 (v − »

−1/2
∗ w)�(� − »

−1/2
∗ m)

(v − »
−1/2
∗ w)�(� − »

−1/2
∗ m) ‖� − »

−1/2
∗ m‖2

)

,

(4.5)

and H is the scalar-valued function

H(γ, ν, ρ; a, b, c) = Tr

(

γ ν

ν ρ

)(

a b

b c

)

−
∫

log det

(

γ − x ν

ν ρ − x

)

μD̄(dx)

−
(

2 + log det

(

a b

b c

))

. (4.6)

Define the variational formula

�2,t = sup
u,k∈R, p∈[−1,1]

v,w,�,m∈Rt :A(p,v,w,�,m)�0

inf
(γ,ν,ρ)∈D+

inf
U ,K ,P∈R

V ,W ,L,M∈Rt

�2,t (u, v, w, k, �, m, p;

γ, ν, ρ, U , V , W , K , L, M, P). (4.7)
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Lemma 4.2 In the setting of Theorem 1.3, for any fixed t ≥ 1, almost surely

lim
n→∞

1

n
log E[Z2 | Gt ] = �2,t .

Proof The proof is analogous to that of Lemma 3.2, and we will omit details where the

arguments are the same. We again fix t and write G, X , Y , S,� for Gt , X t , Yt , St ,�t .

We have

E[Z2 | G] =
∑

σ,τ∈{+1,−1}n
exp

(

h�σ + h�τ +
n

2
· fn(σ, τ )

)

,

where we define

fn(σ, τ ) =
2

n
log E

[

exp

(
1

2
σ�O� D̄Oσ +

1

2
τ�O� D̄Oτ

) ∣
∣
∣
∣
G

]

.

We will approximate this function fn(σ, τ ) on the spheres ‖σ‖2 = n and ‖τ‖2 = n.

Conditional law of O . Recall the shorthand V = V(S,
S)⊥ and σ⊥, σ‖ from (3.11),

and define similarly

τ⊥ = V�
(X ,Y )⊥τ, τ‖ = (S,
S)

(

X�X X�Y

Y�X Y�Y

)−1

(X , Y )�τ.

Then similarly to (3.12), an application of Proposition 2.6 yields

fn(σ, τ ) =
1

n
σ�
‖ D̄σ‖ +

1

n
τ�‖ D̄τ‖

+
2

n
log E

[

exp

(
1

2
σ�
⊥ Õ�V� D̄V Õσ⊥

+
1

2
τ�⊥ Õ�V� D̄V Õτ⊥ + σ�

‖ D̄V Õσ⊥ + τ�‖ D̄V Õτ⊥

)]

.

Expectation over Õ . We first restrict to the domain

Un =
{

(σ, τ ) ∈ R
n × R

n : ‖σ‖2 = n, ‖τ‖2 = n,

σ⊥ and τ⊥ are (non-zero and) linearly independent} .

In particular, σ and τ must be different on this domain. We evaluate the expectation

over Õ using Proposition 2.8: Taking a = σ⊥, c = τ⊥, b = V� D̄σ‖, d = V� D̄τ‖, and

defining �n by some constants ε, C > 0 depending only on μD and β, for sufficiently

small β and all large n, we have (a, b, c, d) ∈ �n . Then

fn(σ, τ ) =
1

n
σ�
‖ D̄σ‖ +

1

n
τ�‖ D̄τ‖ + En(σ, τ ) + rn(σ, τ ) (4.8)
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where

En(σ, τ ) = inf
(γ,ν,ρ)∈Dε

{
1

n
Tr

(

γ ν

ν ρ

)(

‖σ⊥‖2 σ�
⊥ τ⊥

σ�
⊥ τ⊥ ‖τ⊥‖2

)

+
1

n

(

V� D̄σ‖
V� D̄τ‖

)� (
γ I − V� D̄V ν I

ν I ρ I − V� D̄V

)−1 (
V� D̄σ‖
V� D̄τ‖

)

−
1

n
log det

(

γ I − V� D̄V ν I

ν I ρ I − V� D̄V

)

−
(

2 + log det
1

n

(

‖σ⊥‖2 σ�
⊥ τ⊥

σ�
⊥ τ⊥ ‖τ⊥‖2

))}

and

Dε =
{

(γ, ν, ρ) ∈ R
3 :
(

γ ν

ν ρ

)

� (d̄+ + ε) · I

}

. (4.9)

We use rn(σ, τ ) to denote any remainder satisfying

lim
n→∞

sup
(σ,τ )∈Un

‖rn(σ, τ )‖ → 0

almost surely, and changing from instance to instance.

Approximation by v,w, �, m, p. Define the functionals

u(σ ) =
1

n
h�σ,

(

v(σ )

w(σ)

)

=
[

1

n

(

X�X X�Y

Y�X Y�Y

)]−1/2

·
1

n
(X , Y )�σ

k(τ ) =
1

n
h�τ,

(

�(τ )

m(τ )

)

=
[

1

n

(

X�X X�Y

Y�X Y�Y

)]−1/2

·
1

n
(X , Y )�τ, p(σ, τ ) =

1

n
σ�τ.

Then

‖σ⊥‖2

n
= 1 − ‖v(σ )‖2 − ‖w(σ)‖2,

‖τ⊥‖2

n
= 1 − ‖�(τ)‖2 − ‖m(τ )‖2,

σ�
⊥ τ⊥
n

= p(σ, τ ) − v(σ )��(τ) − w(σ)�m(τ ),

and

σ‖ = S · �−1/2v(σ ) + 
S · (»∗�)−1/2w(σ) + (S,
S) · rn(σ, τ )

τ‖ = S · �−1/2�(τ) + 
S · (»∗�)−1/2m(τ ) + (S,
S) · rn(σ, τ ).
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We approximate the terms of (4.8) using the low-dimensional parameters v,w, �,

m, p: Setting a∗ = R̄(1 − q∗) and following arguments similar to (3.24),

σ�
‖ D̄σ‖

n
+

τ�‖ D̄τ‖

n
=

2a∗

»
1/2
∗

(

v(σ )�w(σ) + �(τ)�m(τ )
)

+
(

¼∗ −
a∗
»∗

)
(

‖w(σ)‖2 + ‖m(τ )‖2
)

+ rn(σ, τ ).

For approximating En(σ, τ ), we will refer to the eigen-decomposition

(

γ ν

ν ρ

)

=
(

y1 y2

)
(

α1 0

0 α2

)(

y�1
y�2

)

(4.10)

for (γ, ν, ρ) ∈ Dε. Here α1, α2 ≥ d̄+ + ε are the eigenvalues, and y1 ∈ R
2 and

y2 ∈ R
2 are the two corresponding eigenvectors. We write also

V� D̄V = V ′� D̄′V ′ = V ′� diag(d̄ ′
1, . . . , d̄ ′

n−2t )V ′ (4.11)

as the eigendecomposition of V� D̄V ∈ R
(n−2t)×(n−2t), where V ′ ∈ R

(n−2t)×(n−2t)

is orthogonal and d̄ ′
i are the eigenvalues. Then as n → ∞,

1

n
log det

(

γ I − V� D̄V ν I

ν I ρ I − V� D̄V

)

=
1

n

n−2t
∑

i=1

log det

(

γ − d̄ ′
i ν

ν ρ − d̄ ′
i

)

→
∫

log det

(

γ − x ν

ν ρ − x

)

μD̄(dx).

This convergence is uniform over (γ, ν, ρ) ∈ Dε, because the left side is

1

n

n−2t
∑

i=1

log(α1 − d̄ ′
i ) +

1

n

n−2t
∑

i=1

log(α2 − d̄ ′
i ),

and the uniform convergence of each sum over α1, α2 ≥ d̄+ + ε was verified in the

first-moment calculation of Lemma 3.1. Thus, for any (σ, τ ) ∈ Un ,

1

n
Tr

(

γ ν

ν ρ

)(

‖σ⊥‖2 σ�
⊥ τ⊥

σ�
⊥ τ⊥ ‖τ⊥‖2

)

−
1

n
log det

(

γ I − V� D̄V ν I

ν I ρ I − V� D̄V

)

−
(

2 + log det
1

n

(

‖σ⊥‖2 σ�
⊥ τ⊥

σ�
⊥ τ⊥ ‖τ⊥‖2

))

= H
(

γ, ν, ρ; 1 − ‖v(σ )‖2 − ‖w(σ)‖2, p(σ, τ )

− v(σ )��(τ) − w(σ)�m(τ ), 1 − ‖�(τ)‖2 − ‖m(τ )‖2
)

+ rn(γ, ν, ρ)
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where rn(γ, ν, ρ) → 0 uniformly over (γ, ν, ρ) ∈ Dε.

For the remaining second term of En(σ, τ ), let us write

(

γ I − V� D̄V ν I

ν I ρ I − V� D̄V

)−1

=
(

V ′ 0

0 V ′

)� (
γ I − D̄′ ν I

ν I ρ I − D̄′

)−1 (
V ′ 0

0 V ′

)

.

(4.12)

We may invert the matrix on the right by inverting separately the non-zero 2 × 2

blocks,

(

γ − d̄ ′
i ν

ν ρ − d̄ ′
i

)−1

=
1

α1 − d̄ ′
i

y1 y�1 +
1

α2 − d̄ ′
i

y2 y�2 .

Then for each j, k ∈ {1, 2}, the ( j, k) block of (4.12) is

(

γ I − V� D̄V ν I

ν I ρ I − V� D̄V

)−1

jk

= y1 j y1k V ′� diag

(

1

α1 − d̄ ′
i

)

V ′

+ y2 j y2k V ′� diag

(

1

α2 − d̄ ′
i

)

V ′

= y1 j y1k(α1 I − V� D̄V )−1

+ y2 j y2k(α2 I − V� D̄V )−1.

Let us consider first j = k = 1. Then by (3.31) from the first-moment calculation of

Lemma 3.1,

y2
11 ·

σ�
‖ D̄V (α1 I − V� D̄V )−1V� D̄σ‖

n
+ y2

21 ·
σ�
‖ D̄V (α2 I − V� D̄V )−1V� D̄σ‖

n

=
(

y2
11F(α1) + y2

21F(α2)
)

· ‖v(σ ) − »
−1/2
∗ w(σ)‖2 + rn(σ, α1, α2, y11, y21)

where rn(σ, α1, α2, y11, y21) → 0 uniformly over α1, α2 ≥ d̄++ε, y11, y21 ∈ [−1, 1],
and {σ : ‖σ‖2 = n, σ⊥ �= 0}. Similarly, for the other blocks j, k ∈ {1, 2},
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y11 y12 ·
σ�
‖ D̄V (α1 − V� D̄V )−1V� D̄τ‖

n

+ y21 y22 ·
σ�
‖ D̄V (α2 − V� D̄V )−1V� D̄τ‖

n

=
(

y11 y12F(α1) + y21 y22F(α2)
)

· (v(σ ) − »
−1/2
∗ w(σ))�(�(τ ) − »

−1/2
∗ m(τ ))

+ rn(σ, τ, α1, α2, y1, y2),

y2
12 ·

τ�‖ D̄V (α1 − V� D̄V )−1V� D̄τ‖

n
+ y2

22 ·
τ�‖ D̄V (α2 − V� D̄V )−1V� D̄τ‖

n

=
(

y2
12F(α1) + y2

22F(α2)
)

· ‖�(τ) − »
−1/2
∗ m(τ )‖2 + rn(τ, α1, α2, y12, y22)

where these remainders converge to 0 uniformly over (σ, τ ) ∈ Un , α1, α2 ≥ d̄+ + ε,

and y11, y12, y21, y22 ∈ [−1, 1]. Combining these statements, we have for the second

term of En(σ, τ ) that

1

n

(

V� D̄σ‖
V� D̄τ‖

)� (
γ I − V� D̄V ν I

ν I ρ I − V� D̄V

)−1 (
V� D̄σ‖
V� D̄τ‖

)

= Tr

(

y11 y21

y12 y22

)(

F(α1)

F(α2)

)(

y11 y12

y21 y22

)

· B(v(σ ),w(σ), �(τ ), m(τ ))

+ rn(σ, τ, γ, ν, ρ)

= Tr F(γ, ν, ρ) · B(v(σ ),w(σ), �(τ ), m(τ )) + rn(σ, τ, γ, ν, ρ) (4.13)

where F(γ, ν, ρ) is the function F applied to (
γ ν
ν ρ ) spectrally, and rn(σ, τ, γ, ν, ρ) →

0 uniformly over (σ, τ ) ∈ Un and (γ, ν, ρ) ∈ Dε.

Observe that this also implies, for any fixed vector z ∈ R
2, with respect to the

positive-definite ordering for (
γ ν
ν ρ ),

z�F(γ, ν, ρ)z is non-increasing and convex over (γ, ν, ρ) ∈ D+. (4.14)

Indeed, it suffices to show this for unit vectors z = (z1, z2) ∈ R
2. Fixing any

(γ, ν, ρ) ∈ D+, we may take ε above small enough such that (γ, ν, ρ) ∈ Dε. For

each n, we may then take (σ, τ ) ∈ Un such that ‖v(σ )‖2 → z2
1, ‖�(τ)‖2 → z2

2,

v(σ )��(τ) → z1z2, ‖w(σ)‖2 → 0, and ‖m(τ )‖2 → 0. (For example, we may

choose

σ =
√

n
z1x + (

√

1 − z2
1 + δn)r1

‖z1x + (

√

1 − z2
1 + δn)r1‖

, τ =
√

n
z2x + (

√

1 − z2
2 + δn)r2

‖z2x + (

√

1 − z2
2 + δn)r2‖

where x is the first column of X , r1 and r2 are vectors with ‖r1‖ = ‖r2‖ =
‖x‖ that are orthogonal to each other and to the column span of (X , Y ), and

δn → 0 as n → ∞.) Then as n → ∞, the right side of (4.13) converges to
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Tr F(γ, ν, ρ)·( z2
1 z1z2

z1z2 z2
2

) = z�F(γ, ν, ρ)z. The left side is non-increasing with respect

to the positive-definite ordering and convex at (γ, ν, ρ), so the same properties hold

for the limit z�F(γ, ν, ρ)z, showing (4.14).

Combining the above, we obtain the uniform approximation over (σ, τ ) ∈ Un

fn(σ, τ ) = inf
(γ,ν,ρ)∈Dε

(
2a∗

»
1/2
∗

(v(σ )�w(σ) + �(τ)�m(τ ))

+
(

¼∗ −
a∗
»∗

)

(‖w(σ)‖2 + ‖m(τ )‖2)

+ Tr F(γ, ν, ρ) · B(v(σ ),w(σ), �(τ ), m(τ ))

+ H
(

γ, ν, ρ; 1 − ‖v(σ )‖2 − ‖w(σ)‖2,

p(σ, τ ) − v(σ )��(τ) − w(σ)�m(τ ), 1 − ‖�(τ)‖2 − ‖m(τ )‖2
)
)

+ rn(σ, τ ). (4.15)

We now show that, for small β and ε, the above infimum over Dε is the same as

that over the large domain D+ in (4.1). Indeed, for any fixed (σ, τ ) ∈ Un , denote by

S(γ, ν, ρ) the quantity inside this infimum. Recall the eigendecomposition (
γ ν
ν ρ ) =

α1 y1 y�1 + α2 y2 y�2 in (4.10). For any (γ, ν, ρ) ∈ D+\Dε, we compare S(γ, ν, ρ)

with S(γ ′, ν′ρ′), where (
γ ′ ν′

ν′ ρ′ ) = max{α1, d̄++ ε}y1 y�1 +max{α2, d̄++ ε}y2 y�2 and

(γ ′, ν′, ρ′) ∈ Dε. Note first that since B(v,w, �, m) � 0, (4.14) implies

Tr F(γ ′, ν′, ρ′) · B(v(σ ),w(σ), �(τ ), m(τ ))

≤ Tr F(γ, ν, ρ) · B(v(σ ),w(σ), �(τ ), m(τ )).

Next, let � denote the matrix derivative of the term H(γ, ν, ρ; ·) of (4.15),

� �

(

∂γ H(γ, ν, ρ, ·) 1
2
∂νH(γ, ν, ρ, ·)

1
2
∂νH(γ, ν, ρ, ·) ∂ρH(γ, ν, ρ, ·)

)

which has the explicit form

� = A(p(σ, τ ), v(σ ),w(σ), �(τ ), m(τ )) −
∫ (

γ − x ν

ν ρ − x

)−1

μD̄(dx).

Since (γ, ν, ρ) ∈ D+\Dε, there is at least one eigenvalue, say α1, which is less than

d̄+ + ε. Then by the monotonicity of Ḡ, for the corresponding eigenvector y1, we

have

y�1

(
∫ (

γ − x ν

ν ρ − x

)−1

μD̄(dx)

)

y1 = Ḡ(α1) ≥ Ḡ(d̄+ + ε).
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So

Tr
[

� · y1 y�1
]

≤ Tr
[

A(p(σ, τ ), v(σ ),w(σ), �(τ ), m(τ )) · y1 y�1
]

− Ḡ(d̄+ + ε)

≤ 4 − Ḡ(d̄+ + ε) < 0

where the second inequality is by Cauchy-Schwarz and the fact that all entries of

A are in [−2, 2], and the last inequality holds for β ∈ (0, β0) and sufficiently small

β0 = β0(μD) > 0 and all sufficiently small ε. Integrating this bound from α1 to d̄++ε,

and also from α2 to d̄++ ε if α2 < d̄++ ε, we obtain H(γ ′, ν′, ρ′; ·) < H(γ, ν, ρ; ·).
Combining the above, S(γ ′, ν′, ρ′) < S(γ, ν, ρ). This shows that infDε

S(γ, ν, ρ) =
infD+ S(γ, ν, ρ).

Finally, observe that (σ, τ ) �→ (p(σ, τ ), v(σ ),w(σ), �(τ ), m(τ )) is continuous,

relatively open, and maps Un onto the fixed domain

V � {p ∈ [−1, 1], v, w, �, m ∈ R
t : A(p, v, w, �, m) � 0}, (4.16)

where A(p, v, w, �, m) is as defined in (4.2). Then, applying Proposition C.1 as in

the proof of Lemma 3.2 to extend the uniform approximation from Un to its closure

{σ, τ ∈ R
n : ‖σ‖2 = ‖τ‖2 = n}, we obtain

lim
n→∞

sup
σ,τ∈Rn :‖σ‖2=‖τ‖2=n

| fn(σ, τ ) − f (p(σ, τ ), v(σ ),w(σ), �(τ ), m(τ ))| = 0

where we define for (p, v, w, �, m) ∈ V the function

f (p, v, w, �, m) � inf
(γ,ν,ρ)∈D+

2a∗

»
1/2
∗

(v�w + ��m)

+
(

¼∗ −
a∗
»∗

)

(‖w‖2 + ‖m‖2) + Tr F(γ, ν, ρ)×

B(v,w, �, m) + H
(

γ, ν, ρ; 1 − ‖v‖2 − ‖w‖2, p − v��

− w�m, 1 − ‖�‖2 − ‖m‖2
)

,

and extend this definition by continuity to the closure V̄ .

Large deviations analysis. Finally, writing 〈·〉 for the expectation over the independent

discrete uniform laws σ ∼ Unif({+1,−1}n) and τ ∼ Unif({+1,−1}n), we may

define the limiting cumulant generating function

¼(U , V , W , K , L, M, P)

= lim
n→∞

1

n
log

〈

exp
[

n(U · u(σ ) + V�v(σ ) + W�w(σ) + K · k(τ )

+ L��(τ) + M�m(τ ) + P · p(σ, τ )
]〉
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= lim
n→∞

1

n
log

〈

exp
[

U · h�σ + V��−1/2 X�σ + W�(»∗�)−1/2Y�σ

+ K · h�τ + L��−1/2 X�τ + M�(»∗�)−1/2Y�τ + P · σ�τ + n · rn(σ, τ )
]〉

where rn(σ, τ ) → 0 uniformly over σ, τ ∈ {+1,−1}n . Evaluating the average over

(σ, τ ) using

〈exσi τi+yσi+zτi 〉 = eL(x,y,z)/4, (4.17)

where L(x, y, z) is as defined in (4.4), and applying the AMP convergence (2.27), this

limit exists and is given by

¼(U , V , W , K , L, M, P)

= E

[

L
(

P, U · H+ V��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ W��

−1/2
t (Y1, . . . , Yt ),

K · H+ L��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ M��

−1/2
t (Y1, . . . , Yt )

)]

− log 4.

The proof is then concluded by the same argument as in the first-moment calculation

of Lemma 3.1, using the Gärtner-Ellis Theorem and Varadhan’s Lemma. ��

4.2 Analysis of the variational formula

We now consider the approximate stationary point of (4.7) given by

u∗ = k∗ = E[H · tanh(H+ σ∗G)], v∗ = �∗ = (1 − q∗)�
1/2
t et ,

w∗ = m∗ = »
1/2
∗ (1 − q∗)�

1/2
t et ,

γ∗ = ρ∗ = Ḡ−1(1 − q∗), ν∗ = 0, U∗ = K∗ = 1, V∗ = L∗ = 0,

W∗ = M∗ = »
1/2
∗ �

1/2
t et , p∗ = q∗, P∗ = 0.

We write �2,t (u∗, . . . , P∗) for the evaluation of �2,t at this point. We again verify in

two steps that this approximately solves (4.7) for β > 0 sufficiently small.

For these steps, we require the following properties of F(γ, ν, ρ) analogous to

Lemma 3.3.

Lemma 4.3 (a) For any fixed vector z ∈ R
2, z�F(γ, ν, ρ)z is non-increasing (with

respect to the positive-definite ordering) and convex over (γ, ν, ρ) ∈ D+.

(b) Fix any δ > 0, open neighborhood U ⊂ R, and twice differentiable function

(γ, ν, ρ) : U → Dδ where Dδ is as defined in (4.9). Then for some constants

C, β0 > 0 depending only on μD and δ, any s ∈ U, and all β ∈ (0, β0),

‖F(γ (s), ν(s), ρ(s))‖ ≤ Cβ4(1 − q∗)2 sup
x∈supp(μD̄)

∥
∥
(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥∥

‖∂sF(γ (s), ν(s), ρ(s))‖ ≤ Cβ4(1 − q∗)2 sup
x∈supp(μD̄)

∥
∥∂s

(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥∥

123



46 Z. Fan, Y. Wu

∂2
s F(γ (s), ν(s), ρ(s)) � Cβ4(1 − q∗)2 sup

x∈supp(μD̄)

∥
∥∂2

s

(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥∥ · I2×2.

Proof Part (a) was verified in (4.14).

For part (b), as in Lemma 3.3, let us write O( f (β)) for a quantity bounded in

magnitude by C | f (β)| for a constant C = C(μD, δ) > 0, and interpret this entrywise

for vectors and matrices. We again diagonalize

(

γ ν

ν ρ

)

=
(

y1 y2

)
(

α1

α2

)(

y�1
y�2

)

,

where (y1, y2) are the two unit eigenvectors. Then by definition,

F(γ, ν, ρ) = y1 y�1 · F(α1) + y2 y�2 · F(α2)

where F(α) is the univariate function defined in (3.3). Then ‖F(γ, ν, ρ)‖ =
max(|F(α1)|, |F(α2)|), and also ‖(( γ (s) ν(s)

ν(s) ρ(s)
) − x I )−1‖ = max(|α1 − x |−1, |α2 −

x |−1), so the bound for ‖F(γ (s), ν(s), ρ(s))‖ follows directly from Lemma 3.3.

To bound the derivatives, let us write F(γ, ν, ρ) in a more explicit form that parallels

(3.3):

F(γ, ν, ρ) = F22(γ, ν, ρ) − F12(γ, ν, ρ)�F11(γ, ν, ρ)−1F12(γ, ν, ρ)

(4.18)

where

F11(γ, ν, ρ) =
∫ (

γ − x ν

ν ρ − x

)−1

⊗
(

1 ¼(x)

¼(x) ¼(x)2

)

μD̄(dx) ∈ R
4×4, (4.19)

F12(γ, ν, ρ) =
∫ (

γ − x ν

ν ρ − x

)−1

⊗
(

θ(x)

¼(x)θ(x)

)

μD̄(dx) ∈ R
4×2, (4.20)

F22(γ, ν, ρ) =
∫ (

γ − x ν

ν ρ − x

)−1

θ(x)2μD̄(dx) ∈ R
2×2. (4.21)

and ¼(x) and θ(x) were defined in (3.5). To verify this form, recall the univariate

F11(γ ),F12(γ ),F22(γ ) defined in (3.6)–(3.8) and observe that

F11(γ, ν, ρ) =
∫ (

y1 y�1 ⊗
1

α1 − x

(

1 ¼(x)

¼(x) ¼(x)2

)

+y2 y�2 ⊗
1

α2 − x

(

1 ¼(x)

¼(x) ¼(x)2

))

μD̄(dx)

= y1 y�1 ⊗ F11(α1) + y2 y�2 ⊗ F11(α2).
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Then, using y1 y�1 · y2 y�2 = y2 y�2 · y1 y�1 = 0,

F11(γ, ν, ρ)−1 = y1 y�1 ⊗ F11(α1)
−1 + y2 y�2 ⊗ F11(α2)

−1. (4.22)

Similarly

F12(γ, ν, ρ) = y1 y�1 ⊗ F12(α1) + y2 y�2 ⊗ F12(α2), (4.23)

F22(γ, ν, ρ) = y1 y�1 ⊗ F22(α1) + y2 y�2 ⊗ F22(α2). (4.24)

Combining these yields the identity (4.18).

As in the proof of Lemma 3.3, we use again the abbreviations ¼ ≡ β(1 − q∗) and

θ ≡ β2(1 − q∗). Then, from the forms (4.19–4.21), for k = 1, 2,

∂k
s F11(γ (s)) = O

((

1 1

1 1

)

⊗
(

1 ¼

¼ ¼2

))

· sup
x∈supp(μD̄)

∥
∥∂k

s

(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥

∥

(4.25)

∂k
s F12(γ (s)) = O

((

1 1

1 1

)

⊗
(

θ

¼θ

))

· sup
x∈supp(μD̄)

∥
∥∂k

s

(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥

∥ (4.26)

∂k
s F22(γ (s)) = O

((

1 1

1 1

)

· θ2

)

· sup
x∈supp(μD̄)

∥
∥∂k

s

(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥

∥. (4.27)

Writing F ′
11 = ∂sF11(γ (s), ν(s), ρ(s)) and similarly for the other terms,

F ′ = F ′
22 − F ′

12
�
F−1

11 F12 − F�
12F

−1
11 F ′

12 + F�
12F

−1
11 F ′

11F
−1
11 F12.

Taking the product of (4.22) and (4.23),

F−1
11 F12 = y1 y�1 ⊗ [F11(α1)

−1F12(α1)] + y2 y�2 ⊗ [F11(α2)
−1F12(α2)]

= O

((

1 1

1 1

)

⊗ β−2

(

¼2θ

¼θ

))

, (4.28)

where the second equality applies (3.40) and (3.38) from Lemma 3.3. Then, applying

also (4.25–4.27) for k = 1, and ¼2 = O(β2) and θ2 = β4(1 − q∗)2, we obtain

‖F ′‖ = O(β4(1 − q∗)
2) ·

∥
∥∂s

(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥

∥

which is the desired bound for ‖∂sF(γ (s), ν(s), ρ(s))‖.

For the second derivative, similar to (3.41), we have

F ′′ = F ′′
22 − F ′′

12
�
F−1

11 F12 − F�
12F

−1
11 F ′′

12 + F�
12F

−1
11 F ′′

11F
−1
11 F12

− 2
(

F�
12F

−1
11 F ′

11F
−1
11 F ′

11F
−1
11 F12 + F ′

12
�
F−1

11 F ′
12 + F ′

12
�[F−1

11 ]′F12

+ F�
12[F

−1
11 ]′F ′

12

)

.
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Bounding the terms on the first line using (4.28) and (4.25–4.27) for k = 2, and

applying for the second line

F�
12F

−1
11 F ′

11F
−1
11 F ′

11F
−1
11 F12 + F ′

12
�
F−1

11 F ′
12 + F ′

12
�[F−1

11 ]′F12 + F�
12[F

−1
11 ]′F ′

12

=
[

F ′
12 − F ′

11F
−1
11 F12

]�
F−1

11

[

F ′
12 − F ′

11F
−1
11 F12

]

� 0,

we obtain

F ′′ � O(β4(1 − q∗)
2) · sup

x∈supp(μD̄)

∥
∥∂2

s

(

(
γ (s) ν(s)
ν(s) ρ(s)

) − x I
)−1∥

∥

which is the desired upper bound for ∂2
s F(γ (s), ν(s), ρ(s)). ��

Lemma 4.4 For each ι ∈ {u, v, w, k, �, m, p, γ, ν, ρ, U , W , K , M, P}, we have

�2,t (u∗, . . . , P∗) = 2�RS, ∂ι�2,t (u∗, . . . , P∗) = 0.

For ι ∈ {V , L}, we have

lim
t→∞

‖∂ι�2,t (u∗, . . . , P∗)‖ = 0.

Proof At P∗ = 0, we have L(0, y, z) = log(ey + e−y)(ez + e−z) = log 2 cosh y +
log 2 cosh z. Recalling the definition of F(γ, ν, ρ) by the spectral calculus, at ν∗ = 0,

we have F(γ, 0, ρ) = diag(F(γ ),F(ρ)), where F(·) is the function defined in (3.3).

Hence

Tr F(γ, 0, ρ) · B(v,w, �, m) = F(γ ) · ‖v − »
−1/2
∗ w‖2 + F(ρ) · ‖� − »

−1/2
∗ m‖2.

At the above v∗, �∗, w∗, m∗, p∗, from the computation in Lemma 3.4, we also have

1 − ‖v∗‖2 − ‖w∗‖2 = 1 − (1 + »∗)(1 − q∗)
2δ∗ = 1 − q∗,

1 − ‖�∗‖2 − ‖m∗‖2 = 1 − (1 + »∗)(1 − q∗)
2δ∗ = 1 − q∗,

p∗ − v�∗ �∗ − w�
∗ m∗ = q∗ − (1 + »∗)(1 − q∗)

2δ∗ = 0,

and

H(γ, 0, ρ; 1 − q∗, 0, 1 − q∗) = H(γ, 1 − q∗) + H(ρ, 1 − q∗)

where H(·, ·) on the right is the function (3.4). Thus,

�2,t (u∗, . . . , P∗) = �1,t (u∗, v∗, w∗; γ∗, U∗, V∗, W∗)

+�1,t (k∗, �∗, m∗; ρ∗, K∗, L∗, M∗) = 2�RS,
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the second equality applying Lemma 3.4. Also, in view of (4.17),

∂xL(x, y, z)
∣
∣
x=0

= tanh(y) tanh(z), ∂yL(x, y, z)
∣
∣
x=0

= tanh(y), ∂zL(x, y, z)
∣
∣
x=0

= tanh(z). (4.29)

Furthermore,

∂γ F(γ, ν, ρ)
∣
∣
ν=0

= ∂γ F(γ )e1e�1 , ∂ρF(γ, ν, ρ)
∣
∣
ν=0

= ∂ρF(ρ)e2e�2 ,

∂γ H(γ, ν, ρ; a, b, c)
∣
∣
ν=0

= ∂γ H(γ, a), ∂ρH(γ, ν, ρ; a, b, c)
∣
∣
ν=0

= ∂ρH(ρ, c).

Using these identities and applying Lemma 3.4, we obtain

∂ι�2,t (u∗, . . . , P∗) = ∂ι�1,t (u∗, v∗, w∗; γ∗, U∗, V∗, W∗) = 0 for ι ∈ {u, γ, U , W }
∂V �2,t (u∗, . . . , P∗) = ∂V �1,t (u∗, v∗, w∗; γ∗, U∗, V∗, W∗) = ot (1),

∂ι�2,t (u∗, . . . , P∗) = ∂ι�1,t (k∗, �∗, m∗; ρ∗, K∗, L∗, M∗) = 0 for ι ∈ {k, ρ, K , M}
∂L�2,t (u∗, . . . , P∗) = ∂L�1,t (k∗, �∗, m∗; ρ∗, K∗, L∗, M∗) = ot (1),

where ot (1) denotes a length-t vector satisfying limt→∞ ‖ot (1)‖ = 0.

It remains to check the derivatives in ι ∈ {v,w, �, m, p, ν, P}. Since v∗ = »
−1/2
∗ w∗

and �∗ = »
−1/2
∗ m∗, we have B(v∗, w∗, �∗, m∗) = 0 and ∂ι B(v∗, w∗, �∗, m∗) = 0 for

each ι ∈ {v,w, �, m}. Writing a∗ = c∗ = 1 − q∗ and b∗ = 0, we have

∂bH(γ∗, ν∗, ρ∗; a∗, b∗, c∗) = ∂νH(γ∗, ν∗, ρ∗; a∗, b∗, c∗) = 0

by the identities ν∗ = b∗ = 0 and

∂y log det

(

x y

y z

) ∣
∣
∣
∣

y=0

= 0. (4.30)

Then it follows directly that

∂p�2,t (u∗, . . . , P∗) = 0, ∂ν�2,t (u∗, . . . , P∗) = 0.

Furthermore,

∂aH(γ∗, ν∗, ρ∗; a∗, b∗, c∗) = ∂aH(γ∗, a∗) = R̄(1 − q∗),

∂cH(γ∗, ν∗, ρ∗; a∗, b∗, c∗) = ∂cH(ρ∗, c∗) = R̄(1 − q∗),

where the latter two equalities follow from (3.42). Applying also (3.44–3.45) and the

identity ¼∗ = R̄(1 − q∗) + (1 − q∗)−1, we have

∂v�2,t (u∗, . . . , P∗) = −V∗ + R̄(1 − q∗)»
−1/2
∗ w∗ − R̄(1 − q∗)v∗ = 0,

∂w�2,t (u∗, . . . , P∗) = −W∗ + R̄(1 − q∗)»
−1/2
∗ v∗ + (¼∗ − R̄(1 − q∗)»

−1
∗ )w∗
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− R̄(1 − q∗)w∗ = 0;

similarly ∂��2,t (u∗, . . . , P∗) = 0 and ∂m�2,t (u∗, . . . , P∗) = 0.

Finally, for the derivative in P , applying (4.29), together with

U∗ · H+ V�
∗ �

−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ W�

∗ �
−1/2
t (Y1, . . . , Yt )

= K∗ · H+ L�
∗ �

−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ M�

∗ �
−1/2
t (Y1, . . . , Yt ) = H+ Yt ,

p∗ = q∗, and the definition of q∗ from (2.9), we obtain

∂P�2,t (u∗, . . . , P∗) = E[tanh(H+ Yt )
2] − p∗ = E[tanh(H+ σ∗G)2] − q∗ = 0.

��

Lemma 4.5 For a constant β0 = β0(μD) > 0 and any β ∈ (0, β0),

lim
t→∞

�2,t = 2�RS.

Proof The proof is analogous to that of Lemma 3.5. We establish separately

lim inf
t→∞

�2,t ≥ 2�RS, (4.31)

lim sup
t→∞

�2,t ≤ 2�RS. (4.32)

Recall the max-min form of �2,t in (4.7). For the lower bound (4.31), we specialize

the outer supremum of �2,t to (u, v, w, k, �, m, p) = (u∗, ṽ∗, w∗, k∗, �̃∗, m∗, p∗)
where

ṽ∗ = v∗ + (1 − q∗)[�−1/2
t δt − �

1/2
t et ] = v∗ + ot (1)

�̃∗ = �∗ + (1 − q∗)[�−1/2
t δt − �

1/2
t et ] = �∗ + ot (1)

(4.33)

and δt = (δ1,t+1, . . . , δt,t+1) is as defined in the proof of Lemma 3.5. Note that

�2,t (u∗, ṽ∗, w∗, k∗, �̃∗, m∗, p∗; γ, . . . , P) = X(U , V , W , K , L, M, P) + Y (γ, ν, ρ),

where both X and Y are convex functions. (Convexity of Y holds by Lemma 4.3(a).)

Then

�2,t ≥ inf
U ,K ,P∈R, V ,W ,L,M∈Rt

X(U , V , W , K , L, M, P) + inf
(γ,ρ,ν)∈D+

Y (γ, ν, ρ).

(4.34)

Under the above definitions of ṽ∗ and �̃∗, the point (U∗, V∗, W∗, K∗, L∗, M∗, P∗)
is an exact stationary point of X hence its minimizer. For the minimum of Y , note

that Y (γ, ν, ρ) = 1
2

Tr F(γ, ν, ρ)B̃ + 1
2
H(γ, ν, ρ; ã∗, b̃∗, c̃∗), where we denote B̃ =
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B(ṽ∗, w∗, �̃∗, m∗) = ot (1), ã∗ = c̃∗ = 1 − ‖ṽ∗‖2 − ‖w∗‖2 = 1 − ‖�̃∗‖2 − ‖m∗‖2,

and b̃∗ = p∗− ṽ�∗ �̃∗−w�
∗ m∗ = q∗−‖ṽ∗‖2 −‖w∗‖2. Recalling the identity Ḡ(γ∗) =

1 − q∗ = 1 − ‖v∗‖2 − ‖w∗‖2, we have for each ι ∈ {γ, ν, ρ},

∂ιH(γ∗, ν∗, ρ∗; ã∗, b̃∗, c̃∗) = ‖v∗‖2 − ‖ṽ∗‖2 = ot (1).

Therefore ∇Y (γ ∗, ν∗, ρ∗) = ot (1). Furthermore, there exist some constants c, δ > 0

independent of t , such that∇Y (γ, ν, ρ) � cI whenever ‖(γ, ν, ρ)−(γ∗, ν∗, ρ∗)‖ ≤ δ.

Applying Proposition C.2 yields inf(γ,ν,ρ)∈D+ Y (γ, ν, ρ) ≥ Y (γ∗, ν∗, ρ∗) + ot (1).

Note that ‖∇v,��2,t (u∗, v, w∗, k∗, �, m∗; γ∗, . . . , P∗)‖ ≤ C for all ‖v − v∗‖ ≤ δ and

‖�− �∗‖ ≤ δ, where C, δ are constants independent of t . In view of (4.33) and (4.34),

we then have

�2,t ≥ �2,t (u∗, . . . , P∗) + ot (1) = 2�RS + ot (1),

implying the lower bound (4.31).

For the upper bound (4.32), let A ∈ R
2×2 be a symmetric matrix satisfying 0 ≺

A ≺ Ḡ(d̄+)I . We define by the spectral calculus

(

γ (A) ν(A)

ν(A) ρ(A)

)

= Ḡ−1(A) = R̄(A) + A−1 � d̄+ I . (4.35)

We then specialize the inner infimum of �2,t to

(γ, ν, ρ) =
(

γ (A(p, v, w, �, m)), ν(A(p, v, w, �, m)), ρ(A(p, v, w, �, m))
)

,

U = U∗ = 1, K = K∗ = 1, V = V (v) = β1/2(v − v∗),

L = L(�) = β1/2(� − �∗),

W = W (w) = β1/2(w − w∗) + W∗, M = M(m) = β1/2(m − m∗) + M∗,

P = P(p) = β1/2(p − p∗),

where A(p, v, w, �, m) is in (4.2). Note that the above (γ, ν, ρ) is well defined for

any (p, v, w, �, m) in the domain V defined in (4.16), provided that β < G(d+)/2,

in which case Ḡ(d̄+) > 2. Indeed, since p ∈ [−1, 1], we have A(p, v, w, �, m) �
(

1 p
p 1 ) � 2I ≺ Ḡ(d̄+)I .

At (p, v, w, �, m) = (p∗, v∗, w∗, �∗, m∗), this specialization gives (γ, ν, ρ) =
(γ∗, ν∗, ρ∗), because A(p∗, v∗, w∗, �∗, m∗) = (1 − q∗)I2×2, (V , L, W , M) =
(V∗, L∗, W∗, M∗), and P = P∗ = 0. Now write the function �2,t under this spe-

cialization (which no longer depends on u or k, thanks to the choice of U and K )

as

�̃2,t (p, v, w, �, m) = I + II + III + IV

where

I = E

[

L

(

P(p),H+ V (v)��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ W (w)��

−1/2
t (Y1, . . . , Yt ),
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H+ L(�)��
−1/2
t (X1, . . . ,Xt ) + »

−1/2
∗ M(m)��

−1/2
t (Y1, . . . , Yt )

)]

II = −v�V (v) − w�W (w) − ��L(�) − m�M(m) − p · P(p)

+ R̄(1 − q∗)»
−1/2
∗ (v�w + ��m) +

¼∗ − R̄(1 − q∗)»−1
∗

2

(

‖w‖2 + ‖m‖2
)

III =
1

2
Tr F

(

γ (A(p, v, w, �, m)), ν(A(p, v, w, �, m)), ρ(A(p, v, w, �, m))
)

· B(v, w, �, m)

IV =
1

2
H

(

γ (A(p, v, w, �, m)), ν(A(p, v, w, �, m)), ρ(A(p, v, w, �, m));

1 − ‖v‖2 − ‖w‖2, p − v�� − w�m, 1 − ‖�‖2 − ‖m‖2
)

.

Recalling the definition of �2,t in (4.7) and the domain V in (4.16), we have

�2,t ≤ sup
(p,v,w,�,m)∈V

�̃2,t (p, v, w, �, m). (4.36)

Note that V is a convex set, since A(p, v, w, �, m) � 0 is equivalent to (
1 p
p 1 ) ≺

( v �
w m )�( v �

w m ).

For all β ∈ (0, β0) and sufficiently small β0 = β0(μD) > 0, we claim that �̃2,t is

globally concave on V . As in Lemma 3.5, we write O(βk) for a scalar, vector, or matrix

of norm at most Cβk , uniformly over V , for a constant C = C(μD) > 0 depending

only on μD .

For I, recall from (4.17) that L(x, y, z) = log(4〈exστ+yσ+zτ 〉), where 〈·〉 is the

mean with respect to σ and τ independent and uniform on {+1,−1}. Thus its Hessian

coincides with the covariance matrix of the random vector r = (στ, σ, τ )

∇2L(x, y, z) = 〈rr�〉′ − 〈r〉′〈r〉′�,

under the tilted distribution of (σ, τ ) defined by 〈 f (σ, τ )〉′ = 〈 f (σ,τ )exστ+yσ+zτ 〉
〈exστ+yσ+zτ 〉 . So

0 � ∇2L(x, y, z) � 3I . (4.37)

Recall the random vector Z t ∈ R
2t defined in (3.54), which satisfies E[Z t Z�

t ] = I .

For any unit vector q = (a, b, c) ∈ R
4t+1 where a ∈ R and b, c ∈ R

2t , define

η = (a, b�Z t , c�Z t ) ∈ R
3. Then q�(∇2

p,v,w,�,mI)q = β · E[η�(∇2L)η], where

∇2L is evaluated in the same point as in the definition of I. Applying (4.37), we have

0 ≤ q�(∇2
p,v,w,�,mI)q ≤ 3β · E[‖η‖2] = 3β, and thus 0 � ∇2

p,v,w,�,mI � 3β · I .

For II, by the same arguments as in Lemma 3.5, we have∇2
p,v,w,�,mII = −2β1/2 I +

O(β).

For III, consider any scalar linear parametrization

(p(s), v(s), w(s), �(s), m(s))s∈R = (p, v, w, �, m) + s · (p′, v′, w′, �′, m′)

where ‖(p′, v′, w′, �′, m′)‖ = 1. Write as shorthand the following 2 × 2 matrices

A(s) = A
(

p(s), v(s), w(s), �(s), m(s)
)

, B(s) = B
(

v(s), w(s), �(s), m(s)
)

,
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and F(s) = F(γ (A(s)), ν(A(s)), ρ(A(s))). As in Lemma 3.5, it is easily checked

from the definitions (4.2) and (4.5) and the bound »∗ = O(β−2(1 − q∗)−2) in Propo-

sition 2.5 that at s = 0, we have

‖A(s)‖, ‖∂s A(s)‖, ‖∂2
s A(s)‖ = O(1), ‖B(s)‖, ‖∂s B(s)‖, ‖∂2

s B(s)‖
= O(β−2(1 − q∗)

−2). (4.38)

We may write

(p′, v′, w′, �′, m′)� · ∂2
p,v,w,�,mIII · (p′, v′, w′, �′, m′)

= ∂2
s III

∣
∣
∣
s=0

=
1

2
Tr
(

∂2
s F(s) · B(s) + 2∂sF(s) · ∂s B(s) + F(s) · ∂2

s B(s)
)∣
∣
∣
s=0

.

Applying (4.35) and Lemma 4.3, we have analogous to Lemma 3.5 that

∣
∣
∣Tr F(s) · ∂2

s B(s)

∣
∣
∣ ≤ O(β4(1 − q∗)2) · sup

x∈supp(μ
D̄

)

∥
∥
∥

(

Ḡ−1(A(s)) − x I
)−1∥∥

∥ ·
∥
∥
∥∂

2
s B(s)

∥
∥
∥

∣
∣
∣Tr ∂sF(s) · ∂s B(s)

∣
∣
∣ ≤ O(β4(1 − q∗)2) · sup

x∈supp(μ
D̄

)

∥
∥
∥∂s

(

Ḡ−1(A(s)) − x I
)−1∥∥

∥ ·
∥
∥
∥∂s B(s)

∥
∥
∥

Tr ∂2
s F(s) · B(s) ≤ O(β4(1 − q∗)2) · sup

x∈supp(μ
D̄

)

∥
∥
∥∂

2
s

(

Ḡ−1(A(s)) − x I
)−1∥∥

∥ ·
∥
∥
∥B(s)

∥
∥
∥

where the last inequality above applies B(s) � 0 and holds without absolute value on

the left side. Applying the series expansion (3.61), for some β0 = β0(μD) > 0 and

all β ∈ (0, β0), we have

(

Ḡ−1(A(s)) − x I
)−1

=
∑

k≥0

ck(x)A(s)k+1

as a convergent matrix series. Then, differentiating in s term-by-term,

∥
∥
∥

(

Ḡ−1(A(s)) − x I
)−1∥

∥
∥,

∥
∥
∥∂s

(

Ḡ−1(A(s)) − x I
)−1∥

∥
∥,

∥
∥
∥∂

2
s

(

Ḡ−1(A(s)) − x I
)−1∥

∥
∥

= O(1),

so ∇2
p,v,w,�,mIII ≺ Cβ2 for a constant C = C(μD) > 0.

For IV, observe that by Proposition 2.9(b), we have

IV =
1

2
Tr f (A(p, v, w, �, m)), f (α) �

∫ α

0

R̄(z)dz.

Then similarly

(p′, v′, w′, �′, m′)�∇2
p,v,w,�,mIV · (p′, v′, w′, �′, m′) = ∂2

s IV

∣
∣
∣
s=0
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=
1

2
Tr ∂2

s f (A(s))

∣
∣
∣
s=0

.

For all β ∈ (0, β0), we may integrate (2.7) term by term to write f (A(s)) as the

convergent matrix series

f (A(s)) =
∑

k≥2

»̄k

k
A(s)k,

where |»̄k | ≤ (Cβ)k for some C = C(μD). Differentiating in s at s = 0 and using

(4.38), we have for some constant C ′ independent of t ,

∥
∥
∥∂

2
s f (A(s))

∣
∣
∣
s=0

∥
∥
∥ ≤

∑

k≥2

(C ′β)k = O(β2).

Then also ∇2
p,v,w,�,mIV = O(β2).

Combining the above, ∇2
p,v,w,�,m�̃2,t ≺ −2β1/2 I(4t+1)×(4t+1) + O(β). Applying

Lemma 4.4, we have that ∇ι�̃2,t (p∗, v∗, w∗, �∗, m∗) = 0 for ι = p, w, m and ot (1)

for ι = v, �. Thus, recalling that V is convex and applying Proposition C.2,

sup
(p,v,w,�,m)∈V

�̃2,t (v,w) = �̃2,t (p∗, v∗, w∗, �∗, m∗) + ot (1)

= �2,t (u∗, . . . , P∗) + ot (1) = 2�RS + ot (1).

Then �2,t ≤ 2�RS + ot (1) in view of (4.36), proving the upper bound (4.32). ��

Lemma 4.1 follows immediately from Lemmas 4.2 and 4.5.

5 Proof of Theorem 1.3

Finally, using Lemmas 3.1 and 4.1, we conclude the proof of Theorem 1.3.

Proof We first show concentration of n−1 log Z around its mean: Writing σ� Jσ =
Tr σσ�O�DO and viewing Z = Z(O) as a function of O ∈ R

n×n , we have

∂O log Z(O) =
1

Z

∑

σ∈{+1,−1}n
βσσ�O�D · exp

(
β

2
σ� Jσ + h�σ

)

.

Then the Frobenius norm of this derivative (for any O ∈ R
n×n) is bounded as

‖∂O log Z(O)‖F ≤ max
σ∈{+1,−1}n

‖βσσ�O�D‖F

=
√

nβ2 · σ�O�D2 Oσ ≤ nβ‖D‖op‖O‖op.
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So for any O, O ′ ∈ O(n), integrating along a linear path from O to O ′ in R
n×n ,

| log Z(O) − log Z(O ′)| ≤ ‖O − O ′‖F · nβ‖D‖op.

We apply Gromov’s concentration inequality in the form of [2, Corollary 4.4.28]: Let

Q ∼ SO(n) and O ∼ O(n) be independent. Then for any ε > 0,

P

[∣
∣
∣
∣

1

n
log Z(O) −

1

n
E[log Z(O Q) | O]

∣
∣
∣
∣
> ε

]

≤ 2 exp

(

−
(

n
4
− 1

2

)

ε2

2β2‖D‖2
op

)

. (5.1)

For any diagonal sign matrix P with diagonal entries {+1,−1}, note that O�DO =
O�P�D P O , so that Z(O) = Z(P O). Then for any fixed O ∈ O(n), the conditional

expectation E[log Z(O Q) | O] over Q ∼ Haar(SO(n)) coincides with that over

Q ∼ Haar(O(n)), which in turn equals the unconditional expectation E[log Z(O)]
over O ∼ Haar(O(n)) by the invariance of the Haar measure. Thus under Assumption

1.1(b), for any ε > 0 and a constant c = c(ε, β, μD) > 0,

P

[∣
∣
∣
∣

1

n
log Z −

1

n
E log Z

∣
∣
∣
∣
≤ ε

]

≥ 1 − e−cn . (5.2)

The remainder of the argument is the same as in [8], but for convenience we repro-

duce it here. Fix any ε > 0. First observe that by Lemma 3.1, for a large enough

iteration t = t(ε), almost surely

lim
n→∞

1

n
log E[Z | Gt ] ≤ �RS + ε.

Since

1

n
log E[Z | Gt ] ≤ log 2 + max

σ∈{+1,−1}n
1

n

(
β

2
σ� Jσ + h�σ

)

≤ log 2 +
β

2
‖D‖op +

1

n

n
∑

i=1

|hi |,

and the right side has a constant upper bound under Assumption 1.1, this and Jensen’s

inequality yields

1

n
E log Z ≤ E

1

n
log E[Z | Gt ] ≤ �RS + 2ε for all large n.

For the complementary lower bound, for any t ≥ 1, Markov’s inequality gives

P

[
1

n
log Z ≥ �RS − ε

]

= E

[

P

[
1

n
log Z ≥ �RS − ε

∣
∣
∣
∣
Gt

]]

≥ P

[

P

[
1

n
log Z ≥ �RS − ε

∣
∣
∣
∣
Gt

]

≥ e−cn/2

]

· e−cn/2,
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where we take c > 0 to be the constant in (5.2) for this ε. Taking t = t(ε) large enough

and applying Lemma 3.1 again, almost surely

�RS − ε ≤ lim
n→∞

1

n
log

E[Z | Gt ]
2

.

Then applying also the Paley-Zygmund inequality and Lemma 4.1, for t = t(ε, c)

large enough, almost surely for all large n,

P

[
1

n
log Z ≥ �RS − ε

∣
∣
∣
∣
Gt

]

≥ P

[
1

n
log Z ≥

1

n
log

E[Z | Gt ]
2

∣
∣
∣
∣
Gt

]

= P

[

Z ≥
E[Z | Gt ]

2

∣
∣
∣
∣
Gt

]

≥
E[Z | Gt ]2

4E[Z2 | Gt ]
≥ e−cn/2.

Then for all large n,

P

[
1

n
log Z ≥ �RS − ε

]

≥ 0.99e−cn/2 > e−cn . (5.3)

Together (5.2) and (5.3) imply

1

n
E log Z ≥ �RS − 2ε for all large n.

Thus n−1
E log Z → �RS, and applying again the concentration (5.2) finishes the

proof of almost sure convergence by Borel–Cantelli. ��

Appendix A. Analysis of AMP

We prove Propositions 1.2, 2.3, and 2.5, followed by Theorem 2.2 and Propositions

2.3 and 2.4.

Proof of Proposition 1.2 Recall R̄(z) = β R(βz) from (2.5). We note that the statement

(2.31) in Proposition 2.5 immediately follows from the series expansion (2.7) for R̄(z),

where »̄1 = 0, »̄2 = β2, and »̄k = O(βk).

Set t(x) = tanh(x)2. The fixed-point equation (1.3) is equivalently given in (2.9)

by f (q∗) = q∗, where f : [0, 1] → [0, 1) is the function

f (q) = E

[

t

(

H+
√

q R̄′(1 − q) · G
)]

.

Applying Gaussian integration by parts,

f ′(q) = E

[

t ′
(

H+
√

q R̄′(1 − q) · G
)

·
−q R̄′′(1 − q) + R̄′(1 − q)

2
√

q R̄′(1 − q)
· G
]
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= E

[

t ′′
(

H+
√

q R̄′(1 − q) · G
)

·
−q R̄′′(1 − q) + R̄′(1 − q)

2

]

.

We have |t ′′(x)| ≤ 2. By (2.31), we have |R̄′(1− q)| ≤ Cβ2 and |R̄′′(1− q)| ≤ Cβ3

for all q ∈ [0, 1], β ∈ (0, β0), and some constants C, β0 > 0 depending only on μD .

So | f ′(q)| < 1 for any such β and sufficiently small β0. Then f : [0, 1] → [0, 1) is

contractive and has a unique fixed point q∗ ∈ [0, 1). ��

Proof of Proposition 2.1 Note that by Assumption 1.1(b),

Ḡ(z) = lim
n→∞

n−1 Tr(z I − J̄ )−1, −Ḡ ′(z) = lim
n→∞

n−1 Tr(z I − J̄ )−2.

Recall, by definition of ¼∗ in (2.12), that Ḡ(¼∗) = 1 − q∗. Then by the definitions of

»∗ and 	 in (2.22) and (2.13),

»∗ = lim
n→∞

Tr

(
1

1 − q∗
(¼∗ I − D̄)−1 − I

)2

=
1

(1 − q∗)2

(

−Ḡ ′(¼∗)
)

−
2

1 − q∗
Ḡ(¼∗) + 1 = −

1

(1 − q∗)2
Ḡ ′(¼∗) − 1.

We have R̄(z) = Ḡ−1(z)− 1/z, so that Ḡ ′(z) = 1/[(Ḡ−1)′(Ḡ(z))] = 1/[R̄′(Ḡ(z))−
1/Ḡ(z)2)]. Then

»∗ = −
1

(1 − q∗)2
·

1

R̄′(1 − q∗) − (1 − q∗)−2
− 1 =

1

1 − (1 − q∗)2 R̄′(1 − q∗)
− 1.

Substituting R̄′(1 − q∗) = σ 2
∗ /q∗ from the definition of σ 2

∗ in (2.9), this yields

δ∗ =
σ 2
∗

»∗
=

σ 2
∗ [1 − (1 − q∗)2σ 2

∗ /q∗]
(1 − q∗)2σ 2

∗ /q∗
=

q∗
(1 − q∗)2

− σ 2
∗ .

The second equality of (2.24) may be checked by expanding the square on the right

side, and applying the definition of q∗ in (2.9) and Gaussian integration by parts. ��

Proof of Proposition 2.1 As already argued, the statement (2.31) follows from (2.7).

This implies σ 2
∗ = O(β2) by its definition in (2.9). Setting t(x) = tanh(x)2, we have

q∗ = E
[

t(H) + t ′(H) · σ∗G+ t ′′(H′) · (σ 2
∗G

2/2)
]

for some random variable H′ between H and H+ σ∗G. Here |t ′′(x)| ≤ 2 and E[t ′(H) ·
G] = 0, so q∗ = E[tanh(H)2]+O(β2). The remaining statements follow immediately

from (2.31) and the forms of σ 2
∗ , ¼∗, »∗, δ∗ in (2.9), (2.12), (2.23), and (2.24). ��

Proof of Theorem 2.2 The AMP algorithm (2.15–2.16) is a particular instance of the

more general algorithm studied in [21, Eqs. (4.2-−4.3)], whose state evolution is

obtained in [21, Theorem 4.3]. We apply this result with the notational identifications
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ut ↔ x t , zt ↔ yt , W ↔ 	,
 ↔ 
, E ↔ h, (Z1, . . . , Z t , E) ↔ (Y1, . . . , Yt ,H),

and

ut+1(Z1, . . . , Z t , E) ↔ f (H, Yt ) � (1 − q∗)
−1 tanh(H+ Yt ) − Yt .

Applying the property (2.21) for this function f , the matrix �t of [21, Eq. (4.4)]

satisfies

lim
n→∞

�t = 0.

Furthermore, by the definitions of ¼∗ and »∗ in (2.12) and (2.22),

1

n
Tr 
 → 0,

1

n
Tr 
2 → »∗,

so that the second free cumulant of the empirical spectral distribution of 
 converges

to »∗. Then the matrices �
( j)
t , Bt , and �t of [21, Eqs. (4.5) and (4.7)] satisfy

lim
n→∞

�
( j)
t =

{

�t if j = 0

0 otherwise,
lim

n→∞
Bt = 0, lim

n→∞
�t = »∗�t , (A.1)

where we define

�t = lim
n→∞

n−1 X�
t X t

provided that this limit exists. Thus, (2.15–2.16) is a special case of the general AMP

algorithm of [21, Section 4], replacing the debiasing coefficients bts therein by their

large-n limits b∞ts = 0.

From the initialization y0 ∼ N (0, σ 2
∗ I ), [21, Proposition E.1] ensures that the

empirical distribution of rows of (h, y0) converges almost surely in the Wasserstein

space Wp to (H, Y0), for every p ≥ 1. Since f is Lipschitz, the distribution of entries

of x1 = f (h, y0) then converges in Wp to X1. By definition, ¼∗ > max(x : x ∈
supp(μD̄)), so Assumption 1.1(b) implies that the empirical eigenvalue distribution

of 
 also converges in Wp to a compactly supported limit. The remaining conditions

of [21, Assumption 4.2] are easily checked from Assumption 1.1. Thus, [21, Theorem

4.3] shows the distributional convergence (2.27) in Wp, for any fixed p ≥ 1. In

particular, the above matrix �t is well-defined and non-singular for every t ≥ 1, and

coincides with the definition of (2.26). Thus (2.28) holds.

The limit (2.29) then immediately follows from the distributional convergence

(2.27) and the specification of the law (Y1, . . . , Yt ) ∼ N (0, »∗�t ). The limit (2.30)

follows from writing eachXs as a function ofYs−1 according to (2.25), and applying the

divergence-free condition (2.21) and Gaussian integration by parts for a multivariate

Gaussian vector—see [21, Proposition E.5]. ��

Proof of Proposition 2.3 Since Y0 ∼ N (0, σ 2
∗ ), we have δ11 = E[X2

1] = δ∗ by (2.25)

and the second equality of (2.24). Then »∗δ11 = σ 2
∗ by definition of δ∗ in (2.22), so
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Y1 ∼ N (0, σ 2
∗ ) by the characterization of its law in Theorem 2.2. The statements

δt t = δ∗ and »∗δt t = σ 2
∗ then hold for all t ≥ 1 by induction.

To show the convergence δst → δ∗ as min(s, t) → ∞, let us set δ0t = δt0 = 0 for

all t ≥ 0. We first show that 0 ≤ δst ≤ δ∗ for all s, t . Observe that

δs+1,t+1 = E[Xs+1Xt+1] = E[ f (H, Ys) f (H, Yt )],

where f (h, y) = (1 − q∗)−1 tanh(h + y) − y. By induction on min(s, t), it suffices

to show that δst ∈ [0, δ∗] implies that δs+1,t+1 ∈ [0, δ∗]. Represent the bivariate

Gaussian law of (Ys, Yt ) as

(Ys, Yt ) =
(√

»∗δstG+
√

σ 2
∗ − »∗δstG

′,
√

»∗δstG+
√

σ 2
∗ − »∗δstG

′′
)

,

where G,G′,G′′ are independent N (0, 1) variables. Note that this representation holds

also when s = 0 and/or t = 0, because Y0 is independent of Yt for t �= 0. Then

δs+1,t+1 = g(δst ), where g(δ) is the map defined on [0, δ∗] by

g(δ) � E

[

f
(

H,
√

»∗δ · G+
√

σ 2
∗ − »∗δ · G′

)

f
(

H,
√

»∗δ · G+
√

σ 2
∗ − »∗δ · G′′

)]

.

Denote Y
′ =

√
»∗δ · G +

√

σ 2
∗ − »∗δ · G′, and define Y

′′ similarly with G
′′ in place

of G′. By Cauchy-Schwarz, |g(δ)| ≤ E[ f (H, Y′)2] = δ∗ by (2.24). At δ = δ∗, we

have Y
′ = Y

′′ = σ∗G and hence g(δ∗) = E[ f (H, Y′)2] = δ∗. Furthermore, taking the

expectation first over G′ and G
′′, for any δ ∈ [0, δ∗] we have

g(δ) = E

[

E[ f (H, Y′) | H,G]2
]

∈ [0, δ∗]

as claimed.

Next, applying symmetry with respect to (Y′, Y′′) and Gaussian integration by parts,

g′(δ) = 2E

[

∂y f (H, Y′) · f (H, Y′′) ·
(

»∗
2
√

»∗δ
G−

»∗

2
√

σ 2
∗ − »∗δ

G
′
)]

= 2E

[

∂2
y f (H, Y′) · f (H, Y′′) ·

»∗
2

−∂2
y f (H, Y′) · f (H, Y′′) ·

»∗
2

+ ∂y f (H, Y′) · ∂y f (H, Y′′) ·
»∗
2

]

= »∗E
[

∂y f (H, Y′)∂y f (H, Y′′)
]

.

Here |∂y f (h, y)| ≤ 2/(1− q∗). Then, applying »∗ = O(β2(1− q∗)2) by Proposition

2.5, we have |g′(δ)| ≤ 1/2 for any β ∈ (0, β0) and some constant β0 > 0 depending

only on μD . So g : [0, δ∗] → [0, δ∗] is contractive, and δ∗ is the unique fixed point.

We then have

|δst − δ∗| ≤ (1/2)min(s,t)|δs−min(s,t),t−min(s,t) − δ∗| = (1/2)min(s,t)δ∗ ≤ (1/2)min(s,t),
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so limmin(s,t)→∞ δst = δ∗ as desired. Finally, limmin(s,t)→∞ »∗δst → σ 2
∗ follows from

σ 2
∗ = »∗δ∗. ��

Proof of Proposition 2.4 Since J̄ = O� D̄O , we have f ( J̄ ) = O� f (D̄)O by the func-

tional calculus. Then applying St = O X t yields n−1 X�
t f ( J̄ )X t = n−1S�

t f (D̄)St .

Let 
 be as defined in (2.13). Applying [21, Lemma A.4(b)] with the notational

identification rt ↔ st , for each fixed integer k ≥ 0, almost surely

lim
n→∞

n−1S�
t 
k St = L

(k,∞)
t .

This limit matrix L
(k,∞)
t is defined by [21, Eq. (A.6) and Lemma A.1]. Under the

divergence-free condition (2.21), applying (A.1), we have simply

L
(k,∞)
t = mk · �t , mk = lim

n→∞
n−1 Tr 
k =

∫ (
1

1 − q∗
(¼∗ − x)−1 − 1

)k

μD̄(dx).

Define the increasing map g : (−∞, ¼∗) → (−1,∞) by

g(x) =
1

1 − q∗
(¼∗ − x)−1 − 1,

so that 
 = g(D̄). Then, for any fixed polynomial p : R → R, this shows

lim
n→∞

n−1S�
t p(
)St = �t ·

∫

p(g(x))μD̄(dx).

We apply Weierstrass polynomial approximation to extend the above to general

continuous functions: Let g−1 : (−1,∞) → (−∞, ¼∗) be the functional inverse of

g. Then, for any f : R → R which is continuous and bounded on a neighborhood

of supp(μD̄), the function f ◦ g−1 is continuous and bounded on some compact

neighborhood K of g(supp(μD̄)). Applying the Weierstrass approximation, for any

ε > 0, there is a polynomial p for which

max
x∈K

|p(x) − f ◦ g−1(x)| < ε.

Then

∥
∥
∥
∥

lim
n→∞

n−1S�
t f (D̄)St − �t ·

∫

f (x)μD̄(dx)

∥
∥
∥
∥

=
∥
∥
∥
∥

lim
n→∞

n−1S�
t ( f ◦ g−1(
))St − �t ·

∫

f ◦ g−1(g(x))μD̄(dx)

∥
∥
∥
∥

≤ lim sup
n→∞

ε · n−1‖St‖2 + ε · ‖�t‖ ≤ ε · Tr �t + ε · ‖�t‖.
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This holds for any ε > 0, so

lim
n→∞

n−1S�
t f (D̄)St = �t ·

∫

f (x)μD̄(dx).

��

Appendix B. Large deviations for integrals over the orthogonal group

5.1 B.1 Proof of Proposition 2.7

By applying a transformation D �→ Q DQ� and b �→ Qb for an orthogonal matrix

Q, we may assume without loss of generality that D = diag(d1, . . . , dn) is diagonal.

Let μn = 1
n

∑n
i=1 δdi

, dn,+ = max di , dn,− = min di , and ‖D‖op = max |di |. Let

Gn(γ ) =
1

n
Tr(γ I − D)−1 =

1

n

n
∑

i=1

1

γ − di

. (B.1)

Lemma B.1 In the setting of Proposition 2.7, there exists n0 > 0 such that for any

n ≥ n0 and any (a, b) ∈ �n , the following holds: Set α = ‖a‖2/n and

Fn(γ ) = Gn(γ ) +
b�(γ I − D)−2b

n
.

Then the equation

Fn(γ ) = α (B.2)

has a unique solution γ ∗
n ∈ (d+ + ε,∞), and |γ ∗

n − α−1| ≤ C + ‖D‖op.

Proof By Assumption 1.1(b), μn → μD weakly, dn,+ → d+ as n → ∞, and ‖D‖op

is bounded. Then Gn(γ ) converges to G(γ ) pointwise for each γ > d+. So for some

n0 > 0 and all n ≥ n0, we have dn,+ < d+ + ε and Gn(d+ + ε) > G(d+ + ε) − ε.

Then

Fn(d+ + ε) ≥ Gn(d+ + ε) > G(d+ + ε) − ε ≥ α.

Since Fn(γ ) → 0 monotonically as γ → ∞, this shows (B.2) has a unique solution

γ ∗
n > d++ε. Next, since ‖b‖2 ≤ Cn, for any γ > dn,+ we have b�(γ I −D)−2b/n ≤

C/(γ − dn,+)2, and hence

1

γ − dn,−
≤ Fn(γ ) ≤

1

γ − dn,+
+

C

(γ − dn,+)2
.
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Applying this at γ = γ ∗
n and Fn(γ ) = α, and rearranging,

dn,− +
1

α
≤ γ ∗

n ≤ dn,+ +
1

α′ ,

where α′ =
√

1+4Cα−1
2C

. We conclude the proof by noting that 1
α′ − 1

α
= 2C√

1+4Cα+1
∈

[0, C]. ��

Proof of Proposition 2.7 We now bound the expectation in (2.32) for any (a, b) ∈ �n .

Let g ∼ N (0, In) be a standard Gaussian vector. Then
g

‖g‖ is uniformly distributed

over the sphere and Oa
L= g‖a‖

‖g‖ . Then

E

[

exp

(

b�Oa +
a�O�DOa

2

)]

= E

[

exp

(
‖a‖
‖g‖

b�g +
‖a‖2

2‖g‖2
g�Dg

)]

.

Let E = {g : |‖g‖2/n−1| ≤ δ} for some small δ to be specified. Since ‖g‖2 ∼ χ2
n ,

by the χ2-tail bound (see e.g. [28, Lemma 1]), we have for all δ ∈ (0, 1),

P [g ∈ E] ≥ 1 − 2e−δ2n/16. (B.3)

By the independence of ‖g‖ and
g

‖g‖ , we have

1 ≤
E

[

exp
(
‖a‖
‖g‖b�g + ‖a‖2

2‖g‖2 g�Dg
)]

E

[

exp
(
‖a‖
‖g‖b�g + ‖a‖2

2‖g‖2 g�Dg
)

1g∈E

] =
1

P [g ∈ E]
≤

1

1 − 2e−δ2n/16
.

Set α = ‖a‖2/n, and fix ν ∈ R such that ν > dn,+ − 1
α

. Then

E

[

exp

(

‖a‖
‖g‖

b�g +
‖a‖2

2‖g‖2
g�Dg

)

1g∈E

]

≤ E

[

exp
(√

αb�g +
α

2
g�Dg +

αν

2
(n − ‖g‖2)

)

1g∈E

]

× exp

(

δ‖a‖‖b‖ +
1

2
δ‖a‖2‖D‖op +

α

2
δ|ν|n

)

︸ ︷︷ ︸

�τ

≤
n
∏

i=1

E

[

exp

(√
αbi gi −

α(ν − di )

2
g2

i

)]

exp
(ανn

2
+ τ

)

=
n
∏

i=1

1
√

1 + α(ν − di )
exp

(

αb2
i

2(1 + α(ν − di ))

)

exp
(ανn

2
+ τ

)

= exp

⎛

¿

n
∑

i=1

αν

2
+

b2
i

2( 1
α + ν − di )

−
1

2
log(1 + α(ν − di ))

À

⎠ exp (τ )
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= exp

{
n

2

(

αν +
1

n
b�
(

(α−1 + ν)I − D
)−1

b −
1

n
log det(I + α(ν I − D))

)}

exp (τ ) .

Next we minimize the leading term over ν > dn,+ − 1
α

. Write ν = γ − 1
α

. Since the

exponent is convex in ν, for all large n the minimum is achieved at ν∗n = γ ∗
n − 1

α
,

where γ ∗
n is previously defined as the unique solution on (d+ + ε,∞) to (B.2), and

this minimum is exactly En(a, b) defined in (2.33). By Lemma B.1, we have |ν∗n | ≤
C + ‖D‖op. Choosing δ = n−1/4 yields τ ≤ C1n3/4 for some constant C1 depending

on ε, C, ‖D‖op and G(d+ + ε) only. This proves

E

[

exp

(

b�Oa +
a�O�DOa

2

)]

≤
1

1 − 2e−
√

n/16
exp

(n

2
En(a, b) + C1n3/4

)

For the lower bound,

E

[

exp

(

‖a‖
‖g‖

b�g +
‖a‖2

2‖g‖2
g�Dg

)

1g∈E

]

≥ E

[

exp
(√

αb�g +
α

2
g�Dg +

αν

2
(n − ‖g‖2)

)

1g∈E

]

exp(−τ)

= E

⎡

£

n
∏

i=1

exp

(√
αbi gi −

α(ν − di )

2
g2

i

)

1g∈E

¤

⎦ exp
(ανn

2
− τ

)

= exp

{
n

2

(

αν +
1

n
b�
(

(α−1 + ν)I − D
)−1

b −
1

n
log det(I + α(ν I − D))

)}

P
[

g̃ ∈ E
]

exp (−τ)

where the last step follows from a change of measure from g to g̃ = (g̃1, . . . , g̃n),

whose coordinates are drawn independently as gi ∼ N (μi , σ
2
i ), with

μi =
√

αbi

1 + α(ν − di )
, σ 2

i =
1

1 + α(ν − di )
.

Note that

E[‖g̃‖2] =
n
∑

i=1

(μ2
i + σ 2

i ) =
1

α

n
∑

i=1

b2
i

(ν + 1/α − di )2
+

1

ν + 1/α − di

=
n

α
Fn

(

ν +
1

α

)

where Fn is as defined in Lemma B.1 As before, choose ν = ν∗n = γ ∗
n − 1

α
, where γ ∗

n

is the solution to (B.2). Then we have E[‖g̃‖2] = n. Moreover,

Var(‖g̃‖2) =
n
∑

i=1

(2σ 4
i + 4μ2

i σ
2
i ) =

n
∑

i=1

2

(1 + α(ν − di ))2
+

4αb2
i

(1 + α(ν − di ))3

=
1

α2

(
n
∑

i=1

2

(γ ∗
n − di )2

+
n
∑

i=1

4b2
i

(γ ∗
n − di )3

)

.
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If 1
α
≤ 4(C + ‖D‖op), we may apply γ ∗

n > d+ + ε in Lemma B.1 and ‖b‖2 ≤ Cn

to obtain Var(‖g̃‖2) ≤ n
α2

(
2
ε2 + 4C

ε3

)

. If 1
α
≥ 4(C + ‖D‖op), then we apply γ ∗

n ≥
1
α
− C − ‖D‖op from Lemma B.1 to obtain γ ∗

n − di ≥ 1
α
− 2(C + ‖D‖op) ≥ 1

2α
and

hence Var(‖g̃‖2) ≤ n (8 + 32Cα). In both cases, we conclude that

Var(‖g̃‖2) ≤ C2n

for some constant C2 depending on (C, ‖D‖op, ε). By Chebyshev’s inequality,

P
[

g̃ /∈ E
]

≤
Var(‖g̃‖2)

(δn)2
≤

C2√
n
.

This shows

E

[

exp

(

b�Oa +
a�O�DOa

2

)]

≥
1

1 − C2√
n

exp
(n

2
En(a, b) − C1n3/4

)

.

Combining these upper and lower bounds completes the proof. ��

B.2 Proof of Proposition 2.8

Let s1, . . . , sn ∈ R
2 be the rows of (b, d) ∈ R

n×2. We again assume without loss of

generality that D = diag(d1, . . . , dn) is diagonal, and write μn, dn,+, dn,−, ‖D‖op as

in the preceding section. (Here di are the diagonal entries of D, not the entries of the

vector d.)

Define

M �

(
‖a‖2

n
a�c

n
a�c

n
‖c‖2

n

)

. (B.4)

Define

Fn(
) � Tr 
M +
1

n

n
∑

i=1

(

s�i (
 − di I )−1si − log det(
 − di I )
)

− 2 − log det(M)

(B.5)

so that En defined in (2.36) is given by

En(a, b, c, d) = inf

�(d++ε)I

Fn(
).

We have the following lemma that parallels Lemma B.1:
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Lemma B.2 Under the assumption of Proposition 2.8, there exists n0 such that for all

n ≥ n0 and all (a, b, c, d) ∈ �n ,

inf

�(d++ε)I

Fn(
)

is achieved at a unique minimizer 
∗ such that 
∗ � (d+ + ε)I and ‖
∗ − M−1‖ ≤
2C + ‖D‖op. Furthermore, 
∗ satisfies the equation

Fn(
) = M (B.6)

where

Fn(
) �
1

n

n
∑

i=1

(
 − di I )−1 +
1

n

n
∑

i=1

(
 − di I )−1si s
�
i (
 − di I )−1. (B.7)

Proof of Lemma B.2 Let n0 be sufficiently large such that dn,+ < d++ε and Gn(d++
ε) > G(d++ε)−ε, where G and Gn are the Cauchy transform of μD and its empirical

version, defined in (2.4) and (B.1). Write the gradient ∇Fn �

(

∂11Fn
1
2
∂12Fn

1
2
∂12Fn ∂22Fn

)

as

a 2 × 2 symmetric matrix. Then one can verify that

∇Fn(
) = M −
1

n

n
∑

i=1

(
 − di I )−1

︸ ︷︷ ︸

�Gn(
)

−
1

n

n
∑

i=1

(
 − di I )−1si s
�
i (
 − di I )−1

︸ ︷︷ ︸

�gn(
)

= M − Fn(
).

We first claim that inf
�(d++ε)I Fn(
) is attained at a unique minimizer 
∗ satis-

fying RI � 
∗ � (d+ + ε)I , for some R > 0 depending only on M, μD, ε. To this

end, suppose 
 has an eigenvalue ¼ ≥ R with unit-norm eigenvector u. Then

u�∇Fn(
)u = u�Mu −
1

n

n
∑

i=1

(¼ − di )
−1 −

1

n

n
∑

i=1

(¼ − di )
−2(s�i u)2

≥ ¼min(M) − (R − dn,+)−1 − 2C(R − dn,+)−2,

where the last inequality follows from Cauchy-Schwarz and the assumption that
1
n

∑

‖si‖2 = 1
n
(‖b‖2 + ‖d‖2) ≤ 2C . Since ¼min(M) > 0 by assumption and

dn,+ < d+ + ε, for sufficiently large R depending only on M, μD, ε, we have

u�∇Fn(
)u > 0, and hence Fn(
 − δuu�) < Fn(
) for sufficiently small δ.

Now suppose that 
 has an eigenvalue equal to d+ + ε with unit-norm eigenvector u.

Then

u�∇Fn(
)u ≤ ¼max(M) −
1

n

n
∑

i=1

(d+ + ε − di )
−1
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≤ G(d+ + ε) − ε − Gn(d+ + ε) < 0,

where we used the assumption that M � (G(d+ + ε) − ε)I and Gn(d+ + ε) >

G(d+ + ε)− ε. Thus Fn(
+ δuu�) < Fn(
) for sufficiently small δ. In view of the

strict convexity of Fn , this verifies our claim. Furthermore, the unique minimizer 
∗

must be a critical point of Fn , satisfying the gradient equation (B.6).

Finally, we show that ‖
∗ − M−1‖ ≤ 2C + ‖D‖op by showing that


∗ � M−1 + dn,− I , (B.8)


∗ � M−1 + (dn,+ + 2C)I . (B.9)

Since gn(
) � 0, (B.8) simply follows from

M = Fn(

∗) � Gn(
∗) � (
∗ − dn,− I )−1.

To show (B.9), note that for any x ∈ R
n , by Cauchy-Schwarz and the bound

1
n

∑

‖si‖2 ≤ 2C , we have

x�gn(
)x =
1

n

n
∑

i=1

(s�i (
 − di I )−1x)2 ≤ 2Cx�(
 − dn,+ I )−2x .

In other words, gn(
) � 2C(
 − dn,+ I )−2. Writing Y = 
∗ − dn,+ I , this shows

M = Fn(

∗) � Y−1 + 2CY−2.

Then

M−1 � (Y−1 + 2CY−2)−1 = (Y−1/2(I + 2CY−1)Y−1/2)−1

= Y 1/2(I + 2CY−1)−1Y 1/2

� Y 1/2(I − 2CY−1)Y 1/2 = Y − 2C I ,

where the second line applies (I + X)−1 � I − X . Then Y � M−1 + 2C I , which

implies (B.9). ��

Proof of Proposition 2.8 Let g1, g2 ∼ N (0, In) be independent standard Gaussian vec-

tors. Let g′
1, g′

2 be their Gram-Schmidt orthogonalized versions

g′
1 =

g1

‖g1‖
, g′

2 =
1

sin θ

(
g2

‖g2‖
− cos θ

g1

‖g1‖

)

where cos θ = g�1 g2

‖g1‖‖g2‖ and θ ∈ [0, π ]. Let

x1 = ‖a‖g′
1, x2 = ‖c‖(g′

1 cos φ + g′
2 sin φ)
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where cos φ = a�c
‖a‖‖c‖ and φ ∈ [0, π ]. Then (Oa, Oc)

L= (x1, x2) and

E

[

exp

(

b�Oa + d�Oc +
a�O�DOa

2
+

c�O�DOc

2

)]

= E

[

exp

(

b�x1 + d�x2 +
x�1 Dx1

2
+

x�2 Dx2

2

)]

Define the event

E =
{

(g1, g2) : |‖gi‖2/n − 1| ≤ δ for i = 1, 2, and | cos θ | ≤ δ
}

(B.10)

for some small δ ∈ (0, 1
2
) to be specified. Note that E[exp(¼g�

1 g2)] = (1 − ¼2)−n/2

for all |¼| < 1. Thus for ¼ ∈ (0, 1), log E[exp(¼g�
1 g2)] = − n

2
log(1 − ¼2) ≤ n¼2

2(1−¼)
.

By [10, Theorem 2.3], we have P

[

|g�
1 g2| ≥

√
2nt + t

]

≤ 2e−t . Taking t = δ2n
32

and

using (B.3), we conclude that

P [(g1, g2) ∈ E] ≥ 1 − 6e−δ2n/32.

Crucially, (g′
1, g′

2) and (‖g1‖, ‖g2‖, cos θ) are independent. Since the event {(g1, g2) ∈
E} is measurable with respect to the latter, it is also independent of (g′

1, g′
2). Thus

1 ≤
E

[

exp

(

b�x1 + d�x2 +
x�1 Dx1

2
+ x�2 Dx2

2

)]

E

[

exp

(

b�x1 + d�x2 +
x�1 Dx1

2
+ x�2 Dx2

2

)

1(g1,g2)∈E

]

=
1

P [(g1, g2) ∈ E]
≤

1

1 − 6e−δ2n/32
.

Define

ξ �
‖a‖
√

n
g1, ζ � ‖c‖

(

cos φ
g1√

n
+ sin φ

g2√
n

)

,

which satisfy (ξi , ζi )
i id∼ N (0, M), with M defined in (B.4). On the event E , for an

absolute constant C ′ > 0, we have the approximations

|b�x1 − b�ξ | ≤ C ′δ‖a‖‖b‖, |d�x2 − d�ζ | ≤ C ′δ‖c‖‖d‖, (B.11)

|x�1 Dx1 − ξ�Dξ | ≤ C ′δ‖D‖op‖a‖2, |x�2 Dx2 − ζ�Dζ | ≤ C ′δ‖D‖op‖c‖2, (B.12)

|‖a‖2 − ‖ξ‖2| ≤ C ′δ‖a‖2, |‖c‖2 − ‖ζ‖2| ≤ C ′δ‖c‖2, |a�c − ξ�ζ | ≤ C ′δ‖a‖‖c‖.
(B.13)
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Fix any (γ, ρ, ν) ∈ Dε such that 
 =
(

γ ν

ν ρ

)

� (d+ + ε)I2×2. Let 
′ =
(

γ ′ ν′

ν′ ρ′

)

� 
 − M−1. Define

τ � C ′δ

(

‖a‖‖b‖ + ‖c‖‖d‖ + ‖D‖op‖a‖2 + ‖D‖op‖c‖2 +
|γ ′|
2

‖a‖2

+
|ρ′|
2

‖c‖2 + |ν′|‖a‖‖c‖
)

.

By the assumption of (a, b, c, d) ∈ �n , we have

τ ≤ C0δn(1 + ‖
′‖) (B.14)

for some C0 depending on G(d+ + ε), C ′, and the constant C defining �n .

Recall that s1, . . . , sn ∈ R
2 are the rows of (b, d) ∈ R

n×2, and write z1, . . . , zn ∈
R

2 for the rows of (g1, g2) ∈ R
n×2. Then zi

i id∼ N (0, I2) and (ξi , ζi ) = T zi for a

matrix T satisfying T T� = M . Define

μi � T−1(
 − di I )−1si , �i � T−1(
 − di I )−1(T−1)�

so that det �i = det(M)−1 det(
 − di I )−1. Since 
 � (d+ + ε)I , each �i is well-

defined and positive definite. By (B.11)–(B.13), for some error term rn that satisfies

|rn| ≤ τ , we have

E

[

exp

(

b�x1 + d�x2 +
x�

1
Dx1

2
+

x�
2

Dx2

2

)

1(g1,g2)∈E

]

= E

[

exp

(

b�ξ + d�ζ +
ξ�Dξ

2
+

ζ�Dζ

2
+

γ ′

2
(‖a‖2 − ‖ξ‖2)

+
ρ′

2
(‖c‖2 − ‖ζ‖2) + ν′(a�c − ξ�ζ ) + rn

)

1(g1,g2)∈E

]

= exp
( n

2
Tr 
′M + rn

) ∫

1(g1,g2)∈E

n
∏

i=1

exp

(

s�i T zi −
1

2
z�i T�(
′ − di I )T zi

)
1

2π
exp

(

−
1

2
‖zi ‖2

)

= exp
( n

2
(Tr 
M − 2) + rn

) ∫

1(g1,g2)∈E

n
∏

i=1

1

2π
exp

(

−
1

2
(zi − μi )

��−1
i

(zi − μi ) +
1

2
μ�

i �−1
i

μi

)

= exp

§

¨

©

n

2
(Tr 
M − 2 − log det M) +

1

2

n
∑

i=1

(

− log det(
 − di I ) + s�i (
 − di I )−1si

)

+ rn

«

¬

­

× P
[

(g̃1, g̃2) ∈ E
]

= exp
{ n

2
Fn (
) + rn

}

P
[

(g̃1, g̃2) ∈ E
]

,

where (g̃1, g̃2) consists of independent pairs (g̃i1, g̃i2)
ind∼ N (μi , �i ).

Now choose δ = n−1/4 and 
 = 
∗ as in Lemma B.2. Then Fn(

∗) =

inf
�(d++ε)I Fn(
) = En(a, b, c, d). By Lemma B.2, ‖
′‖ = ‖
∗ − M−1‖ ≤
2C + ‖D‖op. By (B.14), we have τ ≤ C1n3/4, which yields the desired upper bound
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in (2.35). For the lower bound, we analyze P
[

(g̃1, g̃2) ∈ E
]

by a union bound:

P
[

(g̃1, g̃2) /∈ E
]

≤ P

[∣
∣
∣
∣
∣

1

n

n
∑

i=1

g̃2
i1 − 1

∣
∣
∣
∣
∣
≥ δ

]

+P

[∣
∣
∣
∣
∣

1

n

n
∑

i=1

g̃2
i2 − 1

∣
∣
∣
∣
∣
≥ δ

]

+ P

[

1

n

∣
∣
∣
∣
∣

n
∑

i=1

g̃i1g̃i2

∣
∣
∣
∣
∣
≥

δ

2

]

.

(B.15)

Furthermore, the gradient equation (B.6) reads

T T� = M =
1

n

n
∑

i=1

(
 − di I )−1 +
1

n

n
∑

i=1

(
 − di I )−1si s
�
i (
 − di I )−1.

Thus at 
 = 
∗ which satisfies this equation, we have n−1
∑n

i=1

(

μiμ
�
i + �i

)

= I2,

i.e.,

1

n

n
∑

i=1

Eg̃2
i1 =

1

n

n
∑

i=1

Eg̃2
i2 = 1,

1

n

n
∑

i=1

Eg̃i1g̃i2 = 0.

Note that Var(g̃2
i1) = 4μ2

i1�i,11 + 2�2
i,11, Var(g̃2

i2) = 4μ2
i2�i,22 + 2�2

i,22, and

Var(g̃i1g̃i2) = μ2
i1�i,22 + μ2

i2�i,11 + 2μi1μi2�i,12 + �i,11�i,22 + �2
i,12. Apply-

ing ‖T T�‖ = ‖M‖ ≤ G(d+ + ε), we have ‖μi‖2 = s�i T �2
i T�si ≤ G(d+ +

ε)‖�i‖2‖si‖2. Then applying Chebyshev’s inequality to (B.15), we have

P
[

(g̃1, g̃2) /∈ E
]

≤
100(1 + G(d+ + ε))

nδ2

n
∑

i=1

(‖si‖2 Tr(�i )
3 + Tr(�i )

2).

Let M =
∑2

j=1 α j u j u
�
j be its eigenvalue decomposition, and let T =

∑2
j=1

√
α j u jv

�
j

be the associated singular value decomposition of T . Then

Tr(�i ) =
2
∑

j=1

v�j �iv j =
2
∑

j=1

1

α j

u�
j (
∗ − di I )−1u j .

Recall from Lemma B.2 that 
∗ � (d+ + ε)I and 
∗ � M−1 − C2 I , where C2 =
2C + ‖D‖op. Thus u�

j (
∗ − di I )−1u j ≤ 1
ε

always, and u�
j (
∗ − di I )−1u j ≤

α j

1−(C2+di )α j
provided α j < 1

C2+di
. Overall, we have Tr(�i ) ≤ C3 for some C3

depending on (C, ‖D‖op, ε). Consequently, P
[

(g̃1, g̃2) /∈ E
]

≤ C4/
√

n, for some

constant C4 depending on (C, ‖D‖op, ε, G(d+ + ε)). This completes the required

lower estimate for (2.35). ��
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B.3 Proof of Proposition 2.9

Proof For part (a), write H(γ, α) for the function inside the infimum. This is strictly

convex over γ > d+, and its derivative is ∂γ H(γ, α) = α−G(γ ). For α ∈ (0, G(d+)),

this derivative vanishes at γ = G−1(α), so γ = G−1(α) must be the minimizer by

convexity. At this minimizer, writing G−1(α) = R(α) + α−1 and combining the

logarithmic terms,

H(G−1(α), α) = αR(α) −
∫

log(αR(α) + 1 − αx)μD(dx).

This evaluates to 0 at α = 0. Its derivative in α is

R(α) + αR′(α) −
1

α

∫
R(α) + αR′(α) − x

R(α) + α−1 − x
μD(dx)

= R(α) + αR′(α) − α−1 + α−1

∫
α−1 − αR′(α)

R(α) + α−1 − x
μD(dx)

= R(α) + αR′(α) − α−1 + α−1
(

α−1 − αR′(α)
)

· G
(

G−1(α)
)

= R(α).

Hence infγ>d+ H(γ, α) = H(G−1(α), α) =
∫ α

0 R(z)dz.

For part (b), applying the orthogonal transformations

(

γ ν

ν ρ

)

�→ Q�
(

γ ν

ν ρ

)

Q, A �→ Q�AQ

for any orthogonal matrix Q ∈ O(2) preserves both the value of the objective and

the optimization domain D+. Thus we may assume without loss of generality that

A = diag(α1, α2) is diagonal. In this case, the function to be minimized is

γα1 − (1 + log α1) + ρα2 − (1 + log α2) −
∫

log det

(

γ − x ν

ν ρ − x

)

μD(dx).

This is strictly convex over (γ, ν, ρ) ∈ D+, and its gradient is 0 at (γ, ν, ρ) =
(G−1(α1), 0, G−1(α2)) by (4.30) and part (a). Thus the minimizer is

(

γ ν

ν ρ

)

= G−1(A),

and the value is
∫ α1

0 R(z)dz +
∫ α2

0 R(z)dz = Tr f (A) also by part (a). ��

Appendix C. Auxiliary results

Proposition C.1 Let S, T be two fixed metric spaces. For each n ≥ 1, let Kn be a

compact metric space, fn : Kn → S a continuous map, and vn : Kn → T a map that
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is both continuous and relatively open.5 For each n ≥ 1, let Un be a dense subset of

Kn such that

• For some fixed subset V ⊂ T , we have vn(Un) = V for every n, and

• There exists a function f : V → S such that fn(x) − f (vn(x)) → 0 as n → ∞,

uniformly over x ∈ Un .

Then vn(Kn) = V̄ (the closure of V in T ) for every n, this function f is continuous

on V and extends continuously to V̄ , and fn(x)− f (vn(x)) → 0 uniformly also over

x ∈ Kn .

Proof Since Kn is compact and vn is continuous, vn(Kn) is also compact, so vn(Kn) ⊇
V̄ . The reverse inclusion vn(Kn) ⊆ V̄ is immediate by continuity, so vn(Kn) = V̄ .

For x ∈ Kn and v ∈ T , denote Bη(x) = {x ′ ∈ Kn : ‖x − x ′‖ < η} and Bδ(v) =
{v′ ∈ T : ‖v−v′‖ < δ}. To check that f is continuous on V and extends continuously

to V̄ , it suffices to show that for any ε > 0 and any v ∈ V̄ , there exists δ > 0 for

which

‖ f (v′) − f (v′′)‖ < ε for all v′, v′′ ∈ Bδ(v) ∩ V . (C.1)

Fix any such ε, v, and let n = n(ε) be large enough so that ‖ fn(x)− f (vn(x))‖ < ε/3

for all x ∈ Un . For this n, let xn ∈ Kn be a point where vn(xn) = v. By continuity of

fn , there exists η = η(n) > 0 sufficiently small such that ‖ fn(x ′) − fn(x ′′)‖ < ε/3

for all x ′, x ′′ ∈ Bη(xn). Then

‖ f (vn(x ′)) − f (vn(x ′′))‖ < ε for all x ′, x ′′ ∈ Bη(xn) ∩ Un . (C.2)

Since vn(xn) = v and vn is relatively open, for some δ = δ(n) > 0, the image

vn(Bη(xn)) must contain Bδ(v) ∩ V̄ . Then vn(Bη(xn) ∩ Un) ⊇ Bδ(v) ∩ V , so (C.2)

implies (C.1) as desired.

Finally, since Un is dense in Kn and fn , f , and vn are continuous,

sup
x∈Kn

| fn(x) − f (vn(x))| = sup
x∈Kn

⎛

⎜
¿ lim

x ′→x
x ′∈Un

| fn(x ′) − f (vn(x ′))|

À

⎟
⎠

≤ sup
x ′∈Un

| fn(x ′) − f (vn(x ′))|,

so the uniform convergence | fn(x) − f (vn(x))| → 0 over x ∈ Kn follows from that

over x ∈ Un . ��
Proposition C.2 Let D ⊂ R

d be a convex set and f : D → R be convex and twice

differentiable. Given x∗ ∈ D such that B(x∗, δ) = {x : ‖x − x∗‖ < δ} ⊂ D, suppose

‖∇ f (x∗)‖ ≤ ε and ∇2 f (x) � cI for all x ∈ B(x∗, δ), where cδ > 4ε. Then

inf
x∈D

f (x) ≥ f (x∗) −
4ε2

c
.

5 That is, vn(Un) is open in vn(Kn) for any open subset Un ⊂ Kn .
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Proof For each x ∈ B(x∗, δ), we have f (x) ≥ f (x∗)+ (∇ f (x∗))�(x − x∗)+ c
2
‖x −

x∗‖2. So f (x) > f (x∗) for all ‖x − x∗‖ ≥ 4ε/c. Therefore, the local minimum

min‖x−x∗‖≤4ε/c f (x) is achieved at some x̃ such that ‖x̃ − x∗‖ < 4ε/c and hence

∇ f (x̃) = 0. By convexity of f , x̃ is also the global minimizer so inf x∈D f (x) = f (x̃).

Finally, f (x̃) ≥ f (x∗) + (∇ f (x∗))�(x − x∗) ≥ f (x∗) − 4ε2/c. ��

Appendix D. Spherical model

Consider the spherical counterpart of the Ising model (1.1), with partition function

Zsphere �

∫

Sn−1(
√

n)

π(dσ) exp

(
β

2
σ� Jσ + h�σ

)

,

where J = O�DO and π is the uniform distribution on Sn−1(
√

n), the n-sphere of

radius
√

n. The replica-symmetric prediction of the limit free energy is

�RS,sphere =
1

2
inf

γ>d̄+

{

γ + E[H2] · Ḡ(γ ) −
∫

log(γ − x)μD̄(x) − 1

}

, (D.1)

where the rescaled notations d̄+, Ḡ, μD̄ were defined in (2.3). The following theorem

justifies this formula.

Theorem D.1 Under Assumption 1.1, for any fixed β ∈ (0, G(d+)), almost surely

lim
n→∞

1

n
log Zsphere = �RS,sphere.

A derivation of this result in the special case of h = 0 is given in [32, Section

2.1].6 We prove Theorem D.1 using Proposition 2.7, which we have stated under the

assumption β < G(d+). Dropping this assumption requires removing the upper-bound

condition on ‖a‖ in Proposition 2.7; such an extension was obtained in [26, Theorem

6] for b = 0.

Proof of TheoremD.1 We express the uniform distribution of σ ∈ Sn−1(
√

n) as σ =
Qa, where a ∈ Sn−1(

√
n) is any fixed vector on the sphere, and Q ∼ Haar(O(n))

is independent of J . By the given condition β < G(d+), we have ‖a‖2/n = 1 <

Ḡ(d̄+) = G(d+)/β. Thus there exists ε > 0 for which ‖a‖2/n = 1 < Ḡ(d̄+ + ε) −
ε. Setting b = h and applying Proposition 2.7 to evaluate the expectation over Q

(conditional on J ), we obtain

lim
n→∞

∣
∣
∣
∣

1

n
log Z − f ( J̄ )

∣
∣
∣
∣
= 0, f ( J̄ ) �

1

2
inf

γ≥d̄++ε

f ( J̄ , γ )

6 [32, Eq. (14)] studies the unnormalized surface area measure on the sphere, and hence has an extra

additive term of 1
2 log(2πe).
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where

f ( J̄ , γ ) � γ +
h�(γ I − J̄ )−1h

n
−

1

n
log det(γ I − J̄ ) − 1

= γ +
(Oh)�(γ I − D̄)−1(Oh)

n
−

1

n
log det(γ I − D̄) − 1. (D.2)

For any γ ≥ d̄ + ε and all large n, note that f ( J̄ , γ ) ≥ γ − 1
n

log det(γ I − D̄) − 1,

where the right side diverges as γ → ∞. Thus there exists some constant 	 > 0

independent of J̄ and n such that

f ( J̄ ) =
1

2
inf

γ∈[d̄++ε,	]
f ( J̄ , γ ). (D.3)

Writing �RS,sphere = 1
2

infγ>d̄+ �(γ ) where �(γ ) is the function in (D.1), by the

same reasoning, this infimum may be restricted to γ ≤ 	. For γ ∈ (d̄+, d̄+ + ε), we

have � ′(γ ) = 1 + E[H2] · Ḡ ′(γ ) − Ḡ(γ ) ≤ 1 − Ḡ(γ ) < 0, and hence the infimum

may also be restricted to γ ≥ d̄+ + ε. So

�RS,sphere =
1

2
inf

γ∈[d̄++ε,	]
�(γ ). (D.4)

Finally, we check the convergence of f ( J̄ , γ ) to �(γ ). Note that E[(Oh)�(γ I −
D̄)−1(Oh)] =

∑n
i=1 E[(Oh)2

i ]/(γ − d̄i ), where E[(Oh)2
i ] = ‖h‖2

E[O2
1i ] =

‖h‖2

n
by

symmetry. Thus, applying Assumption 1.1(b) and (c),

E[ f ( J̄ , γ )] = γ +
‖h‖2

n2

n
∑

i=1

1

γ − d̄i

−
1

n
log det(γ I − D̄) − 1

n→∞−−−→ �(γ ).

(D.5)

Next we argue that f ( J̄ , γ ) concentrates, similar to the proof of Theorem 1.3. Viewing

f ( J̄ , γ ) as a function of O via (D.2), we may compute its derivative

∂O f ( J̄ , γ ) =
2

n
hh�O�(γ I − D̄)−1.

Thus for large enough n and any γ ≥ d++ ε, we have ‖∂O f ( J̄ , γ )‖F ≤ 4‖h‖2

nε
‖O‖op.

By Assumption 1.1(c), for all sufficiently large n, 1
n
‖h‖2 ≤ 2E[H2] and hence O �→

f ( J̄ , γ ) is L-Lipschitz on O(n) with L = 8E[H2]
ε

. Then by the same argument that

leads to (5.1) and (5.2), we have for each γ ≥ d̄+ + ε,

P
[

| f ( J̄ , γ ) − E[ f ( J̄ , γ )]| ≥ δ
]

≤ 2 exp

{

−
( n

4
− 1

2
)δ2

2L2

}

. (D.6)
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Furthermore, |∂γ f ( J̄ , γ )| ≤ 1+ ‖h‖2

nε
+ 1

ε
. Thus for all O ∈ O(n) and all sufficiently

large n, γ �→ f ( J̄ , γ ) is L ′-Lipschitz with L ′ = 1 + (2E[H2] + 1)/ε on [d̄+ +
ε, 	]. The same Lipschitz continuity holds for �(γ ). Combining (D.5) and (D.6),

and applying Borel-Cantelli and a union bound over a sufficiently fine grid of values

γ ∈ [d̄++ ε, 	], we obtain the almost-sure convergence f ( J̄ , γ ) → �(γ ) uniformly

over γ ∈ [d̄+ + ε, 	]. Then by (D.3) and (D.4), also f ( J̄ ) → �RS,sphere, completing

the proof. ��

Appendix E. Cavity-method derivation of the TAP equations

We provide a brief review of the heuristic approach in [41] for deriving the TAP

equations (2.11). Let

mi = 〈σi 〉, χi j = 〈σiσ j 〉 − 〈σi 〉〈σ j 〉 (E.1)

where 〈·〉 is the expectation under the law P(σ ) in our model of interest (2.8). Define

the cavity field θi =
∑

j �=i J̄i jσ j . Then the single-spin marginals of P(σ ) are

P(σi ) =
1

Zi

〈eσi (hi+θi )〉\i , Zi =
∑

σi∈{±1}
〈eσi (hi+θi )〉\i

where 〈·〉\i denotes the expectation over {σ j } j �=i (defining θi ) in the cavity system

with the spin σi removed. We have the exact identities

mi = ∂hi
log Zi , χi j = ∂h j

mi . (E.2)

Approximating the law of the cavity field θi under 〈·〉\i by a Gaussian law N (μi , vi ),

one obtains from the Gaussian moment-generating-function

P(σi ) ≈
1

Zi

eσi (hi+μi )+vi /2, mi ≈ tanh(hi + μi ), Zi ≈
∑

σi∈{±1}
eσi (hi+μi )+vi /2.

(E.3)

Furthermore, the law of θi under 〈·〉 in the original model is then approximately

a two-component Gaussian mixture P(θi ) ∝
∑

σi∈{±1} eσi (hi+θi )−(θi−μi )
2/2vi ∝

∑

σi∈{±1} eσi (hi+μi )e−(θi−μi−σi vi )
2/2vi , from which one obtains 〈θi 〉 ≈ μi+vi tanh(hi+

μi ) ≈ μi + vi mi . Equating this with 〈θi 〉 =
∑

k �=i J̄ikmk from the definition of θi

gives

μi ≈
∑

k

J̄ikmk − vi mi . (E.4)

Finally, the approach of [41] is to derive an equation for the cavity field variances

{vi } by implicit differentiation in h j , assuming ∂h j
vi ≈ 0. Then, differentiating (E.4)
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and applying (E.2),

∂h j
μi ≈

∑

k

J̄ikχk j − viχi j . (E.5)

Differentiating the first equality of (E.2) using the approximation for Zi in (E.3),

χi j = ∂h j
mi ≈ ∂h j

∑

σi
σi e

σi (hi+μi )+vi /2

∑

σi
eσi (hi+μi )+vi /2

≈ χi i

(

1{i = j} + ∂h j
μi

)

. (E.6)

Combining (E.5) and (E.6), and denoting χ = (χi j )
N
i, j=1, X = diag(χi i )

N
i=1, and

V = diag(vi )
N
i=1, one obtains χ ≈ X(I + J̄χ − V χ), hence χ ≈ (V + X−1 − J̄ )−1.

Taking the trace and assuming further by the symmetries of the model that χi i ≈ 1−q∗
and vi ≈ v for some v > 0 and all i = 1, . . . , N , this gives 1 − q∗ ≈ Ḡ(v + 1

1−q∗
),

i.e. v ≈ R̄(1 − q∗), where 1
N

Tr(z I − J̄ ) → Ḡ(z) as N → ∞ and Ḡ, R̄ are the

Cauchy and R transforms of the limiting law μ̄D̄ defined in (2.4). Substituting this

into (E.3–E.4) yields m ≈ tanh(h +μ) ≈ tanh(h + J̄m − R̄(1− q∗)m) which are the

TAP equations (2.11).
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