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Abstract

We study a variant of the Sherrington—Kirkpatrick (S—K) spin glass model with external
field, where the random symmetric couplings matrix does not consist of i.i.d. entries but
is instead orthogonally invariant in law. For sufficiently high temperature, we prove
a replica-symmetric formula for the first-order limit of the model free energy. Our
analysis is an adaptation of a conditional second-moment-method argument previously
introduced by Bolthausen for studying the high-temperature regime of the S—K model,
where one conditions on the iterates of an Approximate Message Passing (AMP)
algorithm for solving the TAP equations for the model magnetization. We apply this
method using a memory-free version of AMP that is tailored to the orthogonally
invariant structure of the model couplings.
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1 Introduction

We study a probability model on the hypercube o € {+1, —1}" given by

P(o) = %exp <§O’TJO’ + hTo> . (1.1)
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2 Z.Fan,Y.Wu

Here i € R" is a deterministic vector, J € R"*" is a random symmetric matrix which
we will assume satisfies the orthogonal invariance in law

JE£ 0770 for any orthogonal matrix O € R"*",

and Z is the partition function

Z = Z exp <§UTJO' + hT0> .

oe{+1,~1}

We will refer to J as the couplings matrix, / as the external field, and g as the inverse
temperature.

The specific example of the Sherrington—Kirkpatrick (S—K) model [49], where J
has i.i.d. Gaussian entries above the diagonal, is well-studied and known to exhibit
rich phenomena. At high temperatures, P (o) is “replica-symmetric”, the large-n limit
of the free energy is described by a simple replica-symmetric formula [1, 8, 49], and
the magnetization m = } (.| _jn 0 - P(0) satisfies in this limit the Thouless-
Anderson-Palmer (TAP) mean-field equations [13, 55, 56]. At low temperatures, the
limit free energy is described more generally by Parisi’s variational formula [25, 43,
44, 54]. The solution of the variational problem may be understood as corresponding to
an ultrametric tree structure for P (o), and the TAP equations describe the conditional
means of the “pure states” in this ultrametric tree [35-37]. This picture has been
formalized and proven rigorously for certain mixed p-spin analogues of the S-K
model in [3, 42].

Here, we are interested in the more general setting of (1.1) where J is orthogonally
invariant, but can have arbitrary spectral distribution and dependent entries. Examples
include the random orthogonal model (ROM) [34] where J has all eigenvalues equal to
{+1, —1}, and the Gaussian Hopfield model [27] where J = G TG and G is a rectan-
gular Gaussian matrix. In the physics literature, the replica-symmetric and 1-RSB free
energies for the ROM were computed by Marinari et al. in [34], and extended to mod-
els with general orthogonally invariant couplings in [14]. Parisi and Potters derived
in [45] the TAP mean-field equations for the ROM, using a perturbative expansion
approach of [23, 46] and a conjectured resummation of the terms of this expansion.
Opper and Winther provided in [41] an alternative derivation of the TAP equations
using the cavity method and a system of self-consistent equations for the cavity fields
(which we review in Appendix E), and verified also via a replica calculation that the
TAP free energy evaluated at the model magnetization coincides with the free energy
given by the replica-symmetric formula. At present, few rigorous mathematical results
are known for models with general orthogonally invariant couplings matrices J.

Our work is in large part motivated by a renewed interest in these types of mean-
field models in information theory, statistics, and machine learning [4, 18, 21, 24, 30,
31, 33, 47, 48, 50-53, 57], where orthogonally invariant matrices may serve as more
robust models of regression and sensing designs or more accurate models of noise in
data applications. Indeed, following the initial posting of this work, several dynamical
universality results were obtained in [19, 20, 58] showing that the mean-field dynam-
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The replica-symmetric free energy for Ising spin... 3

ics of Approximate Message Passing (AMP) and other first-order iterative algorithms
applied to orthogonally invariant matrices are universal across broad classes of matri-
ces with delocalized eigenvectors. In many of these applications, replica predictions
for the model free energy are conjectured, but not rigorously known. Maillard et al.
studied in [32] a class of computational algorithms in the context of such orthogonally
invariant models, extending the diagrammatic expansion method of [23, 45, 46] to
describe the connections between these algorithms and the predicted mean field the-
ory; the authors of [32] highlighted the mathematical verification of these predictions
as an open question.

We study in this work the specific model (1.1), and prove a replica-symmetric
formula for the first-order limit of its free energy in a sufficiently high temperature
regime. This extends previous work of [6], which showed such a result in the absence
of an external field (» = 0). Similar to the S—K model [1], the &~ = 0 setting is
special in that the quenched free energy n~'Elog Z coincides asymptotically with
the annealed free energy n~! log EZ, as was verified in [6] using the second moment
method. This no longer holds when 2 # 0, and our proof applies instead a conditional
version of this idea developed in [8] for the S—K model, where one establishes that the
quenched and annealed free energies coincide upon conditioning on an appropriately
chosen sigma-field that is informative about the random magnetization. This method
was refined for the S—K model in [11] to cover a large and explicit part of the high-
temperature regime, and is also related to analyses of [9, 16] for the Ising perceptron
model.

Our construction of the conditioning sigma-field relies on recent developments on
iterative algorithms for solving the TAP equations for the model (1.1). We summarize
these developments and the proof strategy in Sect. 1.2 below, after presenting our main
result. Following the initial posting of this work, our analyses have been extended in
[22] to show also the validity of the TAP equations for the magnetization under a similar
high-temperature assumption, and in [29] to obtain analogous results in a statistical
linear model with orthogonally invariant regression design.

1.1 Model and main result

Consider the Gibbs distribution (1.1) on the binary hypercube, under the following
assumptions for the couplings matrix J and external field /.

Assumption 1.1 Let J = O T DO be the eigen-decomposition of J.

(a) O ~ Haar(Q(n)) is a random Haar-distributed orthogonal matrix.
(b) D = diag(dy, ..., d,) is a deterministic diagonal matrix of eigenvalues, whose
empirical distribution converges weakly to a limit law

1 n
n
i=1
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4 Z.Fan,Y.Wu

as n — oo. This law up has strictly positive variance and a compact support
supp(up). Furthermore,

lim max(dy, ..., dy,)
n—oo
=d, £ max(x : x € supp(up)), liminfmin(dy, ...,d,) > —oo.
n—oo
(¢c) h = (hy,...,h,) € R"is a deterministic vector, whose empirical distribution of

entries converges weakly to a limit law
1 n
- Z 8/1,' — MH
n =
1=

as n — oo. For every p > 1, the law pupy has finite p‘h moment, and
nm Y B — By, [HP)

We remark that our results apply also to models with random (D, &) independent of
O which satisfy these conditions almost surely as n — o0, by applying the results
conditionally on (D, h).

We are interested in the asymptotic free energy

1
Y = lim —logZ. (1.2)
n—oon
For sufficiently small 8 > 0, we prove that this limit exists almost surely and is given
by the following replica-symmetric formula: Denote the Cauchy- and R-transforms
of up by

1 1
G@r=f up(dx), R =G -~
Z—x Z
We define G(z) for real arguments z € (d4, 00). The function G : (d4+,00) —
(0, G(dy)) is strictly decreasing, where we denote

G(dy) = Zlirt}l G(2) € (0, <.

We define R(z) forreal arguments z € (0, G(d4+)), where G~ is the functional inverse
of G over the domain (d., 00).

Proposition 1.2 Under Assumption 1.1, for some By = Po(up) > 0 and all B €
(0, Bo), there is a unique solution g, € [0, 1) to the fixed-point equation

¢+ = Eltanh(H + 0,.G)?], o2 = B¢ R'(B(1 — q»)) (1.3)

where the expectation is over independent random variables G ~ N (0, 1) and H ~
KH-

! This moment condition for / is used to apply the AMP state evolution analysis of [21] to deduce Theorem
2.2, and is not used in the rest of the argument.
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The replica-symmetric free energy for Ising spin... 5

Let g., o2 and G, H be as above. Then the replica-symmetric prediction for the free
energy W is (see e.g. [41, Eq. (56)])

Bax«
2

Wgs = ]E[lochosh(H n a*G)] + P RB(1 = q1))

2 * 1— * ’ 1 e
SO R G0 g+ 5 [ pRGadz (4)

The correctness of this prediction for sufficiently high temperature is justified by the
next theorem, which is the main result of the paper.

Theorem 1.3 Suppose Assumption 1.1 holds. Then for some By = Po(up) > 0
depending only on up, and for any fixed B € (0, Bo), almost surely

1
lim —logZ = Wgs.

n—oon

We mention that for the spherical counterpart of the Ising model (1.1), the free energy
can be computed directly and also agrees with its replica-symmetric prediction. We
carry out this computation in Appendix D by applying one of the technical results in
Sect.2.4.

1.2 Overview of the proof

We will adopt the conditional second moment method of [8], and show that
" o1 2
lim —1logE[Z | G] = Wgs, lim —1logE[Z“ | G] &~ 2Wgs (1.5)
n—oon n—oon

for an appropriately chosen sigma-field G. Together with classical concentration-of-
measure results for Haar measure over the orthogonal group, this will be enough to
show Theorem 1.3.

We define G = G; as the sigma-field generated by a fixed number ¢ of iterations
of an AMP algorithm designed to solve the TAP mean-field equations described in
[41, 45]—see (2.11) below. Such an algorithm was introduced for the S—-K model in
[7] and for applications in compressed sensing in [5, 17]. For the Ising model (1.1)
with orthogonally invariant couplings, a general class of AMP-type procedures was
described in [40], including a “single-step memory” algorithm for solving the TAP
equations that reduces to the one of [7] in the S—K setting. Our analyses will rely on
arigorous characterization of the state evolution of such algorithms obtained in [21].

The specific algorithm we use to construct G; is not of the single-step memory form
of [7, 40], but rather an alternative “memory-free” form introduced by Cakmak and
Opper in [12], applying the general procedure in [40] with a resolvent of J instead
of the couplings matrix J itself. This memory-free algorithm is related to a class of
Vector/Orthogonal AMP algorithms developed for compressed sensing applications
in [31, 47, 51], and may be derived also from the Expectation Propagation framework
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6 Z.Fan,Y.Wu

of Minka [38]. For our purposes, use of this algorithm leads to two important simpli-
fications: First, its state evolution has a simple description when J is non-Gaussian,
whereas that of alternative iterative procedures may have a complicated dependence
on the spectral free cumulants of J. Second, the analysis of [21] reveals that iterates
of this algorithm have an asymptotic freeness property with respect to J, which we
describe below in Proposition 2.4. Both simplifications are important in enabling our
computations of the conditional moments in (1.5).

The details of our strategy for showing (1.5) are somewhat different from those
presented in [8], and we proceed in two high-level steps: We first apply the AMP
state evolution and a large deviations argument to give exact expressions for the large-
n limits of the conditional moments (1.5) in terms of low-dimensional variational
problems. This leverages and extends some results of Guionnet and Maida [26] that
relate exponential integrals over the orthogonal group to the R-transform of J. We then
analyze these variational problems, proving upper and lower bounds for their values
that are tight for Wrs and 2WRg in the limit as the number of algorithm iterations
t — oo. The assumption of small § (i.e. sufficiently high temperature) is used in
a crucial way in the upper bounds, to show a global concavity property of these
variational problems.

The remainder of the paper is organized as follows: In Sect. 2, we collect the general
ingredients of the proof, including a more detailed description of the AMP algorithm
and its state evolution, and the evaluations of the required exponential integrals over the
orthogonal group. In Sects. 3 and 4, we analyze the conditional first moment E[Z | G;]
and second moment E[Z2 | G:] respectively, leading to the proof of Theorem 1.3 in
Sect. 5.

Notation

O(n) and SO(n) are the orthogonal and special orthogonal groups of n x n matrices.
Haar(-) denotes the Haar-measure on these groups.

[I - | is the £>-norm for vectors and ¢» — ¢» operator norm for matrices; we may
write the latter as |- || op in situations where this is unclear. || - || ¢ is the Frobenius norm for
matrices. We use the convention that for scalar values xi, ..., xg, (xi,...,X;) € Rk
denotes the column vector containing these values. We write = for a definition or
assignment. We reserve the sans-serif font G, H, X, Y for scalar random variables.

2 Preliminaries
2.1 Centering and rescaling

Adding a multiple of the identity to J shifts the free energy W and Wgg by the same
additive constant. Thus, we may assume without loss of generality that
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The replica-symmetric free energy for Ising spin... 7

/x,uD(dx) =0. 2.1

Since @ p has positive variance by Assumption 1.1(b), we may also assume without
loss of generality that

fx2 wup(dx) =1, (2.2)

by rescaling / = O T DO and incorporating this scaling into .
For most of the proof, it will be notationally convenient to absorb the parameter
into the couplings matrix J, after this centering and rescaling. We define

_ _ _ _ 1 < _
J=pBJ, D=diagd,...,d,) =pD, pp= lim _Zaji, d, = Bd;.
i=1

n—o00 p 4

(2.3)

Thus wp is the rescaling of the limit spectral law pp, and dy = max(x : x €
supp(u j)) is its maximum point of support.
We denote the Cauchy- and R-transforms of 1 5 by

_ 1 _ - 1
G = / ——updx), R@=G"'()--, 2.4
i—X Z

where G(z) is defined on (dy, o0), and R(z) on (0, G(dy)). These are related to the
Cauchy- and R-transforms of pp by

Gz = %G <§) . R() = BR(B2). 25)

Let {ki}x>1 be the free cumulants of the law pp. Since «1 and k2 correspond to the

mean and variance of up (cf. [39, Examples 11.6]), (2.1) and (2.2) imply that k1 = 0
and k = 1. Writing ||t pllco = max(|x| : x € supp(up)), we have

Ik | < (16]]2p [loo) (2.6)

for all k > 1, and the R-transform admits the convergent series expansion for small z
given by

R(z) = Z Kk

k>1

(cf. [39, Notation 12.6, Proposition 13.15]). The free cumulants of u j are then k; =
B, satisfying k1 = 0, ko = B2, and |kx| < (16]|uplleoB)* for k > 3. The R-
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8 Z.Fan,Y.Wu

transform of 1 55 for small z is

R(z) =) iz " 2.7)

k>1

The Gibbs distribution and partition function in (1.1) may be written in this rescaled
notation as

1 1 +- 1 +-
P(o) = Z exp (50—'—]0 + hTa> , Z= Z exp (EO'TJG + hTO') .

oe{+1,-1}
(2.8)
The fixed-point equation (1.3) for g, is written in terms of R(z) as
gs = E[tanh(H + 0,G)*], 07 = q:R'(1 — g») 2.9)
and the replica-symmetric free energy (1.4) is
— 1— _
Wgs = ]E[lochosh(H n a*G)] n %*R(l g — MR’U — 4
1 17‘1* _
+1 / R(2)dz. (2.10)
2 Jo

2.2 AMP for solving the TAP equations

Denote by

m= Z o-P(o) e (—1,1)

oe{+1,—1}*

the magnetization vector of the Gibbs distribution (2.8). It is predicted that for suf-
ficiently small B > O, this vector m approximately satisfies the TAP mean-field
equations [41, 45]

m = tanh (h+jm—lé(1 —q*)m). 2.11)

Here and below, tanh(-) is applied coordinatewise. For the S—K model where J is
Gaussian, we have Ié(x) = ,32x, and this coincides with the classical TAP equations
of [56]. We provide a brief review of the cavity-method derivation of these TAP
equations from [41] in Appendix E.

Our proof of Theorem 1.3 will compute the first and second moments of the partition
function Z conditioned on a sigma-field generated by an iterative AMP algorithm for
solving the TAP equations. We consider the following algorithm from [12] having
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The replica-symmetric free energy for Ising spin... 9

“memory-free” dynamics: Define

r=G (1 —-gq0)=R1—qu)+ (2.12)

1 — g«

so that (__}(k*) = 1 — g,. This is well-defined for any B € (0, G(d+)), since | — g, <
1 < G(d+) = G(d4+)/B. Consider the matrix

r= Oud — )7 =1,

1 — g«

which admits the eigen-decomposition

1
r=o0'Ao, A:l

— gy

(I —D) ' —1. (2.13)

In particular, I is also orthogonally invariant in law. Let y© € R” be an initialization
of the AMP algorithm with entries

iid
W N, 6, (2.14)

where 0*2 is defined in (2.9). Then the AMP algorithm is given by the iterations

1
x = . tanh(h + y'~') — y'~ 1, (2.15)

*

V' =T, (2.16)

An approximate solution of the TAP equations (2.11) is obtained from the iterates of
this algorithm as m' = (1 — g,)(x' + y'~!) = tanh(h + y'~!). For any fixed point
(x,y) € R" x R” of this algorithm, it is easily checked that m = (1 — g, )(x + y) =
tanh(h + y) exactly satisfies (2.11).

Applying the diagonalization ' = O T A O in (2.13), let us write the AMP iterations
in an expanded form

t 1 t—1 t—1
xt = tanh(h +y'7 ) —y' 7, (2.17)
1 — g«
s' = Ox', (2.18)
y'=0TAs". (2.19)

For each fixed ¢+ > 1, we define the sigma-field (in the probability space of O)
gr=g(y0,xl,sl,yl,...,xt,st,yt) (2.20)

generated by all iterates of (2.17-2.19) up to y’. The proof of Theorem 1.3 will compute
the first and second moments of Z conditioned on G;.

@ Springer



10 Z.Fan,Y.Wu

A key property of this algorithm is that the scalar function f(h,y) = (1 —
gx)"'tanh(h + y) — y applied entrywise in (2.17) is divergence-free in y, in the
sense

El[dy f(H, 0,G)] = 0 2.21)

for independent random variables H ~ g and G ~ N(0, 1), which follows from the
definition of g, in (1.3). This substantially simplifies the state evolution that describes
the AMP iterates x’, y'—discussed in the next section—when J is a non-Gaussian
orthogonally invariant couplings matrix.

2.3 State evolution for AMP

The state evolution for general AMP algorithms of this form was described in [12,
21, 40]. We first review the specialization of these results to the specific algorithm
(2.17-2.19). Proofs are deferred to Appendix A.

Define

: 1 2 2
Ky = lim —TrT?, 8, =02/« (2.22)

n—oon
These quantities are given more explicitly as follows.

Proposition 2.1 We have

1
= o5 —1
1= =g)R'(1 —gs)

Ky

(2.23)

and

2
qx 2 1
Sy =————0.=E tanh(H G) — 0.G 2.24
*T 0= q)? O |:<1_q anh(H + 0,G) — oy ):| ( )

*

for independent random variables H ~ py and G ~ N (0, 1).

Under Assumption 1.1, let H ~ gy and Yo ~ N(O, 0*2) be independent of each

other. Then, iteratively foreachs =1, ..., ¢, set
s = tanh(H + Y;—1) — Y1, (2.25)
1 — g«
Ay =BE[X1..... X) (X1, .. X)) ] (2.26)

and draw Y, independently of (H, Yg) so that (Y1, ..., Ys) ~ N (0, k4 Ay). This defines
a joint law for the variables (H, Yo, Yq, ..., Ys, X1, ..., X;), forany r > 1.

@ Springer



The replica-symmetric free energy for Ising spin... 11

Theorem2.2 Fix any t > 1, and let Y, = (y',...,y") € R"™ and X, =
(x', ..., x") € R™ collect the iterates of (2.17-2.19), starting from the initial-
ization (2.14). Then, under Assumption 1.1, almost surely as n — oo, the empirical
distribution of rows of (h, Y°, Y;, X;) satisfies the convergence

FEER

1 n
- DSttty = Y0 Y Y XX (227
i=1

weakly and in p’h moment for each fixed order p > 1.
Furthermore, A; is non-singular, and almost surely as n — 0o,

n XX = Bl X)X X) T = A (2.28)
nY Y = BIYL L YD (YY) T = kA (2.29)
n XY = E[Xq, ..., X)(Y1,....Y) 1=0. (2.30)

By definition, the second-moment matrix A, in Theorem 2.2 is the upper-left # x ¢
submatrix of A,y . Thus it is unambiguous to write the entries of these matrices as

Ar = (5ss/)1§s,s/§t-

For our purposes, we will require only the following property of the entries of A;.

Proposition 2.3 In the setting of Theorem 2.2, for some By = Bo(up) > 0 and all
B € (0, Bo), we have

8t = 8y and k8 = o2 forall t > 1, lim 8 = &, lim k85 = o2
min(s,?)— 00 min(s,?)— 00

Thus the algorithm (2.17-2.19) is convergent for sufficiently small 8,% in the sense

1
lim ( lim —|x" — x5||2> = lim  (8s5 + 81 — 285) = 0,
min(s,t)—>o0 \n—=>X n min(s,t)— o0
. . 1 1 _ S 2 _ . . j—
_lim lim —[y" —y'[I7 )=  lim  ku(8ss + 8 — 285) = 0.
min(s,t)—o00 \n—>X n min(s,?)— 00

Defining S; = (s%, ..., s") = OX,, where the second equality holds by (2.18), the
convergence (2.28) implies that

n_IXtTX, :n_IStTSt g At~

A second important property of the memory-free dynamics (2.17-2.19) is the following
more general statement.

2 Tt is shown in [12] that this convergence in fact holds in the entirety of a high-temperature region defined
by an Almeida-Thouless type condition for stability of the replica-symmetric phase, which depends on i p
and pny.
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12 Z.Fan,Y.Wu

Proposition 2.4 In the setting of Theorem 2.2, fix any t > 1, and let X; =
U x) eR™ and S, = (sh, ..., s") € R"™ collect the iterates of (2.17-2.18).
Let f : R — R be any function which is continuous and bounded in a neighborhood of
supp(i p), and define f (J) by the functional calculus. Then almost surely as n — 00,

nIXT F(DX, = n'STF(D)S, — A, - / Fpdx).
Informally, this states that for large n,
n X FDX ~n 7 XX 0T T £ (D).

Thus, in a certain sense, the AMP iterates X, are “free” of the couplings matrix
J, despite being dependent on J. This result is a consequence of the divergence-free
property (2.21), and it follows from the state evolution analysis in [21, Lemma A.4(b)].
We provide a proof in Appendix A.

Finally, we record here the leading-order behaviors of the above constants
qx, 03, As, Kx, 04 for small 8.

Proposition 2.5 Under Assumption 1.1, let O (f (B, z)) denote a quantity having mag-
nitude at most C - f (B, z), for some constants C, By > O depending only on up and
forall B € (0, Bo) and z € (0, 1). Then

R(z) = B°z(1+ 0(B2)), R'(2)=p*(1+0(B2), R'(z)=0(p’) 231)
and
g« = Eltanh(H)*] + 0(8%), o} = B*q« + O(B),
b= _lq* + B0 —g(1+ 0B - g.))
ke =B(1—g)*(1+ 0B = gq4)). 8 =

2.4 Conditioning and large deviations for Haar-orthogonal matrices

We collect here several results on the conditioning of Haar-orthogonal matrices, and
large deviations for integrals over the orthogonal group.

Proposition 2.6 (Lemma 4 of [47]) Let A, B € R be deterministic matri-
ces of rank k, such that A = QB for some orthogonal matrix Q € Q(n). Let
Vi, Ve € R =K be matrices with orthonormal columns spanning the orthogo-
nal complements of the column spans of A and B, respectively. Let O ~ Haar(O(n)).
Then the law of O conditioned on the event A = O B is given by

Olacos £V, 0V], + AATA'BT =V, 0V], + ABTB)'BT,
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The replica-symmetric free energy for Ising spin... 13

where O ~ Haar(Q(n — k)).

Proposition 2.7 Let O ~ Haar(Q(n)). Let D € R"*" be a deterministic symmetric
matrix whose eigenvalue distribution satisfies Assumption 1.1(b) as n — o0. Let jup
be its limit eigenvalue distribution, let dy = max(x : x € supp(up)), and let G(2)
be the Cauchy transform of up. Fix any constants C, ¢ > 0, and define the domain

_ n " la]|? 161>
Q=3@,b)eR"xR": 0 < — <G4+ +¢)—¢e, — <C;.
n n

Then
1 To"bo 1
lim sup |-logE [exp (bTOa + u)} — ~E,(a, b)’ =0, (232)
n—>00 (; pe, |1 2 2

where

ylal? N bT(yI — D) b

n n

E,(a.b) = inf {
y>di+e

2
-(1-+1og”iﬂ )}. (2.33)

Proposition 2.8 Ler O, D, up, d+, and G(z) be as in Proposition 2.7. Fix any constants
C, ¢ > 0, and define the domains

1
— —logdet(yl — D)
n

D = {(y, v,p) eR: (z ;) = (s + 8)12x2} : (234)

I (lla]?> aTe
. n4 . _
Q, = {<a,b,c,d> €®RH": 0= <aTc lell?

b|I? |d|?
5(GW++@—8yUL %}n”” <c}

n
Then
1 To™Dpo To™Dpo
lim sup —logE [exp (bTOa +d"Oc+ 4 a + ¢ C)i|
=09 (q.b,c,d)eQ, | 1 2 2
1
_EE”(a’ b, c, d)‘ =0 (2.35)
where
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14 Z.Fan,Y.Wu

T —1
. 1 v v\ (lal? aTc> 1<b> (yI—D vl ) (b)
E,(a,b,c,d) = inf —Tr + -
" ) <y,u,p>efoe{n (v p) (aTc lel?) " n \d vI  pl—D d

1 yl—D vl 1 (llal? a'c
. log det ( oI pl— D) (2 + log det . (aTc lel2 .
(2.36)

When b = d = 0, the expectations evaluated in Propositions 2.7 and 2.8 are finite-
rank HCIZ integrals over the orthogonal group, and such results were obtained in [26,
Theorems 2 and 7]. The above propositions extend these results to b,d # 0, and
also establish the approximations in a more uniform sense. We note that the content
of Proposition 2.7 for b # 0 is essentially the calculation of the limit free energy in
the spherical analogue of the model (1.1) with external field, and we discuss this in
Appendix D.

For b = d = 0, asymptotic versions of the infima in Propositions 2.7 and 2.8 may
be explicitly evaluated, and we record these evaluations here.

Proposition 2.9 Let up be a compactly supported probability distribution on R. Let
G(z) and R(z) be the Cauchy- and R-transforms of up, and let d4 = max(x : x €
supp(up))-

(a) Suppose that o € (0, G(d+)). Then

o
inf yoa — / log(y —x)up(dx) — (1 +loga) = / R(z)dz
y>dy 0

and the infimum is achieved at y = G~ («) = R() + 1 /a.

(b) Suppose that A € R**? is symmetric and satisfies 0 < A < G(dy)I. Define
f(A) € R**2 for any function f : (0, G(d+)) — R by the functional calculus.
Let

Dy = {(7/, v,p) eR: (Z ;) > d+12><2} .
Then

i vy y—Xx v
inf  Tr A — | logdet dx) — (2+logdet A
(y.v,p)eD4 (u p) / g < voop— x) upldx) — ( g )

="Tr f(A),

where f(a) = f(;x R(2)dz. The infimum is achieved at <)1: ;) =G4 =

R(A)+ A~

We prove Propositions 2.7, 2.8, and 2.9 in Appendix B, building on the large-
deviations arguments of [26].
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The replica-symmetric free energy for Ising spin... 15

3 Conditional first moment

Let Z be the partition function in (2.8), and let G; be the sigma-field defined by (2.20).
We show in this section the following result.

Lemma 3.1 In the setting of Theorem 1.3,

1
lim lim —logE[Z | G,] = WRs,

t—>oon—>oo n
where the inner limit as n — 00 exists almost surely for each fixed t.
3.1 Derivation of the variational formula

For scalar arguments y > cz+ and u, U € R, and vector arguments v, w, V, W € R’
with [[v]|2 + [lw||?> < 1, we define the function

Q1 (u,v,w;y, U, V, W)

_ E[lochosh (U HAVIAT2 X, X e PWT ATy, Yt))]
_ _ he — R(1 — —!
—u-U—=v'V—w'W+u+R(I - g ks V2T 4 2% ( 5 q)ks lwl?
1 _1n 1
+ 5 F Wl = ks Pwl? + SH T = ol = fw]?) 3.1)
and the variational formula
\Ill,t = Sup mf lnf q)l’[(u, v, w; Yy, U’ Vv W) (32)
uekR y>d, UER, V. WeR!
v,weR: v 2+|lw|?<1
Here, the random variables (H, Yy, ..., Y, X, ..., X;) and the positive-definite

matrix A, are as described in Theorem 2.2, and the functions F and H are given by

Fy) 2 Foy) — Fo) " Fuy) ' Fuw), 3.3)
H(y, o) £ yo — / log(y —x)up(dx) — (1 4+ logw) (3.4)

where we set

N 1 B a R =g (, 1
O T pn vow R (1 1= g0 —x))’
(3.5)
and
N 1 I A(x) ) 2%2

Fuly) = / v« ()»(X) A(x)2> updx) eR (3.6)
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16 Z.Fan,Y.Wu

1
Famn & [ (Mif;zx)) up(dx) € B2 37

)/ — X
Faly) & / 0(x)* 1 5(dx). (3.8)

Yy —X

Note that under Assumption 1.1(b), u 5 is supported on at least two points, and A, > dy
by definition so x > A(x) is one-to-one on supp(u ). As aresult, Fp1(y) is strictly
positive-definite and invertible for y > d and thus F(y) is well-defined.

Lemma 3.2 In the setting of Theorem 1.3, for any fixed t > 1, almost surely
1
lim —logE[Z | G/] = Wi,.
n—-oon

Proof Recall the n x t matrices X; = (x!,...,x), Y, = (y',...,y"),and S, =
(sl, ..., s") which collect the AMP iterates. We fix ¢ and write G, X, Y, S, A for
G, X4, Yy, S;, A;. From the definition of Z in (2.8),

E[Z|Gl= Y exp(thr—i-g.fn(o)),

oe{+1,—1}"

falo) & %mgﬂi |:exp (%UTOTDOG) ‘ g} . (3.9)

The function f;, (o) is well-defined for any o € R". We first approximate f;, (o) over
the sphere where ||o ||2 =n.

Conditional law of O. Theorem 2.2 guarantees that A is non-singular. The assump-
tion of positive variance in (2.2) and the definitions of I' and «, in (2.13) and
(2.22) ensure that x, > 0. Then applying (2.28-2.30), almost surely for all large
n,n N (X, Y)T(X,Y) € R¥*? is also non-singular and (X, Y) € R"** has full
column rank 2¢. Furthermore, we have the bounds

limsupn 2| X|| < o0, limsupn~'2||Y| < o0, limsupn™'/2||S| < oo,
n—oo n—0oo n—0oo
(3.10)
which follow from [n !X TX| = |[n~'STS| — Al and o~ 'Y Y| = |k

Conditional on G, the law of O is that of a Haar-orthogonal matrix conditioned on
the event

(S,AS) =0(X,7).

By Proposition 2.6, we may represent this conditional law of O as

-1
L < T XTx xTy T
Olg = Vis.as OV yyr + (S, AS) (YTX yTy) XD
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The replica-symmetric free energy for Ising spin... 17

where Vix y)r, Vs a5yt € R (=2 have orthonormal columns orthogonal to

the column spans of (X,Y) € R"*% and (S, AS) € R™? respectively, and
O ~ Haar(O(n — 2t)) is an independent Haar-orthogonal matrix. Let us write as
shorthand

V - V(S,AS)L

For any vector o € R", let us denote

XX Xy

_ vl n—2t _
o = V(X’Y)J_CT elR , o =(5,AS) <Y—|—X yTy

-1
) (X,Y) o e R".

(3.11)

This yields the equality in conditional law Oc|g L voo 1+ 0,30 (3.9) reduces to

falo) = %O'”TDO'” + %log]E |:exp (%oIéTVTDVéoL + GHTDVO~0J_>:| .
(3.12)
Expectation over O. We first restrict to the domain
Uy=lo €R":lo|* =n, o #0)

and evaluate the expectation over O ~ Haar(Q(n — 21)) using Proposition 2.7.
Throughout the proof, we write r,(c) to indicate any o-dependent scalar, vector,
or matrix remainder term with dimension independent of n, satisfying the uniform
convergence almost surely

lim sup [ra(o)] =0, (3.13)
n—00

oel,

and changing from instance to instance. We check the conditions of Proposition 2.7:

e The matrix V = V(g 5 )1 has n—2t orthonormal columns, where 7 is independent
of n. Then by Assumption 1.1(b) and Weyl eigenvalue interlacing, as n — 00, the
empirical eigenvalue distribution of VT DV has the same weak limit p as that
of D. Furthermore, from the conditions on max(dy, ..., d,) and min(dy, ..., d,)
in Assumption 1.1(b), the largest eigenvalue of V' T DV also converges to d., and
the smallest eigenvalue remains bounded away from —oo.

e Take a = o in Proposition 2.7. Applying (2.5), we have G(dy) = B~'G(d,),
where G (d4+) € (0, oo] depends only on wp. Then for some g = Bo(up) > 0,
any B € (0, Bo), and any sufficiently small constant ¢ > 0, we have

Gdy+¢e)—e>1 (3.14)

sothat lo||?/n < |o||?/n=1< G(ds +¢) — .
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18 Z.Fan,Y.Wu

e Take b = VTl_)on in Proposition 2.7. Observe that (S, AS) = O(X,Y),so 0 =

OTlx yo whereIlx y = I —Vx yyL V& yyr € R""is the orthogonal projection

onto the column span of (X, Y). Then ||V " Doy [|?/n < ||D||*- |loy[|*/n < | D|?-
lol|?/n = | D|*.

Thus Proposition 2.7 (applied with dimension n — 2¢) yields uniformly over ¢ € U,

fulo) = %GHTDG” + E (o) 4 10(0) (3.15)

where

2 o/ DV(yI-VTDV)"'VT Do
E,(0)= inf {V”UJ_” il I
y=>dite n

n

1 T - o l1?
— —logdet(yl —V DV)—|1+log——— ) ;. (3.16)
n n

Approximation by v, w. For o € U,, define the low-dimensional linear functionals

1 ve)\ [l (xTxxTy\]" 1 -
wor=tae () <[ (XX e o

where u(c) € R and v(0), w(o) € R’. Note that

1 oL |I?
lv(@)|I? + w(e)|* = ;nmx,mnz =l1-—=<1 (3.18)

Let us approximate the terms of (3.15) by functions of v(c’) and w(o).
We begin with cr”TDo” /n: Applying (2.28-2.30) to (3.11),

1 /xTx xTy\1 "2
o) = (S, AS) [; (YTX YTY)] (;ﬁ‘;?))

=85-A200) + AS - (kA" Pw(0) + (S, AS) - (o). (3.19)

From the definition of A in (2.12) and the definition of the Cauchy-transform in (2.4),
asn — 0o,
U Te DT — D) =0~ T [k*(k*l —D)y - 1] = 3G — 1
= Ae(l —qy) — 1. (3.20)

Differentiating the R-transform in (2.4),

_ 1
R'(2)

TG 2
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The replica-symmetric free energy for Ising spin... 19

Then applying the form of k. in (2.23), also

n ' Te DI — D) 2 =n~'Tr [A*(A*I — D)2 = (Ol — D)—l]

— =G () — G () = hlics + DA — ) — (1 — qx).
(3.21)

Let us write as a shorthand

1
1—gy

as = R(1 — qy) = Ay — (3.22)

Then in view of the definition of I in (2.13), applying (2.1), (3.20), and (3.21) yields
n'TrD — 0, n 'TrDA — Ay, n'TrDA? — MKy — Q.

So Proposition 2.4 yields almost surely
1 TR 0 ax A
;(S, AS) D(S,AS) — (a*A ek — a*)A) . (3.23)

Combining this with (3.19), we obtain for the first term of (3.15) that

G\|—|—50H . 2a,

T s 2
v(o) w(o) + (/\* - K—) lw(@)I* +rau(o). (3.24)

n P }
Next, we approximate E, (o) in (3.16) by approximating each term inside the
infimum uniformly over y > d, + ¢ and o € U,. Note that for all large n, all
eigenvalues of V " DV are contained in a compact interval C C (—o0, d; + £/2) that
is disjoint from [dy + ¢, 00). Fixing y > d + ¢, the function x > log(y — x) is
bounded and continuous on /C, so by weak convergence in Assumption 1.1(b),

1 i}
p logdet(yl — V' DV) = /IOg(y —xX)pp(dx) 4+ ra(y)

where r,(y) — 0 as n — oo. The function y — nl logdet(y I — VT DV) on the
left side is uniformly Lipschitz over y > d + ¢ for all large n, so by Arzela-Ascoli,
in fact ,(y) — O uniformly in y over any compact subset K’ C [d, + &, o). For
any § > 0, we may take a sufficiently large such compact subset K§ and bound

1 _
log(y — x) —logy §|x|-ﬁ<8forallxelc, y € ldy +¢&,00)\ K.
vl —Ix

Then also |r,(y)| < 26 forall y € [cL_r + &, 00)\K%, implying that the convergence
rn(y) — 0 is uniform over all y > d, + . Then, applying also ||o ||*/n = 1 —
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20 Z.Fan,Y.Wu

lv(@)|I? = |lw(o)|? from (3.18) and recalling the function H defined in (3.4), we
obtain

2 1 _ 2
YhoLl® L e detiyr = vT DY) — (1 + log 174 )
n n n
=Hy, 1 = [v@)|* = [w©)*) + ra(y). (3.25)

To analyze the remaining second term of E, (o) in (3.16), let us introduce
sTs sTas\ /2 xTx xTr\"*
W= (5 AS) <STAS STA2S> =S A yTx yTy €R
(3.26)

whose columns are the orthogonalization of (S, AS). Then the columns of (V, W)
form a full orthonormal basis for R”. We write [T = VV' = I — WW T as the
projection orthogonal to (S, AS). Applying (3.19), (3.23) and (2.28-2.30), observe
that

X"x X7y
YTx vy

_ AL 0 0 as A A~12p(0)
= ( 0 (K*A)—1> <a*A (ke — a*)A) ((K*A)—l/zw(0)> + 1y (o)
_ 0 a1 A~12p(0)

B a*/(*_ll (Ay — a*K*_l)] (K*A)il/zu)(o‘) +ry(0).

Then applying

-1
) (S, AS)" Doy

X"x X7y

—1
O=1-WW'"=1-(S,AS) <YTX YTY) (S, AT,

we obtain
Doy = (DS — ag! AS) CATV20(0)
+ (DAS — xS — (g — a*/c*_l)AS) e A) 2w (o)
+ (DS, DAS, S, AS)r, (o).
Substituting

1
i

A= (A*(A*I—D)_l —1) - D

= I —D)y'—1, DA
1 — g«

and applying the identity (3.22) and some algebraic simplification,
MDoy = DS - (A‘”zv(o) - (x*A)—Ww(a)) + (DS, DAS. S, AS)ry (o)
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The replica-symmetric free energy for Ising spin... 21

(3.27)
where D is the diagonal matrix
DED+% (1 - el — D)—1> : (3.28)
Ky 1—q«

Now let us apply (V, W)T(V, W) = I to write

yI-VDV —VTDW vT -
<_WTDV yi—wipw)=\wr)I=D (VW)

_ [(;}:) (1 —D)y"' (v W)}l

_(VTGI=D)y" 'V vyl =Dy 'w\
“\Wlgr-bp)y'vwlwyr-bpy-'w) -

Equating the upper-left blocks and applying the Schur-complement formula to the
right side yields

yI=VIDV =[VTgI=D)'V =V (I =Dy W (1
_ _ -1
D)Wy w1 - D)—lv] .
Thus, recalling IT = V VT, the second term of (3.16) is
1 - _ i}
—0/DV(yI —V'DV)"'V Doy
n
[ = N

1 _ _ _ _ _
- ;aHTDH(yI -D)y'wwT(yI = D)y"'W)"'wT(yI — D)"'1Do;.
(3.29)

We apply (3.27) and Proposition 2.4 to approximate these two terms: By Proposition
2.4, we have almost surely

1 - _ -
-STD(y1 —D)"'DS > Fn(y)- A
n

for each fixed y > ci+ + ¢, where F,(y) is as defined in (3.8) and D in (3.28).
Applying (3.10), the left side is a # x ¢ matrix that is entrywise uniformly Lipschitz
as a function of y > d, + & for all large n. So this convergence is again uniform in
y over any compact subset K’ C [dy + &, 00) by Arzela-Ascoli. For any § > 0, we
may take a sufficiently large such subset /C§ so that the left side is entrywise bounded

@ Springer



22 Z.Fan,Y.Wu

by & for all y outside Kj. In all, we conclude the above convergence is uniform over
all y > dy + ¢. Since

1 ~ _ _ _
—STD(yI — D)"Y (DS, DAS, S, AS),
n

1 - _ _ _ _
—(DS,DAS, S, AS)" (yI — D)~ (DS, DAS, S, AS)
n

are also uniformly bounded over y > d. + ¢ for all large n, this combined with (3.27)
shows for the first term of (3.29) that

I - A =117 7 —1/2 2
pd DIl(yl — D) lIDo = Fo(y) - v(o) — ks ""w(o)||” + ru(o, v)
(3.30)

where r,, (o, y) — 0 uniformly over y > c?+ +cando € U, asn — oo.
For the second term of (3.29), recalling A = ﬁ(k*l — D)~! — I from (2.13)
and again applying Proposition 2.4, we have

1 _
(S, AS) (v — D)"1(S, AS) — Fii1(y) ® A € R*>*¥
n

where

»Tr(yI—D)~'  LTr(yl—D)~'A )

Fuly) = lim < Tr Ayl — D) LT A(yT — D)~ A

and this coincides with the matrix defined in (3.6). Then, recalling the form of W from
(3.26),

0 kA 0 keA

1 0 1 0
= [(O K*1/2> Fuy) ( K*1/2>i| ®I.

Similarly, for F12(y) as defined in (3.7),

. —1/2 -1/2
Wl — D)y 'W - <A 0 ) [Fii(y) ® Al (A 0 )

—_

A 0
0 ke A

[( 1/2) -7:12()/)] ® A2,

1/2
—Ww'(yI —D)"'DS — ( ) [Fr2(y) ® Al

7

Thus
1 - _ _ _ -
~S"DyI =Dy 'WW' I -D)y"'w)y'wT(y1 — D)"'DS
n
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- Fo) " Fuw) " Fuy) - A.

Applying the bounds (W (yI — D)"'W)"!| <y —d_and |W' (yI — D)7} <
S— 7> We may check that the left side is again uniformly Lipschitz over y > d + ¢
and, forany § > 0, is bounded in magnitude by § when y lies outside a compact subset
IC:S C [ch + &, 00). Thus this convergence is again uniform over y > d_+ + ¢. Then,
combining with (3.27) and applying the same argument as leading to (3.30), we have

for the second term of (3.29) that

R _ _ _ i}
—o DII(y1 = D)"'W(W " (yI — D)"'W)"'W ' (yI — D)"'T1 Do
n
= Fo() Fu) " Fo@) - v©) — ki Pw@)|? + rulo.y)
where r,(o, y) — O uniformly over y > d; + ¢ and 0 € U,. Defining F =

For — F 11;]:1_117: 12 as in (3.3), this shows that almost surely as n — oo, the second
term of (3.16) satisfies

I 15 Su-luT 7 ~1/2
~o| DV(y1 =V DV)"'VT Doy = F(y) - [v(0) =k *w(@)|* + ru(o. ).
(3.31)
Observe that this also implies
F(y) is non-increasing and convex over y > d. (3.32)

Indeed, fixing any y > d., let us take & above small enough such that y > d +&. For
each n, let us take o € U, such that ||v(0)||> — 1 and |w(o)||?> — 0asn — oo. (For
example, we may choose 0 = /n(x + 8,7)/|lx + 8,r|| where x is the first column
of X, r is a unit vector orthogonal to the column span of (X, Y), and §, — O as
n — 00.) Then as n — oo, the right side of (3.31) converges to F(y). The left side is
non-increasing and convex at y for each finite n, so the same properties hold for the
limit F(y).

Combining (3.24), (3.25), and (3.31) and applying this to (3.15), we obtain the
approximation for o € U,

falo) = inf (zlij;vwfwwH(x*—“—*) lw(o)]?
K

y>dy+e Ky

1

+FW) - v©o) =k Pwo)]?

+H(y, 1= |lv()]* - ||w(a>||2)) + 1 (0),

where 7, (6) — O uniformly over o € U,. Observe that for any fixed 0 € U,,, we have
lv(@)|I*> + lw(o)||*> < 1 strictly, so the argument to this infimum is a well-defined
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and convex function of y € (dy, 00). Its derivative in y is

F'(y) - (o) —kx Pw@) >+ 1= @) = [w@)]* — G(y).

Forany y € (dy,dy + €], F (y) =< 0 as shown in (3.32), and 1 < Gdy +¢)—¢
as previously argued in (3.14), so G(y) > 1 + ¢. Thus this derivative is negative for
y € (d4+, d+ + €], so it is equivalent to write this infimum over the range y > d, i.e.

fulo) = f(v(o), w(0)) +ra(0) (3.33)

where the function f on the domain V 2 {(v,w): ||v||2 + ||w||2 < 1} is defined by

. 2a
f(v,w) = inf I—*UTLU
- /2
y>dy Ky

a —1/2
+(x*—K—*> lwl? + F ) - v — s Pwl? + Hy, 1= vl)> = w]?).

*

(3.34)

Finally, observe that f, (o) is continuous on the sphere {o € R" : |o I> = n}, and
the function o — (v(o), w(o)) is continuous, relatively open, and maps the dense
subset U, of this sphere to V for every n. By Proposition C.1 in Appendix C, f (v, w)
admits a continuous extension? to the closure V = {(v, w) : |[v||? + |lw||* < 1}, and
(3.33) holds uniformly over all o on this sphere. Thus, we have shown the almost sure
uniform convergence

lim  sup  [fu(0) — f(v(0), w(0))] =0. (3.35)

y
00 s eRn:o |2=n

Large deviations analysis. We conclude the proof by applying Varadhan’s Lemma
and the Girtner-Ellis Theorem: Consider now the discrete uniform law o ~
Unif ({+1, —1}") and write (-) for the expectation over this law. For arguments U € R
and V, W € R/, define the limiting cumulant generating function

|
=
=
| —
—_
(@]
oQ
—

exp [1(U - u(@) + VT v(@) + W w(@)))

-1/2 , T
o1 T T 1M1 /xTx xTy X'o
_nliinoonlog<exp |:Uh U+(V 7W )|:; (YTX YTY YTO‘

1
= lim - log<exp [U BT+ VIAT 2T 4 W (eA) "2y To 4 - rn(o)]>.

n—oon

3 Here, it is not hard to show that this extension to [|Jv||> + |w]? = 1 is given explicitly by f(v, w) =

21“/*2 viw4 (g — %‘) [lw ”2’ but this explicit form is not needed for proving the end result in (3.2).
K

@ Springer



The replica-symmetric free energy for Ising spin... 25

Here r, (o) is a remainder term satisfying 7, (o) — 0 uniformly over o € {41, —1}"
for any fixed arguments U, V, W, and hence is negligible in the large-n limit. Evalu-
ating the average over o using (e%%i) = cosha, and writing h; € R and x;, y; € R’
for the entries of 4 and rows of X, Y, we obtain

1 _
MUV, W)= lim " logcosh (U i+ VTAT 2 4k ”2WTA—1/2y,-)
i=1

Then the weak convergence in law (2.27) from the AMP state evolution of Theorem
2.2 shows that this limit indeed exists almost surely, and is given by

WUV, W)
:E[logcosh (U«H+VTA_1/2(X1 ..... X + s PwT A= 2y, Y,))].

Note that the function A(U, V, W) is finite and differentiable atall (U, V, W) € R+,
Then, denoting by

Vu,v,w)= sup U-u+Vo+Ww—aU,V,W) (3.36)
UeR, V,WeR?!

its Fenchel-Legendre dual, the Gértner-Ellis Theorem shows that (u (o), v(o), w(0))
satisfies a large deviations principle with good rate function 1*(u, v, w) [15, Theorem
2.3.6].

The function (4, v, w) — u + f(v, w)/2 is continuous over {u € R, v, w €

R’ : ||v||2 + ||w||2 < 1}. Here f(v, w) must be bounded over the compact set
{(v,w € R : |v||® + |lw||*> < 1}, and for any ¢ > 0 we have the exponential
integrability

1 1 1 &
lim —10g<ecn"(”)> = lim —10g<ec'hTU>= lim — " logcosh(ch;)
n—oon n—oon n—oon p—

= E[log cosh(cH)] < oo.

Then by (3.9), (3.35), and Varadhan’s lemma [15, Theorem 4.3.1],

lim L logE[Z | G] = log2 + lim  log <exp (n : [u((f) + X r o), w(o))])>
n—o0o n n—oon 2

_ up log 2+ + f,w)
uelR 2
vaweR!: [v)2+w|2<1

— A5 (u, v, w).

The domain |v]|? + |w||®> < 1 in this supremum may now be restricted to vl +
lwi? < 1, by continuity of f(v, w) and lower-semicontinuity of the rate function
A*(u, v, w). Substituting the forms of f and A* from (3.34) and (3.36) concludes the
proof. O
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3.2 Analysis of the variational formula

Denote by 9, P, € R, 3,®1,, € R, etc. the partial derivatives of the function ®; ; in
each argument. We now consider an approximate stationary point of (3.2), given by

u, = E[H - tanh(H + 0,G)], vy = (1 — g) A, %ey,

1/2 1/2
wy = k(1= g A Pey

ve=G'1l-q)=R1U—-gqg)+U—-g0™ ", U.=1 V,=0,
2 2
W*=Ici/ Atl/ e

where e, = (0, ..., 0, 1) is the ™ standard basis vector in R’. We check in two steps
that first, this is approximately stationary for the optimization in (3.2) and yields the
desired value Wrg in (2.10), and second, that it is approximately the global solution
to (3.2) when B > 0 is sufficiently small.

For these steps, we require the following properties of F(y) defined in (3.3).

Lemma 3.3 (a) F(y) is monotonically decreasing and convex over y > d..

(b) Fix any § > 0, open neighborhood U C R, and twice differentiable function
y : U — (dy + 8, 00). Then for some constants C, By > 0 depending only on
up and$, any s € U, and all B € (0, Bop),

IFye) < CA I —g)*- sup  [(y(s) —x)7']

xesupp(i j5)

10 F(y ()] < CB*1 —g)?-  sup  [85(y(s) —x) |
xesupp(i )

RF(y(s) <C A —g)? sup  [92(y(s) —x0)7'.
xesupp(i )

Proof Part (a) was verified in (3.32).

For part (b), we use the notation O(f(8)) as in Proposition 2.5, and allow the
constant in this notation to depend also on § throughout the proof. We have x = O (B)
uniformly over x € supp(u ). Applying this and Proposition 2.5,

(1 =g —x) =1— (1 —g)x + 0(B*(1 —g)», R — g,

1
= ——+0().
— qx

Then for A(x) and 6 (x) defined in (3.5), uniformly over x € supp(u ), we have

Ax) = 0B —gq.), 6(x) =01 —q.).
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Abbreviate A = B(1 — ¢,) and 8 = B2(1 — g,). Then differentiating Fi1, Fi2, F22
in y, this implies for k = 0, 1, 2,

355’:11()/(5))=0(()1L jz)) swp @) -0 (33D

xesupp(i )

k _ 6 k -1
GFoE)=0(,4)) s 16 -0 (3.38)
xesupp(u p)

WFn(y(s)=00% sup [35(s) -7 (3.39)
xesupp(u )

Here and below, O (-) for a matrix or vector is in the sense of entrywise comparison.

To bound F11(y)~! appearing in F(y), we first bound det 1 (y) from below in
terms of the variance of 1 p as follows: Let Dy, D> be independently drawn from w1 p.
Let X; = ﬁ and ¥; = m — 1fori = 1,2, where X; is positive for

y >dy.Letd_ = Bd_ denote the minimum point of support of p- Then

1
det Fi1(y) = E[X11E[X; Y{] — (E[X, Y1])? = SEX X2 (V) = Y2)?]
,82
2(1 — g)2(y —d-)2(hy — d_)?
:32
= - — Var (D).
=2y —d O — a2 PV

E[(D; — D2)*]

=

Using the small-A expansion of A, in Proposition 2.5, we have (1 — i) (s —d_) =
1 4+ O(B). Then for any y > LZ+ + 6 and some constant ¢ = c(up,5) > 0, we
have det Fi1(y) > ¢B%/y>. Applying the explicit 2 x 2 matrix inverse of Fy, and
combining this with (3.37) for k = 0 and the bound |(y (s) — x)~! |=0(/y(s)),

2
Fulys)~' =0 (ﬁ‘zy(s) (*A ?)) (3.40)

Then applying (3.40), (3.38) and (3.39) for k = 0, and |(y (s) — x)_1| =0(/y(s))
again,

Fy) = Foo = FoF | Fra
xesupp(i ) xesupp(/ j5)

2
=00 sup I(V(S)—x)1|+0(92A2/ﬂ2)~y(S)( sup <y(s)—x)‘|)

=0B*1—g0?) - sup  [(ys) -7l
xesupp(i j5)

Here, the second equality uses 02 = B*(1 — ¢+)? and 1> = B2(1 — ¢.)* = O(B?).
This is the desired bound for | F(y (s))].

@ Springer



28 Z.Fan,Y.Wu

For the derivative, let us write as shorthand F { | = 9sF11(y(s)) and similarly for
the other terms. Now differentiating JF 1_11 and applying (3.40) and (3.37) with k = 1,

1y _ _ 4 (At A3 _
7'l =-F ' 7L =0 (/3 4 (1\3 A2)> y()* sup [y (s) —x) 7'
xesupp(u )
Then applying also (3.38) and (3.39) with k € {0, 1} and |(y(s)—x)_l| <O0{/y(s)),
_ T/ 7 T =1 Trr—1y
A F(y(s) = Fp —2F1, Fiy Fio — FplFpyp 12

5 A2l 1
=0\ (1+5+—-7)) sup  [%(y(s)—x)"|
B B xesupp(u )

The desired bound for |9, F(y (s))| follows again from 6 = *(1 — ¢,)? and A> =
o).
Finally, differentiating F 1_11 again and applying (3.40) and (3.37) with k = 2,

7 = —F AV 2 A A A
g (A3 2 2 -1
=08 3352 ~y(s)”  sup  |95(y(s) —x) |
xesupp(iL3)
—1 —1 —1
+2F 0 FinFn FunFr -
Then applying (3.40), (3.38) and (3.39) with k € {0, 2},
2T (y(s)) = Foy — 2F )y Fii\ Fio — FLIF NV Fia — 2F}, Fi' Fis
—4F} 17T Fi
2 Aot 2 1
=0 (9 <1 + =+ —>) < osup 95 (y(s) —x) |
.32 .34 xesupp(i ) ’
- z(flgfﬂlfflfﬂlfflfﬂlfn +—7:{2T]:1_11-7:12
+ 2f{2T[fﬁ1]’fu). (3.41)
Note that for the second term above,
FLFL FLFL FLFL Fia+ Fly F Fly + 27, 1FL Fia
T
= [7:1/2 —7:1/17:1_11]:12] 7:1_11[71/2 —]:1/17:1_11]:12] >0

where this inequality holds because F, 1_11 > 0. Then, applying again 6% = *(1 —g,)>
and A2 = O(B?), we obtain the desired upper bound for 83.7—' (y (s)). O
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Lemma3.4 Forallt > 1 andeacht € {u,v,w,y, U, W},
q)l,t(u*, Use, Wes Vi, Us, Vi, W) = WRs, alq)l,t(u*a Vs, Wy Ve, Usey Vi, Wy) = 0.
Furthermore, fort =V,

lim ||8Vq)1,l(u>kv Use, Wy} Vs, Us, Vi, W) || = 0.
t—00

Proof Let &;; = e;r Ae; be the lower-right entry of A;, and recall that 6;; = J, by
Proposition 2.3. Then the function @ ; in (3.1) evaluated at u, v, Wy, V%, Us, Vi, Wy
is

@y, = Eflog2cosh(H + Y))] — k(1 — )8 + R(1 — g,) - (1 — g,)*8
Ay — R(l - CI*)
2

1 -
+3H(G7 =g 1= ol = ).

a1- LI*)Z(S*

For the first term, by Theorem 2.2 and Proposition 2.3, Y; ~ N(0, k48;;) where
K8y = 02, 50

E[log2 cosh(H + Y;)] = E[log 2 cosh(H + 0,G)], G~ N(QO,1).
For the second term, applying §.ky = af =qg«R' (1 —qs) by (2.22) and (2.9),
—kx(1 — q+)8s = —q:(1 — ‘Z*)R/(l = qx)-

For the third and fourth terms, applying also 4, = R(1 —g.) + (1 —g4)~! from (2.12)
and 8, = g«(1 — q+) ™% — o2 from (2.24),

- hskee — R(1 = gy)
R(I =i - (1 — q2) 204 + **f"*(l — )%,

_RU-g0-(U-g* ([ @ 2> ( B 1 )(1—q*>2 >
B 2 ((1—q*)2 )Rt ) T

qx(1 — gx) R
2

= %*R(l — g0+ (1 — g

For the last term, observe that 1 — [[v,[|* — [|wy[|* = 1 — (14x) (1 — g+)?8+. Applying
Sy = Uf/K* = g+ R'(1 — g4) /K4 and the form of « in (2.23), this is

1= [loall> = wal? = 1= 1+ ;DA = g)?qR (1 — o) = 1 — gs.
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For some By = Bo(iup) > O and all B € (0, Bp), we have | — ¢, < 1 < G(dy) =
B~'G(d,). Then by Proposition 2.9(a),

- 1—gx _
H(G™' 1= g0.1-4q.) =/ R(2)dz.
0
Combining all of the above yields

_ 1 — _
@, = E[log2 cosh(H + 6,G)] + %*R(l — ) — q*(z—q*)R’

(1 —gx)
1 1—qx _
+—/ R(z)dz = WRs.

2 Jo

To check the staEionary conditions, first by the form of H in _(3.4), we have
WH(y, o) = a — G(y) and deH(y,a) = y — 1/a. Since y, = G~ 1(1 — q,) =
R(1 —q.) + (1 — g)~ " and [[v4])* + [lws > = g, we have

(3.42)

8yH()/*, 1-g.) =0, OaH (s, 1 —qs) = vs — 1—g
—qx

172

Then evaluating at u, vy, Wy, Vi, Us, Vi, Wy Where vy = Ky " “wy, Vi = 0, and

We=(1—q0 'w,,

Dy =—Us+1=0, (3.43)
DDy = —Vi+ R — gy Pwy — R(1 = guvy =0, (3.44)
P = —Wi + R — gy P os + (G = R(1 = gudie; Hws — R(1 = gu)wy = 0,
(3.45)
1
Byfbl’t = 53},7-[()/*, 1 —¢g+)=0. (3.46)

The third line above applies again A, = R(1—gy) + (1 =gl
For the derivatives in U, V, W, observe that the derivative of log 2 cosh x is tanh x,
and

tanh(H+Y;) = (1 — q) Xe+1 + Y1)

by the definition of the AMP state evolution (2.25). Hence

@1, =EH- (1 — q0) Xt + Y] — i, (3.47)
dy @1, =EIA; 2 (X1, .. X)) - (1= ) Xt + Y] — v (3.48)
dw®r, =Elcs ALY (= g0 Ko + YDl —we. (3.49)
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From the joint law of H, Yy, ..., Y, X1, ..., X;4 described in Theorem 2.2, we have
E[H-Y;] = 0and E[(1 —g«)H-X;+1] = E[H-tanh(H4+0.G)], so 0y 1, = 0. We have
E[(Y1,....Ys) - Yi] = ke Are and E[(Yy, ..., Y;) - Xpq1] = 0, so also ow Py, = 0.

Finally, writing a block decomposition of A,y as

A; S
AHH=Q%J), 8 = Brests 2 Srar), (3.50)
t *
we have E[(Xq, ..., X;) - Xy+1] = & and E[(X{, ..., X;) - Y;] = 0. Thus
vy = (1= q)A P6 — v = (1 =g [a75 - 8] 35D

so (recalling that 8,41 /41 = &1 = 84)

(1—g) 2oy @117 =8 A1 —2¢ 8, + 6,
= (878718 = 0r11) = 2641 = 8.

By Proposition 2.3, lim;—, o0 8;,1+1 = 6x. By (2.28) applied at ¢ + 1,
T A—1 . T 2
Sis141 — 8] ATLS, = inf E[(xtﬂ PN T xt)> ]
aeR!
where the infimum is attained at the least-squares coefficients
—1
a= E[(Xl, XX ...,xt)T] ]E[(Xl, LX) x,+1] = A7 ls,.

Then

0 <8141 — 8 A8 < E[Xig1 — X1 = 284 — 28141,

so also lim;— 00 8¢ 41,141 — 6ITA,_18t = 0. Thus lim;— « [|dy @1 ;|| = 0. O

Lemma 3.5 For a constant Byp = Bo(up) > 0 and any B € (0, Bop),
lim W ; = WRs.
11— 00

Proof We will establish separately

litm inf W ; > Wgs, (3.52)

—00

lim sup \Ifl,; < Wgs. (3.53)
t—00

We write o;(1) for any scalar, vector, or matrix error (with dimension depending
on t) that satisfies lim;— o [0/ (1)|| = O, where || - || is the Euclidean norm for
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vectors and operator norm for matrices. Note that W, takes the max-min form
Wy, = sup, . infy u,v,w @1, Here the supremum and the infimum cannot be
interchanged due to the non-concavity in the (u, v, w) parameter. Our strategy is as
follows:

e For the lower bound, we specialize the outer supremum to a fixed choice of
(u, v, w) near (uy, vy, wy) and minimize the resulting (convex) function over
(y, U, V,W). This minimizer is shown to be approximately (yx, Ux, Vi, W).

e For the upper bound, we specialize the inner infimum to a choice of (y, U, V, W)
depending on (u, v, w) in such a way that the resulting function is globally concave
for sufficiently small S. This concave function is then shown to be approximately
maximized at (i, Vi, Wy).

To show the lower bound (3.52), we specialize @ ; to (u, v, w) = (Ux, Vs, Wx)
where

B = v+ (1 — g[8, %8 — 8 %e] = v + 0, (1),

and §; was defined in (3.50). Here the second equality has been verified in the preceding
proof of Lemma 3.4. As defined in (3.1), @1 ; (4, Vs, wy; y, U, V, W) decomposes as
XWU,V,W)+Y(y), where X and Y are both convex functions; specifically, Y (y) =
TFOITx — vel® + SH(y, 1 = [|54]1> = [lw]|?) which is convex applying Lemma
3.3(a). Then

lI'j],l’ 2 lnf lnf q>1,l‘(u*’ ﬁ*y Wi V, U? Va W)
y>d+ UeR, V,WERt

—  inf  X(U,V,W)+ inf Y().
UeR, V,WeR! y>dy

In view of (3.47), (3.49), and (3.51), note that v, is chosen so that (U, Vi, W) is now
an exact stationary point of X. Hence by the convexity of X, infyyer v werr X (U, V,
W) = X(Us, Vi, Wy). For the infimum over y, recall from (3.46) that 9, H(ys, 1 —
lsll? = wall?) = 1= [[oxl® = lwsl®> = G (%) = 0. Since |35 — vill = 0,(1), we
have that Y'(y,) = 37 ()15 — vall* + 5 (llosl* = [134]1%) = 0:(1). Furthermore,
Y'(y) = %f/’(y)llf)* —u? + %G’(y). Thus there exist some constants ¢, § > 0
independent of ¢, such that Y”(y) > ¢ whenever |y — x| < 8. Applying Proposition
C.2, we conclude that infy>0;+ Y(y) = Y(y%) + o,(1). Combining these two bounds,

lel,t > X(Us, Vi, Wo) + Y (ys) + 0:(1)
= q)l,t(u*, Vs, Wi Vs Usey Vi, Wy) + 04(1) = WRs + 0;(1).

Here the last step follows from |0, @1 (t«, v, Wy Vs, Us, Vi, W) || < C forall v —
v«|| < &, where C, § are constants independent of 7. This shows the lower bound
(3.52).

For the upper bound (3.53), we now specialize ®; ; to

y =y, w) =G 11— |v]* = [w]*),
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U=U,=1, V=V =8"w-v), W=Ww) =p8"*w-—w)+ W,.

Here y (v, w) is well-defined for any (v, w) such that lvl> + lwl|> < 1, since
G(d4+) > 1 in view of (3.14). Note that at (v, w) = (vs, wy), this gives
(¥ (s, wy), U, V(vy), W(ws)) = (Vx, Uy, Vi, W,). Furthermore,

vies s @(wewiy @), 1LV, W),
ueR
v,weR: v 2+ |lw|?<1
Due to the choice U = 1, the function on the right no longer depends on u. We denote
it by
&1 (v, w) = d>1,,(u, v, w;y(w), 1, V(v), W(w)) — I+ I+ 10+ 1V

where

I= E[lochosh (H v A 2 X s Pwan TaT A, Y,))]

Ay — Ié(l _Q*)K*_l ||w||2

M=—v'V@) —w!' W)+ R —q*)/c;]/zv—rw—l— 3

1 —1/2
= SF (@, w)lly - o)
1 2 2
IV = SH(y @, w), 1= ol = w]?).

We claim that for some By = Bo(up) > 0 and all 8 € (0, Bp), this function
d~>1,,(v, w) is concave over the domain {v, w € R’ : |[v]|? + ||w||> < 1}. To show this
claim, we analyze the Hessian of each term I, II, III, IV using the small-8 approxi-
mations of Proposition 2.5—the desired concavity will arise from the first two terms
of II. We write O (B¥) for a scalar, vector, or matrix whose (Euclidean or operator)
norm is at most C X uniformly over {v, w € R’ : ||v]|? + |w||* < 1}, for a constant
C = C(up) > 0depending only on pp.

For I, we have

V2, I=8 .E[z,zj . (1 — tanh? (H F V) T AT XL %)

e Pw ) TaT A, Y,))]

where

Zo 2 (A7 P X0 PAT R Y) e RYL (354)

Then 0 < V2 1 < BE[Z;Z"] = Bl 2, the last equality applying (2.28-2.30).
For 1II, observe that Proposition 2.5 implies

R =g, =0). 1 —R(1—gix" = 0().
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Then V2 11 = =282 152 + O(B).
For 111, consider any scalar linear parametrization

V() w($))ser = (v, w) +5- V', w')

where ||(v/, w')|| = 1. Write as shorthand

A@s) 21— o@IP = ws)],

B(s) 2 [[u(s) — iz ().

Applying [[v], [lw]l, [[V']l, lw|| < 1, it is easily checked that

|A(s)], 105A(9)], 137 A(s)] = O(1) at s = 0. (3.55)

Applying also k! = O(B72(1 — g+)~2) by Proposition 2.5, we have

|B(5)], 195 B(5)], 102B(s)| = O(B~2(1 — gx) ™) at s = 0. (3.56)

Now write also as shorthand

F©) 2 Fly @), we) = (G (46).

Then

2
@, w)" vy - (0, w)
1

- 33111‘ =3 (aff(s) - B(s) + 20, F(s) - 3, B(s) + F(s) - afB(s)))

s=0

(3.57)

Observe thatsince [|v[| 2+ [|w|* < 1, wehave A(s) € (0, 1]ats = 0.Letd_ = Bd_
be the smallest point of support of j . For any x > d, since G(x) > 1/(x —d-)
and G is decreasing, we have x < G~'(1/(x — d_)). Thus

G Y AG) =G ") =1+d >d, +0.1,

where the last inequality holds for all sufficiently small 8. Then Lemma 3.3(b) implies

IF$) < 0B (1 — g0 -
19;F(s)| < O(B*(1 — q.)%) -

IZF(s) < 0(B* (1 — q)?) -

sup
xesupp(e )

sup
xesupp(i)

sup
xesupp(i )

(G (A@s) — 07, (3.58)
(G (A®s) — )71, (3.59)
G AN -0 G0

where this third_inequality (3.69) is a one-sided bound without absolute value on the
left side. Here G~1(A(s)) = R(A(s)) + A(s)~!, where A(s) € (0,1] ats = 0. To
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further bound (3.58-3.60),* we may apply the series expansion for R(z) from (2.7),
recalling k1 = 0, to write

-1

G @D—x) "' =(R@Q+z"—x) =z 1-xz+ Zkkzk

k>2
j
ZZ'Z xz—Zi?ka
Jj=0 k>2
23 () (3.61)

k>0

Applying |x| < Cp and [kg| < (CB)¥ for a constant C = C(up) > 0 and all k, we
have

lex ()] < 281 (Cp)k,

where 24! is the number of ordered partitions of k into positive integers. Then for
sufficiently small Byp(up) > 0 and any 8 € (0, Bp) and z € (0, 1], all summations
of (3.61) are absolutely convergent, and the right side is an analytic power series
for the function (G~!(z) — x)~! on the left. The derivatives in z may be computed
term-by-term, to yield

’ s

(G @-x)"| 06 @)

22(G7(2) —x)‘lj — o).

Combining with (3.55) and applying this to (3.58-3.60) using the chain rule, we obtain

that at s = 0, | F(s)], [8;F(s)| = O(B*(1 — g+)*) and 82F(s) < CB*(1 — g4)?, for

a constant C = C(up) > 0. Note that B(s) > 0, so this last inequality implies also

852_7-'(s) -B(s) < CB*(1—q+)?- B(s). Then combining with (3.56) and applying this to

(3.57), we obtain the upper bound Vf‘wHI < C'p? for a constant C’ = C'(up) > 0.
Finally, for IV, observe that by Proposition 2.9(a),

1 5 5 1 pl=lvlP=lwl?
IV = EH(V(v, w), I — v = [[wll ) = Efo R(z)dz.

Writing as shorthand f(s) = [ R(z)dz with A(s) = 1 — [lu(s)]|> — w(s)]?

previously defined, we have similarly

1
W )TV IV 0w = 91V| =202 f(s)| .
’ s=0 2 s=0

4 One may apply more explicit bounds for G~ ! and its derivatives here, such as \G_l (z) — % | < BlIDlloos
but the current argument allows an easier generalization to the second moment computation (cf. Lemma
4.5).
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Applying again (3.55) and the bounds R(z), R'(z) = O(B?) over z € (0, 1) from
Proposition 2.5, we obtain VS’wIV = O(,Bz). Combining I-IV, we conclude

V2, @1 (v, w) < =282 L0 + O(B).

Then for some sufficiently small Bg = Bo(up) > 0, all B € (0, Bp), and any ¢, we
have

V2, @10, w) < =Dy (3.62)

over the whole domain {v, w € R’ : ||v]|?> + |w|? < 1}. In particular, Ci)],, is concave
as claimed.

Finally, we argue that (v, w) = (v, wy) iS an approximate maximizer for
&DL,(U, w). Indeed,

D@14 (Vey we) = By Py + 0y Py - Y (Ve W) + v Py - 0,V (04)
where the derivatives of @, ¢ are evaluated at (uy, Vs, Wy Vi, U*, Vi, Wi). Apply-

ing Lemma 3.4, we have 9, d>1 t(Ux, wy) = 0;(1). Similarly, 9,, <D1 t(v*, wy) = 0.
In view of (3.62), applying Proposition C.2 yields supy,j2u2<i <I>1,,(v w) =

® 1 (vy, ws) + 0;(1). Thus

vy, < &)1,;(1)*, wy) + 0 (1) = (bl,t(u*, Vs, Wy Vs, Us, Vi, W*) +o/(1)
= Wgs + o/ (1),

which is the desired (3.53). m]

Lemma 3.1 follows immediately from Lemmas 3.2 and 3.5.

4 Conditional second moment

We now provide a similar computation for the conditional second moment.
Lemma 4.1 In the setting of Theorem 1.3,
1 2
lim 11m - logE[Z | G:1 = 2WRs
t—>oon—

where the inner limit as n — 00 exists almost surely for each fixed t.

4.1 Derivation of the variational formula

Define the domain
D+={(V7v,p)€R3: (Z ;) >cz+-12><2}. 4.1)
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For scalar arguments (y, v, p) € Dy and u,k,U, K, P € Rand p € [—1, 1], and
vector arguments v, w, £,m, V, W, L, M € R’ satisfying
L= 1lo)> = w|* p—vTe— me)
A(p,v,w, £, m) = 0, 4.2
v ) <p_m_me L= €2 = flm]? 42

we define

Dy (v, w, k, L,m, p;y,v, 0, U, V,W,K,L,M, P)

/2

=]E[£(P U- H+vT x4, ... X)+K*1 ATV, v,

~1/2,,

K-H+LTATY2 00 %) + ks /2(Y1,...,Y,))]

—u-U—k-K=v'Vow'W—tTL—m"™M—p-P

_ _ A — R — gaicy !
Ptk RO = gons P (0Tt ) 4 22RO (2 4y 2)
1
+t 5T F(y.v.p)- B, w, £,m)

1
+ 3Ry o =0l =l p =T e —wTm L — e = m)?).  (43)
Here, £ is a multivariate analogue of log 2 cosh defined as
L(x,y,z) =log[e"™ T 4 7V oYL 4 g ¥ I (4.4)

F(y,v, p) denotes the univariate function F from (3.3) applied spectrally to (7 ;)
via the functional calculus, B is the 2 x 2-matrix-valued function

-1
lv — Ky

B, w,{,m) = _
( ) <(v—x*]/2

Pw|? o —K;”wal(e2 iy P m)
w)T (€ —x; *m) 16— iy ' m? ’

(4.5)

and H is the scalar-valued function

H(y, v,p;a,b,c):Tr(y v)( ) /logdet< xpix) wp(dx)
— (2 + log det <cbz ?)) .

Define the variational formula

(4.6)

Uy, = sup inf inf Dy (u, v, w, k, £, m, p;
ukeR, pe[—1,1] (y.v.p)€Dy  U.K,PeR
v,w,l,meR:A(p,v,w,l,m)>0 V.W.L MeR!
y,v,0,U,V,W,K,L, M, P). “@.7
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Lemma 4.2 In the setting of Theorem 1.3, for any fixed t > 1, almost surely
.1 2
lim —logE[Z” | G;] = Wy,.
n—oon

Proof The proof is analogous to that of Lemma 3.2, and we will omit details where the
arguments are the same. We again fix t and write G, X, Y, S, A for G;, Xy, Y:, S, As.
We have

n
Bz 1G1= Y ewp(hlo+h T+ 5 ful00),
o, Te{+1,—1}"

where we define
2 L e ! 1575
fa(o,7) = —1ogE | exp za (0] DOO’—}-E‘E O' DOt gl.
n

We will approximate this function £, (o, T) on the spheres ||o[|> = n and ||7||> = n.
Conditional law of O. Recall the shorthand V = V(g s )1 and o, o) from (3.11),
and define similarly

XTx xTy\ ™!
T T
T = V(X,Y)it’ 7 = (S, AS) (YTX YTY) (X,Y) 't

Then similarly to (3.12), an application of Proposition 2.6 yields
1
falo, 1) = a” Da” + —‘L’H D7:||
2 L S S
+ —logE| exp E(TL O'V DVOo,
n

+ TIOTVTDVOTJ_ + O'”T[)V0~0'L + ‘L'lTl_)Vé‘l,'J_)i|.

N =

Expectation over 0. We first restrict to the domain

Up={@. 1) e R xR" : o 2 =, ) = n,
o, and 7, are (non-zero and) linearly independent} .
In particular, o and v must be different on this domain. We evaluate the expectatlon
over O using Proposition 2.8: Takinga = 0 ,¢ = t1,b = V' Doj,d = V' Drj,and

defining €2,, by some constants ¢, C > 0 depending only on x p and g, for sufficiently
small # and all large n, we have (a, b, ¢, d) € 2,. Then

fulo, 1) = —O’H DUH + lr” Dr” + E, (0, 1) +r,(0,7) 4.8)
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where

1 2 T
E,(0,7) = inf {—Tr (” ”) (”“%” 91 ’5)
(y.v.p)eDe | vp)\optr |zl
L1 (VT Doy T(y1-viDv v\ (VDo
n \V'Dy vl ol —VTDV VT Dz
1 yI—VTDV vl

1 (lloy)? UTTL)) }
— (2 +logdet — L1
< g n (GITJ_ . ]?

and
Dg={<y,v,p>eR3:(’: /‘;)z<&++s).1}. (4.9)

We use r,, (o, T) to denote any remainder satisfying

lim sup |ry(o, )| — 0
"= (o.1)eU,

almost surely, and changing from instance to instance.

Approximation by v, w, £, m, p. Define the functionals

T T —-1/2
[1 <x X X Y)] .l(x, ¥ o
n

(o) = lhTo, (v(c))
n

w(o) a\YTxyly
-t ()L e st
Then
90 _ | ool — o @ =1 - @I = Im@)IP,
olT = p(o,7) — v(0) T €(x) — w(o) 'm(r),
and

o =S8-A20(0) + AS - (kD) 2w(0) 4 (S, AS) - a0, T)
T =5-A20(0) + AS - (16, 0) 7V 2m() 4 (S, AS) - (0, T).
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We approximate the terms of (4.8) using the low-dimensional parameters v, w, ¢,
m, p: Setting a, = R(1 — g,) and following arguments similar to (3.24),

o, Do t Dt 2
L 22 = 2 (00) Two) + 60 Tm(o)
n n Ky /

+ (x* - —) (@I + Im@12) + rae, ).
K

*

For approximating E, (o, t), we will refer to the eigen-decomposition

y v\ _ ar 0 (y)
- e

for (y, v, p) € D,. Here a1, ap > c?+ + ¢ are the eigenvalues, and y; € R2 and
y> € R? are the two corresponding eigenvectors. We write also

VIDV =Vv' "DV =V diagd,,....d, )V’ A.11)

as the eigendecomposition of V' DV € R=20x(1=20) yhere V' e R(1—21)x(n=20)
is orthogonal and d; are the eigenvalues. Then as n — oo,

— 2t -
1 yl —VTDV v < —d v
;logdet< ol ,OI—VTDV> Zlogdet " ,o—ci/

y—x v i
—>/logdet< y p_x>,uD(dx).

This convergence is uniform over (y, v, p) € D,, because the left side is

n2t n2t

- Zlog(al )+~ Zlog(az —d)),

and the uniform convergence of each sum over oy, @y > c?+ + & was verified in the
first-moment calculation of Lemma 3.1. Thus, for any (o, 7) € U,,

L (v v (loel? of ) 1 yl—VvTDV vl
;Tr (v ,0) (afu lzil?) —logdet vl pl —VTDV
loLl? o u))
2 + logdet — L
( ¢ (am Ieal?
=H(y.v.0:1 = Iv@)I? = (@)% plo.7)
—v(@) @) = w@) Tm(@), 1= @I - Im(@)]?)

+rn(]/7 v, 10)
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where r,,(y, v, p) — 0 uniformly over (y, v, p) € D;.
For the remaining second term of E, (o, 7), let us write

vI—VTDV vl ovioN (yi=D v \ (v o0
vl pl—ViDV) —\0V vl  pl—D ov)

4.12)

We may invert the matrix on the right by inverting separately the non-zero 2 x 2
blocks,

Then for each j, k € {1, 2}, the (J, k) block of (4.12) is

= —1
yl—VIDV vl T 1 /
( vl ol —VTDV i = y1jyuV' diag o —d_l.’ \%

1
+yoyu V' diag = |V
oy — di
= yijyi(erl — V' DV)™!
+ y2 (el = VI DV)™L.

Let us consider first j = k = 1. Then by (3.31) from the first-moment calculation of
Lemma 3.1,

o/ DV(ail —VTDV)~'VT Doy o DV(aal — VTDV)"'VT Doy
2 I 2 [
i + -

n n

= (Vi F@) + 3 F @) - o) = e Pw@)I? + rao,ar a2 i, ya)

wherer, (0, a1, a2, y11, y21) — Ouniformly overay, e > dy+e,yi1, y21 € [—1, 1],
and {0 : ||o||> = n, o1 # 0}. Similarly, for the other blocks j, k € {1, 2},
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o DV(ar = VTDV)~'VT Dr
n
o DV(wa = VTDV)~'VTDy

n

Yiiyi12 -

+ y21y22 -

= (nyeF@) + 292 F @) - w0) = & Pue) T @@ -k Pn)
+ rn(U, T3 alv 052, )’11 )’2),
, DV =vDV)y"'WiDy g DV(ea—VTDV)"'VT Dy
Yz~ Y2 -

n n

= (vhF @) + 75 F @) - 1@ = k7 @I + 1z 0, 00, 12, 72)

where these remainders converge to 0 uniformly over (o, 7) € U,, a1, op > ch + e,
and yi1, y12, y21, ¥22 € [—1, 1]. Combining these statements, we have for the second
term of E, (o, T) that

1(VTDoy\' (y1-VTDV  wI _ \ ' (VDo
n \V'Dr vl pl —VTDV VT Dr

— yii yar\ (Fle) yi vz
=Tr <y12 y22> ( ]—'(0,2)) <y2] yzz) B(v(o), w(o), £(t), m(7))

+ (o, T, 7,0, 0)
=TrF(y,v, p)  Blw(o), w(o),L(t),m(t)) +r,(o, T, ¥y, Vv, p) (4.13)

where F(y, v, p) is the function F applied to ( ; ) spectrally, and r,, (o, T, y, v, p) —
0 uniformly over (o, 7) € U, and (y, v, p) € D;.

Observe that this also implies, for any fixed vector z € R?, with respect to the
positive-definite ordering for (7 ),

zT]-'(y, v, p)z is non-increasing and convex over (y, v, p) € Dy. (4.14)

Indeed, it suffices to show this for unit vectors z = (z1,22) € R2. Fixing any
(y.v, p) € Dy, we may take ¢ above small enough such that (y, v, p) € D,. For
each n, we may then take (0, 7) € U, such that [[v(0)|]> — 2}, [€(D)|> — 23,
v(e)Te(t) = ziz2, lw(o)||> = 0, and ||m(7)|> — 0. (For example, we may
choose

21x + ( 1—z%+5n)r1 Zox + ( 1—z%~|—8n)r2
o =4/n , T =4/n
lzix + (/1 = 2§ + 8)r1ll lz2x + (/1 =25 + 872l
where x is the first column of X, r; and rp are vectors with ||ri|| = |2 =

llx|| that are orthogonal to each other and to the column span of (X,Y), and
0p — 0 asn — o00.) Then as n — oo, the right side of (4.13) converges to
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2
Tr F(y, v, p)-(;;z Zgz) =z F(y, v, p)z. The left side is non-increasing with respect

to the positive-definite ordering and convex at (y, v, p), so the same properties hold
for the limit z " F(y, v, p)z, showing (4.14).
Combining the above, we obtain the uniform approximation over (o, 7) € U,

_ . Zﬂ T T
Sulo,T) = (y,ufg)fepe (/ci/z(v(a) w(o) +£(t) m(1))

s 2 2
+ (A* - K—) (lw(@)|? + m(@)1%)
+Tr F(y. v, p) - B(©), w(o). £(r), m(1))
+H(y. v 05 1= @) = w2,
p(0.7) = (@) (1) = w(e) 'm(D). 1)~ ||m(r)||2)>

+rn(o, 7). (4.15)
We now show that, for small 8 and ¢, the above infimum over D, is the same as
that over the large domain D, in (4.1). Indeed, for any fixed (o, ) € U,, denote by

S(y, v, p) the quantity inside this infimum. Recall the eigendecomposition (, ,”)) =
a1y1y] + @2y2y, in (4.10). For any (y, v, p) € D4\D;, we compare S(y, v, p)

with S(y’, V' p"), where (7;,, ;:) = max{ay, dy +8}y1y1r + max{on, dy +8}y2y;— and
(y', V', p) € De. Note first that since B(v, w, £, m) > 0, (4.14) implies

Tr F(y',v', p) - Bu(o), w(o), £(t), m())
<TrF(y,v,p) Bw(o), w(o), t(r), m(1)).

Next, let A denote the matrix derivative of the term H(y, v, p; -) of (4.15),

A é < BVH()/7 v, P, ) %BUH(yv v, P, )>
30 H(, v, p,) My, v, p, )

which has the explicit form

~1
A = A(p(0, D), 1(0), w(@), £(x), m(D)) —/(y i ix> ().

Since (y, v, p) € D4 \Ds, there is at least one eigenvalue, say o1, which is less than
d+ + e. Then by the monotonicity of G, for the corresponding eigenvector y;, we
have

—1
le </ <y;xpix) /LD(dx)) Y1 ZG(QI)ZG(d_J,_—}—g)
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So

Tr[A - yiy( ] < Tr[A(p(o, 7), v(0), w(0), £(x), m(7)) - y1y| | — G(dy + &)
<4—-GWdy+¢) <0

where the second inequality is by Cauchy-Schwarz and the fact that all entries of
A are in [—2, 2], and the last inequality holds for g € (0, Bp) and sufficiently small
Bo = Bo(itp) > Oand all sufficiently small €. Integrating this bound from «; to c?+ +e,
and also from a to dy + ¢ if oy < dy +¢, we obtain H(y', V', p';-) < H(y, v, p; -).
Combining the above, S(y’, V', p’) < S(y, v, p). This shows that infp_S(y, v, p) =
infp, S(y, v, p).

Finally, observe that (o, ) — (p(o, 1), v(0), w(o), £(t), m(7)) is continuous,
relatively open, and maps U, onto the fixed domain

VS (pel-1,11,v,w,&,m R : A(p,v, w, £, m) > 0}, (4.16)

where A(p, v, w, £, m) is as defined in (4.2). Then, applying Proposition C.1 as in
the proof of Lemma 3.2 to extend the uniform approximation from U, to its closure
{o,1 € R": |lo||> = ||It||* = n}, we obtain

lim sup |fulo,T) = f(plo, 1), v(o), w(o), £(t), m(r))| =0

—
70 5 treRm o | 2=t |2=n

where we define for (p, v, w, £, m) € V the function

2a
f(p,v, w, £, m) £ inf l—*z(va—}—ETm)
(y,v,p)€D4 K*/

a
+ (A* - K—*> Ulwl? + lIml?) + Tr F(y, v, p)x
ES

B, w, &m) +H(y.v.p5 1= ol = wl®, p—vTe

— w1 (e = ),

and extend this definition by continuity to the closure V.

Large deviations analysis. Finally, writing (-) for the expectation over the independent
discrete uniform laws o ~ Unif({+1, —1}") and t ~ Unif({+1, —1}"*), we may
define the limiting cumulant generating function

AU, V,W,K,L,M, P)
]
= lim - log<exp [n(U u(@) + V) + Ww(o) + K - k(z)

n—oo n

+LTe(r)+ M m)+ P - p(o, r)]>
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1
= lim -~ 10g<eXP [U o+ VIAT X To + W n) Y o

n—oo n

S KR e+ L A 2X Tt - M A 2Y T2+ P oo Tt 4n-ry(o, r)]>

where r,, (0, T) — 0 uniformly over o, 7 € {+1, —1}". Evaluating the average over
(o, T) using

(eXoiTityoitatiy — eﬁ(x,y,z)/4’ 4.17)

where L(x, y, z) is as defined in (4.4), and applying the AMP convergence (2.27), this
limit exists and is given by

AMU,V,W,K,L, M, P)

=IE[£<P, U-H+VTAT2X0, X0+ Pw T A 2o, Yo,

—1/2 1/2

K-H+LTAT X0, %) + . PMT A (Yl,...,Yt))]—log4.

The proof is then concluded by the same argument as in the first-moment calculation
of Lemma 3.1, using the Girtner-Ellis Theorem and Varadhan’s Lemma. O

4.2 Analysis of the variational formula
We now consider the approximate stationary point of (4.7) given by

Uy = ke = E[H-tanh(H + 0,.G)], vy =4Le = (1 — q*)A}/ze,,
we=my =2 (1- g8 e,
ve=pe=G"'(1 —q*>, b, =0, Uy=K,=1, V,=L,=0.
Wi = =k,/2A }/2@, Px =qs, Pi=0.

We write 2 ;(uy, ..., Py) for the evaluation of ®; ; at this point. We again verify in
two steps that this approximately solves (4.7) for 8 > 0 sufficiently small.

For these steps, we require the following properties of F(y, v, p) analogous to
Lemma 3.3.

Lemma 4.3 (a) For any fixed vector z € R?, 2T F(y, v, p)z is non-increasing (with
respect to the positive-definite ordering) and convex over (y, v, p) € Dy.

(b) Fix any § > 0, open neighborhood U C R, and twice differentiable function
(y,v,p) : U — Ds where Ds is as defined in (4.9). Then for some constants
C, Bo > 0 depending only on up and 8, any s € U, and all B € (0, Bo),

IF (), 0060, N = CAH A —q®  sup (000 —x1) 7!
xesupp(pp)

135y (5), v(s), pDI = CB4U—g*  sup  [ag((0) 00 —x1) 7!
xesupp(i )
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K K -1
F (), v(), p(0) = CB 1 =g sup  [oF(C0) ) = x) T Do
xesupp(i )

Proof Part (a) was verified in (4.14).
For part (b), as in Lemma 3.3, let us write O(f(8)) for a quantity bounded in

magnitude by C| f(8)| for a constant C = C(up, §) > 0, and interpret this entrywise
for vectors and matrices. We again diagonalize

(Z ;) = (v ») <a1 az) (g)

where (y1, y2) are the two unit eigenvectors. Then by definition,

Fy,v,0) =1y - Fla) + 2y, - Flaa)

where F(«) is the univariate function defined in (3.3). Then || F(y,v, p)| =

max(|F ()], |F(@)]), and also [[((7) %)) = x| = max(lay — x|~ oz —

x|™1), so the bound for IF(y(s), v(s), p(s))| follows directly from Lemma 3.3.
To bound the derivatives, let us write 7 (y, v, p) in amore explicit form that parallels
(3.3):

Fy,v, p) = Foy, v, p) — Fio(y, v, p) Fri(y, v, )" Fraly, v, p)
(4.18)

where

-1
. y—x v 1 A(x) ) 4x4
fll(y,v,p)—/< ; p_x) ®(/\(x) Mx)2>uD(dx)eR . (4.19)
—1
_ Yy —X V G(X) _ Ax?2
F(y.v,p) = / ( - p_x) ®(Mx)9(x)> pdn) R (4.20)

-7:22()/7‘)9p)=/(y;xpzx>

and A(x) and 6(x) were defined in (3.5). To verify this form, recall the univariate
Fu1(y), Fi2(y), Fao(y) defined in (3.6)—(3.8) and observe that

B T 1 1 Ax)
Fuly, v,p)—/(ylyl ®_a1 —x (A(x) A(x)z)

s 1 am))
+y2y2 ® o — x ()\.()C) k(x)2>> MD(d-x)

= yiy; ® Fii(a1) + 29, ® Fii(@a).

1
0(x)*1p(dx) € R¥*2, (4.21)
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Then, using y1y/ - y2v, = y2y, - y1y{ =0,

Fii(y, v, 007 = yiy] @ Fiilar) ™ 4+ y2y; ® Fri(a)™" (4.22)

Similarly
Fray,v, p) = y1y] @ Fialar) + y2y, ® Fia(an), (4.23)
Faa(y, v, p) = y1y{ ® Faaler) + y2y5 @ Faa(aa). (4.24)

Combining these yields the identity (4.18).
As in the proof of Lemma 3.3, we use again the abbreviations A = (1 — g,) and
6= ﬂ2(1 — ¢x). Then, from the forms (4.19-4.21), fork = 1, 2,

11 1A o L
s =o((11)e(32)) s [ -0
xesupp(i )

(4.25)
dFaee =0((11)o(5)) s o) —xn) 7| @26)
s/ 120y = 11 20 xesuppp()u.*) s\ u(s) p(s) :
D
11 _
8ffzz<y<s>>=0((1 1)-92)~ swp (G ) =< @2
xesupp(iL )

Writing F{, = 8;F11(y(s), v(s), p(s)) and similarly for the other terms,
F' = Fjpy— Fly F \Fia — FLFL Fly + FLFL FLFL Fia
Taking the product of (4.22) and (4.23),

7:1_117'"12 =iy} ® [Frila) ' Frala)]+ y2y; @ [Fii(e) ' Fia(en)]

_ 11 5 (220

o(()er ()
where the second equality applies (3.40) and (3.38) from Lemma 3.3. Then, applying
also (4.25-4.27) fork = 1, and A2 = O(B?) and 6% = B*(1 — ¢,)?, we obtain

/ s) v(s -1
Il = 0B* (1 = g™ - |3, (L) b)) = x1) |

which is the desired bound for [|3; F (y (s), v(s), p(s))]l.
For the second derivative, similar to (3.41), we have

F'= Ffy = Fy i Foo = FLFF + FLF AL FL P
(PR FLF P4 P+ R
+ FRLFG ).
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Bounding the terms on the first line using (4.28) and (4.25-4.27) for k = 2, and
applying for the second line

FoFn FLFL FLFL Fro + Fly T FL Fly + Fy PRV Fio + FLIFL TV,
T
= [P - FuFn ] A [ - AR A = 0,
we obtain

Fr< o' A —qD- s [02(C00)0) —x1)”|
xesupp(i )

which is the desired upper bound for 83]—"()/ (), v(s), p(s)). O
Lemma4.4 Foreacht € {u,v,w,k,£,m,p,y,v,p, U, W, K, M, P}, we have

Dy (U, ...y P) =2WRs,  0,D2s(Us, ..., Py) =0.
For. € {V, L}, we have

lim [0, @2 (ux, ..., Pl =0.
t—00

Proof At P, = 0, we have £(0, y,z) = log(e” + e 7)(e* + e %) = log2coshy +
log 2 cosh z. Recalling the definition of F(y, v, p) by the spectral calculus, at v, = 0,
we have F(y, 0, p) = diag(F(y), F(p)), where F(-) is the function defined in (3.3).
Hence

—1/2

Tr F(.0,p) - B, w, £, m) = F(y) - llv — k5 wl? + Fp) - 1€ — ke m>.

At the above vy, €y, wy, My, py, from the computation in Lemma 3.4, we also have

L= Joal? = lwell? = 1= (1 + . (1 — ¢)%8 = 1 — gy,
L= [1ll? = Imal® = 1 — (1 4+ 1) (1 — )8 = 1 — g,
Pe— ] b —w]my = g — (1 + i) (1 — g,)%8, = 0,

and
Hy, 0,05 1= ¢+, 0,1 —gs) = H(y, 1 —g«) + H(p, 1 —qx)
where H (-, -) on the right is the function (3.4). Thus,

<D2,t(u*» P = q)l,l(u*a Vs, W Vi, Us, Vi, W)
+ @1 ¢ (ks, Ly, My Py, Ky, Ly, My) = 2WRs,
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the second equality applying Lemma 3.4. Also, in view of (4.17),

0:L(x,y,2)|,_, = tanh(y) tanh(2), 3yL(x,y,2)|,_,
= tanh(y), 9.L(x,y.2)| _, = tanh(z). (4.29)

Furthermore,

WFW.v,p|,_g=0FWerel .  F.v.0)| _,=0,F(p)eze;
dyH(y.v,pia.b,o)|, _y=0,H(y.a), ,H(y.v.pia.b.c)| _,=0,H(p.c).

Using these identities and applying Lemma 3.4, we obtain

0, Do Uy« ooy Pr) = 0Py ¢ (s, Vs, Was Vi, Ui, Vi, Wy) = O0fore € {u, y, U, W}
Oy @ ¢ (U« ooy Pi) = Oy P s (e, Uiy Was Vi Usey Vi, W) = 04 (1),

0, P2t (s, ...y P) = 0, Py s (ky, i, My ps, Ky Ly, M) =0 fore € {k, p, K, M}
an)Z,t(“*, L Py = 8Lq)1,t(k*7 Ly, my; Py, Ky, Ly, M) = 0(1),

where o; (1) denotes a length-r vector satisfying lim;_, o ||0;(1)|| = 0.

It remains to check the derivativesin¢ € {v, w, £, m, p, v, P}. Since v, = K*_l/zw*
and £, = K*_l/zm*, we have B(vy, Wy, £y, my) = 0 and 9, B (vy, wy, €y, my) = 0 for
eacht € {v, w, £, m}. Writing a, = ¢, = 1 — g4 and b, = 0, we have

abH(V*s Vi, P sy Dy, €4) = 8))7_(()/*, Viey P sy Dy, €4) = 0

by the identities v, = b, = 0 and

xy
d, log det
y0g3<yz>

Then it follows directly that

—0. (4.30)
y=0

8pq>2,t(u*9--~ap*)209 8v¢2,t(”*7-~-sp*)20~

Furthermore,

3a7‘l()/*, Vi, Pss Qs Dy, Ci) = 8aH(V*, ay) = R(l — qx),
OcH (Vs Vs, P} sy Dae, €5) = 0H (P4, Cx) = R(] —g+),

where the latter two equalities follow from (3.42). Applying also (3.44-3.45) and the
identity A, = R(1 — gy) + (1 — q*)_l, we have

By Do (s, ..., P) = —Vi + R(1 — q*)/c,:]/zw* — R(1 —gy)vy =0,
B @21 (s .-, P) = =Wi + R(1 — gu)ics Py + (b — R(1 = gu)ic; Hws
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— R(1 — g)wy = 0;

similarly d¢®2 ;(ux, ..., Px) = 0and 9,2 ; (uy, ..., Px) = 0.
Finally, for the derivative in P, applying (4.29), together with
—1/2

—1/2 —1/2

WT
—1/2MT

Ue - H+ VA,
=K, -H+L]A

X1, ooy Xp) + ks
TG X + ke

Vi, Yo
T YY) =HAY,

Px = gx, and the definition of ¢, from (2.9), we obtain

ap Py (Uy, ..., Px) = E[tanh(H + Y2 - ps« = E[tanh(H + 0,G)?] — g« = 0.

Lemma 4.5 For a constant By = Bo(up) > 0 and any B € (0, Bop),
lim \I’z,t = 2‘I/RS-
—>0o0
Proof The proof is analogous to that of Lemma 3.5. We establish separately

liminf W5 ; > 2WRs, 4.31)

—0o0

lim sup Wy ; < 2WRs. (4.32)

1—>00

Recall the max-min form of W, ; in (4.7). For the lower bound (4.31), we specialize
the outer supremum of ®; to (u, v, w, k, £, m, p) = (Ux, Vs, Wi, ks, L, My, D)
where

A2 1/2
By = ve+ (1= gD 28 — A 2] = v, +0,(1)

Co= Lo+ (1 —g)[A; 28 — A Pe] =ty + 0,(1)

(4.33)

and 8; = (81,441, ..., 8:.1+1) is as defined in the proof of Lemma 3.5. Note that
Do (e, Vs W e, Ly, Mg, pii v, .., PY = XU, V,W,K, L, M, P) + Y (y,v,p),

where both X and Y are convex functions. (Convexity of ¥ holds by Lemma 4.3(a).)
Then

Wy, > inf XWU,V,W,K,L,M, P)+ inf Y(y,v,p).
U,K,PeR, V,W,L,McR! (y.p.v)eDy

(4.34)

Under the above definitions of v, and 47*, the point (Uy, Vi, Wy, Ky, Ly, My, Py)
is an exact statlonary point of X hence its minimizer. For the minimum of Y, note
that Y(y, v, p) = 5 Tr]-"(y, v, ,o)B + H(y, Vv, 0 dx, b*, Cs«), where we denote B =
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B0y o, £ my) = 01(1), Gy = G = 1= [Tl = [[will? = 1 = [1€l|* — [Ima]l?,
and by = py — 0, € —w.] my = g — ||04]|> — ||w4]|. Recalling the identity G (yx) =

1 — g5 =1 — Jlus]l* — [lws]|?, we have for each ¢ € {y, v, p},
A H(Vss Vi 053 o, Dy €) = 0all* — 10411 = 07 (D).

Therefore VY (y*, v¥, p*) = 0,(1). Furthermore, there exist some constants ¢, § > 0
independent of 7, such that VY (y, v, p) > ¢l whenever ||(y, v, p) — V&, Vs, p5) ]| < 6.
Applying Proposition C.2 yields inf, , pyep, Y (¥, v, 0) = Y (Vi) Vi, p5) + 0 (1).
Note that [|Vy ¢ P2 (s, v, Wy, ke, £, My Vi, ..., Py)|| < C forall [[v—vi| <6 and
1€ — L.l <8, where C, § are constants independent of 7. In view of (4.33) and (4.34),
we then have

Vo = @4 (s, - .., P) +0/(1) = 2Wgs + 0, (1),

implying the lower bound (4.31).
For the upper bound (4.32), let A € R?*2 be a symmetric matrix satisfying 0 <
A < G(d+)1. We define by the spectral calculus

(V(A) v(A)

_ -1 ) -1 7
v(A)p(A)>_G (A)=R(A)+ A" >d.I. (4.35)

We then specialize the inner infimum of &5 ; to

(. v, 0) = (y(A(p, v, w, £,m)), v(A(p, v, w, £, m)), p(A(p, v, w, £, m))),
U=U,=1, K=K,=1, V=V =B"2w—-u,),
L=L)=pB"2—1,,
W=Ww) =B"2w—w)+We M=Mm)=p"*m—m,) + M,,
P = P(p)=B"2(p — ps),

where A(p, v, w, £, m) is in (4.2). Note that the above (y, v, p) is well defined for
any (p, v, w, £, m) in the domain V' defined in (4.16), provided that 8 < G(d+)/2,
in which case G(cﬂ) > 2. Indeed, since p € [—1, 1], we have A(p, v, w, £, m) <
(11,’1’) <21 <Gyl

At (p,v, w, €, m) = (px, Vg, Wy, Ly, my), this specialization gives (y, v, p) =
(Vs Vs P5), because A(ps, Vi, Wy, by, my) = (1 — g )laxa, (V,L, W, M) =
(Vi, Ly, Wy, M), and P = P, = 0. Now write the function ®,; under this spe-
cialization (which no longer depends on u or k, thanks to the choice of U and K)
as

Gy i(povow, £,m) =T+ 1+ +1V
where

1:1E[£<P(p),H+V(v)TAf'/z(xl ..... X0+ x5 W) TA;
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He LT A 20 s P a2 )]

H=—v' V@) —w  Ww)—£L"LE —m' M@m)—p- P(p)

_ _in Mo — R(L— gares!
+ RO = gy P Tw o+ €T + P (a2 o )

1
= Tr]-'(y(A(p, v, w, €,m)), v(A(p, v, w, £, m)), p(A(p, v, w,l,M))) “B(, w, €, m)

1
V= 5H(V(A(p, v, w, €. m)). v(A(p, v, w, £, m)). p(A(p. v, w, £, m)):

T ol =l p =T e = wTm, 1= e = m]?).
Recalling the definition of W5 ; in (4.7) and the domain V in (4.16), we have

W, < sup Dy(pov,w, Lm). (4.36)
(p,v,w,l,m)eV

Note that V is a convex set, since A(p, v, w, €, m) > 0 is equivalent to (lllﬁ’ ) <
G )T ()

For all 8 € (0, Bo) and sufficiently small 8o = Bo(up) > 0, we claim that &Dz,t is
globally concave on V. As in Lemma 3.5, we write O (8 k ) for a scalar, vector, or matrix
of norm at most C X, uniformly over V, for a constant C = C(up) > 0 depending
only on pp.

For 1, recall from (4.17) that L£(x, y, z) = log(4(e*?*tY7t27)) where (-) is the
mean with respect to o and 7 independent and uniform on {41, —1}. Thus its Hessian
coincides with the covariance matrix of the random vector r = (o7, 0, T)

VIL(x, y,2) = (rr Y — () (r)'T,

under the tilted distribution of (o, 7) defined by (f (o, 7)) = % 0

0<V2L(x,y,z) <3I. (4.37)

Recall the random vector Z; € R? defined in (3.54), which satisfies E[Z; ZtT 1=1.
For any unit vector ¢ = (a,b,c) € R¥**! where a € R and b, ¢ € R, define
n = (a,b"Z,c'Z,) € R3. Then qT(V[%’v’wl’mI)q = B - E[n"(V2L)n], where
V2L is evaluated in the same point as in the definition of I. Applying (4.37), we have
0<q"(V} pwemDqd <3B-EllnI*1 =38, and thus0 < V>, T<36-1I.

For II, by the same arguments as in Lemma 3.5, we have Vi’v’w’&mll = —2ﬂ1/21 +
O(B).

For II1, consider any scalar linear parametrization
(p(s), v(s), w(s), £(s), m(s))ser = (p, v, w, £,m) +s - (p', v/, w', €', m")
where ||(p’, v/, w’, £, m")|| = 1. Write as shorthand the following 2 x 2 matrices

A(s) = A(p(s), v(s), w(s), £(s), m(s)),  B(s) = B(v(s), w(s), £(s), m(s)),
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and F(s) = F(y(A(s)), v(A(s)), p(A(s))). As in Lemma 3.5, it is easily checked
from the definitions (4.2) and (4.5) and the bound «, = 0(,3’2(1 — q*)’z) in Propo-
sition 2.5 that at s = 0, we have

TA@) I, 13 A 182A) ] = 0(1),  1B©)I, 13 B($)1, [12B(s) ]l
=021 —q0)™). (4.38)

We may write

P w O m) T80 I (P W )
1
=0l =-Tr (aff(s) - B(s) + 20, F(s) - 3, B(s) + F(s) - afB(s))
S= §s=

Applying (4.35) and Lemma 4.3, we have analogous to Lemma 3.5 that

| Te 7 )02 B(s)| = 0B* (1 — g0 - L )H(G—I(Am))fxl)*lu- 0280s)|
xesupp(u j
‘Tr 3 F(s) - 3SB(S)‘ <0 0 —g0b - sup o (G_I(A(s)) —x1>71 H : asB(s)H

xesupp(/e )

Tra2F(s)- B(s) < O(B*(1 —q0?) - sup
xesupp(/L )

S

where the last inequality above applies B(s) > 0 and holds without absolute value on
the left side. Applying the series expansion (3.61), for some By = Bo(up) > 0 and
all B € (0, Bo), we have

(G” (A(s)) — xl)_l =Y A

k>0

as a convergent matrix series. Then, differentiating in s term-by-term,

[(67" ey - xl)_l’ (67 awn - xl)_l | |o2(67 aen - xl)_l H

=0(1),

SO nga,u,w,z,mIH < Cp? for a constant C = C(up) > 0.

For IV, observe that by Proposition 2.9(b), we have

IV:%Trf(A(p,v,w,Z,m)), f(a)é/ R(z)dz.
0

Then similarly

p,v,w,l,m

P w2 IV (P € omy = 021V
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= %Tr 92 f(A(s)) Y

For all B € (0, Bo), we may integrate (2.7) term by term to write f(A(s)) as the
convergent matrix series

FAG) =Y A,

k>2

where |k;| < (C,B)k for some C = C(up). Differentiating in s at s = 0 and using
(4.38), we have for some constant C’ independent of ¢,

2rasn| _ [ =Y wcpr=o@d.
k>2

Thenalso V>, ,,, IV = O(B?).

Combining the above, Vz,v,w,i,méz‘l < =2BY2 I 1)x@r+1) + O(B). Applying

Lemma 4.4, we have that Vtéz,,(p*, Vg, Wy, Ly, my) = 0 forv = p, w, m and o, (1)
for ¢« = v, £. Thus, recalling that V is convex and applying Proposition C.2,

sup Do (v, w) = Po s (Pu, Viey Wiy Ly, M) + 04 (1)
(p,v,w,l,m)eV
= & (Us, ..., Po) +0;(1) = 2WRs + 0;(1).

Then W, ; < 2WRs + 0;(1) in view of (4.36), proving the upper bound (4.32). O

Lemma 4.1 follows immediately from Lemmas 4.2 and 4.5.

5 Proof of Theorem 1.3

Finally, using Lemmas 3.1 and 4.1, we conclude the proof of Theorem 1.3.

Proof We first show concentration of n~! log Z around its mean: Writing o ' Jo =
Troo ' O DO and viewing Z = Z(0) as a function of O € R"*", we have

1
d0log Z(0) = — > BocTOTD exp (gaTJa + h%) .
oe{+1,—1}*

Then the Frobenius norm of this derivative (for any O € R"*") is bounded as

00 1og Z(O)|lp < max [Boo ' O Dk
oe{+1,—1}"

=/np?-0T0OTD>00 < nB|DlopllOllop-
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So for any O, O’ € O(n), integrating along a linear path from O to O’ in R"*",
|log Z(0) —1og Z(0")| = |0 = O'l|F - nB| D|lop.

We apply Gromov’s concentration inequality in the form of [2, Corollary 4.4.28]: Let
0 ~ SO(n) and O ~ O(n) be independent. Then for any ¢ > 0,

n_ 1y.2
£i|§2exp( -(222”1))”8) 6D

For any diagonal sign matrix P with diagonal entries {+1, —1}, note that 0 " DO =
OTPTDPO,sothat Z(0) = Z(PO). Then for any fixed O € Q(n), the conditional
expectation E[log Z(OQ) | O] over Q ~ Haar(SO(n)) coincides with that over
Q ~ Haar(O(n)), which in turn equals the unconditional expectation E[log Z(0)]
over O ~ Haar(O(n)) by the invariance of the Haar measure. Thus under Assumption
1.1(b), for any & > 0 and a constant ¢ = c(e, 8, up) > 0,

]P’H%logZ(O) — %E[logZ(OQ) | O]| >

1 1
PH—logZ— —ElogZ
n n

< e} >1—e . (5.2)

The remainder of the argument is the same as in [8], but for convenience we repro-
duce it here. Fix any ¢ > 0. First observe that by Lemma 3.1, for a large enough
iteration ¢ = (&), almost surely

1
lim —logE[Z | G;] < WRs + ¢.
n—-oon
Since

1 1
—logE[Z | G;] <log2+4+ max -— (éaTJU +hTU>
n oe{+1,—1}" n \ 2

<log2+ = ||D||op Zm .

and the right side has a constant upper bound under Assumption 1.1, this and Jensen’s
inequality yields

1 1
—ElogZ <E-10gE[Z | G;] < WRs + 2¢ for all large n.
n n
For the complementary lower bound, for any # > 1, Markov’s inequality gives

dl

gt] > ecn/2i| . efcn/Z’

1 1
P[—logZz\IJRs—g] =E|:P|:—logZz\IJRs—8
n n

1
z]P’[]P’[—logZz\IJRS—s
n
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where we take ¢ > 0 to be the constant in (5.2) for this ¢. Taking r = 7(¢) large enough
and applying Lemma 3.1 again, almost surely

1 E[Z
Yrs — & < lim —logM.
n—oon 2

Then applying also the Paley-Zygmund inequality and Lemma 4.1, for t = #(¢, ¢)
large enough, almost surely for all large n,
o]

1 E[Z]|G]
g —

1 1
P[—logZz‘Ile—sgt] zP[—logZz —lo
n n n 2

ElZ | G/ EIZ |G _ _.p
=P|lz> 2270 > 27 5 pmen/2
[ -2 g’}‘4E[ZZ|g,]—e
Then for all large n,
1
P[—ngszs—e]zOS%Tmﬂ>e_m. (5.3)
n

Together (5.2) and (5.3) imply
1
—Elog Z > Wrs — 2¢ for all large n.
n

Thus n~'Elog Z — Wgs, and applying again the concentration (5.2) finishes the
proof of almost sure convergence by Borel-Cantelli. O

Appendix A. Analysis of AMP

We prove Propositions 1.2, 2.3, and 2.5, followed by Theorem 2.2 and Propositions
2.3 and 2.4.

Proof of Proposition 1.2 Recall R(z) = BR(Bz) from (2.5). We note that the statement
(2.31) in Proposition 2.5 immediately follows from the series expansion (2.7) for R(2),
where k1 = 0, ko = 82, and iy = O (BX).

Set #(x) = tanh(x)2. The fixed-point equation (1.3) is equivalently given in (2.9)
by f(g«) = g«, where f : [0, 1] — [0, 1) is the function

f@)=E[tO4+wqRKI—qu>]

Applying Gaussian integration by parts,

- —qR"(1—q)+R'(1-¢q)
f%q)=ﬂit’(H4—VqR%1—q)~G>~ 1 k -G}
[ 2y/qR'(1 —q)
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. [ ) —dR' 10—+ R ~-q)
_E[t <H+ gR' (1 —q) G) 5 ]

We have |t (x)| < 2. By (2.31), we have |[R'(1 —g)| < CB%and |[R"(1 —q)| < CB3
forall g € [0, 1], B € (0, Bo), and some constants C, By > 0 depending only on pp.
So | f'(g)] < 1 for any such B and sufficiently small By. Then f : [0, 1] — [0, 1) is
contractive and has a unique fixed point ¢, € [0, 1). O

Proof of Proposition 2.1 Note that by Assumption 1.1(b),
G(z)= lim n ' Trzl —)™",  —G'(z) = lim n ' Tr(zl — J)~>.
n—o0 n—od

Recall, by definition of A, in (2.12), that (_}(A*) = 1 — g.. Then by the definitions of
iy and I in (2.22) and (2.13),

1
Ky = lim Tr(1

n—oo —q*

2
(Al — D)~ — 1)

_ 1 _
G(Ay l=———G'(he) — 1.
I —gx )+ (I_Q*)z (A4)

= (-6 -

We have R(z) = G '(z) —1/z,s0that G'(z) = 1/[(G™ 'Y (G(z))] = 1/[R'(G(z)) —
1/G(2)%)]. Then

1 1 |
_ - 1= _ -1
(1=g)* R(1—g)—(1—g)72 1= (1=g)?R(1—q)

Ky =

Substituting R’ (1 — ¢4) = of/q* from the definition of 0*2 in (2.9), this yields

0_3 _ 03[1 - (- Q*)zaf/qsﬁ] _ qx 2
*

Sy = = — — 0
* K (1 - q*)20*2/q* 1- Q*)z

The second equality of (2.24) may be checked by expanding the square on the right
side, and applying the definition of g, in (2.9) and Gaussian integration by parts. O

Proof of Proposition 2.1 As already argued, the statement (2.31) follows from (2.7).
This implies 02 = O(B?) by its definition in (2.9). Setting #(x) = tanh(x)?, we have

g« = E[t(H) +1'(H) - 0,G + 1" (H) - (62G*/2)]

for some random variable H' between H and H + 0, G. Here |t (x)| < 2 and E[¢'(H) -
G] =0,s50¢4 = E[tanh(H)%]+ 0(/32). The remaining statements follow immediately
from (2.31) and the forms of 0*2, Ay, K4, 04 10 (2.9), (2.12), (2.23), and (2.24). |

Proof of Theorem 2.2 The AMP algorithm (2.15-2.16) is a particular instance of the
more general algorithm studied in [21, Egs. (4.2-—4.3)], whose state evolution is
obtained in [21, Theorem 4.3]. We apply this result with the notational identifications
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uw o x,z, oV, WoT,A ANE<h (Zy,...,2;,E) < (Y1,..., Y, H),
and

ws1(Z1, ..o  Zy, E) < f(H,Y) 2 (1 —q) " tanh(H +Y,) — Y.

Applying the property (2.21) for this function f, the matrix ®, of [21, Eq. (4.4)]
satisfies

n— oo

Furthermore, by the definitions of 1, and «, in (2.12) and (2.22),
1 1 2
—TrA — 0, —TrA° — ki,
n n

so that the second free cumulant of the empirical spectral distribution of A converges
to k4. Then the matrices @;1), B;, and X; of [21, Egs. (4.5) and (4.7)] satisfy

lim 0 =

n—o00

A, ifj=0
e =0 lim B, =0, lim % =xA; (A
0 otherwise, n—00 n—00

where we define

A, = lim n7 XX,
n—o0
provided that this limit exists. Thus, (2.15-2.16) is a special case of the general AMP
algorithm of [21, Section 4], replacing the debiasing coefficients b, therein by their
large-n limits bYY = 0.

From the initialization y° ~ A/(0, ofl ), [21, Proposition E.1] ensures that the
empirical distribution of rows of (4, y°) converges almost surely in the Wasserstein
space W, to (H, Yo), for every p > 1. Since f is Lipschitz, the distribution of entries
of x! = f(h, y°) then converges in W, to X;. By definition, A, > max(x : x €
supp(i ), so Assumption 1.1(b) implies that the empirical eigenvalue distribution
of A also converges in W, to a compactly supported limit. The remaining conditions
of [21, Assumption 4.2] are easily checked from Assumption 1.1. Thus, [21, Theorem
4.3] shows the distributional convergence (2.27) in W), for any fixed p > 1. In
particular, the above matrix A, is well-defined and non-singular for every ¢ > 1, and
coincides with the definition of (2.26). Thus (2.28) holds.

The limit (2.29) then immediately follows from the distributional convergence
(2.27) and the specification of the law (Y1, ...,Y;) ~ N(0, kxA;). The limit (2.30)
follows from writing each X; as a function of Y;_1 according to (2.25), and applying the
divergence-free condition (2.21) and Gaussian integration by parts for a multivariate
Gaussian vector—see [21, Proposition E.5]. O

Proof of Proposition 2.3 Since Yo ~ N(0, 02), we have 811 = E[X}] = &, by (2.25)
and the second equality of (2.24). Then «,611 = 0*2 by definition of §, in (2.22), so
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Y, ~ N(O, 0*2) by the characterization of its law in Theorem 2.2. The statements
8t = 8y and k4 6y = cr*z then hold for all + > 1 by induction.

To show the convergence §;; — 8, as min(s, t) — 00, let us set §o; = 8;0 = 0 for
all > 0. We first show that 0 < §;; < J, for all s, . Observe that

Ss1e+1 = ElXsp 1 X 1] = E[f (H, Yy) £ (H, Y1),

where f(h,y) = (1 — q*)_l tanh(h + y) — y. By induction on min(s, ), it suffices
to show that §;;, € [0, 8] implies that 654141 € [0, 8,]. Represent the bivariate
Gaussian law of (Y, Y;) as

(Y,,Y,) = (,/K*sstG 402 — 183G, ixd51G 4 Jo? — K*as;G”>,

where G, G’, G” are independent AV (0, 1) variables. Note that this representation holds
also when s = 0 and/or r+ = 0, because Y is independent of Y; for r # 0. Then
8s+1.1+1 = g(8s1), where g(6) is the map defined on [0, 6.] by

2(8) £ E[f(H, Vb - G4 Jo2 — k. - G’)f(H, Visd - G4 Jo2 — k8 - G”)].

Denote Y = /ix8 - G + /02 — k48 - G/, and define Y” similarly with G” in place
of G'. By Cauchy-Schwarz, |g(8)| < E[f(H,Y)?] = 8, by (2.24). At § = 8, we
have Y = Y” = 0,,G and hence g(8,) = E[ f(H, Y')?] = 8. Furthermore, taking the
expectation first over G’ and G”, for any § € [0, §,] we have

¢(®) = E[EL/(H,Y) | H.GP*] € 10,5,]

as claimed.
Next, applying symmetry with respect to (Y’, Y”) and Gaussian integration by parts,

'6)=2E |, FH.Y) FH Y [ - X @
g (d) |:>f( ) - f( ) (2@ T, |
Kx

=2F [agf(H, Yy f(H Y =

2
—02f(H,Y") - f(HY") % 0y f(H, Y)Y -8y F(H,Y") - %*

= B [8y £ (H, Y)dy F(H, Y]

Here |3y f (7, y)| < 2/(1 — g4). Then, applying k. = O(8%(1 — g.)?) by Proposition
2.5, we have |g’(8)| < 1/2 for any B € (0, By) and some constant By > 0 depending
only on up. So g : [0, §.] — [0, 8,] is contractive, and §, is the unique fixed point.
We then have

185t — 8| < (1/2)™MCD 80 ins.0ys—mings.ry — 8x] = (1/2)MED g, < (1 /2)mints.0
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$0 liMpin(s,1)— 00 85t = O+ as desired. Finally, limmin(s,1)— 0o K505t — 6*2 follows from
0*2 = Ky Ox. O
Proof of Proposition 2.4 Since J = O T DO, wehave f(J) = O f(D)O by the func-
tional calculus. Then applying S; = O X; yields n_lX,Tf(J_)X, = n_lStTf(D)S,.

Let A be as defined in (2.13). Applying [21, Lemma A.4(b)] with the notational
identification r; <> s', for each fixed integer k > 0, almost surely

lim n~'STAKS, = L&)

n—o00

This limit matrix L° is defined by [21, Eq. (A.6) and Lemma A.1]. Under the
divergence-free condition (2.21), applying (A.1), we have simply

1 k
L& =my - Ay, my = lim n_lTrAk=/<1 . (A*—x)‘1—1> mp(dx).
— Yx

Define the increasing map g : (—o0, Ay) — (—1, 00) by

g(x) = (e —x)7 1 =1,

1 — g«

so that A = g(D). Then, for any fixed polynomial p : R — R, this shows

Jim n7ISTp(A)S = A - / P(8(x)pp(dx).

We apply Weierstrass polynomial approximation to extend the above to general
continuous functions: Let g~! : (—1, 00) — (—00, A,) be the functional inverse of
g. Then, for any f : R — R which is continuous and bounded on a neighborhood
of supp(u ), the function f o g~ ! is continuous and bounded on some compact
neighborhood K of g(supp(itj3)). Applying the Weierstrass approximation, for any
& > 0, there is a polynomial p for which

max | p(x) - fog 'l <e.

Then

nli)n;on_lS,Tf(D)St — Ay / S p(dx)

_ ‘nlggon—lsﬂfog-l(zx))st 8 [ Fo GEnmpn)

<limsupe-n 'IS* +e- |A) <& -TrA; +e- A

n—o0
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This holds for any ¢ > 0, so

Jim w71 D)5, = o [ fempan.

Appendix B. Large deviations for integrals over the orthogonal group
5.1 B.1 Proof of Proposition 2.7

By applying a transformation D — QDQ" and b — Qb for an orthogonal matrix
0, we may assume without loss of generality that D = diag(dy, ..., d,) is diagonal.
Let u, = % Z?:l dd;» dn,+ = maxd;, d, — = mind;, and || D||op = max |d;|. Let

1 4 1
Gu(y) = ~Tr(yl = D)™ = -3
i=1

n-:

1
y —di

B.1)

Lemma B.1 In the setting of Proposition 2.7, there exists ng > 0 such that for any
n > ng and any (a, b) € Q,, the following holds: Set o = ||a||*/n and

bT(yI — D) 2b
Fuy) = Gn(y)+%.

Then the equation
Fu(y) =« (B.2)

has a unique solution y;¥ € (dy + &, 00), and |y;f —a™'| < C + I D lop-

Proof By Assumption 1.1(b), i, — pup weakly, d, + — dy asn — oo, and || D|lop
is bounded. Then G, (y) converges to G(y) pointwise for each y > d. So for some
ng > 0and alln > ng, we have d, + <dy +¢ecand G,(dy +¢) > G(d +¢) —¢.
Then

F,dy+e)>G,d++¢e)>Gd++e)—¢e>a.

Since F,(y) — 0 monotonically as y — 00, this shows (B.2) has a unique solution
vy > di+¢e. Next, since |b]1*> < Cn,forany y > dp 4+ we have bT(yI—D)b/n <
C/(y — dn,+)2, and hence

! < F,(y) < ! + ¢
- < y) < _
Y —dp " Y —dn+ (y — dn,+)2
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Applying this at y = y,f and F,(y) = «, and rearranging,

1 " 1
dy—+—=vy, Sdn,++—,,
o o

1 A1+4Ca—1 : 1 1 _ 2C
v&(/)here o' = ¥—5=—. We conclude the proof by noting that .; — = = Jiracat €
[0, C]. i

Proof of Proposition 2.7 We now bound the expectation in (2.32) for any (a, b) € 2,,.
Let g ~ N(0, I,,) be a standard Gaussian vector. Then @ is uniformly distributed

over the sphere and Oa = g””“H” Then

a'0"DO0a la] la]”
E |:exp (bTOa + T)} =E |:exp <—ng + 5 ngDg)i| .
gl lgll

LetE ={g: |lgl*/n—1| < 8} for some small § to be specified. Since lgll? ~ X,%,
by the Xz—tail bound (see e.g. [28, Lemma 1]), we have for all § € (0, 1),

Plg € €] = 1 —2¢751/16, (B.3)
By the independence of ||g|| and =+ ”g” , we have
E [exp( lal pTo 4 lal? o Dg)]
| < [l 2||g||2 _ 1 1

= < .
= o (7 di D) ] IS8T T2
Set a = ||a||*/n, and fix v € R such that v > dny+ — % Then

lall + . lal® T
Elexp| —b g+ g' Dg|1
[ (ngn 2lgl? ¢t

< E [exp (ﬁng + %gTDg + %(” - ||g||2)) lgeg]

1 o
X exp <6||a||||b|| + Eananannop + 58|v|n>

I|>

T
n

HE[exp<fb,g,—% 2)]6 p( vn—l—r)

i=1
avn
— + T)

n ab?
- 11:[1‘/1—}—05(1)— o or (2(l+ot(v—d))) % ( 2

IA

yadn i L og(1 + v —d) | exp (0)
= X _— —_— — — 10 a(v — dj; €X T
p Loty 2 g i p
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= exp 3 av—!—;b <(a —l—v)I—D) b—;logdet(l—}—a(vl—D)) exp (7).

Next we minimize the leading term over v > d,, + — é Writev =y — é Since the

exponent is convex in v, for all large n the minimum is achieved at v, = y,* — é,

where y," is previously defined as the unique solution on (d+ + ¢, c0) to (B.2), and
this minimum is exactly E,(a, b) defined in (2.33). By Lemma B.1, we have |v| <
C + || Dllop- Choosing § = n~1/4yields r < Cyn*/* for some constant C; depending
ong, C, || Dllop and G(dy + ¢) only. This proves

TNT
E[exp(bT0a+a 0 D0a>:| - 1

ex (EE (a,b)+C n3/4)
2 — l_ze_ﬁ/lﬁ p 2 n ’ 1

For the lower bound,

lall v . llal®
Elexp| —b g+ g Dg|1
[ (|g| 2l see

o av
E[exp (VabTg + 587 Dg+ 2000 = 181) gee | exp(—0)

n
a(v —d;) avn
E {]_[ exp (ﬁbfgi = g?) 1ge£:| exp(T - f)
i=1

exp{g <oev + %bT((Oﬁl +v)I — D)_lb — ﬁlogdet(l +a(wl — D)))}]P’[g € S] exp (—7)

%

where the last step follows from a change of measure from g to g = (g1, ..., &n),
whose coordinates are drawn independently as g; ~ N (i, aiz), with

=T rav—a) 7 T 1taw—d)

Note that

n

n 2
1 b: 1
Elll o 2 = 2 2 = — L
(HE! i§:1(u, +of) =~ Zi:l W+ 1a—d?  vilja—d

()
=—-F v+ —
o o

where F}, is as defined in Lemma B.1 As before, choose v = v =y, — é where y,
is the solution to (B.2). Then we have E[||g||>] = n. Moreover,

n

= 2 4ab?
VarlgI?) = S 2o 4 dyla?) = l
w181 = 2 Qo+ 410D = X o —apt T Tt — P

1 (< 2 D47
=$<Z<y;—di>2+z(y:—di)3>'

i=1 i=1
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If l < 4(C + || Dllop), we may apply y,; > di + & in Lemma B.1 and 15]12 < Cn
to obtam Var([|g]1%) < a2 (8% + i—?) Ifé > 4(C + ||D||0p) then we apply y,;" >
L_c- [ Dllop from Lemma B.1 to obtain y, —d; > 5 —2(C + || D|lop) = 5, and

o l—oz

hence Var(||g||2) < n (8 4+ 32Ca). In both cases, we conclude that
Var(|2]*) < Can

for some constant C» depending on (C, || D||op, €). By Chebyshev’s inequality,

. Var([|g]1)
P s —= 2 < ==
L T f
This shows
THT
0'DO 1
E |:exp <bT0a + u)} > & exp( E,(a,b) — C1n3/4) .
2 1— &2
i
Combining these upper and lower bounds completes the proof. O
B.2 Proof of Proposition 2.8
Let sy, ..., s, € R? be the rows of (b,d) € R"*2 We again assume without loss of

generality that D = diag(d}, ..., d,) is diagonal, and write w,,, dy 1, du,—, || Dllop as
in the preceding section. (Here d; are the diagonal entries of D, not the entries of the

vector d.)
Define
R lal®> aTe
M=1 e e (B4)
n n
Define

n
Fa(A) 2 TeAM + © 3 (sl-T(A —d: )7 s; — logdet(A — dﬂ)) — 2 — logdet(M)
n i=1
(B.5)
so that E,, defined in (2.36) is given by

E,(a,b,c,d) = inf ]-" (A).

>(d+ £)
We have the following lemma that parallels Lemma B.1:
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Lemma B.2 Under the assumption of Proposition 2.8, there exists ngy such that for all
n>ngandall (a,b,c,d) € 2,

inf (M)
Ax(ds+o)]

is achieved at a unique minimizer A* such that A* > (dy + &)l and |A* — M~ <
2C + | Dllop. Furthermore, A* satisfies the equation

F,(M=M (B.6)

where

F,(A) 2 % Z(A —diD7 '+ % Z(A —diD7 s (A —d;D7Y (BT)

i=1 i=1

Proof of Lemma B.2 Let ng be sufficiently large such thatd,, + < d4 +¢ and G, (d+ +
€) > G(d4++¢)—e, where G and G, are the Cauchy transform of 1 p and its empirical

1
version, defined in (2.4) and (B.1). Write the gradient V.F,, £ <18“]:" 2 812]:”) as
5012Fn 922Fn

a2 x 2 symmetric matrix. Then one can verify that

] — 1 «
VEAN) =M-—=Y (A=dD'==>(A—-d D7 sisT (A —d;D)7!
Fu(A) I =D )" LsisT( )

i=1 i=1

£G,(A) Lg.(A)
=M — F,(A).

We first claim that inf A > (4, +¢)7 F (A) is attained at a unique minimizer A* satis-
fying RI > A* > (dy + €)1, for some R > 0 depending only on M, ptp, €. To this
end, suppose A has an eigenvalue A > R with unit-norm eigenvector u. Then

1 & P B
w VF(Mu=u" Mu — - le(x —d)~! - - 2}@ —d) (s w)?
1= 1=
> hmin(M) — (R —dy )" —2C(R —dy )7,

where the last inequality follows from Cauchy-Schwarz and the assumption that
LS lIsil> = Lqisl? + 1d1*) < 2C. Since Amin(M) > 0 by assumption and
dn 4+ < dy + ¢, for sufficiently large R depending only on M, up, e, we have
u' VF,(A)u > 0, and hence F(A — Suu') < F,(A) for sufficiently small &.
Now suppose that A has an eigenvalue equal to d; + ¢ with unit-norm eigenvector u.
Then

1 n
u VF (A < Amax (M) = = (dy + & —d;)™!
n

i=1
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<Gd++e)—e—G,d++¢) <0,
where we used the assumption that M < (G(dy + ¢) — ¢)I and G, (d+ + &) >
G(dy +¢)—e. Thus F, (A + SuuT) < Fu(A) for sufficiently small §. In view of the
strict convexity of F;,, this verifies our claim. Furthermore, the unique minimizer A*

must be a critical point of F,, satisfying the gradient equation (B.6).
Finally, we show that [[A* — M~'|| <2C + | Dllop by showing that

A =M +d, I, (B.8)
A* <M+, +20)I. (B.9)

Since g, (A) > 0, (B.8) simply follows from
M = Fy(A") = Gu(A") = (A" —dy D)7
To show (B.9), note that for any x € R”", by Cauchy-Schwarz and the bound
L5 lIsill? < 2€, we have
1 n
xTgn(Mx == (57 (A —di)7'x)* <2CxT(A —dy i 1) .
n
i=1
In other words, g,(A) < 2C(A — d, 4 1)~%. Writing ¥ = A* — d,, . I, this shows
M = F,(A*) <Y ' +2cY~2.
Then

> (¥ '+2cy ) ' =@ V2 +2cy Hy 172!
=Y2(1 +2cy"H~ly!/2
Y'V2(1 —2cy hy'2 =y —2c1,

5
1

1Y

where the second line applies (I + X)_1 =1 —X.Then Y < M~ + 2C1I, which
implies (B.9). O

Proof of Proposition 2.8 Let gy, g2 ~ N (0, I,,) be independent standard Gaussian vec-
tors. Let g}, g5 be their Gram-Schmidt orthogonalized versions

g =8 g = ! <gz  cosd gl)
"Tal” F T sing \lgall lgtll
.
_ 818
where cos 0 = Terlleal and 6 € [0, r]. Let

xi = llalig,  x2=lcll(g] cos¢ + g5 sing)
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where cos ¢ = and ¢ € [0, 7]. Then (Oa, 0c) (x1, x2) and

HaH IILH

2 + 2

'D D
—E |:exp (bT.Xl +de2 + x] X1 + x2 X2

E[exp (bT0a+dTOc+ a'0"DOa CTOTDOC>:|

2 2
Define the event

&= {(gl,gz) : |||g,-||2/n — 1| <éfori=1,2, and |cosO| < 8} (B.10)

for some small § € (0, %) to be specified. Note that E[exp(kg;—gz)] = (1—2%H)"/2
for all [A| < 1. Thus for & € (0, 1), log E[exp(Ag g2)] = —5 log(1 — A?) < 2('}“ 5
By [10, Theorem 2.3], we have P [|g1 82| = +/2nt + t] <2e'. Taking t = 32 1 and
using (B.3), we conclude that

P[(g1, g2) € £] > 1 — 6e=1/32,

Crucially, (g7, g5) and (g1, lg2[l, cos #) are independent. Since the event {(g1, g2) €
£} is measurable with respect to the latter, it is also independent of (g}, g5). Thus

.
E [exp (bTxl +d"x) + X[ Dxt D"‘ + 22 f*z)}
1<
. |:exp (bTXI it e DXI 5 sz) L, gz>e€]
1 1
prm S 2 .
Pl(g1, ) €E] ~ 1 — 6e—9°n/32

Define

s llall s &l ine S
";:_ ﬁgli é‘_“c” (Cos¢ﬁ+81n¢\/ﬁ>’

which satisfy (&, &) i N(0, M), with M defined in (B.4). On the event &, for an

absolute constant C’ > 0, we have the approximations

bTx) —b el < C'sllalllbll, |d xp —d"¢] < C'slelllld]l, (B.11)

Ix, Dx; — & DE| < C'8|Dllopllal®, |x) Dxy —¢ D<;|<C<S||D||op||c||2 (B.12)

al® = 112 < C'sllal?, el = 12?1 < C'slicl?, laTe—&T¢| < C'slallell.
(B.13)
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Fix any (y, p,v) € D, such that A = (y v) > (dy + &)hxo. Let AV =

v
/! /
<7// v/) £ A — M. Define

T £C'5 (Ilallllbll + lellldll + 1 Dllopliall* + I Dlloplicl® + id ||| &
|'0 | —llel* + v |||a||||6||>
By the assumption of (a, b, ¢, d) € 2,,, we have
T < Codn(1+ [[A"]) (B.14)

for some Cy depending on G(d; + ¢), C’, and the constant C defining €2,,.
Recall that sq, . .., s, € R? are the rows of (b, d) € R"*2 and write z;, ..., 2, €
i
R? for the rows of (g1, g2) € R"*2. Then z; £ N, Ib) and (&;,¢;) = Tz; fora
matrix T satisfying TT T = M. Define

wEAT YA —-an s, 2T A —aD i)

so that det &; = det(M) ! det(A — d;I)~". Since A > (d4 + €)1, each %; is well-
defined and positive definite. By (B.11)-(B.13), for some error term r,, that satisfies
|ru| < T, we have

T T
x,; Dx;  x, Dxp
E |:exp <bTx1 +d T+ IT + 27) l(gpgz)eé’]

D
:E[ p(st+dT:+E E*T* (Nlall? = 1£1%)

’
+ %(Mcu2 — I +v'@Te—5To) +rn)1(g1,g2)gs}

n 1 1 1
exp(i TrA'M+rn)[1(gl $)eE l_[exp( Tzi — 5% T —d; I)Tz,) T exp (_Ellz”lz)

n 1 _ 1 _
exp(5<TrAM72>+rn)/1(;,,1 8)eE H exp(—§<z,- —u) "5 G =)+ g E 'm)

1

exp { %(TrAM —2~logdetM) + 5 Z (7logdet(A —d;D+ s (A 7d,»1)_lsl-) +rn]
i=1

P[(31. &) € €]

=exp {570 (8) 10| PG, &) € €],

where (g1, g2) consists of independent pairs (g;1, gi2) nd N (i, ).

Now choose § = n~ /% and A = A* as in Lemma B.2. Then F,(A*) =
infA>q, 46)1 Fu(A) = Ey(a,b,c,d). By Lemma B.2, [|[A'|| = ||A* — MY <
2C + || D]lop- By (B.14), we have 7 < C1n3/*, which yields the desired upper bound
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in (2.35). For the lower bound, we analyze P[(g;. g2) € £] by a union bound:

|

Z -1
Zglz

P[(&1, &) ¢ €] <H{

gio

o3

Furthermore, the gradient equation (B.6) reads

<Jee il

>_].

(B.15)

1 « IR _ _
TTT=M:;X;(A—di1) 1+;21:(A—di1) Lsis (A —di )7V
1= 1=

Thus at A = A* which satisfies this equation, we have n =1 31| (uip,| + %j) = b,
ie.,

n
_ZEgll__ZE&z—l %Z;]Eg’ilg’ﬂzo
1=

Note that Var(3%) = 4u? i1 + 257, Var(}) = 4u %2 + 2575, and
Var(gi18i2) = u3 i + uhTin + 2uinpinin + i i + 212,12- Apply-
ing |[TTT| = M| < G(dt + ), we have |pi|I> = s/ TEITTsi < G(dy +
&)1 =i 11?|Isi |>. Then applying Chebyshev’s inequality to (B.15), we have

100(1 + G(ds + ¢))
ns?

P(31.82) ¢ €] < D Uil Tr(Z))? + Te(E)%).
i=1

LetM = Z§=1 ozj.uju;.r beits eigenvalue decomposition, andlet 7" = Z%:l Joju v}r
be the associated singular value decomposition of 7. Then

2 2
1
Te(Z) =Y v Sivj =) ;u}—(A* —d; 1!
J

j=1 j=1

Recall from Lemma B.2 that A* = (d 4+ €)I and A* = M~! — C>1, where C, =

2C + ||Dllop- Thus uj (A* — dil)™"u; < 1 always, and uj (A = a7ty <
o .

Widﬁ%‘ provided o; <

_Czi- T Overall, we have Tr(X;) < Cj3 for some C3

depending on (C, || D|lop, £). Consequently, P[(g1, §2) ¢ £] < Ca/+/n, for some
constant C4 depending on (C, || D|lop, &, G(d4 + ¢)). This completes the required
lower estimate for (2.35). O
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B.3 Proof of Proposition 2.9

Proof For part (a), write H(y, ) for the function inside the infimum. This is strictly
convex over y > d,andits derivativeis 0, H(y, o) = a —G(y).Fora € (0, G(d)),
this derivative vanishes at y = G (), so y = G~ (&) must be the minimizer by
convexity. At this minimizer, writing G (@) = R() + o~ ! and combining the
logarithmic terms,

'H(G_l(a),oc) =aR(a) — / log(aR(ex) + 1 —ax)up(dx).

This evaluates to 0 at o« = 0. Its derivative in « is

, 1 R(a) + aR (o) — x
R(@) +aR (a)—&/ R@) Fa-T = up(dx)
_ R R 1 1 a ' —aR (2) 4
=R(a) +aR(¢) —a™ +« [mMD( x)

— R(@)+aR (@) —a ' +a”! <a—1 — otR/(ot)) .G (G_l(a)> — R().

Hence infy -4, H(y, o) = H(G™ (), @) = [;' R(z)dz.
For part (b), applying the orthogonal transformations

Yy v T(YV T
) ()e amae

for any orthogonal matrix Q € O(2) preserves both the value of the objective and
the optimization domain D,. Thus we may assume without loss of generality that

A = diag(oq, ) is diagonal. In this case, the function to be minimized is

v

yor — (1 4+logay) + pay — (1 4+ logay) —/logdet <7/ ;x b

) wp(dx).

This is strictly convex over (y,v, p) € D4, and its gradient is O at (y,v, p) =
(G a1),0, G~ Hn)) by (4.30) and part (a). Thus the minimizer is

YV _ ~-1
(Up)—c (4),

and the value is [;"' R(z)dz + [y R(z)dz = Tr f(A) also by part (a). ]

Appendix C. Auxiliary results

Proposition C.1 Let S, T be two fixed metric spaces. For each n > 1, let K, be a
compact metric space, f, : K, — S a continuous map, and vy, : K,, — T a map that
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is both continuous and relatively open.> For each n > 1, let U, be a dense subset of
K, such that

e For some fixed subset V. .C T, we have v, (U,) =V for every n, and
e There exists a function f : V — § such that f,(x) — f(v,(x)) > 0Oasn — oo,
uniformly over x € U,.

Then vy, (K,) = V (the closure of_V in T) for every n, this function f is continuous
on V and extends continuously to V, and f,(x) — f(v,(x)) — O uniformly also over
x € K,,.

Proof Since K, is compact and v, is continuous, v, (K,) is also compact, so v, (K;) 2
V. The reverse inclusion v, (K,) € V is immediate by continuity, so v,(K,) = V.

Forx € K, and v € T, denote B,(x) = {x" € K, : |x — x| < n} and Bs(v) =
{v €T :|lv—1| < 8} Tocheck that f is continuous on V and extends continuously
to V, it suffices to show that for any ¢ > 0 and any v € V, there exists § > 0 for
which

lfQ) — fFQ)| < e forallv', v’ € Bs(v)NV. (C.1)

Fix any such ¢, v, and let n = n(e) be large enough so that || £, (x) — f (v, (x))|| < &/3
for all x € U,,. For this n, let x, € K,, be a point where v, (x,,) = v. By continuity of
fn, there exists n = n(n) > 0 sufficiently small such that || f,, (x") — /(") || < /3
forall x’, x”” € By (xy,). Then

I f (n(x) — fup, (X" < e forallx’, x”" € By(xy) NU,. (C.2)

Since v, (x,) = v and v, is relatively open, for some § = §(n) > 0, the image
v (By (x,,)) must contain Bs(v) N V. Then v (By(x,) NU,) 2 Bs(v) NV, s0(C.2)
implies (C.1) as desired.

Finally, since U, is dense in K, and f,, f, and v, are continuous,

Su}; [fn(x) = fva(x))| = SUIE im | fu(x") = f(a(x")]
n x€eK, ;’e_;ff,

< sup |fu(x") = fua (X)),

x'eUy,

so the uniform convergence | f;, (x) — f (v, (x))| — 0 over x € K, follows from that
over x € U,. O

Proposition C.2 Ler D C RY be a convex set and f : D — R be convex and twice
differentiable. Given x, € D such that B(x4,8) = {x : ||x — x4|| < 8} C D, suppose
IV F )l < e and V2 f(x) = cl forall x € B(xy, 8), where ¢§ > 4¢. Then

. 462
inf f(x)> fxy) — —.
xeD C

5 That is, v, (Uy) is open in v, (K) for any open subset U, C K.
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Proof Foreach x € B(xy,8), wehave f(x) > f(xs) + (Vf(x) T (x —xs) + Slx —
x|%. So f(x) > f(xy) for all ||x — x4|| > 4e/c. Therefore, the local minimum
miny, _y, |<4e/c f(x) is achieved at some X such that |X — x.|| < 4¢/c and hence
V f(x) = 0. By convexity of f, x is also the global minimizer soinf,cp f(x) = f(X).
Finally, f(¥) > f(x:) + (V)T (x —x,) > f(xy) — 4e?/c. o

Appendix D. Spherical model

Consider the spherical counterpart of the Ising model (1.1), with partition function

Zsphere £ / m(do)exp (éUTJU +hT0> s
11 (/) 2

where / = O DO and 7 is the uniform distribution on §”~!(,/n), the n-sphere of
radius /. The replica-symmetric prediction of the limit free energy is

1 _
WRS, sphere = 5 in(g {V + ]E[Hz] -G(y) — /IOg(V —X)pp(x) — 1} , (D.1)
y=>a+

where the rescaled notations d., G, i1 p were defined in (2.3). The following theorem
justifies this formula.

Theorem D.1 Under Assumption 1.1, for any fixed B € (0, G(dy.)), almost surely

lim l log Zsphere = WRS, sphere-
n—-oon
A derivation of this result in the special case of A = 0 is given in [32, Section
2.1].° We prove Theorem D.1 using Proposition 2.7, which we have stated under the
assumption 8 < G(d+). Dropping this assumption requires removing the upper-bound
condition on ||a|| in Proposition 2.7; such an extension was obtained in [26, Theorem
6] forb = 0.

Proof of Theorem D.1 We express the uniform distribution of o € gn—1 (Vn)aso =
Qa, where a € S”_l(ﬁ) is any fixed vector on the sphere, and Q ~ Haar(O(n))
is independent of J. By the given condition 8 < G(d.), we have |a||?/n = 1 <
G(dy) = G(dy)/B. Thus there exists ¢ > 0 for which [la||?>/n =1 < G(d} + ¢) —
. Setting b = h and applying Proposition 2.7 to evaluate the expectation over Q
(conditional on J), we obtain

inf  f(J,y)

1 _ a1
lim ‘— log Z — f(J)‘ =0, f()H)2=
n 2 yzd+e

n— o0

6 [32, Eq. (14)] studies the unnormalized surface area measure on the sphere, and hence has an extra
additive term of % log(2me).
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where

- W' (yI—T)"'h
f(JvV):V‘I‘%

Ty — D)1
+(0h) (vl — D) (Oh)

n

1 -
— —logdet(yl —J) — 1
n

1 _
— —logdet(yl — D) — 1. (D.2)
n

For any y > d + ¢ and all large n, note that f(J, y) > y — %logdet(yl —-D)—1,
where the right side diverges as y — oco. Thus there exists some constant I' > 0
independent of J and n such that

f) = inf ]f(i, ¥). (D.3)

1
2 ye€ldy+e, Il

Writing WRs, sphere = % infy> R W (y) where W (y) is the function in (D.1), by the
same reasoning, this infimum may be restricted to y < T'. Fory € (dy.dy +¢), we
have W' (y) = 1 + E[H?] - G'(y) — G(y) <1 - G(y) <0, and hence the infimum
may also be restricted to y > d4 + ¢. So

inf  W(y). (D.4)

1
‘*I"RS,sphere ==
2 yeldi+e.T]

Finally, we check the convergence of f J, y) to W(y). Note that E[( Oh)T(yI —
— - 2
D)~'(0m1 = Y1 E((O)?1/(y —d;), where E[(Oh)?] = [|h|*E[0?,] = 2L by
symmetry. Thus, applying Assumption 1.1(b) and (c),

_ Al o 1 1 - -
E[f(J,V)]=y+72y = = logdet(y/ = D) = 1 === W(y).
i=1 ¥ T

D.5)

Next we argue that f (J, y) concentrates, similar to the proof of Theorem 1.3. Viewing
f(J, y) as afunction of O via (D.2), we may compute its derivative

_ 2 _
dof(J,y)==hh" O (yI —D)~".
n
Thus for large enough n and any y > d +¢, we have |30 f(J, Y)|F < %H Ol op-

By Assumption 1.1(c), for all sufficiently large n, %||h||2 < 2[E[H?] and hence O >

f(J,y) is L-Lipschitz on Q(n) with L = SE[THZI. Then by the same argument that
leads to (5.1) and (5.2), we have for each y > cf+ + e,

i} _ n_ 1ys2
PIf(J,y) —ELf(J, )]l = 8] < 2exp {—%} (D.6)
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Furthermore, |9, f (J, )| <1+ % + é Thus for all O € O(n) and all sufficiently
large n, y +— f(J,y) is L'-Lipschitz with L' = 1 + 2E[H?] + 1)/e on [d; +
e, I']. The same Lipschitz continuity holds for W(y). Combining (D.5) and (D.6),
and applying Borel-Cantelli and a union bound over a sufficiently fine grid of values
v € ld4 +¢, '], we obtain the almost-sure convergence f(J, y) — W(y) uniformly
over y € [d+ + ¢, I']. Then by (D.3) and (D.4), also f (J) = WRS, sphere, cOmpleting
the proof. O

Appendix E. Cavity-method derivation of the TAP equations

We provide a brief review of the heuristic approach in [41] for deriving the TAP
equations (2.11). Let

m; = (0j),  xij = (0i0j) — {0i){0}) (E.1)

where (-) is the expectation under the law P (o) in our model of interest (2.8). Define
the cavity field 6; = > ji Jijoj- Then the single-spin marginals of P (o) are

1 (ha (haap
P(Ul) — Z(em(ht'f‘@z))\i’ Zi — Z <eO’t(h[+91)>\l.
! oie{£1}

where (-)\; denotes the expectation over {0} ;; (defining 6;) in the cavity system
with the spin o; removed. We have the exact identities

m; = dp, log Zi,  Xij = Op;mi. (E.2)

Approximating the law of the cavity field 6; under (-)\; by a Gaussian law N(ui, vp),
one obtains from the Gaussian moment-generating-function

1
P(Ul) ~ 7e(ri(h,'+m)+vg/2’ mi & tanh(hi + ,u/i)v Zi ~ Z eo'[(hi+/4[)+vf/2.
oie{xl}
(E.3)

Furthermore, the law of 6; under (-) in the original model is then approximately
a two-component Gaussian mixture P(6;) Zaie{i”e"i(hi+9i)_(9i_“i)2/ i
Z e(t1) e""(hi"’“")e_(gi_”"_”"”i)z/z”i fromwhichoneobtains (0;) ~ wi+v; tanh(h;+
M,) ~ w; + v;m;. Equating this with ( Zk# J.wmy from the definition of 6;

gives

i ) Jimi = vimi. (E4)
k

Finally, the approach of [41] is to derive an equation for the cavity field variances
{v;} by implicit differentiation in / ;, assuming th v; ~ 0. Then, differentiating (E.4)
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and applying (E.2),

Ony i & Y JikXej — vidij- (E.5)
k

Differentiating the first equality of (E.2) using the approximation for Z; in (E.3),

o O-ieffi(hiJruiHvi/Z
> e0i (hi+pi)+vi/2 ~ Xii<1{l =Ji+ ah-”“) (E.6)
;i

Xij = On;mi = Op,

Combining (E.5) and (E.6), and denoting x = (X,-j)f\,/j:l, X = diag()(ii)f\lzl, and

V= diag(vi)fvzl, one obtains x ~ X(I +Jx — Vx),hence x ~ (V + X1 —J)~L.
Taking the trace and assuming further by the symmetries of the model that x;; ~ 1—g

and v; ~ v for some v > 0 and all i = 1,...,N,thisgivesl—q*%G(v—i—ﬁ),

ie.v ~ Rl — q«), where %Tr(zl —J) > G(z) as N > oo and G, R are the
Cauchy and R transforms of the limiting law 15 defined in (2.4). Substituting this
into (E.3-E.4) yields m ~ tanh(h 4 ) ~ tanh(h 4+ Jm — R(1 — g,)m) which are the
TAP equations (2.11).
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