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Unitary t-designs are distributions on the unitary group whose first t moments appear maximally ran-

dom. Previous work has established several upper bounds on the depths at which certain specific random

quantum circuit ensembles approximate t-designs. Here we show that these bounds can be extended to

any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral gaps

of such architectures to those of one-dimensional brickwork architectures. Our bound depends on the

details of the architecture only via the typical number of layers needed for a block of the circuit to form

a connected graph over the sites. When this quantity is bounded, the circuit forms an approximate t-

design in at most linear depth. We give numerical evidence for a stronger bound that depends only on

the number of connected blocks into which the architecture can be divided. We also give an implicit

bound for nondeterministic architectures in terms of properties of the corresponding distribution over

fixed architectures.
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I. INTRODUCTION

Random quantum circuits are an important tool in the

study of natural and engineered quantum systems. In quan-

tum computing, random circuits have been suggested for

randomized benchmarking [1,2], security, and state prepa-

ration [3]. Recent claims of quantum supremacy have

hinged on the hardness of classical simulation of ran-

dom circuits [4–9]. Random circuits have also been pro-

posed as models for information scrambling in black holes

[10,11], and more general random tensor networks have

been used as an explicit construction of the holographic

duality in AdS/CFT [12]. In quantum information theory,

random circuits are the standard setting in which to study

measurement-induced phase transitions [13], and they are

used as an analytically tractable model of quantum ergod-

icity and chaos [14]. Random circuit models also serve

as an interesting theoretically tractable model for more

complicated realistic physical systems. Their maximally

*Contact author: bkclark@illinois.edu
†Co-first authors.

Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license. Fur-

ther distribution of this work must maintain attribution to the

author(s) and the published article’s title, journal citation, and

DOI.

generic dynamics are often a valuable source of intuition

as to what one should expect under typical time evolution.

The geometric structure of a quantum circuit plays

a critical role in the flow of information. While initial

work on quantum computing focused on one-dimensional

(1D) architectures, 2D layouts, such as the Sycamore

processor used in the quantum advantage experiment of

Ref. [15], have become increasingly popular. Recent work

has explored modular architectures, in which fully con-

nected nodes are sparsely connected with each other [16].

Circuit models for physical systems often require geo-

metric locality on some two- or three-dimensional lattice.

In certain cases, such as the Sachdev–Ye–Kitaev model,

the interactions are instead all to all. Meanwhile, circuit

architectures with the connectivity pattern of a tree or the

multiscale entanglement renormalization ansatz [17] are

a natural setting in which to study holography. Such cir-

cuits may also be useful for robust quantum simulations of

many-body systems [18].

In the limit of large depth, a sufficiently well-connected

random quantum circuit will eventually scramble quan-

tum information [19]. Perhaps the most basic question

about random quantum circuits is the rate of this scram-

bling. This is quantified by the approximate t-design depth

[20], which captures the depth at which an observer

with access to at most t measurements can no longer

reliably distinguish the circuit from a random global

unitary.
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Prior work has given bounds on the t-design depths for

a few special classes of architectures. However, it was

not previously clear how the rate of information scram-

bling depended on the spatial structure of the circuit. In

particular, one might have expected irregular or modular

architectures to give qualitatively different behavior, e.g.,

exponentially slow convergence. The main goal of this

work is to show that any reasonable architecture forms

an approximate t-design in linear depth. We bound the

rate of convergence in terms of the connectedness of the

architecture.

A. Prior work

The Haar measure on the unitary group is clearly a fixed

point of any quantum circuit distribution, since it is invari-

ant under any unitary gate. Emerson et al. [19] showed that

random circuits satisfying a universality condition con-

verge to this fixed point in the limit of large depth. But

this uniform convergence is very slow, requiring a circuit

depth that scales exponentially with system size N . On

the other hand, the expected values of specific observables

sometimes approach their Haar values much faster (e.g.,

in depth log N ) [21]. But this fast convergence depends

on specific details of the observables considered and is

not necessarily universal for other quantities of interest.

The approximate t-design depth was first introduced in

Ref. [20] as an intermediate measure of convergence. It

is strong enough to guarantee convergence of any experi-

mentally observable property, but occurs much faster than

the uniform convergence of measure.

Much of the prior work on approximate t-design depths

has focused on the 1D brickwork architecture. Brandão

et al. [22] showed that the approximate t-design depth in

this case was at most O(t9.5+o(1)N ). For local Hilbert space

dimension q = 2, Haferkamp [23] tightened this bound

to O(t5+o(1)N ). Hunter-Jones [24] gave a mapping to a

statistical-mechanical model of interacting domain walls

and used it to establish tighter bounds when either t =
2 or q → ∞. Harrow and Mehraban [25] extended this

work to a particular family of D-dimensional brickwork

architectures. In the limit of small ε and large N , they

established that the approximate t-design depth scales as

at most O(N 1/D) (although the dependence on t remains

an open question). Schuster et al. [26] and LaRacuente

and Leditzky [27], meanwhile, constructed families of

architectures for which the approximate t-design depth is

O[poly(t) log N ].

The other class of prior work focuses on what we term

nondeterministic architectures, in which the spatial struc-

ture of the architecture is also random. Typically, gate

locations are assumed to be drawn independently and iden-

tically from the uniform distribution over the edges of

some graph over the sites. In this context, Ambainis and

Emerson [20] established an approximate 2-design size

of at most O(N 2) gates for the all-to-all graph. Brandão

et al. [22] found O(t9.5N 2) for the linear graph, which Osz-

maniec et al. [28] extended to O[t9.5 log4(t)N 3] for any

graph that admits a Hamiltonian path. Mittal and Hunter-

Jones [29] developed an alternative strategy that yields a

bound of the form N O(log N )poly(t) for arbitrary graphs. In

addition, they gave a bound of the form O[|E|Npoly(t)]

for graphs with |E| edges, bounded degree, and bounded

effective spanning-tree height. For certain bounded t and

degree, the requirement of bounded spanning-tree height

can be relaxed. The results of Ref. [30], meanwhile, imply

a bound of

O[N 9t(log t)3(log N + log log t)]

gates for arbitrary graphs.

B. Summary of results

We obtain bounds on the t-design depth for all archi-

tectures, with stronger bounds if the architecture satisfies

certain properties. First, consider a periodic architecture

composed of � complete layers of two-site gates on N

qubits. For large t, our bound for the ε-approximate t-

design depth becomes

d∗ = t[5+o(1)](�−1)

(
2Nt log 2 + log

1

ε

)
. (1)

We can relax each of these assumptions to obtain looser

bounds for larger classes of circuits. The most general

result covers an architecture with local Hilbert space

dimension q that may not be periodic or consist of com-

plete layers [31]. We partition such a circuit into blocks of

layers such that the gates in each block form a connected

graph over all the sites. Let �̄ be the average number of

layers per block [32]. For these architectures, our bound is

of the form

d ≥ t[15.2+o(1)](�̄−1)

(
2Nt log q + log

1

ε

)
. (2)

We also give numerical evidence for two conjectures under

which Eq. (2) can be strengthened to

d∗ = [2Nt log q + log(1/ε)]�̄

2 log[(q2 + 1)/2q]
. (3)

For nondeterministic architectures, we obtain an implicit

bound in terms of the joint distribution of the effective

number of layers in the circuit and the number of connected

blocks.

C. Structure of the proof

We wish to prove that the distribution induced by a

random circuit architecture approaches the Haar measure.
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Following previous work on approximate t-designs [33],

we begin by expressing the frame potential as a tensor net-

work of single-gate moment operators (Sec. II). In Sec.

III, we focus on the case of periodic complete architec-

tures and show that the t-design depth is determined by the

spectral gap of the transfer matrix T. (The assumptions of

completeness and periodicity will be relaxed in Secs. VII A

and VII B, respectively.)

We then decompose the transfer matrix into a product

of � layers of gates. Each layer is an orthogonal projec-

tion operator. We wish to bound the spectral gap of the

transfer matrix in terms of the geometry of the subspaces

to which the layers project. The key insight at this stage

is to consider the way adding a new layer shrinks the

unit eigenspace of the product, reducing the norm of the

excluded vectors. In Sec. IV, we bound the spectral gap

in terms of these norm reductions. The impact of a new

layer on the unit eigenspace can be represented by a graph

of nodes and edges, which we term the cluster-merging

picture.

The next step is to simplify the cluster-merging picture

at each layer. In Sec. V, we show that you can unravel

the cluster-merging graph of each layer into a collection

of loops without increasing the spectral gap. This is useful

because each loop is the transfer matrix of a periodic 1D

brickwork architecture. At this stage we have obtained a

lower bound on our transfer matrix spectral gap in terms

of the spectral gaps of 1D brickwork architectures.

In Sec. VI, we proceed to show that the 1D brickwork

spectral gap itself may be bounded by previous results on

1D approximate t-design depths. Many of these results

were actually originally proven in terms of the spectral

gap, but our argument applies even to bounds obtained

by other methods. Together these steps allow us to turn

a bound on the 1D t-design depth into a bound for generic

architectures.

We also discuss extensions of our techniques to other

architectures. We show how our bounds can be applied

in expectation to architectures in which gate locations are

drawn randomly, giving an implicit bound in terms of

properties of the induced distribution over fixed architec-

tures. We observe that our techniques may be adapted to

give tighter bounds for architectures with special struc-

ture and give an explicit example for the case of higher-

dimensional brickwork architectures.

D. Definitions

A quantum circuit on N sites of local dimension q corre-

sponds to a unitary Uc ∈ U(qN ). A random quantum circuit

architecture then induces a measure εC on U(qN ). Define

the associated t-fold channel

�RQC(ρ) =
∫

εC

U⊗t
C ρ(U

†

C)⊗tdUC. (4)

Definition 1. An ε-approximate unitary t-design [22] is

a measure εC on U(qN ) such that the diamond norm dis-

tance between the corresponding t-fold channel �RQC and

that of the Haar measure is at most ε:

‖�RQC − �Haar‖	≤ε. (5)

We often shorten “ε-approximate unitary t-design” to

“(ε, t)-design.”

Definition 2. We call an L-layer random circuit architec-

ture on N sites complete if each of the L layers consists of

N/2 Haar-random two-site unitary gates. In other words,

exactly one gate acts on each site per layer.

Definition 3. An �-layer periodic random circuit archi-

tecture repeats the layout of its layers with period � as the

depth increases. Note that gates themselves are indepen-

dently random at every depth; only the spatial arrangement

of the gates is repeated.

Definition 4. A connected block of a circuit architecture

on N sites is a contiguous sequence of layers such that the

gates in the block form a connected graph over all N sites.

These definitions are illustrated in Fig. 1.

Our most general results are for complete architectures

and depend on the frequency and size of connected blocks.

However, we obtain a more explicit form for the special

case of periodic architectures. We obtain each result by

reduction to the well-studied 1D brickwork architecture.

Definition 5. The N -site 1D brickwork architecture is

a complete two-layer periodic random circuit architecture,

equipped with an ordering 1, . . . , N of the sites, such that

the first layer applies gates on sites {2j , 2j + 1 mod N },
while the second layer applies gates on sites {2j − 1

mod N , 2j }. In this paper, the spatial boundary conditions

are periodic unless otherwise specified.

E. Main theorems

Theorem 1. Suppose that the N -site 1D brickwork

architecture (with either open or periodic boundary con-

ditions) forms an ε-approximate t-design after at most

k1 = C(N , q, t) log
1

ε
+ oε

(
log

1

ε

)
(6)

periods. Then arbitrary complete �-layer periodic architec-

tures form an ε-approximate t-design after at most

k∗ = 2Nt log q + log(1/ε)

log(1/s∗)
(7)
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Incomplete

Complete

Incomplete

Connected Unconnected Periodic Aperiodic

(a)

(b)

(c)

� Three-layer connected block

� Two-layer connected block

� Three-layer connected block

FIG. 1. Different types of layers, blocks, and architectures. (a) The middle layer is complete, since every site is acted on by exactly

one gate. The upper and lower layers are both incomplete. (b) The left-hand block is connected, while the right-hand block is made up

of two unconnected components. (c) The left-hand architecture is three-layer periodic, containing three repetitions of the same three-

layer connected block. The right-hand architecture is aperiodic, consisting of a three-layer connected block, a two-layer connected

block, and another three-layer connected block.

periods, where

s∗ = 1 −
[

1 − exp

(
− 1

2C(q, t)

)]�−1

(8)

and C(q, t) = supN C(N , q, t). We may relax the bound to

the more legible

k∗ = [4C(q, t)]�−1

(
2Nt log q + log

1

ε

)
(9)

by defining C(q, t) ≡ max[C(q, t), 1
2
].

Theorem 2. If we do not require that the layers be

complete, an �-layer periodic architecture forms an ε-

approximate t-design after at most

k∗ = 2Nt log q + log(1/ε)

log(1/s∗)
(10)

periods, where

s∗ = 1 −
[

1 − exp

(
− 1

2C(
√

q, t)

)]�−1

(11)

and C(
√

q, t) is defined either as in Theorem 1 or, when
√

q

is not an integer, via the generalization described below.

For integer q, C(q, t) can be equivalently defined in

terms of the spectrum of the transfer matrix tensor network

corresponding to the 1D brickwork architecture (see Figs.

2 and 3 below). In this picture q corresponds to a “cou-

pling constant” in the tensor network. When q is an integer

but
√

q is not, we define C(
√

q, t) analogously by chang-

ing the coupling constant to
√

q in the tensor network. For

a formal description, see Appendix C.

In addition, we give an alternative result on incom-

plete layers in Sec. VII B that depends on C(q, t) instead

of C(
√

q, t), but at the cost of multiplying � by a factor

O(log log N ). We also show that the architecture need not

actually be periodic.

Theorem 3. The results of Theorems 1 and 2 hold even

if the architecture is not periodic, with � replaced by an

“average connection depth” defined formally in Theorem

12 below.

We begin with a proof of the periodic, complete case.

This proof is simpler and illustrates the essential elements

of our strategy. The argument will then be extended to the

incomplete and aperiodic cases.

Ui Ui

U†
i

U†
i

Ui UiU*
i

U*
i

U⊗2,2
i

⟩
Ui

U⊗t,t
3⟨U⊗t,t

1
U⊗t,t

2

⟨U⊗t,t
3

⟩

⟨U⊗t,t
1

⟩ ⟨U⊗t,t
2

⟩ G

G

G

(a)

(b)

FIG. 2. (a) Folding all t copies of specific gates Ui and U
†
i in

channel �RQC into a single operator U
⊗t,t
i , where t = 2. The gray

dotted region indicates a density matrix on which the channel

acts. This is vectorized in the middle panel, forming a matri-

cization of the 2t copies of Ui. (b) The reduction of the tth

moment operator �̂RQC to a network of identical projection ten-

sors G. Each unitary U
⊗t,t
i can be averaged separately into an

independent copy of G.
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T

T

T

FIG. 3. Breaking up �̂RQC for a random quantum circuit (in

this case a 1D brickwork architecture) into k = 3 copies of the

transfer matrix T.

Finally, we show that, conditional on two conjectures,

we can omit the dependence on � entirely to obtain a much

simpler result.

Theorem 4. Suppose that Conjectures 1 and 2 below

hold. Then any architecture that can be divided into

k∗ = 2Nt log q + log(1/ε)

2 log[(q2 + 1)/2q]
(12)

connected blocks forms an ε-approximate t-design.

F. Known values of C(q, t)

Previous works imply the following bounds on

C(q, t).

(a) For general parameters, the best known bound is that

of Brandão et al. [22]. For the case of 1D brickwork

circuits [34] where q ≥ 2, the authors gave

C(q, t) = 261 500
logq(4t)�2q2t5+3.1/log(q). (13)

For integer q2 ≥ 2, the more general form is

C(q, t) = 234(q2 + 1)e{2.5 log(4)[1+log(q2+1)]}/log(q)+1

× 
logq(4t)�2t5+5[1+log(1+q−2)]/2 log(q).

(14)

When q ≥ 2, we can replace the t exponent

with 9.5 ≥ 5 + {log[e(1 + q2)]/log(q)}. Similarly,

for q2 ≥ 2, we have an exponent of at most 15.2.

(b) For q = 2, Eq. (22) of Ref. [23] gives the tighter

bound

k1 = α log5(t)t4+3/
√

log2 t

(
2Nt + log2

1

ε

)
, (15)

where α = 1013. This gives

C(2, t) = α

2 log 2
log5(t)t4+3/

√
log2 t. (16)

(c) For t = 2 and any q > 1, Eq. (27) of Ref. [24] gives

C(q, 2) =
(

2 log
q2 + 1

2q

)−1

for 1D brickwork circuits with open boundary con-

ditions [35]. We show in Appendix B that periodic

boundary conditions improve the bound to

C(q, 2) =
(

4 log
q2 + 1

2q

)−1

. (17)

(d) In the limit q → ∞, Eq. (36) of Ref. [24] shows that

the leading-order term is C(q, t) = (2 log q/2)−1

with open boundary conditions. Periodic boundary

conditions again tighten [36] this to

C(q, t) =
(

4 log
q

2

)−1

+ oq(log−1 q). (18)

(e) Following the conjecture of Ref. [24], we suspect

that the sharp bound is

C(q, t) =
(

4 log
q2 + 1

2q

)−1

. (19)

This is analogous to the conjecture of Ref. [24]

for the open-boundary case. Numerical evidence is

given in Appendix E 1.

II. APPROXIMATE t-DESIGNS AND TENSOR

NETWORK PICTURE

The first phase of our proof follows the standard reduc-

tion from approximate t-designs to a tensor network of

averaged gates [21]. For the sake of completeness and

notational clarity, Secs. II and III outline the key steps.

For a random quantum circuit channel �RQC formed

from a circuit ensemble UC ∈ εC, the diamond norm dif-

ference from the Haar distribution is bounded in terms of

the frame potential [24]:

‖�RQC − �Haar‖2
	 ≤ q2Nt(F (t)

εC
− F

(t)
Haar), (20)

F
(t)
εC

=
∫

ε⊗2
C

|tr(U†

CVC)|2tdUCdVC. (21)

Both the random quantum circuit channel and the frame

potential can be written in terms of the tth moment operator

�̂RQC =
∫

εC

U
⊗t,t
C dUC,
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where U
⊗t,t
C ≡ U⊗t

C ⊗ (U∗
C)⊗t. This is a matricization of the

quantum channel �RQC, i.e.,

�̂RQC · vec(ρ) = vec[�RQC(ρ)]. (22)

We also have

F
(t)
ε =

∫

ε⊗2
C

tr(U
†⊗t,t

C V
⊗t,t
C )dUCdVC

= tr(�̂
†

RQC�̂RQC). (23)

We assume that UC consists of two-site unitary gates

Ui drawn independently from the Haar distribution over

U(q2). Since distinct gates are independent, we can aver-

age over each gate separately (Fig. 2). The averaging joins

the 2t copies of each gate that appear in U
⊗t,t
C into a single

operator G. The action of G depends only on t and the num-

ber of sites on which Ui acts. Operator �̂RQC becomes the

contraction of a tensor network in the shape of the original

circuit UC, but with each U
⊗t,t
i replaced with its average G.

The individual G’s can be written in terms of single-site

permutation states. Given a permutation σ ∈ St, we define

a particular maximally entangled state on t pairs of sites

|σ 〉 = q−t/2
∑

�i∈Z
t
q

|�i〉|σ(�i)〉. (24)

We call a tensor power of a permutation state on m sites

|σ 〉⊗m = |σ 〉|σ 〉 · · · |σ 〉 a uniform permutation state.

Theorem 5. Let U be an m-site Haar-random unitary.

Let G be the expected value of the corresponding moment

operator U
⊗t,t
i . Then G is a projector onto the space

spanned by the uniform permutation states |σ 〉⊗m.

A proof may be found in Ref. [33]. In particular, we see

that the tth moment operator for the Haar distribution over

all N sites is just the orthogonal projector on to the globally

uniform permutation states on all N sites. Furthermore,

these states also span the unit eigenspace of the moment

operator of any architecture.

Lemma 1. If the circuit architecture is connected, the

unit eigenspace of �̂RQC is spanned by the globally uni-

form permutation states |σ 〉⊗N .

Proof. The support of the distribution over the unitaries

induced by a random architecture is a universal gate set if

and only if the architecture is connected [37,38]. Suppose

that we apply k repetitions of the circuit architecture. As

k → ∞, Emerson et al. [19] showed that the induced mea-

sure on U(qN ) converges to the Haar measure. It follows

that the corresponding moment operator �̂k
RQC converges

to that of the Haar measure, which is the projector onto the

span of the uniform permutation states. But, since �̂RQC is

norm nonincreasing, limk→∞ �̂k
RQC is a projector on to the

unit eigenspace of �̂RQC, so the unit eigenspace of �̂RQC

must be the same as that of �̂Haar. Theorem 5 completes

the argument. �

III. TRANSFER MATRIX AND THE SPECTRAL

GAP

We now specialize to the case of �-layer periodic archi-

tectures, again following the standard techniques found in

Ref. [21]. In this case we can define a transfer matrix T by

contracting together the projectors Gi, i ∈ {1, . . . , �N/2},
of the moment operator �̂RQC corresponding to a single

period of the architecture, as shown in Fig. 3. We show that

the approximate t-design time is controlled by the singular

value spectrum of T.

If there are k periods of the architecture, the moment

operator corresponds to the kth power of the transfer

matrix, so by Eq. (23), the frame potential is

Fε = tr(T†kTk) = ‖Tk‖2
F . (25)

Theorem 6. Consider a connected periodic architecture

on N sites. After k periods, the frame potential is at most

Fε ≤ FHaar + q2Nts2k
∗ , (26)

where s∗ is the largest nonunit singular value of the transfer

matrix T.

Proof. Starting from

Fε = ‖Tk‖2
F ,

we can use Theorem 17, proven in Appendix A, to see that

‖Tk‖2
F ≤ m1 + (d2 − m1 − m0)s

2k
∗ , (27)

where d2 is the dimension of T, m1 is the dimension of

its unit eigenspace, and m0 is the dimension of its zero

eigenspace. As long as the circuit is connected, by Lemma

1, it shares the same unit eigenstates as the Haar distri-

bution, so m1 = F
(qN )

Haar . The first layer consists of two-site

gates, each of which has only F
(q2)

Haar nonzero eigenvalues.

A lower bound on m0 is thus d2 − (F
(q2)

Haar)
N . The total

dimension for T is d2 = q2Nt, so we find that

Fε ≤ F
(qN )

Haar + [(F
(q2)

Haar)
N − F

(qN )

Haar ]s2k
∗ . (28)

Of course, FHaar is just the dimension of the unit

eigenspace, which is at most t! (since it is spanned by the

uniform permutation states) and also at most q2Nt (since

that is the total dimension of T). In addition, it is known to
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be equal [24] to t! for t ≤ d. From Eq. (21), it is clear that

the frame potential is a monotonically increasing function

of t. Together these imply that

min(t!, d!) ≤ F
(d)
Haar ≤ min(t!, d2t), (29)

so that

(F
(q2)

Haar)
N − F

(qN )

Haar ≤ min(t!, q2t)N − min[t!, (qN )!].

The remaining algebra will be easier if we further relax this

to

(F
(q2)

Haar)
N − F

(qN )

Haar ≤ q2Nt. (30)

Without this relaxation, all of our bounds change by

2Nt log q → log[(F
(q2)

Haar)
N − F

(qN )

Haar ].

This latter bound is tighter for small t, but the former bound

is more convenient to interpret, so we prefer the simplified

form. Equation (28) then becomes

Fε ≤ FHaar + q2Nts2k
∗ . (31)

This completes the proof. �

Applying Theorem 6 to Eq. (20) gives a bound on the

rate at which a random circuit architecture approaches a t-

design in terms of the subleading singular value (SSV) of

the transfer matrix:

‖�RQC − �Haar‖	≤q2Ntsk
∗. (32)

It follows that the number of periods required to push the

diamond norm error below ε can be upper bounded in

terms of s∗ by

k∗ = 2Nt log q + log(1/ε)

log(1/s∗)
, (33)

which is already part of Theorem 1. It remains only to

bound s∗, i.e., the spectral gap of T.

IV. BOUNDING THE SPECTRAL GAP

In order to apply Theorem 6, we must bound the largest

nonunit singular value T. We first show that this s∗ is

related to the geometry of the unit eigenspaces of each

layer. Later, we study the relationship between this geom-

etry and the architecture of the circuit to derive our final

bound.

We can interpret T as a product of orthogonal projection

operators. Because each projector is norm nonincreasing,

any subspace whose norm is decreased by some large

amount by the first few projectors cannot contain a large

singular value. If Pi · · · P1 does not have a large singu-

lar value then any large singular value of Pi+1 · · · P1 must

arise from vectors that were nearly unit eigenvectors of

Pi · · · P1, while still being orthogonal to the unit eigenvec-

tors of Pi+1 · · · P1. This allows us to construct an inductive

bound based on the relative geometry of the subspaces to

which the Pi project.

Theorem 7. Consider some set of subspaces Xi, i ∈
{1, . . . , n}, of a Hilbert space. Let Pi be the orthogonal

projector on to Xi and Qi the orthogonal projector on to⋂i
j =1 Xj . Define T = Pn · · · P2P1, and let s∗ be the largest

nonunit singular value of Tn. Then we have the bound

s2
∗ ≤ 1 −

n∏

i=2

(1 − ý
2
i ), (34)

where ýi is the largest nonunit singular value of PiQi−1.

The proof of this theorem is given in Appendix A. In our

case, the Pi will be the layers of the transfer matrix. We call

the ýi the layer-restricted singular values. Our first goal is

to characterize the Qi, which we term the intermediate unit

eigenspace projectors.

A. Cluster-merging picture

To bound the layer-restricted singular values, we must

first understand the intermediate unit eigenspace to which

Qi projects. From Theorem 5, we know that the unit eigen-

states of a single gate are the uniform permutation states

|σ 〉⊗m. Moreover, each gate is norm nonincreasing, so a

state whose norm is reduced by any individual gate must

not be a unit eigenstate. This leads to the following result.

Lemma 2. Let Gi, i ∈ {1, . . . , m}, be some gates within

the transfer matrix that form a connected network on some

n sites. The unit eigenspace of the contracted network

M = ∏m
i=1 Gi is spanned by the uniform permutation states

{|σ 〉⊗n, σ ∈ St}.

Proof. We may interpret M as the transfer matrix of a

(possibly incomplete) random quantum circuit architecture

with the same layout as the Gi. Since the Gi are connected,

the corresponding quantum circuits are also connected. We

may then apply Lemma 1. �

This leads to the cluster-merging picture (Fig. 4). Take

some sequence of complete layers P1 · · · Pl.

These layers may connect all the sites, or they may con-

nect only certain subsets of the sites. Call each subset of

sites that is connected by P1 · · · Pl a cluster. Recall that the

intermediate unit eigenspace projector Ql is defined to be

the orthogonal projector on to the unit eigenspace of the

product Pl · · · P1.
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FIG. 4. The cluster-merging picture for calculating the third

layer-restricted subleading singular value ý3, i.e., the subleading

singular value of P3Q2. (a) The first two layers are collected into

clusters (blue) of sites that are connected by the first two layers

of gates. The intermediate unit eigenspace projector Q2 is then

a tensor product of projectors on each cluster. (b) (Left) Graph-

ical representation of P3Q2 in the cluster-merging picture. Each

cluster in Q2 becomes a node labeled by the number of sites it

contains. Gates in P3 that join distinct clusters become edges.

Gates in P3 that join two sites within the same cluster are ignored.

(Right) Each connected component of this graph is merged into a

single cluster of the next intermediate unit eigenspace projector

Q3.

By Lemma 2, the space to which Ql projects is the tensor

product of the spans of the uniform permutation states on

each cluster. As we include more layers by increasing l, the

clusters merge and the unit eigenspace to which Ql projects

shrinks. Eventually, the whole circuit has been connected

into a single cluster, at which time the unit eigenspace is

the span of the globally uniform permutation states |σ 〉⊗N .

Our goal is to compute ýl, which is the largest nonunit

singular value of PlQl−1. This can be accomplished by con-

structing the cluster-merging graph that uniquely deter-

mines ýl. To build the graph, let each cluster of sites

connected by Pl−1 · · · P1 be a node, with weight equal to

the number of sites in the cluster. Each gate of Pl that joins

two distinct clusters is mapped to an edge joining the cor-

responding nodes. Gates of Pl that join two sites within the

same cluster do not influence ýl and can be ignored. The

layer-restricted singular values ýl depend only on the graph

topology and the node weights, not on any other details of

the architecture.

V. REDUCTION OF EACH LAYER TO 1D

BRICKWORK LOOPS

Our next goal is to obtain an architecture-independent

upper bound on the ýi. We begin by identifying a set

of rules for rearranging a cluster-merging graph into a

standardized form without decreasing ýi.

1. Structure of the graph

Lemma 3. For a complete �-layer periodic architecture,

the cluster-merging graph for each layer above the first has

nodes of even weight and even degree.

Proof. We first show that the clusters are of even size.

The first layer creates clusters of size 2. Subsequent layers

create clusters by merging these size-2 clusters together, so

later cluster sizes are also even.

We next show that each cluster has an even number of

external connections. Suppose that a cluster of size m has ni

internal gates and ne external gates. Since each site is acted

on by exactly one two-site gate, we have 2ni + ne = m, and

so ne is even. The nodes are thus of even degree. �

2. Cluster-merging bound

Our goal is to bound ýi for generic cluster-merging

graphs in terms of cluster-merging graphs of some stan-

dard form. First consider the unit eigenspace.

Lemma 4. The unit eigenspace of a connected cluster-

merging graph is spanned by the globally uniform permu-

tation states.

This is just a special case of Lemma 2. We can now show

a lower bound.

Lemma 5. Let A,B be two nodes of a connected cluster-

merging graph. If we merge A and B into a single node

AB, the subleading singular value of the graph does not

increase.

Proof. Let ý, ý′ be the subleading singular values of the

old and new graphs, respectively. Let X , X ′ be the sub-

spaces projected to by the nodes of the old and new graphs.

Let P be the projector corresponding to the edges, which

are the same for both graphs.

By Lemma 4, the unit eigenspaces of PQ and PQ′ are

the same. Call this subspace Z. We may write

ý = max
{v∈X |v⊥Z}

‖Pv‖
‖v‖ (35)

and

ý
′ = max

{v∈X ′|v⊥Z}

‖Pv‖
‖v‖ . (36)

Subspace X is spanned by the cluster-uniform states over

the old nodes, while X ′ is spanned by the cluster-uniform

states over the new nodes. A cluster-uniform permutation

state on the new node AB is of the form |σ 〉⊗(|A|+|B|), which

is also cluster uniform on A and B individually. In other

words, X ′ ⊆ X . Since ý
′ is the maximum of the same

function over a smaller space, we obtain ý
′ ≤ ý. �

If we run our lower bound in reverse, we are led to the

following two rewriting rules that give upper bounds on

subleading singular values of cluster-merging graphs.
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FIG. 5. Algorithm for bounding a cluster-merging graph by a

1D brickwork structure. We first use Lemma 6 to split clusters

(without joining the halves with an edge) along a Eulerian circuit

in our graph. We then use Lemma 7 to break up larger clusters

(joining the halves with an edge) until all clusters in the loop have

size 2. Each step in this process does not decrease the subleading

singular value of the graph.

Lemma 6. If we split a node and the two sides remain

part of the same connected graph, the subleading singular

value does not decrease.

Lemma 7. If we split a node and add a new link to keep

the graph connected, the subleading singular value does

not decrease.

Proofs of Lemmas 6 and 7. These both correspond to

applying Lemma 5 backwards. �

Note that the number of links connected to a cluster can-

not exceed the number of sites it contains, so we can only

apply the latter lemma to clusters with at least two unoc-

cupied sites. We are now ready to prove the main result of

this section.

Theorem 8. Consider any cluster-merging graph on n

sites with SSV ý. Let s1D(m) be the SSV for a 1D

brickwork loop on m sites. We have

ý ≤ max
m≤n

s1D(m). (37)

Proof. Our goal is to apply the graph rewriting rules

repeatedly to upper bound a cluster in a standard form.

First suppose that the graph is connected. Since nodes are

of even degree, there exists a Eulerian circuit through the

cluster-merging graph. We can split nodes along this Eule-

rian circuit using Lemma 6 until our graph structure is a

single loop, again with nodes of even degree (Fig. 5, first

process). We can then apply Lemma 7 repeatedly within

each node to split each node into many nodes, each of size

2 (Fig. 5, second process). When we are done, we have

exactly a 1D brickwork loop on m sites. These transforma-

tions cannot decrease the SSV, so the brickwork SSV is an

upper bound on the original SSV.

Now consider any disconnected graph. We can apply the

argument above to bound each connected component by a

loop graph. The corresponding operator is a tensor product

of loop operators, and the largest singular value of each

loop operator is 1. The subleading singular value of the

whole operator is then just the largest subleading singular

value of any of the connected components. Each connected

component is a brickwork loop of size at most m ≤ n. �

VI. SPECTRAL GAP OF 1D BRICKWORK LOOPS

In order to extract a useful result from Theorem 8, we

need a bound on the spectral gap of the 1D brickwork

architecture. In Sec. V we showed that the t-design depth

is controlled by the spectral gap of the transfer matrix. We

now reverse that argument in order to obtain a bound on

the spectral gap in terms of the t-design depth. This will

allow us to convert any result on 1D brickwork t-design

depths into bounds on the spectral gap.

Theorem 9. Suppose that the 1D brickwork architec-

ture on N sites (with either open or periodic boundary

conditions) forms an ε-approximate t-design after

k1 = C(N , q, t) log
1

ε
+ oε

(
log

1

ε

)
(38)

periods (corresponding to depth 2k1) for some function

C(N , q, t). Then the largest nonunit singular value s1D of

the corresponding transfer matrix Tt is bounded by

s1D ≤ e−1/2C(q,t), (39)

where C(q, t) = supN C(N , q, t).

Proof. Define

	(k, t) = �RQC,k,t − �Haar.

From the definition of the diamond norm,

‖	‖	≥‖	‖1→1 ≥ ‖	(ρ)‖1

‖ρ‖1

(40)

for any operators ρ. Let λ be the largest eigenvalue of the

	 and choose ρ to be the corresponding eigenvector, so

that 	(ρ) = λρ. Then we obtain

‖	‖	≥|λ|. (41)

Note that the leading eigenvalue of 	 is exactly the sub-

leading eigenvalue of �RQC, since the unit eigenspace of

�RQC is exactly canceled by �Haar. Furthermore, �̂RQC =
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Tk
t , so we have

λ = λk
∗, (42)

where λ∗ is the subleading eigenvalue of T. If we choose

k = k1 so that

‖	(k1, t)‖	<ε,

we obtain

|λ∗| < ε1/k1 . (43)

Inverting Eq. (38) gives

log
1

ε
= k1

C(N , q, t)
+ ok∗(k∗) (44)

or

ε = e−k1/C(N ,q,t)+ok1
(k1). (45)

We can now take the limit of small ε or equivalently large

k1 to obtain

ε = (e−1/C(N ,q,t))k1 , (46)

which implies that |λ∗| ≤ e−1/C(q,t). Theorem 14 in

Appendix A tells us that s1D = √
λ∗, so we find that s1D ≤

e−[1/2C(q,t)]. �

Theorem 10. Let s1D,open(N ) be the subleading sin-

gular value of the N -site 1D brickwork architecture

with open boundary conditions, and let s1D,periodic(N ) be

the same for the periodic-boundary-condition case. Then

s1D,periodic(N ) ≤ s1D,open(N ).

This result allows us to also use bounds derived for open

brickwork architectures in Theorem 8. It follows directly

from the following more general rewriting rule for cluster-

merging graphs.

Lemma 8. Consider a connected cluster-merging graph.

If we add a new edge to the graph, the subleading singular

value ý does not increase.

Proof. Let P and Q be the edges and nodes of the orig-

inal graph, and let R be the new link. Let X be the unit

eigenspace of Q and Z be the unit eigenspace of PQ.

Since the graph was already connected without R, the unit

eigenspace of R includes Z, so Z is also the unit eigenspace

of the new graph RPQ. The original singular value is

ý = max
{v∈X |v⊥Z}

‖Pv‖
‖v‖ , (47)

while the new singular value is

ý
′ = max

{v∈X |v⊥Z}
‖RPv‖
‖v‖ . (48)

Since R is an orthogonal projector, ‖RPv‖ ≤ ‖Pv‖,

so ý
′ ≤ ý. �

Given an open-boundary-condition transfer matrix, we

can add a link to obtain the transfer matrix of a periodic-

boundary-condition brickwork on the same number of

sites. Adding a link can only decrease ý, which completes

the proof of Theorem 10.

VII. APPROXIMATE t-DESIGN DEPTHS

We are now ready to prove Theorem 1, which addresses

the case of complete periodic architectures. We then pro-

ceed to extend our results to incomplete and aperiodic

architectures. Figure 1 illustrates the relevant categories.

A. Complete periodic architectures

Suppose that the N -site 1D brickwork architecture forms

an ε-approximate t-design in depth at most

2C(N , q, t) log
1

ε
+ oε

(
log

1

ε

)
. (49)

Define C(q, t) = supN C(N , q, t). By Theorem 9, the sub-

leading singular value of Tt for a brickwork loop is upper

bounded by

s1D ≤ e−1/2C(q,t). (50)

From Theorem 8, it follows that the SSV for any cluster-

merging graph is bounded by the same value. Substituting

into Theorem 7, we see that the subleading singular value

for a complete �-layer block is bounded by

s∗ ≤ 1 − (1 − e−1/2C(q,t))�−1. (51)

We can substitute into Eq. (33) to see that the critical period

count is then bounded by

k∗ = 2Nt log 2q + log(1/ε)

log{[1 − (1 − e−1/2C(q,t))�−1]−1} . (52)

This completes the proof of Theorem 1.
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q
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q

q

FIG. 6. A two-site gate being split under the Xq → X ⊗2√
q

iso-

morphism. Each site on Xq becomes a pair of twinned sites (pink

dotted lines) on X√
q. Note that the dimensionality of each site

does not necessarily decrease—only the metric between the basis

vectors changes. If we assume that the two-site gate spans two

different clusters (blue dotted circles) then the layer-restricted

SSV of a hyperedge connecting all four split sites is equal to two

pairs of edges connecting nontwinned sites.

B. Incomplete layers

For complete architectures, we have

s2
∗ ≤ 1 − [1 − s1D(q)]�−1 (53)

by reducing each cluster-merging graph to a Eulerian

cycle. If the circuit is incomplete, the Eulerian cycle is

not guaranteed to exist. Instead, an incomplete circuit with

local dimension q has subleading singular value bounded

by that of a complete circuit with local dimension
√

q.

We may, without loss of generality, insert single-site

gates so that each site is acted upon by exactly one gate per

layer. These single-site gates can be absorbed into a two-

site gate either above or below without changing the Haar

measure over that two-site gate. This takes an incomplete

circuit to a “complete” circuit with a mixture of one-site

and two-site gates.

Now suppose that
√

q is an integer. We can then split

each site of dimension q into a pair of sites of dimension√
q. This gives us a complete circuit containing a mix-

ture of two- and four-site gates. Suppose that we split each

four-site gate lengthwise into a pair of two-site gates. It

seems intuitive that this operation should decrease the rate

of scrambling, not increase it. And the resulting circuit is

a complete circuit of two-site gates with local dimension√
q, so its cluster-merging graphs have Eulerian cycles. In

Appendix C, we formalize this intuition and show that the

same idea can be applied even in the case where
√

q is not

an integer. The site-splitting process is illustrated in Fig. 6

in Appendix C.

This allows us to reduce a bound on incomplete layers

to a 1D brickwork bound on
√

q; specifically,

s2
∗ ≤ 1 − [1 − s1D(

√
q)]�−1 (54)

for incomplete architectures.

We may use any proof of C(q, t) if
√

q is an integer.

For noninteger
√

q, however, the definition of s1D is trick-

ier. It is not necessarily true that generic bounds on C(q, t)

that have been derived for integer q ≥ 2 can be analyt-

ically continued to C(
√

q, t). Many of the proofs in the

literature can easily be extended to noninteger q > 1 (see

Sec. I F). However, not all of these proofs can be easily

extended, e.g., the proof of Ref. [23] applies only to q = 2.

The bound of Ref. [22] can be extended, but the scaling

goes from about t10 to about t16. And there may be future

improved strategies for bounding 1D brickwork that work

only for integer q. We thus also give the following bound,

which gives us a reduction in terms of C(q, t) instead of

C(
√

q, t).

Theorem 11. For an architecture with blocks of � layers,

k∗ = [4C(q, t)]x(N )�−1

(
2Nt log q + log

1

ε

)
, (55)

where the expansion coefficient

x(N ) = 8
log2�log2(N + 1)�� + 2. (56)

The proof is given in Appendix D.

C. Aperiodic architectures

So far, we have restricted ourselves to periodic archi-

tectures to simplify the exposition. However, our results

generalize quite directly to aperiodic architectures.

Theorem 12. Define C(q, t) as in Theorem 1. For a not-

necessarily-periodic L-layer circuit UC, choose a decom-

position

UC = Vk+1UkVkUk−1Vk−1 · · · U1V1, (57)

where each Ui is an �i-layer connected block and each Vi is

some contiguous block of layers that may not connect all

the sites. The architecture is an ε-approximate t-design if

k ≥ 2Nt log q + log(1/ε)

log(1/s∗)
, (58)

where we have defined the effective averaged singular

value

s∗ = 1 − (1 − e−1/2C(
√

q,t))�̄−1

in terms of the mean block size

�̄ = 1

k

k∑

i=1

�i.

If we also require that the layers be complete, we can

replace
√

q with q. Note that k counts the total number
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of times the circuit is connected, while �̄ is the size of

the typical connected block. We see that the (ε, t)-design

depth is controlled by the frequency and size of the con-

nected blocks. However, for an aperiodic architecture, �̄

might depend on depth, so this does not give us any explicit

expression for the critical depth.

Proof of Theorem 12. A decomposition of the circuit

into blocks of layers induces a decomposition of the

associated t-fold channel as

�̂RQC = RkTkRk−1Tk−1 · · · R1T1,

where the Ri are some set of norm-nonincreasing transfer

matrices. Let s
(i)
∗ be the subleading singular value of each

Ti. Equation (51) still applies for each s
(i)
∗ , with � replaced

by �i [39]. Theorem 16 in Appendix A shows that the Ri

are essentially irrelevant. Equation (32) now becomes

‖�RQC − �Haar‖	≤q2Nt

k∏

i=1

s(i)
∗ . (59)

The condition to obtain an ε-approximate t-design is then

ε ≤ q2Nt

k∏

i=1

[1 − (1 − s1D)�i−1]. (60)

We may rearrange this as

2Nt log q + log
1

ε
≥ −

k∑

i=1

log[1 − (1 − s1D)�i−1]. (61)

Furthermore, − log(1 − cx) is convex, so, by Jensen’s

inequality,

2Nt log q + log
1

ε
≥ −k log[1 − (1 − s1D)�̄−1]. (62)

This completes the proof. �

This formula implies Theorem 2 as a special case.

Furthermore, it is also simple for regularly connected

architectures for which all of the �i are equal.

There is still a question of the choice of decomposition

in Eq. (57). This decomposition is not unique; different

choices of decomposition will give different bounds. Note

in particular that Vi may be empty, which corresponds to

the identity.

Furthermore, the optimal decomposition may depend on

q and t. For example, consider an architecture consisting of

alternating two-layer and four-layer connected blocks. If

we count all the blocks then �̄ = 3 and the depth is d = 3k.

But if we count only the two-layer blocks and lump the

four-layer blocks into the Vi, we obtain �̄ = 2 and d = 6k.

The former is better for small C and the latter for large C,

with a crossover point C(
√

q, t) ≈ 1.157.

VIII. FURTHER EXTENSIONS

A. �-independent bound

It is interesting to note that our Theorem 1 gives a

bound that loosens as the period � increases. It seems likely

that the approximate t-design depth actually decreases

[40] with � for certain well-connected structures, such as

higher-dimensional brickwork architectures. But the scal-

ing of our bound, which is determined by worst-case archi-

tectures, suggests that there may exist strange “tenuously

connected” architectures at larger �.

It seems intuitively clear that the open-boundary-

condition brickwork architecture is in some sense the most

“spread out” arrangement of gates possible. Any other

connected architecture must involve more total gates, and

graph distances between sites must be shorter. Indeed, opti-

mization of the subleading singular value of small circuits

using simulated annealing (see Appendix E 2) have failed

to find any of these “tenuously connected” architectures:

all subleading singular values are bounded by that of the

open-boundary-condition brickwork. This motivates the

following conjecture.

Conjecture 1. Every connected architecture on N sites

has subleading singular value s∗ ≤ s1D,open(N , q, t).

The immediate consequence of this conjecture is that

there is a universal t-design connection count that does not

depend on the circuit architecture even via �. In particular,

any circuit architecture that can be divided into

k∗ = 2Nt log q + log(1/ε)

log(1/s1D,open)
(63)

connected blocks forms an (ε, t)-design.

To obtain Theorem 4, we also follow Ref. [24] in

making the following guess.

Conjecture 2. The subleading singular value of the

open-boundary-condition 1D brickwork architecture is

s1D,open(q, t) = 2q

q2 + 1
. (64)

Numerical evidence for this formula is given in

Appendix E 1.

B. Nondeterministic architectures

Our theorems focus on deterministic architectures, in

which the contents of the gates are random, but their

arrangement is fixed. Another interesting class of ensem-

bles is nondeterministic architectures, in which the loca-

tions of the gates are also random [22]. In this case, the

t-design property is obtained by averaging over both the

spatial arrangement of the gates and their content. Bounds
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on nondeterministic and deterministic architectures can

often be related to each other by the union bound or

detectability lemma [23,41].

We can also show more directly that bounds for par-

ticular spatial structures imply bounds for averages over

ensembles of structures. We use the triangle inequality

on ‖�RQC − �Haar‖	, where �RQC is drawn from some

distribution ρ�. Then

‖〈�RQC〉ρ�
− �Haar‖	≤〈‖�RQC − �Haar‖	〉ρ�

. (65)

In particular, we can apply Eq. (60) with the right-hand

side replaced with its average over the architecture. We can

use Jensen’s inequality again to see that

log〈‖�RQC − �Haar‖	〉ρ�
≤ 〈log ‖�RQC − �Haar‖	〉ρ�

,

(66)

so we can also apply Eq. (62) with the right-hand side

replaced by its average.

The connection count k and mean block size �̄ will both

differ between realizations, and it is not clear that there

is any general strategy for calculating their distribution.

Presumably, they are not independent, so we cannot solve

Eq. (62) for 〈k〉. An interesting open question is whether

there exists any simple relationship between the averaged

bound and the distribution from which the circuit structure

is drawn.

A commonly studied example is that of gates that are

drawn sequentially from some uniform distribution over

some set of pairs of sites [22,23,28]. In the worst case,

such circuits may require N − 1 nontrivial layers to con-

nect all the sites [42]. However, typical instances probably

require far fewer distinct layers, perhaps as few as O(1).

Further work may wish to explore the relationship between

bounds obtained by this strategy and known bounds for

such architectures [28].

If we assume that Conjecture 1 holds, the nondetermin-

istic case becomes more tractable. We find that it forms an

approximate t-design when

〈k〉 ≥ 2Nt log q + log(1/ε)

log(1/s1D,open)
. (67)

Suppose that we have ng gates sampled independently

and identically from the uniform distribution over the

edges of some large connected graph. There is quite a

bit more we can say about the relationship between ng

and 〈k〉. The fully connected graph, for example, under-

goes a percolation phase transition and becomes connected

after O(N log N ) gates, so ng = O(N log N )〈k〉 [43]. This

corresponds to an approximate t-design threshold size of

ng = O(N 2 log N ). For t = 2, this is worse than the known

bound by a factor of log N [20]. From the coupon collector

problem, we see that the linear graph also becomes con-

nected after O(N log N ) gates, so its threshold is the same

[44]. Again, a bound that is better by a factor of log N (and

that does not rely on Conjecture 1) is already known [22].

For a graph with E edges, we can again use the coupon

collector problem to see that it must be connected after

O(E log E) gates. Since E ≤ O(N 2), this suggests that

every graph gives an approximate t-design threshold size

of at most ng = O(N 3 log N ). For graphs that admit Hamil-

tonian paths, this result is also weaker by log N than what

was already known, but for graphs without Hamiltonian

paths, it would be a new result [28].

C. Highly connected architectures

Previous work on random circuits [22–24,40] has

focused largely on brickwork architectures. Brickwork

architectures are in some sense exceptionally well con-

nected, so they should be expected to converge to the

Haar distribution relatively quickly. Indeed, Harrow and

Mehraban [25] showed that certain higher-dimensional

brickwork circuits approach the Haar measure at a rate that

increases with geometric dimension, which corresponds to

increasing the period � of the architecture. Here we suggest

an extension of our techniques to obtain tighter bounds for

such special architectures.

The first observation is that highly connected cluster-

merging graphs give small ýi. Second, certain families of

N -site architectures form clusters of sizes that scale with

N after only a few layers. If we join two m-site clusters

with m gates, in Appendix F we show that the subleading

value is q−�(m) as m → ∞. In other words, any layers that

only join clusters with an extensive number of edges do

not contribute to our bound.

For the specific case of higher-dimensional brickwork

circuits and t = 2, we can give a more explicit calcula-

tion. Consider a D-dimensional lattice of N = LD points

at positions �x ∈ {1, . . . , L}D, with êi being the unit vector

in direction i, and connect the lattice with the following

sequence of layers.

(a) At layers 1 ≤ i ≤ D, we apply gates on pairs (�x, �x +
êi) for each �x such that xi is even (all addition of

components is performed modulo L, to make this

architecture periodic).

(b) At layers D + 1 ≤ i ≤ 2D, we apply gates on pairs

(�x, �x + êi−D) for each �x such that xi−D is odd.

This is a higher-dimensional generalization of the brick-

work architecture that emphasizes accessing all dimen-

sions as quickly as possible, instead of repeating the

one-dimensional brickwork across multiple directions.

The first D (“even”) layers of the D-dimensional brick-

work form hypercube clusters of size 2D. The (D + 1)th

layer, which is the first “odd” layer, then connects these

hypercubes into rows of 2DN 1/D sites. The remaining odd

layers are then highly connected, so in the limit of large

N their contribution can be ignored. This argument, given
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in detail in Appendix F, shows that the (ε, t = 2)-design

depth of the D-dimensional brickwork is at most

d∗ = 2D
4N log q + log(1/ε)

log[(1 − {1 − exp[−1/2C(q, 2)]}2)−1]
. (68)

It seems likely that this argument could be improved

to give a bound that actually decreases with D, since

the dominant (D + 1)th-layer cluster-merging graph has

a relatively simple structure. It may also be possible to

extend such techniques to larger t and for other extensively

connected architectures.

IX. RELATIONSHIP TO ARCHITECTURES THAT

SCRAMBLE IN O(log N )

This work establishes an O(N ) bound on the approx-

imate t-design depth for any sequence of architectures

with �̄ independent of N . This is essentially a statement

about worst-case architectures, since it is an upper bound

over all possible architectures with any given �̄. Other

recent works have focused on engineering best-case archi-

tectures that converge especially quickly [26,27]. In this

context, the fastest-known sequences of architectures have

approximate t-design depths of at most O(log N ).

The architectures constructed by Schuster et al. [26]

have a few interesting properties. The main construction

is of an architecture that is almost the 1D brickwork,

but with certain gates removed so that �̄ = O(log N ).

Although their proof does not apply to the actual 1D brick-

work, the extreme similarity of the two circuits suggests

that the approximate t-design depth of the 1D brickwork

architecture might also be O(log N ). In addition, Schuster

et al. [26] constructed architectures on arbitrary connec-

tivity graphs with the same behavior. However, these

architectures are qualitatively different from the generic

architectures we study. They cannot be built with only

Haar-random unitaries; they instead use SWAP gates to

build an essentially 1D architecture on an arbitrary graph.

This raises an interesting question: do all reasonable

sequences of architectures reach an approximate t-design

at a rate bounded by O(log N ), or is our O(N ) bound

tight? In Sec. VIII A, we gave a heuristic argument that

we should expect every connected architecture to scram-

ble at least as quickly as the 1D brickwork architecture, in

which case there would exist an O(log N ) general architec-

ture bound. This would be a significant advance if it could

be proven. Another possibility is that there are multiple

families of architectures, some of which scramble in depth

O(N ) and some of which scramble in depth O(log N ). In

this case an understanding of the dividing line between

these two qualitatively different classes of circuits would

have important implications.

X. CONCLUSION

We show that bounds on approximate t-designs for 1D

brickwork architectures imply bounds for general archi-

tectures. This process not only gives us an immediate

bound linear in N for the tth moments of all sufficiently

well-connected architectures, but allows us to convert any

improved 1D bounds into bounds on generic structures. We

also show that our bounds can be extended by an aver-

aging procedure to an implicit bound for nondeterministic

architectures.

Any architecture consisting of �-layer connected blocks

of O(1) depth can be bounded this way. So our result

implies that any sufficiently regularly connected circuit

ensemble approximates global information scrambling in

at most linear depth, albeit with exponential dependence

on the connection frequency.

We conjecture that this bound can be tightened to

one that depends on the circuit architecture only via the

connection count. This suggests that rapid scrambling is

inescapable for any sufficiently well-connected architec-

ture.
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APPENDIX A: PROPERTIES OF PROJECTOR

PRODUCTS

In this appendix we prove some general results about

products of orthogonal projection operators. Consider

some set of subspaces Xi, i ∈ {1, . . . , n}, of a Hilbert space.

Define Pi to be the orthogonal projector on to Xi and

T = Pn · · · P2P1.

In general, we are interested in understanding the singular

value spectrum of T.

1. Structure of the unit eigenspace

Lemma 9. The left unit eigenspace, right unit eigenspace,

and unit singular value space of T are all
⋂n

i=1 Xi.
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Proof. Let Y be the unit eigenspace of T. A projector

is norm nonincreasing (i.e., ‖Pi‖∞ = 1). Furthermore, it

acts as the identity on any vector whose norm it does not

decrease. It follows that a unit eigenvector of T must be a

unit eigenvector of each of the Pi. It is easy to see that the

converse also holds, so Y = ⋂n
i=1 Xi. This argument works

the same from the left and the right, so the left and right

unit eigenspaces are the same.

Now consider the singular value spaces of T. These

are the square roots of the eigenvalues of T†T. Since the

left and right eigenspaces are the same, they are in the

unit eigenspace of T†T. Since both T† and T are norm

nonincreasing, they must be the whole unit eigenspace.

So the unit singular value space of T is exactly the unit

eigenspace. �

Lemma 10. The unit eigenspace of T is orthogonal to

all other eigenstates of T and all other eigenstates of T†kTk,

and remains orthogonal no matter how many factors of T

or T† are applied to the other eigenstate.

Proof. From Lemma 9 we know that the left and right

unit eigenspaces of T are the same. Let u be a unit eigen-

vector and v a right eigenvector with eigenvalue λ < 1. We

can compute

u†v = u†Tv = λu†v, (A1)

which can hold only if u†v = 0. So Y is orthogonal to every

nonunit eigenspace of T.

Since T†kTk is Hermitian, its eigenstates of different

eigenvalues are automatically orthogonal, so u†v = 0 for

any subunit eigenstates v of T†kTk.

These proofs still hold if we apply extra factors of T or

T† to v, because we can freely absorb these extra factors

into u. �

2. Bound from layer-restricted subleading singular

values

Theorem 13. Let Qi to be the orthogonal projector on

to
⋂i

j =1 Xj . Let ýi be the largest nonunit singular value of

PiQi−1. Let s∗ be the largest nonunit singular value of T.

Then we have the bound

s2
∗ ≤ 1 −

n∏

i=2

(1 − ý
2
i ). (A2)

Proof. This is Theorem 7 of the main text. We prove

Eq. (A2) by induction. Let Ti = Pi · · · P1 so that T = Tn.

Suppose that Ti−1 satisfies Eq. (A2). We prove that Ti =
PiTi−1 also satisfies Eq. (A2).

Let Yi be the unit eigenspace of Ti. Let v be a unit

vector such that ‖Tiv‖ = s∗(Ti). We may take an orthogo-

nal decomposition v = v1 + v2, where v1 ∈ Yi−1 and v2 ⊥

Yi−1. We wish to compute

s∗(Ti) = ‖PiTi−1v‖ = ‖Pi(v1 + Ti−1v2)‖.

Let θ , φ be the angles between Tiv and v1, Ti−1v2, respec-

tively. Note that ‖Ti−1v2‖ ≤ s(Ti−1)‖v2‖. Then

‖Pi(v1 + Ti−1v2)‖ ≤ ‖v1‖ cos θ + s∗(Ti−1)‖v2‖ cos φ.

(A3)

We next wish to optimize this bound over ‖v1‖, ‖v2‖, θ , φ

to obtain an unconditional bound. Our first constraint is

‖v1‖2 + ‖v2‖2 = 1, so after optimizing over the norms we

find that

‖Pi(v1 + Ti−1v2)‖
≤

√
cos2 θ + s∗(Ti−1)2 cos2 φ ≡ f (θ , φ). (A4)

Now we optimize over the angles. By their definitions we

must have 0 ≤ θ ≤ π/2 and likewise for φ. Note that f is

a monotonically decreasing function of both θ and φ in this

region, so the maximum will be attained somewhere on the

boundary of the feasible set.

We also have some additional constraints. Since v1 ⊥
Ti−1v2, we must have θ + φ ≥ π/2. And we know that the

angle between v1 and Pi must be at least cos−1
ýi by the

definition of ýi.

The Pareto frontier where both θ and φ are as small as

possible lies along θ + φ = π/2, so the optimum must be

somewhere on this line. On this line we have cos2 φ = 1 −
cos2 θ , so

f (θ) =
√

[1 − s∗(Ti−1)2] cos2 θ + s∗(Ti−1)2. (A5)

Since s∗(Ti−1) < 1, this is again a decreasing function of

θ , so it attains its maximum when θ is minimized, i.e., θ =
cos−1

ýi. We thus find that

s∗(Ti) ≤
√

[1 − s∗(Ti−1)2]ý2
i + s∗(Ti−1)2. (A6)

By assumption, s∗(Ti−1)
2 ≤ 1 − ∏i−1

j =2(1 − ý
2
j ) and so

s∗(Ti)
2 ≤ ý

2
i + (1 − ýi)

2

(
1 −

i−1∏

j =2

(1 − ý
2
j )

)

≤ 1 −
i∏

j =2

(1 − ý
2
j ), (A7)

completing the induction. Finally, for the base case, T1 is a

single projector, so s∗(T1) = 0. �

Previous works on approximate t-designs have often

used the detectability lemma to relate the transfer matrix
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to a frustration-free Hamiltonian [22,23]. The role of

Theorem 7 in our proof is analogous to that of the

detectability lemma in these works. The detectability

lemma is based on counting the number of projectors

that do not commute, whereas here the ýi in some sense

quantify the amount of noncommutativeness.

3. Other bounds on subleading singular values

Lemma 11. Let s∗ be the largest nonunit singular value

of T. Let λ∗ be the nonunit eigenvalue of T with the largest

magnitude. Then

|λ∗| ≤ s∗. (A8)

Proof. We may write

s∗ = max
{v|v⊥Z}

‖Tv‖
‖v‖ . (A9)

Let v be an eigenvector of T with eigenvalue λ �= 1. From

before, v ⊥ Z, and, clearly, ‖Tv‖/‖v‖ = λ, so we have

s∗ ≥ λ. The lemma follows immediately. �

Theorem 14. Consider two projectors P1, P2. Let λ∗ be

the largest nonunit eigenvalue of P2P1, and let s∗ be the

largest nonunit singular value. Then

s∗ =
√

λ∗. (A10)

Proof. Any eigenvector v∗ corresponding to λ∗ must lie

in the unit eigenspace of P2. Otherwise, the output P2P1v∗
will not be parallel to v∗. Also, if we take the vector w∗ ≡
P1v∗, by Lemma 10, this vector is orthogonal to the unit

eigenspace of P2P1, and

‖P2P1w∗‖2

‖w∗‖2
= vT

∗ P1P2
2P1v∗

vT
∗ P1v∗

= λ2
∗

vT
∗ (P2P1v∗)

= λ∗. (A11)

So the subleading singular value of P2P1 is at least
√

λ∗.

Now, take w∗ to be the subleading eigenvector of

(P2P1)
†(P2P1) = P1P2P1. By definition, the correspond-

ing eigenvalue is s2
∗. Take v∗ = P2P1w∗ (still orthogonal to

the unit eigenspace of P2P1 by Lemma 10). Then

P2P1v∗ = P2P2
1P2P1w∗

= s2
∗P2P1w∗

= s2
∗v∗. (A12)

We see that the subleading eigenvalue of P2P1 is at least s2
∗.

Combining these two inequalities establishes Theorem 14.

�

Lemma 12. Let Ti, i ∈ {1, . . . , k}, be a sequence of pro-

jector products that all share the same unit eigenspace. Let

s
(i)
∗ be the largest nonunit singular value of Ti. Then the

largest nonunit singular value of
∏k

i=1 Ti is at most
∏

i s
(i)
∗ .

Proof. Let [M ]1 denote the unit singular value space

of M , and let Mj = ∏k
i=j Ti. We can write the subleading

singular value of Mk as

s(Mj ) = max
v⊥[Mj ]1

‖Mj v‖
‖v‖ . (A13)

Since the Ti all share a unit eigenspace, the unit eigenspace

of Mj is the same as that of each Ti. But, by Lemma 9, the

unit eigenspaces and unit singular value spaces of both Ti

and Mj are the same, so

[Mj ]1 = [T1]. (A14)

We thus have

s(Mj ) = max
v⊥[T]1

‖Mj v‖
‖v‖ . (A15)

Furthermore,

‖Mj v‖ = ‖Mj +1Tj v)‖ ≤ Sj ‖Mj +1v‖, (A16)

and so

s(Mj ) ≤ s(j )
∗ s(Mj +1). (A17)

Induction then gives the desired bound. �

4. Bounds on Frobenius norms

Lemma 13. Let T be a projector product with largest

nonunit singular value s∗. Let d be the dimension of the

space on which T acts, let m1 be the dimension of the unit

eigenspace of T, and let m0 be the dimension of the zero

eigenspace. Then

‖Tk‖2
F ≤ m1 + (d − m1 − m0)s

2
∗. (A18)

Proof. Let σi be all the singular values of T. We

have σi = 1 for i ∈ {1, . . . , m1}, σj ≤ s∗ for i ∈ {m1 +
1, . . . , d − m0}, and σk = 0 for i{∈ d − m0 + 1, . . . , d}. We

compute

‖T‖2
F =

∑

i

σ 2
i ≤

m∑

i=1

1 +
d−m0∑

i=m+1

s2
∗, (A19)

from which the result follows immediately. We can fur-

ther tighten the bound by replacing d with the number of

nonzero singular values. �
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Theorem 15. Let Ti, i ∈ {1, . . . , k}, be a sequence of

projector products that all have the same unit eigenspace.

Let d be the dimension of the space on which Ti acts, let m1

be the dimension of the unit eigenspace of Ti, and let m0

be the dimension of the zero eigenspace of any particular

Ti. Let s
(i)
∗ be the largest nonunit singular value of Ti. Then

∥∥∥∥
∏

i

Ti

∥∥∥∥
2

F

≤ m1 + (d − m1 − m0)

k∏

i=1

(s(i)
∗ )2. (A20)

Proof. This follows directly from the results of Lemmas

12 and 13. �

Theorem 16. Let Ti, s
(i)
∗ , d, m1, m0 be as in Theorem 15.

Let R1, . . . , Rn be a sequence of projector products such

that the unit eigenspace of T1 is contained within the unit

eigenspace of each Ri. Let M be the product of all of the Ti

and all of the Ri in any ordering. Then

‖M‖2
F ≤ m1 + (d − m1 − m0)

k∏

i=1

(s(i)
∗ )2. (A21)

Proof. The Ri also preserve the unit eigenspace of Ti

and are also norm nonincreasing, so the proof of Lemma

12 still goes through. We can then again use Lemma 13 to

obtain the final formula. �

Theorem 17. Let T be a projector product with largest

nonunit singular value s∗. Let d, m1, m0 be as before. Then

‖Tk‖2
F ≤ m1 + (d − m1 − m0)s

2k
∗ . (A22)

Proof. This is an immediate consequence of Theorem

15 in the case where the Ti are all the same. �

APPENDIX B: PROOF OF THE 1D BRICKWORK

SPECTRAL GAP FOR t = 2

For a string of N sites that we act a 1D brickwork

architecture on, we can consider the nonorthogonal basis

| �X 〉 =
⊗

i

|Xi〉i, (B1)

where Xi refers to one of the two k = 2 permutation states

|I〉 (identity) or |S〉 (swap). This basis is complete on the

image of any layer of the brickwork. We start with the

following result.

Lemma 14. Take P1 to be the projector into the unit

eigenspace of T. Then there exists a depth-independent

constant cX ′X such that

〈 �X ′|Tk| �X 〉 ≤ 〈 �X ′|P1| �X 〉 + cX ′X λk
1 (B2)

for every k > log(N )/[− log(λ1)] + 1, where λ1 =
[2q/(q2 + 1)]4.

Proof. We use a domain-wall trajectory approach [21].

Each gate sends |II〉 → |II〉, |SS〉 → |SS〉, and the nonuni-

form |IS〉, |SI〉 → q/(q2 + 1)(|II〉 + |SS〉). The point is

that the transfer matrix sends each configuration into a sum

of other configurations, depending on the positions of the

I , S domain walls in the system. If a gate in the trans-

fer matrix crosses a domain wall (and all domain walls

will be crossed by a gate each layer after the first layer),

it either moves left with weight q/(q2 + 1) or right with

weight q/(q2 + 1). So we can represent the transfer matrix

of k layers as a series of domain-wall trajectories with

their accompanying weights. A domain-wall trajectory is a

sequence of �X j ’s such that �X 0 = �X and �X d = �X ′. Specif-

ically, we are looking out for the domain walls in each

layer �X j , because the total number of domain walls never

increases—each domain wall either moves around or anni-

hilates with a neighbor, possibly eventually reaching the

steady states |I〉N , |S〉N with no domain walls. We have, for

domain-wall trajectories γ with final state Fγ and weight

w(γ ),

〈 �X ′|Tk| �X 〉 =
∑

γ

w(γ )〈 �X ′|Fγ 〉. (B3)

We can categorize each domain-wall trajectory accord-

ing to which domain walls annihilate before the end of

the circuit and which remain to the end. We can sepa-

rate the total domain-wall trajectory into the annihilating

(“closed”) domain walls γc from the “open” domain-wall

trajectories γo that stay to the end. The weight of the

whole domain-wall trajectory is just a product of the two

components:

w(γ ) = w(γo)w(γc). (B4)

This completes the proof. �

Moreover, we have the following result.

Lemma 15. The final state Fγ is determined solely by

the open component of the trajectory.

Proof. If we look at one of the surviving domain walls,

the I/S values to the immediate left or right of the domain

wall must remain the same through the whole trajectory

(otherwise, the domain wall would be annihilated). Then

the rest of the final configuration can be determined by just

flipping the sign when crossing every other domain wall.

Because the signs to the immediate left and right of the

domain wall were fixed by the original configuration �X ,

there is no global symmetry ambiguity either. �

With this we can separate sum (B3) into a sum over the

partitions p that specify which domain walls are closed and

which remain open. The partition in turn specifies the set
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of possible open and closed domain-wall trajectories, O(p)

and C(p):

〈 �X ′|Tk| �X 〉 =
∑

p

∑

γo∈O(p)

∑

γc∈C(p)

w(γo)w(γc)〈 �X ′|Fγ 〉

=
∑

p

∑

γo∈O(p)

w(γo)〈 �X ′|Fγ 〉
( ∑

γc∈C(p)

w(γc)

)
.

(B5)

Now we start to bound things.

Lemma 16. The sum
∑

γc∈C(p) w(γc) is bounded by the

infinite depth limit, i.e., the sum of all the possible trajec-

tories in an infinite depth circuit that start at the domain

walls specified by p , but annihilate to either the uniform

|I〉 or |S〉 states.

This is because C(p) is just a subset of all the possible

closed trajectories, and increasing the depth on a trajectory

that is already closed does not change its weight. The sum

of weights in the infinite depth limit, in turn, has to be

lim
k→∞

|Tk| �XC(p)〉| = |P1| �XC(p)〉|, (B6)

where | �XC(p)〉 is the initial configuration given by only the

closed domain walls, and P1 is the unit eigenspace pro-

jector. That is, it is the component of | �XC(p)〉 in the unit

eigenspace of T, because the unit eigenspace is all that

survives in the infinite depth limit. Let us call this infinite

depth limit W(p). We also have the following result.

Lemma 17. It holds that

∑

γo∈O(p)

w(γo) ≤ [2q/(q2 + 1)]2No(k−1), (B7)

where No is the number of open domain walls.

Proof. We build up
∑

γo∈O(p) w(γo) layer by layer. At

each layer beyond the first, each open trajectory γo needs

to move each of its No domain walls. Each domain wall

has at most two possible directions to move in (and could

be less than two if other domain walls are blocking the

way). No matter the direction, the domain wall acquires a

weight q/(q2 + 1) by moving. So the total weight of all the

possible trajectories created by adding a layer onto γo is at

most w(γo)[2q/(q2 + 1)]No . A transfer matrix is composed

of two layers, so this is an extra factor of [2q/(q2 + 1)]2No

per transfer matrix applied. Extrapolating back to the first

layer gives us the equation above. �

With these two inequalities, we have

〈 �X ′|Tk| �X 〉 ≤
∑

p

W(p)
∑

γo∈O(p)

w(γo)〈 �X ′|Fγo〉

≤
∑

p

W(p)xF

∑

γo∈O(p)

w(γo)

≤
∑

p

W(p)xFλ
No(k−1)/2

1 (B8)

for xF ≡ maxγo∈O(p)〈 �X ′|Fγo〉 and λ1 = [2q/(q2 + 1)]4.

The right-hand side is now a weighted sum of terms

that are exponential in depth, with base λ
No/2

1 depen-

dent on the number of open trajectories in the partition.

The gentlest exponential is the single partition where

No = 0 and all the domain walls are closed—in that case

W(p) is the component of | �X 〉 in the unit eigenspace

and [maxγo∈O(p)〈 �X ′|Fγo〉] is the component of | �X ′〉 in

the unit eigenspace. This term is therefore bounded by

limk→∞〈 �X ′|Tk| �X 〉, which, by Lemma 2, is the same as

〈 �X ′|P1| �X 〉
In periodic boundary conditions, the rest of the partitions

all have No ≥ 2. Hence, they decay at a rate λk
1 or faster.

Specifically, we have

〈 �X ′|Tk| �X 〉 ≤ 〈 �X ′|P1| �X 〉 + cX ′X λk
1 (B9)

for some depth-independent constant cX ′X (note that while

maxγo∈O(p)〈 �X ′|Fγo〉 is depth dependent, it is bounded

above by 1). Now we can prove that λ1 = [2q/(q2 + 1)]4

genuinely is the subleading eigenstate of T, using the

following result.

Lemma 18. For a complete basis | �X 〉, if 〈 �X ′|Tk| �X 〉 ≤
〈 �X ′|P1| �X 〉 + cX ′X λk

1 and 〈 �X ′|Tk| �X 〉 ≥ 〈 �X ′|P1| �X 〉, then Tk

has no eigenstate |ψ2〉 with eigenvalue λ1 < λ2 < 1.

Proof. Suppose that there exists such an eigenstate |ψ2〉.
Then, because | �X 〉 is complete, there must exist some �X
that has a nonzero component of |ψ2〉 in its eigenstate

decomposition of T:

| �X 〉 = a1|ψ1〉 + a2|ψ2〉 + · · · , a2 �= 0. (B10)

Moreover, there must exist some �X ′ that has a nonzero

overlap with |ψ2〉, i.e., 〈 �X ′|ψ2〉 �= 0. Then we have

〈 �X ′|Tk| �X 〉 = a11k〈 �X ′|ψ1〉 + a2λ
k
2〈 �X ′|ψ2〉 + · · ·

= 1k〈 �X ′|P1| �X 〉 + a2λ
k
2〈 �X ′|ψ2〉 + · · · . (B11)

In particular, because λ2 > λ1, for any constant cX ′X , there

must be some k for which 〈 �X ′|Tk| �X 〉 > 〈 �X ′|P1| �X 〉 + c1λ
k
1.

This is a contradiction of our assumption, so no such λ2

can exist.
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One caveat is that the eigenstate overlap a2〈 �X ′|ψ2〉
could be negative instead. This is where the lower bound

comes in—provided λ2 is the largest subleading eigen-

value, there must also exist some k for which a2λ
k
2〈 �X ′|ψ2〉

overtakes every nonunit term in the sum and the lower

bound is violated instead. This lower bound is naturally

satisfied in our case because P1 is the infinite depth limit of

Tk, but T is contractive, so adding more layers to 〈 �X ′|Tk| �X 〉
always decreases its norm. Because it is a sum of positive

trajectories, it is also positive, so the value of 〈 �X ′|Tk| �X 〉
cannot increase as it goes to P1. �

Once we have λ1 = [2q/(q2 + 1)]4, by Lemma 11,

s∗ = [2q/(q2 + 1)]2. Therefore, our trace decays at a rate

C(q, 2) = 1/2 log(1/s∗) = 1/4 log[(q2 + 1)/2q].

APPENDIX C: MAPPING INCOMPLETE TO

COMPLETE LAYERS FOR NONINTEGER
√

q

If
√

q is not an integer, we cannot draw Haar random√
q × √

q unitaries. There is thus no such thing as the 1D

brickwork circuit ensemble. So how can we apply the site-

splitting trick used in the proof of Theorem 2? Instead of

defining s1D(q) to be the subleading singular value of the

transfer matrix corresponding to some underlying circuit

ensemble, we define the transfer matrix directly.

The first step is to rephrase our site-splitting strategy

from something done in the quantum circuits to something

done at the level of transfer matrices. Consider a set of

vector spaces labeled by a positive real valued r > 1, i.e.,

Xr = span{|σ 〉r | σ ∈ St}, (C1)

where each vector space is equipped with a basis |σ 〉Xr and

an inner product

〈σ |τ 〉r = r|στ−1|. (C2)

Here |σ | is the length of the cycle structure of σ . Note that

this inner product is positive semidefinite only for integer

r.

Now, consider the mapping V : Xr → X√
r
⊗2 defined on

basis elements by

V |σ 〉r = |σ 〉⊗2√
r

. (C3)

We first show that V is an isometry. Compute

〈V |σ 〉 , V |τ 〉〉√r = 〈σσ |ττ 〉√r = (
√

r
|στ−1|

)2 (C4)

and

〈σ |τ 〉r = r|στ−1|, (C5)

which are the same. This implies that the restriction of the

metric on X ⊗2√
r

to the image of V is positive semidefinite

(for integer r).

For each Xr, let us define the k-site gate G
(Xr)

k : X ⊗k
r →

X ⊗k
r as the following projector onto the span of {|σ 〉⊗k

r | σ ∈
St}:

G
(Xr)

k =
∑

σ ,τ

|τ 〉⊗kWg(rk)στ 〈σ |⊗k (C6)

with Wg(q) the Moore-Penrose pseudoinverse of the met-

ric g(q)στ = 〈σ |τ 〉r. This formula reproduces the usual

k-site gate when r is an integer. We now observe the

following.

Lemma 19. If we replace every G
Xr
k in the transfer

matrix with G
X√

r

2k , the singular values do not change.

Proof. Let us define a map V† by

V†=
∑

στ

|σ 〉r Wg(r)στ 〈ττ |√r , (C7)

so that

V† |ττ 〉√r = |τ 〉r .

This map is an adjoint of V on the image of V, i.e.,

〈σ |r V† |ττ 〉√r = 〈ττ |√r V |σ 〉r (C8)

for all τ , σ .

From the definition of V, we see that

G
Xr
k = V†⊗kG

X√
r

2k V⊗k. (C9)

We may thus rewrite the transfer matrix T by replacing

G
Xr
k with the above expression for each gate. Furthermore,

VV† = G
X√

r

1 . Factors of G1 may be absorbed into Gk from

either side, which means in particular that

G
X√

r

2k = (VV†)⊗kG
X√

r

2k = G
X√

r

2k (VV†)⊗k. (C10)

We may thus pair up the copies of V that appear on inter-

nal legs of the transfer matrix and absorb them into the

adjacent G
X√

r

2k . The singular values of T are the nonzero

eigenvalues of T†T, so the copies of V that appear on input

legs can be cycled to the output and canceled against the

corresponding copies of V† without changing the singular

values. �

If we return to our original transfer matrix, we see that

we can identify each site as a member of Xq, and each two-

site gate as a copy of G
Xq

2 . Moreover, we can freely apply

copies of G
Xq

1 (the averaged one-site gate) to any site wher-

ever we want, as it is just the identity on that vector space.

Now we apply isomorphism V to map each site from an
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element of Xq to an element of the doubled space X ⊗2√
q

,

converting each site into a pair of sites, or twinned sites,

in the process. From Lemma 19, we see that the transfer

matrix can be rewritten in this new vector space, without

changing any singular values, by replacing G
Xq

k with G
X√

q

2k

everywhere it appears.

In the particular case of an incomplete circuit, we obtain

a transfer matrix consisting of G
Xq

1 and G
Xq

2 . We then apply

the isomorphism described above to map G
Xq

1 → G
X√

q

2 and

G
Xq

2 → G
X√

q

4 .

The former map sends one-site gates to two-site gates;

these correspond to edges across two twinned sites. The

first layer of the original circuit involved a one- or two-site

gate acting on every site, so the split pair sites are always

joined back into the same cluster by the first layer. The

new four-site gates are harder to express in the cluster-

merging picture. However, we know that a mini circuit of

two-site gates G
X√

q

2 , applied in a way that connects all the

sites consistently, will approach G
X√

q

4 in the limit of infi-

nite layers. In particular, we can replace each four-site gate

G
X√

q

4 [a1, a2, b1, b2] acting over sites a1, . . . , b2 (where a1

and a2 are twinned, and so are b1 and b2) with an arbitrarily

large “Jenga tower” of gates

(G
X√

q

2 [a1, a2] ⊗ G
X√

q

2 [b1, b2])(G
X√

q

2 [a1, b1] ⊗ G
X√

q

2 [a2, b2])

repeated over and over again. In the cluster-merging pic-

ture, only the bottom layer of this tower is capable of

joining distinct clusters together. The other layers either

join twinned sites that were part of the same cluster to

begin with, or are copies of the bottom layer. So every

layer above the first has a completely disconnected cluster-

merging graph, which corresponds to ý = 0. These layers

do not contribute to the right-hand side of Theorem 7. So

each four-site gate can be replaced with two two-site gates

connecting nontwinned members together without increas-

ing the subleading singular value of the transfer matrix.

This process is illustrated in Fig. 6.

We see that we can replace the cluster-merging picture

with one where every site is replaced by twins on X√
q,

and every two-site gate is replaced by a pair of two-site

gates between nontwinned sites. Moreover, we can freely

apply two-site gates between any twinned members where

no gate was being originally applied. So all sites in the

new picture have two-site gates acting on them; the layer is

complete. Since all twinned sites belong to the same clus-

ter, all clusters are of even size. These were the two condi-

tions required to draw a Eulerian cycle on each connected

component of the graph. We can now use Lemma 5 to

reduce this graph to a periodic 1D brickwork architecture

composed of gates G
X√

q

2 acting on the space X ⊗2N√
q

. Any

previous work that has found a bound for the
√

q brick-

work therefore imposes a bound on the layer-restricted

subleading singular values of arbitrary cluster-merging

graphs.

APPENDIX D: GRAPH-SPLITTING BOUNDS FOR

INCOMPLETE LAYERS

In this appendix we consider strategies for bounding

cluster-merging graphs that originate from incomplete lay-

ers, without resorting to 1D brickwork bounds on noninte-

ger q.

1. Analytical bound in terms of the node degree

By removing edges according to Lemma 8, we can

reduce any connected cluster-merging graph into a span-

ning tree. Let d be the maximum degree of the tree. To

bound this tree’s singular value, we use the following tool

for incomplete graphs.

Lemma 20. The edges of a cluster-merging graph can be

split into separate layers without lowering the subleading

singular values.

Proof. This follows from a simple reinterpretation of

which gates belong to the same layer. We know that the

gates corresponding to each edge in the cluster-merging

graph commute with each other. Therefore, we are allowed

to choose which gates to apply first. Splitting a layer

merely means choosing a subset of gates to apply first, then

choosing another subset to apply in the next new layer, and

so on. This does not lower the subleading singular values

because it does not change the gates at all. �

Note that splitting a layer will increase the block width �,

so our bound on the subleading singular value of the over-

all transfer matrix via Theorem 13 will get looser when a

layer is split. Nonetheless, this will be useful for separating

the degree-d tree graph into reducible parts.

Theorem 18. A cluster-merging graph of size N with a

spanning tree of maximum degree d can be decomposed

into at most

2 min(
d/2�, 6)
log2(N )�

layers, such that each layer is reducible to the 1D brick-

work.

We prove this statement starting with the following

similar result.

Lemma 21. A cluster-merging graph of size N with a

spanning tree of maximum degree d can be decomposed

into at most min(
d/2�, 6)
log2(N )� layers, such that each

layer is made up of isolated strings.
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Call L(N ) the largest possible number of layers a tree

of size N needs to be decomposed into to satisfy this. We

prove by induction that L(N ) ≤ min(
d/2�, 6)
log2(N )�.

We have L(2) = 1 because two connected sites automat-

ically form an isolated string. It remains to show the

following result.

Lemma 22. It holds that L(N ) ≤ L(�N/2�) +
min(
d/2�, 6).

Proof. Take an arbitrary root node C1 in our tree and

construct a path C1C2 · · · Cr starting from that root. At each

step i − 1 in the path, we choose the child Ci of parent

Ci−1 with the most nodes in its subtree. Call the other child

nodes b
(1)
i , b

(2)
i , . . . , b

(g)

i , where g ≤ d − 2.

For a given path node Ci−1, each nonpath child

b
(1)
i , b

(2)
i , . . . , b

(g)

i has at most �N/2� nodes in its subtree.

We can therefore recursively decompose each subtree in

parallel in at most L(�N/2�) layers. After these layers,

each subtree of b
(j )
i has been combined into b

(j )
i to form

one cluster, B
(j )
i .

We then need to combine all g child nodes B
(j )
i into Ci−1.

To accomplish this in an efficient way, we use a method for

efficient contraction of high-degree nodes. �

Lemma 23. We can combine a node with g of its

external neighbors using at most four layers of isolated

strings.

Proof. To accomplish this, we combine our layer split-

ting process with a cluster splitting process. The original

node has a degree of g, so it must contain at least g sites.

We first split the layer, with �g/2� of the external neigh-

bors on the bottom layer. This gives us a node with g

sites and �g/2� edges. We then use Lemma 7 to split

this node into a string of nodes such that each node con-

nects to two of the external neighbors (as shown by the

first step in Fig. 7). Each node therefore has two external

neighbors and at most two new internal edges connect-

ing it to the other nodes in the string, so can be made

with four sites. The exceptions are the end nodes that need

one less site, and if �g/2� is odd, one node will have one

less neighbor and site. In total, at most 4
 1
2
�g/2�� − 2 ≤ g

sites are required, so there are enough unoccupied sites in

the original node to add the necessary new edges for this

splitting.

Once we have split the original node in this way, we

spend two layers to combine all the neighbors and nodes

together. In the first layer, each node in the string com-

bines with its two external neighbors, as together they form

a string of length 3 (Fig. 7, second step). With all the

neighbors absorbed, the string can be recombined into the

original node in the second layer (Fig. 7, third step).

We then spend two more layers to contract the remain-

ing g − �g/2� neighbors. This is either �g/2� or �g/2� + 1

13 3 4 3 5 6 5 16

Star

String of nodes After first layer

After second layer

FIG. 7. The star contraction of Lemma 23. We start with a star

with g external edges, meaning that its site count (the numerical

label of the node) is at least g. In the first pair of layers, half of

the edges are considered, then the star node is split into a string of

nodes, each with two external edges. In the first layer, each node

contracts with its two external edges in a three-site string (note

that the site count on each node is just the minimum number of

sites required to have the correct degree on the node; extra sites

can be placed in whatever node we want). In the second layer,

the resulting string is contracted back into a single node, leaving

a star with half the edges remaining. The process is then repeated

for the other half of the edges.

depending on the parity of g. Even if it is the latter, we

will have enough sites to contract all the neighbors, due

to the ≥ �g/2� extra sites the root node gained by absorb-

ing its previous neighbors. Therefore, all neighbors can be

contracted in four layers. �

Note that Lemma 23 is inefficient if the number of leaves

is 6 or less. This is because we can also contract g leaves in


g/2� layers, by selecting one or two leaves in each layer

and combining with Ci−1 into a string of length 2 or 3. So

the number of layers we have to spend is min(
g/2�, 4) ≤
min(
d/2� − 1, 4) overall.

By performing all of these operations in parallel for

each path node, we have spent at most L(�N/2�) +
min(
d/2� − 1, 5) layers to combine each path node’s

nonpath children into the path node. After these layers,

the cluster-merging picture of the next layer only con-

sists of the path nodes, which can be combined together

with a single, extra, layer. This completes the proof of

Lemma 22.

We have seen that we can decompose the size-N clus-

ter into L(N ) layers such that the cluster merging graph

of each layer consists of isolated strings. Each string can

now be split into an open 1D brickwork architecture, as

long as each internal node is of even size (endpoint nodes

can be either odd or even), using Lemma 5. We call such

strings brickwork compatible. For strings containing nodes

that are not even and are not on the ends, we can use the

following result.

Lemma 24. Any layer of isolated strings can be split

into two layers of brickwork-compatible strings.

Proof. We wish to split a string into two layers such that

both layers have cluster-merging graphs consisting entirely

of brickwork-compatible strings. Let k be the number of

odd-sized nodes in the string and number only the odd

nodes 1, . . . , k.
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First suppose that k is even. Remove the left-hand edge,

if any, of odd nodes 1, 3, . . . , k − 1 and the right-hand edge

of odd nodes 2, 4, . . . , k. Now we have split the string into

at least k/2 and at most k/2 + 2 substrings, each of which

either has odd nodes only at both endpoints, or has no odd

nodes at all. Since the odd nodes were paired up, contract-

ing the first layer gives only even nodes for the second

layer. So both layers are brickwork compatible.

Now suppose that k is odd. Remove the left-hand edge,

if any, of odd nodes 1, 3, . . . , k − 1 and the right-hand edge

of odd nodes 2, 4, . . . , k − 1. Every substring has two odd

endpoints except the first, which may have zero, and the

last, which has exactly one. After contracting, the second

layer has all even nodes except for one. But this one odd

node is the right endpoint of the second-layer string, so the

second layer is still brickwork compatible. �

Lemma 24 shows that we can make a set of layers of iso-

lated strings brickwork compatible with a splitting scheme

that at most doubles the number of layers. Combining this

with Lemma 21 completes the proof of Theorem 18.

2. Log log bound on arbitrary graphs

Theorem 19. A cluster-merging graph of size N can be

decomposed into at most

8
log2�log2(N + 1)�� + 2

layers, such that each layer is reducible to the 1D brick-

work.

Given Lemma 24, it is sufficient to prove that we can

decompose the graph into

4
log2�log2(N + 1)�� + 1

layers of isolated strings.

We begin with a tree of at most N sites [Fig. 8(a), left].

The first layer of edges we apply will contract substrings of

the tree such that the resulting second-layer tree [Fig. 8(a),

right] has depth O(log N ). Choose any root node, which

also specifies a direction in the tree from its root down to

the leaves. Then label each node by its subtree weight—the

number of nodes in the subtree starting from that node.

The root node has subtree weight N , leaves have subtree

weight 1, and so on. We add to the first layer the maxi-

mally weighted path starting from the root node, i.e., a path

from root to leaf that always selects the child node with the

highest subtree weight. For every node that neighbors this

path (excluding nodes that are part of the path), we take

its subtree, add the maximally weighted path of that sub-

tree to the first layer, and repeat the process recursively.

After the end of this process, each node is part of exactly

one maximally weighted path, so the first layer consists

of disconnected strings. We can also label each maximally

1

21

3

5

1

1

2

3

7

9

14

first path
second
path

third path

1

1

(a)

(b)

FIG. 8. Algorithm for reducing a general tree in O(log log N )

layers. (a) The first layer of the algorithm, where we contract

the maximally weighted paths. Each path chooses the child node

with the highest subtree weights (blue labels above each node),

and starts from nonpath children of nodes in higher paths. (b)

Contraction of a balanced tree into a point in O(log log N ) steps.

At each step, the nodes at depths 2k and 2k + 1 are merged

together through the star contraction algorithm (each star is

indicated by a blue dotted circle).

weighted path by a subtree weight, which in this case is the

subtree weight of the node at the start of the path.

After contracting all the paths added to the first layer

this way, we are left with a tree where each node corre-

sponds to one of the maximally weighted paths. We make

the following claim.

Lemma 25. The height of the new tree is at most

�log2(N + 1)�� − 1.

Proof. Suppose that we start from a node of the new tree

and jump down to one of its children. This corresponds to

jumping from one maximally weighted path on the original

tree to one of the paths below it.

Going back to the original tree, consider a maximally

weighted path of a particular single-root subtree consisting

of n nodes. The subtree weight of the root is, by definition,

n, and so is the subtree weight of the path itself. Then any

node that is one edge away from the maximally weighted

path (i.e., it is not part of the maximally weighted path,

but its parent is) has a subtree weight bounded above by

�(n − 1)/2�. We can prove this by contradiction—it can-

not be the root node, and the sum of the subtree weights of

it and all its sibling nodes must be ≤ n − 1. So, if it had a

subtree weight greater than (n − 1)/2, it would have had a
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larger subtree than all of its siblings, and therefore would

be part of the maximally weighted path after all.

Every time we move from a maximally weighted path

to a lower one, our subtree weight roughly halves; specif-

ically, it goes from n to at most �(n − 1)/2�. If we repeat

this process, we run out of nodes after �log2(n + 1)� − 1

steps. Hence, the height of the whole second-layer tree

must be bounded by �log2(N + 1)�� − 1. �

Now we reduce the second-layer tree with the following

lemma.

Lemma 26. A tree of height h can be decomposed into

4
log2(h + 1)� layers of isolated strings.

Proof. We decomposed the tree recursively. At each

step, we take all the nodes that are at an even depth (includ-

ing the root node at depth 0). We can then use Lemma

23 on each even-depth node to absorb all their children in

parallel, in at most four layers [Fig. 8(b), left]. This way,

after four layers, we have removed all the nodes that were

at an odd depth. Hence, we are left with a tree of height


(h + 1)/2� − 1 [Fig. 8(b), right]. We repeat this process

until we are left with a tree of height 0, i.e., just the root

node. This takes 
log2(h + 1)� steps, or 4
log2(h + 1)�
layers, in total. �

Hence, we can spend one layer to reduce an arbitrary

tree to a tree of height �log2(N + 1)� − 1, then spend

4
�log2(N + 1)�� layers to reduce the new tree to a single

node, which proves Theorem 19.

APPENDIX E: NUMERICAL EVIDENCE FOR

CONJECTURES

1. Evidence for t independence of s1D

Figures 9 and 10 present numerical evidence for Eqs.

(19) and (64), respectively. We calculate s1D(N , q, t) with

FIG. 9. Subleading singular values of the 1D brickwork archi-

tecture with periodic boundary conditions and q = 2, calculated

via svds.

1 × 10–5

(a)

(b)

FIG. 10. (a) Subleading singular values of the 1D brickwork

architecture with open boundary conditions and q = 2, calcu-

lated via svds. (b) DMRG results for the open 1D brickwork

subleading singular value s1D,open(N , q, t = 2) versus N (upper)

and its difference from the t = 3 SSV (lower). Note the vertical

axis scale of 10−5 in the lower panel.

both open and closed boundary conditions for q = 2 and

several values of N and t.

Calculations are done using two different approaches.

The SciPy library’s svds function, which is based on the

Lanczos algorithm, allows us to find eigenvectors with

arbitrary precision for small N . Here the absolute error

tolerance is set to 10−4.

Because of the transfer matrix’s natural representation

as a tensor network, and hence a matrix product operator,

we can also use the density matrix renormalization group

(DMRG) algorithm to approximate eigenvectors for much

larger N .

The accuracy of the DMRG algorithm depends on the

entanglement structure of the true eigenvector, quantified

by its bond dimension. Here we choose a singular value

cutoff of 10−12 and a maximum bond dimension of 800,

which is well above the t = 2 or t = 3 required bond

dimension of approximately 12.
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G
A

A†

(a) (b)

FIG. 11. (a) Decomposition of a single gate into two halves

using SVD. The inner index (blue) can be treated as effective

physical indices with dimension t!. (b) Decomposition of two

layers of a 1D brickwork architecture using this splitting process.

The bottom-most and top-most halves of the original brickwork

architecture are set aside for now, making this equivalent to one

brickwork layer in thickness. Through this process, the physical

space has reduced from N legs of size q2t to 
N/2� legs of size t!.

Both methods are computationally intractable in the

original representation of G, which has four legs, each of

dimension q2t. However, in this representation G is very

sparse. For the brickwork circuit, we can use singular value

decompositions to compress G to a tensor with three legs,

each of dimension t!. The resulting tensor is an orthog-

onal projector from St to S2
t under the metric induced

by the Weingarten functions. This compression leaves the

nonzero singular values of the whole circuit unchanged.

The compressed circuit is illustrated in Fig. 11.

2. Evidence for Conjecture 1

To search for violations of Conjecture 1, we used a sim-

ulated annealing algorithm that attempts to maximize the

subleading singular value over the set of architectures on a

fixed number of sites. Figure 12 shows the results.

Each proposed move was a set of n edge additions or

deletions, with n drawn from a geometric distribution with

mean 1. Additions and deletions were equally likely, with

additions drawn uniformly from the all-to-all graph and

deletions drawn uniformly from the set of existing edges.

The objective function was the third-largest singular

value, with starting temperature set automatically based on

the distribution of singular values over a small sample of

connected architectures with edges drawn independent and

identically distributed from the all-to-all graph. An expo-

nential multiplicative cooling schedule was used to cool to

the final temperature over 5000 iterations.

APPENDIX F: TIGHTER BOUNDS FOR

BRICKWORK ARCHITECTURES OF

ARBITRARY DIMENSION

For specific, well-connected architectures, we can use

the cluster-merging picture to obtain a tighter bound

than that of Theorem 1. One example is the generalized

brickwork architectures on any dimension. We make the

following claim.

Lemma 27. For t = 2, the effective connection depth

� on a generalized d-dimensional brickwork architecture

(a)

(b)

FIG. 12. (a) Subleading singular values by inverse tempera-

ture during 437 runs of the simulated annealing process. Here

N = 16, q = 2, and t = 2. (b) Maximum SSVs attained by each

run.

on Ld sites is at most 2 + oL(1). That is, the subleading

singular value

s ≤ 1 − (1 − s1D)2 + oL(1). (F1)

In other words, we have taken the 2d layers of a d-

dimensional brickwork’s periodic block, and have effec-

tively removed all but two of them from consideration in

Theorem 7.

Each of the 2d layers in a brickwork architecture’s

periodic block chooses one of the d directions (horizon-

tal, vertical, etc.) and one of two parities (odd or even).

The cluster-merging picture of these layers comes in three

stages. In the first stage, each layer has a different direction

from all the layers below it. These layers combine finite

[i.e., O(1)] size clusters into other finite size clusters. Each

cluster after m such layers is an m-dimensional hypercube

over 2m sites. Depending on the order of the layers, this

first stage can have any number of layers from 1 to d. The

second stage begins once a layer has the same direction

as a previous layer below it. In this stage, the hypercube
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clusters get strung together along this direction, L/2 at a

time, forming loops that can be reduced to periodic 1D

brickwork architectures. This stage consists of only one

layer.

After this stage, each cluster is of size �(L). Subse-

quent layers will connect these clusters either into pairs

(if their same-direction counterpart was not applied yet) or

L/2-length loops (if it was applied). Either way, each clus-

ter will have �(L) connections with each neighbor in the

graph. This effectively creates a 1D brickwork architecture

with internal dimension q̃ = q�(L). Since the 1D brickwork

singular value is 2q̃/(q̃2 + 1) = O(q̃−1), all of these lay-

ers will have layer-restricted singular values that decay

exponentially in L, and hence will contribute a vanishing

amount oL(1) to Eq. (34).

We have a second stage with one layer that reduces to

the periodic 1D brickwork architecture, and a third stage

with vanishing contribution. Therefore, it remains to show

that the combined subleading singular value of the first

stage layers is bounded by the 1D brickwork architecture.

In other words, we want to bound the subleading singu-

lar value of an arbitrary hypercube by the 1D brickwork

architecture.

The subleading singular value of the 2D hypercube (i.e.,

a square of four sites) is s2 = 2q2/(q2 + 1)2. We can use

the cluster-merging picture to bound hypercubes of higher

dimension. At layer m, our clusters are size 2m−1, and we

are joining them together in pairs, with 2m−1 connections

per pair. Since we have only two clusters in each connected

section of our graph, finding the layer-restricted singular

value ým just amounts to an optimization over four basis

states. We have

ým = 1

(1 − q−2m
)2

√

2(1 + q−2m
)

[
2

q2 + 1

]2m−1

− 8q−2m

≤
√

2

(
16

15

)(
2

q2

)2m−2

≤
√

2

(
16

15

)(
2

q2

)2(m−2)

, (F2)

where we bound the superexponential decay in m by an

exponential for all m ≥ 3. Then any (d ≥ 3)-dimensional

hypercube sd has singular values bounded by

s2
d ≤ 1 − (1 − s2

2)

d∏

m=3

(1 − ý
2
m)

≤ 1 − (1 − s2
2) exp

[
−

d∑

m=3

ý
2
m

]

≤ 1 − (1 − s2
2) exp

[
−2

(
16

15

)2 d∑

m=3

(
2

q2

)4(m−2)]

≤ 1 −
(

1 − 4q4

(q4 + 1)2

)
exp

[
−2

(
16

15

)2
16

q8 − 16

]
.

(F3)

This decays more rapidly in q than the 1D brickwork archi-

tecture, and at q = 2 we get the bound sd(2) ≤ 0.478 <

s1D(2). Therefore, the hypercube singular value is below

the 1D brickwork singular value for all q ≥ 2.

A more thorough optimization over the size M of the

first stage will probably get an overall singular value bound

that is much closer to s1D. This is because the size, and

connectivity, of the clusters in the second stage is q2M
, so

it would probably produce a singular value that is close to

O(q−2M
). In other words, we are not allowed to make the

first stage that deep, without reducing the layer-restricted

singular value of the second stage.
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[44] Paul Erdős and Alfréd Rényi, On a classical problem of

probability theory, Magyar Tud. Akad. Mat. Kutató Int.

Közl. 6, 215 (1961).

040344-26


	I.. INTRODUCTION
	A.. Prior work
	B.. Summary of results
	C.. Structure of the proof
	D.. Definitions
	E.. Main theorems
	F.. Known values of C(q,t)

	II.. APPROXIMATE t-DESIGNS AND TENSOR NETWORK PICTURE
	III.. TRANSFER MATRIX AND THE SPECTRAL GAP
	IV.. BOUNDING THE SPECTRAL GAP
	A.. Cluster-merging picture

	V.. REDUCTION OF EACH LAYER TO 1D BRICKWORK LOOPS
	. 
	1.. Structure of the graph
	2.. Cluster-merging bound

	VI.. SPECTRAL GAP OF 1D BRICKWORK LOOPS
	VII.. APPROXIMATE t-DESIGN DEPTHS
	A.. Complete periodic architectures
	B.. Incomplete layers
	C.. Aperiodic architectures


	VIII.. FURTHER EXTENSIONS
	A.. -independent bound
	B.. Nondeterministic architectures
	C.. Highly connected architectures

	IX.. RELATIONSHIP TO ARCHITECTURES THAT SCRAMBLE IN O(logN)
	X.. CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: PROPERTIES OF PROJECTOR PRODUCTS
	1.. Structure of the unit eigenspace
	2.. Bound from layer-restricted subleading singular values
	3.. Other bounds on subleading singular values
	4.. Bounds on Frobenius norms

	. APPENDIX B: PROOF OF THE 1D BRICKWORK SPECTRAL GAP FOR t=2
	. APPENDIX C: MAPPING INCOMPLETE TO COMPLETE LAYERS FOR NONINTEGER q
	. APPENDIX D: GRAPH-SPLITTING BOUNDS FOR INCOMPLETE LAYERS
	1.. Analytical bound in terms of the node degree
	2.. Log log bound on arbitrary graphs

	. APPENDIX E: NUMERICAL EVIDENCE FOR CONJECTURES
	1.. Evidence for t independence of s1D
	2.. Evidence for Conjecture 1

	. APPENDIX F: TIGHTER BOUNDS FOR BRICKWORK ARCHITECTURES OF ARBITRARY DIMENSION
	. REFERENCES

