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Variational quantum eigensolvers (VQEs) are a promising approach for finding the classically intractable
ground state of a Hamiltonian. The unitary block-optimization scheme (UBOS) is a state-of-the-art VQE method
that works by sweeping over gates and finding optimal parameters for each gate in the environment of other gates.
UBOS improves the convergence time to the ground state by an order of magnitude over stochastic gradient
descent. It nonetheless suffers in both rate of convergence and final converged energies in the face of highly
noisy expectation values coming from shot noise. Here we develop two classical postprocessing techniques
that improve UBOS especially when measurements have large shot noise. Using Gaussian process regression,
we generate artificial augmented data using original data from the quantum computer to reduce the overall
error when solving for the improved parameters. Using double robust optimization plus rejection, we prevent
outlying data which are atypically noisy from resulting in a particularly erroneous single optimization step,
thereby increasing robustness against noisy measurements. Combining these techniques further reduces the final
relative error that UBOS reaches by a factor of 3 without adding additional quantum measurement or sampling
overhead. This work further demonstrates that developing techniques that use classical resources to postprocess

quantum measurement results can significantly improve VQE algorithms.
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I. INTRODUCTION

In the near term, quantum computers are limited by qubit
coherence and gate fidelity. These early noisy intermediate-
scale quantum (NISQ) devices [1] have too few physical
qubits with low coherence time to implement robust er-
ror correction schemes, making them unsuitable for many
promising quantum algorithms such as Shor’s algorithm [2-9]
and Grover’s algorithm [10—-15]. To avoid these issues, hybrid
classical-quantum algorithms like the quantum approximate
optimization algorithm (QAOA) [16] and the variational quan-
tum eigensolver (VQE) [17-19] leverage the resources of a
quantum computer to simulate and sample from a classically
intractable state while using classical resources to reduce the
demand on qubits and coherence.

VQE aims to compute an upper bound for the ground-state
energy of a Hamiltonian A, which is generally the first step in
computing the properties of molecules and materials [20-23].
Starting with an ansatz which is a quantum circuit built with a
set of parametrized quantum gates to model a trial wave func-
tion, |¥), VQE iteratively optimizes the gate parameters of the
ansatz to minimize the energy of the trial state by computing
the expectation values of operators in the Hamiltonian through
measurements on the quantum computer, and then classically
updating the gate parameters.

Given the stochastic nature of measurement on quantum
devices [24], one must measure enough copies (denoted as
shots) of the same circuit to achieve a given level of precision
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since the distribution of measurement outcomes on a Hermi-
tian operator has error inversely proportional to the square root
of the number of shots per circuit [25]. It is worth noting that
this error scaling can be improved by using more sophisticated
quantum algorithms such as quantum phase estimation [26];
unfortunately, these techniques require much deeper circuits
making them impractical for their current generation of quan-
tum devices.

The standard approach to VQE has been improved
in various ways including ansatz construction [17,27-33],
efficient measurement strategy [34—45], error mitigation tech-
niques [46-59], and optimization strategies [60—70]. Classical
machine-learning techniques such as Koopman operator
learning [71] and a physics-informed neural network [72]
have also been used to improve VQE. Typical optimiza-
tion strategies for VQE algorithms are gradient-free classical
optimization methods including the Nelder-Mead method
and Powell’s algorithm [67,68,73], a gradient-based search-
ing strategy [27,33,66,74-85], and analytical methods such
as Anderson acceleration [69]. Traditional methods such as
stochastic gradient descent (SGD) face several challenges in-
cluding local minima, significant hyperparameter tuning, slow
convergence, and exponentially vanishing gradients.

The unitary block optimization scheme (UBOS) is a
gradient-free and hyperparameter-free optimization algorithm
[86]. By optimizing a subset of parameters at each step using
the effective Hamiltonian H, it avoids gradient calculation,
tunnels through some local minima, makes nontrivial steps de-
creasing the energy when facing barren plateaus, and requires
an order of magnitude less expectation value measurements
than SGD [86].
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The key step of UBOS is to generate the effective Hamilto-
nian for a gate in a fixed environment. The standard approach
to accomplish this is to directly measure the matrix elements
using a separate quantum circuit for each element; we refer to
this approach as D-UBOS. An alternative approach is to infer
the effective Hamiltonian from pairs of gate parameters and
their corresponding energies {(#;, Emeasured)}, Which we will
refer to as E-UBOS.

One of the primary concerns for VQE algorithms is its
shot budget (total amount of measurements). One approach to
reducing the shot budget is to simply take fewer measurements
per circuit, resulting in much larger stochastic errors due to the
finite number of shots (denoted as shot noise). Significant shot
noise often hinders classical optimizers from finding the true
global minimum; many methods including UBOS plateau at
an energy level above the optimal VQE energy of the ansatz
(VQEOPT). This raises scalability concerns for the VQE
algorithm [87-89].

There are efforts on reducing the number of shots required
for gradient-based VQE such as estimating the gradient with
few-shot measurements by the parameter shift rule [90], mod-
ifying the number of shots for estimating each component of
the gradient using an adaptive optimizer [77] and by boot-
strapping and resampling based on the variance of obtained
shots [91], and importance sampling [92,93]. These methods
aim to frugally select the number of shots while still using
SGD.

For UBOS, shot noise in quantum measurements causes
error in the effective Hamiltonian H, which leads to inac-
curate state energy estimation using H. D-UBOS has no
measure against error in measurement outcomes. In E-UBOS,
one can partially mitigate shot noise by increasing the num-
ber of (#j, Emeasurea) pairs at the cost of additional quantum
measurements. Unfortunately, when we empirically compare,
E-UBOS as naively formulated still requires the same amount
or slightly more shot budget to reach the same energy error as
D-UBOS (see Fig. 3).

In this paper, we develop generalizations of E-UBOS
to resolve this problem. Our philosophy is that while
the classical optimization of the gate parameters for the
exact effective Hamiltonian is straightforward, classical shot-
noise-aware postprocessing techniques can help reach a
better energy without taxing the shot budget, especially
when the quantum measurements are very noisy. We in-
troduce two techniques: data augmentation with Gaussian
process regression (GPR) and double robust optimization
plus rejection (DROPR). We demonstrate that these two
classical postprocessing techniques can effectively suppress
shot noise in quantum measurements and reduce the rel-
ative energy error of the full optimization roughly by a
factor of 3 for all choices of hyperparameters in the range
studied.

The rest of the paper is organized as follows: In Sec. II
we briefly review how to implement different types of UBOS.
Next, in Sec. III, we describe the classical postprocessing
techniques. Then in Sec. IV we benchmark the performance
of E-UBOS with these techniques applied and compare it with
D-UBOS. Finally, we conclude the paper in Sec. V with a
discussion of our main results.

II. INTRODUCTION TO UBOS METHODS

A. Review of UBOS

In this paper, we describe all types of UBOS using a varia-
tional ansatz,

K
) =[]u;l0, )
j=1

obtained by applying K generic two-qubit unitaries U; €
SU(4) (i.e., quantum gates) to adjacent qubits in a brickwork
pattern with gate depth d. The generic two-qubit unitary, U;
can be written as a linear combination of 16 two-qubit Pauli
strings,

3
U= 1P, 2)
o, =0

where P*? = 6* @ 6#, 0%P € {I,X,Y,Z} are Pauli matri-
ces, and the complex coefficients tj‘.”ﬂ are constrained to
preserve the unitarity of U; (see Appendix A).

UBOS then parametrizes the state by the gate parameters
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is the result of substituting gate U; by the Pauli operator
P*# and it has the same circuit depth d. It is also the partial
derivative of |1) with respect to t}xﬂ which we use to estimate
the gradient in SGD.

Given some Hamiltonian H, keeping the parameters for all
but the jth gate fixed, UBOS writes the energy as a function of
the jth gate parameters,

E(t)) = (YIH|y)
3

3
= X 5wt AL X gt )

o', f'=0 o, =0
3
= Y o PEePer (5)
a,B,a,f'=0
= A, (6)

with the effective Hamiltonian for gate j, H as

Ho/ﬁ’;otﬂ — <I/f;l,ﬂ, }]_’}h[/;lﬂ) (7)
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H is a 16 x 16 Hermitian matrix with 256 unique real param-
eters for its matrix elements (136 for real component and 120
for imaginary component), and is independent of ;.

Once H is obtained, UBOS classically optimizes the gate
parameters for the jth gate while keeping all other gates fixed
by minimizing Eq. (6) with respect to the gate parameters
t; under the unitary constraint (see Appendix A). This is a
16-parameter optimization problem that can be solved using
any classical technique such as gradient descent, Nelder-
Mead, etc. UBOS then sweeps over gates, optimally minimiz-
ing the energy of one gate at a time while keeping other gates
temporarily fixed. The update order for gates is shuffled to be
random for every sweep, also known as epoch.

To obtain the effective Hamiltonian, D-UBOS directly
measures these matrix elements with Hadamard test circuits
of depth at most 2d (see Appendix C), where the Hamiltonian
is expanded into the sum of unitary operators. The expectation
value measurement of each Hamiltonian component requires
(many copies of) a separate circuit, and the amount of shot
noise depends on the number of shots per circuit (denoted
as Ngpos). The total number of measurements Npe,s scales as
O(dnénshots) (see Appendix D), where n, is the number of
qubits and d is the ansatz depth.

B. Review of E-UBOS

As described in Appendix G of the original UBOS paper
[86], the matrix elements of H in Eq. (6) are linear unknowns
and independent of the gate parameters at the jth gate, so
instead of measuring them individually, we can solve for them
from a system of linear equations obtained by measuring the
energies of the states with the jth gate replaced by a two-qubit
unitary generated with different, randomly chosen gate param-
eters. One advantage of this approach is that the depth of the
circuit required for measurement is only d (see Appendix C).

By writing #; and H as their complex form, t;=
Re [#;] + iIm [7/] and H = Re [H] + i Im [H], We can rewrite
Eq. (5) as

3

Et)= Y

(20 e[

o' B a, B=0
+t1ﬂaﬂlm[Haﬂaﬂ] (8)
where
i = Re [ (7)), ©)
g = I [ ()], (10)

are quadratic forms of the #; components (see Appendix B).
Therefore, every random gate parameter vector ¢; corresponds
to a noiseless energy E.

We generate random ¢; by sampling a random two-qubit
unitary from the unitary Haar measure and then performing
decomposition in the Pauli basis. State energies are calculated
by the sum of expectation values of h;, where h; are the com-
ponents of the Hamiltonian. Since the Hamiltonian studied
contains only local {Z, XX, YY, ZZ} operators, by measuring
their expectation values on quantum devices (see Appendix C)
we obtain the measured state energy, Emeasured, Which is
a stochastically noisy observation of pair (¢;, Emncasured)- TO

characterize shot noise in the measured energy, we can write
Emeasured as

Emeasured = E + 8E = t{Ht; + SE, (11)

where SE is the error in the measured state energy due to shot
noise (assuming no error from the experimental process of
measuring the device).

Given ngys pairs of (¢, Emcasured ), W€ can form a system of
Ngps linear equations and determine H by linear least-squares
fit over the system. The number of linearly independent com-
ponents in the set 7; = {t“m t“m} is found to be 226 and
is smaller than 256, the number of unique real parameters in
the 16 x 16 Hermitian matrix H, which leads to a nonunique
effective Hamiltonian that satisfies Eq. (8). However, any
effective Hamiltonian that satisfies Eq. (8), or equivalently,
Eq. (6), is suitable for optimization, and by increasing nops
to overconstrain the system, we can add additional robustness
against error in measured state energy which is normally re-
duced by increasing shots per circuit, ngos. In other words,
to increase the accuracy of the effective Hamiltonian, one can
use larger nys to compensate for the large stochastic sampling
noise due to small ng,o and vice versa (note that the minimum
value of ngps is 226).

III. CLASSICAL POSTPROCESSING FOR E-UBOS

In the current applications of UBOS, the effective Hamil-
tonian at each step is computed from a finite number of
shots, which results in a noisy effective Hamiltonian that we
assume to be “exact” when computing the new parameters.
Here we suggest an alternative approach that does a significant
amount of classical postprocessing on the data gained from
E-UBOS (and sometimes additional quantum postprocess-
ing). This classical postprocessing can be aware of the noisy
nature of the measurements allowing it to better select new
parameters. In this paper, we introduce two techniques: Data
augmentation with Gaussian process regression (GPR) and
double robust optimization plus rejection (DROPR) inspired
from approaches in machine learning.

A. Data augmentation with Gaussian process regression

An E-UBOS optimization step involves three parts: first, it
obtains a set of (¢}, Epcasured) Pairs through quantum measure-
ments. For convenience, we will refer to this set as the initial
set, denoted by Sini;. Then, it computes the effective Hamil-
tonian from a system of linear equations formed with Sjn;.
Finally, it classically finds the gate parameters that minimizes
the state energy based on the obtained effective Hamiltonian.
When the number of shots per circuit is small, large shot
noise in pairs in Sip;; can cause severe error in the calculated
effective Hamiltonian.

One could increase the accuracy of the effective Hamil-
tonian by having more (f;, Encasurea) pairs but this would
obviously involve a larger shot budget. An alternative to
this approach is to generate artificial pairs using “data aug-
mentation” [94-96] in such a way that expanding Si,; with
these additional artificial data will lead to a more accurate
estimation of the effective Hamiltonian. Artificial data are
created by predicting the energy of new random #; based on
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existing observations. Traditional algorithms such as least-
squares regression suffer from the large shot noise in each
observation and the nonlinear relationship between the fea-
tures (gate parameters) and the target (energy). An alternative
approach is to use Gaussian process regression, which returns
an evidence-based posterior probability distribution over pos-
sible functions that fit a set of points [97,98]. Here we describe
how GPR can be used to generate new artificial data for
our VQE energies including for completeness the underlying
theory for how GPR selects the new data.

We assume that the shot noise in the measured energy
follows some Gaussian distribution, §E ~ N(O, 062), such
that for each random gate parameter ¢;, the corresponding
measured energy follows the normal distribution Epeasured ™~
N(E, 062), where E is the noiseless energy. Then we can model
the collection of measured energies as a multivariate normal
(MVN) distribution P({Emeasurea}|{?;}). Any sample from this
MVN distribution would correspond to a function that is pos-
sibly suitable to describe the relationship between the various
t; and E. However, these functions are very unlikely to be
smooth enough for regression, and the number of possible
functions is infinite. Therefore, we determine the possible
functions by sampling with a kernel function which measures
the similarity (covariance) between two t;’s, following the
logic that similar #;’s should lead to similar E’s. This con-
stitutes our prior, which is a collection of infinite numbers
of smooth functions derived with the kernel, and its mean
function is equal to zero.

We can write a collection of observed data and artificial
data as {(tj,0b87 Emeasured)} and {(tj,new’ Epredicl)}, TCSPGCtiVely,
where Epdict are unknown. Then we can model Epeqgureq and
Epredice as an MVN distribution in block matrix notation:

P({Emeasured}» {Epredicl} | {tj,obs}’ {tj,new})

~N Mobs({tj,obs}) Ieobs,obs Kobs,new (12)
Mnew({tj,new}) ’ K(i)s,new Knew,new ’

where M,y and M., are the mean functions of the MVN
distribution for the collection of observed data and artificial
data, respectively. Kopsobs = Kt o) i) T o? is the covari-
ance matrix between all ¢; in the observed data with shot noise
added. Kobs,new = K[tj,obs}a{lj,new} and Knew,new = K{ are
the covariance matrices between all ¢; in the observed data
and in the artificial data and between all ¢; in the artificial data,
respectively.

Now our observations {(#obs, Emeasured)} become partial
observations of this joint normal distribution. Therefore, by
marginal and conditional distribution of the multivariate nor-
mal distribution theorem, we can find that the conditional
probability distribution of the predicted energies follows the
MVN in block matrix notation,

P({Epredict}|{Emeasured}’ {tj,obs}v {tj,new}) ~ N(,u, 2)7 (13)

where Mm = Kgl;s,newk(;)l’obs{Emeasured} and X = Knew,new -
K« newKope obs Kobs.new are its mean and covariance, respec-
tively. The mean value of each feature of this MVN is then
the predicted energy for each artificial #; with maximum
likelihood.

Equivalently, one can explicitly find the probability dis-

tribution of possible functions f instead of energies. In this

ti.new }» {tj.new )

way, one sees that the Gaussian process uses some kernel
function to generate a prior for probability distribution of
possible functions and calculates the posterior probability
distribution of the functions for the observed data (evi-
dence), P({fmeasured”{(tj,obs, Emeasured)})’ which is similar to
the Bayesian inference process. Then, it repeats the same
formalism as in Egs. (12) and (13) with energy terms replaced
by corresponding function terms.

Gaussian process regression is more useful in this data
augmentation task than least-squares regression. It relaxes
the form of the predicted model from one function to a
probability distribution of possible functions, which is more
effective in dealing with the nonlinear relationship between
t; and E and the nonunique effective Hamiltonians that fit the
observations well.

We propose the following scheme of performing data
augmentation using Gaussian process regression (GPR): we
assemble overlapping subsets of (¢}, Encasured) Pairs from Sipig,
train a Gaussian process model using a Gaussian process
regressor for each subset, generate artificial (¢, Epredict) pairs
by applying those models on new random gate parameters
tj, and merge them with the Si;; to create an expanded data
set. We choose the radial basis function (RBF) as a kernel,
which is the common default. See Appendix F for a detailed
discussion of hyperparameter choices for this technique.

We empirically find that dividing the initial set into over-
lapping subsets leads to better optimization results than using
the whole initial set for GPR model training and artificial data
generation despite the subsets involving less total data (see
Appendix F).

In the ideal GPR data augmentation scheme, subsets of
pairs will not overlap with each other. However, given the
constraint that the minimum size of the subset is 226, if
the number of elements in the initial set is not much bigger
than 226 due to the limited total number of measurements,
we have to allow overlap between subsets, which leads to
non-negligible similarity between the models learned from
different subsets of pairs.

B. Double robust optimization plus rejection

With a real quantum device, the shot noise in observations
and thus in the computed effective Hamiltonian is inevitable,
which hinders the classical optimizer from finding the true
gate parameters ¢; that minimize the state energy. However,
we can use robust optimization to mitigate the impact of shot
noise. Robust optimization is a widely applied approach to
deal with data uncertainty in optimization that does not require
knowledge of the true probability distribution of uncertain
data [99,100]. Robust optimization seeks to find solutions that
perform well across a range of possible conditions, rather than
optimizing for a specific set of conditions.

Similar to the argument in the previous section, we as-
sume some of the (¢, Emeasured) Pairs in the initial set Sipi
are extremely noisy, and a fit involving these corrupted pairs
will give a bad effective Hamiltonian. Given the difficulty of
screening them out in advance, we create subsets of Sy, in
each of which a random portion of pairs in Sj,; is dropped out
to mitigate their impact. Since some of these subsets are less
likely to have the particularly bad pairs, if we fit an effective
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Hamiltonian A from each subset, some of the H’s may be less
noisy due to the absence of (at least some of) the bad pairs.
Then instead of using the energy calculated using Eq. (6) with
one H as a loss function for gate parameter optimization, we
instead find the gate parameter ¢; such that

maX{thHktj tk=1,2,..., Nsubset} (14)

1s minimized, where ngpset 1S the number of effective Hamilto-
nians obtained. This is called a worst-case robust optimization
of gate parameters.

Finding the gate parameters that minimize the energy eval-
vated with different effective Hamiltonians can reduce the
impact of a small portion of extremely noisy pairs in the initial
set. However, this strategy fails when there is a particularly
bad effective Hamiltonian within the collection of all H’s that
always gives the worst energy and forces the classical opti-
mizer to accommodate to it. In this case, the gate parameters
after optimization may have the state energy calculated with
bad A minimized while giving a noiseless state energy worse
than before the optimization step. To further reduce the impact
of noisy H in the collection of all A’s, we add a second layer
of robust optimization: after obtaining a collection of H’s (de-
noted as Sy ) from all subsets of pairs, we create subcollections
of H’s, in each of which a random portion of H’s in Sy is
dropped out. We use each subcollection to perform worst-case
robust optimizations independently, each of which yields a ¢;.
To select the one that gives the best noiseless energy, we do
additional quantum measurements for each ¢; and the original
preoptimized ; with more shots per circuit than the shots used
for obtaining the observations in Sj,;; (see Appendix G). Based
on newly measured energies, we choose the best #; (or reject
the optimization move if the original parameters are lowest in
energy leaving the gate parameters unchanged).

The full description of the scheme is shown in Algorithm
1. This strategy resembles the Median-of-Means trick used
in Classical Shadows [41,101] and the Metropolis-Hastings
Algorithm in Monte Carlo methods and is effective in pre-
venting the algorithm from accepting gate parameters, which
give plausible state energy calculated with a noisy effective
Hamiltonian but have noiseless state energy worse than before
the optimization step.

Again, in the ideal scheme there should not be overlap
between subsets of pairs for effective Hamiltonian fitting.
However, given the constraint of the minimum size of the
subset of pairs being 226, if the size of the initial set is small,
we have to allow overlap between subsets.

C. GPR and DROPR combined

For the rest of the paper, we will refer to the E-UBOS
method with the GPR technique as Eg-UBOS, and the E-
UBOS method with the DROPR technique as Ed-UBOS.
Since the GPR technique focuses on expanding the measured
data set to be more comprehensive for the effective Hamilto-
nian computation and the DROPR technique aims to improve
the search for optimal gate parameters given some set of noisy
data, we can apply these two techniques in a combined way to
take their complementary advantages. The E-UBOS method
with both techniques applied is called Edg-UBOS.

ALGORITHM 1. DROPR.

Input: Preoptimized quantum circuit |W), initial set
of ngps pairs of (¢;, Epeasurea ), Number of shots per
circuit ng,os, the index of gate to be optimized j, DROPR
parameters Nsubset » Lsubseh Nsubcol s Lsubcols Ndup
Output: Optimal parameters t
Randomly form gy, Overlapping subsets of pairs
from the initial set. Each subset has Ly pairs.
for i = 0 to nypser — 1 do
Convert ¢; of each pair in this subset to its quadratic
form through Eq. (9) and Eq. (10)
Compute H through linear least-square regression
using Eq. (8)
end for
Randomly form rngy,.o overlapping sub-collections of
H from the collection of all H obtained. Each
subcollection has Ly, elements.
for i = 0 to nypeo — 1 do
Find a contender ¢; that minimizes Eq. (14)
Measure the energy of the state with the jth gate
replaced by a two-qubit unitary generated with
contender t; with 74, X Ngnors Shots per circuit
end for
Measure the energy of state |W) with ngy, X nghes shots
per circuit
Select the optimal #; with the best measured energy (or
reject the change if the original state energy is optimal)

IV. NUMERICAL COMPARISONS OF APPROACHES
A. Comparing Edg-UBOS with D-UBOS

In this paper, we use the one-dimensional quantum Heisen-
berg Hamiltonian with open boundary conditions

ng ng—1 ng—1
y _ _ z_ z.z X X
H=—h) o =) ) ojoi, —J ) ojof,

Jj=0 Jj=0 Jj=0

ng—1

y .y
—Jy E 000y (15)
Jj=0

for demonstration, where 7, is the number of qubits and J, =
Jy=J.,=h=1.

To better understand the performance of UBOS with noisy
expectation value measurement, we implement the relevant
circuits for UBOS in Qiskit [102] and perform simulations
on a classical computer (without quantum hardware noise
model) on a four-site two-layer ansatz and an eight-site four-
layer ansatz. To maintain the unitarity of the two-qubit gates
in optimization, the ansatz’s two-qubit unitary blocks are
parametrized with the KAK decomposition [103]. Each gate
in our initial circuit is generated randomly by selecting the
KAK parameters uniformly at random from [0, 7).

To avoid ambiguity, for the rest of the paper we will use
superscripts to distinguish between the number of shots per
circuit for D-UBOS and for methods based on E-UBOS. For
example, n2,  for D-UBOS and n'"%, for Edg-UBOS.

To study the difference in optimization step quality be-
tween Edg-UBOS and D-UBOS given large shot noise, we
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FIG. 1. (a) Histograms of the relative energy change from 100 steps of D-UBOS (blue) with 20 shots per circuit and Edg-UBOS (red) with
450 observations and 10 shots per circuit at the same single gate of an 8-qubit depth-4 ansatz. This corresponds to the same total number of
quantum measurements for D-UBOS and Edg-UBOS. (b) Relative energy difference between 10 epochs of UBOS types (difterent colors) and
80 epochs of SGD on different system sizes (types of points) and the optimal VQE energy, which is the minimum energy that can be obtained
by the ansatz being used vs number of shots per circuit. Each point averages over the final energies of five independent runs with different

random initial states.

choose the final state of a D-UBOS run after 10 epochs with
10 shots per circuit whose energy is about 60% off from
the optimal VQE energy (for the system size studied, the
noiseless state energy plateaus before the fourth epoch). We
apply one D-UBOS step with nﬁms =20 on the first gate.
Since the result of this application is stochastic, we look at the
distribution of the relative energy change, (E — Eyq)/|Eoidl,
in over 100 different executions of a D-UBOS step. Then we
repeat this procedure using Edg-UBOS steps with ngps = 450
and nﬁiﬁs = 10, which has roughly the same total number
of measurements. As shown in Fig. 1(a), we find that two
distributions have roughly the same standard deviation, but the
distribution for Edg-UBOS has a more negative mean value
than that of D-UBOS, which indicates that one Edg-UBOS
step improves the state energy more than one D-UBOS step on
average. By comparing the amount of samples with positive
relative change in energy, we also notice that Edg-UBOS is
much less likely to find “false positive” gate parameters whose
noiseless state energy is worse than before optimization. See
Appendix E for a detailed discussion on false-positive gate
parameters.

We also compare the final state energies at which Edg-
UBOS and D-UBOS plateau after 10 epochs (SGD after 80
epochs; see Appendix D) given different shot noise. As shown
in Fig. 1(b), the relative energy difference between final states
of the algorithm runs and the optimal VQE energy decays
approximately algebraically as

(E — EOPl)/lEopt| ~A X IO_ﬂNthm, +C,

where A and C are algorithm and size-dependent constants
with B ~ 2.5 x 10~ except for one SGD ansatz (four qubits;
depth 2) which decays with 8 ~ 1.4 x 1073, For the choice
of measurement hyperparameters, we start with a set of
nf . for D-UBOS and SGD and choose the combination

of (Mops, ngﬁis) for Edg-UBOS such that the two methods
have roughly the same total number of measurements (see
Appendix D), prioritizing large nops.

In the face of significant shot-noise coming from using
a finite number of shots, both UBOS and SGD plateau at a
nonoptimal VQE energy. At a fixed number of shots, we find
that D-UBOS and SGD both plateau at similar energies with
SGD doing slightly better at a small number of shots and D-
UBOS doing slightly better at a larger number of shots. This
is consistent with what was seen in [86]. With the addition of
Edg-UBOS, we find that the final plateaued energy is better by
roughly a factor of 3 with respect to the optimal VQE energy.

We find that the final state of an Edg-UBOS run has
roughly a factor of 3 smaller relative energy error with respect
to optimal VQE energy than D-UBOS for all system sizes and
total number of measurements studied.

SGD seems to outperform D-UBOS below 100 shots per
circuit and is outperformed by D-UBOS as the number of
shots per circuit increases further, which agrees with the ob-
servations in [86]. For all choices of number of shots per
circuit, Edg-UBOS reaches at least a factor of 2 smaller rela-
tive energy error than SGD. Note that we choose a number
of epochs that is much larger than required for algorithms
to plateau because energy fluctuates drastically for D-UBOS
when shot noise is large and it is hard to determine conver-
gence. See Appendix E for details.

We now consider the plateaued relative energy difference
after 10 epochs of various forms of UBOS as we tune the
measurement hyperparameters. As shown in Fig. 2 (left),
the relative energy errors of Edg-UBOS are roughly propor-
tional to 10~Vmes where the total number of measurements
Nieas X (Fops X niﬁs) (see Appendix D). For every choice of
(Mobs» Nshots) in Edg-UBOS, we can choose an identical total
number of measurements in D-UBOS and again compare the
relative error of the energy [see Fig. 2 (middle)] and find that
for every choice of hyperparameters, Edg-UBOS is always
lower in relative energy error (on average) than D-UBOS [see
Fig. 2 (right)]. The advantage of Edg-UBOS becomes more
significant in larger systems and when the total number of
measurements is less, indicating Edg-UBOS is particularly
useful when the shot noise in quantum measurements is large.
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FIG. 2. Filled contour plots of the relative energy difference with optimal VQE energy, which is the minimum energy that can be obtained
by the ansatz being used, for (a) n, =4 and n; = 2, and (b) n, = 8 and n; = 4 of Edg-UBOS (left panels), D-UBOS (middle panels), and

their difference (right panels) as a function of measurement hyperparameters (n=%2_and ngp, for Edg-UBOS, and n

for D-UBOS with value

shots shots

chosen to match the total number of measurements of Edg-UBOS at each grid point). Each point averages over the final energies of three
independent UBOS runs with different random initial states. All points in the right panels are negative, showing that Edg-UBOS reaches an
energy closer to the optimal VQE energy than D-UBOS regardless of the choice of measurement hyperparameters and system size.

See Appendix H for a more detailed discussion of optimal
measurement hyperparameter choice.

B. Comparing the effect of each classical technique

To better understand the individual role of our two post-
processing approaches, we fix a configuration of the gates
and then consider the change in energy induced by the
update of a single gate using these approaches. We gen-
erate a configuration of the gates by running D-UBOS for
10 epochs using only 10 shots per circuit which reaches
an energy of 60% off from the optimal VQE energy.
We apply one E-UBOS optimization step (with nqps = 300
. = 10) with different classical techniques applied
(E-UBOS, Eg-UBOS, Ed-UBOS, Edg-UBOS) on the first
gate, and look at the distribution of postoptimization state
energy over 100 different executions for each technique. First
[see Fig. 3(a)], we use the same fixed set of 300 observations
of (tj, Emeasurea) for all four approaches so that the 100 differ-
ent executions of each approach differ due to the randomness
intrinsic to each classical technique. Both classical techniques
proposed in this paper as well as their combination improve
the energy more often than making it worse. Moreover, all
techniques and for essentially all random choices are much
better than the E-UBOS step itself, motivating the use of these
techniques.

The improvement of the energy in the Eg-UBOS step (with
GPR technique) can often be large, but there is a sizable
probability of making the energy worse than the initial starting

energy. The Ed-UBOS step (with DROPR technique) tests the
gate parameters it is going to use with additional quantum
measurements and rejects the change if the energy appears
to be getting worse. This means that only for a small fraction
of the time does the energy get worse and is responsible for
the mode in the histogram at the original energy. The rest of
the time the energy improves nontrivially but not as much as
Eg-UBOS. The Edg-UBOS step (with both techniques) makes
a good balance between the effects of both techniques. It not
only makes nontrivial improvement to energy but also has
a strong ability to reject false-positive gate parameters after
optimization.

We further test these conclusions on the same gate (and
respective configurations) by initializing 100 different initial
sets of 300 observations and executing steps of {E-UBOS, Eg-
UBOS, Ed-UBOS, Edg-UBOS} independently on each of the
initial sets. As shown in Fig. 3(b), Eg-UBOS seems to cause
more false-positive cases while having a larger chance to
improve energy. Ed-UBOS detects some false-positive cases
and rejects the change otherwise mainly improving the energy.
Edg-UBOS (with both techniques) takes the complementary
advantages of both. We also notice that the distribution of
state energy after an E-UBOS step has less negative mean
value than the preoptimization energy, which indicates that
an E-UBOS step worsens the energy on average. We attribute
this to the fact that the minimum number of pairs is 226, and
300 pairs cannot overconstrain the system enough to reduce
the large shot noise in the calculated H, which again shows
the benefit of these classical postprocessing techniques.
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FIG. 3. Histograms of the final energy from 100 optimizations (per approach) of the same single gate of an 8-qubit depth-4 ansatz with 10
shots per circuit. In (a) all trials use the same initial set of 300 pairs of (z;, Eyisy) differing only by the randomness inherent in the techniques.

In (b) a new random set of 300 parameters ¢; are chosen for each sample.

As discussed in the previous section, we think that the
occurrence of false-positive cases can be greatly reduced if
the number of observations is large enough to allow nonover-
lapping subsets of pairs being assembled in each classical
techniques.

V. DISCUSSION AND OUTLOOK

In this paper, we propose Edg-UBOS, a variant of the
unitary block-optimization scheme (UBOS) that is well suited
for the optimization of quantum circuits on hybrid variational
algorithms such as VQE. Edg-UBOS iteratively sweeps over
gates. At each step, it calculates an effective Hamiltonian
H from a system of linear equations obtained from a set
of (¢, Emeasured) Observations and then classically finds
the gate parameters that minimize the energy with respect
to this effective Hamiltonian while keeping the other gates
temporarily fixed. Edg-UBOS implements additional classical
postprocessing techniques to improve the accuracy of the
effective Hamiltonian calculation and the minimization of the
energy. We introduced and benchmarked two schemes: data
augmentation using Gaussian Process Regression, and Double
Robust Optimization Plus Rejection. Data augmentation only
requires the original training data, making it a cost-effective
approach to increasing the size and diversity of the set of
observations. Meanwhile, the DROPR scheme provides a
more efficient way to spend the measurement resources. The
two techniques combined improve the performance of the
algorithm by decreasing the final optimized error by roughly
a factor of 3 largely independent of the total number of
measurements made.

Edg-UBOS shares all of the standard advantages of D-
UBOS including converging an order-of-magnitude faster
than stochastic gradient descent (SGD), tunneling through
some local minima, and having decreased sensitivity to barren
plateaus [86]. Additionally, Edg-UBOS requires lower depths
of quantum circuits and has higher resilience to shot noise.

The total number of measurements can be further reduced
by strategies such as grouping operators that can be mea-
sured jointly [34-37] or by inference methods such quantum
overlapping tomography [38], quantum shadow tomography
[39,40], and classical shadow [41-45]. One can also im-
plement adaptive numbers of shots per circuit so that the
algorithm increases the number of shots per circuit when the
energy seems to plateau, which is similar to adaptive learning
rate strategy in classical machine learning.

To reach the promise of VQE, we need to minimize the
total number of measurements while maximizing the accuracy
of the final optimization. The development of Edg-UBOS
takes an important step toward this goal and places it as one
of the primary techniques for VQE on a quantum computer.
Furthermore, it also motivates an important approach toward
further improving quantum algorithm through use of nontriv-
ial classical computing resources to make the most effective
use of quantum data.
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APPENDIX A: PARAMETRIZE THE GATE
USING KAK DECOMPOSITION

In UBOS algorithms, we parametrize the generic two-qubit
unitaries by two-qubit Pauli operators [106]. However, to
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ensure that the gate remains unitary after optimization, we
also parametrize the two-qubit gate using the Cartan (KAK)
decomposition for U € SU(4) [103] as

= (Ag® A)(e™*)(By ® B)), (A1)
where k € R3, & = (PXX, PYY P?Z) and Ao, A,, By, and
By € SU(2) are generic one-qubit U3 gates parametrized by
three real parameters as

[ cos(8/2)
U39, A, ¢) = [ew sin(6/2)

The two-qubit gate U resulting from Eq. (Al) is there-
fore parametrized with 15 real parameters (denoted as 6;)
and is unitary regardless of choice of 6;. Since the KAK
decomposition we use does not have the global phase term,
we cannot deterministically convert the gate parametrization
from ¢t; form to 6; form. However, the conversion from 6;
form to ¢; form is deterministic since the coefficients of Pauli
decomposition are unique. Therefore, to ensure the unitarity
of the gate after optimization, the two-qubit unitaries of the
ansatz are stored in ¢; form and only converted to 6; form
before being fed to the classical optimizer.

To avoid this redundancy of using 6;, a possible approach
is to perform gradient descent on a Riemannian manifold of
unitary matrices [107,108].

—esin(6/2
ot ot /3)}- (A2)

APPENDIX B: LINEAR LEAST-SQUARES
REGRESSION FOR E-UBOS

We can rewrite Eq. (5) as

15
E(t)= Y t"H2"", (B1)

n,m=0

where m, n € [0, 15] are simplified notation for («, ) and
(«/, B'), respectively. By writing 7; and H as their complex
form, t; = Re[t;]+ilm[s;] and H = Re[H] + iIm [H], we
can expand Eq. (B1) as

E(t)) =
15

> Re[t/]Re[H""|Re [¢]'] +iRe [t/]Im [A""]Re[1]']

n,m=0

+iRe [} | Re [A""]Im [1]'] —
|Re [A™™]Re [¢]"] 4+ Im [¢}] Im [A""] Re [1]']
+ Im [#}] Re [A™"]Im [¢]'] 4 i Im [¢} ] Im [A"""] Im [£]"].

(B2)

Re [77]1m [H""] Im [z'."]

—iIm [¢}

Notice that
' = (Re[] = itm []) (Re [] + iTm [17])
=Re (/| Re[t]'] +iRe [t} ] Im [1]']
—iIm[¢7]Re [£]'] + Im [¢7 ] Im []"]. (B3)

V)
o 4+— 14— 7+ |
| U, Us |
[0) —H U T
| 4 o
o — 1 e
I 2 7 | h
0) — . o
0) —H T+ — -
0 1| Us Us [
| > T 777777777777 l

FIG. 4. Quantum circuit for E-UBOS measurement. The circuit
shown is an example of measuring the expectation value of a two-
qubit operator i which is a component of the Hamiltonian acting on
the third and fourth qubit using a six-qubit depth-4 ansatz. The r;, gate
changes the basis to the eigenbasis of h. For example, r;, gate being
two Hadamard gates changes the basis to {+, —} basis for measuring

~

=P,

Then by grouping terms with real and imaginary parts of
the effective Hamiltonian in Eq. (B2), we have
15
E(t) = Z (e7"e Re [H™"]) +i(r;"17 Im [H™"]).  (B4)

n,m=0

Since energy is a real value, Eq. (B4) can be further sim-
plified into

15
Et) =), 6%

n,m=0

Re [A™™] + " Im [A™™],  (BS5)

where
o =Re ()]
tjr,lfm =Im [t}’ (t;”)*],
are quadratic forms of the 7; components.

For linear least-squares regression,
Eq. (BS) as

E(tj) = (Re[fiol, Re[H])r + (Im[fi o], Im [H])r, (B6)

we can write

where £, = t; ® 17 is the outer product of #; with its complex
conjugate, and (A, B)r is the Frobenius inner product of two
matrices A and B.

APPENDIX C: MEASUREMENT CIRCUIT
FOR DIFFERENT TYPES OF UBOS AND SGD

The energy of a quantum state can be found as E =
> (1//|fzi|1//), where h; are components of the Hamiltonian.
In E-UBOS, we obtain the state energy by measuring all
Hamiltonian components with the circuit shown in Fig. 4.
Since the Hamiltonian studied in this work contains only local
{Z,XX,YY,ZZ} operators, we obtain the expectation values
in the following way:

(WIZ|y) ~ P(0) — P(1),

(WIZZ|y) ~ P(0,0) — P(0, 1) — P(1,0) + P(1, 1),
(WIXX |) ~ 2P(+, +) +2P(—, =) — 1,

(WIPY W) ~ 2P(+i, +i) + 2P(—i, —i) — 1, (C1)
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FIG. 5. Quantum circuit for measuring A matrix elements in D-UBOS and estimating gradient in SGD. The circuit shown is an example
for measuring H*#“# at j = 5th gate using a six-qubit, depth-4 ansatz. The unitary operator / is one of the Hamiltonian components. The

o B

j = 5th gate of [_5)%?, (¥._5 |, and h are controlled by the ancilla qubit. The adjoint of the gates are applied to the circuit up to j = 5Sth

J

gate because the rest of the gates will not affect the measurement outcome. When the boolean b = 0 (b = 1), the real (imaginary) part of the
expectation value is estimated by the negative of the expectation value of Pauli-Z operator.

where P(-) is the relative frequency of measuring corre-
sponding states from sampling, and these expectation values
become exact with an infinite number of shots. By linear
combination with their corresponding coefficients (which are
all equal to 1 in this paper), we obtain the energy of the state.

The Hadamard test circuit for A matrix element measure-
ment in D-UBOS and SGD is shown in Fig. 5. See [86] for a
detailed guide on using this measurement circuit.

APPENDIX D: CALCULATING TOTAL NUMBER
OF MEASUREMENTS

The total number of measurements is defined as

Nmeas = INVstep X Nelement X Noperator X Nshots (Dl)
where Ngiep = Nepoch X Neae 1S the number of optimization
steps, the number of gates in the ansatz Ng,. is a constant
determined by the number of qubits n, and the circuit depth
d, the number of training epochs Nepoch is an algorithm hy-

perparameter, Neemene 1S the number of matrix elements or

----noisy, before optimization
----noisy, after optimization
optimal VQE energy
—— noiseless, before optimization
[ —=— noiseless, after optimization

state energy

0 20 40 60 80 100
index of identical circuit

(a)

observations to obtain the effective Hamiltonian, and Noperator
is the number of unique operators in the Hamiltonian.

The Hamiltonian studied contains only local
{Z,XX,YY,ZZ} operators. For an ansatz of n, qubits,
we need to measure 7, unique Z operators acting on different
qubits. For the three kinds of two-qubit operators, due to the
open boundary condition of the ansatz, there exists (n, — 1)
unique operators of each kind. Therefore, the total number of
unique operators in the Hamiltonian is 4n, — 3.

The total number of measurements for D-UBOS and Edg-
UBOS are calculated as

NGB = Nyep X 32 x (4ny — 3) x n (D2)

meas shots?

NP« = Nyep X 256 x (4n, — 3) x nf

meas shots *

(D3)

Edg
N, meas

= Nyep X (Mobs + 60) X (4n, —3) x n %, (D4)
where 32 is the unique real parameters of the gradient estima-
tor for SGD, 256 is the unique real parameters of the effective
Hamiltonian, and 60 is the empirically chosen number of

----noisy, before optimization
---- noisy, after optimization

—— noiseless, before optimization
—=— noiseless, after optimization

state energy

0 20 40 60 80 100
index of identical circuit

(b)

FIG. 6. The change in noisy state energy and noiseless state energy after (a) a D-UBOS and (b) an Edg-UBOS optimization step on the
same gate of 100 identical circuits using an ansatz of 8-qubit depth-4. The noisy state energy is always improved by the classical optimizer
using the noisy A. For D-UBOS, the noiseless energy worsens after optimization on average; for Edg-UBOS, the noiseless energy improves

on average (the optimal VQE energy is —15).
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------ D-UBOS, Nehots = 20, trial 2
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FIG. 7. Relative energy error for n, = 8 and n; = 4 as a function
of the total number of measurements during two different opti-
mization runs of D-UBOS (blue; 20 shots per circuit), Edg-UBOS
(orange; 10 shots per circuit, 450 observations), and SGD (green; 20
shots per circuit), which correspond to the same number of measure-
ments per UBOS step.

observations for testing the contender gate parameters in the
DROPR scheme. For simplicity, we keep the number of shots
per circuit the same for D-UBOS and SGD. Note that nqps has
a minimum value of 226.

APPENDIX E: HOW NOISE MAKES
THE OPTIMIZATION PLATEAU

To understand how noisy measurement outcomes lead to
energy plateauing above the optimal energy, we consider the
change in noisy state energy and in noiseless state energy
after one optimization step. We choose the state of a D-
UBOS run after 10 epochs with 10 shots per circuit whose
energy is about 60% off from the optimal VQE energy. We
apply one D-UBOS step with nthots = 20 on the same gate
of 100 identical state. As shown in Fig. 6(a), for a D-UBOS
step, the classical optimizer always improves the noisy energy

0.050{ , .
0.025
0.000
-0.025
~0.050

parameter value

—-0.075
—0.100

-0.125

10° 10? 102 103 104
number of artificial data generated per model

FIG. 8. Mean (blue solid line) and standard deviation (orange
dashed line) of distributions of postoptimization state energy from
100 different optimization steps on the first gate of identical state
as a function of numbers of artificial data generated per Gaussian
process model.

I Eg-UBOS

Eg-UBOS no subset
---- pre-optimization energy
E-UBOS

0.6
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0.2
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(E = Eoid)/|Eoia] where Eqg = -4.69

FIG. 9. Histograms of the final energy from 100 optimizations
(per approach) of the same single gate of an eight-qubit depth-4
ansatz with 10 shots per circuit. All trials use the same initial set
of 300 pairs of (¢}, Eyisy) differing only by the randomness inherent
in the techniques.

calculated with H, but the noiseless energy gets worse in most
cases and is very different from the noisy energy, which we
refer to as a “false-positive case.” The excessive noise in mea-
sured H makes it possible for a classical optimizer to find an
unphysical noisy state energy below the optimal VQE energy
of the ansatz. Then we repeat this procedure using Edg-UBOS
steps With nps = 450 and Lot = 10, which has roughly the

same total number of meas&?glrsnents [see Fig. 6(b)]. We find
that even though the improvement in noisy energy by an
Edg-UBOS step is much smaller than that by a D-UBOS step,
the noiseless energy is improved in most cases, which indi-
cates that Edg-UBOS can effectively suppress the noise in the
effective Hamiltonian (due to noisy quantum measurements)
and make nontrivial improvements to the noiseless energy.

Besides, the noiseless energy after an Edg-UBOS step is much

—e— 1, N measurements with 10 shots
—e— [, one measurement with 10N shots
0.6 —a— 0, N measurements with 10 shots
—A— 0, one measurement with 10N shots
v 0.59
=
2
>0.4
(]
©
€ 0.31
©
_
©
2 0.2
0.1
0.01
2 4 6 8 10
N

FIG. 10. Mean (circle marker) and standard deviation (triangle
marker) of distribution of state energy errors measured one time with
10N (blue) shots per circuit and measured N time with 10 shots (red)
as a function of N.
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FIG. 11. Optimal choices of measurement hyperparameters (ngors, Hobs) for [(2),(b)] a 4-qubit depth-2 ansatz, and [(c),(d)] an 8-qubit
depth-4 ansatz. The left panels show the optimal choice of hyperparameters for each interval of total number of measurements of each system
size. The right panels show their final optimized energy error averaged over the final energies of three independent UBOS runs with different
random initial states. The optimal combinations of n,,s and ng.s help the algorithm reach a few percent closer to the optimal VQE energy than

the nonoptimal choices.

closer to the noisy energy, showing the algorithm’s high accu-
racy in state energy estimation, which is very important for
convergence detection towards the end of its run.

Then we independently execute two D-UBOS runs with 20
shots per circuit, two Edg-UBOS runs with 450 observations
and 10 shots per circuit, and two SGD runs on different
random initial states. We look at the change in relative en-
ergy error throughout the full runs (see Fig. 7). We find that
Edg-UBOS always plateaus at an energy level much better
than D-UBOS and SGD. Moreover, even though the relative
energy error can get worse after one optimization step due to
noise in quantum measurement outcomes, the scale of such a
setback in Edg-UBOS is much smaller than in D-UBOS and is
comparable to it in SGD, which demonstrates that Edg-UBOS
is much more favorable for variational algorithms.

APPENDIX F: GPR PARAMETERS

The GPR scheme has several hyperparameters including
the number and size of subsets, the choice of kernel function,
and the number of artificial data generated with each model.
In this paper, we empirically choose to make 60 subsets with
size equal to 60% of the initial set size. We use the radial basis

function (RBF) kernel with a lengthscale of 1 for the Gaussian
process regressor, which is the common default. The number
of artificial data generated per model is 2% of the initial
set size.

In principle, one can generate an arbitrarily large amount of
artificial data at the cost of classical computing resources. To
understand the relationship between the amount of artificial
data and the effect of the GPR scheme, we fix a configuration
of the gates and then consider the change in energy induced
by the update of a single gate using Eg-UBOS with a dif-
ferent number of artificial data generated per model. Again
we choose the state of a D-UBOS run after 10 epochs with
10 shots per circuit whose energy is about 60% off from the
optimal VQE energy. We apply one Eg-UBOS optimization
step (with ngps = 450 and nfliis = 10) with a different number
of artificial data generated per model on the first gate, and
look at the mean and standard deviation of the distributions
of postoptimization state energy over 100 different executions
for each hyperparameter choice. As shown in Fig. 8, both the
mean and the standard deviation of the distribution do not
change much as the number of artificial data generated per
model increases. Since the number of subsets is 60, generating
10 artificial pairs per model means 600 artificial pairs which
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is already larger than the amount of pairs in the initial set,
which is 450. Therefore, it is unlikely to further increase the
diversity and comprehensiveness of the augmented data set by
further generation of artificial data, leading to similar mean
and standard deviation of the distribution of postoptimization
state energy for all choices of the number of artificial data
generated per model.

We compare the normal GPR scheme to the GPR scheme
training only one GPR model with the entire training set for
artificial data generation. As shown in Fig. 9, when some
measured (¢, E') pairs in the initial set are so noisy that one
E-UBOS update worsens the state energy, dividing the initial
set into overlapping subsets and generating artificial data from
these subsets causes significantly fewer cases of worsening the
energy than generating artificial data from the entire initial set.

APPENDIX G: DROPR ENERGY MEASUREMENT
FOR CONTENDER GATE PARAMETERS

In the DROPR scheme, we find the energy of the state
assembled with each contender gate parameters ¢; through
additional quantum measurements. Even though we spend
more shots per circuit for these measurements, the outcome is
still going to be noisy. An alternative approach is to measure
the same state several times, each with the same shots per
circuit as in measuring observations (nfliﬁs), and averaging
the obtained energies. To spend the measurement resources
more efficiently, we compare the accuracy of measured energy

obtained by measuring the state one time with 10N shots per
circuit to measuring the identical state N times with 10 shots
per circuit and averaging the measured energies. We choose a
random state and measure its energy 100 times independently
with each of these two methods, and we repeat with different
values of N. We look at the mean and standard deviation of
the distributions of the energy error (see Fig. 10). We find
that, when N is small such that the (10N )-shots measurement
outcome is still very noisy, averaging over many noisy mea-
sured energies is slightly more accurate than one less noisy
measured energy. Some interesting open questions include
whether this conclusion holds as N further increases, and if
there exists a deterministic optimal shot per circuit for each
measurement instead of 10, which is empirically chosen.

APPENDIX H: EDG-UBOS OPTIMAL
HYPERPARAMETER CHOICE

We consider the optimal choice of measurement hyperpa-
rameters for Edg-UBOS, nfliis, and ngps, given roughly the
same total amount of measurement (see Fig. 11). We find that,
in the range studied, nSE}?OgtS and nghs have no priority over each
other, so it is better to increase both hyperparameters follow-
ing an alternating pattern to minimize the relative energy error
to the optimal VQE energy. The difference in relative energy
error to the best VQE energy between the optimal choice and
the nonoptimal choice is less than 5%, which implies some

flexibility in hyperparameter tuning.
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