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Variational quantum eigensolvers (VQEs) are a promising approach for finding the classically intractable

ground state of a Hamiltonian. The unitary block-optimization scheme (UBOS) is a state-of-the-art VQE method

that works by sweeping over gates and finding optimal parameters for each gate in the environment of other gates.

UBOS improves the convergence time to the ground state by an order of magnitude over stochastic gradient

descent. It nonetheless suffers in both rate of convergence and final converged energies in the face of highly

noisy expectation values coming from shot noise. Here we develop two classical postprocessing techniques

that improve UBOS especially when measurements have large shot noise. Using Gaussian process regression,

we generate artificial augmented data using original data from the quantum computer to reduce the overall

error when solving for the improved parameters. Using double robust optimization plus rejection, we prevent

outlying data which are atypically noisy from resulting in a particularly erroneous single optimization step,

thereby increasing robustness against noisy measurements. Combining these techniques further reduces the final

relative error that UBOS reaches by a factor of 3 without adding additional quantum measurement or sampling

overhead. This work further demonstrates that developing techniques that use classical resources to postprocess

quantum measurement results can significantly improve VQE algorithms.

DOI: 10.1103/PhysRevA.110.062403

I. INTRODUCTION

In the near term, quantum computers are limited by qubit

coherence and gate fidelity. These early noisy intermediate-

scale quantum (NISQ) devices [1] have too few physical

qubits with low coherence time to implement robust er-

ror correction schemes, making them unsuitable for many

promising quantum algorithms such as Shor’s algorithm [2–9]

and Grover’s algorithm [10–15]. To avoid these issues, hybrid

classical-quantum algorithms like the quantum approximate

optimization algorithm (QAOA) [16] and the variational quan-

tum eigensolver (VQE) [17–19] leverage the resources of a

quantum computer to simulate and sample from a classically

intractable state while using classical resources to reduce the

demand on qubits and coherence.

VQE aims to compute an upper bound for the ground-state

energy of a Hamiltonian Ĥ , which is generally the first step in

computing the properties of molecules and materials [20–23].

Starting with an ansatz which is a quantum circuit built with a

set of parametrized quantum gates to model a trial wave func-

tion, |�〉, VQE iteratively optimizes the gate parameters of the

ansatz to minimize the energy of the trial state by computing

the expectation values of operators in the Hamiltonian through

measurements on the quantum computer, and then classically

updating the gate parameters.

Given the stochastic nature of measurement on quantum

devices [24], one must measure enough copies (denoted as

shots) of the same circuit to achieve a given level of precision
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since the distribution of measurement outcomes on a Hermi-

tian operator has error inversely proportional to the square root

of the number of shots per circuit [25]. It is worth noting that

this error scaling can be improved by using more sophisticated

quantum algorithms such as quantum phase estimation [26];

unfortunately, these techniques require much deeper circuits

making them impractical for their current generation of quan-

tum devices.

The standard approach to VQE has been improved

in various ways including ansatz construction [17,27–33],

efficient measurement strategy [34–45], error mitigation tech-

niques [46–59], and optimization strategies [60–70]. Classical

machine-learning techniques such as Koopman operator

learning [71] and a physics-informed neural network [72]

have also been used to improve VQE. Typical optimiza-

tion strategies for VQE algorithms are gradient-free classical

optimization methods including the Nelder-Mead method

and Powell’s algorithm [67,68,73], a gradient-based search-

ing strategy [27,33,66,74–85], and analytical methods such

as Anderson acceleration [69]. Traditional methods such as

stochastic gradient descent (SGD) face several challenges in-

cluding local minima, significant hyperparameter tuning, slow

convergence, and exponentially vanishing gradients.

The unitary block optimization scheme (UBOS) is a

gradient-free and hyperparameter-free optimization algorithm

[86]. By optimizing a subset of parameters at each step using

the effective Hamiltonian H̃ , it avoids gradient calculation,

tunnels through some local minima, makes nontrivial steps de-

creasing the energy when facing barren plateaus, and requires

an order of magnitude less expectation value measurements

than SGD [86].
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The key step of UBOS is to generate the effective Hamilto-

nian for a gate in a fixed environment. The standard approach

to accomplish this is to directly measure the matrix elements

using a separate quantum circuit for each element; we refer to

this approach as D-UBOS. An alternative approach is to infer

the effective Hamiltonian from pairs of gate parameters and

their corresponding energies {(t j, Emeasured)}, which we will

refer to as E-UBOS.

One of the primary concerns for VQE algorithms is its

shot budget (total amount of measurements). One approach to

reducing the shot budget is to simply take fewer measurements

per circuit, resulting in much larger stochastic errors due to the

finite number of shots (denoted as shot noise). Significant shot

noise often hinders classical optimizers from finding the true

global minimum; many methods including UBOS plateau at

an energy level above the optimal VQE energy of the ansatz

(VQEOPT). This raises scalability concerns for the VQE

algorithm [87–89].

There are efforts on reducing the number of shots required

for gradient-based VQE such as estimating the gradient with

few-shot measurements by the parameter shift rule [90], mod-

ifying the number of shots for estimating each component of

the gradient using an adaptive optimizer [77] and by boot-

strapping and resampling based on the variance of obtained

shots [91], and importance sampling [92,93]. These methods

aim to frugally select the number of shots while still using

SGD.

For UBOS, shot noise in quantum measurements causes

error in the effective Hamiltonian H̃ , which leads to inac-

curate state energy estimation using H̃ . D-UBOS has no

measure against error in measurement outcomes. In E-UBOS,

one can partially mitigate shot noise by increasing the num-

ber of (t j, Emeasured) pairs at the cost of additional quantum

measurements. Unfortunately, when we empirically compare,

E-UBOS as naively formulated still requires the same amount

or slightly more shot budget to reach the same energy error as

D-UBOS (see Fig. 3).

In this paper, we develop generalizations of E-UBOS

to resolve this problem. Our philosophy is that while

the classical optimization of the gate parameters for the

exact effective Hamiltonian is straightforward, classical shot-

noise-aware postprocessing techniques can help reach a

better energy without taxing the shot budget, especially

when the quantum measurements are very noisy. We in-

troduce two techniques: data augmentation with Gaussian

process regression (GPR) and double robust optimization

plus rejection (DROPR). We demonstrate that these two

classical postprocessing techniques can effectively suppress

shot noise in quantum measurements and reduce the rel-

ative energy error of the full optimization roughly by a

factor of 3 for all choices of hyperparameters in the range

studied.

The rest of the paper is organized as follows: In Sec. II

we briefly review how to implement different types of UBOS.

Next, in Sec. III, we describe the classical postprocessing

techniques. Then in Sec. IV we benchmark the performance

of E-UBOS with these techniques applied and compare it with

D-UBOS. Finally, we conclude the paper in Sec. V with a

discussion of our main results.

II. INTRODUCTION TO UBOS METHODS

A. Review of UBOS

In this paper, we describe all types of UBOS using a varia-

tional ansatz,

|ψ〉 =

K∏

j=1

U j |0〉, (1)

obtained by applying K generic two-qubit unitaries U j ∈
SU(4) (i.e., quantum gates) to adjacent qubits in a brickwork

pattern with gate depth d. The generic two-qubit unitary, U j ,

can be written as a linear combination of 16 two-qubit Pauli

strings,

U j =

3∑

³,´=0

t
³´

j P³´ , (2)

where P³´ = σ ³ ⊗ σ ´ , σ ³,´ ∈ {I, X,Y, Z} are Pauli matri-

ces, and the complex coefficients t
³´

j are constrained to

preserve the unitarity of U j (see Appendix A).

UBOS then parametrizes the state by the gate parameters

{t1, t2, . . . , tK}, where t j ≡ (t00
j , t01

j , . . . , t33
j ),

|ψ〉 =

⎛
¿

j−1∏

k=1

Uk

À
⎠U j

⎛
¿

K∏

k= j+1

Uk

À
⎠|0〉

=

⎛
¿

j−1∏

k=1

Uk

À
⎠

⎛
¿

3∑

³,´=0

t
³´

j P³´

À
⎠

⎛
¿

K∏

k= j+1

Uk

À
⎠|0〉

=

3∑

³,´=0

t
³´

j

∣∣ψ³´

j

〉
, (3)

where

∣∣ψ³´

j

〉
=

⎛
¿

j−1∏

k=1

Uk

À
⎠P³´

⎛
¿

K∏

k= j+1

Uk

À
⎠|0〉 (4)

is the result of substituting gate U j by the Pauli operator

P³´ and it has the same circuit depth d . It is also the partial

derivative of |ψ〉 with respect to t
³´

j which we use to estimate

the gradient in SGD.

Given some Hamiltonian Ĥ , keeping the parameters for all

but the jth gate fixed, UBOS writes the energy as a function of

the jth gate parameters,

E (t j ) = 〈ψ |Ĥ |ψ〉

=

⎛
¿

3∑

³′,´ ′=0

t
∗³′´ ′

j

〈
ψ

³′´ ′

j

∣∣
À
⎠Ĥ

⎛
¿

3∑

³,´=0

t
³´

j

∣∣ψ³´

j

〉
À
⎠

=

3∑

³,´,³′,´ ′=0

t
∗³′´ ′

j H̃³′´ ′;³´t
³´

j (5)

= t†
j H̃ t j (6)

with the effective Hamiltonian for gate j, H̃ as

H̃³′´ ′;³´ =
〈
ψ

³′´ ′

j

∣∣Ĥ
∣∣ψ³´

j

〉
. (7)
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H̃ is a 16 × 16 Hermitian matrix with 256 unique real param-

eters for its matrix elements (136 for real component and 120

for imaginary component), and is independent of t j .

Once H̃ is obtained, UBOS classically optimizes the gate

parameters for the jth gate while keeping all other gates fixed

by minimizing Eq. (6) with respect to the gate parameters

t j under the unitary constraint (see Appendix A). This is a

16-parameter optimization problem that can be solved using

any classical technique such as gradient descent, Nelder-

Mead, etc. UBOS then sweeps over gates, optimally minimiz-

ing the energy of one gate at a time while keeping other gates

temporarily fixed. The update order for gates is shuffled to be

random for every sweep, also known as epoch.

To obtain the effective Hamiltonian, D-UBOS directly

measures these matrix elements with Hadamard test circuits

of depth at most 2d (see Appendix C), where the Hamiltonian

is expanded into the sum of unitary operators. The expectation

value measurement of each Hamiltonian component requires

(many copies of) a separate circuit, and the amount of shot

noise depends on the number of shots per circuit (denoted

as nshots). The total number of measurements Nmeas scales as

O(dn2
qnshots) (see Appendix D), where nq is the number of

qubits and d is the ansatz depth.

B. Review of E-UBOS

As described in Appendix G of the original UBOS paper

[86], the matrix elements of H̃ in Eq. (6) are linear unknowns

and independent of the gate parameters at the jth gate, so

instead of measuring them individually, we can solve for them

from a system of linear equations obtained by measuring the

energies of the states with the jth gate replaced by a two-qubit

unitary generated with different, randomly chosen gate param-

eters. One advantage of this approach is that the depth of the

circuit required for measurement is only d (see Appendix C).

By writing t j and H̃ as their complex form, t j =
Re [t j] + i Im [t j] and H̃ = Re [H̃] + i Im [H̃], We can rewrite

Eq. (5) as

E (t j ) =

3∑

³′,´ ′,³,´=0

t
³′´ ′³´

j,R Re [H̃³′,´ ′;³,´ ]

+ t
³′,´ ′,³,´

j,I Im [H̃³′,´ ′;³,´ ], (8)

where

t
³′,´ ′,³,´

j,R ≡ Re
[
t
³′,´ ′

j

(
t
³,´

j

)∗]
, (9)

t
³′,´ ′,³,´

j,I ≡ Im
[
t
³′,´ ′

j

(
t
³,´

j

)∗]
, (10)

are quadratic forms of the t j components (see Appendix B).

Therefore, every random gate parameter vector t j corresponds

to a noiseless energy E .

We generate random t j by sampling a random two-qubit

unitary from the unitary Haar measure and then performing

decomposition in the Pauli basis. State energies are calculated

by the sum of expectation values of ĥi, where ĥi are the com-

ponents of the Hamiltonian. Since the Hamiltonian studied

contains only local {Z, XX,YY, ZZ} operators, by measuring

their expectation values on quantum devices (see Appendix C)

we obtain the measured state energy, Emeasured, which is

a stochastically noisy observation of pair (t j, Emeasured). To

characterize shot noise in the measured energy, we can write

Emeasured as

Emeasured = E + δE = t†
j H̃ t j + δE , (11)

where δE is the error in the measured state energy due to shot

noise (assuming no error from the experimental process of

measuring the device).

Given nobs pairs of (t j, Emeasured), we can form a system of

nobs linear equations and determine H̃ by linear least-squares

fit over the system. The number of linearly independent com-

ponents in the set Tj ≡ {tnm
j,R ∪ tnm

j,I } is found to be 226 and

is smaller than 256, the number of unique real parameters in

the 16 × 16 Hermitian matrix H̃ , which leads to a nonunique

effective Hamiltonian that satisfies Eq. (8). However, any

effective Hamiltonian that satisfies Eq. (8), or equivalently,

Eq. (6), is suitable for optimization, and by increasing nobs

to overconstrain the system, we can add additional robustness

against error in measured state energy which is normally re-

duced by increasing shots per circuit, nshots. In other words,

to increase the accuracy of the effective Hamiltonian, one can

use larger nobs to compensate for the large stochastic sampling

noise due to small nshots and vice versa (note that the minimum

value of nobs is 226).

III. CLASSICAL POSTPROCESSING FOR E-UBOS

In the current applications of UBOS, the effective Hamil-

tonian at each step is computed from a finite number of

shots, which results in a noisy effective Hamiltonian that we

assume to be “exact” when computing the new parameters.

Here we suggest an alternative approach that does a significant

amount of classical postprocessing on the data gained from

E-UBOS (and sometimes additional quantum postprocess-

ing). This classical postprocessing can be aware of the noisy

nature of the measurements allowing it to better select new

parameters. In this paper, we introduce two techniques: Data

augmentation with Gaussian process regression (GPR) and

double robust optimization plus rejection (DROPR) inspired

from approaches in machine learning.

A. Data augmentation with Gaussian process regression

An E-UBOS optimization step involves three parts: first, it

obtains a set of (t j, Emeasured) pairs through quantum measure-

ments. For convenience, we will refer to this set as the initial

set, denoted by Sinit. Then, it computes the effective Hamil-

tonian from a system of linear equations formed with Sinit.

Finally, it classically finds the gate parameters that minimizes

the state energy based on the obtained effective Hamiltonian.

When the number of shots per circuit is small, large shot

noise in pairs in Sinit can cause severe error in the calculated

effective Hamiltonian.

One could increase the accuracy of the effective Hamil-

tonian by having more (t j, Emeasured) pairs but this would

obviously involve a larger shot budget. An alternative to

this approach is to generate artificial pairs using “data aug-

mentation” [94–96] in such a way that expanding Sinit with

these additional artificial data will lead to a more accurate

estimation of the effective Hamiltonian. Artificial data are

created by predicting the energy of new random t j based on
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existing observations. Traditional algorithms such as least-

squares regression suffer from the large shot noise in each

observation and the nonlinear relationship between the fea-

tures (gate parameters) and the target (energy). An alternative

approach is to use Gaussian process regression, which returns

an evidence-based posterior probability distribution over pos-

sible functions that fit a set of points [97,98]. Here we describe

how GPR can be used to generate new artificial data for

our VQE energies including for completeness the underlying

theory for how GPR selects the new data.

We assume that the shot noise in the measured energy

follows some Gaussian distribution, δE ∼ N (0, σ 2
ε ), such

that for each random gate parameter t j , the corresponding

measured energy follows the normal distribution Emeasured ∼
N (E , σ 2

ε ), where E is the noiseless energy. Then we can model

the collection of measured energies as a multivariate normal

(MVN) distribution P({Emeasured}|{t j}). Any sample from this

MVN distribution would correspond to a function that is pos-

sibly suitable to describe the relationship between the various

t j and E . However, these functions are very unlikely to be

smooth enough for regression, and the number of possible

functions is infinite. Therefore, we determine the possible

functions by sampling with a kernel function which measures

the similarity (covariance) between two t j’s, following the

logic that similar t j’s should lead to similar E ’s. This con-

stitutes our prior, which is a collection of infinite numbers

of smooth functions derived with the kernel, and its mean

function is equal to zero.

We can write a collection of observed data and artificial

data as {(tj,obs, Emeasured)} and {(tj,new, Epredict)}, respectively,

where Epredict are unknown. Then we can model Emeasured and

Epredict as an MVN distribution in block matrix notation:

P({Emeasured}, {Epredict}|{tj,obs}, {tj,new})

∼ N

([
Mobs({tj,obs})

Mnew({tj,new})

]
,

[
K̂obs,obs Kobs,new

KT
obs,new Knew,new

])
, (12)

where Mobs and Mnew are the mean functions of the MVN

distribution for the collection of observed data and artificial

data, respectively. K̂obs,obs = K{tj,obs},{tj,obs} + σ 2
ε is the covari-

ance matrix between all t j in the observed data with shot noise

added. Kobs,new = K{tj,obs},{tj,new} and Knew,new = K{tj,new},{tj,new} are

the covariance matrices between all t j in the observed data

and in the artificial data and between all t j in the artificial data,

respectively.

Now our observations {(tj,obs, Emeasured)} become partial

observations of this joint normal distribution. Therefore, by

marginal and conditional distribution of the multivariate nor-

mal distribution theorem, we can find that the conditional

probability distribution of the predicted energies follows the

MVN in block matrix notation,

P({Epredict}|{Emeasured}, {tj,obs}, {tj,new}) ∼ N (μ,	), (13)

where μ = KT
obs,newK̂−1

obs,obs{Emeasured} and 	 = Knew,new −

KT
obs,newK̂−1

obs,obsKobs,new are its mean and covariance, respec-

tively. The mean value of each feature of this MVN is then

the predicted energy for each artificial t j with maximum

likelihood.

Equivalently, one can explicitly find the probability dis-

tribution of possible functions f instead of energies. In this

way, one sees that the Gaussian process uses some kernel

function to generate a prior for probability distribution of

possible functions and calculates the posterior probability

distribution of the functions for the observed data (evi-

dence), P({ fmeasured}|{(tj,obs, Emeasured)}), which is similar to

the Bayesian inference process. Then, it repeats the same

formalism as in Eqs. (12) and (13) with energy terms replaced

by corresponding function terms.

Gaussian process regression is more useful in this data

augmentation task than least-squares regression. It relaxes

the form of the predicted model from one function to a

probability distribution of possible functions, which is more

effective in dealing with the nonlinear relationship between

t j and E and the nonunique effective Hamiltonians that fit the

observations well.

We propose the following scheme of performing data

augmentation using Gaussian process regression (GPR): we

assemble overlapping subsets of (t j, Emeasured) pairs from Sinit,

train a Gaussian process model using a Gaussian process

regressor for each subset, generate artificial (t j, Epredict) pairs

by applying those models on new random gate parameters

t j , and merge them with the Sinit to create an expanded data

set. We choose the radial basis function (RBF) as a kernel,

which is the common default. See Appendix F for a detailed

discussion of hyperparameter choices for this technique.

We empirically find that dividing the initial set into over-

lapping subsets leads to better optimization results than using

the whole initial set for GPR model training and artificial data

generation despite the subsets involving less total data (see

Appendix F).

In the ideal GPR data augmentation scheme, subsets of

pairs will not overlap with each other. However, given the

constraint that the minimum size of the subset is 226, if

the number of elements in the initial set is not much bigger

than 226 due to the limited total number of measurements,

we have to allow overlap between subsets, which leads to

non-negligible similarity between the models learned from

different subsets of pairs.

B. Double robust optimization plus rejection

With a real quantum device, the shot noise in observations

and thus in the computed effective Hamiltonian is inevitable,

which hinders the classical optimizer from finding the true

gate parameters t j that minimize the state energy. However,

we can use robust optimization to mitigate the impact of shot

noise. Robust optimization is a widely applied approach to

deal with data uncertainty in optimization that does not require

knowledge of the true probability distribution of uncertain

data [99,100]. Robust optimization seeks to find solutions that

perform well across a range of possible conditions, rather than

optimizing for a specific set of conditions.

Similar to the argument in the previous section, we as-

sume some of the (t j, Emeasured) pairs in the initial set Sinit

are extremely noisy, and a fit involving these corrupted pairs

will give a bad effective Hamiltonian. Given the difficulty of

screening them out in advance, we create subsets of Sinit, in

each of which a random portion of pairs in Sinit is dropped out

to mitigate their impact. Since some of these subsets are less

likely to have the particularly bad pairs, if we fit an effective
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Hamiltonian H̃ from each subset, some of the H̃ ’s may be less

noisy due to the absence of (at least some of) the bad pairs.

Then instead of using the energy calculated using Eq. (6) with

one H̃ as a loss function for gate parameter optimization, we

instead find the gate parameter t j such that

max{t†
j H̃kt j : k = 1, 2, . . . , nsubset} (14)

is minimized, where nsubset is the number of effective Hamilto-

nians obtained. This is called a worst-case robust optimization

of gate parameters.

Finding the gate parameters that minimize the energy eval-

uated with different effective Hamiltonians can reduce the

impact of a small portion of extremely noisy pairs in the initial

set. However, this strategy fails when there is a particularly

bad effective Hamiltonian within the collection of all H̃ ’s that

always gives the worst energy and forces the classical opti-

mizer to accommodate to it. In this case, the gate parameters

after optimization may have the state energy calculated with

bad H̃ minimized while giving a noiseless state energy worse

than before the optimization step. To further reduce the impact

of noisy H̃ in the collection of all H̃ ’s, we add a second layer

of robust optimization: after obtaining a collection of H̃’s (de-

noted as SH̃ ) from all subsets of pairs, we create subcollections

of H̃ ’s, in each of which a random portion of H̃ ’s in SH̃ is

dropped out. We use each subcollection to perform worst-case

robust optimizations independently, each of which yields a t j .

To select the one that gives the best noiseless energy, we do

additional quantum measurements for each t j and the original

preoptimized t j with more shots per circuit than the shots used

for obtaining the observations in Sinit (see Appendix G). Based

on newly measured energies, we choose the best t j (or reject

the optimization move if the original parameters are lowest in

energy leaving the gate parameters unchanged).

The full description of the scheme is shown in Algorithm

1. This strategy resembles the Median-of-Means trick used

in Classical Shadows [41,101] and the Metropolis-Hastings

Algorithm in Monte Carlo methods and is effective in pre-

venting the algorithm from accepting gate parameters, which

give plausible state energy calculated with a noisy effective

Hamiltonian but have noiseless state energy worse than before

the optimization step.

Again, in the ideal scheme there should not be overlap

between subsets of pairs for effective Hamiltonian fitting.

However, given the constraint of the minimum size of the

subset of pairs being 226, if the size of the initial set is small,

we have to allow overlap between subsets.

C. GPR and DROPR combined

For the rest of the paper, we will refer to the E-UBOS

method with the GPR technique as Eg-UBOS, and the E-

UBOS method with the DROPR technique as Ed-UBOS.

Since the GPR technique focuses on expanding the measured

data set to be more comprehensive for the effective Hamilto-

nian computation and the DROPR technique aims to improve

the search for optimal gate parameters given some set of noisy

data, we can apply these two techniques in a combined way to

take their complementary advantages. The E-UBOS method

with both techniques applied is called Edg-UBOS.

ALGORITHM 1. DROPR.

Input: Preoptimized quantum circuit |�〉, initial set

of nobs pairs of (t j, Emeasured ), number of shots per

circuit nshots, the index of gate to be optimized j, DROPR

parameters nsubset , Lsubset , nsubcol, Lsubcol, ndup

Output: Optimal parameters tj

Randomly form nsubset overlapping subsets of pairs

from the initial set. Each subset has Lsubset pairs.

for i = 0 to nsubset − 1 do

Convert t j of each pair in this subset to its quadratic

form through Eq. (9) and Eq. (10)

Compute H̃ through linear least-square regression

using Eq. (8)

end for

Randomly form nsubcol overlapping sub-collections of

H̃ from the collection of all H̃ obtained. Each

subcollection has Lsubcol elements.

for i = 0 to nsubcol − 1 do

Find a contender t j that minimizes Eq. (14)

Measure the energy of the state with the jth gate

replaced by a two-qubit unitary generated with

contender tj with ndup × nshots shots per circuit

end for

Measure the energy of state |�〉 with ndup × nshots shots

per circuit

Select the optimal t j with the best measured energy (or

reject the change if the original state energy is optimal)

IV. NUMERICAL COMPARISONS OF APPROACHES

A. Comparing Edg-UBOS with D-UBOS

In this paper, we use the one-dimensional quantum Heisen-

berg Hamiltonian with open boundary conditions

Ĥ = −h

nq∑

j=0

σ z
j − Jz

nq−1∑

j=0

σ z
j σ

z
j+1 − Jx

nq−1∑

j=0

σ x
j σ

x
j+1

− Jy

nq−1∑

j=0

σ
y

j σ
y

j+1 (15)

for demonstration, where nq is the number of qubits and Jx =
Jy = Jz = h = 1.

To better understand the performance of UBOS with noisy

expectation value measurement, we implement the relevant

circuits for UBOS in Qiskit [102] and perform simulations

on a classical computer (without quantum hardware noise

model) on a four-site two-layer ansatz and an eight-site four-

layer ansatz. To maintain the unitarity of the two-qubit gates

in optimization, the ansatz’s two-qubit unitary blocks are

parametrized with the KAK decomposition [103]. Each gate

in our initial circuit is generated randomly by selecting the

KAK parameters uniformly at random from [0, π ).

To avoid ambiguity, for the rest of the paper we will use

superscripts to distinguish between the number of shots per

circuit for D-UBOS and for methods based on E-UBOS. For

example, nD
shots for D-UBOS and n

Edg

shots for Edg-UBOS.

To study the difference in optimization step quality be-

tween Edg-UBOS and D-UBOS given large shot noise, we
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(a) (b)

FIG. 1. (a) Histograms of the relative energy change from 100 steps of D-UBOS (blue) with 20 shots per circuit and Edg-UBOS (red) with

450 observations and 10 shots per circuit at the same single gate of an 8-qubit depth-4 ansatz. This corresponds to the same total number of

quantum measurements for D-UBOS and Edg-UBOS. (b) Relative energy difference between 10 epochs of UBOS types (different colors) and

80 epochs of SGD on different system sizes (types of points) and the optimal VQE energy, which is the minimum energy that can be obtained

by the ansatz being used vs number of shots per circuit. Each point averages over the final energies of five independent runs with different

random initial states.

choose the final state of a D-UBOS run after 10 epochs with

10 shots per circuit whose energy is about 60% off from

the optimal VQE energy (for the system size studied, the

noiseless state energy plateaus before the fourth epoch). We

apply one D-UBOS step with nD
shots = 20 on the first gate.

Since the result of this application is stochastic, we look at the

distribution of the relative energy change, (E − Eold)/|Eold|,
in over 100 different executions of a D-UBOS step. Then we

repeat this procedure using Edg-UBOS steps with nobs = 450

and n
Edg

shots = 10, which has roughly the same total number

of measurements. As shown in Fig. 1(a), we find that two

distributions have roughly the same standard deviation, but the

distribution for Edg-UBOS has a more negative mean value

than that of D-UBOS, which indicates that one Edg-UBOS

step improves the state energy more than one D-UBOS step on

average. By comparing the amount of samples with positive

relative change in energy, we also notice that Edg-UBOS is

much less likely to find “false positive” gate parameters whose

noiseless state energy is worse than before optimization. See

Appendix E for a detailed discussion on false-positive gate

parameters.

We also compare the final state energies at which Edg-

UBOS and D-UBOS plateau after 10 epochs (SGD after 80

epochs; see Appendix D) given different shot noise. As shown

in Fig. 1(b), the relative energy difference between final states

of the algorithm runs and the optimal VQE energy decays

approximately algebraically as

(E − Eopt)/|Eopt| ∼ A × 10−´ND
shots + C,

where A and C are algorithm and size-dependent constants

with ´ ∼ 2.5 × 10−3 except for one SGD ansatz (four qubits;

depth 2) which decays with ´ ∼ 1.4 × 10−3. For the choice

of measurement hyperparameters, we start with a set of

nD
shots for D-UBOS and SGD and choose the combination

of (nobs, n
Edg

shots) for Edg-UBOS such that the two methods

have roughly the same total number of measurements (see

Appendix D), prioritizing large nobs.

In the face of significant shot-noise coming from using

a finite number of shots, both UBOS and SGD plateau at a

nonoptimal VQE energy. At a fixed number of shots, we find

that D-UBOS and SGD both plateau at similar energies with

SGD doing slightly better at a small number of shots and D-

UBOS doing slightly better at a larger number of shots. This

is consistent with what was seen in [86]. With the addition of

Edg-UBOS, we find that the final plateaued energy is better by

roughly a factor of 3 with respect to the optimal VQE energy.

We find that the final state of an Edg-UBOS run has

roughly a factor of 3 smaller relative energy error with respect

to optimal VQE energy than D-UBOS for all system sizes and

total number of measurements studied.

SGD seems to outperform D-UBOS below 100 shots per

circuit and is outperformed by D-UBOS as the number of

shots per circuit increases further, which agrees with the ob-

servations in [86]. For all choices of number of shots per

circuit, Edg-UBOS reaches at least a factor of 2 smaller rela-

tive energy error than SGD. Note that we choose a number

of epochs that is much larger than required for algorithms

to plateau because energy fluctuates drastically for D-UBOS

when shot noise is large and it is hard to determine conver-

gence. See Appendix E for details.

We now consider the plateaued relative energy difference

after 10 epochs of various forms of UBOS as we tune the

measurement hyperparameters. As shown in Fig. 2 (left),

the relative energy errors of Edg-UBOS are roughly propor-

tional to 10−Nmeas where the total number of measurements

Nmeas ∝ (nobs × n
Edg

shots) (see Appendix D). For every choice of

(nobs, nshots) in Edg-UBOS, we can choose an identical total

number of measurements in D-UBOS and again compare the

relative error of the energy [see Fig. 2 (middle)] and find that

for every choice of hyperparameters, Edg-UBOS is always

lower in relative energy error (on average) than D-UBOS [see

Fig. 2 (right)]. The advantage of Edg-UBOS becomes more

significant in larger systems and when the total number of

measurements is less, indicating Edg-UBOS is particularly

useful when the shot noise in quantum measurements is large.
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(a)

(b)

FIG. 2. Filled contour plots of the relative energy difference with optimal VQE energy, which is the minimum energy that can be obtained

by the ansatz being used, for (a) nq = 4 and nd = 2, and (b) nq = 8 and nd = 4 of Edg-UBOS (left panels), D-UBOS (middle panels), and

their difference (right panels) as a function of measurement hyperparameters (n
Edg

shots and nobs for Edg-UBOS, and nD
shots for D-UBOS with value

chosen to match the total number of measurements of Edg-UBOS at each grid point). Each point averages over the final energies of three

independent UBOS runs with different random initial states. All points in the right panels are negative, showing that Edg-UBOS reaches an

energy closer to the optimal VQE energy than D-UBOS regardless of the choice of measurement hyperparameters and system size.

See Appendix H for a more detailed discussion of optimal

measurement hyperparameter choice.

B. Comparing the effect of each classical technique

To better understand the individual role of our two post-

processing approaches, we fix a configuration of the gates

and then consider the change in energy induced by the

update of a single gate using these approaches. We gen-

erate a configuration of the gates by running D-UBOS for

10 epochs using only 10 shots per circuit which reaches

an energy of 60% off from the optimal VQE energy.

We apply one E-UBOS optimization step (with nobs = 300

and n
Edg

shots = 10) with different classical techniques applied

(E-UBOS, Eg-UBOS, Ed-UBOS, Edg-UBOS) on the first

gate, and look at the distribution of postoptimization state

energy over 100 different executions for each technique. First

[see Fig. 3(a)], we use the same fixed set of 300 observations

of (t j, Emeasured) for all four approaches so that the 100 differ-

ent executions of each approach differ due to the randomness

intrinsic to each classical technique. Both classical techniques

proposed in this paper as well as their combination improve

the energy more often than making it worse. Moreover, all

techniques and for essentially all random choices are much

better than the E-UBOS step itself, motivating the use of these

techniques.

The improvement of the energy in the Eg-UBOS step (with

GPR technique) can often be large, but there is a sizable

probability of making the energy worse than the initial starting

energy. The Ed-UBOS step (with DROPR technique) tests the

gate parameters it is going to use with additional quantum

measurements and rejects the change if the energy appears

to be getting worse. This means that only for a small fraction

of the time does the energy get worse and is responsible for

the mode in the histogram at the original energy. The rest of

the time the energy improves nontrivially but not as much as

Eg-UBOS. The Edg-UBOS step (with both techniques) makes

a good balance between the effects of both techniques. It not

only makes nontrivial improvement to energy but also has

a strong ability to reject false-positive gate parameters after

optimization.

We further test these conclusions on the same gate (and

respective configurations) by initializing 100 different initial

sets of 300 observations and executing steps of {E-UBOS, Eg-

UBOS, Ed-UBOS, Edg-UBOS} independently on each of the

initial sets. As shown in Fig. 3(b), Eg-UBOS seems to cause

more false-positive cases while having a larger chance to

improve energy. Ed-UBOS detects some false-positive cases

and rejects the change otherwise mainly improving the energy.

Edg-UBOS (with both techniques) takes the complementary

advantages of both. We also notice that the distribution of

state energy after an E-UBOS step has less negative mean

value than the preoptimization energy, which indicates that

an E-UBOS step worsens the energy on average. We attribute

this to the fact that the minimum number of pairs is 226, and

300 pairs cannot overconstrain the system enough to reduce

the large shot noise in the calculated H̃ , which again shows

the benefit of these classical postprocessing techniques.
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(a) (b)

FIG. 3. Histograms of the final energy from 100 optimizations (per approach) of the same single gate of an 8-qubit depth-4 ansatz with 10

shots per circuit. In (a) all trials use the same initial set of 300 pairs of (t j, Enoisy) differing only by the randomness inherent in the techniques.

In (b) a new random set of 300 parameters t j are chosen for each sample.

As discussed in the previous section, we think that the

occurrence of false-positive cases can be greatly reduced if

the number of observations is large enough to allow nonover-

lapping subsets of pairs being assembled in each classical

techniques.

V. DISCUSSION AND OUTLOOK

In this paper, we propose Edg-UBOS, a variant of the

unitary block-optimization scheme (UBOS) that is well suited

for the optimization of quantum circuits on hybrid variational

algorithms such as VQE. Edg-UBOS iteratively sweeps over

gates. At each step, it calculates an effective Hamiltonian

H̃ from a system of linear equations obtained from a set

of (t j, Emeasured) observations and then classically finds

the gate parameters that minimize the energy with respect

to this effective Hamiltonian while keeping the other gates

temporarily fixed. Edg-UBOS implements additional classical

postprocessing techniques to improve the accuracy of the

effective Hamiltonian calculation and the minimization of the

energy. We introduced and benchmarked two schemes: data

augmentation using Gaussian Process Regression, and Double

Robust Optimization Plus Rejection. Data augmentation only

requires the original training data, making it a cost-effective

approach to increasing the size and diversity of the set of

observations. Meanwhile, the DROPR scheme provides a

more efficient way to spend the measurement resources. The

two techniques combined improve the performance of the

algorithm by decreasing the final optimized error by roughly

a factor of 3 largely independent of the total number of

measurements made.

Edg-UBOS shares all of the standard advantages of D-

UBOS including converging an order-of-magnitude faster

than stochastic gradient descent (SGD), tunneling through

some local minima, and having decreased sensitivity to barren

plateaus [86]. Additionally, Edg-UBOS requires lower depths

of quantum circuits and has higher resilience to shot noise.

The total number of measurements can be further reduced

by strategies such as grouping operators that can be mea-

sured jointly [34–37] or by inference methods such quantum

overlapping tomography [38], quantum shadow tomography

[39,40], and classical shadow [41–45]. One can also im-

plement adaptive numbers of shots per circuit so that the

algorithm increases the number of shots per circuit when the

energy seems to plateau, which is similar to adaptive learning

rate strategy in classical machine learning.

To reach the promise of VQE, we need to minimize the

total number of measurements while maximizing the accuracy

of the final optimization. The development of Edg-UBOS

takes an important step toward this goal and places it as one

of the primary techniques for VQE on a quantum computer.

Furthermore, it also motivates an important approach toward

further improving quantum algorithm through use of nontriv-

ial classical computing resources to make the most effective

use of quantum data.
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APPENDIX A: PARAMETRIZE THE GATE

USING KAK DECOMPOSITION

In UBOS algorithms, we parametrize the generic two-qubit

unitaries by two-qubit Pauli operators [106]. However, to
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ensure that the gate remains unitary after optimization, we

also parametrize the two-qubit gate using the Cartan (KAK)

decomposition for U ∈ SU(4) [103] as

U = (A0 ⊗ A1)(e−i�k· �	 )(B0 ⊗ B1), (A1)

where �k ∈ R
3, �	 = (PXX , PYY , PZZ ), and A0, A1, B0, and

B1 ∈ SU(2) are generic one-qubit U3 gates parametrized by

three real parameters as

U3(θ, λ, φ) =

[
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]
. (A2)

The two-qubit gate U resulting from Eq. (A1) is there-

fore parametrized with 15 real parameters (denoted as θ j)

and is unitary regardless of choice of θ j . Since the KAK

decomposition we use does not have the global phase term,

we cannot deterministically convert the gate parametrization

from t j form to θ j form. However, the conversion from θ j

form to t j form is deterministic since the coefficients of Pauli

decomposition are unique. Therefore, to ensure the unitarity

of the gate after optimization, the two-qubit unitaries of the

ansatz are stored in t j form and only converted to θ j form

before being fed to the classical optimizer.

To avoid this redundancy of using θ j , a possible approach

is to perform gradient descent on a Riemannian manifold of

unitary matrices [107,108].

APPENDIX B: LINEAR LEAST-SQUARES

REGRESSION FOR E-UBOS

We can rewrite Eq. (5) as

E (t j ) =

15∑

n,m=0

t∗n
j H̃n;mtm

j , (B1)

where m, n ∈ [0, 15] are simplified notation for (³, ´ ) and

(³′, ´ ′), respectively. By writing t j and H̃ as their complex

form, t j = Re [t j] + i Im [t j] and H̃ = Re [H̃ ] + i Im [H̃ ], we

can expand Eq. (B1) as

E (t j ) =

15∑

n,m=0

Re
[
tn

j

]
Re [H̃n;m] Re

[
tm

j

]
+ i Re [tn

j ] Im [H̃n;m] Re
[
tm

j

]

+ i Re
[
tn

j

]
Re [H̃n;m] Im

[
tm

j

]
− Re [tn

j ] Im [H̃n;m] Im
[
tm

j

]

− i Im
[
tn

j

]
Re [H̃n;m] Re

[
tm

j

]
+ Im

[
tn

j

]
Im

[
H̃n;m

]
Re

[
tm

j

]

+ Im
[
tn

j

]
Re [H̃n;m] Im

[
tm

j

]
+ i Im

[
tn

j

]
Im [H̃n;m] Im

[
tm

j

]
.

(B2)

Notice that

t∗n
j tm

j =
(

Re
[
tn

j

]
− i Im

[
tn

j

])(
Re

[
tm

j

]
+ i Im

[
tm

j

])

= Re
[
tn

j

]
Re

[
tm

j

]
+ i Re

[
tn

j

]
Im

[
tm

j

]

− i Im
[
tn

j

]
Re

[
tm

j

]
+ Im

[
tn

j

]
Im

[
tm

j

]
. (B3)

FIG. 4. Quantum circuit for E-UBOS measurement. The circuit

shown is an example of measuring the expectation value of a two-

qubit operator ĥ which is a component of the Hamiltonian acting on

the third and fourth qubit using a six-qubit depth-4 ansatz. The rĥ gate

changes the basis to the eigenbasis of ĥ. For example, rĥ gate being

two Hadamard gates changes the basis to {+, −} basis for measuring

ĥ = PX X .

Then by grouping terms with real and imaginary parts of

the effective Hamiltonian in Eq. (B2), we have

E (t j ) =

15∑

n,m=0

(
t∗n

j tm
j Re [H̃n;m]

)
+ i

(
t∗n

j tm
j Im [H̃n;m]

)
. (B4)

Since energy is a real value, Eq. (B4) can be further sim-

plified into

E (t j ) =

15∑

n,m=0

t
n,m
j,R Re [H̃n;m] + t

n,m
j,I Im [H̃n;m], (B5)

where

t
n,m
j,R ≡ Re

[
tn

j

(
tm

j

)∗]
,

t
n,m
j,I ≡ Im

[
tn

j

(
tm

j

)∗]
,

are quadratic forms of the t j components.

For linear least-squares regression, we can write

Eq. (B5) as

E (t j ) = 〈Re [tj,Q], Re [H̃ ]〉F + 〈Im [tj,Q], Im [H̃]〉F , (B6)

where tj,Q = t j ⊗ t∗
j is the outer product of t j with its complex

conjugate, and 〈A, B〉F is the Frobenius inner product of two

matrices A and B.

APPENDIX C: MEASUREMENT CIRCUIT

FOR DIFFERENT TYPES OF UBOS AND SGD

The energy of a quantum state can be found as E =∑
i 〈ψ |ĥi|ψ〉, where ĥi are components of the Hamiltonian.

In E-UBOS, we obtain the state energy by measuring all

Hamiltonian components with the circuit shown in Fig. 4.

Since the Hamiltonian studied in this work contains only local

{Z, XX,YY, ZZ} operators, we obtain the expectation values

in the following way:

〈ψ |Ẑ|ψ〉 ≈ P(0) − P(1),

〈ψ |ẐZ|ψ〉 ≈ P(0, 0) − P(0, 1) − P(1, 0) + P(1, 1),

〈ψ |X̂X |ψ〉 ≈ 2P(+,+) + 2P(−,−) − 1,

〈ψ |ŶY |ψ〉 ≈ 2P(+i,+i) + 2P(−i,−i) − 1, (C1)
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FIG. 5. Quantum circuit for measuring H̃ matrix elements in D-UBOS and estimating gradient in SGD. The circuit shown is an example

for measuring H̃³′´ ′ ;³´ at j = 5th gate using a six-qubit, depth-4 ansatz. The unitary operator ĥ is one of the Hamiltonian components. The

j = 5th gate of |ψj=5〉
³´ , 〈ψ³′´ ′

j=5 |, and ĥ are controlled by the ancilla qubit. The adjoint of the gates are applied to the circuit up to j = 5th

gate because the rest of the gates will not affect the measurement outcome. When the boolean b = 0 (b = 1), the real (imaginary) part of the

expectation value is estimated by the negative of the expectation value of Pauli-Z operator.

where P(·) is the relative frequency of measuring corre-

sponding states from sampling, and these expectation values

become exact with an infinite number of shots. By linear

combination with their corresponding coefficients (which are

all equal to 1 in this paper), we obtain the energy of the state.

The Hadamard test circuit for H̃ matrix element measure-

ment in D-UBOS and SGD is shown in Fig. 5. See [86] for a

detailed guide on using this measurement circuit.

APPENDIX D: CALCULATING TOTAL NUMBER

OF MEASUREMENTS

The total number of measurements is defined as

Nmeas = Nstep × Nelement × Noperator × nshots (D1)

where Nstep = Nepoch × Ngate is the number of optimization

steps, the number of gates in the ansatz Ngate is a constant

determined by the number of qubits nq and the circuit depth

d , the number of training epochs Nepoch is an algorithm hy-

perparameter, Nelement is the number of matrix elements or

observations to obtain the effective Hamiltonian, and Noperator

is the number of unique operators in the Hamiltonian.

The Hamiltonian studied contains only local

{Z, XX,YY, ZZ} operators. For an ansatz of nq qubits,

we need to measure nq unique Z operators acting on different

qubits. For the three kinds of two-qubit operators, due to the

open boundary condition of the ansatz, there exists (nq − 1)

unique operators of each kind. Therefore, the total number of

unique operators in the Hamiltonian is 4nq − 3.

The total number of measurements for D-UBOS and Edg-

UBOS are calculated as

NSGD
meas = Nstep × 32 × (4nq − 3) × nD

shots, (D2)

ND
meas = Nstep × 256 × (4nq − 3) × nD

shots, (D3)

NEdg
meas = Nstep × (nobs + 60) × (4nq − 3) × n

Edg

shots, (D4)

where 32 is the unique real parameters of the gradient estima-

tor for SGD, 256 is the unique real parameters of the effective

Hamiltonian, and 60 is the empirically chosen number of

FIG. 6. The change in noisy state energy and noiseless state energy after (a) a D-UBOS and (b) an Edg-UBOS optimization step on the

same gate of 100 identical circuits using an ansatz of 8-qubit depth-4. The noisy state energy is always improved by the classical optimizer

using the noisy H̃ . For D-UBOS, the noiseless energy worsens after optimization on average; for Edg-UBOS, the noiseless energy improves

on average (the optimal VQE energy is −15).
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FIG. 7. Relative energy error for nq = 8 and nd = 4 as a function

of the total number of measurements during two different opti-

mization runs of D-UBOS (blue; 20 shots per circuit), Edg-UBOS

(orange; 10 shots per circuit, 450 observations), and SGD (green; 20

shots per circuit), which correspond to the same number of measure-

ments per UBOS step.

observations for testing the contender gate parameters in the

DROPR scheme. For simplicity, we keep the number of shots

per circuit the same for D-UBOS and SGD. Note that nobs has

a minimum value of 226.

APPENDIX E: HOW NOISE MAKES

THE OPTIMIZATION PLATEAU

To understand how noisy measurement outcomes lead to

energy plateauing above the optimal energy, we consider the

change in noisy state energy and in noiseless state energy

after one optimization step. We choose the state of a D-

UBOS run after 10 epochs with 10 shots per circuit whose

energy is about 60% off from the optimal VQE energy. We

apply one D-UBOS step with nD
shots = 20 on the same gate

of 100 identical state. As shown in Fig. 6(a), for a D-UBOS

step, the classical optimizer always improves the noisy energy

FIG. 8. Mean (blue solid line) and standard deviation (orange

dashed line) of distributions of postoptimization state energy from

100 different optimization steps on the first gate of identical state

as a function of numbers of artificial data generated per Gaussian

process model.

FIG. 9. Histograms of the final energy from 100 optimizations

(per approach) of the same single gate of an eight-qubit depth-4

ansatz with 10 shots per circuit. All trials use the same initial set

of 300 pairs of (t j, Enoisy) differing only by the randomness inherent

in the techniques.

calculated with H̃ , but the noiseless energy gets worse in most

cases and is very different from the noisy energy, which we

refer to as a “false-positive case.” The excessive noise in mea-

sured H̃ makes it possible for a classical optimizer to find an

unphysical noisy state energy below the optimal VQE energy

of the ansatz. Then we repeat this procedure using Edg-UBOS

steps with nobs = 450 and n
Edg

shots = 10, which has roughly the

same total number of measurements [see Fig. 6(b)]. We find

that even though the improvement in noisy energy by an

Edg-UBOS step is much smaller than that by a D-UBOS step,

the noiseless energy is improved in most cases, which indi-

cates that Edg-UBOS can effectively suppress the noise in the

effective Hamiltonian (due to noisy quantum measurements)

and make nontrivial improvements to the noiseless energy.

Besides, the noiseless energy after an Edg-UBOS step is much

FIG. 10. Mean (circle marker) and standard deviation (triangle

marker) of distribution of state energy errors measured one time with

10N (blue) shots per circuit and measured N time with 10 shots (red)

as a function of N .
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FIG. 11. Optimal choices of measurement hyperparameters (nshots, nobs) for [(a),(b)] a 4-qubit depth-2 ansatz, and [(c),(d)] an 8-qubit

depth-4 ansatz. The left panels show the optimal choice of hyperparameters for each interval of total number of measurements of each system

size. The right panels show their final optimized energy error averaged over the final energies of three independent UBOS runs with different

random initial states. The optimal combinations of nobs and nshots help the algorithm reach a few percent closer to the optimal VQE energy than

the nonoptimal choices.

closer to the noisy energy, showing the algorithm’s high accu-

racy in state energy estimation, which is very important for

convergence detection towards the end of its run.

Then we independently execute two D-UBOS runs with 20

shots per circuit, two Edg-UBOS runs with 450 observations

and 10 shots per circuit, and two SGD runs on different

random initial states. We look at the change in relative en-

ergy error throughout the full runs (see Fig. 7). We find that

Edg-UBOS always plateaus at an energy level much better

than D-UBOS and SGD. Moreover, even though the relative

energy error can get worse after one optimization step due to

noise in quantum measurement outcomes, the scale of such a

setback in Edg-UBOS is much smaller than in D-UBOS and is

comparable to it in SGD, which demonstrates that Edg-UBOS

is much more favorable for variational algorithms.

APPENDIX F: GPR PARAMETERS

The GPR scheme has several hyperparameters including

the number and size of subsets, the choice of kernel function,

and the number of artificial data generated with each model.

In this paper, we empirically choose to make 60 subsets with

size equal to 60% of the initial set size. We use the radial basis

function (RBF) kernel with a lengthscale of 1 for the Gaussian

process regressor, which is the common default. The number

of artificial data generated per model is 2% of the initial

set size.

In principle, one can generate an arbitrarily large amount of

artificial data at the cost of classical computing resources. To

understand the relationship between the amount of artificial

data and the effect of the GPR scheme, we fix a configuration

of the gates and then consider the change in energy induced

by the update of a single gate using Eg-UBOS with a dif-

ferent number of artificial data generated per model. Again

we choose the state of a D-UBOS run after 10 epochs with

10 shots per circuit whose energy is about 60% off from the

optimal VQE energy. We apply one Eg-UBOS optimization

step (with nobs = 450 and n
Edg

shots = 10) with a different number

of artificial data generated per model on the first gate, and

look at the mean and standard deviation of the distributions

of postoptimization state energy over 100 different executions

for each hyperparameter choice. As shown in Fig. 8, both the

mean and the standard deviation of the distribution do not

change much as the number of artificial data generated per

model increases. Since the number of subsets is 60, generating

10 artificial pairs per model means 600 artificial pairs which
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is already larger than the amount of pairs in the initial set,

which is 450. Therefore, it is unlikely to further increase the

diversity and comprehensiveness of the augmented data set by

further generation of artificial data, leading to similar mean

and standard deviation of the distribution of postoptimization

state energy for all choices of the number of artificial data

generated per model.

We compare the normal GPR scheme to the GPR scheme

training only one GPR model with the entire training set for

artificial data generation. As shown in Fig. 9, when some

measured (t, E ) pairs in the initial set are so noisy that one

E-UBOS update worsens the state energy, dividing the initial

set into overlapping subsets and generating artificial data from

these subsets causes significantly fewer cases of worsening the

energy than generating artificial data from the entire initial set.

APPENDIX G: DROPR ENERGY MEASUREMENT

FOR CONTENDER GATE PARAMETERS

In the DROPR scheme, we find the energy of the state

assembled with each contender gate parameters t j through

additional quantum measurements. Even though we spend

more shots per circuit for these measurements, the outcome is

still going to be noisy. An alternative approach is to measure

the same state several times, each with the same shots per

circuit as in measuring observations (n
Edg

shots), and averaging

the obtained energies. To spend the measurement resources

more efficiently, we compare the accuracy of measured energy

obtained by measuring the state one time with 10N shots per

circuit to measuring the identical state N times with 10 shots

per circuit and averaging the measured energies. We choose a

random state and measure its energy 100 times independently

with each of these two methods, and we repeat with different

values of N . We look at the mean and standard deviation of

the distributions of the energy error (see Fig. 10). We find

that, when N is small such that the (10N )-shots measurement

outcome is still very noisy, averaging over many noisy mea-

sured energies is slightly more accurate than one less noisy

measured energy. Some interesting open questions include

whether this conclusion holds as N further increases, and if

there exists a deterministic optimal shot per circuit for each

measurement instead of 10, which is empirically chosen.

APPENDIX H: EDG-UBOS OPTIMAL

HYPERPARAMETER CHOICE

We consider the optimal choice of measurement hyperpa-

rameters for Edg-UBOS, n
Edg

shots, and nobs, given roughly the

same total amount of measurement (see Fig. 11). We find that,

in the range studied, n
Edg

shots and nobs have no priority over each

other, so it is better to increase both hyperparameters follow-

ing an alternating pattern to minimize the relative energy error

to the optimal VQE energy. The difference in relative energy

error to the best VQE energy between the optimal choice and

the nonoptimal choice is less than 5%, which implies some

flexibility in hyperparameter tuning.
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