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Abstract. This paper makes progress toward learning Nash equilibria in two-player, zero-
sum Markov games from offline data. Specifically, consider a y-discounted, infinite-horizon
Markov game with S states, in which the max-player has A actions and the min-player has B
actions. We propose a pessimistic model-based algorithm with Bernstein-style lower confi-
dence bounds—called the value iteration with lower confidence bounds for zero-sum Markov
games—that provably finds an e-approximate Nash equilibrium with a sample complexity

S(A+B)
dlpped
no larger than “are

centrability coefficient that reflects the coverage and distribution shift of the available data

(up to some log factor). Here, C; .4 is some unilateral clipped con-

clipped

(vis-a-vis the target data), and the target accuracy ¢ can be any value within <O, I y]. Our

sample complexity bound strengthens prior art by a factor of min{A, B}, achieving minimax
optimality for a broad regime of interest. An appealing feature of our result lies in its algorith-
mic simplicity, which reveals the unnecessity of variance reduction and sample splitting in
achieving sample optimality.
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1. Introduction

of multiple players—whose own welfare might come at

Multiagent reinforcement learning (MARL), a subfield
of reinforcement learning (RL) that involves multiple
individuals interacting/competing with each other in a
shared environment, has garnered widespread recent
interest, partly sparked by its capability of achieving
superhuman performance in game playing and autono-
mous driving (Shalev-Shwartz et al. 2016, Baker et al.
2019, Berner et al. 2019, Brown and Sandholm 2019,
Jaderberg et al. 2019, Vinyals et al. 2019). The coexistence

2430

the expense of other parties involved—makes MARL
inherently more intricate than the single-agent counterpart.

A standard framework to describe the environment
and dynamics in competitive MARL is Markov games
(MGs), which are generally attributed to Shapley (1953)
(originally referred to as stochastic games). Given the
conflicting needs of the players, a standard goal in
Markov games is to seek some sort of steady-state solu-
tions with the Nash equilibrium (NE) being arguably
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the most prominent one. Whereas computational intrac-
tability has been observed when calculating NEs in
general-sum MGs and/or MGs with more than two
players (Daskalakis et al. 2009, Daskalakis 2013), an
assortment of tractable algorithms have been put for-
ward to solve two-player, zero-sum Markov games. On
this front, a large strand of recent works revolves
around developing sample- and computation-efficient
paradigms (Bai et al. 2020, Xie et al. 2020, Zhang et al.
2020a, Liu et al. 2021, Tian et al. 2021). What is particu-
larly noteworthy here is the recent progress in overcom-
ing the so-called curse of multiple agents (Bai et al. 2020,
Jin et al. 20214, Li et al. 2022b); that is, although the total
number of joint actions exhibits exponential scaling in
the number of agents, learnability of Nash equilibria
becomes plausible even when the sample size scales
only linearly with the maximum cardinality of the indi-
vidual action spaces. See also Jin et al. (2021a), Song et al.
(2021), Mao and Basar (2022), and Daskalakis et al.
(2023) for similar accomplishments in learning coarse
correlated equilibria in multiplayer general-sum MGs.
The aforementioned works permit online data collec-
tion either via active exploration of the environment or
through sampling access to a simulator. Nevertheless,
the fact that real-time data acquisition might be unaf-
fordable or unavailable—for example, it could be time-
consuming, costly, and/or unsafe in healthcare and
autonomous driving—constitutes a major hurdle for
widespread adoption of these online algorithms. This
practical consideration inspires a recent flurry of studies
collectively referred to as offline RL or batch RL (Kumar
et al. 2020, Levine et al. 2020) with the aim of learning
based on a historical data set of logged interactions.

1.1. Data Coverage for Offline Markov Games
The feasibility and efficiency of offline RL are largely
governed by the coverage of the offline data in hand. On
one hand, if the available data set covers all state—action
pairs adequately, then there is sufficient information to
guarantee learnability; on the other hand, full data cov-
erage imposes an overly stringent requirement that is
rarely fulfilled in practice and is oftentimes wasteful in
terms of data efficiency. Consequently, a recurring
theme in offline RL gravitates around the quest for algo-
rithms that work under minimal data coverage. Encour-
agingly, the recent advancement on this frontier (e.g.,
Rashidinejad et al. 2021, Xie et al. 2021) uncovers the
sufficiency of single-policy data coverage in single-
agent RL; namely, offline RL becomes information-
theoretically feasible as soon as the historical data covers
the part of the state-action space reachable by a single
target policy.

Unfortunately, single-policy coverage is provably
insufficient when it comes to Markov games with nega-
tive evidence observed in Cui and Du (2022b). Instead, a

sort of unilateral coverage—that is, a condition that
requires the data to cover not only the target policy pair
but also any unilateral deviation from it—seems
necessary to ensure learnability of Nash equilibria in
two-player, zero-sum MGs. Employing the so-called
unilateral concentrability coefficient C* to quantify such
unilateral coverage as well as the degree of distribution
shift (which we define shortly in Assumption 1), Cui
and Du (2022b) demonstrate how to find e-Nash solu-
tions in a finite-horizon, two-player, zero-sum MG once
the number of sample rollouts exceeds
* 173
o (CH549) .
Here, S is the number of shared states; A and B repre-
sent, respectively, the number of actions of the max-
player and the min-player; H stands for the horizon
length; and the notation O(-) denotes the order-wise
scaling with all logarithmic dependency hidden.
Despite being an intriguing polynomial sample com-
plexity bound, a shortfall of (1) lies in its unfavorable
scaling with AB (i.e., the total number of joint actions),
which is substantially larger than the total number of
individual actions A + B. Whether it is possible to allevi-
ate this curse of multiple agents in a two-player, zero-
sum Markov game—and, if so, how to accomplish it—is
the key question to be investigated in the current paper.

1.2. An Overview of Main Results

The objective of this paper is to design a sample-
efficient, offline RL algorithm for learning Nash equilib-
ria in two-player, zero-sum Markov games, ideally
breaking the curse of multiple agents. Focusing on
y-discounted, infinite-horizon MGs, we propose a
model-based paradigm—called the value iteration with
lower confidence bounds for zero-sum Markov game
(VI-LCB-Game)—that is capable of learning an
e-approximate Nash equilibrium with sample complex-

ity

O (Célippeds(lz + B)>
1—y)ye

where Cfoqq is the so-called clipped unilateral con-
centrability coefficient (formalized in Assumption 2)
and always satisfies Cgj oy < C*. Our result strengthens
prior theory in Cui and Du (2022b) by a factor of
min{A, B} (if we view the horizon length H in finite-
horizon MGs and the effective horizon 1 in the
infinite-horizon counterpart as equivalence). To demon-
strate that this bound is essentially unimprovable, we
develop a matching minimax lower bound (up to some
logarithmic factor), thus settling this problem. Our algo-
rithm is a pessimistic variant of value iteration with
carefully designed Bernstein-style penalties, which

requires neither sample splitting nor sophisticated
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schemes such as reference-advantage decomposition.
The fact that our sample complexity result holds for the

full e-range (ie., any ¢ € (0, ﬁ}) unveils that sample

efficiency is achieved without incurring any burn-in
cost.

Finally, when finalizing the current paper, we became
aware of an independent study (Cui and Du 2022a;
posted to arXiv on June 1, 2022) that also manages to
overcome the curse of multiple agents in a two-player,
zero-sum Markov game, on which we elaborate toward
the end of Section 3.

1.3. Notation

Before proceeding, let us introduce some notation that is
used throughout. With slight abuse of notation, we use
P to denote a probability transition kernel and the asso-
ciated probability transition matrix exchangeably. We
also use the notation p exchangeably for a probability
distribution and its associated probability vector (and
we often do not specify whether p is a row vector or col-
umn vector as long as it is clear from the context). For
any two vectors x = [x;]"_; and y = [y]\,, we use xoy =
[xiyi]"; to denote their Hadamard product, and we also
define x? = [x?]_, in an entry-wise fashion. For a finite
set S={1,...,5}, we let A(S):={xeR’|1Tx=1,x>0}
represent the probability simplex over the set S.

2. Problem Formulation

In this section, we introduce the background of zero-
sum Markov games, followed by a description of the
offline data set.

2.1. Preliminaries

2.1.1. Zero-Sum, Two-Player Markov Games. Consider
a discounted, infinite-horizon, zero-sum MG (Shapley
1953, Littman 1994) as represented by the tuple MG =
(S, A,B,P,r,y). Here, S={1,...,5} is the shared state
space; A={1,...,A} (respectively, B={1,...,B}) is the
action space of the max-player (min-player); P: S X A X
B — A(S) is the (a priori unknown) probability transi-
tion kernel, where P(s’|s,a,b) denotes the probability of
transitioning from state s to state s’ if the max-player
executes action 2 and the min-player chooses action b; r :
SXAxB—[0,1] is the reward function such that
r(s,a,b) indicates the immediate reward observed by
both players in state s when the max-player takes action
a and the min-player takes action b; and y € (0,1) is the
discount factor with 1%)/ commonly referred to as the
effective horizon. Throughout this paper, we primarily
focus on the scenario in which S, A, B, and 11 - could all
be large. Additionally, for notational simplicity, we
define the vector P;, € RS as Py 45 :=P(-]s,a,b) for
any (s,a,b) e SxX AX B.

2.1.2. Policy, Value Function, Q-Function, and Occu-
pancy Distribution. Let u:S — A(A) and v: S — A(B)
be (possibly random) stationary policies of the max-
player and the min-player, respectively. In particular,
t(-1s) € A(A) (v(-]s) € A(B)) specifies the action selection
probability of the max-player (min-player) in state s.
The value function V#*" : § — R for a given product pol-
icy p X vis defined as

(9]

VI (s) =B | Yy r(stanb)lso =s;p,v |,
t=0

VseS,

where the expectation is taken with respect to the ran-
domness of the trajectory {(s;,a:,bt)}s induced by the
product policy u X v (i.e., for any t > 0, the players take
a; ~ u(-|s¢) and by ~ v(-|s;) independently conditional on
the past) and the probability transition kernel P (i.e.,
St+1 ~ P(-|st, a1, by) for t > 0). Similarly, we can define the
Q-function Q*":SX AXB—R for a given product
policy p X v as follows:

QFV(s,a,b):=FE Z)/fr(st,at,bt) |so=s,a0=a,byp=b;u,v|,
=0
V(s,a,b)eSX AXB,

where the actions are drawn from p X v except for the
initial time step (namely, for any ¢ > 1, we execute a; ~
p(-|s) and by ~ v(:|s;) independently conditional on the
past). Additionally, for any state distribution p € A(S),
we introduce the following notation tailored to the
weighted value function of policy pair (u,v):

VI (p) := Es-p[VF7(s)].

Moreover, we define the discounted occupancy mea-
sures associated with an initial state distribution p €
A(S) and the product policy u x v as follows:

d(s;p) = (1 — )/)Z VIP(s = s|so ~ p; i, V), VseS,
=0

2)
¥ (s,a,b;0) = (1= )Y _y'P(si =s,a:=a,
=0
by=blso~p;u,v), V(s,ab)eSxXAXB,
3)

where the sample trajectory {(s;a:, b;)},s is initialized
with sp ~ p and then induced by the product policy u X
v and the transition kernel P as before. It is clearly seen
from the preceding definition that

d*"(s,a,b; p) = d""(s; p)u(a|s)v(bls). @)

2.1.3. Nash Equilibrium. In general, the two players
have conflicting goals with the max-player aimed at
maximizing the value function and the min-player
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minimizing the value function. As a result, a standard
compromise in Markov games becomes finding an NE.
To be precise, a policy pair (p*,1*) is said to be a Nash
equilibrium if no player can benefit from unilaterally
changing the player’s own policy given the opponent’s
policy (Nash 1951); that is, for any policies it : S — A(A)
andv: S — A(B), one has

VI < VI < VY

As is well-known (Shapley 1953), there exists at least
one Nash equilibrium (u*,v*) in the discounted, two-
player, zero-sum Markov game, and every NE results in
the same value function:

V*(s):= V¥ (s) = max min V*"(s) =min max V*"(s).
H v v u

In addition, when the max-player’s policy p is fixed, it is
clearly seen that the MG reduces to a single-agent Mar-
kov decision process (MDP). In light of this, we define,
foreachs € S,

VE*(s) :=min V*V(s) and  V*V:=max V¥'(s),
4

u

each of which corresponds to the optimal value function
of one player with the opponent’s policy frozen. More-
over, for any policy pair (y, v), the following weak dual-
ity property always holds:

Vi < YV = < VY

In this paper, our goal can be posed as calculating a pol-
icy pair (1, 7) such that
Vis(p)—e < V*(p) < V¥ (p) +e,

where p € A(S) is some prescribed initial state distribu-

tion and ¢ € (O, ﬁ} denotes the target accuracy level.

The gap V*¥(p) — VE*(p) is often referred to as the
duality gap of ({1, V) in the rest of the present paper.

2.2. Offline Data Set (Batch Data Set)

Suppose that we have access to a historical data set con-
taining a batch of N sample transitions D = {(s; a;,
bi,s})}1 <i<n, which are generated independently from a
distribution dy, € A(S x A X B) and the probability tran-
sition kernel P, namely,

ii.d.

(si,a,b) dy  and  $P(|s,a,b).  (5)

The goal is to learn an approximate Nash equilibrium
on the basis of this historical data set.

In general, the data distribution d, might deviate
from the one generated by a Nash equilibrium (u*,v*).
As aresult, whether reliable learning is feasible depends
heavily upon the quality of the historical data. To quan-
tify the quality of the data distribution, Cui and Du
(2022b) introduce the following unilateral concentrabil-
ity condition.

Assumption 1 (Unilateral Concentrability). Suppose that
the following quantity

div'(s,a,b; p)

dy(s,a,b) ' dy(s,a,b)
(6)

is finite, where we define 0/0 = 0 by convention. This quan-
tity C* is termed the unilateral concentrability coefficient.

v,s,a,b

we,v .
C*:= max{ sup d""(s,a,b;p) P)}

u,s,a,b

In words, this quantity C* employs certain density
ratios to measure the distribution mismatch between
the target distribution and the data distribution in hand.
On the one hand, Assumption 1 is substantially weaker

than the type of uniform coverage requirement (which

. . . . d"(s,a,b;p)
imposes a uniform bound on the density ratio =77~

over all (4, v) simultaneously) as (6) freezes the policy of
one side, exhausting over all policies of the other side.
On the other hand, Assumption 1 remains more strin-
gent than a single-policy coverage requirement (which
only requires the data set to cover the part of the
state-action space reachable by a given policy pair
(u*,v*)) as (6) requires the data to cover those
state—action pairs reachable by any unilateral deviation
from the target policy pair (u*,v*). As posited by Cui
and Du (2022b), unilateral coverage (ie., a finite
C* < 00) is necessary for learning Nash equilibria in
Markov games, which stands in sharp contrast to the
single-agent case in which single-policy concentrability
suffices for finding the optimal policy (Rashidinejad
etal. 2021, Xie et al. 2021, Li et al. 2024b).

In this paper, we introduce a modified assumption
that might give rise to slightly improved sample com-
plexity bounds.

Assumption 2 (Clipped Unilateral Concentrability). Sup-
pose that the following quantity

min{d“’v* (s,a,b; p), m}

* ——
clipped *= max{ sup

Hy, Srﬂrb db(s’ a b) ,
min{d“*’v(s, a,b; p), m} @
V,Ssl;lgb db (S, ﬂ, b)

is finite, where we define 0/0 = 0 by convention. This quan-
tity Clipped IS termed the clipped unilateral concentrability
coefficient.

In a nutshell, when d*V'(s,a,b; p) or d*""(s,a,b;p) is
reasonably large (i.e., larger than m), Assumption 2
no longer requires the data distribution d, to scale pro-
portionally with d*”" or d*"?, thus resulting in a (slight)
relaxation of Assumption 1. Comparing (7) with (6)
immediately reveals that

* *
C = CcIipped
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holds all the time. Further, it is straightforward to verify
that C* > max{A, B}; in comparison, Cg,,eq can be as
small as 57 fB) as shown in our lower bound construc-
tion in Online Appendix EC.2.

3. Algorithm and Main Theory

In this section, we propose a pessimistic, model-based,
offline algorithm—called VI-LCB-Game—to solve the
two-player, zero-sum Markov games. The proposed
algorithm is then shown to achieve minimax-optimal
sample complexity in finding an approximate Nash
equilibrium of the Markov game given offline data.

3.1. Algorithm Design
3.1.1. The Empirical Markov Game. With the offline
data set {(s;,a;,b;,5/)}1 <;<n in hand, we can readily con-
struct an empirical Markov game. To do so, we first
compute the sample size

N
N(s,a,b) =Y 1{(s;,a;,b;) = (5,a,b)}
i=1

for each (s,a,b) € S x A x B. The empirical transition ker-
nel P : § X A X B — A(S) is then constructed as follows:

D(s'|s,a, b)

N(s,a b)zﬂ{(sl'““bws )=(s,a,b,s")}, if N(s,a,b)>0

1 if N(s,a,b)=0

5
®

for any s’ € S and any (s,4,b) € S x A x B. Throughout
this paper, we often let P,,,€R™ abbreviate
P(-|s,a,b). In addition, the empirical reward function 7 :
S X A x B— Ris taken to be

//b/ fN //b >0
f(s,a,b)={r(sa ), if N(s,a,b)

. )
0, if N(s,a,b) =0

for any (s,a,b) € S X A X B. Armed with these compo-
nents, we arrive at an empmcal zero-sum Markov

game, denoted by MG = (S, A, B,D,7,7).

3.1.2. Pessimistic Bellman Operators. Recall that the
classic Bellman operator 7 : R%® — R4F is defined
such that (Shapley 1953, Lagoudakis and Parr 2002), for
anyQ:SXAXB—-R,

T(Q)(S,ﬂ, b) = r(S, al b) + Vps,a,bvl

where V : S — R is the value function associated with
the input Q, that s,

V(s):= max min E
u,€A(A) vseA(B) a~p,b~vs

[Q(s,a,b)], VseS. (10)

Note, however, that we are in need of modified versions
of the Bellman operator in order to accommodate the

offline setting. In this paper, we introduce the pessimis-
tic Bellman operator 7, (7 ) for the max-player (min-
player) as follows: for every (s a,b)e SX AXB,

T pe(Q)(5,a,b) := max{F(s,a,b) + P .,V — (s,a,b; V), 0},
(11a)
T 5(Q)(s,a,b) := min{f(s,a,b) +yPg .V
1
+‘B(S,ﬂ,b, V)r m}l (11b)

where V is again defined in (10). The additional term
B(s,a,b; V) is incorporated into the operators in order to
implement pessimism; informally, we anticipate this
penalty term to help T o (T 3) produce a conservative
estimate of the Q- functlon from the max-player’s (min-
player’s) viewpoint. Here and throughout, we choose
this term based on Bernstein-style concentration
bounds; specifically, we take

o Cp logy
b rmn{maX{ \/N Ga by PtV

2Cp logh 1|, 4 12)
1-=y)N(@s,ab)["1—y [ N

for some sufficiently large constant Cp > 0, where 1 — 6
denotes the target success probability, and the empirical
variance term is defined as

Varﬁs,a,b(v) = ps,a,bvz - (ps,u,bv)2~ (13)

It is well-known that the classic Bellman operator 7
satisfies the y-contraction property, which guarantees
fast global convergence of classic value iteration. As it
turns out, the pessimistic Bellman operators introduced
also enjoy the y-contraction property in the sense that

17 50(Q1) ~ T pe(Q2)lle < Q1 — Qall
17 56(Q1) ~ Te(Q2)lle < Q1 = Qalls (14)

see Lemma 1 for precise statements.

3.1.3. Pessimistic Value Iteration with Bernstein-Style
Penalty. With the pessimistic Bellman operators in place,
we are positioned to present the proposed paradigm.
Our algorithm maintains the Q-function iterates {Qp ,},
the policy iterates {y; } and {v; }, and the value function
iterates {V/ ;} from the max-player’s perspective; at the
same time, it also maintains an analogous group of iter-
ates {Qpe ), {1/} and {v/'}, and {V ;} from the min-
player’s perspective. The updates of the two groups of
iterates are carried out in a completely decoupled manner
except when determining the final output.

In what follows, let us describe the update rules from
the max-player’s perspective. For notational simplicity,
we write p(s) := u(-|s) € A(A) and v(s) :=v(:|s) € A(B)
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whenever it is clear from the context. In each round t =
1,2,..., we carry out the following update rules:

1. Updating Q-function estimates: Run a pessimistic
variant of value iteration to yield

Qpet = T oe(Qpe,r1)- (15)

The y-contraction property (14) helps ensure sufficient
progress made in each iteration of this update rule.

2. Updating policy estimates: We then adjust the
policies based on the updated Q-function estimates
(15). Specifically, for each s € S, we compute the Nash
equilibrium (y, (s),v; (s)) € A(A) x A(B) of the zero-
sum matrix game with payoff matrix Qg (s, -, ). It is
worth noting that there is a host of methods for effi-
ciently calculating the NE of a zero-sum matrix game;
prominent examples include linear programming and
no-regret learning (Raghavan 1994, Freund and Scha-
pire 1999, Rakhlin and Sridharan 2013, Roughgarden
2016).

3. Policy evaluation: for each s € S, update the value
function estimates based on the updated policies
(g; (s),vy (s)) as follows:

Vge,t(s) =

[Qpe, (5,4, b)].

E
a~; (s),b~vy (s)

The updates for {Q/ ;}, {1/}, and {v/} from the min-
player’s perspective are carried out in an analogous and
completely independent manner; see Algorithm 1 for
details.

3.1.4. Final Output. By running these update rules for

T= [W] iterations, we arrive at the Q-function
estimates

Q;;e = Qr:e,T and Q;e = Q;e,T/ (16)

in addition to two sets of policy estimates

(W ,v7):=(ur,vy) and  (u"v"):=(us,vy). (17)

The final policy estimate of the algorithm is then chosen
tobe

(i, 0) = (u",v").
The full algorithm is summarized in Algorithm 1.

Algorithm 1 (VI-LCB-Game)
Initialization: set Qp, ((s,a,b) =0 and Qp ((s,a,b) =
. log(N/(1-))
1%), for all (s,a,b) e SX AX B;set T =[2& -1 °glog(1 /y)’ 1.
Compute the empirical transition kernel D as (8)
and the empirical reward function 7 as (9).
For: t = .,Tdo

2435
e Update
Q;e,t(sl a, b) = j\';e(Q;;e,t_l)
= max{7(s,a,b) + yﬁs,a,bV;e, 1
—B(s,a,b; Ve y 1), 0},
pe t(s a, b) +e(Q;e,t71)
= mm{r(s a,b) +yP, , Vet 1
. 1
+ ‘B(S, a, b/ Vpe,tfl)/ m 7
where

o Co logy
IB(S/ a, b/ V) - mll’l{max{ \/mvarps,ﬂ,b(v)/

2Cp logh 1 N 4
(1 —=9y)N(s,a,b) ("1 -y N
for some sufficiently large constant Cp, > 0 with Varp

(V) defined in (13).
e For eachs € S, compute

(47 (5),v; (s)) = MatrixNash(Qp, (s, -,-)),

(1] (s),v{ (s)) = MatrixNash(Qp, (s, -, ),
RAXB

where, for any matrix Me , the function
MatrixNash(M) returns a solution (0, Z2) to the minimax
program maxgea(4) MiNzeas) W' Mz.
e For eachs € S, update
V,;elt(s) =

[Q;e,t(s/ ﬂ, b)]/
[Qpe t(S/ a, b)]

E
a~,u*(s),b~v*( s)
+
Vpe.r(5) = <s>,b V)
Output: the policy pair (fi,7V), where [i = {u7(s)}ses
and ¥ = {v7(s)}ses-

3.2. Theoretical Guarantees

Our main result is to uncover the intriguing sample effi-
ciency of the proposed model-based algorithm. This is
formally stated as follows with the proof postponed to
Section 6.

Theorem 1. Consider any initial state distribution p €
A(S) and suppose that Assumption 2 holds. Assume that
1/2 <y < 1 and consider any 6 € (0,1) and ¢ € (O,1 y}.
Then, with probability exceeding 1—0, the policy pair
(@, 7) returned by Algorithm 1 satisfies

Vi (p)—e < V¥ (p) < V' (p) +e,
as long as the sample size exceeds

N>¢ —Cé"ppedS(A +B) logN

S A=yl U0
for some sufficiently large constant ¢; > 0.

Remark 1. Our result and analysis are inspired by
prior works that show that model-based RL achieves,
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in multiple settings, sample efficiency without the
need of variance reduction (Agarwal et al. 2020; Li
et al. 2024a, b). The proof of this sample complexity
bound entails several key analysis ingredients: (i) a
leave-one-out analysis argument that proves effective
in decoupling complicated statistical dependency and
(ii) a careful self-bounding trick (i.e., upper bounding
a certain quantity by a contraction of itself in addition
to some other error terms) to derive a sharp control of
the target duality gap. See Section 6 for details.
Although techniques such as leave-one-out analysis
are used in some prior RL literature (Agarwal et al.
2020; Li et al. 2024a, b), as far as we know, our work
applies this technique for the first time to multiagent
reinforcement learning. It has been observed that
extending the algorithmic or analysis ideas in single-
agent RL to the multiagent counterpart often leads to
suboptimal sample complexity bounds that scale line-
arly in the total number of joint actions AB (Zhang
et al. 2020a, Cui and Du 2022b). In contrast, our analy-
sis framework leads to an optimal sample complexity
bound that scales linearly in the total number of indi-
vidual actions A + B.

Remark 2. A line of recent works focuses on instance-
optimality of RL algorithms (Khamaru et al. 2021a, b;
Mou et al. 2022). However, it remains challenging to
establish instance-dependent bounds for multiagent
RL even in two-player, zero-sum Markov games
because of the difficulties arising from offline data
and multiagent settings. Unlike RL with a generative
model (simulator) that can generate independent sam-
ples for all state-action pairs, offline RL suffers from
substantially more challenges, such as distribution
shift and limited data coverage, making it more diffi-
cult to derive instance-dependent error bounds. In
addition, the prior literature Khamaru et al. (2021a)
that establishes instance optimality of variance-
reduced Q-learning algorithms for the optimal value
estimation problem requires one of the following two
conditions: the optimal policy is unique or a meaning-
ful sample complexity bound that depends on an opti-
mality gap can be obtained. However, neither
condition has a direct analog in zero-sum Markov
games; this is because the Nash equilibrium in a zero-
sum Markov game is not unique in general, and there
is no well-defined analog of optimality gap for zero-
sum Markov games. Detailed discussion on the chal-
lenges and difficulty of extending our analysis to
develop instance-dependent error bounds can be
found in Section 6.5.

The sample complexity needed for Algorithm 1 to
compute a policy pair with e-duality gap is at most

S(A+B
o( cll(plpei V() :2 )>, (18)

which accommodates any target accuracy within the
range ( T } In addition to linear dependency on
Célipped'
(as opposed to quadratically) with the aggregate size A
+ B of the individual action spaces. It is noteworthy that
our algorithm is a fairly straightforward implementa-
tion of the model-based approach (except that the pessi-
mism principle is incorporated) and does not require
either sample splitting or sophisticated schemes such as
variance reduction (Zhang et al. 2020a, b; Li et al. 2021;
Xie etal. 2021; Yan et al. 2023).

As it turns out, the preceding sample complexity
theory for Algorithm 1 matches the minimax lower
limit modulo some logarithmic term as asserted by
the following theorem. This minimax lower bound—
whose proof is postponed to Online Appendix EC.2—
is inspired by prior lower bound theory for single-
agent MDPs (e.g., Azar et al. 2013, Li et al. 2024b) and
might shed light on how to establish lower bounds for
other game-theoretic settings.

the sample complexity bound (18) scales linearly

Theorem 2. Consider any $>2,A>2,B>2,y€ [},1),
and Cjppeq = stargy and define the set

MG(Cchpped) {{Mg p/db}| |S| S, |A| =A, |B| =B,

PEA(S),dp e A(SX AXB),
Jan NE (u*,v*) of MG such that

min{d’“'v* (S/ar b/ P)/ m}
max{ sup dp(s,a,b) ’

u,s,a,b

C*

clipped }

Then, there exist some universal_constants cp,c. >0 such
that, for any € € (0, Wogmw)] , if the sample size obeys

2S(A + B)CCllpped
(1 )/) &2 log(A + B)

sup
v,s,a,b

mm{d” V(s,a,b; p)’SA+B)}
dp(s,a,b)

then one necessarily has

inf sup E[V*?(p) — Vi (p)] 2 e.

WrP) (MG, p, db}eMG(Clyeg)

Here, the infimum is taken over all estimators ({1,7) for the
Nash equilibrium based on the batch data set D =
{(si,a1,b;,80)}1, generated according to (5).

Remark 3. The target we are estimating is the NE of a
zero-sum MG, which is more challenging than stan-
dard statistical estimation problems in the sense that
(i) NE is not unique in general and (ii) the error metric
is a duality gap. It is challenging to use standard proof
frameworks such as Fano’s and Le Cam’s methods to
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derive a meaningful lower bound for this problem. To
overcome this challenge, we construct a family of
hard Markov game instances indexed by a binary
parameter 0 € {0,1}™“® and then put a prior distri-
bution over this set and compute the posterior proba-
bility of failure to differentiate each entry of 6. These
steps taken together carefully allow us to compute the
desired minimax risk.

As a direct implication of Theorem 2, if the total
number of samples in the offline data set obeys

025(A + B)Cgjipped

(1—7)%¢2 log(A +B)’

then one can construct a hard Markov game instance
such that no algorithm whatsoever can reach a duality
gap below ¢. This, taken collectively (18), unveils, up to
some logarithmic factor, the minimax statistical limit for
finding NEs based on offline data.

Our theory makes remarkable improvement upon
prior art, which can be seen through comparisons with
the most relevant prior work (Cui and Du 2022b) (even
though the focus therein is finite-horizon, zero-sum
MGs). On a high level, Cui and Du (2022b) propose an
algorithm that combines pessimistic value iteration with
variance reduction (also called reference-advantage
decomposition; Zhang et al. 2020b), which provably
finds an e-Nash policy pair using

- (C*SABH®

) (T) (19)
sample trajectories provided that ¢ < 1/H. Here, H
stands for the horizon length of the finite-horizon Mar-
kov game, and C* is the unilateral concentrability coeffi-
cient tailored to the finite-horizon setting. Despite the
difference between discounted infinite- and finite-horizon
settings, our algorithm design and theory achieve several
improvements upon Cui and Du (2022b):

e Perhaps most importantly, our result scales line-
arly in the total number of individual actions A + B (as
opposed to the number of joint actions AB as in Cui
and Du 2022b), which manages to alleviate the curse of
multiple agents in two-player, zero-sum Markov
games.

e Our theory accommodates the full e-range

(0, ﬁ} , which is much wider than the range (0,1/H]

covered by Cui and Du (2022b) (if we view the effective
horizon ﬁ in the infinite-horizon case and the horizon

length H in the finite-horizon counterpart as
equivalence).

e The algorithm design herein is substantially sim-
pler than Cui and Du (2022b): it neither requires sam-
ple splitting to decouple statistical dependency, nor
relies on reference-advantage decomposition techni-
ques to sharpen the horizon dependency.

When we were finalizing the present manuscript, we
became aware of the independent work Cui and Du
(2022a) proposing a different offline algorithm—based on
incorporation of strategy-wise lower confidence bounds—
that improved the prior art as well. When it comes to two-
player, zero-sum Markov games with finite horizon and
nonstationary transition kernels, Cui and Du (2022a, algo-
rithm 1) provably yields an e-Nash policy pair using

5 <C*S(A + B)H4>

> (20)

sample trajectories, each containing H samples. This
bound (20) is at least a factor of H above the minimax
limit. It is worth noting that Cui and Du (2022a) is able
to accommodate offline, multiagent, general-sum MGs
although the algorithm proposed therein becomes com-
putationally intractable when going beyond two-player,
zero-sum MGs.

4. Related Works

4.1. Offline RL and Pessimism Principle

The principle of pessimism in the face of uncertainty,
namely, being conservative in value estimation of those
state—action pairs that have been under-covered, has
been adopted extensively in recent development of
offline RL. A highly incomplete list includes Kumar et al.
(2020), Kidambi et al. (2020), Yu et al. (2020; 2021a, b),
Yin et al. (2021a, c), Rashidinejad et al. (2021), Jin et al.
(2021b), Xie et al. (2021), Liu et al. (2020), Zhang et al.
(2021c), Chang et al. (2021), Yin and Wang (2021),
Uehara and Sun (2021), Munos (2003,2007), Zanette et al.
(2021), Yan et al. (2023), Li et al. (2022a, 2024b), Shi et al.
(2022), Cui and Du (2022b), Zhong et al. (2022), Lu et al.
(2022), Wang et al. (2022), and Xu and Liang (2022),
which unveils the efficacy of the pessimism principle in
both model-based and model-free approaches. Among
this body of prior works, the ones that are most related
to the current paper are Cui and Du (2022a, b), and
Zhong et al. (2022), both of which focus on episodic,
finite-horizon, zero-sum Markov games with two
players. More specifically, Cui and Du (2022b) demon-
strate that a unilateral concentrability condition is neces-
sary for learning NEs in offline settings and propose a
pessimistic value iteration with reference-advantage
decomposition to enable sample efficiency. Zhong et al.
(2022) propose a pessimistic minimax value iteration
algorithm, which achieves appealing sample complex-
ity in the presence of linear function representation and
was recently improved by Xiong et al. (2022). In the con-
current work, Cui and Du (2022a) propose a different
pessimistic algorithm that designs lower confidence
bounds for policy pairs instead of state-action pairs; for
two-player, zero-sum MGs, their algorithm is capable of
achieving a sample complexity proportional to A + B. In
the single-agent, offline RL setting, Rashidinejad et al.
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(2021), Yan et al. (2023), and Li et al. (2024b) study
offline RL for infinite-horizon MDPs, and Jin et al.
(2021b), Xie et al. (2021), Shi et al. (2022), and Li et al.
(2024b) look at the finite-horizon episodic counterpart,
all of which operate upon some single-policy concentr-
ability assumptions. Among these works, Li et al.
(2024b) and Yan et al. (2023) achieved minimax-optimal

sample complexity O (ﬁ) for discounted, infinite-

horizon MDPs by means of model-based and model-
free algorithms, respectively; similar results have been
established for finite-horizon MDPs as well (Xie et al.
2021; Yin et al. 2021b, ¢; Shi et al. 2022; Li et al. 2024b).

4.2. Multiagent RL and Markov Games

The concept of Markov games—also under the name of
stochastic games—dates back to Shapley (1953), which
has become a central framework to model competitive
multiagent decision making. A large strand of prior
works studies how to efficiently solve Markov games
when perfect model description is available (Littman
1994, 2001; Hu and Wellman 2003; Hansen et al. 2013;
Perolat et al. 2015; Daskalakis et al. 2020, 2023; Cen et al.
2021; Wei et al. 2021; Zhao et al. 2021; Chen et al. 2022;
Mao and Basar 2022). Recent years have witnessed
much activity in studying the sample efficiency of learn-
ing Nash equilibria in zero-sum Markov games, cover-
ing multiple different types of sampling schemes; for
instance, Wei et al. (2017), Xie et al. (2020), Bai et al.
(2020), Bai and Jin (2020), Liu et al. (2021), Jin et al.
(2021a), Song et al. (2021), Mao and Basar (2022), Daska-
lakis et al. (2023), Tian et al. (2021), and Chen et al. (2022)
focus on the online explorative environments, whereas
Zhang et al. (2020a) pays attention to the scenario that
assumes sampling access to a generative model.
Whereas the majority of these works exhibits a sample
complexity that scales at least as O(SAB) in order to
learn an approximate NE, the recent work Bai et al.
(2020) proposes a V-learning algorithm attaining a sam-
ple complexity that scales linearly with S(A + B), thus
matching the minimax-optimal lower bound up to a fac-
tor of H>. When a generative model is available, Li et al.
(2022b) further develops an algorithm that learns

e-Nash using ) (W) samples, which attains the

minimax lower bound for nonstationary, finite-horizon
MGs. The setting of general-sum, multiplayer Markov
games is much more challenging given that learning
Nash equilibria is known to be PPAD-complete (Daska-
lakis et al. 2009, Daskalakis 2013). Shifting attention to
more tractable solution concepts, Jin et al. (2021a), Das-
kalakis et al. (2023), Mao and Basar (2022), and Song
et al. (2021) propose algorithms that provably learn
(coarse) correlated equilibria with sample complexities
that scale linearly with max; A; (where A; is the number

of actions of the ith player), thereby breaking the curse
of multiagents. Additionally, there are also several
works investigating the turn-based setting in which the
two players take actions in turn; see Sidford et al. (2020),
Cui and Yang (2021), Jia et al. (2019), and Jin et al. (2022).
Moreover, another two works Zhang et al. (2021b) and
Abe and Kaneko (2020) study offline sampling oracles
under uniform coverage requirements (which are
clearly more stringent than the unilateral concentrability
assumption). The interested readers are also referred to
Zhang et al. (2021a) and Yang and Wang (2020) for an
overview of recent development.

4.3. Model-Based RL

The method proposed in the current paper falls under
the category of model-based algorithms, which decou-
ple model estimation and policy learning (planning).
The model-based approach is extensively studied in the
single-agent setting, including the online exploration
setting (Azar et al. 2017, Zhang et al. 2023), the case with
a generative model (Azar et al. 2013, Agarwal et al. 2020,
Jin and Sidford 2021, Wang et al. 2021, Li et al. 2024a),
the offline RL setting (Xie et al. 2021, Li et al. 2024b), and
turn-based Markov games (Cui and Yang 2021).
Encouragingly, the model-based approach is capable of
attaining minimax-optimal sample complexities in a
variety of settings (e.g., Azar et al. 2017, Agarwal et al.
2020, Zhang et al. 2023, Li et al. 2024b), sometimes even
without incurring any burn-in cost (Cui and Yang 2021;
Zhang et al. 2023; Li et al. 2024a, b). The method pro-
posed in Cui and Du (2022b) also exhibits the flavor of a
model-based algorithm although an additional variance
reduction scheme is incorporated in order to optimize
the horizon dependency.

5. Additional Notation

Let us collect a set of additional notations that are used
in the analysis. First of all, for any (s,a,b) e S X AX B,
any vector V € R®, and any probability transition kernel
P:SXx AXB— A(S), we define

Varp, (V) =P, (Vo V)= (P, ,V)’, (1)

s,a,b

where P , , abbreviates P(-|s,a,b) as usual. When the
max-player’s policy u is fixed, the Markov game
reduces to a (single-agent) MDP for the min-player. For
any MDP, it is known that there exists at least one policy
that simultaneously maximizes the value function (Q-
function) for all states (state-action pairs) (Bertsekas
2017). In light of this, when the policy u of the max-
player is frozen, we denote by vp (1) the optimal policy
of the min-player, which is often referred to as the best
response of the min-player when the max-player adopts
policy u. Similarly, we can define the best response of
the max-player when the min-player adopts policy v,
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which we denote by 1, (v). These allow one to define
Vi (s) := VE () = min VE(s),
V*r(s):= V“br(v)’v(s) =max V*"(s)
u

foralls € S,and
Q"*(5,8,b) = Q** (s, a,b) = min Q" (s,a,b),
Q" (s,a,b) := Q'«™"V(s,a,b) = max Q"“"(s,a,b)
n

for all (s,a,b) € S X A x B. Note that the definitions of
V#*and V*" here are consistent with the ones in Sec-
tion 2.

6. Proof of Theorem 1
Toward proving Theorem 1, we first state a slightly
stronger result as follows.

Theorem 3. Consider any initial state distribution p €
A(S) and suppose that Assumption 2 holds. Assume that
1/2 <y < 1. Then, with probability exceeding 1 — 9, the
policy pair ({1,7) returned by Algorithm 1 satisfies

R S(A +B) N
v* . v < cllpped log —~
S(A+B
c M()l gN, (22a)
(1-y)°N 0
; S(A+ B) N
Vv B Vi < clipped N
()~ V*(p) cO\/(l_ N85
cl|ppedS(A + B) N

——————log— (22b
co 10— PN 8% (22b)
for some sufficiently large constant co > 0. As an immediate
consequence, the duality gap of ({i,7) obeys, with probability
at least 1 — O, that

X ) S(A+B). N
V4l v <2 clipped log—~
(p) (p) 0\/—( PN %85
S(A+B
Co —Cl'pped ( )logﬁ. (23)

(1—y)°N o

As can be straightforwardly verified, Theorem 1 is a
direct consequence of Theorem 3 (by taking the right-
hand side of (23) to be no larger than ¢).

The remainder of this section is, thus, dedicated to
establishing Theorem 3. Before proceeding, let us now
take a moment to provide a brief road map of the proof.

1. We first show in Section 6.2 that the pessimistic
Bellman operators T - and ’T - introduced in (11) are
both monotone and 7/ contrachve and admit unique
fixed points Q¢ ; and Q¢ 4, respectively. These proper-
ties reveal that the pessimistic value iterations
{Q;Te,t}mg ({Q;e,t}lstST) in Algorithm 1 converge to

Que+ (Qpe ) at a geometric rate, and therefore, it suf-
fices to analyze the fixed points Q¢ ; and Q% ;.

2. Next, we show Bernstein-style concentration
bounds for random quantities such as (PS b —

”b)V , and (Psub Sub)V ¢ in Section 6.3, in
which V pe t and V2, are the Value functions associated
with Qpe , and Qpe ;- Because of the complicated statis-
tical dependency between P, ,, and Vet We use a
leave-one-out argument to establish this concentration
result in Lemma 2.

3. Finally, based on the aforementioned results, we
derive error bounds for V*(p) — V&*(p) and V*"(p) —
V*(p) in Section 6.4. Our analysis makes use of a self-
bounding trick, which allows one to derive sharp estima-
tion error bounds that turn out to be minimax-optimal.

6.1. Preliminary Facts
Before continuing, we collect several preliminary facts

that are useful throughout.
1. Forany Q1,Q>: S X AX B— R, we have

V1= Valleo < 11Q1 — Qalleo, (24)
where V7 (V3) denotes the value function associated
with Q (Q,); see (10) for the precise definition.

2. Forany V,V,: S — [0, 1%}/} , any probability tran-
sition kernel P:SX Ax B — A(S), and any (s,a,b) €
S x A x B, we have

4
|Varp,,, (V1) —Varp, , (V2)| < mll% —Vallw, (25)

where Varp s , (V) is defined in (21).

3. As a consequence, we also know that, for any
(s,a,b)eSxX AxB and any V;,V,:S— [O,l y} the
corresponding penalty terms (cf. (12)) obey

|B(s,a,b;V1) = B(s,a,b;V2)| < 2[Vi = Vol (26)

The proof of the preceding results can be found in
Online Appendix EC.1.1.

6.2. Step 1: Key Properties of Pessimistic
Bellman Operators

Recall the definition of the pessimistic Bellman opera-

tors 7, and 7}, introduced in (11). The following

lemma gathers a couple of key properties of these two

operators.

Lemma 1. The following properties hold true:
° (Monotomczty) For any Q1 > Q,, we have T pe(Ql) >

T pe(Q2) and T o (Q1) = T 5o(Qa).
o (Contmctzon) Both operators are y-contractive in the
{ sense, that is,

17 5o(Q1) — ff,;e(Qz)um < YIQ1 — Qolleo,
17 36(Q1) = T 16(Q2)lle < V1IQ1 — Qalles
for any Qq and Q.
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o (Uniqueness of fixed points) f’ (T o) has a unique
fixed point Qp (Q *), which also satlsﬁes 0 < Qe = (s,a,b)

_1_y(0§Q (sab)g )forany(sab)eSxAXB

Proof. See Online Appendix EC.1.2. O

Next, we make note of several immediate conse-
quences of Lemma 1. Here and throughout, V&' and
Ve are defined to be the value functions (see (10)) asso-
c1ated with Qp¢ and Qp¢, respectively.

e First, the precedmg lemma implies that

Qpe,t < Q;e* (Vt>0) hence Qpe < Qge*. (27)

To see this, we first note that Qg (=0 < Qg Next,
suppose that Qg ; < Q¢ for some iteration ¢ > 0; then,
the monotonicity of T o (cf. Lemma 1) tells us that

Qpe t+1 Tpe(Qpe t) < Tpe(Qp ) Qpe/

from which (27) follows.
e In addition, the y-contraction property in Lemma
1leads to

— —% — —% 1
”Vpe - Vpe ”oo < ”Qpe - Qpe ”oo < N/ (28)
and, to justify this, observe that

1Qpe, i = Qpelloo = 17 pe(Qpe, 1) = T pe(Qpé)lles
< ‘J/HQ;e,tfl - Qpe*”oo
t b
<. < V ||Qpe,0 - Qpe”oo < 1 — 7//
which, together with T = [W‘l and (24), gives
Ve = Ve llo < 11Qpe = Qe lleo = 1Qpe, 7 — Qpe lloo
T
< Y < l
-y N
e A similar argument also yields
pe = Qpr 11Qpe — Qpelles < 1/N,
Ve — Vpello < 1/N. (29)

6.3. Step 2: Decoupling Statistical Dependency
and Establishing Pessimism

To proceed, we rely on the following theorem to quan-

tify the difference between P and P when projected onto

a value function direction.

Lemma 2. For any (s,a,b) € S X A X B satisfying N(s,a,
b) > 1 with probability exceeding 1 — 9,

A ~ 1
Psa _Psu S ¢ —V
|( ,a,b , ,b)V| C\/N(S,ﬂ,b) arP

z 10%5
‘- y)N(s,a,b)

~ N
b (V)logg

(30)

for some sufficiently large constant ¢ > 0, and

Vars V) < 2Var V)+O| ———5———log—
b, (V) <2Vare, (V) ((1—)/)2N(S,tl,b) gé)
(31)

hold simultaneously for all V e RS satisfying 0 < V <
and min{||V — Vol IV = Vigllo} < 1/N.

The proof is deferred to Online Appendix EC.1.3.

In words, the first result (30) delivers some Bernstein-
type concentration bound, whereas the second result
(31) guarantees that the empirical variance estimate (i.e.,
the plug-in estimate) is close to the true variance. It is
worth noting that Lemma 2 does not require V to be sta-
tistically independent from P, , ;, which is particularly
crucial when coping with the complicated statistical
dependency of our iterative algorithm. The proof of
Lemma 2 is established upon a leave-one-out analysis
argument (see, e.g., Chen et al. 2019a, b; Agarwal et al.
2020; Ma et al. 2020; Chen et al. 2021; Li et al. 2024a, b)
that helps decouple statistical dependency; see details in
Online Appendix EC.1.3. Armed with Lemma 2, we can
readily see that

~ ~ 4 ~
|(Ps,a,b _Ps,u,b)vl +N < ﬁ(slarb; V) (32)

holds for any (s,a,b) € S X A X B satisfying N(s,a,b) > 1
and any V satisfying the conditions in Lemma 2. In
turn, this important fact allows one to justify that Q.
(Q .) is indeed an upper (lower) bound on Qi+ (Q*7")
as formahzed subsequently.

Lemma 3. With probability exceeding 1 — 6, it holds that
Qpe <Q, Qf.2Q", Voo VA and V5 >V*".

The proof is provided in Online Appendix EC.1.4.

This lemma makes clear a key rationale for the princi-
ple of pessimism: we want the Q-function estimates to
be always conservative uniformly over all entries.

6.4. Step 3: Bounding V*(p)—V#*(p)

and V*?(p)—V*(p) )
Before proceeding to bound V* — V#*, we first develop
a lower bound on V|, given that Vi is lower bounded
by Vg (according to Lemma 3). Toward this end, we
mvoke the definition of Vi, to reach

V. .(s)= max min S,
pe(s) (s)EA(A) v(s)EA(B) a~u(s),b ~v(s)[Qpe( )l

> b 33
YORAB) a-p <s>,b (s)[Qpe( a,0)) (33)
where we set the policy of the max-player to be y* on the
right-hand side of the preceding equation. Clearly, there
exists a deterministic policy v : S — A(B) such that
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vo(s) = arg min
v(s)eA(B) O~H (S), ~v(s)

[Que(s,a,b)] (34

for any s € S; for instance, one can simply set, for any
sES,

vo(s) =1y, with by := arg max(u*(s), Que(s, -, b)),
beB

(35)

with 1, denoting a probability vector that is nonzero
only in b,. This deterministic policy vy helps us lower
bound V. as accomplished in the followmg lemma.
Here and as follows, we define two vectors r#+¥0, B0 €
R® and a probability transition kernel P¥" 0 : S — A(S)
restricted to p* and vy such that, forany s,s’ € S,

WV (g) =
M= B s e b, (362)

Brs):= K

% 36b
'1~H*(S),b~1/o(5)[ﬁ (5,0,0: Vo)l (36b)

PHY(s! |5) i= [P(s"|s,a,b)]. (360)

E
~u*(s),b~vo(s)

Lemma 4. With probability exceeding 1 — 6, we have
Voo 2 70 4 yPEOY L 2pH, (37)
The proof is deferred to Online Appendix EC.1.5.

In addition, we can invoke Lemma 3 and the fact that
V* = V¥ = VF'* to reach
VE— VEx = P i < YR (38)

pe”

which motivates us to look at V#""0 — Ve Toward this,
we note that the Bellman equation tells us that

VHV0 = V0 g PH VOV, (39)
Taking (37) and (39) collectively yields
VI Vo < yPEOYO(VERT — V) + 2B, (40)

thus resulting in a self-bounding type of relation.
Applying (40) recursively, we arrive at that

pT(VE ™ Vi) < ypT P IO(VI™ V) 4 2pT g
<PpT(PP (VI — V)

+ 2pTﬁy*,v0 + zypTP,u*,vUﬁy*,vU
<. < y”pT(p#*,Vo)n(Vy*,vo _

n—1
r2p7 lzﬂpmy
i=0

holds for all positive integers n. Letting n — co and
recalling that the vector dt’ "o := [dH""(s; p)],.s obeys
(see (2))

pe)

pr

A = (1= )T Y PP

i=0
=(1—y)p I—yP ), 41)

we arrive at

pT(VIT = Vi) < {lim y"pT(PH0)! (VI = Vo))
2 . .
w,vo\T put,vo
@)

2 « "
— w,vo T w,vo
T @R
42)

where the last line makes use of the fact that ||p"
(P#70)"||; =1 for any n > 1, and hence, y"p™ (P¥"0)" —
Oasn — cowheny < 1.

In order to further control (42), we resort to the fol-
lowing lemma for bounding (d+"*0)" """, whose proof
can be found in Online Appendix EC.1.6.

Lemma 5. There exists some large enough universal con-
stant cg > 0 such that

. . S(A+B). N
g T pu*,vo <c Ml N
@ =T AN 8

S(A+B) N
clipped N
+C6\/—N(1—y) ogé.

This is with probability exceeding 1 — .
To finish, taking (38), (42) and Lemma 5 together gives
V*(P) _ Vﬁ,*(P) — T(V* _ ﬁ,*) < pT(V;l*,VO _ V;;e)

Og6
S(A+B)1 N

-7
\/cl|ppedS(A+B)l N

2CBCcllpped
3 og—.
1-y’N 0

This completes the proof for Claim (22a). The proof for
the other claim (22b) follows from an almost identical
argument and is, hence, omitted.

6.5. Discussion: Instance-Dependent Statisti-
cal Bounds?

Thus far, we have presented the proof of Theorem 1 that
concerns the minimax optimality of the model-based
algorithm. Note that a recent line of work has attempted
to move beyond minimax-optimal statistical guarantees
and pursue more refined instance-optimal (or locally
minimax) performance guarantees (Khamaru et al
2021a, b, Mou et al. 2022). Here, we take a moment to
discuss the challenges that need to be overcome in order
to extend our analysis in an instance-optimal fashion.

e A crucial step that allows us to obtain error
bounds that scale linearly with A + B instead of the
ones that scale linearly with AB in Cui and Du (2022b)
is the introduction of an auxiliary policy vy in (34). This
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allows us to upper bound the error with

2
1-y
see (42). Whereas this facilitates our analysis, the terms
B (defined in (36)) and d*"** (defined in (41)) both
depend on the auxiliary policy v,. Because of the com-
plicated dependency between v, (which is determined
by a random function V) and the model parameters, it
remains quite challenging to connect these error terms
with instance-dependent quantities (i.e., model para-
meters) without losing optimality.

e Note that we might be able to resolve this issue in
a coarse way, for example, by taking the supremum
over all possible policy v:

pT(V#*,vU _ V[;e) < (d‘“*/VU)T‘BH*/VO;

. 2 . .
pT(VH — V) < —— sup (d"V)TBY. (43)
— / veA(B)

Let us assume for the moment that this could work
(despite the potential suboptimality of this error
bound) and see what this lead to. By checking the proof
of Lemma 5, we can see that, in order to upper bound
(43) in an instance-optimal manner, it is important to
relate Varp, (V) to model parameters for all
(s,a,b) € S X Ax B. Ideally, we can replace V. with
the value function associated with the Nash equilib-
rium V*. However, based on our current analysis
framework, we can only show that V*(p) and V_.(p)
are close, which is insufficient to guarantee the close-
ness of Varp (V) and Varp (V*) for all (s,a,b) €
SXAXB.

o As we briefly mention in Remark 2, prior literature
Khamaru et al. (2021a), which establishes instance opti-
mality for the optimal value estimation problem in
single-agent RL under a generative model, requires
one of the following two conditions: the optimal policy
is unique or a sample complexity bound that depends
on an optimality gap

A= min [|Q" —7 — yP"Ql, (44)

nell\IT

where Q* is the optimal Q-function, I1 is the set of deter-
ministic policies, and II" is the set of optimal (determin-
istic) policies. However, neither condition has a direct
analog in two-player, zero-sum Markov games: for the
first one, this is because the Nash equilibrium of a zero-
sum Markov game is not unique in general; for the sec-
ond one, this is because the Nash equilibrium policy
pair is usually random, and it is not clear how to define
anonzero optimality gap such as (44).

In view of these challenges, our current analysis frame-
work remains incapable of deriving instance-optimal per-
formance guarantees. Accomplishing instance-optimal
results for zero-sum Markov games might require

substantially more refined analysis techniques, and we
leave this important direction to future investigation.

7. Discussion

In the present paper, we propose a model-based offline
algorithm, which leverages the principle of pessimism
in solving two-player, zero-sum Markov games on the
basis of past data. In order to find an e-approximate
Nash equilibrium of the Markov game, our algorithm
S(A+B)C*
(1-y)’e?
sample complexity bound is provably minimax optimal

requires no more than O( ) samples, and this

for the entire range of target accuracy level ¢ € (O, 11)/} .

Our theory improves upon prior sample complexity
bounds in Cui and Yang (2021) in terms of the depen-
dency on the size of the action space. Another appealing
feature is the simplicity of our algorithm, which does
not require complicated variance reduction schemes
and is, hence, easier to implement and interpret. Moving
forward, there are a couple of interesting directions that
are worthy of future investigation. For instance, one nat-
ural extension is to explore whether the current algorith-
mic idea and analysis extend to multiagent, general-
sum Markov games with the goal of learning other solu-
tion concepts of equilibria such as coarse correlated
equilibria (given that finding Nash equilibria in general-
sum games is PPAD-complete). Another topic of inter-
est is to design model-free algorithms for offline NE
learning in zero-sum or general-sum Markov games.
Furthermore, the current paper focuses attention on tab-
ular Markov games, and it would be of great interest to
design sample-efficient, offline, multiagent algorithms
in the presence of function approximation.
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