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Abstract. This paper makes progress toward learning Nash equilibria in two-player, zero- 
sum Markov games from offline data. Specifically, consider a γ-discounted, infinite-horizon 
Markov game with S states, in which the max-player has A actions and the min-player has B 
actions. We propose a pessimistic model–based algorithm with Bernstein-style lower confi-
dence bounds—called the value iteration with lower confidence bounds for zero-sum Markov 
games—that provably finds an ε-approximate Nash equilibrium with a sample complexity 
no larger than C

?
clippedS(A+B)
(1 γ)3ε2 (up to some log factor). Here, C?

clipped is some unilateral clipped con-
centrability coefficient that reflects the coverage and distribution shift of the available data 
(vis-à-vis the target data), and the target accuracy ε�can be any value within 0, 1

1 γ

 i
. Our 

sample complexity bound strengthens prior art by a factor of min{A, B}, achieving minimax 
optimality for a broad regime of interest. An appealing feature of our result lies in its algorith-
mic simplicity, which reveals the unnecessity of variance reduction and sample splitting in 
achieving sample optimality.
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1. Introduction
Multiagent reinforcement learning (MARL), a subfield 
of reinforcement learning (RL) that involves multiple 
individuals interacting/competing with each other in a 
shared environment, has garnered widespread recent 
interest, partly sparked by its capability of achieving 
superhuman performance in game playing and autono-
mous driving (Shalev-Shwartz et al. 2016, Baker et al. 
2019, Berner et al. 2019, Brown and Sandholm 2019, 
Jaderberg et al. 2019, Vinyals et al. 2019). The coexistence 

of multiple players—whose own welfare might come at 
the expense of other parties involved—makes MARL 
inherently more intricate than the single-agent counterpart.

A standard framework to describe the environment 
and dynamics in competitive MARL is Markov games 
(MGs), which are generally attributed to Shapley (1953) 
(originally referred to as stochastic games). Given the 
conflicting needs of the players, a standard goal in 
Markov games is to seek some sort of steady-state solu-
tions with the Nash equilibrium (NE) being arguably 
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the most prominent one. Whereas computational intrac-
tability has been observed when calculating NEs in 
general-sum MGs and/or MGs with more than two 
players (Daskalakis et al. 2009, Daskalakis 2013), an 
assortment of tractable algorithms have been put for-
ward to solve two-player, zero-sum Markov games. On 
this front, a large strand of recent works revolves 
around developing sample- and computation-efficient 
paradigms (Bai et al. 2020, Xie et al. 2020, Zhang et al. 
2020a, Liu et al. 2021, Tian et al. 2021). What is particu-
larly noteworthy here is the recent progress in overcom-
ing the so-called curse of multiple agents (Bai et al. 2020, 
Jin et al. 2021a, Li et al. 2022b); that is, although the total 
number of joint actions exhibits exponential scaling in 
the number of agents, learnability of Nash equilibria 
becomes plausible even when the sample size scales 
only linearly with the maximum cardinality of the indi-
vidual action spaces. See also Jin et al. (2021a), Song et al. 
(2021), Mao and Başar (2022), and Daskalakis et al. 
(2023) for similar accomplishments in learning coarse 
correlated equilibria in multiplayer general-sum MGs.

The aforementioned works permit online data collec-
tion either via active exploration of the environment or 
through sampling access to a simulator. Nevertheless, 
the fact that real-time data acquisition might be unaf-
fordable or unavailable—for example, it could be time- 
consuming, costly, and/or unsafe in healthcare and 
autonomous driving—constitutes a major hurdle for 
widespread adoption of these online algorithms. This 
practical consideration inspires a recent flurry of studies 
collectively referred to as offline RL or batch RL (Kumar 
et al. 2020, Levine et al. 2020) with the aim of learning 
based on a historical data set of logged interactions.

1.1. Data Coverage for Offline Markov Games
The feasibility and efficiency of offline RL are largely 
governed by the coverage of the offline data in hand. On 
one hand, if the available data set covers all state–action 
pairs adequately, then there is sufficient information to 
guarantee learnability; on the other hand, full data cov-
erage imposes an overly stringent requirement that is 
rarely fulfilled in practice and is oftentimes wasteful in 
terms of data efficiency. Consequently, a recurring 
theme in offline RL gravitates around the quest for algo-
rithms that work under minimal data coverage. Encour-
agingly, the recent advancement on this frontier (e.g., 
Rashidinejad et al. 2021, Xie et al. 2021) uncovers the 
sufficiency of single-policy data coverage in single- 
agent RL; namely, offline RL becomes information- 
theoretically feasible as soon as the historical data covers 
the part of the state–action space reachable by a single 
target policy.

Unfortunately, single-policy coverage is provably 
insufficient when it comes to Markov games with nega-
tive evidence observed in Cui and Du (2022b). Instead, a 

sort of unilateral coverage—that is, a condition that 
requires the data to cover not only the target policy pair 
but also any unilateral deviation from it—seems 
necessary to ensure learnability of Nash equilibria in 
two-player, zero-sum MGs. Employing the so-called 
unilateral concentrability coefficient C? to quantify such 
unilateral coverage as well as the degree of distribution 
shift (which we define shortly in Assumption 1), Cui 
and Du (2022b) demonstrate how to find ε-Nash solu-
tions in a finite-horizon, two-player, zero-sum MG once 
the number of sample rollouts exceeds

Õ C?H3SAB
ε2

! "
: (1) 

Here, S is the number of shared states; A and B repre-
sent, respectively, the number of actions of the max- 
player and the min-player; H stands for the horizon 
length; and the notation Õ(·) denotes the order-wise 
scaling with all logarithmic dependency hidden.

Despite being an intriguing polynomial sample com-
plexity bound, a shortfall of (1) lies in its unfavorable 
scaling with AB (i.e., the total number of joint actions), 
which is substantially larger than the total number of 
individual actions A + B. Whether it is possible to allevi-
ate this curse of multiple agents in a two-player, zero- 
sum Markov game—and, if so, how to accomplish it—is 
the key question to be investigated in the current paper.

1.2. An Overview of Main Results
The objective of this paper is to design a sample- 
efficient, offline RL algorithm for learning Nash equilib-
ria in two-player, zero-sum Markov games, ideally 
breaking the curse of multiple agents. Focusing on 
γ-discounted, infinite-horizon MGs, we propose a 
model-based paradigm—called the value iteration with 
lower confidence bounds for zero-sum Markov game 
(VI-LCB-Game)—that is capable of learning an 
ε-approximate Nash equilibrium with sample complex-
ity

Õ
C?

clippedS(A + B)
(1 γ)3ε2

 !

, 

where C?
clipped is the so-called clipped unilateral con-

centrability coefficient (formalized in Assumption 2) 
and always satisfies C?

clipped → C?. Our result strengthens 
prior theory in Cui and Du (2022b) by a factor of 
min{A, B} (if we view the horizon length H in finite- 
horizon MGs and the effective horizon 1

1 γ�in the 
infinite-horizon counterpart as equivalence). To demon-
strate that this bound is essentially unimprovable, we 
develop a matching minimax lower bound (up to some 
logarithmic factor), thus settling this problem. Our algo-
rithm is a pessimistic variant of value iteration with 
carefully designed Bernstein-style penalties, which 
requires neither sample splitting nor sophisticated 
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schemes such as reference-advantage decomposition. 
The fact that our sample complexity result holds for the 
full ε-range (i.e., any ε ↑ 0, 1

1 γ

 i
) unveils that sample 

efficiency is achieved without incurring any burn-in 
cost.

Finally, when finalizing the current paper, we became 
aware of an independent study (Cui and Du 2022a; 
posted to arXiv on June 1, 2022) that also manages to 
overcome the curse of multiple agents in a two-player, 
zero-sum Markov game, on which we elaborate toward 
the end of Section 3.

1.3. Notation
Before proceeding, let us introduce some notation that is 
used throughout. With slight abuse of notation, we use 
P to denote a probability transition kernel and the asso-
ciated probability transition matrix exchangeably. We 
also use the notation µ exchangeably for a probability 
distribution and its associated probability vector (and 
we often do not specify whether µ is a row vector or col-
umn vector as long as it is clear from the context). For 
any two vectors x ↓ [xi]n

i↓1 and y ↓ [yi]n
i↓1, we use x ↔ y ↓

[xiyi]n
i↓1 to denote their Hadamard product, and we also 

define x2 ↓ [x2
i ]n

i↓1 in an entry-wise fashion. For a finite 
set S ↓ {1, : : : , S}, we let !(S) :↓ {x ↑ RS |1↗x ↓ 1, x ↘ 0}
represent the probability simplex over the set S.

2. Problem Formulation
In this section, we introduce the background of zero- 
sum Markov games, followed by a description of the 
offline data set.

2.1. Preliminaries
2.1.1. Zero-Sum, Two-Player Markov Games. Consider 
a discounted, infinite-horizon, zero-sum MG (Shapley 
1953, Littman 1994) as represented by the tuple MG ↓
(S,A,B, P, r,γ). Here, S ↓ {1, : : : , S} is the shared state 
space; A ↓ {1, : : : , A} (respectively, B ↓ {1, : : : , B}) is the 
action space of the max-player (min-player); P : S ≃A ≃
B⇐ !(S) is the (a priori unknown) probability transi-
tion kernel, where P(s⇒ |s, a, b) denotes the probability of 
transitioning from state s to state s⇒ if the max-player 
executes action a and the min-player chooses action b; r :
S ≃A ≃ B⇐ [0, 1] is the reward function such that 
r(s, a, b) indicates the immediate reward observed by 
both players in state s when the max-player takes action 
a and the min-player takes action b; and γ ↑ (0, 1) is the 
discount factor with 1

1 γ�commonly referred to as the 
effective horizon. Throughout this paper, we primarily 
focus on the scenario in which S, A, B, and 1

1 γ�could all 
be large. Additionally, for notational simplicity, we 
define the vector Ps, a, b ↑ R1≃S as Ps, a, b :↓ P(· |s, a, b) for 
any (s, a, b) ↑ S ≃A ≃ B.

2.1.2. Policy, Value Function, Q-Function, and Occu-
pancy Distribution. Let µ : S ⇐ !(A) and ν : S ⇐ !(B)
be (possibly random) stationary policies of the max- 
player and the min-player, respectively. In particular, 
µ(· |s) ↑ !(A) (ν(· |s) ↑ !(B)) specifies the action selection 
probability of the max-player (min-player) in state s. 
The value function Vµ,ν : S ⇐ R for a given product pol-
icy µ ≃ ν�is defined as

Vµ,ν(s) :↓ E
X⇑

t↓0
γtr(st, at, bt) |s0 ↓ s;µ,ν

" #

, ∀s ↑ S, 

where the expectation is taken with respect to the ran-
domness of the trajectory {(st, at, bt)}t↘0 induced by the 
product policy µ ≃ ν�(i.e., for any t ↘ 0, the players take 
at ~ µ(· |st) and bt ~ ν(· |st) independently conditional on 
the past) and the probability transition kernel P (i.e., 
st+1 ~ P(· |st, at, bt) for t ↘ 0). Similarly, we can define the 
Q-function Qµ,ν : S ≃A ≃ B⇐ R for a given product 
policy µ ≃ ν�as follows:

Qµ,ν(s,a,b) :↓E
X⇑

t↓0
γtr(st,at,bt) |s0 ↓ s,a0 ↓ a,b0 ↓ b;µ,ν

" #

,

∀(s,a,b)↑S ≃A≃B, 

where the actions are drawn from µ ≃ ν�except for the 
initial time step (namely, for any t ↘ 1, we execute at ~ 
µ(· |st) and bt ~ ν(· |st) independently conditional on the 
past). Additionally, for any state distribution ρ ↑ !(S), 
we introduce the following notation tailored to the 
weighted value function of policy pair (µ,ν):

Vµ,ν(ρ) :↓ Es~ρ[Vµ,ν(s)]:
Moreover, we define the discounted occupancy mea-
sures associated with an initial state distribution ρ ↑
!(S) and the product policy µ ≃ ν�as follows:

dµ,ν(s;ρ) :↓ (1 γ)
X⇑

t↓0
γtP(st ↓ s |s0 ~ ρ;µ,ν), ∀s ↑ S,

(2) 

dµ,ν(s, a, b;ρ) :↓ (1 γ)
X⇑

t↓0
γtP(st ↓ s, at ↓ a,

bt ↓ b |s0 ~ ρ;µ,ν), ∀(s, a, b) ↑ S ≃A ≃ B,
(3) 

where the sample trajectory {(st, at, bt)}t↘0 is initialized 
with s0 ~ ρ�and then induced by the product policy µ ≃
ν�and the transition kernel P as before. It is clearly seen 
from the preceding definition that

dµ,ν(s, a, b;ρ) ↓ dµ,ν(s;ρ)µ(a |s)ν(b |s): (4) 

2.1.3. Nash Equilibrium. In general, the two players 
have conflicting goals with the max-player aimed at 
maximizing the value function and the min-player 
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minimizing the value function. As a result, a standard 
compromise in Markov games becomes finding an NE. 
To be precise, a policy pair (µ?,ν?) is said to be a Nash 
equilibrium if no player can benefit from unilaterally 
changing the player’s own policy given the opponent’s 
policy (Nash 1951); that is, for any policies µ : S ⇐ !(A)
and ν : S ⇐ !(B), one has

Vµ,ν? → Vµ?,ν? → Vµ?,ν:

As is well-known (Shapley 1953), there exists at least 
one Nash equilibrium (µ?,ν?) in the discounted, two- 
player, zero-sum Markov game, and every NE results in 
the same value function:

V?(s) :↓Vµ?,ν?(s)↓max
µ

min
ν

Vµ,ν(s)↓min
ν

max
µ

Vµ,ν(s):

In addition, when the max-player’s policy µ is fixed, it is 
clearly seen that the MG reduces to a single-agent Mar-
kov decision process (MDP). In light of this, we define, 
for each s ↑ S,
Vµ,?(s) :↓ min

ν
Vµ,ν(s) and V?,ν :↓ max

µ
Vµ,ν(s), 

each of which corresponds to the optimal value function 
of one player with the opponent’s policy frozen. More-
over, for any policy pair (µ,ν), the following weak dual-
ity property always holds:

Vµ,? → Vµ?,ν? ↓ V? → V?,ν:

In this paper, our goal can be posed as calculating a pol-
icy pair (µ̂, ν̂) such that

Vµ̂ ,?(ρ) ε → V?(ρ) → V?, ν̂(ρ) + ε, 
where ρ ↑ !(S) is some prescribed initial state distribu-
tion and ε ↑ 0, 1

1 γ

 i
denotes the target accuracy level. 

The gap V?, ν̂(ρ) Vµ̂,?(ρ) is often referred to as the 
duality gap of (µ̂, ν̂) in the rest of the present paper.

2.2. Offline Data Set (Batch Data Set)
Suppose that we have access to a historical data set con-
taining a batch of N sample transitions D ↓ {(si, ai, 
bi, s⇒i )}1→ i→N, which are generated independently from a 
distribution db ↑ !(S ≃A ≃ B) and the probability tran-
sition kernel P, namely,

(si, ai, bi) ~i:i:d:db and s⇒i ~ind:P(· |si, ai, bi): (5) 

The goal is to learn an approximate Nash equilibrium 
on the basis of this historical data set.

In general, the data distribution db might deviate 
from the one generated by a Nash equilibrium (µ?,ν?). 
As a result, whether reliable learning is feasible depends 
heavily upon the quality of the historical data. To quan-
tify the quality of the data distribution, Cui and Du 
(2022b) introduce the following unilateral concentrabil-
ity condition.

Assumption 1 (Unilateral Concentrability). Suppose that 
the following quantity

C? :↓ max sup
µ, s, a, b

dµ, ν?(s, a, b;ρ)
db(s, a, b) , sup

ν, s, a, b

dµ?, ν(s, a, b;ρ)
db(s, a, b)

( )

(6) 
is finite, where we define 0=0 ↓ 0 by convention. This quan-
tity C? is termed the unilateral concentrability coefficient.

In words, this quantity C? employs certain density 
ratios to measure the distribution mismatch between 
the target distribution and the data distribution in hand. 
On the one hand, Assumption 1 is substantially weaker 
than the type of uniform coverage requirement (which 
imposes a uniform bound on the density ratio d

µ,ν(s, a,b;ρ)
db(s,a,b)

over all (µ,ν) simultaneously) as (6) freezes the policy of 
one side, exhausting over all policies of the other side. 
On the other hand, Assumption 1 remains more strin-
gent than a single-policy coverage requirement (which 
only requires the data set to cover the part of the 
state–action space reachable by a given policy pair 
(µ?,ν?)) as (6) requires the data to cover those 
state–action pairs reachable by any unilateral deviation 
from the target policy pair (µ?,ν?). As posited by Cui 
and Du (2022b), unilateral coverage (i.e., a finite 
C? < ⇑) is necessary for learning Nash equilibria in 
Markov games, which stands in sharp contrast to the 
single-agent case in which single-policy concentrability 
suffices for finding the optimal policy (Rashidinejad 
et al. 2021, Xie et al. 2021, Li et al. 2024b).

In this paper, we introduce a modified assumption 
that might give rise to slightly improved sample com-
plexity bounds.
Assumption 2 (Clipped Unilateral Concentrability). Sup-
pose that the following quantity

C?
clipped :↓ max sup

µ, s, a, b

min dµ, ν?(s, a, b;ρ), 1
S(A+B)

n o

db(s, a, b) ,

8
<

:

sup
ν, s, a, b

min dµ?, ν(s, a, b;ρ), 1
S(A+B)

n o

db(s, a, b)

9
=

; (7) 

is finite, where we define 0=0 ↓ 0 by convention. This quan-
tity C?

clipped is termed the clipped unilateral concentrability 
coefficient.

In a nutshell, when dµ,ν?(s, a, b;ρ) or dµ?,ν(s, a, b;ρ) is 
reasonably large (i.e., larger than 1

S(A+B)), Assumption 2
no longer requires the data distribution db to scale pro-
portionally with dµ,ν? or dµ?,ν, thus resulting in a (slight) 
relaxation of Assumption 1. Comparing (7) with (6) 
immediately reveals that

C? ↘ C?
clipped 

Yan et al.: Offline RL for Zero-Sum Markov Games 
Operations Research, 2024, vol. 72, no. 6, pp. 2430–2445, © 2024 The Author(s) 2433 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

73
.7

2.
38

.6
2]

 o
n 

25
 M

ay
 2

02
5,

 a
t 2

0:
14

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



holds all the time. Further, it is straightforward to verify 
that C? ↘ max{A, B}; in comparison, C?

clipped can be as 
small as 2AB

S(A+B) as shown in our lower bound construc-
tion in Online Appendix EC.2.

3. Algorithm and Main Theory
In this section, we propose a pessimistic, model-based, 
offline algorithm—called VI-LCB-Game—to solve the 
two-player, zero-sum Markov games. The proposed 
algorithm is then shown to achieve minimax-optimal 
sample complexity in finding an approximate Nash 
equilibrium of the Markov game given offline data.

3.1. Algorithm Design
3.1.1. The Empirical Markov Game. With the offline 
data set {(si, ai, bi, s⇒i )}1→ i→N in hand, we can readily con-
struct an empirical Markov game. To do so, we first 
compute the sample size

N(s, a, b) ↓
XN

i↓1
1{(si, ai, bi) ↓ (s, a, b)}

for each (s, a, b) ↑ S ≃A ≃ B. The empirical transition ker-
nel P̂ : S ≃A ≃ B⇐ !(S) is then constructed as follows:

P̂(s⇒ |s,a,b)

↓

1
N(s,a,b)

XN

i↓1
1{(si,ai,bi,s⇒i )↓ (s,a,b,s⇒)}, if N(s,a,b)> 0

1
S , if N(s,a,b)↓ 0

8
>>><

>>>:

(8) 
for any s⇒ ↑ S and any (s, a, b) ↑ S ≃A ≃ B. Throughout 
this paper, we often let P̂s, a, b ↑ R1≃S abbreviate 
P̂(· |s, a, b). In addition, the empirical reward function r̂ :
S ≃A ≃ B⇐ R is taken to be

r̂(s, a, b) ↓
r(s, a, b), if N(s, a, b) > 0
0, if N(s, a, b) ↓ 0

(

(9) 

for any (s, a, b) ↑ S ≃A ≃ B. Armed with these compo-
nents, we arrive at an empirical, zero-sum Markov 
game, denoted by dMG ↓ (S,A,B, P̂, r̂,γ).

3.1.2. Pessimistic Bellman Operators. Recall that the 
classic Bellman operator T : RSAB ⇐ RSAB is defined 
such that (Shapley 1953, Lagoudakis and Parr 2002), for 
any Q : S ≃A ≃ B⇐ R,

T (Q)(s, a, b) ↓ r(s, a, b) + γPs, a, bV, 

where V : S ⇐ R is the value function associated with 
the input Q, that is,

V(s) :↓ max
µs↑!(A)

min
νs↑!(B)

E
a~µs,b~νs

[Q(s, a, b)], ∀s ↑ S: (10) 

Note, however, that we are in need of modified versions 
of the Bellman operator in order to accommodate the 

offline setting. In this paper, we introduce the pessimis-
tic Bellman operator T̂  

pe (T̂ +
pe) for the max-player (min- 

player) as follows: for every (s, a, b) ↑ S ≃A ≃ B,

T̂  
pe(Q)(s,a,b) :↓max{r̂(s,a,b)+γP̂s,a,bV β(s,a,b;V), 0},

(11a) 

T̂ +
pe(Q)(s,a,b) :↓min

#
r̂(s,a,b)+γP̂s,a,bV

+β(s,a,b;V), 1
1 γ

$
, (11b) 

where V is again defined in (10). The additional term 
β(s, a, b; V) is incorporated into the operators in order to 
implement pessimism; informally, we anticipate this 
penalty term to help T̂  

pe (T̂ +
pe) produce a conservative 

estimate of the Q-function from the max-player’s (min- 
player’s) viewpoint. Here and throughout, we choose 
this term based on Bernstein-style concentration 
bounds; specifically, we take

β(s, a, b; V) ↓ min max

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cb logN

δ

N(s, a, b)VarP̂s,a,b
(V)

s

,

8
<

:

8
<

:

2Cb logN
δ

(1 γ)N(s, a, b)

)

, 1
1 γ

)

+ 4
N (12) 

for some sufficiently large constant Cb > 0, where 1 δ�
denotes the target success probability, and the empirical 
variance term is defined as

VarP̂s,a, b
(V) :↓ P̂s, a, bV2 (P̂s, a, bV)2: (13) 

It is well-known that the classic Bellman operator T 
satisfies the γ-contraction property, which guarantees 
fast global convergence of classic value iteration. As it 
turns out, the pessimistic Bellman operators introduced 
also enjoy the γ-contraction property in the sense that

⇓T̂  
pe(Q1) T̂  

pe(Q2)⇓⇑ → γ⇓Q1 Q2⇓⇑ and
⇓T̂ +

pe(Q1) T̂ +
pe(Q2)⇓⇑ → γ⇓Q1 Q2⇓⇑; (14) 

see Lemma 1 for precise statements.

3.1.3. Pessimistic Value Iteration with Bernstein-Style 
Penalty. With the pessimistic Bellman operators in place, 
we are positioned to present the proposed paradigm. 
Our algorithm maintains the Q-function iterates {Q 

pe, t}, 
the policy iterates {µ t } and {ν t }, and the value function 
iterates {V 

pe, t} from the max-player’s perspective; at the 
same time, it also maintains an analogous group of iter-
ates {Q+

pe, t}, {µ+
t } and {ν+t }, and {V+

pe, t} from the min- 
player’s perspective. The updates of the two groups of 
iterates are carried out in a completely decoupled manner 
except when determining the final output.

In what follows, let us describe the update rules from 
the max-player’s perspective. For notational simplicity, 
we write µ(s) :↓ µ(· |s) ↑ !(A) and ν(s) :↓ ν(· |s) ↑ !(B)
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whenever it is clear from the context. In each round t ↓
1, 2, : : : , we carry out the following update rules: 

1. Updating Q-function estimates: Run a pessimistic 
variant of value iteration to yield

Q 
pe, t ↓ T̂  

pe(Q 
pe, t 1): (15) 

The γ-contraction property (14) helps ensure sufficient 
progress made in each iteration of this update rule.

2. Updating policy estimates: We then adjust the 
policies based on the updated Q-function estimates 
(15). Specifically, for each s ↑ S, we compute the Nash 
equilibrium (µ t (s),ν t (s)) ↑ !(A) ≃ !(B) of the zero- 
sum matrix game with payoff matrix Q 

pe, t(s, · , ·). It is 
worth noting that there is a host of methods for effi-
ciently calculating the NE of a zero-sum matrix game; 
prominent examples include linear programming and 
no-regret learning (Raghavan 1994, Freund and Scha-
pire 1999, Rakhlin and Sridharan 2013, Roughgarden 
2016).

3. Policy evaluation: for each s ↑ S, update the value 
function estimates based on the updated policies 
(µ t (s),ν t (s)) as follows:

V 
pe, t(s) ↓ E

a~µ t (s),b~ν t (s)
[Q 

pe, t(s, a, b)]:

The updates for {Q+
pe, t}, {µ+

t }, and {ν+t } from the min- 
player’s perspective are carried out in an analogous and 
completely independent manner; see Algorithm 1 for 
details.

3.1.4. Final Output. By running these update rules for 
T ↓ ⇔log(N=(1 γ))

log(1=γ) ↖ iterations, we arrive at the Q-function 
estimates

Q 
pe :↓ Q 

pe, T and Q+
pe :↓ Q+

pe, T, (16) 

in addition to two sets of policy estimates

(µ ,ν ) :↓ (µ T ,ν T ) and (µ+,ν+) :↓ (µ+
T ,ν+T): (17) 

The final policy estimate of the algorithm is then chosen 
to be

(µ̂, ν̂) ↓ (µ , ν+):

The full algorithm is summarized in Algorithm 1.
Algorithm 1 (VI-LCB-Game)

Initialization: set Q 
pe, 0(s, a, b) ↓ 0 and Q+

pe, 0(s, a, b) ↓
1

1 γ�for all (s, a, b) ↑ S ≃A ≃ B; set T ↓ ⇔log(N=(1 γ))
log(1=γ) ↖.

Compute the empirical transition kernel P̂ as (8) 
and the empirical reward function r̂ as (9).
For: t ↓ 1, : : : , T do 

• Update

Q 
pe, t(s, a, b) ↓ T̂  

pe(Q 
pe, t 1)

↓ max{r̂(s, a, b) + γP̂s, a, bV 
pe, t 1

 β(s, a, b; V 
pe, t 1), 0},

Q+
pe, t(s, a, b) ↓ T̂ +

pe(Q+
pe, t 1)

↓ min
#

r̂(s, a, b) + γP̂s, a, bV+
pe, t 1

+ β(s, a, b; V+
pe, t 1),

1
1 γ

$
, 

where

β(s, a, b; V) ↓ min max

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cb logN

δ

N(s, a, b) VarP̂s, a, b
(V)

s

,

8
<

:

8
<

:

2Cb logN
δ

(1 γ)N(s, a, b)

)

, 1
1 γ

)

+ 4
N 

for some sufficiently large constant Cb > 0 with VarP̂s, a,b 
(V) defined in (13).

• For each s ↑ S, compute
(µ t (s),ν t (s)) ↓ MatrixNash(Q 

pe, t(s, · , ·)),
(µ+

t (s),ν+t (s)) ↓ MatrixNash(Q+
pe, t(s, · , ·)), 

where, for any matrix M ↑ RA≃B, the function 
MatrixNash(M) returns a solution (ŵ, ẑ) to the minimax 
program maxw↑!(A) minz↑!(B) w↗Mz.

• For each s ↑ S, update
V 

pe, t(s) ↓ E
a~µ t (s),b~ν t (s)

[Q 
pe, t(s, a, b)],

V+
pe, t(s) ↓ E

a~µ+
t (s),b~ν+t (s)

[Q+
pe, t(s, a, b)]:

Output: the policy pair (µ̂, ν̂), where µ̂ ↓ {µ T (s)}s↑S 

and ν̂ ↓ {ν+T(s)}s↑S .

3.2. Theoretical Guarantees
Our main result is to uncover the intriguing sample effi-
ciency of the proposed model-based algorithm. This is 
formally stated as follows with the proof postponed to 
Section 6.

Theorem 1. Consider any initial state distribution ρ ↑
!(S) and suppose that Assumption 2 holds. Assume that 
1=2 → γ < 1 and consider any δ ↑ (0, 1) and ε ↑ 0, 1

1 γ

 i
. 

Then, with probability exceeding 1 δ, the policy pair 
(µ̂, ν̂) returned by Algorithm 1 satisfies

Vµ̂,?(ρ) ε → V?(ρ) → V?, ν̂(ρ) + ε, 
as long as the sample size exceeds

N ↘ c1
C?

clippedS(A + B)
(1 γ)3ε2

logN
δ�

for some sufficiently large constant c1 > 0.
Remark 1. Our result and analysis are inspired by 
prior works that show that model-based RL achieves, 
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in multiple settings, sample efficiency without the 
need of variance reduction (Agarwal et al. 2020; Li 
et al. 2024a, b). The proof of this sample complexity 
bound entails several key analysis ingredients: (i) a 
leave-one-out analysis argument that proves effective 
in decoupling complicated statistical dependency and 
(ii) a careful self-bounding trick (i.e., upper bounding 
a certain quantity by a contraction of itself in addition 
to some other error terms) to derive a sharp control of 
the target duality gap. See Section 6 for details. 
Although techniques such as leave-one-out analysis 
are used in some prior RL literature (Agarwal et al. 
2020; Li et al. 2024a, b), as far as we know, our work 
applies this technique for the first time to multiagent 
reinforcement learning. It has been observed that 
extending the algorithmic or analysis ideas in single- 
agent RL to the multiagent counterpart often leads to 
suboptimal sample complexity bounds that scale line-
arly in the total number of joint actions AB (Zhang 
et al. 2020a, Cui and Du 2022b). In contrast, our analy-
sis framework leads to an optimal sample complexity 
bound that scales linearly in the total number of indi-
vidual actions A + B.
Remark 2. A line of recent works focuses on instance- 
optimality of RL algorithms (Khamaru et al. 2021a, b; 
Mou et al. 2022). However, it remains challenging to 
establish instance-dependent bounds for multiagent 
RL even in two-player, zero-sum Markov games 
because of the difficulties arising from offline data 
and multiagent settings. Unlike RL with a generative 
model (simulator) that can generate independent sam-
ples for all state–action pairs, offline RL suffers from 
substantially more challenges, such as distribution 
shift and limited data coverage, making it more diffi-
cult to derive instance-dependent error bounds. In 
addition, the prior literature Khamaru et al. (2021a) 
that establishes instance optimality of variance- 
reduced Q-learning algorithms for the optimal value 
estimation problem requires one of the following two 
conditions: the optimal policy is unique or a meaning-
ful sample complexity bound that depends on an opti-
mality gap can be obtained. However, neither 
condition has a direct analog in zero-sum Markov 
games; this is because the Nash equilibrium in a zero- 
sum Markov game is not unique in general, and there 
is no well-defined analog of optimality gap for zero- 
sum Markov games. Detailed discussion on the chal-
lenges and difficulty of extending our analysis to 
develop instance-dependent error bounds can be 
found in Section 6.5.

The sample complexity needed for Algorithm 1 to 
compute a policy pair with ε-duality gap is at most

Õ
C?

clippedS(A + B)
(1 γ)3ε2

 !

, (18) 

which accommodates any target accuracy within the 
range 0, 1

1 γ

 i
. In addition to linear dependency on 

C?
clipped, the sample complexity bound (18) scales linearly 

(as opposed to quadratically) with the aggregate size A 
+ B of the individual action spaces. It is noteworthy that 
our algorithm is a fairly straightforward implementa-
tion of the model-based approach (except that the pessi-
mism principle is incorporated) and does not require 
either sample splitting or sophisticated schemes such as 
variance reduction (Zhang et al. 2020a, b; Li et al. 2021; 
Xie et al. 2021; Yan et al. 2023).

As it turns out, the preceding sample complexity 
theory for Algorithm 1 matches the minimax lower 
limit modulo some logarithmic term as asserted by 
the following theorem. This minimax lower bound— 
whose proof is postponed to Online Appendix EC.2— 
is inspired by prior lower bound theory for single- 
agent MDPs (e.g., Azar et al. 2013, Li et al. 2024b) and 
might shed light on how to establish lower bounds for 
other game-theoretic settings.
Theorem 2. Consider any S ↘ 2, A ↘ 2, B ↘ 2, γ ↑ 2

3 , 1
& ’

, 
and C?

clipped ↘ 2AB
S(A+B), and define the set

MG(C?
clipped) :↓

(

{MG,ρ,db} | |S | ↓S, |A | ↓A, |B | ↓B,

ρ↑!(S), db ↑!(S≃A≃B),
↙ an NE (µ?,ν?) of MG such that

max sup
µ,s,a,b

min dµ,ν? (s,a,b;ρ), 1
S(A+B)

n o

db(s,a,b) ,

8
<

:

sup
ν,s,a,b

min dµ?,ν(s,a,b;ρ), 1
S(A+B)

n o

db(s,a,b)

9
=

;↓C?
clipped

)

:

Then, there exist some universal constants c2, cε > 0 such 
that, for any ε ↑ 0, 1

cε(1 γ)log(A+B)

 i
, if the sample size obeys

N <
c2S(A + B)C?

clipped

(1 γ)3ε2 log(A + B)
, 

then one necessarily has

inf
(µ̂, ν̂) sup

{MG,ρ,db}↑MG(C?
clipped

)
E[V?, ν̂(ρ) Vµ̂,?(ρ)] ↘ ε:

Here, the infimum is taken over all estimators (µ̂, ν̂) for the 
Nash equilibrium based on the batch data set D ↓
{(si, ai, bi, s⇒i )}

n
i↓1 generated according to (5).

Remark 3. The target we are estimating is the NE of a 
zero-sum MG, which is more challenging than stan-
dard statistical estimation problems in the sense that 
(i) NE is not unique in general and (ii) the error metric 
is a duality gap. It is challenging to use standard proof 
frameworks such as Fano’s and Le Cam’s methods to 
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derive a meaningful lower bound for this problem. To 
overcome this challenge, we construct a family of 
hard Markov game instances indexed by a binary 
parameter θ ↑ {0, 1}max{A, B} and then put a prior distri-
bution over this set and compute the posterior proba-
bility of failure to differentiate each entry of θ. These 
steps taken together carefully allow us to compute the 
desired minimax risk.

As a direct implication of Theorem 2, if the total 
number of samples in the offline data set obeys

N <
c2S(A + B)C?

clipped

(1 γ)3ε2 log(A + B)
, 

then one can construct a hard Markov game instance 
such that no algorithm whatsoever can reach a duality 
gap below ε. This, taken collectively (18), unveils, up to 
some logarithmic factor, the minimax statistical limit for 
finding NEs based on offline data.

Our theory makes remarkable improvement upon 
prior art, which can be seen through comparisons with 
the most relevant prior work (Cui and Du 2022b) (even 
though the focus therein is finite-horizon, zero-sum 
MGs). On a high level, Cui and Du (2022b) propose an 
algorithm that combines pessimistic value iteration with 
variance reduction (also called reference-advantage 
decomposition; Zhang et al. 2020b), which provably 
finds an ε-Nash policy pair using

Õ C?SABH3

ε2

! "
(19) 

sample trajectories provided that ε → 1=H. Here, H 
stands for the horizon length of the finite-horizon Mar-
kov game, and C? is the unilateral concentrability coeffi-
cient tailored to the finite-horizon setting. Despite the 
difference between discounted infinite- and finite-horizon 
settings, our algorithm design and theory achieve several 
improvements upon Cui and Du (2022b): 

• Perhaps most importantly, our result scales line-
arly in the total number of individual actions A + B (as 
opposed to the number of joint actions AB as in Cui 
and Du 2022b), which manages to alleviate the curse of 
multiple agents in two-player, zero-sum Markov 
games.

• Our theory accommodates the full ε-range 
0, 1

1 γ

 i
, which is much wider than the range (0, 1=H]

covered by Cui and Du (2022b) (if we view the effective 
horizon 1

1 γ�in the infinite-horizon case and the horizon 
length H in the finite-horizon counterpart as 
equivalence).

• The algorithm design herein is substantially sim-
pler than Cui and Du (2022b): it neither requires sam-
ple splitting to decouple statistical dependency, nor 
relies on reference-advantage decomposition techni-
ques to sharpen the horizon dependency.

When we were finalizing the present manuscript, we 
became aware of the independent work Cui and Du 
(2022a) proposing a different offline algorithm—based on 
incorporation of strategy-wise lower confidence bounds— 
that improved the prior art as well. When it comes to two- 
player, zero-sum Markov games with finite horizon and 
nonstationary transition kernels, Cui and Du (2022a, algo-
rithm 1) provably yields an ε-Nash policy pair using

Õ C?S(A + B)H4

ε2

! "
(20) 

sample trajectories, each containing H samples. This 
bound (20) is at least a factor of H above the minimax 
limit. It is worth noting that Cui and Du (2022a) is able 
to accommodate offline, multiagent, general-sum MGs 
although the algorithm proposed therein becomes com-
putationally intractable when going beyond two-player, 
zero-sum MGs.

4. Related Works
4.1. Offline RL and Pessimism Principle
The principle of pessimism in the face of uncertainty, 
namely, being conservative in value estimation of those 
state–action pairs that have been under-covered, has 
been adopted extensively in recent development of 
offline RL. A highly incomplete list includes Kumar et al. 
(2020), Kidambi et al. (2020), Yu et al. (2020; 2021a, b), 
Yin et al. (2021a, c), Rashidinejad et al. (2021), Jin et al. 
(2021b), Xie et al. (2021), Liu et al. (2020), Zhang et al. 
(2021c), Chang et al. (2021), Yin and Wang (2021), 
Uehara and Sun (2021), Munos (2003, 2007), Zanette et al. 
(2021), Yan et al. (2023), Li et al. (2022a, 2024b), Shi et al. 
(2022), Cui and Du (2022b), Zhong et al. (2022), Lu et al. 
(2022), Wang et al. (2022), and Xu and Liang (2022), 
which unveils the efficacy of the pessimism principle in 
both model-based and model-free approaches. Among 
this body of prior works, the ones that are most related 
to the current paper are Cui and Du (2022a, b), and 
Zhong et al. (2022), both of which focus on episodic, 
finite-horizon, zero-sum Markov games with two 
players. More specifically, Cui and Du (2022b) demon-
strate that a unilateral concentrability condition is neces-
sary for learning NEs in offline settings and propose a 
pessimistic value iteration with reference-advantage 
decomposition to enable sample efficiency. Zhong et al. 
(2022) propose a pessimistic minimax value iteration 
algorithm, which achieves appealing sample complex-
ity in the presence of linear function representation and 
was recently improved by Xiong et al. (2022). In the con-
current work, Cui and Du (2022a) propose a different 
pessimistic algorithm that designs lower confidence 
bounds for policy pairs instead of state–action pairs; for 
two-player, zero-sum MGs, their algorithm is capable of 
achieving a sample complexity proportional to A + B. In 
the single-agent, offline RL setting, Rashidinejad et al. 
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(2021), Yan et al. (2023), and Li et al. (2024b) study 
offline RL for infinite-horizon MDPs, and Jin et al. 
(2021b), Xie et al. (2021), Shi et al. (2022), and Li et al. 
(2024b) look at the finite-horizon episodic counterpart, 
all of which operate upon some single-policy concentr-
ability assumptions. Among these works, Li et al. 
(2024b) and Yan et al. (2023) achieved minimax-optimal 
sample complexity Õ SC?

(1 γ)3ε2

 (
for discounted, infinite- 

horizon MDPs by means of model-based and model- 
free algorithms, respectively; similar results have been 
established for finite-horizon MDPs as well (Xie et al. 
2021; Yin et al. 2021b, c; Shi et al. 2022; Li et al. 2024b).

4.2. Multiagent RL and Markov Games
The concept of Markov games—also under the name of 
stochastic games—dates back to Shapley (1953), which 
has become a central framework to model competitive 
multiagent decision making. A large strand of prior 
works studies how to efficiently solve Markov games 
when perfect model description is available (Littman 
1994, 2001; Hu and Wellman 2003; Hansen et al. 2013; 
Perolat et al. 2015; Daskalakis et al. 2020, 2023; Cen et al. 
2021; Wei et al. 2021; Zhao et al. 2021; Chen et al. 2022; 
Mao and Başar 2022). Recent years have witnessed 
much activity in studying the sample efficiency of learn-
ing Nash equilibria in zero-sum Markov games, cover-
ing multiple different types of sampling schemes; for 
instance, Wei et al. (2017), Xie et al. (2020), Bai et al. 
(2020), Bai and Jin (2020), Liu et al. (2021), Jin et al. 
(2021a), Song et al. (2021), Mao and Başar (2022), Daska-
lakis et al. (2023), Tian et al. (2021), and Chen et al. (2022) 
focus on the online explorative environments, whereas 
Zhang et al. (2020a) pays attention to the scenario that 
assumes sampling access to a generative model. 
Whereas the majority of these works exhibits a sample 
complexity that scales at least as Õ(SAB) in order to 
learn an approximate NE, the recent work Bai et al. 
(2020) proposes a V-learning algorithm attaining a sam-
ple complexity that scales linearly with S(A + B), thus 
matching the minimax-optimal lower bound up to a fac-
tor of H2. When a generative model is available, Li et al. 
(2022b) further develops an algorithm that learns 
ε-Nash using Õ H4S(A+B)

ε2

 (
samples, which attains the 

minimax lower bound for nonstationary, finite-horizon 
MGs. The setting of general-sum, multiplayer Markov 
games is much more challenging given that learning 
Nash equilibria is known to be PPAD-complete (Daska-
lakis et al. 2009, Daskalakis 2013). Shifting attention to 
more tractable solution concepts, Jin et al. (2021a), Das-
kalakis et al. (2023), Mao and Başar (2022), and Song 
et al. (2021) propose algorithms that provably learn 
(coarse) correlated equilibria with sample complexities 
that scale linearly with maxi Ai (where Ai is the number 

of actions of the ith player), thereby breaking the curse 
of multiagents. Additionally, there are also several 
works investigating the turn-based setting in which the 
two players take actions in turn; see Sidford et al. (2020), 
Cui and Yang (2021), Jia et al. (2019), and Jin et al. (2022). 
Moreover, another two works Zhang et al. (2021b) and 
Abe and Kaneko (2020) study offline sampling oracles 
under uniform coverage requirements (which are 
clearly more stringent than the unilateral concentrability 
assumption). The interested readers are also referred to 
Zhang et al. (2021a) and Yang and Wang (2020) for an 
overview of recent development.

4.3. Model-Based RL
The method proposed in the current paper falls under 
the category of model-based algorithms, which decou-
ple model estimation and policy learning (planning). 
The model-based approach is extensively studied in the 
single-agent setting, including the online exploration 
setting (Azar et al. 2017, Zhang et al. 2023), the case with 
a generative model (Azar et al. 2013, Agarwal et al. 2020, 
Jin and Sidford 2021, Wang et al. 2021, Li et al. 2024a), 
the offline RL setting (Xie et al. 2021, Li et al. 2024b), and 
turn-based Markov games (Cui and Yang 2021). 
Encouragingly, the model-based approach is capable of 
attaining minimax-optimal sample complexities in a 
variety of settings (e.g., Azar et al. 2017, Agarwal et al. 
2020, Zhang et al. 2023, Li et al. 2024b), sometimes even 
without incurring any burn-in cost (Cui and Yang 2021; 
Zhang et al. 2023; Li et al. 2024a, b). The method pro-
posed in Cui and Du (2022b) also exhibits the flavor of a 
model-based algorithm although an additional variance 
reduction scheme is incorporated in order to optimize 
the horizon dependency.

5. Additional Notation
Let us collect a set of additional notations that are used 
in the analysis. First of all, for any (s, a, b) ↑ S ≃A ≃ B, 
any vector V ↑ RS, and any probability transition kernel 
P : S ≃A ≃ B⇐ !(S), we define

VarPs,a, b(V) ↓ Ps, a, b(V ↔V) (Ps, a, bV)2, (21) 

where Ps, a, b abbreviates P(· |s, a, b) as usual. When the 
max-player’s policy µ is fixed, the Markov game 
reduces to a (single-agent) MDP for the min-player. For 
any MDP, it is known that there exists at least one policy 
that simultaneously maximizes the value function (Q- 
function) for all states (state–action pairs) (Bertsekas 
2017). In light of this, when the policy µ of the max- 
player is frozen, we denote by νbr(µ) the optimal policy 
of the min-player, which is often referred to as the best 
response of the min-player when the max-player adopts 
policy µ. Similarly, we can define the best response of 
the max-player when the min-player adopts policy ν, 
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which we denote by µbr(ν). These allow one to define

Vµ,?(s) :↓ Vµ,νbr(µ)(s) ↓ min
ν

Vµ,ν(s),

V?,ν(s) :↓ Vµbr(ν),ν(s) ↓ max
µ

Vµ,ν(s)

for all s ↑ S, and

Qµ,?(s, a, b) :↓ Qµ,νbr(µ)(s, a, b) ↓ min
ν

Qµ,ν(s, a, b),

Q?,ν(s, a, b) :↓ Qµbr(ν),ν(s, a, b) ↓ max
µ

Qµ,ν(s, a, b)

for all (s, a, b) ↑ S ≃A ≃ B. Note that the definitions of 
Vµ,? and V?,ν�here are consistent with the ones in Sec-
tion 2.

6. Proof of Theorem 1
Toward proving Theorem 1, we first state a slightly 
stronger result as follows.
Theorem 3. Consider any initial state distribution ρ ↑
!(S) and suppose that Assumption 2 holds. Assume that 
1=2 → γ < 1. Then, with probability exceeding 1 δ, the 
policy pair (µ̂, ν̂) returned by Algorithm 1 satisfies

V?(ρ) Vµ̂ ,?(ρ) → c0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C?

clippedS(A + B)
(1 γ)3N

log N
δ

s

+ c0
C?

clippedS(A + B)
(1 γ)2N

log N
δ

, (22a) 

V?, ν̂(ρ) V?(ρ) → c0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C?

clippedS(A + B)
(1 γ)3N

log N
δ

s

+ c0
C?

clippedS(A + B)
(1 γ)2N

log N
δ

(22b) 

for some sufficiently large constant c0 > 0. As an immediate 
consequence, the duality gap of (µ̂, ν̂) obeys, with probability 
at least 1 δ, that

V?, ν̂(ρ) Vµ̂,?(ρ) → 2c0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C?

clippedS(A + B)
(1 γ)3N

logN
δ

s

+ 2c0
C?

clippedS(A + B)
(1 γ)2N

log N
δ
: (23) 

As can be straightforwardly verified, Theorem 1 is a 
direct consequence of Theorem 3 (by taking the right- 
hand side of (23) to be no larger than ε).

The remainder of this section is, thus, dedicated to 
establishing Theorem 3. Before proceeding, let us now 
take a moment to provide a brief road map of the proof. 

1. We first show in Section 6.2 that the pessimistic 
Bellman operators T̂  

pe and T̂ +
pe introduced in (11) are 

both monotone and γ-contractive and admit unique 
fixed points Q ?

pe, t and Q ?
pe, t, respectively. These proper-

ties reveal that the pessimistic value iterations 
{Q 

pe, t}1→ t→T ({Q+
pe, t}1→ t→T) in Algorithm 1 converge to 

Q ?
pe, t (Q ?

pe, t) at a geometric rate, and therefore, it suf-
fices to analyze the fixed points Q ?

pe, t and Q+?
pe, t.

2. Next, we show Bernstein-style concentration 
bounds for random quantities such as (P̂s, a, b 
Ps, a, b)V ?

pe, t and (P̂s, a, b Ps, a, b)V+?
pe, t in Section 6.3, in 

which V ?
pe, t and V+?

pe, t are the value functions associated 
with Q ?

pe, t and Q+?
pe, t. Because of the complicated statis-

tical dependency between P̂s, a, b and V ?
pe, t, we use a 

leave-one-out argument to establish this concentration 
result in Lemma 2.

3. Finally, based on the aforementioned results, we 
derive error bounds for V?(ρ) Vµ̂,?(ρ) and V?, ν̂(ρ) 
V?(ρ) in Section 6.4. Our analysis makes use of a self- 
bounding trick, which allows one to derive sharp estima-
tion error bounds that turn out to be minimax-optimal.

6.1. Preliminary Facts
Before continuing, we collect several preliminary facts 
that are useful throughout. 

1. For any Q1, Q2 : S ≃A ≃ B⇐ R, we have
⇓V1 V2⇓⇑ → ⇓Q1 Q2⇓⇑, (24) 

where V1 (V2) denotes the value function associated 
with Q1 (Q2); see (10) for the precise definition.

2. For any V1, V2 : S ⇐ 0, 1
1 γ

h i
, any probability tran-

sition kernel P : S ≃A ≃ B⇐ !(S), and any (s, a, b) ↑
S ≃A ≃ B, we have
|VarPs, a,b(V1) VarPs, a,b(V2) | →

4
1 γ ⇓V1 V2⇓⇑, (25) 

where VarP, s, a, b(V) is defined in (21).
3. As a consequence, we also know that, for any 

(s, a, b) ↑ S ≃A ≃ B and any V1, V2 : S ⇐ 0, 1
1 γ

h i
, the 

corresponding penalty terms (cf. (12)) obey
|β(s, a, b; V1) β(s, a, b; V2) | → 2⇓V1 V2⇓⇑: (26) 

The proof of the preceding results can be found in 
Online Appendix EC.1.1.

6.2. Step 1: Key Properties of Pessimistic 
Bellman Operators

Recall the definition of the pessimistic Bellman opera-
tors T̂  

pe and T̂ +
pe introduced in (11). The following 

lemma gathers a couple of key properties of these two 
operators.

Lemma 1. The following properties hold true: 
• (Monotonicity) For any Q1 ↘ Q2, we have T̂  

pe(Q1) ↘
T̂  

pe(Q2) and T̂ +
pe(Q1) ↘ T̂ +

pe(Q2).
• (Contraction) Both operators are γ-contractive in the 

(⇑ sense, that is,

⇓T̂  
pe(Q1) T̂  

pe(Q2)⇓⇑ → γ⇓Q1 Q2⇓⇑,
⇓T̂ +

pe(Q1) T̂ +
pe(Q2)⇓⇑ → γ⇓Q1 Q2⇓⇑

for any Q1 and Q2.
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• (Uniqueness of fixed points) T̂  
pe (T̂ +

pe) has a unique 
fixed point Q ?

pe (Q+?
pe), which also satisfies 0 → Q? 

pe (s, a, b)
→ 1

1 γ�(0 → Q+?
pe(s, a, b) → 1

1 γ) for any (s, a, b) ↑ S ≃A ≃ B.

Proof. See Online Appendix EC.1.2. w

Next, we make note of several immediate conse-
quences of Lemma 1. Here and throughout, V ?

pe and 
V+?

pe are defined to be the value functions (see (10)) asso-
ciated with Q ?

pe and Q+?
pe , respectively. 

• First, the preceding lemma implies that
Q 

pe, t → Q ?
pe (∀t ↘ 0) hence Q 

pe → Q ?
pe : (27) 

To see this, we first note that Q 
pe, 0 ↓ 0 → Q ?

pe . Next, 
suppose that Q 

pe, t → Q ?
pe for some iteration t ↘ 0; then, 

the monotonicity of T̂  
pe (cf. Lemma 1) tells us that

Q 
pe, t+1 ↓ T̂  

pe(Q 
pe, t) → T̂  

pe(Q ?
pe ) ↓ Q ?

pe , 

from which (27) follows.
• In addition, the γ-contraction property in Lemma 

1 leads to

⇓V 
pe  V ?

pe ⇓⇑ → ⇓Q 
pe  Q ?

pe ⇓⇑ → 1
N , (28) 

and, to justify this, observe that

⇓Q 
pe, t  Q ?

pe ⇓⇑ ↓ ⇓T̂  
pe(Q 

pe, t 1) T̂  
pe(Q ?

pe )⇓⇑
→ γ⇓Q 

pe, t 1  Q ?
pe ⇓⇑

→⋯→ γt⇓Q 
pe, 0  Q ?

pe ⇓⇑ → γt

1 γ , 

which, together with T ↓ ⇔log(N=(1 γ))
log(1=γ) ↖ and (24), gives

⇓V 
pe V ?

pe ⇓⇑ → ⇓Q 
pe Q ?

pe ⇓⇑ ↓ ⇓Q 
pe, T  Q ?

pe ⇓⇑

→ γT

1 γ →
1
N :

• A similar argument also yields
Q+

pe ↘ Q+?
pe , ⇓Q+

pe  Q+?
pe⇓⇑ → 1=N,

⇓V+
pe  V+?

pe ⇓⇑ → 1=N: (29) 

6.3. Step 2: Decoupling Statistical Dependency 
and Establishing Pessimism

To proceed, we rely on the following theorem to quan-
tify the difference between P̂ and P when projected onto 
a value function direction.
Lemma 2. For any (s, a, b) ↑ S ≃A ≃ B satisfying N(s, a, 
b) ↘ 1 with probability exceeding 1 δ,

| (P̂s, a, b Ps, a, b)Ṽ | → c̃

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1

N(s, a, b)VarP̂s,a, b
(Ṽ)log N

δ

s

+ c̃
logN

δ

(1 γ)N(s, a, b) (30) 

for some sufficiently large constant c̃ > 0, and

VarP̂s,a,b
(Ṽ) → 2VarPs,a,b(Ṽ)+O 1

(1 γ)2N(s,a,b)
logN
δ

 !

(31) 
hold simultaneously for all Ṽ ↑ RS satisfying 0 → Ṽ → 1

1 γ1 
and min{⇓Ṽ  V ?

pe ⇓⇑, ⇓Ṽ  V+?
pe ⇓⇑} → 1=N.

The proof is deferred to Online Appendix EC.1.3.
In words, the first result (30) delivers some Bernstein- 

type concentration bound, whereas the second result 
(31) guarantees that the empirical variance estimate (i.e., 
the plug-in estimate) is close to the true variance. It is 
worth noting that Lemma 2 does not require Ṽ to be sta-
tistically independent from P̂s, a, b, which is particularly 
crucial when coping with the complicated statistical 
dependency of our iterative algorithm. The proof of 
Lemma 2 is established upon a leave-one-out analysis 
argument (see, e.g., Chen et al. 2019a, b; Agarwal et al. 
2020; Ma et al. 2020; Chen et al. 2021; Li et al. 2024a, b) 
that helps decouple statistical dependency; see details in 
Online Appendix EC.1.3. Armed with Lemma 2, we can 
readily see that

| (P̂s, a, b Ps, a, b)Ṽ | + 4
N → β(s, a, b; Ṽ) (32) 

holds for any (s, a, b) ↑ S ≃A ≃ B satisfying N(s, a, b) ↘ 1 
and any Ṽ satisfying the conditions in Lemma 2. In 
turn, this important fact allows one to justify that Q 

pe 
(Q+

pe) is indeed an upper (lower) bound on Qµ̂,? (Q?, ν̂ ) 
as formalized subsequently.

Lemma 3. With probability exceeding 1 δ, it holds that

Q 
pe → Qµ̂ ,?, Q+

pe ↘Q?, ν̂ , V 
pe → Vµ̂ ,? and V+

pe ↘V?, ν̂ :

The proof is provided in Online Appendix EC.1.4.
This lemma makes clear a key rationale for the princi-

ple of pessimism: we want the Q-function estimates to 
be always conservative uniformly over all entries.

6.4. Step 3: Bounding V?(!)"V #̂,?(!)
and V?, $̂(!)"V?(!)

Before proceeding to bound V? Vµ̂ ,?, we first develop 
a lower bound on V 

pe given that Vµ̂ ,? is lower bounded 
by V 

pe (according to Lemma 3). Toward this end, we 
invoke the definition of V 

pe to reach

V 
pe(s) ↓ max

µ(s)↑!(A)
min
ν(s)↑!(B)

E
a~µ(s),b~ν(s)[Q 

pe(s, · , ·)]

↘ min
ν(s)↑!(B)

E
a~µ?(s),b~ν(s)[Q 

pe(s, a, b)], (33) 

where we set the policy of the max-player to be µ? on the 
right-hand side of the preceding equation. Clearly, there 
exists a deterministic policy ν0 : S ⇐ !(B) such that
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ν0(s) ↓ arg min
ν(s)↑!(B)

E
a~µ?(s),b~ν(s)[Q 

pe(s, a, b)] (34) 

for any s ↑ S; for instance, one can simply set, for any 
s ↑ S,
ν0(s) ↓ 1bs with bs :↓ arg max

b↑B
∝µ?(s), Q 

pe(s, · , b)′,

(35) 
with 1bs denoting a probability vector that is nonzero 
only in bs. This deterministic policy ν0 helps us lower 
bound V 

pe as accomplished in the following lemma. 
Here and as follows, we define two vectors rµ?,ν0 ,βµ?,ν0 ↑
RS and a probability transition kernel Pµ?,ν0 : S ⇐ !(S)
restricted to µ? and ν0 such that, for any s, s⇒ ↑ S,

rµ?,ν0(s) :↓ E
a~µ?(s),b~ν0(s)

[r(s, a, b)], (36a) 

βµ
?,ν0(s) :↓ E

a~µ?(s),b~ν0(s)
[β(s, a, b; V 

pe)], (36b) 

Pµ?,ν0(s⇒ |s) :↓ E
a~µ?(s),b~ν0(s)

[P(s⇒ |s, a, b)]: (36c) 

Lemma 4. With probability exceeding 1 δ, we have

V 
pe ↘ rµ?,ν0 + γPµ?,ν0 V 

pe 2βµ?,ν0 : (37) 

The proof is deferred to Online Appendix EC.1.5.
In addition, we can invoke Lemma 3 and the fact that 

V? ↓ Vµ?,ν? ↓ Vµ?,? to reach

V? Vµ̂,? ↓ Vµ?,? Vµ̂,? → Vµ?,ν0  V 
pe, (38) 

which motivates us to look at Vµ?,ν0  V 
pe. Toward this, 

we note that the Bellman equation tells us that

Vµ?,ν0 ↓ rµ?,ν0 + γPµ?,ν0 Vµ?,ν0 : (39) 
Taking (37) and (39) collectively yields

Vµ?, ν0  V 
pe → γPµ?, ν0(Vµ?, ν0  V 

pe) + 2βµ?, ν0 , (40) 

thus resulting in a self-bounding type of relation. 
Applying (40) recursively, we arrive at that

ρ↗(Vµ?,ν0  V 
pe) → γρ↗Pµ?,ν0(Vµ?,ν0  V 

pe)+2ρ↗βµ?,ν0

→ γ2ρ↗(Pµ?,ν0)2(Vµ?,ν0  V 
pe)

+2ρ↗βµ?,ν0 +2γρ↗Pµ?,ν0βµ
?,ν0

→⋯→ γnρ↗(Pµ?,ν0)n(Vµ?,ν0  V 
pe)

+2ρ↗
Xn 1

i↓0
γi(Pµ?,ν0)i

" #

βµ
?,ν0 

holds for all positive integers n. Letting n ⇐⇑ and 
recalling that the vector dµ?,ν0 :↓ [dµ?,ν0(s;ρ)]s↑S obeys 
(see (2))

dµ?,ν0 ↓ (1 γ)ρ↗
X⇑

i↓0
γi(Pµ?,ν0)i

↓ (1 γ)ρ↗(I γPµ?,ν0) 1, (41) 

we arrive at

ρ↗(Vµ?,ν0  V 
pe) → { lim

n⇐⇑
γnρ↗(Pµ?,ν0)n(Vµ?,ν0  V 

pe)}

+ 2
1 γ (d

µ?,ν0)↗βµ?,ν0

↓ 2
1 γ (d

µ?,ν0)↗βµ?,ν0 ,

(42) 
where the last line makes use of the fact that ⇓ρ↗
(Pµ?,ν0)n⇓1 ↓ 1 for any n ↘ 1, and hence, γnρ↗(Pµ?,ν0)n ⇐
0 as n ⇐⇑when γ < 1.

In order to further control (42), we resort to the fol-
lowing lemma for bounding (dµ?,ν0)↗βµ?,ν0 , whose proof 
can be found in Online Appendix EC.1.6.

Lemma 5. There exists some large enough universal con-
stant c6 > 0 such that

(dµ?,ν0)↗βµ?,ν0 → c6
C?

clippedS(A + B)
(1 γ)N log N

δ

+ c6

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C?

clippedS(A + B)
N(1 γ) log N

δ

s

:

This is with probability exceeding 1 δ.
To finish, taking (38), (42) and Lemma 5 together gives

V?(ρ) Vµ̂, ?(ρ) ↓ ρ↗(V?  Vµ̂, ?) → ρ↗(Vµ?, ν0  V 
pe)

→ 2
1 γ (d

µ?, ν0)↗βµ?, ν0

→ 2c6

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C?

clippedS(A + B)
N(1 γ)3 log N

δ

s

+
2c6C?

clippedS(A + B)
(1 γ)2N

log N
δ
:

This completes the proof for Claim (22a). The proof for 
the other claim (22b) follows from an almost identical 
argument and is, hence, omitted.

6.5. Discussion: Instance-Dependent Statisti-
cal Bounds?

Thus far, we have presented the proof of Theorem 1 that 
concerns the minimax optimality of the model-based 
algorithm. Note that a recent line of work has attempted 
to move beyond minimax-optimal statistical guarantees 
and pursue more refined instance-optimal (or locally 
minimax) performance guarantees (Khamaru et al. 
2021a, b, Mou et al. 2022). Here, we take a moment to 
discuss the challenges that need to be overcome in order 
to extend our analysis in an instance-optimal fashion. 

• A crucial step that allows us to obtain error 
bounds that scale linearly with A + B instead of the 
ones that scale linearly with AB in Cui and Du (2022b) 
is the introduction of an auxiliary policy ν0 in (34). This 
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allows us to upper bound the error with

ρ↗(Vµ?, ν0  V 
pe) →

2
1 γ (dµ?, ν0)↗βµ?, ν0 ;

see (42). Whereas this facilitates our analysis, the terms 
βµ

?,ν0 (defined in (36)) and dµ?,ν0 (defined in (41)) both 
depend on the auxiliary policy ν0. Because of the com-
plicated dependency between ν0 (which is determined 
by a random function V 

pe) and the model parameters, it 
remains quite challenging to connect these error terms 
with instance-dependent quantities (i.e., model para-
meters) without losing optimality.

• Note that we might be able to resolve this issue in 
a coarse way, for example, by taking the supremum 
over all possible policy ν:

ρ↗(Vµ?, ν0  V 
pe) →

2
1 γ sup

ν↑!(B)
(dµ?, ν)↗βµ?, ν: (43) 

Let us assume for the moment that this could work 
(despite the potential suboptimality of this error 
bound) and see what this lead to. By checking the proof 
of Lemma 5, we can see that, in order to upper bound 
(43) in an instance-optimal manner, it is important to 
relate VarPs,a, b(V 

pe) to model parameters for all 
(s, a, b) ↑ S ≃A ≃ B. Ideally, we can replace V 

pe with 
the value function associated with the Nash equilib-
rium V?. However, based on our current analysis 
framework, we can only show that V?(ρ) and V 

pe(ρ)
are close, which is insufficient to guarantee the close-
ness of VarPs,a, b(V 

pe) and VarPs,a, b(V?) for all (s, a, b) ↑
S ≃A ≃ B.

• As we briefly mention in Remark 2, prior literature 
Khamaru et al. (2021a), which establishes instance opti-
mality for the optimal value estimation problem in 
single-agent RL under a generative model, requires 
one of the following two conditions: the optimal policy 
is unique or a sample complexity bound that depends 
on an optimality gap

! :↓ min
π↑%\%?

⇓Q?  r γPπQ?⇓⇑, (44) 

where Q? is the optimal Q-function, % is the set of deter-
ministic policies, and %? is the set of optimal (determin-
istic) policies. However, neither condition has a direct 
analog in two-player, zero-sum Markov games: for the 
first one, this is because the Nash equilibrium of a zero- 
sum Markov game is not unique in general; for the sec-
ond one, this is because the Nash equilibrium policy 
pair is usually random, and it is not clear how to define 
a nonzero optimality gap such as (44).

In view of these challenges, our current analysis frame-
work remains incapable of deriving instance-optimal per-
formance guarantees. Accomplishing instance-optimal 
results for zero-sum Markov games might require 

substantially more refined analysis techniques, and we 
leave this important direction to future investigation.

7. Discussion
In the present paper, we propose a model-based offline 
algorithm, which leverages the principle of pessimism 
in solving two-player, zero-sum Markov games on the 
basis of past data. In order to find an ε-approximate 
Nash equilibrium of the Markov game, our algorithm 
requires no more than Õ S(A+B)C?

(1 γ)3ε2

 (
samples, and this 

sample complexity bound is provably minimax optimal 
for the entire range of target accuracy level ε ↑ 0, 1

1 γ

 i
. 

Our theory improves upon prior sample complexity 
bounds in Cui and Yang (2021) in terms of the depen-
dency on the size of the action space. Another appealing 
feature is the simplicity of our algorithm, which does 
not require complicated variance reduction schemes 
and is, hence, easier to implement and interpret. Moving 
forward, there are a couple of interesting directions that 
are worthy of future investigation. For instance, one nat-
ural extension is to explore whether the current algorith-
mic idea and analysis extend to multiagent, general- 
sum Markov games with the goal of learning other solu-
tion concepts of equilibria such as coarse correlated 
equilibria (given that finding Nash equilibria in general- 
sum games is PPAD-complete). Another topic of inter-
est is to design model-free algorithms for offline NE 
learning in zero-sum or general-sum Markov games. 
Furthermore, the current paper focuses attention on tab-
ular Markov games, and it would be of great interest to 
design sample-efficient, offline, multiagent algorithms 
in the presence of function approximation.
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