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We present an analytical and numerical study of electromagnetic modes in micro- and nano-fibers (MNFs) where
the electric and magnetic fields of the modes are not necessarily orthogonal to each other. We first investigate these
modes for different fiber structures including circular- and rectangular-core fibers as well as photonic crystal fibers.
We then discuss two specific applications of these modes: (1) generation of hypothetical axions that are coupled to

the electromagnetic fields through the dot product of electric and magnetic fields of a mode, EE · EB, and (2) a new
type of optical trap (optical tweezers) for chiral atoms with magneto-electric cross coupling, where the confining

potential again is proportional to EE · EB. ©2024Optica PublishingGroup
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1. INTRODUCTION

In recent decades, the developments in fiber-optic commu-
nication paved the way for much progress in both the physics
and applications of sub-wavelength diameter waveguiding
structures [1,2]. The guiding of light in these structures typically
requires smooth, adiabatically deformed spatial profiles for the
refractive index [1,3]. The evanescent field from these structures
can be utilized for shorter response times, better resolutions, and
low power consumption sensors [1,4] as well as for trapping,
guiding. and reflecting of neutral atoms in the evanescent field
of the guided light [5–17]. In addition to trapping, the MNFs
can also be utilized for the enhancement and measurement of
the quadrupole transitions of atoms, for example, alkali atoms
cesium (Cs) and rubidium (Rb) [18–22].

Sub-wavelength waveguiding structures can be fabricated by
tapering of hydrogen-flame-heated quartz fiber [1], a method
we have also utilized in some of our group’s experiments
[23,24]. When analyzing the propagation of light in these
structures, one needs to design fibers with propagating modes
that are beyond the weakly guiding limit where slowly vary-
ing approximation fails [2,25]. This leads to modes that are
typically referred to as hybrid propagating modes, which are
combinations of the more-usual transverse-electric (TE) and
transverse-magnetic (TM) modes. These modes’ electric and
magnetic fields start to demonstrate a counter-intuitive non-
transverse behavior and the angle between the electric and the
magnetic fields, as well as the angles between the fields and the
propagation direction, start to deviate from the well-known
value ofπ/2. While this counter-intuitive behavior is not widely
known, several groups discussed the existence of parallel electric

and magnetic fields in propagating waves for different struc-
tures, some of which can be counter-propagating circularly
polarized waves or waves in which the Poynting vector time
averages to zero [26–36]. A wave with E ||B condition can be
produced with three twisted-mode lasers [37–41], and was used
to trap neutral sodium atoms in a magneto-optical trap (MOT)
[42]. In addition, such fields are prominent in the investigation
of force free fields in plasmas [43].

A key feature of non-transverse modes is that because the
angle between the electric and the magnetic fields is differ-

ent from π/2, the dot product between these fields, EE · EB ,
is non-zero. One fundamental application of the scalar field
EE · EB is in laboratory search for axions and axion-like particles
[44–46]. Since their first prediction about four decades ago, the
interest in hypothetical axions has been continually growing
[47–50]. Light axions or axion-like particles with a mass in the
10−6 eV<m< 10−2 eV range form a compelling candidate for
the dark matter in the universe [51–53]. The existence of axions
would also solve one of the longstanding theoretical problems
in the standard model of particle physics: the so-called strong
CP problem [44–46]. The axions interact with the electromag-

netic fields through EE · EB and this dot product can be used to
generate axions in the lab [44,54–56]. In a recent paper from
our group, we numerically explored a possible experimental
setup where one can generate and detect axions via long MNF
structures, and the rate of axion production highly depends on

the EE · EB term [57].
This paper is organized as follows: we first summarize the

analytical and numerical solutions for the hybrid modes in
traditional step-index fibers, and demonstrate the behavior
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of the EE · EB term within and in the vicinity of the fiber core.

Second, we numerically explore the behavior of the EE · EB term
in different structures such as a rectangular waveguide and a
photonic crystal fiber. For these numerical investigations, we use
the commercially available finite-difference software COMSOL
[58]. Finally, we will discuss two specific applications of such
non-transverse fiber modes: (1) generation of hypothetical
axions that we mentioned in the previous paragraph, and (2) a
new type of optical trap (optical tweezers) for chiral atoms with
magneto-electric cross coupling, where the confining potential

for the atoms is proportional to EE · EB [9,12,59].

2. ANALYTICAL CALCULATIONS OF

NON-TRANSVERSE FIELDS IN MICROFIBERS

The propagation of light in waveguides and optical fibers
has been studied in depth by a number of authors. When the
refractive index difference between the core and the cladding is
small, (ncore − nclad =1n ∼ 0), then the fiber is in the weakly
guiding regime (here, the quantities ncore and nclad are the
refractive indices of the core and the cladding, respectively).
In this regime, one can use the paraxial approximation for the
propagating waves and the characteristic equation of the fiber is
simplified to [60–62]

J ′
ν(u)

u Jν(u)
= − K ′

ν(ω)

ωK ν(ω)
, (1)

where u = a
√

k2n2
core − β2 and ω= a

√

β2 − k2n2
clad in a fiber

of core diameter a with ν being the mode number. In addition,
we note that J and K functions are the Bessel function of the
first kind and modified Bessel function of the second kind,
respectively. The quantity β is the propagation constant and
k = 2π/λ is the magnitude of the wave-vector for the light.
When this equation is solved for β, the solution for the desired
mode is acquired. Electromagnetic fields under these approx-
imations behave almost as transverse electromagnetic (TEM)
waves, having near-zero longitudinal (z-component) of electric
and magnetic fields. However, as one starts decreasing the diam-
eter of the fiber, the weakly guiding approximation breaks down
and more of the propagating modes acquire non-transverse
behavior [2,25,60,62]. In order to find propagating modes
in fibers with small core diameters, one needs to increase the
difference of the indices of refraction between the core and the
cladding (1n). In a physical context, the propagation of light in
fibers with small radii demonstrate hybrid mode behavior [25],
which are the fiber modes that contain electric and magnetic
fields that have non-zero longitudinal field components. To
find the hybrid modes, one needs to produce a more general
characteristic equation from the surface boundary conditions
D⊥
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After this characteristic equation is solved, the electric and
magnetic fields for the corresponding mode in the core region of
a fiber can be found analytically and they are [25,62]
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and

ω0 = 2πc

λ
. (5)

As an example, we solve the full characteristic equation
with a = 0.5 µm along with nclad = 1 and ncore = 1.46 with
a wavelength of λ= 633 nm, and calculate that the propa-
gation constant for the lowest order hybrid mode (H E11) is
β = 13.860 × 106 m−1. The analytically calculated radial
profile for the electric field of this hybrid mode is plotted in
Fig. 1.

Fig. 1. Plot for the electrical field norm from normalized ana-
lytical calculations (solid blue line) and the same electric field data
from COMSOL (dotted red line) with a = 0.5 µm, ν = 1, and
β = 13.860 × 106 m−1.
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Fig. 2. False-color plot of the scalar field F in the transverse x − y plane within a region of r = 2a of the fiber from (a) analytical solutions and
(b) COMSOL calculations, with a = 0.5 µm, ν = 1, and β = 13.860 × 106 m−1. There is good agreement between the two results, both of which
show non-smooth behavior at the core-cladding boundary.

While it is possible to analytically calculate these modes
for simple step-index structures, this is not the case for more
complicated waveguides including photonic crystal fibers. For
much of what we discuss below, we will instead rely on numer-
ically calculating these modes using commercial optical-wave
simulation software, COMSOL. For comparison, in Fig. 1, we
also plot the profile of the electric field for the simple cylindrical
step-index structure using COMSOL. As expected, there is
very good agreement between the analytical solution and the
numerical calculation. The small difference between the results
is coming from the data sampling resolution of COMSOL.
When a higher resolution mesh is used to sample data, better
agreements between the results can be demonstrated. We note
that the discontinuity on the E-field occurs from the Maxwell

boundary condition ε EEr (a)= ε0
EEr (a).

In this paper, for various fiber structures that we discuss
below, we will focus our attention to the lowest order mode
(i.e., the hybrid fundamental mode, H E11), which is described
thoroughly in Ref. [2]. For structures that can maintain higher
modes, the ratio of power carried by the evanescent field at the
cladding and the field at the core can be modified to be higher or
lower depending on the application [2,25,62].

Throughout this paper, we will summarize the non-transverse
behavior of these waves propagating in the MNFs by examining
the scalar field of

F ≡ cos θ

=
EE · EB
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E x B∗

x + E y B∗
y + E z B∗

z + E ∗
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.

(6)

Here, we define the quantity θ , which is the geometric angle
between the electric and magnetic field vectors. For simple step-
index fiber structures, we can use the solution given in Eq. (3) to
analytically calculate this quantity:
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where the norms of the fields, | EE | and | EB |, can be written as

| EE || EB | =
√

| EEr |2 + | EEθ |2 + | EE z|2
√

| EBr |2 + | EBθ |2 + | EBz|2.

(8)

We plot this scalar field from both analytical calculations
[Fig. 2(a)] and from COMSOL [Fig. 2(b)] for the previous
microfiber structure that we discussed in Fig. 1. These figures
are false-color plots for F in the transverse x − y plane. As seen
in these figures, there is again very good agreement between
the analytical solution and the numerical calculation from
COMSOL, both of which show nonzero values for the F field.
The electromagnetic fields start demonstrating non-transverse
characteristics close to the core and cladding boundary. In
Fig. 3, we plot the radial profile for the scalar field F at a specific
azimuthal angle, F (r , θ) with θ = π/4, for both COMSOL
(dashed, red) and analytical (solid, blue) results. The results

Fig. 3. Plot for F (r , θ = π/4) with a = 0.5 µm, ν = 1 and
β = 13.860 × 106 m−1. The solid blue line is the analytical calculation
and the dashed red line is the numerical results from COMSOL. The
non-smooth behavior at the core-cladding boundary is due to the
imposed Maxwell boundary conditions, where the perpendicular com-
ponent of the displacement vector is continuous; but not the electric
field vector.
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Fig. 4. (a) The plot of the average scalar field, Fave, as a function of fiber core diameter a , for ν = 1 modes with nclad = 1 and ncore = 1.46. The
scalar field decreases as the core size increases, since waves approach transverse waves propagating in the bulk. (b) The plot of the average scalar field
Fave as a function of the core refractive index, ncore, for ν = 1 modes with rcore = 0.5 µm (the refractive index of the cladding is fixed at ncladding = 1).

match well, both of which show non-smooth behavior at the

core-cladding boundary. The non-smooth behavior is due to the

imposed Maxwell boundary conditions, where the perpendicu-

lar component of the displacement vector is continuous, but not

the electric field vector. We observe that the discontinuity in the

perpendicular component of the electric field becomes more

drastic, as the refractive index difference between the core and

the cladding gets larger [62].

A useful quantity that summarizes the non-transverse behav-

ior of a fiber mode is the spatial average of the scalar field, which

we define as Fave ≡
∫

dxdy |F (x , y )|/
∫

dxdy . We expect this

spatial average Fave to decrease as the core radius (rcore = a)

increases, since waves propagating in fibers with a larger core

would approach transverse waves propagating in the bulk.

To demonstrate this behavior, we increase a and calculate the

propagating modes in COMSOL. In Fig. 4(a), we plot this

quantity as a function of the core radius a , for the wavelength of

light of λ= 1.55 µm. We have verified that the critical param-

eter for this type of non-transverse behavior is the ratio λ/a [i.e.,

the behavior at different wavelengths can be found by using an

appropriate scaling of Fig. 4(a)]. We find that, as expected, as

the size of the core increases, the largely transverse waves near

the central regions of the core result in an overall low value of the

averaged scalar field F . We also numerically find that while one

can find different modes with different ν andβ values, the maxi-

mum value of the scalar field F does not vary much between

different modes [i.e., the behavior that is plotted in Fig. 4(a) is

valid not only for the lowest order mode, but for other modes as

well].

We have also numerically investigated the behavior of the

scalar field F with respect to the change in the refractive index of

the cladding. In Fig. 4(b), we plot the average scalar field, Fave,

as a function of nclad, while keeping rcore = a and ncore = 1.46

constant. We observe that as ncore increases, the spatially aver-

aged field initially gets large, peaks around ncore = 1.7, and then

shows a slight decrease with further increase of the core refractive

index.

3. DIFFERENT STRUCTURES FOR

NON-TRANSVERSE EM WAVE SCHEME

In the previous section, we discussed non-transverse electro-
magnetic waves in a simple step-index fiber geometry where
analytical solutions exist and we could, therefore, make com-
parisons with the numerical solutions using COMSOL. In
this section, we will discuss an extension of these results to
different waveguide structures including rectangular and
photonic-crystal (i.e., structured) fibers.

A. Rectangular Waveguide

Non-transverse EM waves in rectangular and elliptical wave-
guides may be useful in physical systems where an asymmetrical
behavior between the two transverse axes is desired. In our
numerical investigations of these systems, we have largely
found the results that we have discussed in the previous section
to be valid, i.e., we have observed similar behavior for these
non-transverse waves as the size of the structure, or the refrac-
tive index difference between core and the cladding, is varied.
Because of this, we will not present a systematic study of these
asymmetric structures. Rather, in this section, we will discuss the
results for an asymmetric waveguide, as representative examples
of what kind of non-transverse behavior can be expected.

In Fig. 5, we show results for a rectangular waveguide
with a core length of 0.75 µm and a core height of 0.5 µm.
Here, similar to the previous section we take the core
and the cladding refractive indices to be ncore = 1.46 and
ncladding = 1, and we plot the scalar field F for three differ-
ent modes. These modes have propagation constants of β’s
of = 9.80117 × 106 m−1 [Fig. 5(a)], 9.80862 × 106 m−1

[Fig. 5(b)], and 10.0035 × 106 m−1 [Fig. 5(c)]. In all of these
figures, one can see the interesting spatial behavior of the field
F , in addition to numerical values as high as 0.4. We have also
numerically investigated a fiber with an elliptical core and have
found the behavior to be very similar to the circular-core fiber
structure that we have discussed above.

B. Photonic Crystal Fibers

Photonic crystal fibers are optical micro- and nano-structures
where the index of refraction changes periodically [63,64].
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Fig. 5. False-color plot of F (calculated by COMSOL) given
by Eq. (6) in a rectangular waveguide structure with ncore = 1.46,
nclad = 1, length = 0.75 µm, height = 0.5 µm, ν = 1, and
β’s of (a) = 10.0035 × 106 m−1, (b) 11.7594 × 106 m−1, and
(c) 9.80117 × 106 m−1.

Over the last two decades, the interest in these types of fibers
has been continually growing, since their performance can
substantially exceed traditional fibers. For example, one can
manufacture photonic crystal fibers that can be single mode
over a large wavelength range, or show highly enhanced optical
nonlinearities.

In this section, we will discuss our COMSOL simulations
that investigate the behavior of F in an example photonic
crystal structure. We consider a photonic crystal fiber with
an array of 5 × 5 cylinders. The diameter of each cylinder
is a = 0.1 µm and the spacing between neighboring cylin-
ders is 0.01 µm. The cylinder at the center is missing since
we aim to confine the modes near the center of the struc-
ture. For a photonic crystal structure seen in Fig. 6, for β’s of
= 13.39381 × 106m−1 [Fig. 6(a)], 13.39411 × 106 m−1

[Fig. 6(b)], 13.39471 × 106 m−1 [Fig. 6(c)] modes, the scalar

Fig. 6. False-color plot of the scalar field F calculated using
Eq. (6) in a 5 × 5 photonic crystal structure with ncore = 1.46,
nclad = 1, a = 0.1 µm, ν = 1, and β’s of (a) = 10.5891 × 106 m−1,
(b) 11.7207 × 106 m−1, and (c) 12.3381 × 106 m−1. (a) F of the
lowest mode of a photonic crystal structure with a = 0.1 µm from the
COMSOL data with β. (b) F of a middle mode of a photonic crystal
structure with a = 0.1 µm from the COMSOL data with β. (c) F of
the highest mode of a photonic crystal structure with a = 0.1 µm from
the COMSOL data withβ.

field F has a maximum of about 0.3, also with reasonably high
values for the F -field near the center of the structure.

We have also investigated the behavior of the average field
Fave, as we vary the radius of the core of the cylinders. In Fig. 7(a)
we plot the quantity Fave, which is the field F averaged over the

area of a circle defined with a radius of rav = 5.1 ×
√

2a . This
circle size is chosen this way to capture all of the 5 × 5 photonic
crystal fiber structure near the center of the fiber, as well as a
significant portion of the cladding. The results are not sensitive
to the specific choice of the radius of the circle, as long as it is
large enough to capture the most of the mode structure. Here,
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Fig. 7. (a) The plot of Fave averaged over a circular area of R = 5.1 ×
√

2a versus a single fiber’s a for the 5 × 5 photonic crystal fiber structure.
The blue dots are the results for the lowest mode while the red dots are the results for a representative middle mode between the highest and lowest

order modes. (b) The plot of Fave averaged over a circular area of R = 5.1 ×
√

2a versus the index of refraction of the cores ncore for the 5 × 5 photonic
crystal fiber structure. The blue dots are the results for the lowest mode while the red dots are the results for a representative middle mode between the
highest and lowest order modes.

we plot the results for the lowest mode (blue dots) and as well
as a representative middle-level mode (red dots), as we vary
the core-radius of the cylinders, a . Here, we observe that the
lowest mode has a higher average value of F . We also note that
compared to Fig. 4(a), the magnitude of Fave is three times larger
for the lowest order modes, while the observed decay behavior
is similar. We find that, while performing these calculations in
COMSOL, as the cylinder radius a gets larger, the simulation
space gets large and rapidly increases the memory requirement
of the computation. As an example, for a photonic crystal struc-
ture with a single cylinder radius a = 0.5 with a coarse mesh,
most of the physical 32 GB RAM and around 80 GB of virtual
RAM were used and the calculation took around 8–10 h. Since
we were working with distances that are comparable to the wave-
length of the light, EW frequency domain (EWFD) analysis was
required in COMSOL, which takes more time than the beam
envelopes (EWBE) analysis [58].

To see the behavior of Fave with respect to ncore, we calculate
the behavior of Fave in Fig. 7(b) with core radius a = 0.1 µm,
with blue dots being the lowest order mode and the red dots
being a middle mode. Again, here, Fave is larger than a single-
cored structure seen in Fig. 4(b), while the overall behavior of
the dependence to ncore is similar.

4. GENERATION AND DETECTION OF

HYPOTHETICAL AXION PARTICLES

Since their first prediction about four decades ago, the interest
in hypothetical axions has been continually growing [47–
50]. Light axions or axion-like particles with a mass in the
10−6 eV<m< 10−2 eV range form a compelling candidate for
the dark matter in the universe [51–53]. The existence of axions
would also solve one of the longstanding theoretical problems
in the standard model of particle physics: the so-called strong
CP problem [44–46]. Not surprisingly, there has been a large
number of experimental efforts to detect this elusive particle.
The theoretical proposals exploring axion-photon coupling
date back to 1980s [65–67], spurring much experimental work.
One set of experiments aims to detect axions that are naturally
present in the environment [68–71]. Another set of experiments

works towards generating and detecting axions in the lab, and
has greater control of the experimental parameters since they
do not rely on an external source of axions [72,73]. This set of
experiments is cordially referred to as light shining through a wall
(LSW), and its sensitivity has been steadily increasing over the
last few decades. These experiments rely on generating axions
at one side of an optical barrier (i.e., a wall) using lasers, while
aiming to detect them at the other side of the barrier.

As we will discuss below in detail, were they to exist, the axions

are coupled to the fields of electromagnetics through the EE · EB
term. In LSW experiments, the generation of axions is typically
accomplished by utilizing the interaction of the electric-field of a
laser beam with an intense DC magnetic field. As we have noted
in a recent publication, such generation could also be accom-
plished using both the electric field and magnetic field of a laser

[57]. This requires a non-vanishing EE · EB term due to a laser
beam, which requires non-transverse electromagnetic modes.
One application of the modes that we have discussed above is,
therefore, to the generation of such hypothetical axions.

More specifically, the Klein-Gordon equation for the axion
field8(Er , t) has a driving term that involves the dot product of
the electric and magnetic fields:

∇28− 1

c 2

∂28

∂t2
−

(mc

~

)2

8= g aγ γ

µ0c
EE · EB . (9)

Here, m is the mass of the hypothetical axion and ∇2 is the
Laplacian operator. The quantity g aγ γ is the axion-EM cou-
pling constant. As we discussed in our recent paper, the driving
EE · EB [57] term can be used to confine the generated axion wave,
8. Using procedures quite similar to finding the optical modes
of a fiber [60], the Klein-Gordon equation for the axion field can
be reduced to a single radial differential equation, driven by the

spatial mode profile of EE · EB . This radial differential equation
can then be numerically integrated to find the shapes of the
confined axion modes.

In our recent paper, we assumed the simplest case of only
radial dependence of the driving term and therefore found the
cylindrically symmetric solutions for the confined axions. For
the driving laser beam in a hybrid mode, as shown in Eq. (3),
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there is a dependence of the electric and magnetic fields, and

therefore EE · EB term, on the azimuthal angle θ .
From Eq. (7), since we know the general form of the driving

term, we define our trial solution8(r , θ, z) to be of the form

8(r , θ, z)= uφ(r , θ). (10)

Differing from our recent paper where we considered exci-
tation using two different laser beams [57], this solution does
not include a propagation term that is dependent on z. This
is because both the electric and magnetic fields have the same
z-dependent propagation term, which cancels out in the
dot product. Consequently, the Klein-Gordon equation of
Eq. (9) can be reduced to the following differential equation for
uφ(r , θ):
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Next, we define the quantity1k2 ≡ (mc/~)2. With this def-
inition and using the analytical result from Eq. (7) for E · B , we
obtain
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Using separation of variables, we can write our trial solution
as uφ(r , θ)= Rφ(r )2(θ), where we have defined the function
2(θ)= Sin(2(νθ +ψ)). With this simplification, we obtain
the following ordinary differential equation for Rφ(r ) in the
core of the fiber:
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Using a similar procedure, the differential equation for the
cladding part of the solution can be written as
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)

K ν+1

(w

a
r
)

)

.

(14)

Here, we collect all the constants in the axion driving term
into a single term and define

βε0s λg aγ γ

4π
= γ . (15)

We numerically solve Eqs. (13) and (14) using a fourth
order Runge-Kutta algorithm for the non-transverse hybrid
mode H E11 that we have discussed above. We will present
two examples for the confined axion mode profiles that are
driven by the non-transverse electromagnetic modes. We
first use a hybrid H E11 mode with β = 13.60 × 106 m−1 of
a laser at a wavelength λ= 633 nm in an air clad silica fiber,
with the index of refraction of ncore = 1.46 and a core radius of
a = 0.5 µm. For the axion mass m = 10−2 eV, the value of1k2

is1k2 = −65.05 × 106 m−2. The solution of the axion differ-
ential equation with these constants can be seen in Fig. 8(a). The
difference in the solutions as we scan the axion mass range from
m = 10−2 to m = 10−6 eVs is around γ × 10−8, which stays
minimal, suggesting some solutions that are not very sensitive to
the hypothetical axion mass.

One can engineer the parameters of the fiber and the laser to
obtain different spatial structures for the confined axion modes.
Another example is shown in Fig. 8(b). In this plot, the fiber
structure has a radius of a = 0.3 µm, and an index of refraction
of n = 1.46, for a laser wavelength of λ= 1550 nm. The mode
we choose for this case is the fundamental H E11 mode with a
propagation constant of β = 4.16 × 106m−1. Again, for these
parameters we have1k2 = −65.05 × 106 m−2.

To demonstrate the 2D behavior of the total field uφ(r , θ)=
Rφ(r )2(θ), we plot a 2D false color plot of the field uφ(r , θ) in
Fig. 9 for the parameters from Fig. 8(b).

The axion wave that is generated through non-transverse
electromagnetic modes of a fiber can be detected at another
location. One specific strategy is outlined in Ref. [57]. Here,
the key idea is that the generated axion wave can leak to a nearby
fiber, and can then be detected by interacting with a mixing

Fig. 8. (a) The solution Rφ(r ) with θ = π/4 for the hypothetical axion field for the H E11 mode with a propagation constant β =
13.60 × 106 m−1 for an air-clad fiber with radius a = 0.5 µm and a core index of refraction n = 1.46 with a laser with wavelength λ= 633 nm
and 1k2 = −65.05 × 106 m−2. (b) The solution Rφ(r ) with θ = π/4 for the hypothetical axion field for the H E11 mode with a propagation
constant β = 4.16 × 106 m−1 for an air-clad fiber with radius a = 0.3 µm and a core index of refraction n = 1.46 with a laser with wavelength
λ= 1550 nm and1k2 = −65.05 × 106 m−2.
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Fig. 9. 2D false color plot for the solution for the hypothetical
axion field uφ(r , θ) for the H E11 mode (β = 4.16 × 106 m−1) for a
fiber with radius a = 0.3 µm and ncore = 1.46 for a laser wavelength
λ= 1550 nm with1k2 = −0.89 × 1012 m−2.

laser and affecting the propagation of a probe laser beam.
The existence of axions can then be verified by measuring the
change either in the phase or the intensity of the probe laser
propagating at a nearby fiber. Using challenging but exper-
imentally realizable parameters, these experiments can put
a detection bound on the axion-photon coupling constant
g aγ γ at the level of 10−10 GeV−1 for axions in the mass range
10−6 eV<m< 10−2 eV.

In Ref. [57], we discussed the detection bounds on the axion-
photon coupling constant g aγ γ , for four different envisioned
phases of a future experiment. These detection bounds were
calculated using standard transverse modes of an optical fiber
utilizing a number of simplifying assumptions for the fiber
modes. We have recently quantitatively estimated these detec-
tion bounds for the non-transverse EM modes in MNFs, using
the axion field similar to what is shown in Fig. 9. A detailed
discussion of axion detection bounds using non-transverse
EM modes that are discussed in this section will be reported
elsewhere [74].

5. NEW TYPE OF OPTICAL TRAP FOR CHIRAL

ATOMS WITH MAGNETO-ELECTRIC CROSS

COUPLING

A. Chiral Atoms with Magneto-Electric Cross

Coupling

Over the last two decades, there has been a growing interest
in materials that exhibit chirality through magneto-electric
cross coupling. In traditional materials, the electric field of
the light produces polarization of the medium while the mag-
netic field induces magnetization. In contrast, in materials
with magneto-electric cross coupling, the electric field can
induce magnetization, while the magnetic field can polarize the
medium. One application of these materials is to the studies of
negative refractive index. Materials that exhibit a negative index
of refraction have been a subject of research because of their
interesting fundamental properties as well as applications that
they demonstrate such as the possibility of constructing lenses
whose performance can beat the diffraction limit [59,75–85].
One key challenge in constructing negative index materials is
due to the weakness of the magnetic response in optical materi-
als [59]. Chiral materials with magneto-electric cross coupling

show considerable promise for overcoming this limitation due
to additional contributions of the cross coupling coefficients to
the refractive index [86,87]. Using such cross coupling scheme,
one can achieve a negative index of refraction without having a
negative permeability [59,88,89].

In a material with magneto-electric cross coupling, the polari-
zation, Pp , and the magnetization, Mp , for a probe beam with
electric field E p and the magnetic field with B p is given by

Pp = ε0χE E p + ξEB

cµ0
B p ,

Mp = ξBE

cµ0
E p + χM

µ0
B p . (16)

Here, the quantities χE and χM are the electric and the mag-
netic susceptibilities, and ξEB and ξBE are the complex cross cou-
pling (chirality) coefficients [59,88,89].

In this section, we utilize the effect of magneto-electric
cross-coupling-induced chirality for achieving a trap potential

for atoms that scale with the term EE · EB . For this purpose, we
are going to focus on the specific five level scheme, which was
discussed in detail in Ref. [59]. As shown in Fig. 10, we consider
an atomic system with a strong magnetic dipole transition with
magnetic-moment µgm near the frequency of the probe laser
beam. The system does not have a strong electric-dipole transi-
tion near the probe laser’s frequency. Instead, the electric dipole
response is obtained by using two-photon Raman transitions
that are detuned from the dipole-allowed excited state |e 〉 [59].
The two Raman transitions are introduced by using the probe
laser and two intense control beams with electric fields E c 1 and
E c 2. Because of the difference in the order of involvement of
the probe laser in the Raman transitions, this method creates
simultaneously an amplifying resonance and an absorbing
resonance [59]. One can tune the strength and the position of
these two Raman transitions by changing the frequencies and
the intensities of the laser beams. The interference of the two
resonances produces control of the index of refraction while
having a small absorption.

Fig. 10. Energy level diagram of the suggested magneto-electric
cross coupling scheme [59]. The electric field E p and magnetic field
B p are the EM components of the probe laser. |g 〉 → |m〉 is a magnetic
dipole transition induced by B p . Two electric dipole Raman transitions
are induced by the two strong control laser beams E c 1 and E c 2. These
transitions can be detuned very far away from the excited state |e 〉.
Thus the system does not require |g 〉 → |m〉 and |g 〉 → |e 〉 transitions
to be close to the same frequency. The magneto-electric cross coupling
(chirality) is induced by�2m .
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In this scheme, the coherent coupling of the states |2〉 and
|m〉 with a separate laser beam with Rabi frequency�2m induces
magneto-electric cross coupling. The states, |g 〉, |1〉, |2〉, and
|m〉 have the same parity, while being the opposite parity to the
excited |e 〉 state. We define δω1 = (ω1 −ωg )− (ωc 1 −ωp)

and δω2 = (ω2 −ωg )− (ωp −ωc 2), which are the two-
photon detunings. The detuning of the probe beam for
the magnetic transition |g 〉 → |m〉 can be defined as
δωB = (ωm −ωg )−ωp . Finally, the detuning of the magneto-
electric coupling laser from the transition |2〉 → |m〉 is
δω2m . The system forms a closed loop and we therefore have
δωB = δω2 + δω2m . Following these definitions, one can derive
the susceptibilities and the chirality coefficients as

χE = N

ε0





|dge|2
~

(

1p − i0e/2
) + |dge|2|d1e |2

4~312
1 (δω1 + iγ1)

|E c 1|2 + |dge|2|d2e |2

4~312
2

(

δω2 − |�2m |2
4(δωB −iγm )

− iγ2

) |E c 2|2


,

ξEB =µ0c N
dged

∗
2eµ

∗
gm

4~212(δωB − iγm)
(

δω2 − |�2m |2
4(δωB −iγm )

− iγ2

)�2m E c 2, (17)

with N being the number of atoms per unit volume. Further
details of this approach can be found from earlier publications of
our group [59].

B. Chiral Trap Potential Scaling with EE · EB

In this subsection, we introduce a trapping potential for chiral

atoms that depends on the U ∝ EE · EB , rather than the con-

ventional dipole trap potential that scales with U ∝ | EE |2. We
consider an atom with the above-described magneto-electric
cross coupling scheme and, therefore, exhibiting chirality. The
trapping potential for such an atom in the presence of the probe
laser is

Utrap = 1

N
〈 EE p · EPp〉

= ε0Re{χE }
2N

| EE p |2

+ 1

Ncµ0

(

Re{ξEB}〈 EE p · EB p〉 − iIm{ξEB}
(

E p B∗
p − E ∗

p B p

)

)

.

(18)

Using the results from the previous section and as we will dis-
cuss below, we have the freedom to tune the quantities χE and
ξEB [59]. Therefore, one can find a condition where χE � ξEB

and the trapping potential of Eq. (18) is dominated by the
second term. We note that for a trapping potential that is only

proportional to 〈 EE p · EB p〉, because of the sign of the electromag-
netic fields, there will be regions where the potential is attractive
as well as repulsive. This behavior on its own is interesting and

is different from the usual dipole potential U ∝ | EE |2 where
depending on the sign of the detuning of the trapping laser from
the excited state, the potential is either attractive or repulsive
everywhere.

Having discussed the general scheme of the trapping, we
proceed with a numerical example in an example atomic sys-
tem. We choose a vacuum-cladded (nclad = 1) MNF structure

with the core radius of a = 0.2 µm. We use two probe lasers
with wavelengths λp1 = 601 nm and λp2 = 599 nm, one red
and one blue detuned magnetic-dipole transition at a wave-
length of 600 nm, to produce a force that generates attractive
and repulsive potential wells and hills. The relevant propa-
gation constants for the modes of these two probe lasers are
β1 = 12.50 × 106 m−2 andβ2 = 14.68 × 106 m−2. We choose
parameters that are similar to what could be expected from a
real atomic system [90]: we take the excited state decay rate
to be 0e = 2π × 10 MHz, and choose two coupling lasers
with wavelengths λc 1 = 610 nm and λc 2 = 599.9 nm. We

define the detunings as δωB = −δω1 = δω2. We introduce a
dephasing rate of γ1 = γ2 = γm = γc = 2π × 1 MHz to the
dipole-forbidden transition and take the Rabi frequency of the
cross coupling laser to be �2m = i2π × 2.12 MHz. We use
intensities of Ic 1 = 0.25 MW/cm2 and Ic 2 = 0.7 MW/cm2

for the two coupling lasers. We also note that for simplicity, the
coupling lasers are taken to be uniform while the probe lasers
are assumed to be in the evanescent field of the hybrid fiber
modes that are analytically shown in Eq. (3). We choose the
optical power in the probe laser beams to be 100 mW. Finally, we
calculate the electric and magnetic dipole matrix elements using
the Wigner-Weisskopf result

dij =
√

πε00e~c 3

ω3
p

, µij =
√

πε00e~c 5

ω3
p 1372

. (19)

In Fig. 11(a), we plot the real parts of the calculated suscep-
tibilities χE 1(δω) (solid blue) and χE 2(δω) (solid red) with
respect to the detuning (the subscripts “1” and “2” refer to quan-
tities due to the first and the second probe laser, respectively). In
this figure, one can notice that as we get close to zero detuning,
the susceptibilities behave closely and start diverging in the
highly detuned regime. In Fig. 11(b), the real (solid blue) and
the imaginary parts (dashed light blue) of the chirality constant
ξE B1 along with the real (solid red) and the imaginary parts
(dashed green) of the chirality constant ξE B2 are plotted. Since
these chirality constants have opposite signs for any detuning,
they can be used to balance the trapping potential close to the
fiber, thereby preventing the atoms from sticking to the fiber.

To form a trapping potential well, we pick a detuning of
0.36γm , which renders the real parts of susceptibilities of the
lasers to be Re {χE 1} = −0.0008 and Re {χE 2} = −0.0002.
This specific choice of the detuning suppresses the dipole
potential and gives the user the freedom of tuning the chiral
trapping potential. Although one can achieve radial trapping
by appropriate tuning of the dipole and chiral potentials with
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Fig. 11. (a) The real parts of the susceptibilities χE 1(δω) (solid blue) and χE 2(δω) (solid red) with respect to the detuning δω/γM for the probe
wavelengths of λp1 = 601 nm and λp2 = 599 nm with coupling wavelengths of λc 1 = 610 nm and λc 2 = 599.9 nm. (b) The real and imaginary parts
of the chirality constants ξE B1(δω) and ξE B2(δω)with respect to the detuning δω/γM for the probe wavelengths ofλp1 = 601 nm andλp2 = 599 nm
with coupling wavelengths ofλc 1 = 610 nm andλc 2 = 599.9 nm. The solid blue and the dashed light blue curves represent the real and the imaginary
parts of the chirality constant of the λp1 laser, ξE B1(δω). The solid red and the dashed green curves represent the real and imaginary parts of the chiral-
ity constant calculated for the laser λp2, ξE B2(δω).

Fig. 12. (a) The false-color plot of the calculation of the chiral trapping potential coming from the two probe beams λp1 and λp2 with
the parameters 0e = 2π × 10 MHz, λc 1 = 610 nm, and λc 2 = 599.9 nm, γ1 = γ2 = γm = γc = 2π × 1 MHz, �2m = i2π × 2.12 MHz,
Ic 1 = 0.25 MW/cm2, and Ic 2 = 0.7 MW/cm2 with probe lasers’ powers being 10 mW. (b) The cross section of the chiral trapping potential at
the azimuthal angle θ = 2.36π . The trapping potential reaches to 150 mK scales.

only one probe laser beam, the symmetric nature of the dipole
force makes azimuthally trapping of particles more difficult. We
find that this problem can be overcome by reducing the magni-
tude of the dipole potential and using two probe lasers, thereby
achieving both radial and azimuthal trapping. Furthermore, the
trap minimum in the radial direction can be formed sufficiently
far away from the fiber so that the atoms do not stick to the fiber
surface.

With the above chosen parameters that are close to the
parameters used in our previous paper [59], we use Eq. (18) and
calculate the total trapping potential. In Fig. 12(a), we show a
2D false-color plot of the total chiral trapping potential coming
from the two probe lasers with λp1 and λp2. The plot demon-
strates attractive and repulsive regions along the azimuthal
direction. In Fig. 12(b), a cross section of the total potential
taken at the azimuthal angle θ = 2.36π with respect to the
radial distance from the fiber core is plotted. Here, we observe
that an attractive potential well with a maximum trap depth of
150 mK can be achieved with 100 mW probe lasers.

We note that because the modes that we discuss are propa-

gating EM modes along the fiber, the EE · EB trapping potential
is independent of the propagation axis, z. As a result, there is
no trapping along the longitudinal z direction of the fiber. This
issue can be resolved by using a number of different approaches.
For example, a second wave propagating along the −z axis can

be used (a counter-propagating mode), which would then form
a standing wave along the z axis and produce a cos2(kz) type
potential. Another approach would be to taper the fiber along
the longitudinal z direction so that the modes vary as a function
of the propagation direction.

In this section, we have demonstrated a novel type of atom
trapping that utilizes the chiral force occurring from the
magneto-electric cross coupling of atoms. With choosing special
detunings, one can neglect the dipole force and achieve attrac-
tive and repulsive potentials for trapping atoms with fibers. This
scheme can be achieved with atoms that demonstrate magneto-
electric cross coupling such as erbium, terbium, or dysprosium
[59]. In another previous paper [91], we discuss achieving a
negative index of refraction with the magneto-electric cross cou-
pling effect for terbium atoms. Interested readers can also find
further information about this topic and possible experimental
applications in a comprehensive review by our group [90] as
well. In addition, cooling these atoms down is another chal-
lenge for the possible experimental realization of this trapping
scheme. Thankfully, magneto-optical traps for erbium [92–94]
and dysprosium [95–97] such as other lanthanoid atoms [98–
100], as well as a dual species MOT of Er and Dy [101] have
been previously reported. With such MOT structures along
with a magneto-electric cross coupling scheme and a tapered
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fiber structure, it may be possible to experimentally observe such
traps in the near future.

6. CONCLUSIONS

In conclusion, we have presented an analytical and numerical
study of electromagnetic modes in micro- and nano-fibers
(MNFs) where the electric and magnetic fields of the propa-
gating modes are not orthogonal to each other. We have also
discussed applications of these modes in searching for hypo-
thetical particles such as axions and in forming new types
of optical traps for chiral atoms with magneto-electric cross
coupling.

One immediate future direction is to experimentally demon-
strate optical traps where the confining potential is proportional

to EE · EB . To demonstrate such traps, one approach would be
to place the fiber structures that we have discussed above inside
laser cooled atomic ensembles where magneto-electric cross
coupling can be induced, for example, lanthanides such as ter-
bium or dysprosium. Another future direction is to integrate
the above discussed fiber structures to proposed fiber and laser
based axion searches and evaluate the bounds on axion-photon
coupling that such experiments would place under realistic
experimental conditions [57].
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