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Synopsis

Previous experiments show a decrease in kinesin-1's processivity and velocity when tubulin C-terminal tails (CTTs)
are cleaved, but the mechanism of these effects remains unclear. We devise competing models for plausible CTT-
motor interactions and employ computational simulations to interrogate their compatibility with experimental
observations. Ultimately, we find a model where CTTs "guide” the motor head during its search for the forward
binding site best explains the data. Our work reveals new insights into how the tubulin code regulates intracellular
traffic.

Abstract

The delivery of intracellular cargoes by kinesins is modulated at scales ranging from the geometry of the microtubule
networks down to interactions with individual tubulins and their code. The complexity of the tubulin code and
the difficulty in directly observing motor-tubulin interactions have hindered progress in pinpointing the precise
mechanisms by which the kinesin's function is modulated. As one such example, past experiments show that
cleaving tubulin C-terminal tails (CTTs) lowers kinesin-1's processivity and velocity on microtubules, but how
these CTTs intertwine with kinesin's processive cycle remains unclear. In this work, we formulate and interrogate
several plausible mechanisms by which CTTs contribute to and modulate kinesin motion. Computational modeling
bridges the gap between effective transport observations (processivity, velocities) and microscopic mechanisms.
Ultimately, we find that a guiding mechanism can best explain the observed differences in processivity and velocity.
Altogether, our work adds a new understanding of how the CTTs, and their modulation via the tubulin code, may
steer intracellular traffic in both health and disease.
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Introduction

The transport of cargoes along microtubule tracks by kinesin motors is essential to a variety of cellular functions,
and impairments are associated with an array of diseases [1]. The complexity and robustness of this transport
system are achieved through the intricate regulation of each of its components [2].

One highly and dynamically regulated component is the microtubule tracks [3]. Microtubules are hollow
cytoskeletal filaments, consisting of a lattice of o and B tubulin heterodimers, each with a carboxy-terminal tail
(CTT) region emanating outward [4]. Microtubules are highly regulable via a zoo of modifications including those
that target CTT directly, such as tyrosination and polyglutamylation. The so-called “tubulin code” hypothesis
states that this combinatorial complexity in tubulin heterogeneity facilitates intricate regulation of intracellular
traffic [5]. This is supported by observations that tyrosination steers intracellular traffic to peripheries [6, 7] and
that a variety of disease states are associated with perturbations to tubulin modifications [8, 9].

Despite convincing evidence that the tubulin code steers intracellular traffic, details of the interactions between
motors and C-terminal tails remain less clear. Wang and Sheetz [10] showed that cleaving C-terminal tails with
subtilisin lowered the processivity (run lengths before detaching) of both kinesin-1 and dynein. Based on earlier
structural studies showing that the kinesin binding site is not in the CTT region of tubulin[11], the authors
conclude that CTT must have an otherwise unspecified " weak attachment” effect. A more recent study also found
decreased processivity and a significant decrease in velocity for kinesin-1 walking on CTT-cleaved microtubules
[12], shown in Figure 1. This raises the central question of this work: what role do the C-terminal tails play in
kinesin movement? One is tempted to speculate, as previous authors do, that a weak tethering with C-terminal
tails “catch” otherwise detaching motors. However, this fails to clearly explain the decreased velocity from their
severing. Alternatively, if C-terminal tails facilitate any portion of the processive stepping cycle, this does not
obviously affect run lengths. Although atomistic-scale simulations have extensively investigated interactions of
C-terminal tails with motors [13-17] questions of this timescale are challenging to address.

In this work, we develop coarse-grained biophysical computational models to explore and vet possible models
of the contribution CTTs provide to kinesin-1's processive movement. The modeling scale is chosen to leverage
the immense detail known of the chemomechanical stepping cycle of kinesin-1 [18, 19]. We ask what plausible
interactions with this cycle can quantitatively explain the results of [12] with CTTs lengthening motor processivity
and speeding up velocity in a reasonable parameter regime. We investigate three conceptual models shown in
Figure 1: (1) CTTs catch motors that unbind from the microtubule, (2) they guide the motor head’s diffusive
search for the next microtubule binding site during stepping, and (3) they stimulate ADP-release similarly to
microtubule-stimulated ADP release [20]. Each of these models has some mechanistic basis and plausibility in
explaining the results. To evaluate each model, we translate each into a computational counterpart and compare
them with the data of [12]. After validation, we find that the “catch” model does not explain both processivity
and velocity experimental data simultaneously. We also find that the ADP-release model does not reconcile
processivity on cleaved microtubules with reasonable parameters. However, a "catch-and-guide” model, where
CTTs both facilitate the search for a new binding site and catch unbinding motors, can explain all available
observed data.

Results

By catching unbound motors, CTTs can extend their run lengths on the microtubule,
but would also slow them down in the process.

We simulate a motor (not bound to any cargo) walking on the microtubule using a Gillespie algorithm [21]. The
simulation is based on a model of the kinesin-1 step-cycle in existing literature [22] and describes the key ADP,
ATP, and phosphate release reactions that shape the process. This general model of kinesin stepping, shown
schematically in Figure 2, is as follows: one of the motor's heads strongly binds to the microtubule when it comes
into contact with the microtubule and ADP is released from that head. ATP then binds to this head, which
results in a change of orientation in which the other head now switches forward. This head now needs to come
into contact with the next binding site on the microtubule and await ADP release to finish the motor’s step. If
phosphate release on the bound head happens before ADP is released from the front dangling head, then the
motor becomes unbound. This model does not consider interactions between a CTT and the motor. To consider
CTTs assisting the motor, we included another state (State 9 in Figure 3a) to this model, where a CTT can
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Figure 1: Possible CTT Mechanisms for Motor Processivity Assistance. Left: The ideal model that can explain
how CTTs can assist motors on microtubules will need to explain all of the displayed data, with physiologically
feasible parameters. Right: Possible models explored that may explain the data. First model: CTTs catch motors
as they unbind from the microtubule and pull them back. Second model: One of the motor's heads is dangling
as it searches for a microtubule-binding site to take the next step. CTTs help guide this dangling head to that
next binding site. Third model: CTTs speed up ADP release.

catch the motor as it unbinds from the microtubule and hold it until it can rebind to the microtubule. The model
is not exhaustive in the possible nucleotide states of both heads, nor considers backstepping [23], but is chosen
as a minimal model with past success [22] in capturing the key features of kinesin-1's movement. Most of the
parameters were taken from estimates in the existing literature (Table 1). The remaining 3 unknown parameters
of this model are then fitted to the experimental data from [12], which included distributions of run length and
velocity of motors on wildtype microtubules and fold comparisons of mean run length and velocity of motors on
microtubules with CTTs cleaved compared to motors on wildtype microtubules. With the addition of the “caught
state”, State 9, we hoped that this catching mechanism would allow the motor to walk on the microtubule
further than when CTTs are absent, as seen in [12]. Indeed, we were able to fit this model to the experimental
processivity results (Figure 3b), and there does seem to be a processivity advantage that CTTs provide to motors
(Figure 3c). The resulting parameter fits can be found in Table 1. Notably, parameter fits for steps that are not
rate-limiting produce unfeasibly large values, but these steps do not shape the macroscopic observed quantities.
Thus, by catching motors, CTTs can decrease unbinding events and the motors can stay on the microtubules
longer, resulting in longer run lengths. However, the model’s velocity is unable to match that of the experimental
data (Figure 3d), since there is an additional state in the model that does not provide any method for faster
runs. When the motor is attached to the MT via CTT-only, there is no stepping, so the more times the CTTs
"catch” the motor and increase its processivity, the slower the average velocity is (Figure 3d). In sum, a model
where CTTs help motors by only catching them before unbinding from microtubules seems to fail to explain the
observations.



Current models of stepping do not consider the

Figure 2: Model of Kinesin Stepping in Existing Literature.

motor's interaction with the CTT. The motor can strongly bind to the microtubule when ADP is released from

the microtubule-bound head (State 3) [22].

switching forward (State 5).

ATP binding to this head results in the trailing head (blue head)

ADP release from this head results in another strong binding to the microtubule

(State 8), which allows the motor to finish taking one step.
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Figure 3: Catching motors results in longer run lengths but slower velocities. (a) This model is similar to Figure 2,
with an additional state (State 9) that considers the CTT catching unbound motors. The model can recapture
observed run lengths (Anderson-Darling test, p = 0.0732) in (b) but fails to do so for velocity (Anderson-Darling,
p < 0.05) in (d) n = 4000 simulations using parameters from Table 1. Red curves are wildtype (with CTTs)
data from [12]. (c) Mean run lengths for the model in (a) (with CTTs) taken from 4000 simulations. Mean
run lengths from the model in Figure 2 (with CTTs cleaved from the microtubule) were then compared to these
means. n =3 £+ SEM.
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Guiding dangling motor heads close to the next microtubule binding site results in an
increase in both run length and velocity.

Since the catching mechanism does produce higher processivity, we opted to retain it in the next model explored.
In pursuit of a model that includes a speed-up in velocity, we predicted that CTTs may interact with the motor
earlier in the kinesin step-cycle while the motor is still bound to the microtubule. Specifically, when one motor
head is bound to the microtubule, the other is unbound and searching for the next binding site to take its next
step. In this unbound position, the motor may bind to a nearby CTT, and since CTTs are very near microtubule
binding sites [5], the CTT could speed up this dangling head's diffusive search for the next binding site by guiding
this head to that site. Figure 4a shows the different states of this model, where a CTT binds to the dangling
motor head in State 9 and guides it to the microtubule in State 7. A speed-up in velocity would require the
transitions from State 6 to 9 then 7 to be overall faster than the transitions from 6 to 7. The catching mechanism
from Figure 3 is now in State 10, where if the bound head becomes unbound, the CTT still holds on to the motor.
However, this model does not need to solely depend on State 10 to extend run lengths, as the addition of State 9
allows for another possible state the motor can enter from State 6 that is not back to State 2 (and subsequently,
detachment to State 1).

To explore the catch and guide model's ability to explain the experimental run length and velocity trends, we
repeat the fitting procedure, allowing all previously fitted and newly introduced parameters to vary freely, resulting
in 4 total. With the addition of the guiding mechanism, we now see the Catch+Guide model can match both the
experimental data’s run length and velocity distributions (Figure 4b and c). In addition, the fold differences in run
length and velocity between setups with CTTs and those with cleaved CTTs also match those that were previously
observed [12] (Figure 4d and e). The resulting parameter fits can be found in Table 1. Some fitted parameters
change dramatically from the catching model. For instance, the microtubule-binding rate is now predicted to be
a more feasible value on the order of ~ 100 s *.

It is not surprising that a more complex model should be able to fit more data. However, we argue this model
is the minimal complexity necessary to explain both run lengths and velocity trends. From Figure 4f, we see that
this model indeed does not enter State 10 often and thus does not rely on it to fit observed run lengths. We also
considered a model that includes only the guiding mechanism without any catching assistance (Figure S1), and
this model's predictive power in predicting processivity from only velocity was comparable to the Catch+Guide
model, with no significant difference in the predictive errors. From this, we conclude that the catch and guide
portions of the model have distinct, but equally important influences. To understand and validate this model at a
finer scale, we conducted a Brownian dynamics simulation of a dangling motor head performing a diffusive search
for the next microtubule binding site, with results shown in (Figure S3a). These simulations show that CTTs
can decrease the space that the motor head must diffusively explore to bind and thus decrease its search time by
about 50% (Figure S3b). The agreement in both microscopic and macroscopic trends suggests that CTTs acting
as a guide for dangling motor heads to the next microtubule binding site is a compelling and plausible mechanism.

The model that considers CTTs stimulating ADP release cannot explain experimental
data with reasonable parameters.

Previous studies have found that when both kinesin motor heads bind to the microtubule, the tubulin from the
microtubule stimulates ADP-release at a faster rate of ~120 s=1 [24, 25]. Since CTTs are largely comprised of
tubulin, we speculated whether the CTT could also stimulate ADP release from the motor heads. To explore
the possibility of this mechanism, we allowed in our simulations for ADP-release to occur at a stimulated rate
if the motor binds to the CTT, as well as when it binds to the microtubule (Figure 5a). Since the previously
estimated release rate of ~120 s~ was obtained from experiments using wild-type microtubules (with CTTs),
the release rate for microtubules with cleaved CTTs may be slower to result in slower motor velocities. Thus, to
evaluate the predictive power of this model, we first fitted the unknown motor-microtubule binding rate, motor-
CTT binding rate, and motor-CTT unbinding rate to the wild-type processivity and velocity data, using a fixed
stimulated ADP-release rate of ~120 s™!. We then fitted the unknown slower stimulated ADP-release rate for
cleaved microtubules to the cleaved microtubule experimental velocity data, with fixed values for the motor-
microtubule and -CTT binding and motor-CTT unbinding rates, obtained from the previous fit with the wild-type
data. To obtain reasonable fits with the experimental velocity, this slowed-down rate had to be decreased by about
50% (Table 1). With these fitted values, we predicted the cleaved microtubule experimental processivity data
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Figure 4: (a) A CTT binds to the unbound motor head while the other motor head is bound to the microtubule
(State 9). The CTT can then guide it to the next microtubule binding site, ideally speeding up its search for this
site. The catching mechanism is still considered in this model (State 10). (b and c) Experimentally observed run
lengths (red curve, b) and velocities (c) from [12] are shown against computationally simulated run lengths and
velocities (blue bars) from motors on wild-type microtubules (with CTTs). n = 4000 simulations. Computational
and experimental distributions agree for both run lengths and velocities (Anderson-Darling test, p = 0.0654,
0.0785 respectively.) (d and e) Run lengths and velocities presented as ratios over that of the setup with CTTs,
as mean £ SEM, n = 3 runs of 4000 simulations each. The final bar shows the ratios of motors on cleaved
microtubules data over motors on wild-type microtubules from [12]. (f) Probability of a motor being in a certain
state in the model at a given time. States 8 and 4 are the same and thus grouped under State 4.

(Figure 5b). This prediction resulted in no decrease in run length, which does not match the experimental data.
We then tried to slow down the unloaded (one-headed) stimulated ADP-release rate that occurs from States 2 to
1 in the cleaved microtubule simulations as well. Since the fitted loaded rate decreased by about 50%, we lowered
the unloaded rate to the same magnitude. By doing so, we retained the match in velocity, so the loaded rate does
not affect velocity. We also observed a reduction in processivity; however, the reduction was not enough to match
the experimental data. Thus, it is not likely that CTTs can assist motors solely by stimulating ADP release.

Discussion

Previous experiments have demonstrated that tubulin C-terminal tails increase kinesin-1's processivity and velocity.
We use computational modeling to ascribe novel mechanistic understanding to these observations. By quantita-
tively vetting conceptually plausible models, the emergent model is a " guiding” one where CTTs provide a weak
tethering that facilitates the motor head's search for the next binding site. Beyond direct agreement with the past
data, our emergent model is also in conceptual agreement with other observations. Without CTTs facilitating the
search to the next forward binding site, backstepping is favored [26], although we have not explicitly incorporated
backstepping in the model here due to the lack of opposing force on the motor [23]. Moreover, this guiding
effect should have no effect on cargo-MT distance, in agreement with observations in [27]. In [12], the authors
also report that restoring B-tubulin CTT recovers kinesin-1 velocity. A previous biophysical modeling approach
[28] speculated that negatively charged CTTs interact with positively charged kinesin neck linkers. However, the
recovery of velocity with S-tails seems in closer agreement to our guiding model, as B-tubulin tails are adjacent to
bound heads, whereas a-tubulin tails are in proximity with the neck linker [29]. Moreover, the guiding mechanism
is found speculatively in other past work [30, 31]. The guiding model has direct ramifications for achieving a more
mechanistic understanding of the tubulin code: post-translational modifications such as polyglutamylation that
increase the length of the CTTs could easily alter how they bind to the searching motor head, and other PTMs
that increase or decrease the affinity of the CTT for the kinesin would then directly alter the CTTs effects on
kinesin processivity and velocity.

Among many limitations of our study, we acknowledge that using a coarse-grained description of the kinesin-1
stepping cycle necessarily omits additional possible states for each motor head and transitions between them. For
instance, we do not explicitly include aspects like ATP binding to both heads simultaneously [19], backstepping
pathways [26], or intermediate nucleotide states [22]. Other computational studies [32] have investigated variations
of models similar to the one considered here with additional pathways involving phosphate release timing that could
potentially explain some CTT effects through ADP release modulation. While such expanded models are possible
in our framework and worth future investigation, all extensions introduce additional parameter complexity that
seems unresolvable given the resolution of available experimental data. This is particularly challenging in a context
where many rate constants must be inferred indirectly from ensemble measurements rather than direct observation
of individual transitions. Consequently, we believe our choice represents a pragmatic balance between explanatory
complexity and model interpretability. However, because of this simplicity, we cannot rule out that more complex
models incorporating additional transitions might provide alternative explanations for CTT's effects on motor
function. This highlights an important tradeoff in mechanistic modeling between explanatory completeness and
parameter parsimony.

It is important to note that we believe our model applies specifically to kinesin-1, in which this kinesin's
positively-charged areas on its motor domains have a weak attraction to the negatively-charged CTTs [29, 33].
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CTT and post-translational modifications are known to affect kinesin-2 [12], kinesin-3 [31], dynein [13]. However,
the investigation of these effects will require the construction of new computational models that reflect the specific
mechanochemistry of the motors. We believe that our work provides a template for these future studies.

There are several avenues of future interest. Our work investigates the behavior of a single motor, but
cargoes are driven by teams. Force production is noted to be changed with the cleaving of CTT [34], likely due
to the increase of backstepping [26]. Moreover, kinesin are observed to have a lower affinity for CTT-cleaved
microtubules [35], suggesting that binding is also affected. To understand how in vivo CTT mediates intracellular
traffic, more detailed biophysical models of multi-motor motor transport [36] and binding [37] must be adapted
to incorporate the guiding CTT mechanism. These would be the first steps toward understanding the feedback
between the tubulin code and motor transport, including how motors may modulate the code [38] and other
mechanical feedbacks [39].

We also believe that our guiding mechanism may be validated directly through imaging advances. For example,
perhaps by measuring the movement of the unbound leading motor head of motors on wild-type microtubules vs.
cleaved microtubules via light-scattering methods [40]. In this experiment, a result of the motor head's position
concentrated in a specific area on wildtype microtubules, and the motor head's position scattered on cleaved
microtubules, would support our model directly.

Methods

Kinesin Step Cycle Simulation

We simulate an unbound kinesin-1 motor diffusing to a microtubule, binding to it, and walking on it. Transitions
between each state are modeled as Poisson processes, with rates from Table 1. These transitions are simulated
using a Gillespie algorithm [21]. At each time step, the time to the next step is computed as

1 1
-ln —,

S wm

where r is the rate of the jth reaction and w; is a random number between 0 and 1. To determine which reaction
will occur at t + At, we find the smallest integer i that satisfies

i
/
E r,>W2 E ri,

i'=1 i

At

where w; is another random number between 0 and 1. We take run length to be the entire length the motor walks
on the microtubule until it falls off completely from the microtubule (the motor unbinds from the microtubule
and a CTT). We take velocity to be this run length over the total time the motor was on the microtubule. The
simulation is written in Matlab.

Motor Head Diffusive Search Simulation

To further investigate the Catch+Guide model, we conducted a Brownian Dynamics simulation of the dangling
motor head searching for the next microtubule binding site (Figure S3a). The searching head is modeled as a
sphere with radius r = 3 nm, tethered by the neck linker which is modeled as a worm-like chain, similar to other
models of the neck linker [47]. The force that this neck linker exerts on the motor head is expressed as

kT (1 d\> 1 d
F=B 2 (1o 2) -4 2
L, (4( LC> 4+LC)'

where kgT is the Boltzmann constant, L, is the persistence length of the neck linker (0.7 nm), d is the end-to-
end distance of the neck linker, and L. is the contour length (0.364 nm per amino acid, 14 residues total). The
position of the searching head X(t) can then be expressed as the stochastic differential equation

dX(t) = %f(X(t))dt + V2DdtB(t),

11
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Table 1: Parameters Used in Simulations. MT: microtubule, WT: wildtype

Parameter (s7!) Catch Catch & Guide Stimulated ADP- States, Citation
release

Motor-MT on-rate 1.8e4 410 3973 1to2,3to4, 6to7, Fitted

Motor-MT off-rate 0.7 0.7 0.7 2to1,41t03,7to6 [41-44]

Motor-CTT on-rate  2.6e6 767 437 2 to 9 in Catch, 6 to 9 in
Catch+Guide and ADP, 11 to
10 in ADP, Fitted

Motor-CTT off-rate 548 76 370 9 to 1 in Catch, 9 to 6 and 10
to 1 in Catch+Guide, 9 to 6
and 10 to 11 in ADP, Fitted

Motor-MT  CTT- - 510 - 9 to 7 in Catch+Guide, Fitted

assisted on-rate

Loaded ADP off- 120 120 120 for WT; 50 for 7to 8, 9 to 10 in ADP, Fitted

rate cleaved for ADP [24, 25]

Unloaded ADP off- 2 2 2 for WT; 0.8 for 2to 3, Fitted for ADP [24, 25]

rate cleaved

Phosphate on-rate  0.001 0.001 0.001 6 to 5 [45]

Phosphate off-rate 100 100 100 6 to 2 [46]

ADP on-rate 4000 4000 4000 3to2,8to7,10to9in ADP
[46]

ATP on-rate 100 100 100 3to 5, 4to5 [46]

ATP hydrolysis rate 200 200 200 5 to 6 [46]

where € = 67nr is the drag coefficient, 7 is the viscosity (taken to be that of water), D = kgT /e is the motor head
diffusion coefficient, and B(t) is Brownian motion. This equation is numerically solved using the Euler-Maruyama
method. At every timestep, new random vectors from a uniform distribution between 0 and 1 are chosen until a
vector is chosen such that the motor head does not overlap with the microtubule. The motor head can bind to
either the CTT or microtubule-binding site if it is within 1 nm from either target. Both the CTT and microtubule
binding site are positioned 8 nm away from where the searching motor head is tethered, and the CTT is 8 nm
long. If the motor head binds to the CTT, it continues its diffusive search but is now restricted by the CTT's
reach.

Model Fitting

To infer the parameters of our models, we fit all models to experimental data from [12] using a simple approximate
Bayesian computation algorithm [48] and selecting the parameters that resulted in the smallest absolute error
(maximum a posteriori estimate). Uniform priors were used. The available data consisted of processivity mean and
variance, velocity mean and variance, and fold comparisons of the cleaved microtubule cases for both processivity
and velocity means. The cross-validation analysis (Figure S1) was performed similarly, but only using the velocity
data for training and subsequently the processivity data for testing. The simple approximate Bayesian computation
algorithm is as follows:
while n < N do
Sample 6* from prior 7(6)
for i=1to N do
Determine predicted run lengths and velocities using 6*
end for
Calculate mean and variance of predicted run lengths and velocities
Calculate absolute error between predicted and experimental values
end while
Take 6* that resulted in the smallest error.

12
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To produce Figure S2, the above algorithm was used on the ADP-release model, and the parameters that

resulted in the lowest 1% absolute error were chosen. Only experimental data from the wild-type microtubules
were used.

Software Availability

MATLAB code to reproduce our results (compatible with version R2020a) is available at https://github.com/
trininguyen/CTTassist.
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Figure S1: Both models were trained on experimental velocity data and subsequently tested on processivity.
Absolute error between the predicted and experimental processivity is presented as mean + SEM. Predictive
performance of both models was not significantly different from each other (t-test, p = 0.43).
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Figure S2: Inference was performed on the CTT-stimulating-ADP-release model using a simple approximate
Bayesian computation method. The parameters that resulted in the lowest 1% absolute error between simulation
and experimental data from wild-type microtubules were chosen. Scatter plots show approximate posterior sam-
ples, colored by a kernel density estimate.
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Figure S3: Motor head diffusion search for next microtubule binding site. Brownian dynamics simulation of (a)
was conducted to produce (b). n = 10000 simulations. Data are presented as mean + SEM.
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