

Computational modeling reveals a catch-and-guide interaction between kinesin-1 and tubulin C-terminal tails

Running Title: Model reveals guiding between kinesin and CTT

Trini Nguyen (trinin1@uci.edu)¹, Steven P. Gross (sgross@uci.edu)^{2,3}, and Christopher E. Miles (chris.miles@uci.edu)^{1,4}

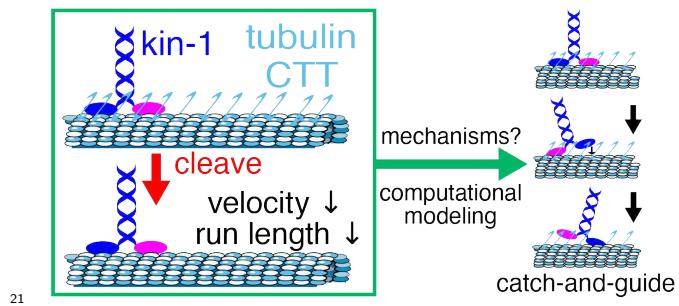
¹Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States

²Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States

³Department of Physics, University of California, Irvine, Irvine, California, United States

⁴Department of Mathematics, University of California, Irvine, Irvine, California, United States

December 20, 2024


¹ Synopsis

2 Previous experiments show a decrease in kinesin-1's processivity and velocity when tubulin C-terminal tails (CTTs)
3 are cleaved, but the mechanism of these effects remains unclear. We devise competing models for plausible CTT-
4 motor interactions and employ computational simulations to interrogate their compatibility with experimental
5 observations. Ultimately, we find a model where CTTs "guide" the motor head during its search for the forward
6 binding site best explains the data. Our work reveals new insights into how the tubulin code regulates intracellular
7 traffic.

⁸ Abstract

9 The delivery of intracellular cargoes by kinesins is modulated at scales ranging from the geometry of the microtubule
10 networks down to interactions with individual tubulins and their code. The complexity of the tubulin code and
11 the difficulty in directly observing motor-tubulin interactions have hindered progress in pinpointing the precise
12 mechanisms by which the kinesin's function is modulated. As one such example, past experiments show that
13 cleaving tubulin C-terminal tails (CTTs) lowers kinesin-1's processivity and velocity on microtubules, but how
14 these CTTs intertwine with kinesin's processive cycle remains unclear. In this work, we formulate and interrogate
15 several plausible mechanisms by which CTTs contribute to and modulate kinesin motion. Computational modeling
16 bridges the gap between effective transport observations (processivity, velocities) and microscopic mechanisms.
17 Ultimately, we find that a guiding mechanism can best explain the observed differences in processivity and velocity.
18 Altogether, our work adds a new understanding of how the CTTs, and their modulation via the tubulin code, may
19 steer intracellular traffic in both health and disease.

20 **Graphical Abstract**

21

22 **MeSH Keywords**

23 kinesin, tubulin, microtubules, cytoskeleton, computational modeling

24 **Ethics Statement**

25 The authors have no conflicts or ethical issues to report.

26 **Acknowledgements**

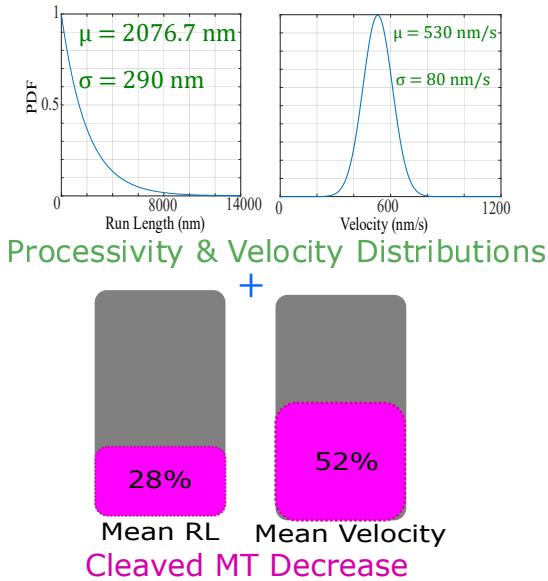
27 CEM and TN were partially supported by a University of California Society of Hellman Fellows fund. SPG was
28 partially supported by NIH R01 GM123068. CEM was partially supported by NSF DMS CAREER 2339241.

29 **Introduction**

30 The transport of cargoes along microtubule tracks by kinesin motors is essential to a variety of cellular functions,
31 and impairments are associated with an array of diseases [1]. The complexity and robustness of this transport
32 system are achieved through the intricate regulation of each of its components [2].

33 One highly and dynamically regulated component is the microtubule tracks [3]. Microtubules are hollow
34 cytoskeletal filaments, consisting of a lattice of α and β tubulin heterodimers, each with a carboxy-terminal tail
35 (CTT) region emanating outward [4]. Microtubules are highly regulable via a zoo of modifications including those
36 that target CTT directly, such as tyrosination and polyglutamylation. The so-called “tubulin code” hypothesis
37 states that this combinatorial complexity in tubulin heterogeneity facilitates intricate regulation of intracellular
38 traffic [5]. This is supported by observations that tyrosination steers intracellular traffic to peripheries [6, 7] and
39 that a variety of disease states are associated with perturbations to tubulin modifications [8, 9].

40 Despite convincing evidence that the tubulin code steers intracellular traffic, details of the interactions between
41 motors and C-terminal tails remain less clear. Wang and Sheetz [10] showed that cleaving C-terminal tails with
42 subtilisin lowered the processivity (run lengths before detaching) of both kinesin-1 and dynein. Based on earlier
43 structural studies showing that the kinesin binding site is not in the CTT region of tubulin [11], the authors
44 conclude that CTT must have an otherwise unspecified “weak attachment” effect. A more recent study also found
45 decreased processivity and a significant decrease in velocity for kinesin-1 walking on CTT-cleaved microtubules
46 [12], shown in Figure 1. This raises the central question of this work: what role do the C-terminal tails play in
47 kinesin movement? One is tempted to speculate, as previous authors do, that a weak tethering with C-terminal
48 tails “catch” otherwise detaching motors. However, this fails to clearly explain the decreased velocity from their
49 severing. Alternatively, if C-terminal tails facilitate any portion of the processive stepping cycle, this does not
50 obviously affect run lengths. Although atomistic-scale simulations have extensively investigated interactions of
51 C-terminal tails with motors [13–17] questions of this timescale are challenging to address.


52 In this work, we develop coarse-grained biophysical computational models to explore and vet possible models
53 of the contribution CTTs provide to kinesin-1’s processive movement. The modeling scale is chosen to leverage
54 the immense detail known of the chemomechanical stepping cycle of kinesin-1 [18, 19]. We ask what plausible
55 interactions with this cycle can quantitatively explain the results of [12] with CTTs lengthening motor processivity
56 and speeding up velocity in a reasonable parameter regime. We investigate three conceptual models shown in
57 Figure 1: (1) CTTs catch motors that unbind from the microtubule, (2) they guide the motor head’s diffusive
58 search for the next microtubule binding site during stepping, and (3) they stimulate ADP-release similarly to
59 microtubule-stimulated ADP release [20]. Each of these models has some mechanistic basis and plausibility in
60 explaining the results. To evaluate each model, we translate each into a computational counterpart and compare
61 them with the data of [12]. After validation, we find that the “catch” model does not explain both processivity
62 and velocity experimental data simultaneously. We also find that the ADP-release model does not reconcile
63 processivity on cleaved microtubules with reasonable parameters. However, a “catch-and-guide” model, where
64 CTTs both facilitate the search for a new binding site and catch unbinding motors, can explain all available
65 observed data.

66 **Results**

67 **By catching unbound motors, CTTs can extend their run lengths on the microtubule,
68 but would also slow them down in the process.**

69 We simulate a motor (not bound to any cargo) walking on the microtubule using a Gillespie algorithm [21]. The
70 simulation is based on a model of the kinesin-1 step-cycle in existing literature [22] and describes the key ADP,
71 ATP, and phosphate release reactions that shape the process. This general model of kinesin stepping, shown
72 schematically in Figure 2, is as follows: one of the motor’s heads strongly binds to the microtubule when it comes
73 into contact with the microtubule and ADP is released from that head. ATP then binds to this head, which
74 results in a change of orientation in which the other head now switches forward. This head now needs to come
75 into contact with the next binding site on the microtubule and await ADP release to finish the motor’s step. If
76 phosphate release on the bound head happens before ADP is released from the front dangling head, then the
77 motor becomes unbound. This model does not consider interactions between a CTT and the motor. To consider
78 CTTs assisting the motor, we included another state (State 9 in Figure 3a) to this model, where a CTT can

Which model can explain these CTT results?

Possible Model Candidates:

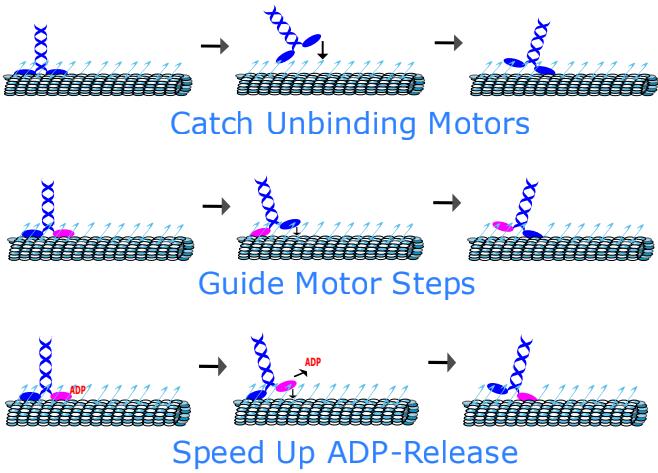
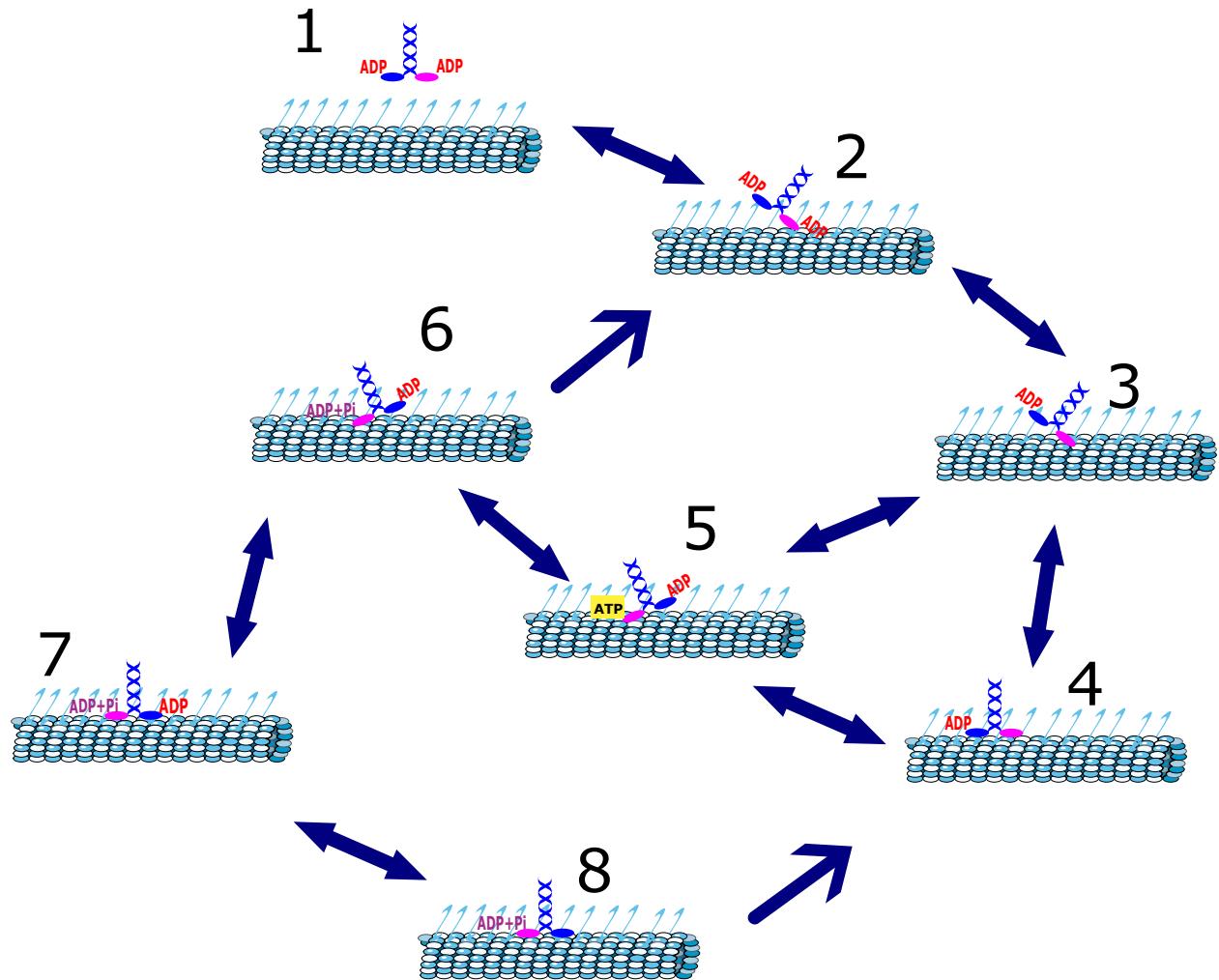
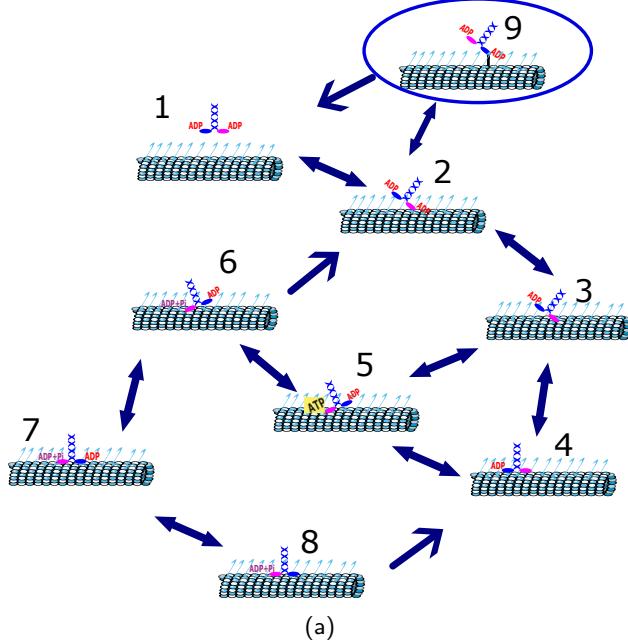
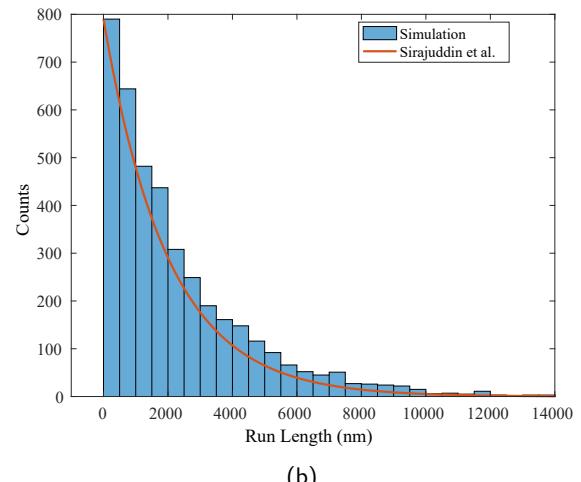
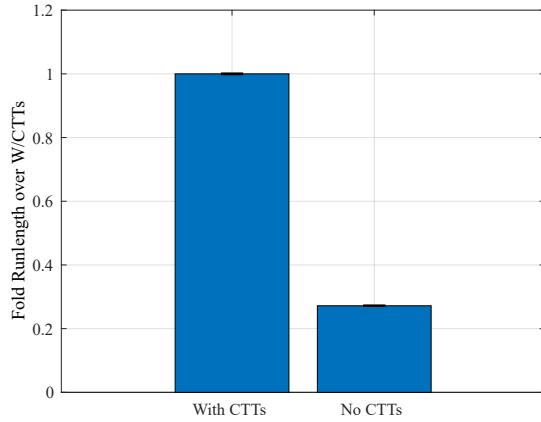
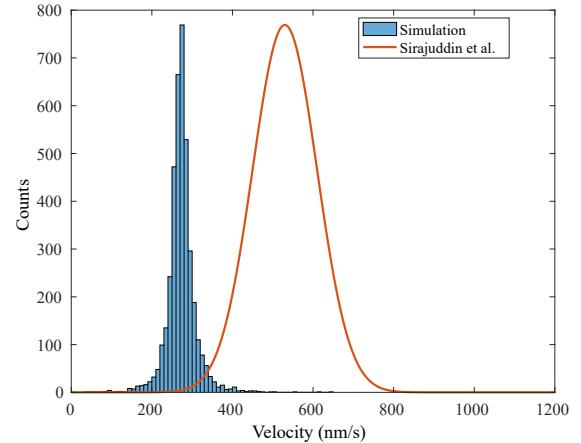


Figure 1: Possible CTT Mechanisms for Motor Processivity Assistance. Left: The ideal model that can explain how CTTs can assist motors on microtubules will need to explain all of the displayed data, with physiologically feasible parameters. Right: Possible models explored that may explain the data. First model: CTTs catch motors as they unbind from the microtubule and pull them back. Second model: One of the motor's heads is dangling as it searches for a microtubule-binding site to take the next step. CTTs help guide this dangling head to that next binding site. Third model: CTTs speed up ADP release.

79 catch the motor as it unbinds from the microtubule and hold it until it can rebind to the microtubule. The model
 80 is not exhaustive in the possible nucleotide states of both heads, nor considers backstepping [23], but is chosen
 81 as a minimal model with past success [22] in capturing the key features of kinesin-1's movement. Most of the
 82 parameters were taken from estimates in the existing literature (Table 1). The remaining 3 unknown parameters
 83 of this model are then fitted to the experimental data from [12], which included distributions of run length and
 84 velocity of motors on wildtype microtubules and fold comparisons of mean run length and velocity of motors on
 85 microtubules with CTTs cleaved compared to motors on wildtype microtubules. With the addition of the "caught
 86 state", State 9, we hoped that this catching mechanism would allow the motor to walk on the microtubule
 87 further than when CTTs are absent, as seen in [12]. Indeed, we were able to fit this model to the experimental
 88 processivity results (Figure 3b), and there does seem to be a processivity advantage that CTTs provide to motors
 89 (Figure 3c). The resulting parameter fits can be found in Table 1. Notably, parameter fits for steps that are not
 90 rate-limiting produce unfeasibly large values, but these steps do not shape the macroscopic observed quantities.
 91 Thus, by catching motors, CTTs can decrease unbinding events and the motors can stay on the microtubules
 92 longer, resulting in longer run lengths. However, the model's velocity is unable to match that of the experimental
 93 data (Figure 3d), since there is an additional state in the model that does not provide any method for faster
 94 runs. When the motor is attached to the MT via CTT-only, there is no stepping, so the more times the CTTs
 95 "catch" the motor and increase its processivity, the slower the average velocity is (Figure 3d). In sum, a model
 96 where CTTs help motors by only catching them before unbinding from microtubules seems to fail to explain the
 97 observations.


Figure 2: Model of Kinesin Stepping in Existing Literature. Current models of stepping do not consider the motor's interaction with the CTT. The motor can strongly bind to the microtubule when ADP is released from the microtubule-bound head (State 3) [22]. ATP binding to this head results in the trailing head (blue head) switching forward (State 5). ADP release from this head results in another strong binding to the microtubule (State 8), which allows the motor to finish taking one step.


(a)

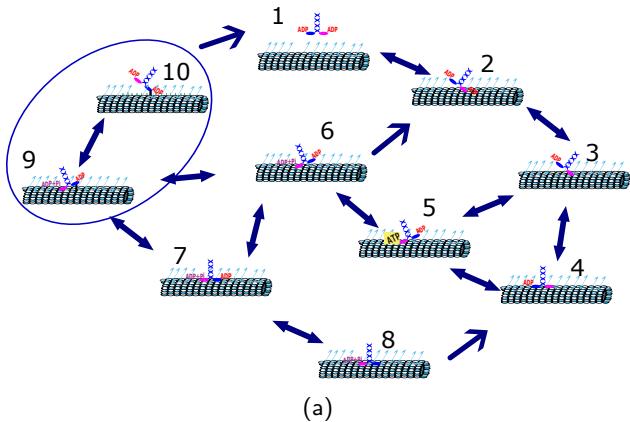
(b)

(c)

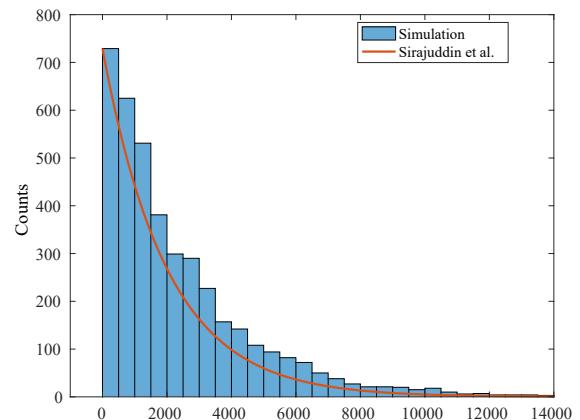
(d)

Figure 3: Catching motors results in longer run lengths but slower velocities. (a) This model is similar to Figure 2, with an additional state (State 9) that considers the CTT catching unbound motors. The model can recapture observed run lengths (Anderson-Darling test, $p = 0.0732$) in (b) but fails to do so for velocity (Anderson-Darling, $p \ll 0.05$) in (d). $n = 4000$ simulations using parameters from Table 1. Red curves are wildtype (with CTTs) data from [12]. (c) Mean run lengths for the model in (a) (with CTTs) taken from 4000 simulations. Mean run lengths from the model in Figure 2 (with CTTs cleaved from the microtubule) were then compared to these means. $n = 3 \pm \text{SEM}$.

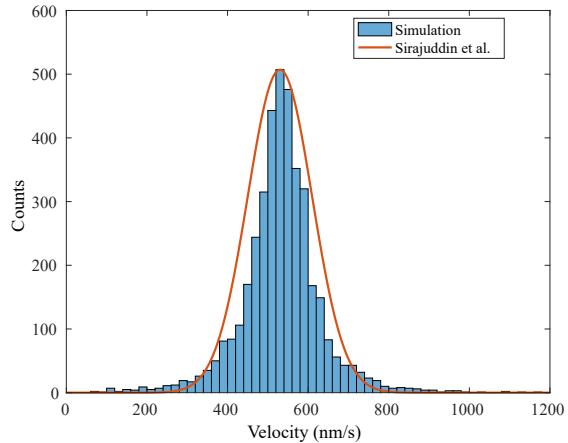
98 **Guiding dangling motor heads close to the next microtubule binding site results in an
99 increase in both run length and velocity.**

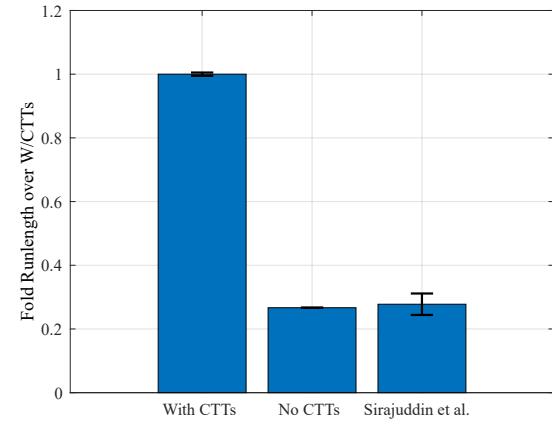

100 Since the catching mechanism does produce higher processivity, we opted to retain it in the next model explored.
101 In pursuit of a model that includes a speed-up in velocity, we predicted that CTTs may interact with the motor
102 earlier in the kinesin step-cycle while the motor is still bound to the microtubule. Specifically, when one motor
103 head is bound to the microtubule, the other is unbound and searching for the next binding site to take its next
104 step. In this unbound position, the motor may bind to a nearby CTT, and since CTTs are very near microtubule
105 binding sites [5], the CTT could speed up this dangling head's diffusive search for the next binding site by guiding
106 this head to that site. Figure 4a shows the different states of this model, where a CTT binds to the dangling
107 motor head in State 9 and guides it to the microtubule in State 7. A speed-up in velocity would require the
108 transitions from State 6 to 9 then 7 to be overall faster than the transitions from 6 to 7. The catching mechanism
109 from Figure 3 is now in State 10, where if the bound head becomes unbound, the CTT still holds on to the motor.
110 However, this model does not need to solely depend on State 10 to extend run lengths, as the addition of State 9
111 allows for another possible state the motor can enter from State 6 that is not back to State 2 (and subsequently,
112 detachment to State 1).

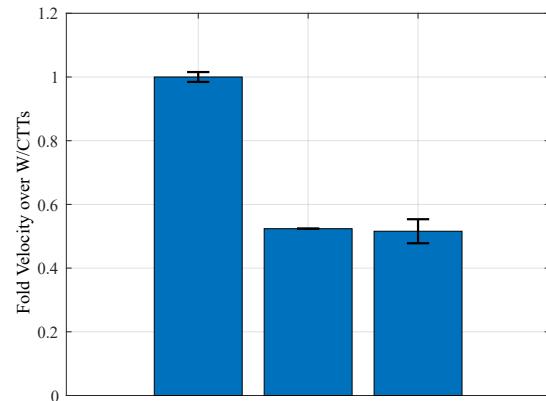
113 To explore the catch and guide model's ability to explain the experimental run length and velocity trends, we
114 repeat the fitting procedure, allowing all previously fitted and newly introduced parameters to vary freely, resulting
115 in 4 total. With the addition of the guiding mechanism, we now see the Catch+Guide model can match both the
116 experimental data's run length and velocity distributions (Figure 4b and c). In addition, the fold differences in run
117 length and velocity between setups with CTTs and those with cleaved CTTs also match those that were previously
118 observed [12] (Figure 4d and e). The resulting parameter fits can be found in Table 1. Some fitted parameters
119 change dramatically from the catching model. For instance, the microtubule-binding rate is now predicted to be
120 a more feasible value on the order of $\sim 100 \text{ s}^{-1}$.

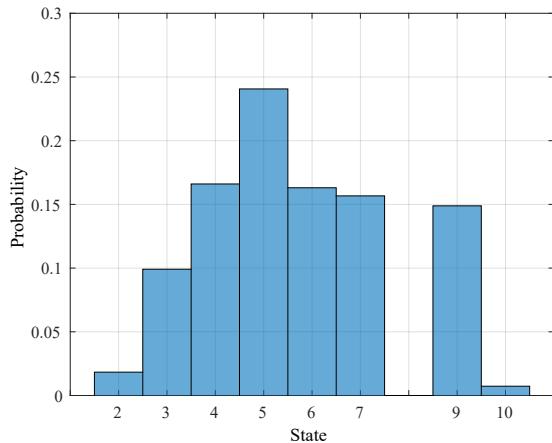

121 It is not surprising that a more complex model should be able to fit more data. However, we argue this model
122 is the minimal complexity necessary to explain both run lengths and velocity trends. From Figure 4f, we see that
123 this model indeed does not enter State 10 often and thus does not rely on it to fit observed run lengths. We also
124 considered a model that includes only the guiding mechanism without any catching assistance (Figure S1), and
125 this model's predictive power in predicting processivity from only velocity was comparable to the Catch+Guide
126 model, with no significant difference in the predictive errors. From this, we conclude that the catch and guide
127 portions of the model have distinct, but equally important influences. To understand and validate this model at a
128 finer scale, we conducted a Brownian dynamics simulation of a dangling motor head performing a diffusive search
129 for the next microtubule binding site, with results shown in (Figure S3a). These simulations show that CTTs
130 can decrease the space that the motor head must diffusively explore to bind and thus decrease its search time by
131 about 50% (Figure S3b). The agreement in both microscopic and macroscopic trends suggests that CTTs acting
132 as a guide for dangling motor heads to the next microtubule binding site is a compelling and plausible mechanism.

133 **The model that considers CTTs stimulating ADP release cannot explain experimental
134 data with reasonable parameters.**


135 Previous studies have found that when both kinesin motor heads bind to the microtubule, the tubulin from the
136 microtubule stimulates ADP-release at a faster rate of $\sim 120 \text{ s}^{-1}$ [24, 25]. Since CTTs are largely comprised of
137 tubulin, we speculated whether the CTT could also stimulate ADP release from the motor heads. To explore
138 the possibility of this mechanism, we allowed in our simulations for ADP-release to occur at a stimulated rate
139 if the motor binds to the CTT, as well as when it binds to the microtubule (Figure 5a). Since the previously
140 estimated release rate of $\sim 120 \text{ s}^{-1}$ was obtained from experiments using wild-type microtubules (with CTTs),
141 the release rate for microtubules with cleaved CTTs may be slower to result in slower motor velocities. Thus, to
142 evaluate the predictive power of this model, we first fitted the unknown motor-microtubule binding rate, motor-
143 CTT binding rate, and motor-CTT unbinding rate to the wild-type processivity and velocity data, using a fixed
144 stimulated ADP-release rate of $\sim 120 \text{ s}^{-1}$. We then fitted the unknown slower stimulated ADP-release rate for
145 cleaved microtubules to the cleaved microtubule experimental velocity data, with fixed values for the motor-
146 microtubule and -CTT binding and motor-CTT unbinding rates, obtained from the previous fit with the wild-type
147 data. To obtain reasonable fits with the experimental velocity, this slowed-down rate had to be decreased by about
148 50% (Table 1). With these fitted values, we predicted the cleaved microtubule experimental processivity data


(a)


(b)


(c)

(d)

(e)

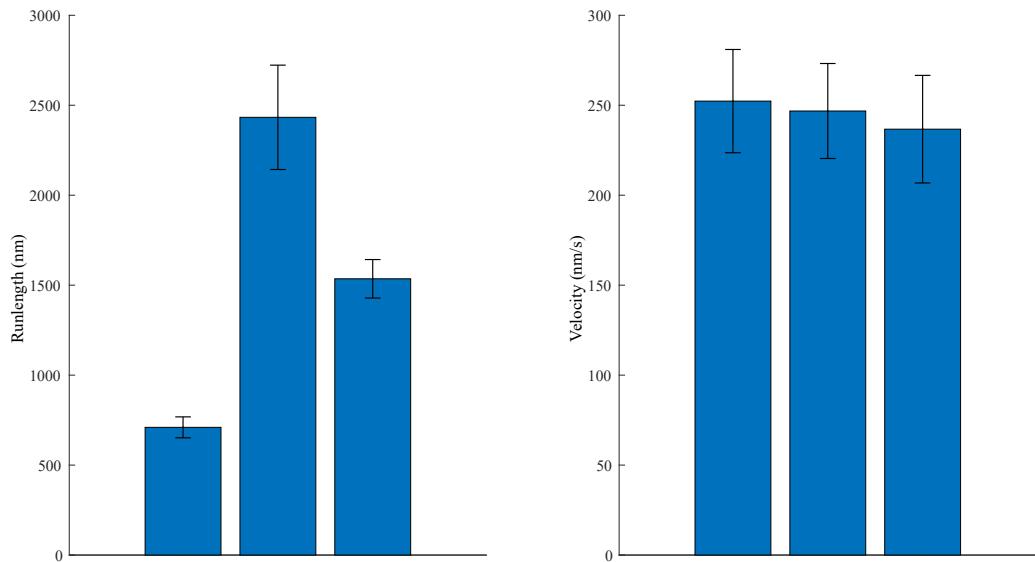
(f)

Figure 4: CTTs guiding dangling motor heads to the next microtubule binding site model matches both experimental run lengths and velocities (Continued on the following page.)

Figure 4: (a) A CTT binds to the unbound motor head while the other motor head is bound to the microtubule (State 9). The CTT can then guide it to the next microtubule binding site, ideally speeding up its search for this site. The catching mechanism is still considered in this model (State 10). (b and c) Experimentally observed run lengths (red curve, b) and velocities (c) from [12] are shown against computationally simulated run lengths and velocities (blue bars) from motors on wild-type microtubules (with CTTs). $n = 4000$ simulations. Computational and experimental distributions agree for both run lengths and velocities (Anderson-Darling test, $p = 0.0654, 0.0785$ respectively.) (d and e) Run lengths and velocities presented as ratios over that of the setup with CTTs, as mean \pm SEM, $n = 3$ runs of 4000 simulations each. The final bar shows the ratios of motors on cleaved microtubules data over motors on wild-type microtubules from [12]. (f) Probability of a motor being in a certain state in the model at a given time. States 8 and 4 are the same and thus grouped under State 4.

149 (Figure 5b). This prediction resulted in no decrease in run length, which does not match the experimental data.
 150 We then tried to slow down the unloaded (one-headed) stimulated ADP-release rate that occurs from States 2 to
 151 1 in the cleaved microtubule simulations as well. Since the fitted loaded rate decreased by about 50%, we lowered
 152 the unloaded rate to the same magnitude. By doing so, we retained the match in velocity, so the loaded rate does
 153 not affect velocity. We also observed a reduction in processivity; however, the reduction was not enough to match
 154 the experimental data. Thus, it is not likely that CTTs can assist motors solely by stimulating ADP release.

155 Discussion


156 Previous experiments have demonstrated that tubulin C-terminal tails increase kinesin-1's processivity and velocity.
 157 We use computational modeling to ascribe novel mechanistic understanding to these observations. By quantita-
 158 tively vetting conceptually plausible models, the emergent model is a "guiding" one where CTTs provide a weak
 159 tethering that facilitates the motor head's search for the next binding site. Beyond direct agreement with the past
 160 data, our emergent model is also in conceptual agreement with other observations. Without CTTs facilitating the
 161 search to the next forward binding site, backstepping is favored [26], although we have not explicitly incorporated
 162 backstepping in the model here due to the lack of opposing force on the motor [23]. Moreover, this guiding
 163 effect should have no effect on cargo-MT distance, in agreement with observations in [27]. In [12], the authors
 164 also report that restoring β -tubulin CTT recovers kinesin-1 velocity. A previous biophysical modeling approach
 165 [28] speculated that negatively charged CTTs interact with positively charged kinesin neck linkers. However, the
 166 recovery of velocity with β -tails seems in closer agreement to our guiding model, as β -tubulin tails are adjacent to
 167 bound heads, whereas α -tubulin tails are in proximity with the neck linker [29]. Moreover, the guiding mechanism
 168 is found speculatively in other past work [30, 31]. The guiding model has direct ramifications for achieving a more
 169 mechanistic understanding of the tubulin code: post-translational modifications such as polyglutamylation that
 170 increase the length of the CTTs could easily alter how they bind to the searching motor head, and other PTMs
 171 that increase or decrease the affinity of the CTT for the kinesin would then directly alter the CTTs effects on
 172 kinesin processivity and velocity.

173 Among many limitations of our study, we acknowledge that using a coarse-grained description of the kinesin-1
 174 stepping cycle necessarily omits additional possible states for each motor head and transitions between them. For
 175 instance, we do not explicitly include aspects like ATP binding to both heads simultaneously [19], backstepping
 176 pathways [26], or intermediate nucleotide states [22]. Other computational studies [32] have investigated variations
 177 of models similar to the one considered here with additional pathways involving phosphate release timing that could
 178 potentially explain some CTT effects through ADP release modulation. While such expanded models are possible
 179 in our framework and worth future investigation, all extensions introduce additional parameter complexity that
 180 seems unresolvable given the resolution of available experimental data. This is particularly challenging in a context
 181 where many rate constants must be inferred indirectly from ensemble measurements rather than direct observation
 182 of individual transitions. Consequently, we believe our choice represents a pragmatic balance between explanatory
 183 complexity and model interpretability. However, because of this simplicity, we cannot rule out that more complex
 184 models incorporating additional transitions might provide alternative explanations for CTT's effects on motor
 185 function. This highlights an important tradeoff in mechanistic modeling between explanatory completeness and
 186 parameter parsimony.

187 It is important to note that we believe our model applies specifically to kinesin-1, in which this kinesin's
 188 positively-charged areas on its motor domains have a weak attraction to the negatively-charged CTTs [29, 33].

(a)

(b)

Figure 5: CTTs stimulating ADP release model cannot explain data with reasonable parameters. (a) Diagram of the model. (b) Fitted model results do poorly match experimental data, even when the unloaded ADP-release rate from State 2 was adjusted.

189 CTT and post-translational modifications are known to affect kinesin-2 [12], kinesin-3 [31], dynein [13]. However,
 190 the investigation of these effects will require the construction of new computational models that reflect the specific
 191 mechanochemistry of the motors. We believe that our work provides a template for these future studies.

192 There are several avenues of future interest. Our work investigates the behavior of a single motor, but
 193 cargoes are driven by teams. Force production is noted to be changed with the cleaving of CTT [34], likely due
 194 to the increase of backstepping [26]. Moreover, kinesin are observed to have a lower affinity for CTT-cleaved
 195 microtubules [35], suggesting that binding is also affected. To understand how *in vivo* CTT mediates intracellular
 196 traffic, more detailed biophysical models of multi-motor motor transport [36] and binding [37] must be adapted
 197 to incorporate the guiding CTT mechanism. These would be the first steps toward understanding the feedback
 198 between the tubulin code and motor transport, including how motors may modulate the code [38] and other
 199 mechanical feedbacks [39].

200 We also believe that our guiding mechanism may be validated directly through imaging advances. For example,
 201 perhaps by measuring the movement of the unbound leading motor head of motors on wild-type microtubules vs.
 202 cleaved microtubules via light-scattering methods [40]. In this experiment, a result of the motor head's position
 203 concentrated in a specific area on wildtype microtubules, and the motor head's position scattered on cleaved
 204 microtubules, would support our model directly.

205 Methods

206 Kinesin Step Cycle Simulation

207 We simulate an unbound kinesin-1 motor diffusing to a microtubule, binding to it, and walking on it. Transitions
 208 between each state are modeled as Poisson processes, with rates from Table 1. These transitions are simulated
 209 using a Gillespie algorithm [21]. At each time step, the time to the next step is computed as

$$\Delta t = \frac{1}{\sum r_i} \cdot \ln \frac{1}{w_1},$$

210 where r is the rate of the i th reaction and w_1 is a random number between 0 and 1. To determine which reaction
 211 will occur at $t + \Delta t$, we find the smallest integer i that satisfies

$$\sum_{i'=1}^i r'_i > w_2 \sum_i r_i,$$

212 where w_2 is another random number between 0 and 1. We take run length to be the entire length the motor walks
 213 on the microtubule until it falls off completely from the microtubule (the motor unbinds from the microtubule
 214 and a CTT). We take velocity to be this run length over the total time the motor was on the microtubule. The
 215 simulation is written in Matlab.

216 Motor Head Diffusive Search Simulation

217 To further investigate the Catch+Guide model, we conducted a Brownian Dynamics simulation of the dangling
 218 motor head searching for the next microtubule binding site (Figure S3a). The searching head is modeled as a
 219 sphere with radius $r = 3$ nm, tethered by the neck linker which is modeled as a worm-like chain, similar to other
 220 models of the neck linker [47]. The force that this neck linker exerts on the motor head is expressed as

$$f = \frac{k_B T}{L_p} \left(\frac{1}{4} \left(1 - \frac{d}{L_c} \right)^2 - \frac{1}{4} + \frac{d}{L_c} \right),$$

221 where $k_B T$ is the Boltzmann constant, L_p is the persistence length of the neck linker (0.7 nm), d is the end-to-
 222 end distance of the neck linker, and L_c is the contour length (0.364 nm per amino acid, 14 residues total). The
 223 position of the searching head $X(t)$ can then be expressed as the stochastic differential equation

$$dX(t) = \frac{1}{\epsilon} f(X(t)) dt + \sqrt{2Ddt} B(t),$$

Table 1: Parameters Used in Simulations. MT: microtubule, WT: wildtype

Parameter (s^{-1})	Catch	Catch & Guide	Stimulated release	ADP-	States, Citation
Motor-MT on-rate	1.8e4	410	3973		1 to 2, 3 to 4, 6 to 7, Fitted
Motor-MT off-rate	0.7	0.7	0.7		2 to 1, 4 to 3, 7 to 6 [41–44]
Motor-CTT on-rate	2.6e6	767	437		2 to 9 in Catch, 6 to 9 in Catch+Guide and ADP, 11 to 10 in ADP, Fitted
Motor-CTT off-rate	548	76	370		9 to 1 in Catch, 9 to 6 and 10 to 1 in Catch+Guide, 9 to 6 and 10 to 11 in ADP, Fitted
Motor-MT CTT-assisted on-rate	-	510	-		9 to 7 in Catch+Guide, Fitted
Loaded ADP off-rate	120	120	120 for WT; 50 for cleaved		7 to 8, 9 to 10 in ADP, Fitted for ADP [24, 25]
Unloaded ADP off-rate	2	2	2 for WT; 0.8 for cleaved		2 to 3, Fitted for ADP [24, 25]
Phosphate on-rate	0.001	0.001	0.001		6 to 5 [45]
Phosphate off-rate	100	100	100		6 to 2 [46]
ADP on-rate	4000	4000	4000		3 to 2, 8 to 7, 10 to 9 in ADP [46]
ATP on-rate	100	100	100		3 to 5, 4 to 5 [46]
ATP hydrolysis rate	200	200	200		5 to 6 [46]

224 where $\epsilon = 6\pi\eta r$ is the drag coefficient, η is the viscosity (taken to be that of water), $D = k_B T / \epsilon$ is the motor head
 225 diffusion coefficient, and $B(t)$ is Brownian motion. This equation is numerically solved using the Euler-Maruyama
 226 method. At every timestep, new random vectors from a uniform distribution between 0 and 1 are chosen until a
 227 vector is chosen such that the motor head does not overlap with the microtubule. The motor head can bind to
 228 either the CTT or microtubule-binding site if it is within 1 nm from either target. Both the CTT and microtubule
 229 binding site are positioned 8 nm away from where the searching motor head is tethered, and the CTT is 8 nm
 230 long. If the motor head binds to the CTT, it continues its diffusive search but is now restricted by the CTT's
 231 reach.

232 Model Fitting

233 To infer the parameters of our models, we fit all models to experimental data from [12] using a simple approximate
 234 Bayesian computation algorithm [48] and selecting the parameters that resulted in the smallest absolute error
 235 (maximum a posteriori estimate). Uniform priors were used. The available data consisted of processivity mean and
 236 variance, velocity mean and variance, and fold comparisons of the cleaved microtubule cases for both processivity
 237 and velocity means. The cross-validation analysis (Figure S1) was performed similarly, but only using the velocity
 238 data for training and subsequently the processivity data for testing. The simple approximate Bayesian computation
 239 algorithm is as follows:

```

240 while  $n \leq N$  do
241   Sample  $\theta^*$  from prior  $\pi(\theta)$ 
242   for  $i = 1$  to  $N$  do
243     Determine predicted run lengths and velocities using  $\theta^*$ 
244   end for
245   Calculate mean and variance of predicted run lengths and velocities
246   Calculate absolute error between predicted and experimental values
247 end while
248 Take  $\theta^*$  that resulted in the smallest error.

```

249 To produce Figure S2, the above algorithm was used on the ADP-release model, and the parameters that
250 resulted in the lowest 1% absolute error were chosen. Only experimental data from the wild-type microtubules
251 were used.

252 Software Availability

253 MATLAB code to reproduce our results (compatible with version R2020a) is available at <https://github.com/trinigunguyen/CTTassist>.
254

255 References

- 256 [1] K.J. De Vos, A.J. Grierson, S. Ackerley, and C.C.J. Miller. Role of axonal transport in neurodegenerative
257 diseases. *Annual Review of Neuroscience*, 2008. doi: 10.1146/annurev.neuro.31.061307.090711.
- 258 [2] Kristen J Verhey and Jennetta W Hammond. Traffic control: regulation of kinesin motors. *Nature Reviews
259 Molecular cell biology*, 10(11):765–777, 2009.
- 260 [3] Linda Balabanian, Abdullah R Chaudhary, and Adam G Hendricks. Traffic control inside the cell: microtubule-
261 based regulation of cargo transport. *The Biochemist*, 40(2):14–17, 2018.
- 262 [4] E. Nogales, S. Wolf, and K. Downing. Structure of the alpha beta tubulin dimer by electron crystallography.
263 *Nature*, 1998.
- 264 [5] C. Janke and M. Magiera. The tubulin code and its role in controlling microtubule properties and functions.
265 *Nature Reviews: Molecular Cell Biology*, 2020. doi: 10.1038/s41580-020-0214-3.
- 266 [6] Y. Konishi and M. Setou. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. *Nature
267 Neuroscience*, 2009. doi: 10.1038/nn.2314.
- 268 [7] J.W. Hammond, C.F. Huang, S. Kaech, C. Jacobson, G. Bunker, and K.J. Verhey. Posttranslational modifi-
269 cations of tubulin and the polarized transport of kinesin-1 in neurons. *Molecular Biology of the Cell*, 2009.
- 270 [8] Elizabeth D McKenna, Stephanie L Sarbanes, Steven W Cummings, and Antonina Roll-Mecak. The tubulin
271 code, from molecules to health and disease. *Annual Review of Cell and Developmental Biology*, 39:331–361,
272 2023. doi: 10.1146/annurev-cellbio-030123-032748.
- 273 [9] O. Wattanathamsan and P. Varisa. Post-translational modifications of tubulin: Their role in cancers and the
274 regulation of signaling molecules. *Cancer Gene Therapy*, 2023. doi: 10.1038/s41417-021-00396-4.
- 275 [10] Zhaohui Wang and Michael P. Sheetz. The C-Terminus of Tubulin Increases Cytoplasmic Dynein and
276 Kinesin Processivity. *Biophysical Journal*, 78(4):1955–1964, April 2000. ISSN 00063495. doi: 10.1016/
277 S0006-3495(00)76743-9.
- 278 [11] Pankaj K Marya, Zarrin Syed, Paul E Fraylich, and Peter AM Eagles. Kinesin and tau bind to distinct sites
279 on microtubules. *Journal of Cell Science*, 107(1):339–344, 1994.
- 280 [12] M. Sirajuddin, L. Rice, and R. Vale. Regulation of microtubule motors by tubulin isotypes and post-
281 translational modifications. *Nature Cell Biology*, 2014. doi: 10.1038/ncb2920.
- 282 [13] N. Tajielyato, L. Li, Y. Peng, J. Alper, and E. Alexov. E-hooks provide guidance and a soft landing for the
283 microtubule binding domain of dynein. *Scientific Reports*, 2018. doi: 10.1038/s41598-018-31480-9.
- 284 [14] Yukinobu Mizuhara and Mitsunori Takano. Biased Brownian motion of KIF1A and the role of tubulin's
285 C-terminal tail studied by molecular dynamics simulation. *International Journal of Molecular Sciences*, 22
286 (4):1547, 2021. doi: 10.3390/ijms22041547.
- 287 [15] Xiao-Xuan Shi, Yi-Ben Fu, Si-Kao Guo, Peng-Ye Wang, Hong Chen, and Ping Xie. Investigating role of
288 conformational changes of microtubule in regulating its binding affinity to kinesin by all-atom molecular
289 dynamics simulation. *Proteins: Structure, Function, and Bioinformatics*, 2018. doi: 10.1002/prot.25592.

- 290 [16] A. Pan, A. Pan, B.R. Brooks, and Xiongwu Wu. Molecular simulation study on the walking mechanism of
291 kinesin dimers on microtubules. *Current Advances in Chemistry and Biochemistry*, 2021. doi: 10.9734/bpi/
292 cacb/v1/6918d.
- 293 [17] Yi-Zhao Geng, Li-Ai Lu, Ning Jia, Bing-Bing Zhang, and Qing Ji. Kinesin-microtubule interaction reveals
294 the mechanism of kinesin-1 for discriminating the binding site on microtubule. *Chinese Physics B*, 32(10):
295 108701, 2023. doi: 10.1088/1674-1056/acdfc1.
- 296 [18] A. Yildiz, M. Tomishige, R. Vale, and Selvin P. Kinesin walks hand-over-hand. *Science (New York, N.Y.)*,
297 2004. doi: 10.1126/science.1093753.
- 298 [19] S.M. Block. Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping. *Biophysical Journal*,
299 2007. doi: 10.1529/biophysj.106.100677.
- 300 [20] H. Sosa, E.J.G. Peterman, W.E. Moerner, and L.S.B. Goldstein. ADP-induced rocking of the kinesin motor
301 domain revealed by single-molecule fluorescence polarization microscopy. *Nature Structural Biology*, 2001.
302 doi: 10.1038/88611.
- 303 [21] D.T. Gillespie. Stochastic simulation of chemical kinetics. *Annual Review of Physical Chemistry*, 2007. doi:
304 10.1146/annurev.physchem.58.032806.104637.
- 305 [22] K.J. Mickolajczyk, N.C. Deffenbaugh, J. Ortega Arroyo, and W.O. Hancock. Kinetics of nucleotide-dependent
306 structural transitions in the kinesin-1 hydrolysis cycle. *Proceedings of the National Academy of Sciences*,
307 2015. doi: 10.1073/pnas.1517638112.
- 308 [23] Bason E Clancy, William M Behnke-Parks, Johan OL Andreasson, Steven S Rosenfeld, and Steven M Block.
309 A universal pathway for kinesin stepping. *Nature Structural & Molecular Biology*, 18(9):1020–1027, 2011.
- 310 [24] D. Hackney. Kinesin ATPase: Rate-limiting ADP release. *Proceedings of the National Academy of Sciences*,
311 1988. doi: 10.1073/pnas.85.17.6314.
- 312 [25] T. Shimizu and et al. Expression, purification, ATPase properties, and microtubule-binding properties of the
313 ncd motor domain. *American Chemistry Society*, 1995.
- 314 [26] Algirdas Toleikis, Nicholas J Carter, and Robert A Cross. Backstepping mechanism of kinesin-1. *Biophysical
315 Journal*, 119(10):1984–1994, 2020. doi: 10.1016/j.bpj.2020.09.034.
- 316 [27] Jacob Kerssemakers, Jonathon Howard, Henry Hess, and Stefan Diez. The distance that kinesin-1 holds its
317 cargo from the microtubule surface measured by fluorescence interference contrast microscopy. *Proceedings
318 of the National Academy of Sciences*, 103(43):15812–15817, 2006. doi: 10.1073/pnas.0510400103.
- 319 [28] Miljko V Sataric, Dalibor L Sekulic, Slobodan Zdravkovic, and Nebojsa M Ralevic. A biophysical model of
320 how α -tubulin carboxy-terminal tails tune kinesin-1 processivity along microtubule. *Journal of Theoretical
321 Biology*, 420:152–157, 2017. doi: 10.1016/j.jtbi.2017.03.012.
- 322 [29] A Marx, J Müller, E-M Mandelkow, A Hoenger, and E Mandelkow. Interaction of kinesin motors, micro-
323 tubules, and maps. *Journal of Muscle Research & Cell Motility*, 27(2):125–137, 2006.
- 324 [30] Z. Zhang, Y. Goldtzvik, and D. Thirumalai. Parsing the roles of neck-linker docking and tethered head
325 diffusion in the stepping dynamics of kinesin. *Proceedings of the National Academy of Sciences*, 2017. doi:
326 10.1073/pnas.1706014114.
- 327 [31] Ezekiel C. Thomas and Jeffrey K. Moore. Selective regulation of kinesin-5 function by β -tubulin carboxy-
328 terminal tails. *bioRxiv preprint*, May 2024. doi: 10.1101/2024.05.10.593591.
- 329 [32] Yuying Liu and Zhiqiang Zhang. Origin of tradeoff between movement velocity and attachment duration of
330 kinesin motor on a microtubule. *Chinese Physics B*, 33(2):028708, 2024. doi: 10.1088/1674-1056/ad1177.
- 331 [33] K.S. Thorn, J.A. Ubersax, and R.D. Vale. Engineering the processive run length of the kinesin motor. *Journal
332 of Cell Biology*, 2000. doi: 10.1083/jcb.151.5.1093.

- 333 [34] Mitra Shojania Feizabadi, Babu Reddy Janakaloti Narayanareddy, Omid Vadpey, Yonggun Jun, Dail Chap-
334 man, Steven Rosenfeld, and Steven P Gross. Microtubule C-terminal tails can change characteristics of
335 motor force production. *Traffic (Copenhagen, Denmark)*, 16(10):1075–1087, 2015. doi: 10.1111/tra.12307.
- 336 [35] Carla Tucker and Lawrence SB Goldstein. Probing the kinesin-microtubule interaction. *Journal of Biological*
337 *Chemistry*, 272(14):9481–9488, 1997. doi: 10.1074/jbc.272.14.9481.
- 338 [36] M. Bovyn, B.R.J. Narayanareddy, S. Gross, and J. Allard. Diffusion of kinesin motors on cargo can enhance
339 binding and run lengths during intracellular transport. *Molecular Biology of the Cell*, 2021. doi: 10.1091/
340 mbc.e20-10-0658.
- 341 [37] Trini Nguyen, Babu Reddy Janakaloti Narayanareddy, Steven P. Gross, and Christopher E. Miles. Com-
342 petition between physical search and a weak-to-strong transition rate-limits kinesin binding times. *PLOS*
343 *Computational Biology*, 20(5):e1012158, May 2024. ISSN 1553-7358. doi: 10/gtxjcr.
- 344 [38] Mireia Andreu-Carbó, Cornelia Egoldt, Marie-Claire Velluz, and Charlotte Aumeier. Microtubule dam-
345 age shapes the acetylation gradient. *Nature Communications*, 15(1):2029, 2024. doi: 10.1038/
346 s41467-024-46379-5.
- 347 [39] K.P. Wall, H. Hart, T. Lee, C. Page, T.L. Hawkins, and L.E. Hough. C-terminal tail polyglycylation and
348 polyglutamylation alter microtubule mechanical properties. *Biophysical Journal*, 2020.
- 349 [40] H. Jans, X. Liu, L. Austin, G. Maes, and Q. Huo. Dynamic light scattering as a powerful tool for gold
350 nanoparticle bioconjugation and biomolecular binding studies. *Analytical Chemistry*, 2009. doi: 10.1021/
351 ac901822w.
- 352 [41] S.M. Block, L.S.B. Goldstein, and B.J. Schnapp. Bead movement by single kinesin molecules studied with
353 optical tweezers. *Nature*, 1990. doi: 10.1038/348348a0.
- 354 [42] M. Vershinin, B.C. Carter, D.S. Razafsky, S.J. King, and S.P. Gross. Multiple-motor based transport and its
355 regulation by tau. *Proceedings of the National Academy of Sciences*, 2007. doi: 10.1073/pnas.0607919104.
- 356 [43] Jing Xu, Zhanyong Shu, Stephen J King, and Steven P Gross. Tuning multiple motor travel via single motor
357 velocity. *Traffic (Copenhagen, Denmark)*, 2012. doi: 10.1111/j.1600-0854.2012.01385.x.
- 358 [44] Q. Li, S.J. King, A. Gopinathan, and J. Xu. Quantitative determination of the probability of multiple-motor
359 transport in bead-based assays. *Biophysical Journal*, 2016. doi: 10.1016/j.bpj.2016.05.015.
- 360 [45] W.R. Schief, R.H. Clark, and A.H. Crevenna. Inhibition of kinesin motility by ADP and phosphate supports
361 a hand-over-hand mechanism. *Proceedings of the National Academy of Sciences*, 2004. doi: 10.1073/pnas.
362 0304369101.
- 363 [46] Robert A Cross. The kinetic mechanism of kinesin. *Trends in biochemical sciences*, 2004. doi: 10.1016/j.
364 tibs.2004.04.010.
- 365 [47] Matthew L Kutys, John Fricks, and William O Hancock. Monte Carlo analysis of neck linker extension in
366 kinesin molecular motors. *Public Library of Science Computational Biology*, 2010.
- 367 [48] S.A. Sisson, Y. Fan, and M.M. Tanaka. Sequential monte carlo without likelihoods. *Proceedings of the*
368 *National Academy of Sciences*, 2007. doi: 10.1073/pnas.0607208104.

369 **Supplementary Figures**

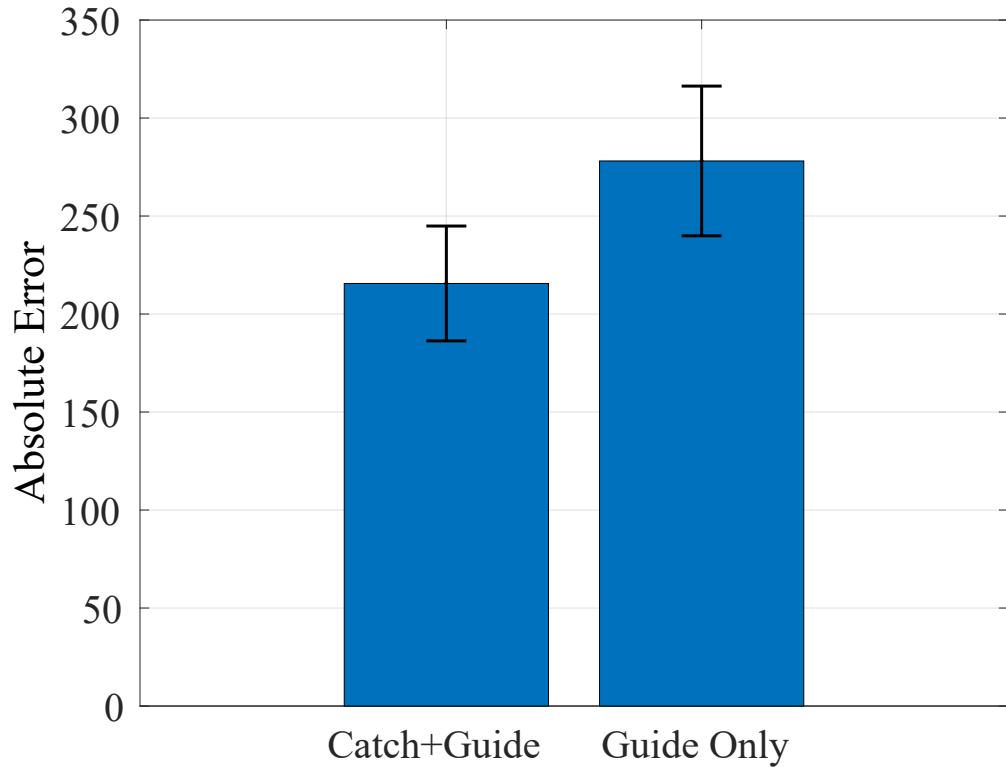


Figure S1: Both models were trained on experimental velocity data and subsequently tested on processivity. Absolute error between the predicted and experimental processivity is presented as mean \pm SEM. Predictive performance of both models was not significantly different from each other (t -test, $p = 0.43$).

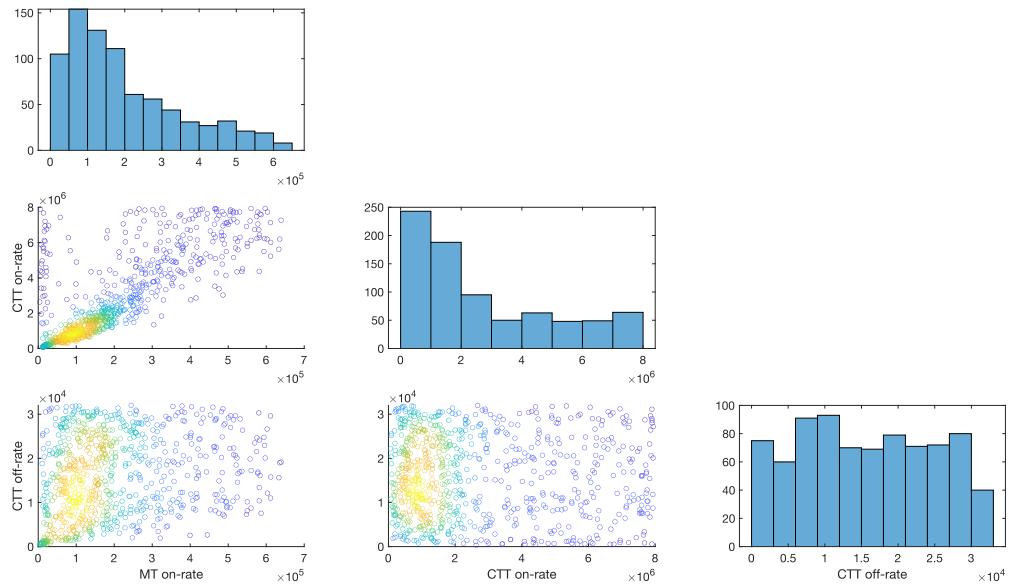


Figure S2: Inference was performed on the CTT-stimulating-ADP-release model using a simple approximate Bayesian computation method. The parameters that resulted in the lowest 1% absolute error between simulation and experimental data from wild-type microtubules were chosen. Scatter plots show approximate posterior samples, colored by a kernel density estimate.

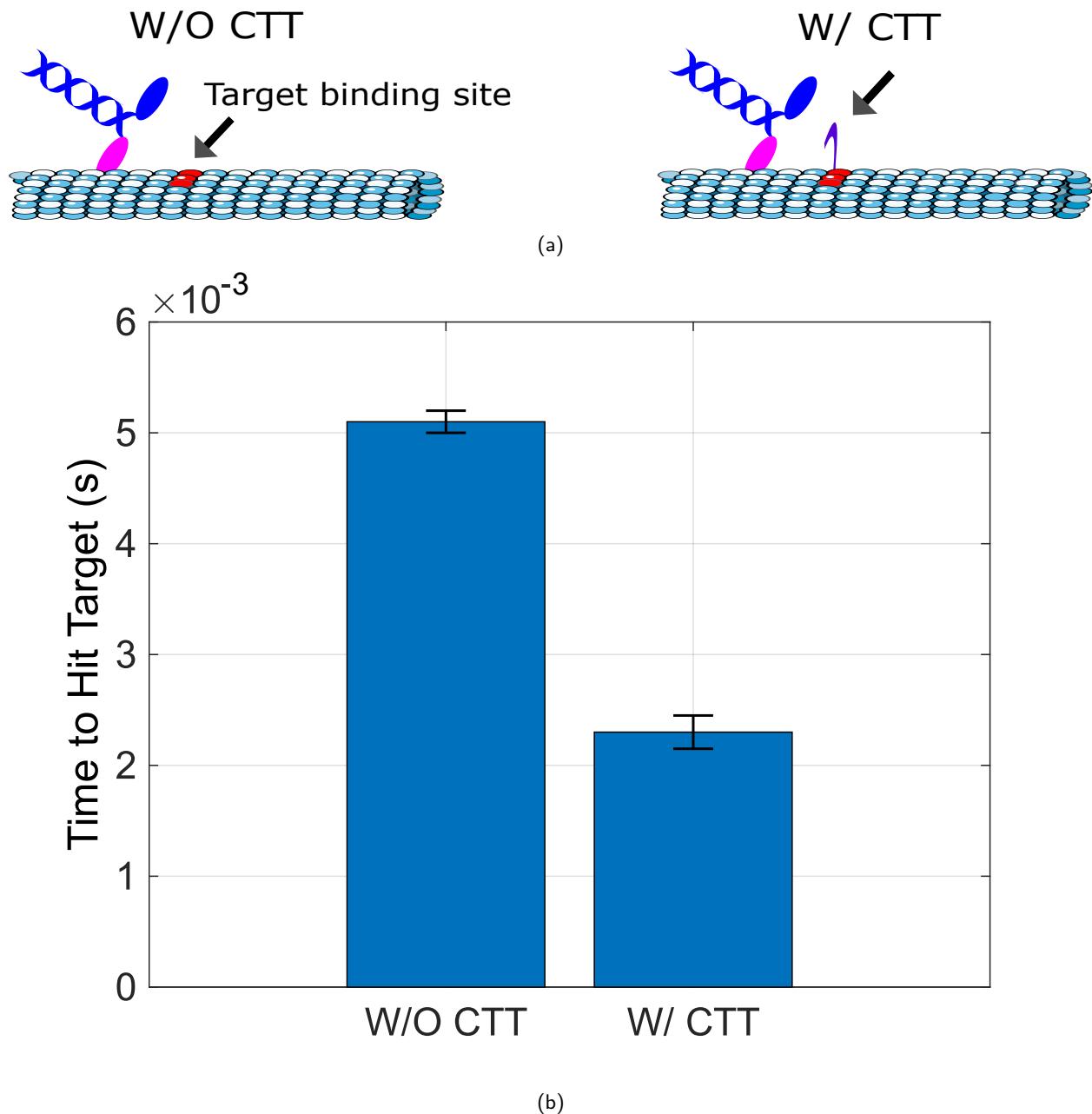


Figure S3: Motor head diffusion search for next microtubule binding site. Brownian dynamics simulation of (a) was conducted to produce (b). $n = 10000$ simulations. Data are presented as mean \pm SEM.