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1. Introduction

In this paper, the authors continue their investigation of Kéhler-Einstein metrics and
obstruction flatness in the context of domains in vector bundles. In a recent paper [5]
the authors studied obstruction flatness of CR hypersurfaces that arise as the unit circle
bundle of a negative Hermitian line bundle over a Kdhler manifold. The authors proved,
among other results, that for a negative line bundle (L, h) over a complex manifold M,
if the Kahler metric g induced by — Ric(L, h) has constant Ricci eigenvalues, then the
unit circle bundle S(L) is obstruction flat. If, in addition, all the Ricci eigenvalues are
strictly less than 1, then the disk bundle admits a complete Kéhler—Einstein metric. It is
natural to consider also the more general case of unit sphere bundles in Hermitian vector
bundles of higher rank. The goal of this paper is to find the right conditions on a vector
bundle that will guarantee obstruction flatness of the corresponding sphere bundle. This
turns out to be more subtle than the line bundle case (cf., e.g., Remark 1.5 below and the
penultimate paragraph of this introduction) and we need to pose an additional condition
on the curvature, beyond the conditions on the Ricci curvature that we pose in the line
bundle case, as will be explained below.

We begin by introducing the notion of obstruction flatness in its classical context. On
a smoothly bounded strongly pseudoconvex domain 2 C C", n > 2, the existence of a
complete Kéahler—Einstein metric on € is governed by the following Dirichlet problem for
Fefferman’s complex Monge-Ampeére equation:

n Uu Uz o .
J(u) == (~1) det(uzj u—k) =1 inQ

(1.1)
u=20 on 0N

with w > 0 in Q. If w is a solution of (1.1), then —logwu is the K&hler potential of
a complete Kéhler—Einstein metric on © with negative Ricci curvature. Fefferman [6]
established the existence of an approximate solution p € C°(Q) of (1.1) that only
satisfies J(p) = 1+ O(p"*!), and showed that such a p is unique modulo O(p"*2). Such
an approximate solution p is often referred to as a Fefferman defining function. Cheng
and Yau [2] then proved the existence and uniqueness of an exact solution u € C*°() to
(1.1), now called the Cheng—Yau solution. Lee and Melrose [9] showed that the Cheng—
Yau solution has the following asymptotic expansion:

o0
w~p > (p" log p), (1.2)
k=0

where each 7, € C°°(Q) and p is a Fefferman defining function. The expansion (1.2)
shows that, in general, the Cheng—Yau solution u can only be expected to have a finite
degree of boundary smoothness; namely, u € C"*27¢(Q) for any ¢ > 0. Graham [3]
showed that the obstruction to C* boundary regularity of the Cheng—Yau solution is in
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fact given by the lowest order obstruction 7;|sq, the restriction of 71 to the boundary.
More precisely, in [8] Graham proved that if 7;|sq vanishes identically (on 0€2), then
every 7y, vanishes to infinite order on 9€ for all k& > 1. For this reason, 7 |aq is called the
obstruction function. Graham also showed [8] that, for any k& > 1, the coefficients 7 mod
O(p™*1) are independent of the choice of Fefferman defining function p and are locally
determined by the local CR geometry of 9. As a consequence, the 7, mod O(p"+1),
for k > 1, are local CR invariants that can be defined on any strongly pseudoconvex CR,
hypersurface in a complex manifold. In particular, the obstruction function O = n;|sq isa
local CR invariant that can be defined on any strongly pseudoconvex CR hypersurface X.
If 3 is a CR hypersurface for which the obstruction function O vanishes identically, then
Y. is said to be obstruction flat. The most basic examples of obstruction flat hypersurfaces
are the sphere {z € C" : |z| = 1} and, more generally, any CR hypersurface that is locally
CR diffeomorphic to an open piece of the sphere; a CR hypersurface that is locally CR,
diffeomorphic to an open piece of the sphere in a neighborhood of any point is called
spherical.

As mentioned above, the main aim of this paper is to extend the authors’ results in [5]
concerning obstruction flatness of unit circle bundles in negative Hermitian line bundles
over Kéahler manifolds to the more general situation of sphere bundles in Hermitian vector
bundles of higher rank. To formulate our results, we first review some standard facts and
notions concerning the geometry of Hermitian vector bundles and Kéhler manifolds.
Let (E,h) be a Hermitian (holomorphic) vector bundle over a complex manifold M.
Denote by 7 : E — M the canonical projection and by E, = 7~1(z) the fiber at 2. Let
O = Op ), be the associated curvature form of the Chern connection of (E,h); thus, ©
is an End(F)-valued (1,1)-form. At each point z € M, the tensor O, = ©(z) can be
regarded as a Hermitian bilinear form on E, ® T}Y. We make the following definition,
which will be used in the main results.

Definition 1.1. The curvature © splits if, at every z € M, there exists a Hermitian form
H, on THOM such that ©, = h- H_; or, equivalently, for any e € E, and any v € T>OM,

O.(e®@v,e®v) = h(e,e)- H,(v,v). (1.3)

In addition, we say that the vector bundle (F, h) is curvature split if its curvature ©
splits. We remark that when this is the case, H, is equal to the Ricci curvature of (E, h)
at z up to a scaling factor. See the paragraph before (2.1) in §2.

When the Hermitian vector bundle (E, h) is Griffiths negative, i.e., v/—10.(e®v,e®
v) < 0 for all non-zero e € E,, v € T''M and z € M, the negative of its Ricci,
—Ric(E, h), induces a Kahler metric ¢ on M. By Lemma 1.2.2 in Mok-Ng [11], the
corresponding sphere bundle S(E) = {e € E : |e|], = 1} is strongly pseudoconvex; here,
le|r, = v/h(e,e) denotes the norm of e with respect to the metric h.

Given an n-dimensional Kéhler manifold (M, g), let Ric = —iddlogdet(g) denote
the associated Ricci tensor. The latter naturally induces an endomorphism, the Ricci
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endomorphism, of the holomorphic tangent space T}OM given by Ric - g~! for 2 € M.
The eigenvalues of this endomorphism will be referred to as the Ricci eigenvalues of
(M, g) and, by design, are functions of z € M. All Ricci eigenvalues are real-valued
as both Ric and g are Hermitian tensors. For a fixed z, we label the Ricci eigenvalues
such that A(z) < -+ < Au(2). Note that the sum of the A;(z), i.e., the trace of the
Ricci endomorphism, gives the scalar curvature at z. The Kéhler manifold (M,g) is
said to have constant Ricci eigenvalues, if each A\;(z), for 1 < i < n, is a constant
function on M; equivalently, the characteristic polynomial of the Ricci endomorphism,
Ric-g=1: THOM — THOM is the same at every point z € M.
Our first main result is as follows.

Theorem 1.2. Let (E, h) be a Hermitian holomorphic vector bundle over a complex man-
ifold M. Suppose (E, h) is Griffiths negative and its curvature splits. Let g be the Kahler
metric on M induced by — Ric(E, h). If (M, g) has constant Ricci eigenvalues, then S(E)
is obstruction flat.

Recall that the notion of obstruction flatness originates in the context of complete
Kéhler—Einstein metrics on domains. It is natural to ask whether a complete Kéahler—
Einstein metric exists (globally) on the corresponding ball bundle B(E) = {e € E :
lel]n < 1} of (E,h) in the situations we are considering. We shall prove the following
result:

Theorem 1.3. Letn > 1, k > 1 and m = n+k. Let M be a complex manifold of dimension
n and (E,h) a Hermitian holomorphic vector bundle over M of rank k such that (E,h)
is Griffiths negative and its curvature splits. Let g be the Kdhler metric on M induced
by —Ric(E, h). Assume (M, g) is complete and has constant Ricci eigenvalues. If all the
Ricci eigenvalues are strictly less than 1, then the ball bundle B(E) admits a unique
complete Kihler—FEinstein metric g with Ricci curvature equal to —(m + 1). Moreover,
this metric is induced by the following Kdhler form

1
m+1

&(w, @) = — 7 (Ric) | + *(@)]w — 109 log ¢ (|w]n), (1.4)

o
where w and Ric are respectively the Kaihler and the Ricci form of (M,g), m: E — M the
canonical fiber projection of the vector bundle. Moreover, ¢ : (—1,1) — RT is an even
real analytic function that depends only on the characteristic polynomial of the Ricci
endomorphism of (M, g). (More precisely, ¢ is given by Proposition 4.1 by choosing \;’s
to be the Ricci eigenvalues).

If the Hermitian vector bundle comes from a direct sum of copies of a single Hermitian
line bundle, then it is automatically curvature split (cf. Proposition 2.1). Thus we have
the following corollary of Theorems 1.2 and 1.3.
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Corollary 1.4. Let (L, hg) be a negative line bundle over a complex manifold M. Set
(Eah) = (LahO) DD (L; h0)7

where there are k copies of (L,hg) on the right hand side. Let g be the Kihler metric
induced by — Ric(E, h). If (M, g) has constant Ricci eigenvalues, then S(E) is obstruction
flat. Furthermore, if in addition (M,g) is complete and all the Ricci eigenvalues are
strictly less than 1, then the ball bundle B(E) admits a unique complete Kahler—Einstein
metric with Ricci curvature equal to —(m + 1), where m = n+k and n is the dimension
of M.

Remark 1.5. In the setting of Corollary 1.4, Webster [14] proved that for n = 1 and
k > 2, S(E) is spherical if and only if (M, g) has constant Gauss curvature K = —2/k.
Note that the metric g here is k multiple of the metric used in [14]. This result illustrates
the difference between the case where (E, h) is a line bundle (k = 1) and the case where
it is a vector bundle of rank k > 2. In the former case provided M is compact, the circle
bundle is spherical if and only if K is constant, regardless of its value.

Remark 1.6. Combining Webster’s result in Remark 1.5 with Corollary 1.4 yields that,
forn = 1and k > 2, if the Gauss curvature of (M, g) is constant but not equal to —2, then
S(F) is obstruction flat but not spherical. For example, taking M = CP"' and (L, hg) as
the tautological line bundle in Corollary 1.4, we find that S(F) is a compact, obstruction
flat and non-spherical CR, hypersurface for k& > 2. (More examples of obstruction flat
CR hypersurface are provided in §5.)

Remark 1.7. The condition for existence of a complete Kahler—Einstein metric in Theo-
rem 1.3 and Corollary 1.4 is optimal, in the sense that the conclusion fails if some Ricci
eigenvalue is greater than or equal to 1. Indeed, the following statement follows from
van Coevering’s work in [13, Theorem 1.1 and Corollary 1.3]. Let M be a compact com-
plex manifold of dimension n and (E,h) a Hermitian holomorphic vector bundle over
M of rank k. Suppose (E,h) is Griffiths negative. Let g be the Kihler metric on M
induced by — Ric(E,h). Assume (M,g) has constant Ricci eigenvalues. Then all these
Ricci eigenvalues are strictly less than 1 if and only if the ball bundle B(E) admits a
unique complete Kihler—FEinstein metric g with Ricci curvature equal to —(n + k + 1).
We point out, however, that the conditions in van Coevering’s work [13] are formulated
in terms of negativity of Chern classes: —c1 (M) — ¢1(E) > 0. In the context of constant
Ricci eigenvalues, it can be shown that this condition is equivalent to all Ricci eigenvalues
being < 1, as in Theorem 1.3 and Corollary 1.4. To see the equivalence, one can verify
that when —cy (M) — ¢1(E) > 0, we have

/Sk(l—)\l,...,l—/\n)w">0, k=1, . .n (1.5)
M
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where Sj, denotes the symmetric polynomial of degree k and A; the Ricci eigenvalues.
In the case where the Ricci eigenvalues are constant, the condition (1.5) clearly implies
A; < 1for 1 <j <k. The implication of the other direction of the equivalence is trivial.
The main novelty of Theorem 1.3 is that M need not be compact and, in addition, the
explicit formula (1.4) for the Kéhler—Einstein metric.

A case of particular interest occurs when the base manifold is a domain in C™. Recall
that, for a smoothly bounded strongly pseudoconvex domain Q@ C C™ (n > 2), the
Cheng—Yau solution u € C'*°(£2) is the unique solution to (1.1) and — log u is the potential
of a complete Kahler—Einstein metric with negative Ricci curvature. More generally, when
1 C C” is a bounded pseudoconvex domain, it follows from the work of Mok—Yau [12]
that © admits a unique complete Kédhler—Einstein metric with Ricci curvature equal to
—(n+1). If we write g = szzl gi7dz; ® dzj and set u = (det gﬁ)*ﬁ, then u satisfies
(1.1). We will call u the Cheng—Yau-Mok solution for 2. We have the following corollaries
of Theorem 1.3.

Corollary 1.8. Let n > 1, k > 1 and m = n+ k. Let D be a domain in C™ and h a
positive real analytic function on D such that w := /—1 k00 log h is the Kéihler form of
a complete Kahler metric g = 377, g;3dz; ® dz; on D. Assume that (D, g) has constant
Ricci eigenvalues and that all eigenvalues are strictly less than 1. Consider the domain

Q= {w= (2,8 €D xCF:|¢?n(z,2) <1}, (1.6)
and the real hypersurface (which is an open dense subset of the boundary of Q)
Y= {w= (28 €DxC":|¢?h(z,2) =1} (1.7)
Then the Cheng—Yau—Mok solution u of Q) is given by
u(w) = k75 (GH) ™7 g(€[h?), (18)

where H = h*, G = det(g;;) and ¢ is as in Theorem 1.3. Moreover, u extends real
analytically across the boundary piece 3.

Corollary 1.9. Let n > 1, k > 1 and m = n+ k. Let D be a domain in C™ and h a
positive real analytic function on D such that w := /—1kddlogh is the Kdihler form
of a complete Kdhler metric g = szzl 9;5dzi ® dzj on D. Assume that (D,g) is a
homogeneous Kahler manifold (i.e., the group of holomorphic isometries acts transitively
on D). Consider the domain Q and the real hypersurface ¥ defined by (1.6) and (1.7).
Then the Cheng—Yau—Mok solution u of 0 is given by

u(w) = k7 (GH) ™7 (|| h?),
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where H = h*, G = det(g,;) and ¢ is as in Theorem 1.5. Moreover, u extends real
analytically across the boundary piece X.

Finally, by studying the potential rationality of the Cheng—Yau-Mok solution, we
obtain a characterization of the unit ball in a class of egg domains in terms of the
Bergman-Einstein condition. A well-known conjecture posed by Yau [15] asserts that if
the Bergman metric of a bounded pseudoconvex domain is Kéahler-Einstein, then the
domain must be homogeneous. The following result gives an affirmative answer for a
class of egg domains.

Proposition 1.10. Given p € RT,n € ZT and k € Z, we let
Ep:={(2,£) € C" x C*: 2] + |¢]* < 1}.
Then the Bergman metric of E, is Kdhler—Einstein if and only if p = 1.

Remark 1.11. When n = 1 and k = 1, the above proposition was proved by Cho [3] (and
was known earlier to Fu-Wong [7] if p is an integer). When &k = 1 and n > 1, it was
proved by the authors in [5].

Although we have established versions of Theorems 1.2 and 1.3 in the case of line
bundles in [5], we emphasize that the extension to the case of vector bundles carried
out in this paper is far from simple and obvious. To illustrate a basic difference between
the two cases, we offer the following observation: If (L,h) is a Hermitian line bundle
over a Kéhler manifold (M, g), where g is induced by —Ric(L,h), then under some
mild assumptions (e.g., simple-connectedness of M), every holomorphic self-isometry of
(M, g) naturally extends to a biholomorphism of (L, h) which preserves the fiber norms.
This statement, however, fails dramatically when (L, h) is replaced by a vector bundle
(E, h) of higher rank. While we borrow ideas from [5] to construct the desired metric
in the proofs of Theorem 1.2 and 1.3, the main difficulty arises in the verification that
the metric constructed indeed satisfies the Kdhler—Einstein condition (i.e., the complex
Monge-Ampeére equation). In particular, in the vector bundle case, the calculation of
the Ricci curvature of the metric we construct seems very difficult in general. A key
observation is that the curvature splitting assumption appears to be the right condition to
make the computation tractable. Even under this assumption, however, the calculations
in the vector bundle case are significantly more involved than those in the line bundle
case (cf. Lemma 3.6 and Lemma 3.7).

The paper is organized as follows. §2 gives some preliminary materials on Hermitian
vector bundles, including the Griffiths negativity and the curvature split condition. In
§3 and §4, we will respectively prove Theorem 1.2 and Theorem 1.3. In §5, Corollary 1.8,
Corollary 1.9 and Proposition 1.10 are established, and some examples of obstruction
CR hypersurfaces are constructed.
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2. Hermitian vector bundles

Let (E,h) be a Hermitian (holomorphic) vector bundle over a complex manifold M
of dimension n. Denote by 7 : E — M the canonical projection and by E, = 7~1(2) the
fiber at z. As before, ©® = Op , is the curvature form of the Chern connection of (E, h).

Set k = Rank E and let {ey(z )}k 1 be a basis of E,. If {e,(2)}~
the Ricci curvature of E at z is given by the Hermitian form on T}0M:

o—1 is orthonormal, then

k
Ric(E Z )@, eq(2) @ V).

Note that the condition (1.3) in Definition 1.1 implies Ric(E)(v,v) = kH,(v,v). Hence
the curvature © splits if and only if

1
It will be useful to express the curvature split condition in local coordinates. Let (D, z)

with z = (21, ,2,) be a local coordinate chart of M and {e,}*_; a local frame of F
over D. Then we have

:{Zgaea(z):zeDand £a € C for any 1 gagk},

and (z,€) = (2,&1,-++,&) form a local coordinate system on 7~!(D). With respect to
the local coordinates z and the local frame {e,} over D, we can write the curvature
tensor O into

- Z Z@a,ﬁ’z] a®e/@®dzz®dzj

a,f=14,j=1

In addition, if we denote by h,5 := h(ea,ep) and R;; := Ric(E)(aazi,a%j), then it is

well-known that

O e hyj b Oh,5 Oh. 5
afi —
J 02;0%; azi 0%;

(2.2)

and the curvature split condition (1.3) becomes
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@afh‘j = %haBRﬁ' (2.3)

For the remainder of this paper, we shall use Greek letters a, 5,7 -+ to denote indices
ranging between 1 and k for the fiber coordinates of E, Roman letters 4,7 to denote
indices ranging between 1 and n for the local coordinates of M, and the Roman letters
s,t to denote indices ranging from 1 to m = n+ k for local coordinates of the total space
E.

The curvature split condition holds true trivially for any Hermitian line bundle. But for
Hermitian vector bundles of higher rank this is indeed a strong condition. Nevertheless,
we can still construct an abundance of such examples by considering the direct sum of
Hermitian line bundles.

Proposition 2.1. Let (Ly,hy), -, (Lk, hi) be Hermitian line bundles over a complex
manifold M. Set (E,h) = (L1,h1) @ --- @& (Lg, hi). Then (E,h) is curvature split if
and only if Ric(Ly, hy) = -+ = Ric(Lg, hg). In particular, if (L1,h1) = -+ = (Lg, hg),

then (E,h) is curvature split.

Remark 2.2. Let (L1, hy) and (L, he) be two Hermitian line bundles over a complex man-
ifold M. Then Ric(L1, hy1) = Ric(Ls, ho) implies that Ly and L are smoothly equivalent,
but in general, they are not necessarily biholomorphically equivalent.

Proof of Proposition 2.1. Let (D, z) be a local coordinate chart and e, a local frame of
L, for 1 <k < a over D. Then {e,}*_, forms a local frame of E, in terms of which the
metric h becomes the diagonal matrix

hi(e1,e1)
(hag) =
hi (e, ex)
By (2.2), when a # 3, it follows that ©,5,; = 0; when a = 8, we have
thQa = ahaa 8ha@ 82 log (ha&)
~ii = T T hoe _:_hoaii; :ha& i Laaha =
asij = ~ 55 0z 0% 02107 (Ric(La, ha)) ;
As a result,
Ou5ij = hap (Ric(La, ha)) -

On the other hand, the curvature split condition (2.3) writes into

k
1 , 1 .
O35 = hag (Ric(E, h)) 5 = hag Z(Rlc(Lv,hv))ﬁ.
r=1

So the result follows by comparing the above two equations. O
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We next recall the notion of and some simple facts about Griffiths negativity (and
positivity) for a Hermitian vector bundle.

Definition 2.3. Let (E, h) be a Hermitian vector bundle over a complex manifold. We say
(E, h) is Griffiths negative (resp. positive) if for any z € M,e € E, and v € T"°M we
have

O.(e®@v,e®v) <0 (resp. >0),

and the equality holds if and only if e =0 orv =0 (i.e., e®v = 0). In local coordinates,
this means that for any v = (vy,---,v,) € C" and & = (&1, ,&) € CF we have

0,5:56a8pviv; < 0 (resp. > 0), and the equality holds if and only if v =0 or { = 0.

Lemma 2.4. Let (E, h) be a Hermitian vector bundle over a complex manifold. Consider
the properties:

(1) The Hermitian vector bundle (E, h) is Griffiths negative (resp. positive).
(2) The determinant line bundle L = det E with the determinant metric det h is negative
(resp. positive).

In general, it holds that (1) implies (2). If the curvature © splits, then (1) is equivalent
to (2).

Proof. The fact that (1) implies (2) follows directly from the identity

(Ric(L)) ; = (Ric(E)) ;-

¥

When O splits, by (2.3) we have ©
implies (1) in this case. O

0Bii = %ha[; (Ric(L))ﬁ. Then it is clear that (2) also

Remark 2.5. Let (Li,h1), -, (Lk, hx) be line bundles over a complex manifold M,
and counsider the vector bundle (E,h) := (Li,h1) ® -+ ® (Li, hg). Then it follows
that Ric(det E,det h) = Ric(E,h) = Z?Zl Ric(L;, h;). By using Proposition 2.1 and
Lemma 2.4 we immediately obtain that if (E,h) is curvature split, then (F,h) is Grif-
fiths negative if and only if each (L;, h;) for 1 < j < k is negative.

Remark 2.6. Consider the special case when M is a Riemann surface (i.e., n = 1).
Suppose (E, h) is Griffiths negative vector bundle over M and let g be the metric induced
by — Ric(E, h). Then by (2.3), the vector bundle (E, k) is curvature split if and only if
(E, h) is Hermitian-Einstein.

For a Hermitian holomorphic vector bundle (E, h), recall that S(E) :={e € E : |e|, =
1} denotes the sphere bundle of (E, h). We conclude this section by noting the following
fundamental fact; see [11, Lemma 1.2.2] and [13, Proposition 5.3].
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Proposition 2.7. If (E, h) is Griffiths negative, then S(E) is strongly pseudoconvex.
3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. As the obstruction flatness is a local property
(cf. [8]), we need to show that for any point p € S(E), there exists some neighborhood
U of p on E such that S(E)NU is obstruction flat. By the work of Graham [8] again, it
suffices to construct a function v € C°°(U) such that w = 0 on S(E)NU and J(u) = 1 on
the pseudoconvex side of S(E)NU. To do this, we shall establish a series of propositions
and lemmas.

Proposition 3.1. Let P(y) be a monic polynomial in y € R of degree m —1 > 1 and Q(y)
a polynomial satisfying % = (m+ 1)yP(y) (thus Q is a monic polynomial of degree
m+ 1 and is unique up to a constant). Suppose P and Q are polynomials defined by

Px)=a2"""Px™"), Qz)=2""'Qzx").

Let I C (0,00) be an open interval containing r = 1 and Z(r) a real analytic function
on I satisfying the following conditions:

rZ'P(Z)+Q(Z)=0on, Z(1)=0. (3.1)
Z'(r) <0 and P(Z) >0 on I, Z(r) >0 on Iy :=1N(0,1), and Z'(1) = —1.

_ 1
Letk € Z7F with k < m—1 and set ¢(r) = 2(7;]6—15(12)) mtrZ on I. Then ¢ is real analytic
onl, p(1) =0 and ¢ > 0 on Iy. Moreover, ¢ satisfies that (m+1)rZ¢' +(m~+1-2kZ)¢p =

0 on I, and ¢'(1) = —2.

Remark 3.2. Since P and () are monic polynomials, the polynomials P and Q satisfy
P(0) =1 and Q(0) = 1. By elementary ODE theory, (3.1) has a real analytic solution Z
which satisfies (3.2) in some open interval I containing 1.

Proof. It is clear that ¢ is real analytic on I, ¢(1) =0, and ¢ > 0 on I by the definition
of ¢ and the assumption of Z. We only need to prove the last assertion in Proposition 3.1.
The proof is similar to that of Proposition 2.1 in [5]. We just highlight the following two
lemmas and the conclusion will be evident.

Lemma 3.3. Let Z be as in Proposition 3.1. Then we have
r(Z' 2=tV P(2)) = (m+1)2' 2D P(7) — 2/ 2D P(Z) on .
Equivalently,

(Z’Z*(erl)]S(Z))’
T =
7' 7~(m+1) P(Z)

=14+ (m+1)Z"" on .
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Lemma 3.4. Let ¢ and Z be as in Proposition 5.1. Then we have

Z/z—(m-i—l)ﬁ) AN /
r( A( ) = (2k—1)—(m+1)r£ on Io.
7' Z—(m+1) P(Z) ¢

Lemma 3.3 is identical to Lemma 2.3 in [5]; Lemma 3.4 follows from a similar argument
as that of Lemma 2.4 in [5]. Thus, we omit their proofs. Finally we compare (the second
equation in) Lemma 3.3 and Lemma 3.4 to obtain (m + 1)rZ¢' + (m +1—2kZ)p =0
on I. By analyticity, it actually holds on I. Recall Z(1) = 0, P(0) = 1 and Z’(1) = —1.
It then follows from the definition of ¢ that ¢'(1) = —2. This finishes the proof of
Proposition 3.1. 0O

Let (M, g) and (E,h) be as in Theorem 1.2. Denote by n the complex dimension of
M and by k the rank of E. Choose a coordinate chart (D, z) of M with a local frame
{ea}E_, of E over D. Let m: E — M be the canonical projection. Then we have

{Zfaea : )GDX(C}

Under this trivialization, the sphere bundle S(FE) over D can be written as

S = S(E)n= (D) = {(zf)er(Ck Zh zz§a§5_1}
a,B=1

where h,z(z,2) = h(ea(2),es(2)) for 1 < o, < k. In the local coordinates z =
(21, ,2n) We write g = Z?J 1 9i7dzi ® dzj on D. As g is induced by — Ric(E, h),
we have g,z = 6{9;%ng where H = det(h,3). Let G = det(g;5) on D.

Set m=n+k and denote by I,, the n x n identity matrix. Given p € M, let T'(y,p)
be the characteristic polynomial of the linear operator mZ—J’fl Ric.g7': TVOM — T,°M.
That is,

2k . 4
T(y,p) = det(yln — m——l—lRlC 9 ) (3:3)

In the local coordinates z = (z1, - - - , 2, ), writing the Ricci tensor as Ric = (R)1<i k<n =

—(%)Ki k<n, we see that T(y,p) is the determinant of the n X n matrix

(ydij — m+1 2h Ry 9% (D).
Now we define
2k

m—_H)kflT(yvp) (3.4)

P(y,p) == (y —

By the constant Ricci eigenvalue assumption, P(y,p) does not depend on p. We will
therefore just denote it by P(y). It is clear that P(y) is a monic polynomial in y of
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degree m — 1. We apply Proposition 3.1 to this polynomial P(y) (with k equal to the
rank of F) to obtain polynomials Q(y),ﬁ(az)ﬂ?(m), as well as real analytic functions
Z(r) and ¢(r) in some interval I containing r = 1. We let y(r) = % for r € Iy. By
Proposition 3.1, (m+ 1)rZ¢' + (m+1—2kZ)¢ = 0 on I. It then follows that

_ k() = (m+ Do) 2%k o
_ it =TTy © I. (3.5)

y(r)

Theorem 1.2 will follow from the next proposition.
Proposition 3.5. Let

U:{w:: (2,6) € D x CF: \w|hEI}, Uy = {w = (2,6) € D x CF : |w|, GIO},

where |w|z = 22,5:1 hoj(z,2)aés. Set

w(w) = k751 (GH) ™ 751 ¢ (Jwlp,) for w € U. (3.6)

Here G(w) is understood as G(z) for w = (z,§). Likewise for H. Then u is smooth in U
and satisfies

Ju)=1onUy, u=0onX.
Consequently, > is obstruction flat.

Proof. The smoothness of u follows easily from that of ¢, as well as that of G, H and
h. We thus only need to prove the remaining assertions. For that, we first prove the
following lemma. Set X = X (w) = |w|;, for w € U, and

% HX)

V=YW =9 X5

for w € Uy. (3.7)

Then by (3.5), we have Y = y(r)|,—x = ﬁh:X. Note that X and Y are independent
of the choice of local coordinates and local frame.

In the following, we will also write the coordinates w of D x C* as (wy, -+ , W1, Wy)-
That is, we identify w; with z; for 1 < i < n, and w1, with &, for 1 < a < k.
For a sufficiently differentiable function ® on an open subset of D x C*, we write, for
1<s,t<m, o, = g—i, d; = g—%, and & = %. To simplify the later computations,
we introduce the following lemma.

Lemma 3.6. Let w: (E,h) — (M, g) be a Hermitian vector bundle of rank k over an n-
dimensional Hermitian manifold (M, g). Write m = n+k. Let Q be a smooth (m,m)-form
on E (regarded as an m-dimensional complex manifold) (resp. an open subset V.C E).
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Then we can define a smooth function ® on E (resp. on V') in the following manner:
Pick any local coordinate chart (D,z) of M and any local frame {e,}E_, of E over D.
This induces a natural system of coordinates w = (2,€) for E on ©=1(D) with

{Zfaea zﬁ)EDX(C}

In the above coordinates, we write g = z?,j:l 9i;dzi ® dzj, h,z = h(ea,ep) and Q =
o(z,6)dz AdE N dZ AN dE where dz = dzy A - ANdz, and d€ = d&; A -+ A dEy,. We define
the function ® : 7=1(D) — C by

o8
det (gﬁ (z)) - det (haB(Z>)

Then ® is independent of the choice of local coordinates and local frame. As a result, ®

(I)(ng) =

is a well-defined function on E (resp. on' V).

Proof. To show ® is well-defined, we take two local coordinate charts, (D, z) and (D, )
of M, and two local frames of E, {eq}*_, over D and {€,}*_, over D. Then we obtain
two induced coordinate systems, w = (z,&) on 7~ (D) and @ = (%,£) on 7~ 1(D). On
DN D we can write Z = ¢(z) for some biholomorphism ¢ and £ = ¢ - A(z) for some
holomorphic map A : DN D — Gl(k,C). By the relation g = D=1 9i(2)dz © dzg =
St io1 97 (2)dz ® dz;, we have

I

det(gﬁ(z))fdet(gm ) |J<p

where J(p) is the determinant of the Jacobian matrix of (. Similarly, we also have

det(haﬂ( ))fdet(h (%)) - |det A(z |

On the other hand, by writing Q = o(z, €)dz A dé A dz AdE = 5(Z,€)dZ A dé A dZ A dE on
7 YD) n7~Y(D), we get

o(z,€) =5(Z,€) - | T (2 | . |detA(z)|2.
It follows that

O-(Zaf) _ &(575) on 77_1 71-_1 D
det(g;5(2)) - det(ho5(2))  det(g;;(2)) - det(hy5(2)) (D)7 (D).

So the proof is completed. O

Next we will prove the following lemma on the computation of det((—logu),;).



P. Ebenfelt et al. / Journal of Functional Analysis 286 (2024) 110366 15

Lemma 3.7. Let u(w) be as defined in Proposition 5.5. Write Y = 9% e, Y’ =

Y (r)|r=x. Then the following is a well-defined function on Uy:

det((— log u)sg(w))

P(w) = det(g;3(2)) - det(h5(2))”

That is, ® is independent of the choice of local coordinates of M and local frame of E.
Moreover,

PY)Y’
= gmiignyzi on Vo
Proof. Consider the Hermitian (1, 1)-form @ = —/—199logu on Uy C E. In the above
local coordinates w = (z,£), we can write W = /—1 Z:tzl(— log u) ;;dws A dwg. Then

£ is a smooth (m,m)-form on Uy and

~m
‘% = (V=1)™ det ((—log u)ys)dwy A dWT A -+ A dwn, A il
By Lemma 3.6, ® is well-defined on Uj.

To prove the second assertion, we fix a point p € E and write ¢ = 7(p). To compute
the value of ® at p, by the first part of the lemma, we can use any local coordinates of
M and any local frame of E. In particular, we can choose a local coordinates of M and
a local frame of E at ¢ such that the induced coordinates of E near p, which we still
denote by w = (z,§), satisfy z(¢q) = 0,h,3(¢) = dap and dh,z(q) = 0, where d,p is the
Kronecker delta. Under the above coordinates, the curvature (2.2) at point ¢ simplifies
into

6.0 =2t
aﬁij( )__627(3%( .

We take the logarithm of u (which is defined in (3.6)) and obtain

log G +

n
—1 =1 log H —1 X
ogu o ogk + og og p(X),

m—+1 m—+1

where X = |w|, = (Z’;”@,:l ho5(2 2)5,15)1/2. A straightforward computation yields

1 / N
(log G) ; + m—_H(logH)S{— (%Xsﬁ— (%) XSX;)

—1 Jp—
( Ogu)st m+1

for any 1 < s,t < m.

Since X, ; = X (log X); + + XXz, the above writes into
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(~logu)y = 1 (086, + 1 (o 1), — X (5) 10 X),,
Ly
- () + () x.xe

To continue the computation of this Hessian matrix, we shall divide it into the fol-
lowing three cases.

Case 1.1 < s,t <n.

For this case, we have ws; = z; and w; = z;. We denote i = s and j = t for simplicity.
At w = (0,§), by the facts h,z = 0,5 and dh,z = 0 it follows that X = [{] and
X; = X5 = 0. Moreover, we also have

1 1(X?);
(108 X) 51— 0.6 :§(logX2)i3‘w:<o,£> =5 x2

w=(0,£)

2|§|2 Z 821(92’3 6046[;% 2|£|2 ﬁzl aﬁz] gagﬁ

Since the curvature © splits and the Kéhler metric is induced by — Ric(E,h) by the
assumption of Theorem 1.2, it follows that

1 1

@aﬁ_zj(o) = Ehaﬁ( ) (RIC(E h)) (0) —

kéaﬁ - 9;5(0).

Therefore,

1
Denote the Ricci form Ric(g) = v/—1R,;dz; AdZ;. Then (log G);; = —R;3, (log H) ;5 = g;;
and by (3.7) we have

1 1 X &
mRij(U) + mgij(o) - %E 9;7(0)

1

Y
= —m—HRij(O) + 5795 (0)-

(—logu)si o6y = —

Case2. 1<s<nn+1<t<n+korn+1<s<n+k1<t<n.

For this case, a similar computation yields (log G),; and (log H),; vanish identically
and (log X)ilw=(0,e) = Xs Xtlw=(0,¢) = 0. Therefore, (—logu)si|w=(0,¢) = 0.

Case3. n+1<s,t<n-+k.

For this case, we have ws = &s_,, and w; = &_,,. Wedenote a =s—nand S =t—n
for simplicity. Then a straightforward computation yields that at any w = (0,£) € Up
we have X = [¢], X, = 3¢ &, X = L¢] 1¢s and
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1 —

(log X)sf = 0ap — ﬁgc@ﬂ

2X2

As (log G) . and (log H),; vanish identically in this case, we have at w = (0, &)

o\ /1 1 — 1,¢'\ ¢\ &€
(—logu), = —X(E) (ﬁ(sag - Wﬁafﬂ) - (E(g) + (g)/) 4X§'
By (3.7), we further write it into
) B 2k 1 1 — V' €as
(—logu)st[,_ioe) =(¥Y = m+ 1) (2X2 dap = 2X4§°‘£ﬁ) txuxe
1 2k Xy Y k| &&s
“e Vet (G - )

Combining the above three cases, we see the complex Hessian matrix ((f log u)sg) at
w = (0,€&) is block diagonal. Moreover,

det((—log u)sf)1gs,t3m = det((— IOg“)sf)1gs,tgn ~det((— IOgu)sf)ans,tSm' (3.8)
Now we need to compute the determinants appearing on the right hand side of the above
equation. By the above computation in Case 1, we have at w = (0, &)

Y
det((— log u)ii)lgi,jgn =det (— R;5(0) + ﬂg@(O))

m—+1

= (5" et (Vi — 2 R (0) H(0)) - det(95(0)
=(§)” T(Y)G,

where the last equality follows from (3.3). For the second determinant on the right hand
side of (3.8), by the computation in Case 3, we have at w = (0,§),

1 2k
det((— log U)sf)n-ﬂgs,tgm = det<2X2 (Y T+ 1)5045
vk E

( 4 2 m—i—l) X4 )1ga,ﬁgk'

As X = |¢| at w = (0,&), by the matrix determinant lemma we get

det (<_ lOg U)Sf) n+1<s,t<m
1 2k k-1
(e -n) (@) oo w
Y’ 2k k-1
T ok+1x2k—1 (Y_m_|_1) .

1 2k XY Y k 1
v )
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We now plug these results back into (3.8) and further use (3.4) to obtain that at w = (0, &)

Y/

det((_IOg“)sf)1gs,tgm = 2m+1an2k71P(Y) G.

Note that at w = (0,&) we have H = 1. Therefore,

det((—logu)sg)1§57t§m7 P(Y)Y’
GH - om+1fn X 2k—1"

This proves Lemma 3.7. O

Now we resume the proof of Proposition 3.5. By the definition of ¢ in Proposition 3.1,
for any r € Iy we have

7Z/p(Z)Zf(m+1) — 2m+17,2k71¢7(m+1) (T)

Recall that y(r) = % We thus get

Y Py~ )yt = gt lg=(ma) gy,
By the definition of P in Proposition 3.1, we have Py) = ymflp(y’l). Therefore,
y' P(y) = 2m iy =lg=(mil) (p),
Now we take r = X = |w|p, for w = (2,£) € Up. Then
Y'P(Y) = 2mHix2k=1p=(mHD) (x) — omtign x2h=1(G )=ty ~(m+D (X)),
where the second equality follows from the definition of w. Therefore,

Y'P(Y 1 —(m
2m+1kn(X2)k—1 = (GH) Ly +1)(X)-

By Lemma 3.7 we obtain det ((— log u)sf)1<s rem = u~ (MY on Uy. Therefore, J(u) =
1 on Up. Since ¢(1) = 0 as proved in Proposition 3.1, we obtain the boundary condition
that v = 0 on X. The latter part of Proposition 3.5 follows from the first part and

Graham’s work (see the first paragraph of this section). O
4. Proof of Theorem 1.3

We establish the following proposition before proceeding to the proof of Theorem 1.3.
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Proposition 4.1. Let n > 1, k > 1 and m = n + k. For given real numbers Ay < --- <
An < 1, set

2k k-1 2k N,
Ply)=(y-—7) E(y 1)

Let Q(y) be the polynomial satisfying dQ = (m+ 1)yP(y) and Q(m+1) =0 (thus Q is

a monic polynomial of degree m + 1 and is uniquely determined). Suppose P and Q are
polynomials defined by

P@) =2 P@aY), Qz) =21 Q(a ).

Then the following conclusions hold:

(1) There exists a unique real analytic function Z = Z(r) on [—1,1] (meaning it extends
real analytically to some open interval containing [—1,1]) satisfying the following
conditions:

rZ'P(Z)+Q(Z) =0, Z(1)=0. (4.1)

Moreover, Z is an even function satisfying Z(0) = %t Z/(0) =0, Z' < 0 on (0,1]

and Z'(1) = =1, Z"(0) < 0. Consequently, Z € (0, L) on (—1,0) U (0,1).
(2) Let ¢(r) = 2(#1;(;))”#1 Z. Then ¢ is real analytic on [—1,1]. In addition, ¢ is
an even function satisfying ¢ > 0 on (=1,1) and ¢(1) = 0. Moreover, ¢ satisfies

(m+1)rZ¢ +(m+1—-2kZ)p =0 and ¢'(1) = —2.

Remark 4.2. For the polynomials P, (), P and Q defined in Proposition 4.1, note that

they satisfy P(0) = Q(0) =1, P > 0 on ( fl, 00), P >0 on (O,Tr;:l)and 99 ~ 0 on

(mz—fl,oo), Q >0on (ﬁ—_’ﬁl,oo), Q> 0on (0, mtl) and Q(m“) =0.

Proof. The proposition was proved in [5, Proposition 2.7] for kK = 1. We will extend the
ideas in [5] to prove for the case k > 2. Writing

m+1

A\ =
2k

(4.2)

we can express P as follows

A

Here h(z) = (—1)*IA-k=D T (1 - A z) and it is a polynomial satisfying h(\) # 0.
Note the polynomial Q has a zero of order k at x = A. Thus we can write Q(m) =

(x — \)¥g(z) for some polynomial g satisfying g()\) # 0.
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We introduce the following lemma on the polynomials A and g. For two functions f;

and fo, we write f1 ~ fo as x — X if lim, ) ﬁgg =1.

Lemma 4.3. It holds that g(\) = —2h(\) and (—1)k¥='h(X\) > 0. In particular, ggg ~
—2(x —A) as T — A.

Proof. Note that (—1)F~1h(X) = A=*=DTT" (1 — A;), which is clearly positive as all
Ai’s are strictly less than 1. We next prove the first identity. For that, we notice that

1 d'P(x)
(k—1)! dxk-1

and _ 1 d*Q(x)

h()\) - T=A g()\) o k! dl‘k z:/\'

Since Q(x) = l‘m—HQ(%), by the definition of polynomial Q we have

dQ(z)
dx

(m+1)Q(I)_ (m+1)

" " P(z).

1 1
— 1 m N\ _ m=1r (= —
m+0amq(l) —artg ()
As P and Q respectively have a zero of order (k — 1) and k at @ = A, if we further
differentiate the above equation (k — 1) times and evaluate it at x = X, then

de(x) (m+1) dk_lp(ac)
v\ — _ — —9k!
d.]?k =\ A dx’“—l =\ 2k h()\)

It follows that g(\) = —2h()). As a result, we get

Q(x)_mx_ ~ —2(x — as T
TR

So the proof is completed. O

Now we are ready to prove part (1) of Proposition 4.1. It follows easily from the as-
sumption and elementary ODE theory that the ODE in (4.1) has a real analytic solution
Z in some open interval I containing 1. Since P(0) = 1 and Q(0) = 1, we see the ODE
in (4.1) implies Z'(1) = —1. Set

to = inf{t € [0,1) : on (¢, 1] there exists a real analytic solution Z to (4.1) with Z" < 0}.

(4.3)
By definition, 0 < tp < 1 and on (o, 1] there is a real analytic solution Z to (4.1) with
Z' <.

Lemma 4.4. The number defined in (4.3) satisfies to = 0. Consequently, on (0, 1] there
exists a (unique) real analytic solution Z to (4.1) and it satisfies Z' < 0.
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Proof. Seeking a contradiction, we assume ¢y, > 0. Since Z is decreasing on (tp, 1), we
conclude that 4 := lim, .+ Z(r) > 0 exists (allowing a priori i = +00 as the limit).
We note that p < A, where A is the number introduced in (4.2). For, if this were not the
case, then since Z(1) = 0 there would exist some t* € (g, 1) such that Z(¢t*) = A. By
Lemma 4.3, at = t* the ODE (4.1) gives Z’'(t*) = 0, contradicting the fact Z'(¢*) < 0.
Therefore, we proceed by examining the following two cases.

Case I. Assume p = A. In this case, by Lemma 4.3 the ODE (4.1) gives

(7 7 —

asr — tg.
rP(Z) r

-2 =

Thus, there exists some constants 6 > 0 and C' > 0 such that —Z'(r) < C(A — Z) for
any r € (tg, to + d). That is, (log(A — Z))’ < C. By taking the integral we obtain

t
T':to

log(A— Z(r))| < C(t—tg) foranyt € (to,to+9).

But this is impossible as the left hand side is +o0o while the right hand side is a finite
number. X
Case II. Assume p < A. In this case, P(p) > 0 and thus 22 is a smooth function at

rP(Z)
(r,Z) = (to, 1). Therefore, the following initial value problem has a real analytic solution

Z on some open interval J containing t¢:
rZ'P(Z)+Q(Z) =0, Zlto) = .

Shrinking J if necessary, we can assume 7' < 0on J. By the uniqueness of solutions
in the ODE theory, we can glue the previous solution with Z to obtain a real analytic
solution to (4.1), still called Z, on some open interval containing [tg, 1], which still satisfies
Z' < 0. This contradicts the definition of ¢g.

Since in each case there is a contradiction, we must have t; = 0 and this proves
Lemma 4.4. O

By Lemma 4.4, Z is decreasing on (0, 1) and therefore p = lim,_,o+ Z(r) > 0 exists.

By the same reasoning as in the proof of Lemma 4.4, we must have p < A = ’"2—';1 AIn

fact, it holds that u = A. Assume pu < . Note P,Q > 0 on [0, u]. Since —Z' = %,
we have —Z’ > ¢ on (0,1) for some positive constant c. This contradicts the fact that
Z is bounded on (0,1). Hence we must have p = A, i.e., lim, ,o+ Z(r) = A. Thus, Z is
decreasing from A to 0 on [0, 1].

We write Z(r) = A+ rG(r) for some real analytic function G on (0, 1]. It is clear that
G < 0on (0,1] as Z is decreasing from A to 0 on [0, 1]. We have the following lemma on

G.

Lemma 4.5. It holds that lim,_,o+ G(r) = 0.
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Proof. Note

By substituting these identities together with Z(r) = A + rG(r) into the ODE in (4.1),
we obtain

(rGYh(Z)+Gg(Z)=0 on (0,1).

We can rewrite it into

G h(2)+4(2)

- = 0,1).
G rh(Z) on (0,1)
By Lemma 4.3, —% — 1 as r — 0%. Consequently, there exists some constant
0 > 0 such that
¢ > ! f € (0,9)
— > — foranyr ,0).
G~ 2r Y

As a result, ;f is increasing on (0, ), which in particular implies that ;\/g is bounded
from above on (0, §). Therefore, lim, .o+ G(r) =0. O

We may now further write Z as Z(r) = A + r>W(r) for some real analytic function
W on (0,1]. Clearly, W = rG < 0 on (0, 1], and W(1) = —A. In addition, we have the
following,.

Lemma 4.6. The limit lim, g+ W (r) exists and it is a negative number.

Proof. We first note that

3
N
I

(Z =N Ih(Z) = r?2Wh1h(2),
(Z = NFrg(2) =r*WFg(2).

S
N
I

Combining this with Z = XA + r>W and the ODE in (4.1), we obtain
r(r*W)'h(Z) + (r*W)g(Z) =0 for r € (0,1).
As h is nonvanishing on [0, \], we can simplify the above equation into

2h(Z) + 9(2)

V=2

W for r € (0,1). (4.4)
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Recalling Z = XA+ rG, we have 2h(Z) 4+ g(Z) = 2h(A+rG) + g(A+rG). As h and g are
both polynomials, 2h(A+rG) 4+ g(A+rG) is a polynomial in rG. Moreover, the constant
term equals 2h(A) 4+ g(A) = 0 by Lemma 4.3. By Lemma 4.5, we deduce that

_2h(A+7G) + g\ +1rG)
flr) = rh(A+7G)

extends to a continuous function on [0, 1]. Then using (4.4) we obtain
1 1
In(=W(r)) =In(-W(1)) + /f(t)dt =In\+ / f)dt for any r € (0,1)

Consequently, lim, o+ W(r) = —Xexp ( fol f(t)dt), which is a negative real number. O

Now W naturally extends to a continuous function on [0,1]. Set a = W(0) =
lim, g+ W(r). We have the following lemma.

Lemma 4.7. There exists a unique real analytic function To(r) at r = 0 satisfying the
following initial value problem:

h(A+72T) 4+ g(A +r°T)

2
T =
rh(A+ r32T)

T, T(0)=a. (4.5)

Moreover, the function is even on (—e,€) for some small e > 0.

Remark 4.8. Note 2h(A+72T) + g(A+r2T) is a polynomial in 72T, whose constant term
equals 2h(\) + g(\) = 0 by Lemma 4.3. Therefore (2h(A + r2T) + g(A + r2T))/r is a
polynomial in r and 7.

Proof of Lemma 4.7. By Remark 4.8, the right hand side of the ODE in (4.5) is real
analytic in a neighborhood of (r,T) = (0, a). Therefore the existence and uniqueness of
the solution, as well as its real analyticity, follow from elementary ODE theory. Note if
Tp is a solution to the initial value problem (4.5), then so is Tp(—r). By uniqueness of
the solution, T is an even function. O

Let Ty : (—€,¢) — R be as in Lemma 4.7 and recall the function W defined before
Lemma 4.6. Note Ty and W are both functions in C*¥(0, €)NC|0, €) satisfying the following
ODE:

2R\ +12T) + g(A +r*T)

r_
= rh(\+ r2T)

T on (0,¢), T(0)=a. (4.6)

By basic ODE theory (cf. the proof of Lemma 2.13 in [5]), it follows that W = Tj on
[0,€).
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We now continue the proof of Proposition 4.1. Let \,Ty be as above and set ¥ =
A+ 1r2Ty. Then W is a real analytic even function on (—¢, €). Moreover, ¥ = Z on [0, €).
Therefore we can glue Z with ¥, and then apply the even extension to obtain a real
analytic function on [—1, 1], which we still denote by Z. It is clear that this new function
Z still satisfies the ODE in (4.1). Moreover, Z”'(0) = 2W (0) = 2a < 0. This proves part
(1) of Proposition 4.1.

We next prove part (2) of Proposition 4.1. Recall Z(r) = A 4+ r2W(r) and P(Z) =
(Z — NF1h(Z) = r2k2WF=1h(2Z). Tt follows that

F2k—1 F2k—1 1
—72P(z)  —QrW +r2W)r2k2Wh=1h(Z) — —(2W +rW)WkE-1h(Z)’

At r =0, —2W + rW")Wk=1h(Z) = —2W*(0) h()\) > 0 since W(0) < 0 by Lemma 4.6
and (—1)*71h(\) > 0 by Lemma 4.3. Hence _TZZ,I;(IZ) is real analytic at 7 = 0. By the
definition of ¢ and the properties of Z in part (1), ¢ is real analytic and even on [—1, 1].
It is also clear that ¢ > 0 on (—1,1) and ¢(1) = 0. The latter assertion in part (2) can be

proved identically as in Proposition 3.1. This finishes the proof of Proposition 4.1. O

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. Choose a coordinate chart (D, z) of M together with a local

frame {e,}%_, of E over D. Writing m : E — M for the canonical fiber projection, we
have

(D) = { ifaea(z) :(2,6) € D x @k}.

Under this trivialization, the ball bundle B(E) and the sphere bundle S(E) over D can
be expressed as follows:

k
B(E)n7~ (D) :{w =(2,§) e DxCF: Z he5(2,2)6aép < 1},
a,B=1
k [
S(E) N x=Y(D) :{w = (2,6 €DxC*: Y hoj(27)6uks = 1}.
a,B=1
Here h,z(2) = h,5(2,2) = h(ea,ep). In the local coordinates, we write g =
>oij=195d% © dZj. As g is induced by —Ric(E,h), we have g; = 88221:’5; where

H = det(h,p). Let G(2) = G(z,%) = det(g;;) > 0. We let \y < -+ < A, < 1 be
the Ricci eigenvalues of (M, g) and ¢ be the function resulting from Proposition 4.1. In
the local coordinates, the Kihler form @ in Theorem 1.3 is given by @ = —iddlogu,
where u(w) = km+t (GH)_W;H¢(|w|h) Since ¢ is real analytic and even on [—1,1], u is
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smooth in a neighborhood of B(E) N 7w~!(D). Consequently, @ is a smooth Kéhler form
on B(E) N 7w~ (D). By repeating the proof of Proposition 3.5 (and the smoothness of
), it follows that u = 0 on S(E) N7~1(D) and J(u) =1 on B(E) N7~ (D).

Since J(u) = 1, or equivalently, det ((— log u)sf)1<s7t<m =y~ (Mt in B(E)n7~Y(D),
and u is a local defining function of some strongly pseudoconvex piece of the boundary,
we conclude that @ is positive definite in B(E) N7~ 1(D). Also J(u) = 1 implies that
the metric § induced by @ has constant Ricci curvature —(m + 1). Since the coordinate
chart D is arbitrarily chosen, g is a K&hler-Einstein metric in B(E).

It remains to prove that the metric g is complete on B(E). By the Hopf-Rinow The-
orem, it suffices to show (B(E),g) is geodesically complete. Let v : [0,a) — B(E) be a
non-extendible geodesic in B(F) of unit speed with respect to g. We only need to show
that @ = 400, that is, v has infinite length. For that, we first establish the following
lemma.

Lemma 4.9. The metric g satisfies

1 1
= “(Ri
g > m+17r( 1c)—|—mJr

Consequently, g > 17;?? ©™*(g) in B(E).

Proof. Since the validity of (4.7) is independent of the choice of local coordinate chart of
B(E), it suffices to establish (4.7) in an arbitrary coordinate chart. Given p € B(E), recall
that in the proof of Lemma 3.7, we have proved that there exist some local coordinates
w = (z,£), in which z(7(p)) = 0 and the metric g at w = (0,€&) with 0 < |w|;, < 1 can
be expressed as

1 Y
BRSSO 5795 for 1 < <
m—i—lR”(O)_Fng”(O) orl1<s,t<n,
Gei = 1 2k Xy v NS
ep Y )it (G g ) g frerisstsntk
0 otherwise,

(4.8)

wherei=s,j=twhen 1l <s,t<nanda=s—n,f=t—nwhenn+1<s,t<n+k.
n = "X .

Recall X = X (w) = (3_, =1 hagfafg)l/z, Y=Y(w)= mQ—J’il - X% and ¢ is defined
in Proposition 4.1. As in §3, by (3.5) we have Y = y(r)|,—x = %|r—x. Furthermore, by
Proposition 4.1 it follows that Y (w) > mQ—Jlfl for any w € B(E). Note that (g,7)1<s,t<n+k
is a block diagonal matrix. As it is positive definite, the diagonal blocks, (gst)i<s,t<n
and (gst)n+1<s.t<n+k, are also individually positive definite. As a result,

n
~ ~ — 1 * . *
g > i]zz:lgﬁdzi ®dz; > e 177 (Ric) + — 7™(g)

at any w = (0,&) with 0 < |w|, < 1.
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By continuity, the above actually holds at any w = (0, &) with |w|, < 1, and thus (4.7)
is proved. Finally, by the assumption on the Ricci eigenvalues, we have R;; < A, g,; with
An < 1. The latter part of the lemma follows easily. O

With Lemma 4.9, the remaining part of the proof is identical to that of Theorem 1.4
in [5]. We omit the details. O

5. Proofs of corollaries

In this section, we consider the case where the base manifold M is a domain D in
C", and prove Corollary 1.8 and 1.9, as well as Proposition 1.10. We also exhibit some
explicit examples as applications.

We first prove Corollary 1.8.

Proof of Corollary 1.8. Let L = D x C be the trivial line bundle over D. By the as-
sumption on h, the Hermitian line bundle (L, h), is negative. Take the Hermitian vector
bundle (E, hg) as (L,h) @ --@® (L, h), the direct sum of k copies of (L, k). Then the ball
bundle B(E) and the sphere bundle S(E) of (E, hg) are respectively given by

B(E) ={w=(2,£) € Dx C*: |¢]?h(z,2) — 1 < 0},
S(B) ={w=(2,£) € Dx C*: |¢?h(2,2) —1=0}.

Note that B(E) coincides with the domain © C C™ (recall m = n + k) as defined in
(1.6), and S(E) coincides with the hypersurface ¥ in C™ defined by (1.7). In addition, the
Hermitian vector bundle (E, hg) is curvature split by Proposition 2.1 and it is Griffiths
negative by Remark 2.5. Moreover, since Ric(E, hg) = kRic(L, h), the Kéhler metric
induced by — Ric(F, hg) is the metric g given in the assumption. By Theorem 1.3, the
unique complete Kahler-Einstein metric g with Ricci curvature —(m+1) is given by (1.4).
The explicit formula of the Cheng—Yau—-Mok solution u, defined as (det(ﬁsg))fﬁ, can
be seen from the proof of Theorem 1.3. Since the function ¢ is real analytic on [—1,1]
by Proposition 4.1 and G, H are both real analytic on D by the assumption, the Cheng—
Yau-Mok solution u extends real analytically across . O

We next prove Corollary 1.9.

Proof of Corollary 1.9. We first note that g is complete since (D, g) is homogeneous.
(For the proof of this fact, see for example [10].) Moreover, the homogeneity of (D, g)
also implies that g has constant Ricci eigenvalues. The result is now a direct consequence
of Corollary 1.8 and the following:

Claim. The Ricci eigenvalues of g are all negative (and thus in particular strictly less
than 1).
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Proof of Claim. Let g be the Bergman metric of D. We denote by Vol(g) and Vol(gp)
the volume forms of g and gp respectively, which are (n,n) forms on D. Set ® :=
Vol(g)/ Vol(gg), which is a well-defined function on D. Let Iso(g) be the group of
holomorphic isometries of (£2,¢). Since every biholomorphism also preserves gg, the
group Iso(g) actually preserves both g and gp. Thus, ® is invariant under the ac-
tion of Iso(g). As Iso(g) acts transitively on 2, ® is constant on 2, that is, Vol(g)
and Vol(gp) are the same up to some (positive) constant factor. Therefore, g and gp
have the same Ricci form. By the fact Ric(gp) = —gp (see [1] for example), we get
Ric(g) - g~ = Ric(gp) - g~ ! = —gp - g~ . So all the Ricci eigenvalues of g are negative
and the proof is completed. O
O

We now present some examples as applications of the above corollaries.

Example 5.1. Let D be a bounded homogeneous domain in C™. Write Kp(z, z) for its
Bergman kernel and gp for the Bergman metric. Since gp is biholomorphic invariant, the
manifold (€2, gg) is homogeneous Kéhler. Given A € R* and k € ZT, we set h = (Kp)*
and consider the domain © C D x CF and the hypersurface ¥ C D x C* as defined
in (1.6) and (1.7). By Corollary 1.9, the Cheng—Yau-Mok solution of € is given by the
following with m =n + k:

w(w) = k7 (GH) ™7 6(|€|h?),
where H = (Kp)*, G = k"A\"Gp and Gp is the volume density of gg. Moreover, the
boundary hypersurface X is obstruction flat and u extends real analytically across X.

Example 5.2. Let D be a bounded domain of holomorphy in C". Suppose gy = ((90)1‘5)
is the complete Kahler—Einstein metric with negative Ricci curvature Ag. (The existence

and uniqueness of such a metric is guaranteed by the work of Mok—Yau [12].) Let h
d*logh

be a real analytic function on D such that (go);; = . (One particular choice of

such an h is (det((go)i;))fl/)\O as go is Kahler-Einstein.) For a given k € Z™T, consider
the domain Q C D x CF and the hypersurface ¥ C D x C* as defined in (1.6) and
(1.7). By Corollary 1.8, the Cheng—Yau—Mok solution of ) is given by the following with
m=n-+k:

u = kw1 (GH) ™7 g(|€|h?),

where H = h* and G = k" det((go)ﬁ). Moreover, the boundary hypersurface ¥ is
obstruction flat and u extends real analytically across X.

In particular, if we choose h = 1/ug where ug is the Cheng—Yau-Mok solution for
the domain D, then gy = ((log h)g) is the complete Kéhler metric with Ricci curvature
Ao = —(n + 1). A routine computation yields the following expression for the Cheng—
Yau—-Mok solution of €2,



28 P. Ebenfelt et al. / Journal of Functional Analysis 286 (2024) 110366

u = ug p([¢|h?).

Example 5.3. Given [ > 1, for each 1 < i < [, let D; be a domain in C™, ¢ =
Z;}fqzl gzqdz; A dz_fl a complete Kihler-Einstein metric on D;, and h* a real analytic
function on D; such that ¢* is induced by /=190 log h*. Let D = Dy x---x D; C C™ with
n=mni+---+n; and write z = (21, -+, 2!) for each 2* € D;. Set h(z,2) = IIL_, (2%, 2°).
For a fixed k € Z*, consider the domain Q C D x C* and the hypersurface ¥ ¢ D x C*
as defined in (1.6) and (1.7). Then the Cheng—Yau-Mok solution of 2 is given by the

following with m =n + k:

u(w) = k7 (GH) ™7 g(€[h?),
where H = h* and G = k™II._, det(g!,)1<p,q<n,- Moreover, the boundary hypersurface
3 is obstruction flat and u extends real analytically across X.

To conclude the paper, we shall prove Proposition 1.10. Before proceeding to the proof,
we first consider the case of the ball bundle over a bounded domain of holomorphy D.
As mentioned in Example 5.2, for a given negative real number \g, there exists a unique
complete Kéahler—Einstein metric such that Ric(gg) = Aogo. As before, L is the trivial line
bundle over D and h is a Hermitian metric of L such that g is induced by —c; (L, h). The
Hermitian vector bundle (E, hg) is the direct sum of k copies of (L, h). By Example 5.2
the Cheng—Yau-Mok solution for Q = B(F) as defined in (1.6) is

w= ki (GH) w1 ¢(|€|h?), with m = n +k, (5.1)

where H = h*, G = k™ det((go),;
A;’s chosen as follows. First, it is clear that —cy (E, hg) is —keq (L, h), which also induces

), and the function ¢ is given in Proposition 4.1 with the

a Kahler—Einstein metric g = kgo with negative constant Ricci curvature A = A\g/k < 0.
Write p = % and v = mg—fl and let all A\;’s in Proposition 4.1 be A. The polynomials

P(y) and P(z) are then given by

Ply)=y—v)""y—w"  P)=01—-ve) (1 —pa)". (5.2)
The polynomial Q(y) from Proposition 4.1 satisfies the following properties:

Lemma 5.4. The following hold:

(1) The polynomial Q is divisible by (y — v)*. Moreover, there exists a polynomial T (y)
such that Q(y) = (y — uw)" T (y) + ¢, where c is a real number satisfying ¢ =
—(v = )" T (v) = Q).

(2) The number ¢ = 0 if and only if X\ = =" (i.e., \g = —(n+1)). In this case,
Q=(y— )"y —vt
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Proof. We first prove part (1). Recall by the definition in Proposition 4.1, Q satisfies

% =(m+1)yP(y) and Q(v)=0.

It follows immediately that

Y

Qly) = /(m + 1)tP(t)dt.

v

Note that we can write the integrand function as

n+1
(m 4+ 1)yP(y) = (y —v)*! Z aj(y —v)?  for some a;’s in R.
§=0

We take the integration term by term and obtain

Therefore, Q is divisible by (y — v)*.
To prove the latter assertion in part (1), note that we can also write

(m+1)yP(y) = (y— )™ Y bi(y—pu) for some b;’s in R.

k
=0

As Qy) = j(m + 1)tP(t)dt + Q(n), we again take the integration term by term and
obtain

k
b ,
Qly) = ZO Wul(y — )" L Q(p).
=
By setting
k
b .
T(y) = 2% ﬁ(y —p)y and c=Q(p),

=

we have Q(y) = (y—u)" 1T (y) +c. Since Q(v) = 0, it follows that ¢ = —(v—p)" 1T (v).
Now we prove part (2). It is clear that ¢ = 0 if and only if Q(u) = 0. Since Q(v) =0
in the assumption, the former is also equivalent to
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v

d
/ —Qdy =0, ie, /yP(y)dy =0. (5.3)
M w
By writing y = uﬁv (y—v)— Mzu(y — ), we have
P — _ o N\k=1, o\ Nk, o\ v o \kE-1 n+1
yP(y) =yly—v)" (y — n) i Sy —=v)"(y— ) u—v(y V)" (y — )
Thus, (5.3) is equivalent to
M k n _ 14 k—1 n+1
— —p)'dy = —— — - dy.
M_y/(y V)" (y — )" dy M_y/(y V)" y — )" dy
p f
By setting t = , it reduces to
1 1
u/ Vetndt = /(1 — )k, (5.4)
0 0
Recall the beta function is defined by
1
/tp Y1 -ty tat
0
and B(p,q) = %. Therefore, (5.4) writes into
kln! (k=D (n+ 1)
=—v
Fon+ e+ (n+k+1)
As u = v, we finally obtain that ¢ = 0 is equivalent to A\ = —"TH
1

In this case, by part (1) we have both (y —v)* and (y — u)"*! divide Q. Since Q is a
monic polynomial of degree n + k + 1, it follows that Q(y) = (y — v)*(y — )", O

In the special case that P is given by (5.2), we will study the rationality of function
Z as defined in Proposition 4.1.

Proposition 5.5. Let P and P be given by (5.2) (and accordingly Q and Q are both
determined as in Proposition 4.1). Let Z and ¢ be as given in Proposition 4.1. Then the
following are equivalent.

(1) Z is rational.
(2) ¢™*1 is rational.
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Remark 5.6. Moreover, when ( )-(3) in Proposition 5.5 hold, we can see from the proof

that u = —2("+1 and Z = Consequently, ¢(r) =1 —r2.

2
2+p, ;1,7"2
Proof of Proposition 5.5. We first prove (1) is equivalent to (2). By Proposition 4.1, we
have

1 2% ¢ 2% r (ot

Zim—l—lirgim—l—lim—&—l pmtl

Hence (2) implies (1). Conversely, recall that in Proposition 4.1 the function ¢ is defined

by ¢ = 2(%) T Z. Since P is a polynomial, the rationality of Z implies that of

Now it remains to show (1) is equivalent to (3). We shall first show that (3) implies
(}) Suppose A = —%EL. Then by LemAma 5.4 we get Q(y) = (y — u)" T (y — v)*. Thus,
Qx)=(1- ,uac)"‘“(l va)F. Recall P = (1 — px)"(1 — vo)*~1 as given in (5.2). Since
Z satisfies rZ'P(Z) + Q( ) =0 for r € [-1,1], it follows that

Z/
(1-p2)1-v2)

1
=—= forre(0,1].
,

v

As Z(1) = 0, by writing Wl(l—uZ) = ﬁ (ﬁ — m) and integrating the above
equation, we obtain

1
—(—ln(l —pZ)+In(1 - z/Z)) =—Inr forr e (0,1].
w—rv
Since p —v = % = —2, we get In % = In(r?), and further simplification yields
1—72 1—172

Z = = .
v—pur? 24 p— pr?

It is clear that Z is a rational function.

Last we check that (1) implies (3). Suppose that Z is rational. Recall P(z) = (1 —
px)™(1 —vz)*~1. By Lemma 5.4, we have Q(y) = (y — u)" 1T (y) + ¢ where T is some
polynomial of degree k and c is some real number. By writing T'(y) = Z?:o aj(y — p)?
for some a; € R, we then have

k k
Qy) =Y ajly—pw™ ' +e and Q) =Y a;(1— pa)" L 4 cam
=0 j=0

Recall rZ'P(Z) + Q(Z) = 0 for r € [—1,1]. We divide the equation by (1 — uZ)™t! to
obtain
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Zl(l . VZ)k—l k Zkfj Zm+1

Tz T Y= pz) Tz

=0 forre[-1,1].

Set n(r) = #Z)(r) forr € [-1,1]. Thenn' = (1—%2)2 and }:Zg = 1+ (u—v)n. Therefore,
we can rewrite the above equation into
1 e
i (L (=)™ + Y a7 + et =0, (5.5)
§=0

As Z is rational, so is . We can write n = § for some coprime polynomials p and gq.

m—+1

Putting this into (5.5) and multiplying the equation by ¢™*!, we obtain

k
r(a—pd)(g+ (m—v)p)" q"+ Y a;pt I opmt =0,
=0

Assume ¢ # 0. Then p™*! is divisible by ¢. As p and ¢ are coprime, ¢ is a constant.
Without losing of generality, we can assume g = 1 and thus 7 is just the polynomial p.
Now that all terms in (5.5) are polynomials, we can count their degrees. Note cn™*! is
of degree (m + 1) deg p while all other terms on the left hand side of (5.5) are of degree
less than or equal to k deg p. Therefore, we have degp = 0, that is, p is a constant. So are
the functions 1 and Z. This is a contradiction as Z is not constant by Proposition 4.1.

Hence we must have ¢ = 0. By Lemma 5.4, (3) holds. So the proof is completed. O
We are now ready to prove Proposition 1.10.

Proof of Proposition 1.10. Let D be the complex n-dimensional unit ball {z € C" : |z| <

1}. We introduce the function h = (lep)l/p and the metric go = (go);; = ((log h)ﬁ).

Note that gg is just multiple of the Bergman metric of D. Thus gg is the complete

p(n+1) +1)
Kéhler-Einstein metric on D with Ricci curvature equal to Ag = —p(n + 1). If we take
g = kgo, then g is the complete Kdhler-Einstein metric on D with Ricci curvature equal

to A = Ag/k. Recall the domain Q defined in (1.6), which now becomes

1
1—|[z[?

Q={(z,6) e DxCF:( ) Ple? < 1),

Clearly, we have 0 = E,. For m = n+ k, by Example 5.2, the Cheng—Yau-Mok solution
for domain {2 is given by

w= kw1 (GH) ™7 g([¢|hs),

n

where G = det(g,;) and H = h¥. A straightforward computation yields G' = W,
and thus
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n

n kE m 1
w=patt (1 — [z D g (1e| (1 — [2]?)720). (5.6)

On the other hand, the Bergman kernel K of E, was computed by D’Angelo [4]:

P O B

K Z2,6)5 (%, = C; 7 ’
(0, =0)=3 () e

where ¢; are constants depending on i,n, k and p.

(5.7)

To establish Proposition 1.10, we assume the Bergman metric gg of E, is Kéahler-
Einstein and first follow the work of Fu-Wong [7] to compute the volume form of gg.
Note that a generic boundary point of E, is smooth and strictly pseudoconvex (indeed
spherical). Take an arbitrary strictly pseudoconvex boundary point (zg,&p). By using
Fefferman’s expansion for the Bergman kernel near (zg, §y) and the argument in Cheng—
Yau ([2], page 510), we deduce that the Ricci curvature of gg at (z,€) € E, tends to
—1 as (z,£) approaches (zg,&p). Thus the Kéhler-Einstein assumption implies that the
Ricci curvature of gp is equal to —1. Then by Proposition 1.2 in [7], the determinant of
gB equals the Bergman kernel up to a positive constant multiple. On the other hand,
the volume form of two complete Kéhler-Einstein metrics of negative Ricci curvature,
det((—logu),;) and the determinant of gg, on E,, can only differ by a positive constant
multiple. As a result, we have u~ (™1 = ¢K for some constant ¢ > 0. Combining this
with (5.6) and (5.7), we obtain

_ |Z|2)7(n+1)+£

—-n n+1+) (m+1) p .
P (1= A7) i (SICEEl Z 1_‘2:')%_'5'2)%

After simplification, this becomes
m

1 1
o~ MY (g1 — —2—
(0 ) = o0 e g o iy

By setting r = [€](1 — |2]2)” %, we observe ¢~ ("1 (r) is equal to cp” Sre(l —
Tz)f(kﬂ). Thus, ¢™*! is rational. By Proposition 5.5, we get A = —™. Recall that
A= % = —@. So it follows that p = 1 and the proof is completed. O
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