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1. Introduction

In this paper, the authors continue their investigation of Kähler–Einstein metrics and 
obstruction flatness in the context of domains in vector bundles. In a recent paper [5]
the authors studied obstruction flatness of CR hypersurfaces that arise as the unit circle 
bundle of a negative Hermitian line bundle over a Kähler manifold. The authors proved, 
among other results, that for a negative line bundle (L, h) over a complex manifold M , 
if the Kähler metric g induced by − Ric(L, h) has constant Ricci eigenvalues, then the 
unit circle bundle S(L) is obstruction flat. If, in addition, all the Ricci eigenvalues are 
strictly less than 1, then the disk bundle admits a complete Kähler–Einstein metric. It is 
natural to consider also the more general case of unit sphere bundles in Hermitian vector 
bundles of higher rank. The goal of this paper is to find the right conditions on a vector 
bundle that will guarantee obstruction flatness of the corresponding sphere bundle. This 
turns out to be more subtle than the line bundle case (cf., e.g., Remark 1.5 below and the 
penultimate paragraph of this introduction) and we need to pose an additional condition 
on the curvature, beyond the conditions on the Ricci curvature that we pose in the line 
bundle case, as will be explained below.

We begin by introducing the notion of obstruction flatness in its classical context. On 
a smoothly bounded strongly pseudoconvex domain Ω ⊂ Cn, n ≥ 2, the existence of a 
complete Kähler–Einstein metric on Ω is governed by the following Dirichlet problem for 
Fefferman’s complex Monge-Ampère equation:

⎧⎪⎨
⎪⎩

J(u) := (−1)n det
(

u uzk

uzj
uzjzk

)
= 1 in Ω

u = 0 on ∂Ω
(1.1)

with u > 0 in Ω. If u is a solution of (1.1), then − log u is the Kähler potential of 
a complete Kähler–Einstein metric on Ω with negative Ricci curvature. Fefferman [6]
established the existence of an approximate solution ρ ∈ C∞(Ω) of (1.1) that only 
satisfies J(ρ) = 1 + O(ρn+1), and showed that such a ρ is unique modulo O(ρn+2). Such 
an approximate solution ρ is often referred to as a Fefferman defining function. Cheng 
and Yau [2] then proved the existence and uniqueness of an exact solution u ∈ C∞(Ω) to 
(1.1), now called the Cheng–Yau solution. Lee and Melrose [9] showed that the Cheng–
Yau solution has the following asymptotic expansion:

u ∼ ρ
∞∑

k=0

ηk

(
ρn+1 log ρ

)k
, (1.2)

where each ηk ∈ C∞(Ω) and ρ is a Fefferman defining function. The expansion (1.2)
shows that, in general, the Cheng–Yau solution u can only be expected to have a finite 
degree of boundary smoothness; namely, u ∈ Cn+2−ε(Ω) for any ε > 0. Graham [8]
showed that the obstruction to C∞ boundary regularity of the Cheng–Yau solution is in 
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fact given by the lowest order obstruction η1|∂Ω, the restriction of η1 to the boundary. 
More precisely, in [8] Graham proved that if η1|∂Ω vanishes identically (on ∂Ω), then 
every ηk vanishes to infinite order on ∂Ω for all k ≥ 1. For this reason, η1|∂Ω is called the 
obstruction function. Graham also showed [8] that, for any k ≥ 1, the coefficients ηk mod 
O(ρn+1) are independent of the choice of Fefferman defining function ρ and are locally 
determined by the local CR geometry of ∂Ω. As a consequence, the ηk mod O(ρn+1), 
for k ≥ 1, are local CR invariants that can be defined on any strongly pseudoconvex CR 
hypersurface in a complex manifold. In particular, the obstruction function O = η1|∂Ω is a 
local CR invariant that can be defined on any strongly pseudoconvex CR hypersurface Σ. 
If Σ is a CR hypersurface for which the obstruction function O vanishes identically, then 
Σ is said to be obstruction flat. The most basic examples of obstruction flat hypersurfaces 
are the sphere {z ∈ Cn : |z| = 1} and, more generally, any CR hypersurface that is locally 
CR diffeomorphic to an open piece of the sphere; a CR hypersurface that is locally CR 
diffeomorphic to an open piece of the sphere in a neighborhood of any point is called 
spherical.

As mentioned above, the main aim of this paper is to extend the authors’ results in [5]
concerning obstruction flatness of unit circle bundles in negative Hermitian line bundles 
over Kähler manifolds to the more general situation of sphere bundles in Hermitian vector 
bundles of higher rank. To formulate our results, we first review some standard facts and 
notions concerning the geometry of Hermitian vector bundles and Kähler manifolds. 
Let (E, h) be a Hermitian (holomorphic) vector bundle over a complex manifold M . 
Denote by π : E → M the canonical projection and by Ez = π−1(z) the fiber at z. Let 
Θ = ΘE,h be the associated curvature form of the Chern connection of (E, h); thus, Θ
is an End(E)-valued (1, 1)-form. At each point z ∈ M , the tensor Θz = Θ(z) can be 
regarded as a Hermitian bilinear form on Ez ⊗ T 1,0

z . We make the following definition, 
which will be used in the main results.

Definition 1.1. The curvature Θ splits if, at every z ∈ M , there exists a Hermitian form 
Hz on T 1,0

z M such that Θz = h ·Hz; or, equivalently, for any e ∈ Ez and any v ∈ T 1,0
z M ,

Θz(e ⊗ v, e ⊗ v) = h(e, e) · Hz(v, v). (1.3)

In addition, we say that the vector bundle (E, h) is curvature split if its curvature Θ
splits. We remark that when this is the case, Hz is equal to the Ricci curvature of (E, h)
at z up to a scaling factor. See the paragraph before (2.1) in §2.

When the Hermitian vector bundle (E, h) is Griffiths negative, i.e., 
√

−1Θz(e ⊗ v, e ⊗
v) < 0 for all non-zero e ∈ Ez, v ∈ T 1,0

z M and z ∈ M , the negative of its Ricci, 
− Ric(E, h), induces a Kähler metric g on M . By Lemma 1.2.2 in Mok-Ng [11], the 
corresponding sphere bundle S(E) = {e ∈ E : |e|h = 1} is strongly pseudoconvex; here, 
|e|h =

√
h(e, e) denotes the norm of e with respect to the metric h.

Given an n-dimensional Kähler manifold (M, g), let Ric = −i∂∂ log det(g) denote 
the associated Ricci tensor. The latter naturally induces an endomorphism, the Ricci 
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endomorphism, of the holomorphic tangent space T 1,0
z M given by Ric · g−1 for z ∈ M . 

The eigenvalues of this endomorphism will be referred to as the Ricci eigenvalues of 
(M, g) and, by design, are functions of z ∈ M . All Ricci eigenvalues are real-valued 
as both Ric and g are Hermitian tensors. For a fixed z, we label the Ricci eigenvalues 
such that λ1(z) ≤ · · · ≤ λn(z). Note that the sum of the λi(z), i.e., the trace of the 
Ricci endomorphism, gives the scalar curvature at z. The Kähler manifold (M, g) is 
said to have constant Ricci eigenvalues, if each λi(z), for 1 ≤ i ≤ n, is a constant 
function on M ; equivalently, the characteristic polynomial of the Ricci endomorphism, 
Ric · g−1 : T 1,0

z M → T 1,0
z M is the same at every point z ∈ M .

Our first main result is as follows.

Theorem 1.2. Let (E, h) be a Hermitian holomorphic vector bundle over a complex man-
ifold M . Suppose (E, h) is Griffiths negative and its curvature splits. Let g be the Kähler 
metric on M induced by − Ric(E, h). If (M, g) has constant Ricci eigenvalues, then S(E)
is obstruction flat.

Recall that the notion of obstruction flatness originates in the context of complete 
Kähler–Einstein metrics on domains. It is natural to ask whether a complete Kähler–
Einstein metric exists (globally) on the corresponding ball bundle B(E) = {e ∈ E :
|e|h < 1} of (E, h) in the situations we are considering. We shall prove the following 
result:

Theorem 1.3. Let n ≥ 1, k ≥ 1 and m = n +k. Let M be a complex manifold of dimension 
n and (E, h) a Hermitian holomorphic vector bundle over M of rank k such that (E, h)
is Griffiths negative and its curvature splits. Let g be the Kähler metric on M induced 
by − Ric(E, h). Assume (M, g) is complete and has constant Ricci eigenvalues. If all the 
Ricci eigenvalues are strictly less than 1, then the ball bundle B(E) admits a unique 
complete Kähler–Einstein metric g̃ with Ricci curvature equal to −(m + 1). Moreover, 
this metric is induced by the following Kähler form

ω̃(w, w) := − 1
m + 1π∗(Ric)|w + 1

m + 1π∗(ω)|w − i∂∂ log φ(|w|h), (1.4)

where ω and Ric are respectively the Kähler and the Ricci form of (M, g), π : E → M the 
canonical fiber projection of the vector bundle. Moreover, φ : (−1, 1) → R+ is an even 
real analytic function that depends only on the characteristic polynomial of the Ricci 
endomorphism of (M, g). (More precisely, φ is given by Proposition 4.1 by choosing λi’s 
to be the Ricci eigenvalues).

If the Hermitian vector bundle comes from a direct sum of copies of a single Hermitian 
line bundle, then it is automatically curvature split (cf. Proposition 2.1). Thus we have 
the following corollary of Theorems 1.2 and 1.3.
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Corollary 1.4. Let (L, h0) be a negative line bundle over a complex manifold M . Set

(E, h) = (L, h0) ⊕ · · · ⊕ (L, h0),

where there are k copies of (L, h0) on the right hand side. Let g be the Kähler metric 
induced by − Ric(E, h). If (M, g) has constant Ricci eigenvalues, then S(E) is obstruction 
flat. Furthermore, if in addition (M, g) is complete and all the Ricci eigenvalues are 
strictly less than 1, then the ball bundle B(E) admits a unique complete Kähler–Einstein 
metric with Ricci curvature equal to −(m + 1), where m = n + k and n is the dimension 
of M .

Remark 1.5. In the setting of Corollary 1.4, Webster [14] proved that for n = 1 and 
k ≥ 2, S(E) is spherical if and only if (M, g) has constant Gauss curvature K = −2/k. 
Note that the metric g here is k multiple of the metric used in [14]. This result illustrates 
the difference between the case where (E, h) is a line bundle (k = 1) and the case where 
it is a vector bundle of rank k ≥ 2. In the former case provided M is compact, the circle 
bundle is spherical if and only if K is constant, regardless of its value.

Remark 1.6. Combining Webster’s result in Remark 1.5 with Corollary 1.4 yields that, 
for n = 1 and k ≥ 2, if the Gauss curvature of (M, g) is constant but not equal to −2, then 
S(E) is obstruction flat but not spherical. For example, taking M = CP1 and (L, h0) as 
the tautological line bundle in Corollary 1.4, we find that S(E) is a compact, obstruction 
flat and non-spherical CR hypersurface for k ≥ 2. (More examples of obstruction flat 
CR hypersurface are provided in §5.)

Remark 1.7. The condition for existence of a complete Kähler–Einstein metric in Theo-
rem 1.3 and Corollary 1.4 is optimal, in the sense that the conclusion fails if some Ricci 
eigenvalue is greater than or equal to 1. Indeed, the following statement follows from 
van Coevering’s work in [13, Theorem 1.1 and Corollary 1.3]. Let M be a compact com-
plex manifold of dimension n and (E, h) a Hermitian holomorphic vector bundle over 
M of rank k. Suppose (E, h) is Griffiths negative. Let g be the Kähler metric on M

induced by − Ric(E, h). Assume (M, g) has constant Ricci eigenvalues. Then all these 
Ricci eigenvalues are strictly less than 1 if and only if the ball bundle B(E) admits a 
unique complete Kähler–Einstein metric g̃ with Ricci curvature equal to −(n + k + 1).
We point out, however, that the conditions in van Coevering’s work [13] are formulated 
in terms of negativity of Chern classes: −c1(M) − c1(E) > 0. In the context of constant 
Ricci eigenvalues, it can be shown that this condition is equivalent to all Ricci eigenvalues 
being < 1, as in Theorem 1.3 and Corollary 1.4. To see the equivalence, one can verify 
that when −c1(M) − c1(E) > 0, we have

∫
Sk(1 − λ1, . . . , 1 − λn) ωn > 0, k = 1, . . . , n, (1.5)
M
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where Sk denotes the symmetric polynomial of degree k and λj the Ricci eigenvalues. 
In the case where the Ricci eigenvalues are constant, the condition (1.5) clearly implies 
λj < 1 for 1 ≤ j ≤ k. The implication of the other direction of the equivalence is trivial. 
The main novelty of Theorem 1.3 is that M need not be compact and, in addition, the 
explicit formula (1.4) for the Kähler–Einstein metric.

A case of particular interest occurs when the base manifold is a domain in Cn. Recall 
that, for a smoothly bounded strongly pseudoconvex domain Ω ⊂ Cn (n ≥ 2), the 
Cheng–Yau solution u ∈ C∞(Ω) is the unique solution to (1.1) and − log u is the potential 
of a complete Kähler–Einstein metric with negative Ricci curvature. More generally, when 
Ω ⊂ Cn is a bounded pseudoconvex domain, it follows from the work of Mok–Yau [12]
that Ω admits a unique complete Kähler–Einstein metric with Ricci curvature equal to 
−(n + 1). If we write g =

∑n
i,j=1 gij̄dzi ⊗ dzj and set u = (det gij̄)− 1

n+1 , then u satisfies 
(1.1). We will call u the Cheng–Yau–Mok solution for Ω. We have the following corollaries 
of Theorem 1.3.

Corollary 1.8. Let n ≥ 1, k ≥ 1 and m = n + k. Let D be a domain in Cn and h a 
positive real analytic function on D such that ω :=

√
−1 k ∂∂ log h is the Kähler form of 

a complete Kähler metric g =
∑n

i,j=1 gij̄dzi ⊗dzj on D. Assume that (D, g) has constant 
Ricci eigenvalues and that all eigenvalues are strictly less than 1. Consider the domain

Ω := {w = (z, ξ) ∈ D × Ck : |ξ|2h(z, z̄) < 1}, (1.6)

and the real hypersurface (which is an open dense subset of the boundary of Ω)

Σ := {w = (z, ξ) ∈ D × Ck : |ξ|2h(z, z̄) = 1}. (1.7)

Then the Cheng–Yau–Mok solution u of Ω is given by

u(w) = k
n

m+1 (GH)− 1
m+1 φ(|ξ|h 1

2 ), (1.8)

where H = hk, G = det(gij̄) and φ is as in Theorem 1.3. Moreover, u extends real 
analytically across the boundary piece Σ.

Corollary 1.9. Let n ≥ 1, k ≥ 1 and m = n + k. Let D be a domain in Cn and h a 
positive real analytic function on D such that ω :=

√
−1 k ∂∂ log h is the Kähler form 

of a complete Kähler metric g =
∑n

i,j=1 gij̄dzi ⊗ dzj on D. Assume that (D, g) is a 
homogeneous Kähler manifold (i.e., the group of holomorphic isometries acts transitively 
on D). Consider the domain Ω and the real hypersurface Σ defined by (1.6) and (1.7). 
Then the Cheng–Yau–Mok solution u of Ω is given by

u(w) = k
n

m+1 (GH)− 1
m+1 φ(|ξ|h 1

2 ),
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where H = hk, G = det(gij̄) and φ is as in Theorem 1.3. Moreover, u extends real 
analytically across the boundary piece Σ.

Finally, by studying the potential rationality of the Cheng–Yau–Mok solution, we 
obtain a characterization of the unit ball in a class of egg domains in terms of the 
Bergman-Einstein condition. A well-known conjecture posed by Yau [15] asserts that if 
the Bergman metric of a bounded pseudoconvex domain is Kähler-Einstein, then the 
domain must be homogeneous. The following result gives an affirmative answer for a 
class of egg domains.

Proposition 1.10. Given p ∈ R+, n ∈ Z+ and k ∈ Z+, we let

Ep := {(z, ξ) ∈ Cn × Ck : |z|2 + |ξ|2p < 1}.

Then the Bergman metric of Ep is Kähler–Einstein if and only if p = 1.

Remark 1.11. When n = 1 and k = 1, the above proposition was proved by Cho [3] (and 
was known earlier to Fu–Wong [7] if p is an integer). When k = 1 and n ≥ 1, it was 
proved by the authors in [5].

Although we have established versions of Theorems 1.2 and 1.3 in the case of line 
bundles in [5], we emphasize that the extension to the case of vector bundles carried 
out in this paper is far from simple and obvious. To illustrate a basic difference between 
the two cases, we offer the following observation: If (L, h) is a Hermitian line bundle 
over a Kähler manifold (M, g), where g is induced by −Ric(L, h), then under some 
mild assumptions (e.g., simple-connectedness of M), every holomorphic self-isometry of 
(M, g) naturally extends to a biholomorphism of (L, h) which preserves the fiber norms. 
This statement, however, fails dramatically when (L, h) is replaced by a vector bundle 
(E, h) of higher rank. While we borrow ideas from [5] to construct the desired metric 
in the proofs of Theorem 1.2 and 1.3, the main difficulty arises in the verification that 
the metric constructed indeed satisfies the Kähler–Einstein condition (i.e., the complex 
Monge-Ampère equation). In particular, in the vector bundle case, the calculation of 
the Ricci curvature of the metric we construct seems very difficult in general. A key 
observation is that the curvature splitting assumption appears to be the right condition to 
make the computation tractable. Even under this assumption, however, the calculations 
in the vector bundle case are significantly more involved than those in the line bundle 
case (cf. Lemma 3.6 and Lemma 3.7).

The paper is organized as follows. §2 gives some preliminary materials on Hermitian 
vector bundles, including the Griffiths negativity and the curvature split condition. In 
§3 and §4, we will respectively prove Theorem 1.2 and Theorem 1.3. In §5, Corollary 1.8, 
Corollary 1.9 and Proposition 1.10 are established, and some examples of obstruction 
CR hypersurfaces are constructed.
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2. Hermitian vector bundles

Let (E, h) be a Hermitian (holomorphic) vector bundle over a complex manifold M
of dimension n. Denote by π : E → M the canonical projection and by Ez = π−1(z) the 
fiber at z. As before, Θ = ΘE,h is the curvature form of the Chern connection of (E, h). 
Set k = Rank E and let {eα(z)}k

α=1 be a basis of Ez. If {eα(z)}k
α=1 is orthonormal, then 

the Ricci curvature of E at z is given by the Hermitian form on T 1,0
z M :

Ric(E)(v, v) =
k∑

α=1
Θz(eα(z) ⊗ v, eα(z) ⊗ v).

Note that the condition (1.3) in Definition 1.1 implies Ric(E)(v, v) = kHz(v, v). Hence 
the curvature Θ splits if and only if

Θ = 1
k

h · Ric(E). (2.1)

It will be useful to express the curvature split condition in local coordinates. Let (D, z)
with z = (z1, · · · , zn) be a local coordinate chart of M and {eα}k

α=1 a local frame of E
over D. Then we have

π−1(D) =
{ k∑

α=1
ξαeα(z) : z ∈ D and ξα ∈ C for any 1 ≤ α ≤ k

}
,

and (z, ξ) = (z, ξ1, · · · , ξk) form a local coordinate system on π−1(D). With respect to 
the local coordinates z and the local frame {eα} over D, we can write the curvature 
tensor Θ into

Θ :=
k∑

α,β=1

n∑
i,j=1

Θαβ̄ij̄ e∗
α ⊗ e∗

β ⊗ dzi ⊗ dzj .

In addition, if we denote by hαβ̄ := h(eα, eβ) and Rij̄ := Ric(E)
(

∂
∂zi

, ∂
∂zj

)
, then it is 

well-known that

Θαβ̄ij̄ = −
∂2hαβ̄

∂zi∂zj
+ hγδ̄ ∂hαδ̄

∂zi

∂hγβ̄

∂zj
, (2.2)

and the curvature split condition (1.3) becomes
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Θαβ̄ij̄ = 1
k

hαβ̄Rij̄ . (2.3)

For the remainder of this paper, we shall use Greek letters α, β, γ · · · to denote indices 
ranging between 1 and k for the fiber coordinates of E, Roman letters i, j to denote 
indices ranging between 1 and n for the local coordinates of M , and the Roman letters 
s, t to denote indices ranging from 1 to m = n +k for local coordinates of the total space 
E.

The curvature split condition holds true trivially for any Hermitian line bundle. But for 
Hermitian vector bundles of higher rank this is indeed a strong condition. Nevertheless, 
we can still construct an abundance of such examples by considering the direct sum of 
Hermitian line bundles.

Proposition 2.1. Let (L1, h1), · · · , (Lk, hk) be Hermitian line bundles over a complex 
manifold M . Set (E, h) = (L1, h1) ⊕ · · · ⊕ (Lk, hk). Then (E, h) is curvature split if 
and only if Ric(L1, h1) = · · · = Ric(Lk, hk). In particular, if (L1, h1) = · · · = (Lk, hk), 
then (E, h) is curvature split.

Remark 2.2. Let (L1, h1) and (L2, h2) be two Hermitian line bundles over a complex man-
ifold M . Then Ric(L1, h1) = Ric(L2, h2) implies that L1 and L2 are smoothly equivalent, 
but in general, they are not necessarily biholomorphically equivalent.

Proof of Proposition 2.1. Let (D, z) be a local coordinate chart and eα a local frame of 
Lα for 1 ≤ k ≤ α over D. Then {eα}k

α=1 forms a local frame of E, in terms of which the 
metric h becomes the diagonal matrix

(hαβ̄) =

⎛
⎝h1(e1, e1)

. . .
hk(ek, ek)

⎞
⎠ .

By (2.2), when α �= β, it follows that Θαβ̄ij̄ = 0; when α = β, we have

Θαᾱij̄ = − ∂2hαᾱ

∂zi∂zj
+ hαᾱ ∂hαᾱ

∂zi

∂hαᾱ

∂zj
= −hαᾱ

∂2 log
(
hαᾱ

)
∂zi∂zj

= hαᾱ

(
Ric(Lα, hα)

)
ij̄

.

As a result,

Θαβ̄ij̄ = hαβ̄

(
Ric(Lα, hα)

)
ij̄

.

On the other hand, the curvature split condition (2.3) writes into

Θαβ̄ij̄ = 1
k

hαβ̄

(
Ric(E, h)

)
ij̄

= 1
k

hαβ̄

k∑
γ=1

(
Ric(Lγ , hγ)

)
ij̄

.

So the result follows by comparing the above two equations. �
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We next recall the notion of and some simple facts about Griffiths negativity (and 
positivity) for a Hermitian vector bundle.

Definition 2.3. Let (E, h) be a Hermitian vector bundle over a complex manifold. We say 
(E, h) is Griffiths negative (resp. positive) if for any z ∈ M, e ∈ Ez and v ∈ T 1,0M we 
have

Θz(e ⊗ v, e ⊗ v) ≤ 0 (resp. ≥ 0),

and the equality holds if and only if e = 0 or v = 0 (i.e., e ⊗ v = 0). In local coordinates, 
this means that for any v = (v1, · · · , vn) ∈ Cn and ξ = (ξ1, · · · , ξk) ∈ Ck we have 
Θαβ̄ij̄ξαξβvivj ≤ 0 (resp. ≥ 0), and the equality holds if and only if v = 0 or ξ = 0.

Lemma 2.4. Let (E, h) be a Hermitian vector bundle over a complex manifold. Consider 
the properties:

(1) The Hermitian vector bundle (E, h) is Griffiths negative (resp. positive).
(2) The determinant line bundle L = det E with the determinant metric det h is negative 

(resp. positive).

In general, it holds that (1) implies (2). If the curvature Θ splits, then (1) is equivalent 
to (2).

Proof. The fact that (1) implies (2) follows directly from the identity
(
Ric(L)

)
ij̄

=
(
Ric(E)

)
ij̄

.

When Θ splits, by (2.3) we have Θαβ̄ij̄ = 1
k hαβ̄

(
Ric(L)

)
ij̄

. Then it is clear that (2) also 
implies (1) in this case. �
Remark 2.5. Let (L1, h1), · · · , (Lk, hk) be line bundles over a complex manifold M , 
and consider the vector bundle (E, h) := (L1, h1) ⊕ · · · ⊕ (Lk, hk). Then it follows 
that Ric(det E, det h) = Ric(E, h) =

∑k
j=1 Ric(Lj , hj). By using Proposition 2.1 and 

Lemma 2.4 we immediately obtain that if (E, h) is curvature split, then (E, h) is Grif-
fiths negative if and only if each (Lj , hj) for 1 ≤ j ≤ k is negative.

Remark 2.6. Consider the special case when M is a Riemann surface (i.e., n = 1). 
Suppose (E, h) is Griffiths negative vector bundle over M and let g be the metric induced 
by − Ric(E, h). Then by (2.3), the vector bundle (E, h) is curvature split if and only if 
(E, h) is Hermitian-Einstein.

For a Hermitian holomorphic vector bundle (E, h), recall that S(E) := {e ∈ E : |e|h =
1} denotes the sphere bundle of (E, h). We conclude this section by noting the following 
fundamental fact; see [11, Lemma 1.2.2] and [13, Proposition 5.3].
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Proposition 2.7. If (E, h) is Griffiths negative, then S(E) is strongly pseudoconvex.

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. As the obstruction flatness is a local property 
(cf. [8]), we need to show that for any point p ∈ S(E), there exists some neighborhood 
U of p on E such that S(E) ∩ U is obstruction flat. By the work of Graham [8] again, it 
suffices to construct a function u ∈ C∞(U) such that u = 0 on S(E) ∩U and J(u) = 1 on 
the pseudoconvex side of S(E) ∩ U . To do this, we shall establish a series of propositions 
and lemmas.

Proposition 3.1. Let P (y) be a monic polynomial in y ∈ R of degree m − 1 ≥ 1 and Q(y)
a polynomial satisfying dQ

dy = (m + 1)yP (y) (thus Q is a monic polynomial of degree 

m + 1 and is unique up to a constant). Suppose P̂ and Q̂ are polynomials defined by

P̂ (x) = xm−1P (x−1), Q̂(x) = xm+1Q(x−1).

Let I ⊂ (0, ∞) be an open interval containing r = 1 and Z(r) a real analytic function 
on I satisfying the following conditions:

rZ ′P̂ (Z) + Q̂(Z) = 0 on I, Z(1) = 0. (3.1)
Z ′(r) < 0 and P̂ (Z) > 0 on I, Z(r) > 0 on I0 := I ∩ (0, 1), and Z ′(1) = −1. (3.2)

Let k ∈ Z+ with k ≤ m −1 and set φ(r) = 2
(

r2k−1

−Z′P̂ (Z)

) 1
m+1 Z on I. Then φ is real analytic 

on I, φ(1) = 0 and φ > 0 on I0. Moreover, φ satisfies that (m +1)rZφ′+(m +1 −2kZ)φ =
0 on I, and φ′(1) = −2.

Remark 3.2. Since P and Q are monic polynomials, the polynomials P̂ and Q̂ satisfy 
P̂ (0) = 1 and Q̂(0) = 1. By elementary ODE theory, (3.1) has a real analytic solution Z
which satisfies (3.2) in some open interval I containing 1.

Proof. It is clear that φ is real analytic on I, φ(1) = 0, and φ > 0 on I0 by the definition 
of φ and the assumption of Z. We only need to prove the last assertion in Proposition 3.1. 
The proof is similar to that of Proposition 2.1 in [5]. We just highlight the following two 
lemmas and the conclusion will be evident.

Lemma 3.3. Let Z be as in Proposition 3.1. Then we have

r(Z ′Z−(m+1)P̂ (Z))′ = (m + 1)Z ′Z−(m+2)P̂ (Z) − Z ′Z−(m+1)P̂ (Z) on I0.

Equivalently,

r
(Z ′Z−(m+1)P̂ (Z))′

′ −(m+1) ˆ = −1 + (m + 1)Z−1 on I0.

Z Z P (Z)
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Lemma 3.4. Let φ and Z be as in Proposition 3.1. Then we have

r
(Z ′Z−(m+1)P̂ (Z))′

Z ′Z−(m+1)P̂ (Z)
= (2k − 1) − (m + 1)r φ′

φ
on I0.

Lemma 3.3 is identical to Lemma 2.3 in [5]; Lemma 3.4 follows from a similar argument 
as that of Lemma 2.4 in [5]. Thus, we omit their proofs. Finally we compare (the second 
equation in) Lemma 3.3 and Lemma 3.4 to obtain (m + 1)rZφ′ + (m + 1 − 2kZ)φ = 0
on I0. By analyticity, it actually holds on I. Recall Z(1) = 0, P̂ (0) = 1 and Z ′(1) = −1. 
It then follows from the definition of φ that φ′(1) = −2. This finishes the proof of 
Proposition 3.1. �

Let (M, g) and (E, h) be as in Theorem 1.2. Denote by n the complex dimension of 
M and by k the rank of E. Choose a coordinate chart (D, z) of M with a local frame 
{eα}k

α=1 of E over D. Let π : E → M be the canonical projection. Then we have

π−1(D) =
{ k∑

α=1
ξαeα(z) : (z, ξ) ∈ D × Ck

}
.

Under this trivialization, the sphere bundle S(E) over D can be written as

Σ := S(E) ∩ π−1(D) =
{

(z, ξ) ∈ D × Ck :
k∑

α,β=1

hαβ̄(z, z̄)ξαξβ = 1
}

,

where hαβ̄(z, ̄z) = h(eα(z), eβ(z)) for 1 ≤ α, β ≤ k. In the local coordinates z =
(z1, · · · , zn) we write g =

∑n
i,j=1 gij̄dzi ⊗ dzj on D. As g is induced by − Ric(E, h), 

we have gij̄ = ∂2 log H
∂zi∂zj

where H = det(hαβ̄). Let G = det(gij) on D.
Set m = n + k and denote by In the n × n identity matrix. Given p ∈ M , let T (y, p)

be the characteristic polynomial of the linear operator 2k
m+1 Ric ·g−1 : T 1,0

p M → T 1,0
p M . 

That is,

T (y, p) = det(yIn − 2k

m + 1Ric · g−1). (3.3)

In the local coordinates z = (z1, · · · , zn), writing the Ricci tensor as Ric = (Rik)1≤i,k≤n =
−(∂2 log G

∂zi∂zk
)1≤i,k≤n, we see that T (y, p) is the determinant of the n × n matrix 

(yδij − 2k
m+1 Rik · gjk(p)).

Now we define

P (y, p) := (y − 2k

m + 1)k−1T (y, p). (3.4)

By the constant Ricci eigenvalue assumption, P (y, p) does not depend on p. We will 
therefore just denote it by P (y). It is clear that P (y) is a monic polynomial in y of 
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degree m − 1. We apply Proposition 3.1 to this polynomial P (y) (with k equal to the 
rank of E) to obtain polynomials Q(y), P̂ (x), Q̂(x), as well as real analytic functions 
Z(r) and φ(r) in some interval I containing r = 1. We let y(r) = 1

Z(r) for r ∈ I0. By 
Proposition 3.1, (m + 1)rZφ′ + (m + 1 − 2kZ)φ = 0 on I. It then follows that

y(r) = 2kφ(r) − (m + 1)rφ′(r)
(m + 1)φ(r) = 2k

m + 1 − r
φ′

φ
on I0. (3.5)

Theorem 1.2 will follow from the next proposition.

Proposition 3.5. Let

U =
{

w := (z, ξ) ∈ D × Ck : |w|h ∈ I
}

, U0 =
{

w := (z, ξ) ∈ D × Ck : |w|h ∈ I0

}
,

where |w|2h =
∑k

α,β=1 hαβ̄(z, ̄z)ξαξβ. Set

u(w) = k
n

m+1 (GH)− 1
m+1 φ

(
|w|h

)
for w ∈ U. (3.6)

Here G(w) is understood as G(z) for w = (z, ξ). Likewise for H. Then u is smooth in U
and satisfies

J(u) = 1 on U0, u = 0 on Σ.

Consequently, Σ is obstruction flat.

Proof. The smoothness of u follows easily from that of φ, as well as that of G, H and 
h. We thus only need to prove the remaining assertions. For that, we first prove the 
following lemma. Set X = X(w) = |w|h for w ∈ U , and

Y = Y (w) = 2k

m + 1 − X
φ′(X)
φ(X) for w ∈ U0. (3.7)

Then by (3.5), we have Y = y(r)|r=X = 1
Z(r) |r=X . Note that X and Y are independent 

of the choice of local coordinates and local frame.
In the following, we will also write the coordinates w of D×Ck as (w1, · · · , wm−1, wm). 

That is, we identify wi with zi for 1 ≤ i ≤ n, and wn+α with ξα for 1 ≤ α ≤ k. 
For a sufficiently differentiable function Φ on an open subset of D × Ck, we write, for 
1 ≤ s, t ≤ m, Φs = ∂Φ

∂ws
, Φt = ∂Φ

∂wt
, and Φst = ∂2Φ

∂ws∂wt
. To simplify the later computations, 

we introduce the following lemma.

Lemma 3.6. Let π : (E, h) → (M, g) be a Hermitian vector bundle of rank k over an n-
dimensional Hermitian manifold (M, g). Write m = n +k. Let Ω be a smooth (m, m)-form 
on E (regarded as an m-dimensional complex manifold) (resp. an open subset V ⊂ E). 
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Then we can define a smooth function Φ on E (resp. on V ) in the following manner: 
Pick any local coordinate chart (D, z) of M and any local frame {eα}k

α=1 of E over D. 
This induces a natural system of coordinates w = (z, ξ) for E on π−1(D) with

π−1(D) =
{ k∑

α=1
ξαeα(z) : (z, ξ) ∈ D × Ck

}
.

In the above coordinates, we write g =
∑n

i,j=1 gij̄dzi ⊗ dzj, hαβ̄ = h(eα, eβ) and Ω =
σ(z, ξ)dz ∧ dξ ∧ dz ∧ dξ where dz = dz1 ∧ · · · ∧ dzn and dξ = dξ1 ∧ · · · ∧ dξk. We define 
the function Φ : π−1(D) → C by

Φ(z, ξ) = σ(z, ξ)
det

(
gij̄(z)

)
· det

(
hαβ̄(z)

) .

Then Φ is independent of the choice of local coordinates and local frame. As a result, Φ
is a well-defined function on E (resp. on V ).

Proof. To show Φ is well-defined, we take two local coordinate charts, (D, z) and (D̃, ̃z)
of M , and two local frames of E, {eα}k

α=1 over D and {ẽα}k
α=1 over D̃. Then we obtain 

two induced coordinate systems, w = (z, ξ) on π−1(D) and w̃ = (z̃, ξ̃) on π−1(D̃). On 
D ∩ D̃ we can write z̃ = ϕ(z) for some biholomorphism ϕ and ξ̃ = ξ · A(z) for some 
holomorphic map A : D ∩ D̃ → Gl(k, C). By the relation g =

∑
i,j=1 gij̄(z)dzi ⊗ dzj =∑n

i,j=1 g̃ij̄(z̃)dz̃i ⊗ dz̃j , we have

det
(
gij̄(z)

)
= det

(
g̃ij̄(z̃)

)
·
∣∣Jϕ(z)

∣∣2
,

where J(ϕ) is the determinant of the Jacobian matrix of ϕ. Similarly, we also have

det
(
hαβ̄(z)

)
= det

(
h̃αβ̄(z̃)

)
·
∣∣det A(z)

∣∣2
.

On the other hand, by writing Ω = σ(z, ξ)dz ∧ dξ ∧ dz ∧ dξ = σ̃(z̃, ξ̃)dz̃ ∧ dξ̃ ∧ dz̃ ∧ dξ̃ on 
π−1(D) ∩ π−1(D̃), we get

σ(z, ξ) = σ̃(z̃, ξ̃) ·
∣∣Jϕ(z)

∣∣2 ·
∣∣det A(z)

∣∣2
.

It follows that

σ(z, ξ)
det

(
gij̄(z)

)
· det

(
hαβ̄(z)

) = σ̃(z̃, ξ̃)
det

(
g̃ij̄(z̃)

)
· det

(
h̃αβ̄(z̃)

) on π−1(D) ∩ π−1(D̃).

So the proof is completed. �
Next we will prove the following lemma on the computation of det

(
(− log u)st̄

)
.
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Lemma 3.7. Let u(w) be as defined in Proposition 3.5. Write Y ′ = dY
dX , i.e., Y ′ =

y′(r)|r=X . Then the following is a well-defined function on U0:

Φ(w) =
det

(
(− log u)st̄(w)

)
det

(
gij̄(z)

)
· det

(
hαβ̄(z)

) .

That is, Φ is independent of the choice of local coordinates of M and local frame of E. 
Moreover,

Φ = P (Y )Y ′

2m+1knX2k−1 on U0.

Proof. Consider the Hermitian (1, 1)-form ω̃ = −
√

−1∂∂ log u on U0 ⊂ E. In the above 
local coordinates w = (z, ξ), we can write ω̃ =

√
−1

∑m
s,t=1(− log u)st̄dws ∧ dwt. Then 

ω̃m

m! is a smooth (m, m)-form on U0 and

ω̃m

m! = (
√

−1)m det
(
(− log u)st̄

)
dw1 ∧ dw1 ∧ · · · ∧ dwm ∧ dwm.

By Lemma 3.6, Φ is well-defined on U0.
To prove the second assertion, we fix a point p ∈ E and write q = π(p). To compute 

the value of Φ at p, by the first part of the lemma, we can use any local coordinates of 
M and any local frame of E. In particular, we can choose a local coordinates of M and 
a local frame of E at q such that the induced coordinates of E near p, which we still 
denote by w = (z, ξ), satisfy z(q) = 0, hαβ̄(q) = δαβ and dhαβ̄(q) = 0, where δαβ is the 
Kronecker delta. Under the above coordinates, the curvature (2.2) at point q simplifies 
into

Θαβ̄ij̄(0) = −
∂2hαβ̄

∂zi∂zj
(0).

We take the logarithm of u (which is defined in (3.6)) and obtain

− log u = − n

m + 1 log k + 1
m + 1 log G + 1

m + 1 log H − log φ(X),

where X = |w|h =
(∑k

α,β=1 hαβ̄(z, ̄z)ξαξβ

)1/2. A straightforward computation yields

(− log u)st̄ = 1
m + 1

(
log G

)
st̄

+ 1
m + 1

(
log H

)
st̄

−
(φ′

φ
Xst̄ +

(φ′

φ

)′
XsXt̄

)
for any 1 ≤ s, t ≤ m.

Since Xst̄ = X(log X)st̄ + 1 XsXt̄, the above writes into
X



16 P. Ebenfelt et al. / Journal of Functional Analysis 286 (2024) 110366
(− log u)st̄ = 1
m + 1

(
log G

)
st̄

+ 1
m + 1

(
log H

)
st̄

− X
(φ′

φ

)(
log X

)
st̄

−
( 1

X

(φ′

φ

)
+

(φ′

φ

)′)
XsXt̄.

To continue the computation of this Hessian matrix, we shall divide it into the fol-
lowing three cases.

Case 1. 1 ≤ s, t ≤ n.
For this case, we have ws = zs and wt = zt. We denote i = s and j = t for simplicity. 

At w = (0, ξ), by the facts hαβ̄ = δαβ̄ and dhαβ̄ = 0 it follows that X = |ξ| and 
Xi = Xj̄ = 0. Moreover, we also have

(
log X

)
ij̄

∣∣
w=(0,ξ) =1

2
(
log X2)

ij̄

∣∣
w=(0,ξ) = 1

2
(X2)ij̄

X2

∣∣∣
w=(0,ξ)

= 1
2|ξ|2

k∑
α,β=1

∂hαβ̄

∂zi∂zj
(0)ξαξβ = 1

2|ξ|2
k∑

α,β=1

(
−Θαβ̄ij̄(0)

)
ξαξβ .

Since the curvature Θ splits and the Kähler metric is induced by − Ric(E, h) by the 
assumption of Theorem 1.2, it follows that

Θαβ̄ij̄(0) = 1
k

hαβ̄(0) ·
(
Ric(E, h)

)
ij̄

(0) = − 1
k

δαβ · gij̄(0).

Therefore,

(log X)ij̄

∣∣
w=(0,ξ) = 1

2k
gij̄(0).

Denote the Ricci form Ric(g) =
√

−1Rij̄dzi ∧dzj . Then (log G)ij̄ = −Rij̄ , (log H)ij̄ = gij̄

and by (3.7) we have

(− log u)st̄

∣∣
w=(0,ξ) = − 1

m + 1Rij̄(0) + 1
m + 1gij̄(0) − X

2k

φ′

φ
gij̄(0)

= − 1
m + 1Rij̄(0) + Y

2k
gij̄(0).

Case 2. 1 ≤ s ≤ n, n + 1 ≤ t ≤ n + k or n + 1 ≤ s ≤ n + k, 1 ≤ t ≤ n.
For this case, a similar computation yields (log G)st̄ and (log H)st̄ vanish identically 

and (log X)st̄|w=(0,ξ) = XsXt̄|w=(0,ξ) = 0. Therefore, (− log u)st̄|w=(0,ξ) = 0.
Case 3. n + 1 ≤ s, t ≤ n + k.
For this case, we have ws = ξs−n and wt = ξt−n. We denote α = s − n and β = t − n

for simplicity. Then a straightforward computation yields that at any w = (0, ξ) ∈ U0
we have X = |ξ|, Xs = 1 |ξ|−1ξα, Xt = 1 |ξ|−1ξβ and
2 2



P. Ebenfelt et al. / Journal of Functional Analysis 286 (2024) 110366 17
(
log X

)
st̄

= 1
2X2 δαβ − 1

2X4 ξαξβ .

As (log G)st̄ and (log H)st̄ vanish identically in this case, we have at w = (0, ξ)

(− log u)st̄ = −X
(φ′

φ

)( 1
2X2 δαβ − 1

2X4 ξαξβ

)
−

( 1
X

(φ′

φ

)
+

(φ′

φ

)′)ξαξβ

4X2 .

By (3.7), we further write it into

(− log u)st̄

∣∣
w=(0,ξ) =

(
Y − 2k

m + 1
)( 1

2X2 δαβ − 1
2X4 ξαξβ

)
+ Y ′

X

ξαξβ

4X2

= 1
2X2

(
Y − 2k

m + 1
)
δαβ +

(XY ′

4 − Y

2 + k

m + 1
)ξαξβ

X4 .

Combining the above three cases, we see the complex Hessian matrix 
(
(− log u)st̄

)
at 

w = (0, ξ) is block diagonal. Moreover,

det
(
(− log u)st̄

)
1≤s,t≤m

= det
(
(− log u)st̄

)
1≤s,t≤n

· det
(
(− log u)st̄

)
n+1≤s,t≤m

. (3.8)

Now we need to compute the determinants appearing on the right hand side of the above 
equation. By the above computation in Case 1, we have at w = (0, ξ)

det
(
(− log u)ij̄

)
1≤i,j≤n

= det
(

− 1
m + 1Rij̄(0) + Y

2k
gij̄(0)

)
=

( 1
2k

)n det
(

Y δij − 2k

m + 1Rik̄(0) gjk̄(0)
)

· det
(
gij̄(0)

)
=

( 1
2k

)n
T (Y ) G,

where the last equality follows from (3.3). For the second determinant on the right hand 
side of (3.8), by the computation in Case 3, we have at w = (0, ξ),

det
(
(− log u)st̄

)
n+1≤s,t≤m

= det
( 1

2X2

(
Y − 2k

m + 1
)
δαβ

+
(XY ′

4 − Y

2 + k

m + 1
)ξαξβ

X4

)
1≤α,β≤k

.

As X = |ξ| at w = (0, ξ), by the matrix determinant lemma we get

det
(
(− log u)st̄

)
n+1≤s,t≤m

=
( 1

2X2

(
Y − 2k

m + 1
))k−1( 1

2X2

(
Y − 2k

m + 1
)

+
(XY ′

4 − Y

2 + k

m + 1
) 1

X2

)

= Y ′

2k+1X2k−1

(
Y − 2k

m + 1
)k−1

.
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We now plug these results back into (3.8) and further use (3.4) to obtain that at w = (0, ξ)

det
(
(− log u)st̄

)
1≤s,t≤m

= Y ′

2m+1knX2k−1 P (Y ) G.

Note that at w = (0, ξ) we have H = 1. Therefore,

det
(
(− log u)st̄

)
1≤s,t≤m

GH
= P (Y )Y ′

2m+1knX2k−1 .

This proves Lemma 3.7. �
Now we resume the proof of Proposition 3.5. By the definition of φ in Proposition 3.1, 

for any r ∈ I0 we have

−Z ′P̂ (Z)Z−(m+1) = 2m+1r2k−1φ−(m+1)(r)

Recall that y(r) = 1
Z(r) . We thus get

y′P̂ (y−1)ym−1 = 2m+1r2k−1φ−(m+1)(r).

By the definition of P̂ in Proposition 3.1, we have P (y) = ym−1P̂ (y−1). Therefore,

y′P (y) = 2m+1r2k−1φ−(m+1)(r).

Now we take r = X = |w|h for w = (z, ξ) ∈ U0. Then

Y ′P (Y ) = 2m+1X2k−1φ−(m+1)(X) = 2m+1knX2k−1(GH)−1u−(m+1)(X),

where the second equality follows from the definition of u. Therefore,

Y ′P (Y )
2m+1knX2k−1 = (GH)−1u−(m+1)(X).

By Lemma 3.7 we obtain det
(
(− log u)st̄

)
1≤s,t≤m

= u−(m+1) on U0. Therefore, J(u) =
1 on U0. Since φ(1) = 0 as proved in Proposition 3.1, we obtain the boundary condition 
that u = 0 on Σ. The latter part of Proposition 3.5 follows from the first part and 
Graham’s work (see the first paragraph of this section). �
4. Proof of Theorem 1.3

We establish the following proposition before proceeding to the proof of Theorem 1.3.



P. Ebenfelt et al. / Journal of Functional Analysis 286 (2024) 110366 19
Proposition 4.1. Let n ≥ 1, k ≥ 1 and m = n + k. For given real numbers λ1 ≤ · · · ≤
λn < 1, set

P (y) =
(
y − 2k

m + 1
)k−1

n∏
i=1

(
y − 2kλi

m + 1
)
.

Let Q(y) be the polynomial satisfying dQ
dy = (m + 1)yP (y) and Q( 2k

m+1 ) = 0 (thus Q is 
a monic polynomial of degree m + 1 and is uniquely determined). Suppose P̂ and Q̂ are 
polynomials defined by

P̂ (x) = xm−1P (x−1), Q̂(x) = xm+1Q(x−1).

Then the following conclusions hold:

(1) There exists a unique real analytic function Z = Z(r) on [−1, 1] (meaning it extends 
real analytically to some open interval containing [−1, 1]) satisfying the following 
conditions:

rZ ′P̂ (Z) + Q̂(Z) = 0, Z(1) = 0. (4.1)

Moreover, Z is an even function satisfying Z(0) = m+1
2k , Z ′(0) = 0, Z ′ < 0 on (0, 1]

and Z ′(1) = −1, Z ′′(0) < 0. Consequently, Z ∈ (0, m+1
2k ) on (−1, 0) ∪ (0, 1).

(2) Let φ(r) = 2( r2k−1

−Z′P̂ (Z) )
1

m+1 Z. Then φ is real analytic on [−1, 1]. In addition, φ is 
an even function satisfying φ > 0 on (−1, 1) and φ(1) = 0. Moreover, φ satisfies 
(m + 1)rZφ′ + (m + 1 − 2kZ)φ = 0 and φ′(1) = −2.

Remark 4.2. For the polynomials P, Q, P̂ and Q̂ defined in Proposition 4.1, note that 
they satisfy P̂ (0) = Q̂(0) = 1, P > 0 on ( 2k

m+1 , +∞), P̂ > 0 on (0, m+1
2k ) and dQ

dy > 0 on 

( 2k
m+1 , ∞), Q > 0 on ( 2k

m+1 , ∞), Q̂ > 0 on (0, m+1
2k ) and Q̂( m+1

2k ) = 0.

Proof. The proposition was proved in [5, Proposition 2.7] for k = 1. We will extend the 
ideas in [5] to prove for the case k ≥ 2. Writing

λ = m + 1
2k

, (4.2)

we can express P̂ as follows

P̂ (x) =
(
1 − x

λ

)k−1
n∏

i=1

(
1 − λi

λ
x

)
:= (x − λ)k−1h(x).

Here h(x) = (−1)k−1λ−(k−1) ∏n
i=1

(
1 − λi

λ x
)

and it is a polynomial satisfying h(λ) �= 0. 
Note the polynomial Q̂ has a zero of order k at x = λ. Thus we can write Q̂(x) =
(x − λ)kg(x) for some polynomial g satisfying g(λ) �= 0.
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We introduce the following lemma on the polynomials h and g. For two functions f1
and f2, we write f1 ∼ f2 as x → λ if limx→λ

f1(x)
f2(x) = 1.

Lemma 4.3. It holds that g(λ) = −2h(λ) and (−1)k−1h(λ) > 0. In particular, Q̂(x)
P̂ (x) ∼

−2(x − λ) as x → λ.

Proof. Note that (−1)k−1h(λ) = λ−(k−1) ∏n
i=1

(
1 − λi

)
, which is clearly positive as all 

λi’s are strictly less than 1. We next prove the first identity. For that, we notice that

h(λ) = 1
(k − 1)!

dk−1P̂ (x)
dxk−1

∣∣∣
x=λ

and g(λ) = 1
k!

dkQ̂(x)
dxk

∣∣∣
x=λ

.

Since Q̂(x) = xm+1Q( 1
x ), by the definition of polynomial Q we have

dQ̂(x)
dx

= (m + 1)xmQ
( 1

x

)
− xm−1Q′( 1

x

)
= (m + 1)

x
Q̂(x) − (m + 1)

x
P̂ (x).

As P̂ and Q̂ respectively have a zero of order (k − 1) and k at x = λ, if we further 
differentiate the above equation (k − 1) times and evaluate it at x = λ, then

dkQ̂(x)
dxk

∣∣∣
x=λ

= − (m + 1)
λ

dk−1P̂ (x)
dxk−1

∣∣∣
x=λ

= −2k! h(λ).

It follows that g(λ) = −2h(λ). As a result, we get

Q̂(x)
P̂ (x)

= g(x)
h(x) (x − λ) ∼ −2(x − λ) as x → λ.

So the proof is completed. �
Now we are ready to prove part (1) of Proposition 4.1. It follows easily from the as-

sumption and elementary ODE theory that the ODE in (4.1) has a real analytic solution 
Z in some open interval I containing 1. Since P̂ (0) = 1 and Q̂(0) = 1, we see the ODE 
in (4.1) implies Z ′(1) = −1. Set

t0 = inf{t ∈ [0, 1) : on (t, 1] there exists a real analytic solution Z to (4.1) with Z ′ < 0}.

(4.3)
By definition, 0 ≤ t0 < 1 and on (t0, 1] there is a real analytic solution Z to (4.1) with 
Z ′ < 0.

Lemma 4.4. The number defined in (4.3) satisfies t0 = 0. Consequently, on (0, 1] there 
exists a (unique) real analytic solution Z to (4.1) and it satisfies Z ′ < 0.
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Proof. Seeking a contradiction, we assume t0 > 0. Since Z is decreasing on (t0, 1), we 
conclude that μ := limr→t+

0
Z(r) > 0 exists (allowing a priori μ = +∞ as the limit). 

We note that μ ≤ λ, where λ is the number introduced in (4.2). For, if this were not the 
case, then since Z(1) = 0 there would exist some t∗ ∈ (t0, 1) such that Z(t∗) = λ. By 
Lemma 4.3, at r = t∗ the ODE (4.1) gives Z ′(t∗) = 0, contradicting the fact Z ′(t∗) < 0. 
Therefore, we proceed by examining the following two cases.

Case I. Assume μ = λ. In this case, by Lemma 4.3 the ODE (4.1) gives

−Z ′(r) = Q̂(Z)
rP̂ (Z)

∼ −2Z − λ

r
as r → t+

0 .

Thus, there exists some constants δ > 0 and C > 0 such that −Z ′(r) ≤ C(λ − Z) for 
any r ∈ (t0, t0 + δ). That is, (log(λ − Z))′ ≤ C. By taking the integral we obtain

log
(
λ − Z(r)

)∣∣t

r=t0
≤ C(t − t0) for any t ∈ (t0, t0 + δ).

But this is impossible as the left hand side is +∞ while the right hand side is a finite 
number.

Case II. Assume μ < λ. In this case, P̂ (μ) > 0 and thus Q̂(Z)
rP̂ (Z) is a smooth function at 

(r, Z) = (t0, μ). Therefore, the following initial value problem has a real analytic solution 
Z̃ on some open interval J containing t0:

rZ ′P̂ (Z) + Q̂(Z) = 0, Z(t0) = μ.

Shrinking J if necessary, we can assume Z̃ ′ < 0 on J . By the uniqueness of solutions 
in the ODE theory, we can glue the previous solution with Z̃ to obtain a real analytic 
solution to (4.1), still called Z, on some open interval containing [t0, 1], which still satisfies 
Z ′ < 0. This contradicts the definition of t0.

Since in each case there is a contradiction, we must have t0 = 0 and this proves 
Lemma 4.4. �

By Lemma 4.4, Z is decreasing on (0, 1) and therefore μ = limr→0+ Z(r) > 0 exists. 
By the same reasoning as in the proof of Lemma 4.4, we must have μ ≤ λ = m+1

2k . In 

fact, it holds that μ = λ. Assume μ < λ. Note P̂ , Q̂ > 0 on [0, μ]. Since −Z ′ = Q̂

rP̂
, 

we have −Z ′ ≥ c
r on (0, 1) for some positive constant c. This contradicts the fact that 

Z is bounded on (0, 1). Hence we must have μ = λ, i.e., limr→0+ Z(r) = λ. Thus, Z is 
decreasing from λ to 0 on [0, 1].

We write Z(r) = λ + rG(r) for some real analytic function G on (0, 1]. It is clear that 
G < 0 on (0, 1] as Z is decreasing from λ to 0 on [0, 1]. We have the following lemma on 
G.

Lemma 4.5. It holds that limr→0+ G(r) = 0.
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Proof. Note

P̂ (Z) =(Z − λ)k−1h(Z) = rk−1Gk−1h(Z),

Q̂(Z) =(Z − λ)kg(Z) = rkGkg(Z).

By substituting these identities together with Z(r) = λ + rG(r) into the ODE in (4.1), 
we obtain

(rG)′h(Z) + Gg(Z) = 0 on (0, 1).

We can rewrite it into

G′

G
= −h(Z) + g(Z)

rh(Z) on (0, 1).

By Lemma 4.3, −h(Z)+g(Z)
h(Z) → 1 as r → 0+. Consequently, there exists some constant 

δ > 0 such that

G′

G
>

1
2r

for any r ∈ (0, δ).

As a result, −G√
r

is increasing on (0, δ), which in particular implies that −G√
r

is bounded 
from above on (0, δ). Therefore, limr→0+ G(r) = 0. �

We may now further write Z as Z(r) = λ + r2W (r) for some real analytic function 
W on (0, 1]. Clearly, W = rG < 0 on (0, 1], and W (1) = −λ. In addition, we have the 
following.

Lemma 4.6. The limit limr→0+ W (r) exists and it is a negative number.

Proof. We first note that

P̂ (Z) =(Z − λ)k−1h(Z) = r2k−2W k−1h(Z),

Q̂(Z) =(Z − λ)kg(Z) = r2kW kg(Z).

Combining this with Z = λ + r2W and the ODE in (4.1), we obtain

r(r2W )′h(Z) + (r2W )g(Z) = 0 for r ∈ (0, 1).

As h is nonvanishing on [0, λ], we can simplify the above equation into

W ′ = −2h(Z) + g(Z)
W for r ∈ (0, 1). (4.4)
r h(Z)



P. Ebenfelt et al. / Journal of Functional Analysis 286 (2024) 110366 23
Recalling Z = λ + rG, we have 2h(Z) + g(Z) = 2h(λ + rG) + g(λ + rG). As h and g are 
both polynomials, 2h(λ + rG) +g(λ + rG) is a polynomial in rG. Moreover, the constant 
term equals 2h(λ) + g(λ) = 0 by Lemma 4.3. By Lemma 4.5, we deduce that

f(r) := 2h(λ + rG) + g(λ + rG)
rh(λ + rG)

extends to a continuous function on [0, 1]. Then using (4.4) we obtain

ln(−W (r)) = ln(−W (1)) +
1∫

r

f(t)dt = ln λ +
1∫

r

f(t)dt for any r ∈ (0, 1)

Consequently, limr→0+ W (r) = −λ exp (
∫ 1

0 f(t)dt), which is a negative real number. �
Now W naturally extends to a continuous function on [0, 1]. Set a = W (0) =

limr→0+ W (r). We have the following lemma.

Lemma 4.7. There exists a unique real analytic function T0(r) at r = 0 satisfying the 
following initial value problem:

T ′ = −2h(λ + r2T ) + g(λ + r2T )
r h(λ + r2T ) T, T (0) = a. (4.5)

Moreover, the function is even on (−ε, ε) for some small ε > 0.

Remark 4.8. Note 2h(λ +r2T ) +g(λ +r2T ) is a polynomial in r2T , whose constant term 
equals 2h(λ) + g(λ) = 0 by Lemma 4.3. Therefore (2h(λ + r2T ) + g(λ + r2T ))/r is a 
polynomial in r and T .

Proof of Lemma 4.7. By Remark 4.8, the right hand side of the ODE in (4.5) is real 
analytic in a neighborhood of (r, T ) = (0, a). Therefore the existence and uniqueness of 
the solution, as well as its real analyticity, follow from elementary ODE theory. Note if 
T0 is a solution to the initial value problem (4.5), then so is T0(−r). By uniqueness of 
the solution, T0 is an even function. �

Let T0 : (−ε, ε) → R be as in Lemma 4.7 and recall the function W defined before 
Lemma 4.6. Note T0 and W are both functions in Cω(0, ε) ∩C[0, ε) satisfying the following 
ODE:

T ′ = −2h(λ + r2T ) + g(λ + r2T )
rh(λ + r2T ) T on (0, ε), T (0) = a. (4.6)

By basic ODE theory (cf. the proof of Lemma 2.13 in [5]), it follows that W = T0 on 
[0, ε).
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We now continue the proof of Proposition 4.1. Let λ, T0 be as above and set Ψ =
λ + r2T0. Then Ψ is a real analytic even function on (−ε, ε). Moreover, Ψ = Z on [0, ε). 
Therefore we can glue Z with Ψ, and then apply the even extension to obtain a real 
analytic function on [−1, 1], which we still denote by Z. It is clear that this new function 
Z still satisfies the ODE in (4.1). Moreover, Z ′′(0) = 2W (0) = 2a < 0. This proves part 
(1) of Proposition 4.1.

We next prove part (2) of Proposition 4.1. Recall Z(r) = λ + r2W (r) and P̂ (Z) =
(Z − λ)k−1h(Z) = r2k−2W k−1h(Z). It follows that

r2k−1

−Z ′P̂ (Z)
= r2k−1

−(2rW + r2W ′)r2k−2W k−1h(Z) = 1
−(2W + rW ′)W k−1h(Z) .

At r = 0, −(2W + rW ′)W k−1h(Z) = −2W k(0) h(λ) > 0 since W (0) < 0 by Lemma 4.6
and (−1)k−1h(λ) > 0 by Lemma 4.3. Hence r2k−1

−Z′P̂ (Z) is real analytic at r = 0. By the 

definition of φ and the properties of Z in part (1), φ is real analytic and even on [−1, 1]. 
It is also clear that φ > 0 on (−1, 1) and φ(1) = 0. The latter assertion in part (2) can be 
proved identically as in Proposition 3.1. This finishes the proof of Proposition 4.1. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Choose a coordinate chart (D, z) of M together with a local 
frame {eα}k

α=1 of E over D. Writing π : E → M for the canonical fiber projection, we 
have

π−1(D) =
{ k∑

α=1
ξαeα(z) : (z, ξ) ∈ D × Ck

}
.

Under this trivialization, the ball bundle B(E) and the sphere bundle S(E) over D can 
be expressed as follows:

B(E) ∩ π−1(D) =
{

w = (z, ξ) ∈ D × Ck :
k∑

α,β=1

hαβ̄(z, z)ξαξβ < 1
}

,

S(E) ∩ π−1(D) =
{

w = (z, ξ) ∈ D × Ck :
k∑

α,β=1

hαβ̄(z, z)ξαξβ = 1
}

.

Here hαβ̄(z) = hαβ̄(z, z) = h(eα, eβ). In the local coordinates, we write g =∑n
i,j=1 gijdzi ⊗ dzj . As g is induced by − Ric(E, h), we have gij̄ = ∂2 log H

∂zi∂zj
where 

H = det(hαβ̄). Let G(z) = G(z, z) = det(gij) > 0. We let λ1 ≤ · · · ≤ λn < 1 be 
the Ricci eigenvalues of (M, g) and φ be the function resulting from Proposition 4.1. In 
the local coordinates, the Kähler form ω̃ in Theorem 1.3 is given by ω̃ = −i∂∂ log u, 
where u(w) = k

n
m+1 (GH)− 1

m+1 φ(|w|h). Since φ is real analytic and even on [−1, 1], u is 
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smooth in a neighborhood of B(E) ∩ π−1(D). Consequently, ω̃ is a smooth Kähler form 
on B(E) ∩ π−1(D). By repeating the proof of Proposition 3.5 (and the smoothness of 
u), it follows that u = 0 on S(E) ∩ π−1(D) and J(u) = 1 on B(E) ∩ π−1(D).

Since J(u) = 1, or equivalently, det
(
(− log u)st

)
1≤s,t≤m

= u−(m+1) in B(E) ∩π−1(D), 
and u is a local defining function of some strongly pseudoconvex piece of the boundary, 
we conclude that ω̃ is positive definite in B(E) ∩ π−1(D). Also J(u) = 1 implies that 
the metric g̃ induced by ω̃ has constant Ricci curvature −(m + 1). Since the coordinate 
chart D is arbitrarily chosen, g̃ is a Kähler–Einstein metric in B(E).

It remains to prove that the metric g̃ is complete on B(E). By the Hopf-Rinow The-
orem, it suffices to show (B(E), ̃g) is geodesically complete. Let γ : [0, a) → B(E) be a 
non-extendible geodesic in B(E) of unit speed with respect to g̃. We only need to show 
that a = +∞, that is, γ has infinite length. For that, we first establish the following 
lemma.

Lemma 4.9. The metric g̃ satisfies

g̃ ≥ − 1
m + 1π∗(Ric) + 1

m + 1π∗(g). (4.7)

Consequently, g̃ ≥ 1−λn

m+1 π∗(g) in B(E).

Proof. Since the validity of (4.7) is independent of the choice of local coordinate chart of 
B(E), it suffices to establish (4.7) in an arbitrary coordinate chart. Given p ∈ B(E), recall 
that in the proof of Lemma 3.7, we have proved that there exist some local coordinates 
w = (z, ξ), in which z(π(p)) = 0 and the metric g̃st̄ at w = (0, ξ) with 0 < |w|h < 1 can 
be expressed as

g̃st̄ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
m + 1Rij̄(0) + Y

2k
gij̄(0) for 1 ≤ s, t ≤ n,

1
2|ξ|2

(
Y − 2k

m + 1
)
δαβ +

(XY ′

4 − Y

2 + k

m + 1
)ξαξβ

|ξ|4 for n + 1 ≤ s, t ≤ n + k,

0 otherwise,
(4.8)

where i = s, j = t when 1 ≤ s, t ≤ n and α = s − n, β = t − n when n + 1 ≤ s, t ≤ n + k. 
Recall X = X(w) = (

∑n
α,β=1 hαβ̄ξαξβ)1/2, Y = Y (w) = 2k

m+1 − X φ′(X)
φ(X) and φ is defined 

in Proposition 4.1. As in §3, by (3.5) we have Y = y(r)|r=X = 1
Z |r=X . Furthermore, by 

Proposition 4.1 it follows that Y (w) ≥ 2k
m+1 for any w ∈ B(E). Note that (g̃st̄)1≤s,t≤n+k

is a block diagonal matrix. As it is positive definite, the diagonal blocks, (g̃st)1≤s,t≤n

and (g̃st)n+1≤s,t≤n+k, are also individually positive definite. As a result,

g̃ ≥
n∑

i,j=1
g̃ij̄dzi ⊗ dzj ≥ − 1

m + 1π∗(Ric) + 1
m + 1π∗(g)

at any w = (0, ξ) with 0 < |w| < 1.
h
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By continuity, the above actually holds at any w = (0, ξ) with |w|h < 1, and thus (4.7)
is proved. Finally, by the assumption on the Ricci eigenvalues, we have Rij̄ ≤ λngij̄ with 
λn < 1. The latter part of the lemma follows easily. �

With Lemma 4.9, the remaining part of the proof is identical to that of Theorem 1.4 
in [5]. We omit the details. �
5. Proofs of corollaries

In this section, we consider the case where the base manifold M is a domain D in 
Cn, and prove Corollary 1.8 and 1.9, as well as Proposition 1.10. We also exhibit some 
explicit examples as applications.

We first prove Corollary 1.8.

Proof of Corollary 1.8. Let L = D × C be the trivial line bundle over D. By the as-
sumption on h, the Hermitian line bundle (L, h), is negative. Take the Hermitian vector 
bundle (E, hE) as (L, h) ⊕ · · · ⊕ (L, h), the direct sum of k copies of (L, h). Then the ball 
bundle B(E) and the sphere bundle S(E) of (E, hE) are respectively given by

B(E) =
{

w = (z, ξ) ∈ D × Ck : |ξ|2h(z, z̄) − 1 < 0
}

,

S(E) =
{

w = (z, ξ) ∈ D × Ck : |ξ|2h(z, z̄) − 1 = 0
}

.

Note that B(E) coincides with the domain Ω ⊂ Cm (recall m = n + k) as defined in 
(1.6), and S(E) coincides with the hypersurface Σ in Cm defined by (1.7). In addition, the 
Hermitian vector bundle (E, hE) is curvature split by Proposition 2.1 and it is Griffiths 
negative by Remark 2.5. Moreover, since Ric(E, hE) = k Ric(L, h), the Kähler metric 
induced by − Ric(E, hE) is the metric g given in the assumption. By Theorem 1.3, the 
unique complete Kähler–Einstein metric g̃ with Ricci curvature −(m +1) is given by (1.4). 
The explicit formula of the Cheng–Yau–Mok solution u, defined as (det(g̃st̄))− 1

m+1 , can 
be seen from the proof of Theorem 1.3. Since the function φ is real analytic on [−1, 1]
by Proposition 4.1 and G, H are both real analytic on D by the assumption, the Cheng–
Yau–Mok solution u extends real analytically across Σ. �

We next prove Corollary 1.9.

Proof of Corollary 1.9. We first note that g is complete since (D, g) is homogeneous. 
(For the proof of this fact, see for example [10].) Moreover, the homogeneity of (D, g)
also implies that g has constant Ricci eigenvalues. The result is now a direct consequence 
of Corollary 1.8 and the following:

Claim. The Ricci eigenvalues of g are all negative (and thus in particular strictly less 
than 1).
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Proof of Claim. Let gB be the Bergman metric of D. We denote by Vol(g) and Vol(gB)
the volume forms of g and gB respectively, which are (n, n) forms on D. Set Φ :=
Vol(g)/ Vol(gB), which is a well-defined function on D. Let Iso(g) be the group of 
holomorphic isometries of (Ω, g). Since every biholomorphism also preserves gB , the 
group Iso(g) actually preserves both g and gB . Thus, Φ is invariant under the ac-
tion of Iso(g). As Iso(g) acts transitively on Ω, Φ is constant on Ω, that is, Vol(g)
and Vol(gB) are the same up to some (positive) constant factor. Therefore, g and gB

have the same Ricci form. By the fact Ric(gB) = −gB (see [1] for example), we get 
Ric(g) · g−1 = Ric(gB) · g−1 = −gB · g−1. So all the Ricci eigenvalues of g are negative 
and the proof is completed. �

�
We now present some examples as applications of the above corollaries.

Example 5.1. Let D be a bounded homogeneous domain in Cn. Write KD(z, z) for its 
Bergman kernel and gB for the Bergman metric. Since gB is biholomorphic invariant, the 
manifold (Ω, gB) is homogeneous Kähler. Given λ ∈ R+ and k ∈ Z+, we set h = (KD)λ

and consider the domain Ω ⊂ D × Ck and the hypersurface Σ ⊂ D × Ck as defined 
in (1.6) and (1.7). By Corollary 1.9, the Cheng–Yau–Mok solution of Ω is given by the 
following with m = n + k:

u(w) = k
n

m+1 (GH)− 1
m+1 φ(|ξ|h 1

2 ),

where H = (KD)kλ, G = knλnGB and GB is the volume density of gB. Moreover, the 
boundary hypersurface Σ is obstruction flat and u extends real analytically across Σ.

Example 5.2. Let D be a bounded domain of holomorphy in Cn. Suppose g0 =
(
(g0)ij̄

)
is the complete Kähler–Einstein metric with negative Ricci curvature λ0. (The existence 
and uniqueness of such a metric is guaranteed by the work of Mok–Yau [12].) Let h

be a real analytic function on D such that (g0)ij̄ = ∂2 log h
∂zi∂zj

. (One particular choice of 

such an h is 
(
det((g0)ij̄)

)−1/λ0 as g0 is Kähler-Einstein.) For a given k ∈ Z+, consider 
the domain Ω ⊂ D × Ck and the hypersurface Σ ⊂ D × Ck as defined in (1.6) and 
(1.7). By Corollary 1.8, the Cheng–Yau–Mok solution of Ω is given by the following with 
m = n + k:

u = k
n

m+1 (GH)− 1
m+1 φ(|ξ|h 1

2 ),

where H = hk and G = kn det
(
(g0)ij̄

)
. Moreover, the boundary hypersurface Σ is 

obstruction flat and u extends real analytically across Σ.
In particular, if we choose h = 1/u0 where u0 is the Cheng–Yau–Mok solution for 

the domain D, then g0 =
(
(log h)ij̄

)
is the complete Kähler metric with Ricci curvature 

λ0 = −(n + 1). A routine computation yields the following expression for the Cheng–
Yau–Mok solution of Ω,
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u = u0 φ(|ξ|h 1
2 ).

Example 5.3. Given l ≥ 1, for each 1 ≤ i ≤ l, let Di be a domain in Cni , gi =∑ni

p,q=1 gi
pq̄dzi

p ∧ dzi
q a complete Kähler–Einstein metric on Di, and hi a real analytic 

function on Di such that gi is induced by 
√

−1∂∂ log hi. Let D = D1×· · ·×Dl ⊂ Cn with 
n = n1 + · · ·+nl and write z = (z1, · · · , zl) for each zi ∈ Di. Set h(z, ̄z) = Πl

i=1hi(zi, zi). 
For a fixed k ∈ Z+, consider the domain Ω ⊂ D ×Ck and the hypersurface Σ ⊂ D ×Ck

as defined in (1.6) and (1.7). Then the Cheng–Yau–Mok solution of Ω is given by the 
following with m = n + k:

u(w) = k
n

m+1 (GH)− 1
m+1 φ(|ξ|h 1

2 ),

where H = hk and G = knΠl
i=1 det(gi

pq)1≤p,q≤ni
. Moreover, the boundary hypersurface 

Σ is obstruction flat and u extends real analytically across Σ.

To conclude the paper, we shall prove Proposition 1.10. Before proceeding to the proof, 
we first consider the case of the ball bundle over a bounded domain of holomorphy D. 
As mentioned in Example 5.2, for a given negative real number λ0, there exists a unique 
complete Kähler–Einstein metric such that Ric(g0) = λ0g0. As before, L is the trivial line 
bundle over D and h is a Hermitian metric of L such that g0 is induced by −c1(L, h). The 
Hermitian vector bundle (E, hE) is the direct sum of k copies of (L, h). By Example 5.2
the Cheng–Yau–Mok solution for Ω = B(E) as defined in (1.6) is

u = k
n

m+1 (GH)− 1
m+1 φ(|ξ|h 1

2 ), with m = n + k, (5.1)

where H = hk, G = kn det((g0)ij̄), and the function φ is given in Proposition 4.1 with the 
λi’s chosen as follows. First, it is clear that −c1(E, hE) is −kc1(L, h), which also induces 
a Kähler–Einstein metric g = kg0 with negative constant Ricci curvature λ = λ0/k < 0. 
Write μ = 2kλ

m+1 and ν = 2k
m+1 and let all λi’s in Proposition 4.1 be λ. The polynomials 

P (y) and P̂ (x) are then given by

P (y) = (y − ν)k−1(y − μ)n, P̂ (x) = (1 − νx)k−1(1 − μx)n. (5.2)

The polynomial Q(y) from Proposition 4.1 satisfies the following properties:

Lemma 5.4. The following hold:

(1) The polynomial Q is divisible by (y − ν)k. Moreover, there exists a polynomial T (y)
such that Q(y) = (y − μ)n+1T (y) + c, where c is a real number satisfying c =
−(ν − μ)n+1T (ν) = Q(μ).

(2) The number c = 0 if and only if λ = −n+1
k (i.e., λ0 = −(n + 1)). In this case, 

Q = (y − μ)n+1(y − ν)k.
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Proof. We first prove part (1). Recall by the definition in Proposition 4.1, Q satisfies

dQ

dy
= (m + 1)yP (y) and Q(ν) = 0.

It follows immediately that

Q(y) =
y∫

ν

(m + 1)tP (t)dt.

Note that we can write the integrand function as

(m + 1)yP (y) = (y − ν)k−1
n+1∑
j=0

aj(y − ν)j for some aj ’s in R.

We take the integration term by term and obtain

Q(y) =
n+1∑
j=0

aj

k + j
(y − ν)k+j .

Therefore, Q is divisible by (y − ν)k.
To prove the latter assertion in part (1), note that we can also write

(m + 1)yP (y) = (y − μ)n
k∑

j=0
bj(y − μ)j for some bj ’s in R.

As Q(y) =
∫ y

μ
(m + 1)tP (t)dt + Q(μ), we again take the integration term by term and 

obtain

Q(y) =
k∑

j=0

bj

n + j + 1(y − μ)n+j+1 + Q(μ).

By setting

T (y) =
k∑

j=0

bj

n + j + 1(y − μ)j and c = Q(μ),

we have Q(y) = (y −μ)n+1T (y) +c. Since Q(ν) = 0, it follows that c = −(ν −μ)n+1T (ν).
Now we prove part (2). It is clear that c = 0 if and only if Q(μ) = 0. Since Q(ν) = 0

in the assumption, the former is also equivalent to
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ν∫
μ

dQ

dy
dy = 0, i.e.,

ν∫
μ

yP (y)dy = 0. (5.3)

By writing y = μ
μ−ν (y − ν) − ν

μ−ν (y − μ), we have

yP (y) = y(y − ν)k−1(y − μ)n = μ

μ − ν
(y − ν)k(y − μ)n − ν

μ − ν
(y − ν)k−1(y − μ)n+1.

Thus, (5.3) is equivalent to

μ

μ − ν

ν∫
μ

(y − ν)k(y − μ)ndy = ν

μ − ν

ν∫
μ

(y − ν)k−1(y − μ)n+1dy.

By setting t = y−μ
ν−μ , it reduces to

μ

1∫
0

(1 − t)ktndt = −ν

1∫
0

(1 − t)k−1tn+1dt. (5.4)

Recall the beta function is defined by

B(p, q) =
1∫

0

tp−1(1 − t)q−1dt

and B(p, q) = (p−1)!(q−1)!
(p+q−1)! . Therefore, (5.4) writes into

μ
k!n!

(n + k + 1)! = −ν
(k − 1)!(n + 1)!

(n + k + 1)! .

As μ = λν, we finally obtain that c = 0 is equivalent to λ = −n+1
k .

In this case, by part (1) we have both (y − ν)k and (y − μ)n+1 divide Q. Since Q is a 
monic polynomial of degree n + k + 1, it follows that Q(y) = (y − ν)k(y − μ)n+1. �

In the special case that P is given by (5.2), we will study the rationality of function 
Z as defined in Proposition 4.1.

Proposition 5.5. Let P and P̂ be given by (5.2) (and accordingly Q and Q̂ are both 
determined as in Proposition 4.1). Let Z and φ be as given in Proposition 4.1. Then the 
following are equivalent.

(1) Z is rational.
(2) φm+1 is rational.
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(3) λ = −n+1
k .

Remark 5.6. Moreover, when (1)-(3) in Proposition 5.5 hold, we can see from the proof 
that μ = −2(n+1)

m+1 and Z = 1−r2

2+μ−μr2 . Consequently, φ(r) = 1 − r2.

Proof of Proposition 5.5. We first prove (1) is equivalent to (2). By Proposition 4.1, we 
have

1
Z

= 2k

m + 1 − r
φ′

φ
= 2k

m + 1 − r

m + 1
(φm+1)′

φm+1 .

Hence (2) implies (1). Conversely, recall that in Proposition 4.1 the function φ is defined 

by φ = 2
(

r2k−1

−Z′P̂ (Z)

) 1
m+1

Z. Since P̂ is a polynomial, the rationality of Z implies that of 
φm+1.

Now it remains to show (1) is equivalent to (3). We shall first show that (3) implies 
(1). Suppose λ = −n+1

k . Then by Lemma 5.4 we get Q(y) = (y − μ)n+1(y − ν)k. Thus, 
Q̂(x) = (1 − μx)n+1(1 − νx)k. Recall P̂ = (1 − μx)n(1 − νx)k−1 as given in (5.2). Since 
Z satisfies rZ ′P̂ (Z) + Q̂(Z) = 0 for r ∈ [−1, 1], it follows that

Z ′

(1 − μZ)(1 − νZ) = −1
r

for r ∈ (0, 1].

As Z(1) = 0, by writing 1
(1−μZ)(1−νZ) = 1

μ−ν

(
μ

1−μZ − ν
1−νZ

)
and integrating the above 

equation, we obtain

1
μ − ν

(
− ln(1 − μZ) + ln(1 − νZ)

)
= − ln r for r ∈ (0, 1].

Since μ − ν = 2kλ−2k
m+1 = −2, we get ln 1−νZ

1−μZ = ln(r2), and further simplification yields

Z = 1 − r2

ν − μr2 = 1 − r2

2 + μ − μr2 .

It is clear that Z is a rational function.
Last we check that (1) implies (3). Suppose that Z is rational. Recall P̂ (x) = (1 −

μx)n(1 − νx)k−1. By Lemma 5.4, we have Q(y) = (y − μ)n+1T (y) + c where T is some 
polynomial of degree k and c is some real number. By writing T (y) =

∑k
j=0 aj(y − μ)j

for some aj ∈ R, we then have

Q(y) =
k∑

j=0
aj(y − μ)n+1+j + c and Q̂(x) =

k∑
j=0

aj(1 − μx)n+1+jxk−j + cxm+1.

Recall rZ ′P̂ (Z) + Q̂(Z) = 0 for r ∈ [−1, 1]. We divide the equation by (1 − μZ)m+1 to 
obtain
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r
Z ′(1 − νZ)k−1

(1 − μZ)k+1 +
k∑

j=0
aj

Zk−j

(1 − μZ)k−j
+ c

Zm+1

(1 − μZ)m+1 = 0 for r ∈ [−1, 1].

Set η(r) = Z(r)
1−μZ(r) for r ∈ [−1, 1]. Then η′ = Z′

(1−μZ)2 and 1−νZ
1−μZ = 1 +(μ −ν)η. Therefore, 

we can rewrite the above equation into

rη′(1 + (μ − ν)η
)k−1 +

k∑
j=0

ajηk−j + cηm+1 = 0. (5.5)

As Z is rational, so is η. We can write η = p
q for some coprime polynomials p and q. 

Putting this into (5.5) and multiplying the equation by qm+1, we obtain

r(p′q − pq′)
(
q + (μ − ν)p

)k−1
qn +

k∑
j=0

ajpk−jqn+1+j + cpm+1 = 0.

Assume c �= 0. Then pm+1 is divisible by q. As p and q are coprime, q is a constant. 
Without losing of generality, we can assume q = 1 and thus η is just the polynomial p. 
Now that all terms in (5.5) are polynomials, we can count their degrees. Note cηm+1 is 
of degree (m + 1) deg p while all other terms on the left hand side of (5.5) are of degree 
less than or equal to k deg p. Therefore, we have deg p = 0, that is, p is a constant. So are 
the functions η and Z. This is a contradiction as Z is not constant by Proposition 4.1. 
Hence we must have c = 0. By Lemma 5.4, (3) holds. So the proof is completed. �

We are now ready to prove Proposition 1.10.

Proof of Proposition 1.10. Let D be the complex n-dimensional unit ball {z ∈ Cn : |z| <
1}. We introduce the function h = ( 1

1−|z|2 )1/p and the metric g0 = (g0)ij̄ =
(
(log h)ij̄

)
. 

Note that g0 is just 1
p(n+1) multiple of the Bergman metric of D. Thus g0 is the complete 

Kähler–Einstein metric on D with Ricci curvature equal to λ0 = −p(n + 1). If we take 
g = kg0, then g is the complete Kähler–Einstein metric on D with Ricci curvature equal 
to λ = λ0/k. Recall the domain Ω defined in (1.6), which now becomes

Ω =
{

(z, ξ) ∈ D × Ck :
( 1

1 − |z|2
)1/p|ξ|2 < 1

}
.

Clearly, we have Ω = Ep. For m = n + k, by Example 5.2, the Cheng–Yau–Mok solution 
for domain Ω is given by

u = k
n

m+1 (GH)− 1
m+1 φ(|ξ|h 1

2 ),

where G = det(gij̄) and H = hk. A straightforward computation yields G = kn

pn(1−|z|2)n+1 , 
and thus
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u = p
n

m+1 (1 − |z|2)(n+1+ k
p )/(m+1)φ

(
|ξ|(1 − |z|2)− 1

2p
)
. (5.6)

On the other hand, the Bergman kernel K of Ep was computed by D’Angelo [4]:

K
(
(z, ξ), (z, ξ)

)
=

n+1∑
i=0

ci
(1 − |z|2)−(n+1)+ i

p(
(1 − |z|2)

1
p − |ξ|2

)k+i
, (5.7)

where ci are constants depending on i, n, k and p.
To establish Proposition 1.10, we assume the Bergman metric gB of Ep is Kähler-

Einstein and first follow the work of Fu–Wong [7] to compute the volume form of gB. 
Note that a generic boundary point of Ep is smooth and strictly pseudoconvex (indeed 
spherical). Take an arbitrary strictly pseudoconvex boundary point (z0, ξ0). By using 
Fefferman’s expansion for the Bergman kernel near (z0, ξ0) and the argument in Cheng–
Yau ([2], page 510), we deduce that the Ricci curvature of gB at (z, ξ) ∈ Ep tends to 
−1 as (z, ξ) approaches (z0, ξ0). Thus the Kähler-Einstein assumption implies that the 
Ricci curvature of gB is equal to −1. Then by Proposition 1.2 in [7], the determinant of 
gB equals the Bergman kernel up to a positive constant multiple. On the other hand, 
the volume form of two complete Kähler–Einstein metrics of negative Ricci curvature, 
det

(
(− log u)st̄

)
and the determinant of gB, on Ep can only differ by a positive constant 

multiple. As a result, we have u−(m+1) = cK for some constant c > 0. Combining this 
with (5.6) and (5.7), we obtain

p−n(1 − |z|2)−(n+1+ k
p )φ−(m+1)(|ξ|(1 − |z|2)− 1

2p
)

= c

m∑
i=0

ci
(1 − |z|2)−(n+1)+ i

p(
(1 − |z|2)

1
p − |ξ|2

)k+i
.

After simplification, this becomes

φ−(m+1)(|ξ|(1 − |z|2)− 1
2p

)
= c pn

m∑
i=0

ci
1(

1 − |ξ|2(1 − |z|2)− 1
p
)k+i

.

By setting r = |ξ|(1 − |z|2)− 1
2p , we observe φ−(m+1)(r) is equal to c pn

∑m
i=0 ci

(
1 −

r2)−(k+i). Thus, φm+1 is rational. By Proposition 5.5, we get λ = −n+1
k . Recall that 

λ = λ0
k = −p(n+1)

k . So it follows that p = 1 and the proof is completed. �
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