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Abstract

We consider the harmonic map heat flow for maps RZ — S2. It is known that solutions to the initial value
problem exhibit bubbling along a well-chosen sequence of times. We prove that every sequence of times admits a
subsequence along which bubbling occurs. This is deduced as a corollary of our main theorem, which shows that
the solution approaches the family of multi-bubble configurations in continuous time.
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1. Introduction
1.1. Setting of the problem

Consider the harmonic map heat flow (HMHF) for maps u : R> — S? ¢ R? — that is, the gradient flow
of the Dirichlet energy

EW%:%AJW@Wdﬁ (1.1)

for the L? inner product. The initial value problem for the HMHF is given by

S = Au+u |Vul?
u(0,x) = up(x). (1.2)

We consider initial data in the energy class
E:= H' (R%S?) = {ug € H'(R*;R?) | Juo(x)]* = 1 for almost every x € R*}. (1.3)

The HMHF was proved to be well-posed in £ by Struwe [28], and we can associate to each initial data
ug € £ amaximal time of existence Ty = T (ug) € (0, co] and unique solution u(¢) € £, which is regular
for t € (0,T,). The maximal time 7’ is characterized as the first time at which energy concentrates at a
point in space; see Lemma 2.7. Of fundamental importance is the energy identity

Ewm»+/zmnmm@m%m=mmmx (1.4)

n

which holds for any 0 < 7; < 1, < T (see [28, Lemma 3.4]), and where T (u) := Au+u |Vu|2, which
is called the fension of u.

The HMHF for maps between Riemannian manifolds was introduced by Eells and Sampson [12].
Though we do not do this here, when studying the HMHF for maps R? — S2, it is natural to further
restrict the class of initial data by intersecting the space £ with the set of continuous maps u that tend
to a fixed vector on S? at oo (i.e., such that there exists us € S? so that limy_e |1o(X) — tteo| = 0).
By assigning to the point at co the vector ue, 1o induces a continuous map g : S*> — S2, and we can
define the topological degree of ug to be the degree of uy. One can show that this condition is preserved
by the flow — that is, the solution u(¢, x) satisfies limy_,c |u(f,x) — uo| = 0 for all 0 < ¢ < T,. Under
this restriction, the solution u(t, x) gives a continuous deformation of the initial data uy(x) within its
homotopy class, which was one of the motivations mentioned in [12].

Harmonic maps w : R — §? ¢ R3 have vanishing tension and give stationary solutions to (1.2).
They are formal critical points of the energy (1.1) and satisfy the PDE

Aw + w|Vo|> = 0. (1.5)

It is a well-known general property of harmonic maps in two dimensions that they are conformal (up to
change of orientation) and minimize the energy in their homotopy class; [10, 11, 19]. The energy of a
harmonic map w is given by E (w) = 4| deg(w)|. Weak solutions — that is, w € £ for which (1.5) holds
in the weak sense — are smooth by a result of Hélein [15]; see Theorem 2.1 in Section 2.1.

An influential series of works by Struwe [28], Qing [23], Ding-Tian [9], Wang [37], Qing-Tian [24],
Lin-Wang [20] and Topping [31] showed that solutions u«(¢) to (1.2) admit a bubble decomposition
along a well-chosen sequence of times #, — T; see also the book by Lin-Wang [21]. In these works,
the bubbling time sequence ¢, — T, and corresponding sequence of maps u(t,) become a Palais-Smale
sequence after rescaling. Indeed, in the case when T, = oo, it follows from (1.4) that

.A|mem;m<%
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so there exists a sequence t, — oo so that
Tim VBl T (u(ta)llz2 = 0
By similar logic, in the case of finite time blow-up (7} < o), there is a sequence ¢, — T, so that

lim VT = ta| T (u(t)|l2 = 0

In other words, after the rescaling u,, (x) := u(t,, Vinx) (or u, (x) = u(t,, VI — t,x)), the u,, are Palais-
Smale sequences for the energy functional because sup,, E(u,) < oo and

DE(u,) = =T (uy,) —» 0

in L?. Elliptic bubbling analysis (see, for example, [2, 23, 28]) is then used to extract bubbles up to the
scale v/t,, (or YT, — 1, in the case T, < c0). The main result of this paper (see Theorem 1.1 below) is
distinct from this classical literature in that we show bubbling occurs along every time sequence (after
passing to a suitable subsequence) without the aid of a Palais-Smale sequence in the sense described
above. However, the works [21, 24] show L™ convergence, including in the neck regions between the
bubbles, whereas here we control only the energy in the neck regions; we do not address the question
of L™ convergence on the neck regions.

1.2. Statement of the results

The goal of this paper is to give asymptotic descriptions of solutions u(#) to (1.2) with initial data
uy € €. Our first main result is that every sequence of times tending to the maximal time admits a
subsequence t,, — T along which u(¢,,) admits a decomposition into a finite superposition of rescaled
and translated harmonic maps.

We use the notation D(y, p) ¢ R? to denote the open disc of radius p > 0 centered at the point
y € R2.

Theorem 1.1 (Bubble decomposition along any time sequence). Let u(t) be the unique solution to (1.2)
associated to initial data uy € €. Let Ty = T, (ug) € (0, o] denote the maximal time of existence.
(Finite time blow-up) Suppose T, < co. There exist a finite energy map u* : R*> — S?, an integer
L > 1 and points {x¢ }f:] c R? with the following properties.
Let t,, — T, be any time sequence. After passing to a subsequence, which we still denote by t,,

we can associate to each € € {1,...,L} an integer M0, sequences aﬁ.ﬁl € R? and /15.2 € (0, 00)
foreach j € {1,..., MO}, with afr)l — x¢, % — 0 as n — oo, and nontrivial harmonic maps
wif), e, wgv?(f) so that
(6) (£) () ()
Jﬂo(ﬁ(f;+%+%):m forall j # k, (1.6)
A A A,
and
L MO _ a0
hm E(u(tn) —u* - Z; Z ( (t’)( (f; n) _ w;f’)(oo))) =0, (1.7
j= A

where wﬁ.f) (00) = lim|y| 500 a);.[) (x) € 2.
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Moreover, there exists a sequence r, — oo with the following property. Fix any € € {1, ..., L}. For
each j € {1,...,M©}, there exists 0 < Kj(.f) < MO many discs D(xj kn, 1jkon) C D(a(g) rn/lﬁ.gr)l)

J.n’
such that for each k € {1,. .., KJ(.{) 1

lim (EL52 4 — Bk ) =0, (1.8)
n—oo /lj,n dlSt(Xj,k’n, aD((lj’n, rn/lj’n))
and so that
a0
. _ (e)( j,n) _
nh_r)r;“u(tn) w; /l(_t’) L>(D3,) 0. (-9
J.n
© G0y K
where D;’n = D(aj’n,rn/lj’n) \ Uiy D(Xjkons My kon)-
Finally, there exist constants wg), .. .,a)((,OL) € S? and sequences &,,v, — 0 so that for each
ted{l,...,L},

&n + T+_tn):0.

1.10
T, —t, Vn ( )

. l
1im ([l(tn) = 08 (D (st D st 600) *+

(Global solution) Suppose Ty = oo. Let t,, — oo be any time sequence. After passing to a subsequence,

which we still denote by t,, we can find an integer M > O, sequences a; , € R? and Ajn € (0, 00) for
|Gjnl+dj.n

each j € {1,..., M}, withlim,_,c = 0, and nontrivial harmonic maps wy, . . ., Wy, so that
A A ajn,—a
lim (—J’n + 2k —| i k’nl) =00 forall j #k, (1.11)
n—eo /lk,n /lj,n /lj,n
and
M . —_— a .
. j.n _
)%E(u(tn)—wm—z;(wj( Tm )—wj(oo)))—O, (1.12)
= ,
where w;(00) 1= lim|y |0 w;(x) € S2.

Moreover, there exists a sequence r, — oo with the following property. For each j € {1,...,M},
there exists 0 < K; < M many discs D(Xj g n,Mjkn) C D(ajn,rndjn) such that for each k €
{I,...,K;},

. Hj.k,n Hj.k,n
lim ( +— ):o, (1.13)
n—oo\ A, dist(xj g n,0D(aj n,rndjn))
and so that
—a
- _ 0 jn _
nh—r}go ultn) -~ w; ( 210 ) LoDt ) 0, (1.19)
jin o
* K;
where Dj,n = D(aj,n, rn/lj,n) \ Ukil D(xj,k,n, ,uj,k,n)~
Finally, there exists a constant we € S* and sequences &, vy, € (0, ) so that
. & Vi
Jlim (Ilu(tn) ~ WoollLs (Dt v\t 8) F \/—:—n + V—n") =0. (1.15)
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Remark 1.2. One can also study the two-dimensional HMHF for more general domains and targets —
that is, for maps u : M — N, where M is a 2-dimensional closed, orientable Riemannian manifold
(or R?) and V is a closed n-dimensional sub-manifold of RV for some N — as in this, case the bubbling
theory of [9, 20, 23, 24, 28] is understood. But we do not pursue this here. Moreover, the choice of R2
as the domain is for convenience, as we could have instead considered maps u : §% - §2,

We deduce Theorem 1.1 as a consequence of a more refined result, where we show that every smooth
solution u(t) converges, continuously in time, to the family of multi-bubble configurations, locally
about any point in space. To state this result, we first define a notion of scale and center of a nontrivial
harmonic map.

Definition 1.3 (Scale of a harmonic map). To each non-constant harmonic map w : R> — §? ¢ R3 and
each yp € (0,2x), we associate a scale A(w; yp) defined by

Aw;yo) = inf{A € (0, ) | there exists a € R? such that E(w; D(a, 1)) > E(w) —yo}. (1.16)

Definition 1.4 (Center of a harmonic map). Given the scale of a harmonic map w as above, we define
the associated center of w by fixing a choice of a = a(w;yy) € R? so that

E(w; D(a(w;y0), A(w;v0))) = E(w) = yo. (1.17)

We prove in Lemma 2.3 that these notions are well-defined and transform naturally under the rescaling
and translation of a harmonic map. Indeed, the scale A(w;yo) is a uniquely defined, strictly positive
number. Regarding a choice of center, equality occurs in (1.17). However, a(w; yo) is defined only up to
a distance of 2A(w; yo). Given a harmonic map w(x), translating by b € R? and rescaling by u € (0, co),
we obtain wp, ,, (x) = w(x#;b). Then A(wp, ) = A(w)p and |a(wp,,) — a(w)pu — b| < 2A(w)u.

Definition 1.5 (Multi-bubble configuration). Let M € {0, 1,2,...}. We define an M-bubble configura-
tion to be a superposition

M
Q@ w1, @p3%) = W+ Y (0 (x) = w;(9)), (1.18)
=1

where w € §%is a constant, and each w; : R? — §? is a smooth non-constant harmonic map, and
wj(00) = lim|yx|—e w;(x). We include constant maps as M = 0.

We will occasionally use boldface notation, w = (w, w1, . . ., wyy), for finite sequences of harmonic
maps with w € S? a constant harmonic map and wy, . .., wys non-constant, and we reserve the arrow
notation for vectors (finite sequences) in other contexts. With this notation, we will often express multi-
bubbles as Q(w) = Q(w,wy,...,wy ). We reserve the character f) to denote an infinite sequence of

non-constant harmonic maps (i.e., § := {w,},,, where each w, is a harmonic map).

Definition 1.6 (Localized distance to a multi-bubble configuration). Let &, p, v € (0, 00), with ¢ < p <
v,y € R%, u: D(y,v) = S? and 5y € (0,2n) as in Definition 1.3. Let M € {0,1,2,...}, w € S* a
constant, and let wi, ..., wy be non-constant harmonic maps with centers a(w;) € D(y,¢) for each
J €{l,...,M} and scales A(w;) € (0,00). Let Q(w) be the associated multi-bubble configuration.
Let v = (v,v1,...,vm) € (0,00)M*! be such that D(a(w;),v;) € D(y,¢) foreach j € {1,...,M}.
Let € = (£,&1,...,ém) € (0,00)M*! be such that & < Aw;) for each j € {1,...,M}. Denote by
Zj:={k # j| D(a(wk),€¢;) € D(a(wj),v;)}, and let

D’ = D(a(w)),v) \ | D(a(wi).€)). (1.19)

kGIj
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Define
dy, (1, Q(@); Dy, p); ¥,€) = E (= Q@); D(y,p)) + ). Il = @l ()
J

& p
+lu — wllL>y\Dy.e) + E(u; D(y,v) \ D(y,§)) + P +3

£y (ﬂ(w» LAy | la(@) _a<wk>|)—1

Z( Aw;) L) & )
dist(a(w;),dD(y,&)) v Aw))

i
+Z‘k; dist(a(wi), dD(a(w;), ;) (1.20)

We define a localized distance function to the family of all multi-bubble configurations as follows.

Definition 1.7 (Localized multi-bubble proximity function). Let y € R?, p € (0,0),u : D(y, p) — S?,
and let yo € (0,27) as in Definition 1.3. We define

Oy, (u; D(y, p)) = Me{lgliln2 } ilgfgdyo(u, Q(w): D(y, ) 7, ) (1.21)
2ot f @,V &

where the infimum above is taken over all possible M-bubble configurations Q(w) and over all admissible
V=Vs..svm) € (0,00)M* &= (£,&,...,&n) € (0,00)M*] in the sense of Definition 1.6. Since
o will eventually be fixed, we will often suppress the dependence of d,,, and §,,, on 7y and just write d, 6.

We prove the following theorem.

Theorem 1.8 (Convergence to multi-bubbles in continuous time). Let u(t) be the unique solution to (1.2)

associated to initial data uy € E. Let T, = Ty (up) € (0, o] denote the maximal time of existence. There

exists yo = yo(E (ug)) > 0 as in Definition 1.3 sufficiently small so that the following conclusions hold.
(Finite time blow-up) Suppose T, < co. For every y € R?,

lim 8y, (u(1): D(y, VI, - 1) =0. (1.22)

Moreover, let t, — T, be any sequence and let D(y,, pn) be any sequence of discs such that
D(yu, Rypn) € D(y, VI — t) for some sequence R, — oo. Suppose a,,, B, are sequences with a,, — 0,
Bn — 0, lim,, e BuR;' =0, and

J%E(u(tn);D(yna,Bnpn) \D(yn,a'npn)) =0. (1.23)
Then,
3220570(“(%);D()’mpn)) =0. (1.24)

(Global solution) Suppose T, = co. For every y € R?,
lim &, (u(t); D(y, V1)) = 0. (1.25)

Moreover, let t, — oo be any sequence and let D (y,,, v,) any sequence of discs such that D (y,, R, v,) C
D(y,\t,) for some sequence R,, — oo. Suppose ay, B, are sequences with &, — 0, B, — oo,

lim;,—c0 ﬁnR;l =0and

nlgloloE(”(tn);D(ymﬁnpn) \ D(yn, anpn)) =0. (1.26)
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Then,
nlglgo(syo(u(tn);l)(ympn)) =0. (1.27)

Remark 1.9. Theorem 1.8 can be viewed as partial progress toward the following questions, which
arise naturally from the classical sequential bubbling results [9, 20, 23, 24, 28, 31, 37]:

e Can the harmonic maps (bubbles) appearing in Theorem 1.1 be taken independently of the time
sequence? For example, Theorem 1.8 does not fix even the number of bubbles in the decomposition,
but rather proves convergence in continuous time to the entire family of multi-bubble configurations.

e In particular, can the decomposition in Theorem 1.1 be taken in continuous time — that is, does u()
converge in the energy space to u* plus a superposition of a fixed collection of harmonic maps that are
continuously modulated by a finite number of parameters independently of the degree (for example,
via the underlying symmetries such as scaling, spatial translations, and rotations)?

Topping [30, 33] made important progress on these and related questions in the case of a global-in-
time solution (7 = o), showing the uniqueness of the locations of the bubbling points and that u(¢)
converges weakly to a unique harmonic map as + — co, all under restrictions on the configurations
of bubbles appearing in the sequential decomposition. His assumption, roughly, is that all of the
concentrating bubbles have the same orientation. Here, we do not make any assumptions on the
orientations of the bubbles, but our results in the global-in-time case are of a different nature, and we do
not recover Topping’s conclusions.

Topping answered the questions above in the negative for the HMHF for maps from S? into certain
target manifolds; see [31].

The first two authors answered the questions above in the affirmative in the case that the target is S>
and the initial data for (1.2) is k-equivariant; see [16].

Remark 1.10. One can view Theorem 1.8 as a statement about the nonexistence of bubble collisions
(asymptotically in time) that destroy multi-bubble structure. Here a bubble collision on a disc D (y, p)
is defined via the growth of the function 6 (u(t); D(y, p)) (i.e., u(¢) starts close to, but then moves away
from the family of multi-bubble configurations on some time interval). Roughly speaking, Theorem 1.8
reduces the questions in Remark 1.9 to an analysis of the dynamics of solutions close to the manifold of
multi-bubble configurations. Note that [1, 8, 36] suggest proximity to multi-bubbles cannot be achieved
exclusively from energy considerations.

Remark 1.11. There are solutions to the HMHF that develop a bubbling singularity in finite time, the
first being the examples of Coron and Ghidaglia [4] (in dimensions > 3) and Chang, Ding and Ye [3]
in two dimensions. Guan, Gustafson and Tsai [13] and Gustafson, Nakanishi and Tsai [14] showed
that k-equivariant harmonic maps are asymptotically stable for perturbations within their equivariance
classes when k£ > 3, and thus, there is no finite time blow-up for energies close to the harmonic map
in that setting. For k = 2, [14] gave examples of solutions exhibiting infinite time blow-up and eternal
oscillations, and recently, Wei, Zhang and Zhou [38] constructed such examples in the case k = 1.
When k = 1, the ground state harmonic map is unstable, as Topping [32] proved that there are solutions
blowing up in finite time with any initial energy that is slightly above the ground state. Raphaél and
Schweyer constructed a stable equivariant blow-up regime for k£ = 1 in [25] and then equivariant blow-
up solutions with different rates in [26]. Davila, Del Pino and Wei [6] constructed examples of solutions
simultaneously concentrating a single copy of the ground state harmonic map at distinct points in space.
See also the work of Topping on reverse bubbling [35] and on the existence of bubble towers [34], and
the recent work of Del Pino, Musso and Wei [7] for a construction of bubble towers with an arbitrary
number of bubbles in the case of the critical semi-linear heat equation.
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1.3. Summary of the proof

We give an informal description of the proof of Theorem 1.8 and then we discuss how to deduce
Theorem 1.1 from it.

To fix ideas, we consider a solution blowing up at a finite time 7, < oo. Theorem 1.8 is proved by
contradicting the finiteness of the integral

T,
[ i a <o (1.28)

via a collision analysis in the event that the theorem fails. The collision analysis hinges on the notion of
a minimal collision energy and the corresponding collision (time) intervals that accompany it. These are
defined as follows (see Section 3.1). We let K be the smallest integer so that there exist time sequences
on, Ty — T4, a sequence of discs D(y,, pn) C R2, a number n > 0 and a sequence €, — 0 so that
6(u(0n); D(yn, pn)) < €n, 6(u(tn); D(yn, pn)) 2 1, and E(u(0n); D(yn, pn)) — 4Km as n — oo. To
ensure that K is well-defined and > 1 in the event that theorem fails (see Lemma 3.3), we also require
that |[07, T,]| < €,02. We emphasize that the quantization of the energy of harmonic maps R> — §2
is used to define K as above. Roughly speaking, the intervals I,, := [0, T,] have the property that u is
close to a multi-bubble configuration on the left endpoint t = o, (which we call bubbling times) and far
from every multi-bubble at the right endpoint ¢ = 7,, (which we call ejection times).

The minimality of K is used crucially to relate the lengths of the collision intervals |7,| to the
largest scale of the bubbles involved in the collision (i.e., those bubbles that concentrate within the
discs D (yn, pn)). We call this largest scale Amax n, and the key Lemma 3.4 shows (roughly) that every
sequence of collision intervals /,, has subintervals J,, of length at least

nl 2 43 (1.29)

max,n>

on which u(#) bounded away from the multi-bubble family (i.e,. §(u(?); D(yn, pn)) = € > 0 for all
t € Jy, for some € > 0). The intuition behind this is the following. Suppose there were a sequence of
intervals J,, = [s,,t,] C I, for which the s,’s are bubbling times and the #,’s are ejection times, but
|| < /l?nax,n. This leads to a contradiction of the minimality of K because the time-interval J,, is too
short relative to the scales of the largest bubbles (Amax,») for them to become involved in a collision;
thus, collisions are captured on smaller discs D (y,, pn) C D(yn, pn) With p;; << Amax,n, and these carry
strictly less energy than 47K see the proof of Lemma 3.4.

The fact that u(z) is at least distance € > 0 away from the multi-bubble family on J,, can be
combined with the classical localized elliptic bubbling lemma described in Section 1.1 (the Compactness
Lemma 2.15) to show that on the interval J,,, the tension satisfies

Jnf AL I T ()72 2 1. (130)

The main point here is that the Compactness Lemma 2.15 says that u(z) bubbles at scale Amax,, along
any sequence of times s,, for which lim,, ﬂrznax, AT (u(sn)) ||i2 = 0, which is impossible. At this point,
we have contradicted (1.28) since the previous two displayed equations combine to give

; /J Tl iz Z a2 2 Z = co. (1.31)

The idea of a (minimal) collision energy and associated collision time intervals are related to
analogous concepts in the first two authors’ work on the soliton resolution conjecture for nonlinear
waves and on continuous bubbling for the k-equivariant HMHF; see [16, 17, 18]. Unlike in these earlier
works, we do not use modulation analysis in this paper.

Theorem 1.8 and the Compactness Lemma 2.15 are the main ingredients in the proof of Theorem 1.1.
Again, focusing on the finite time blow-up case, it is well-known (see Lemma 2.13) that energy does
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not concentrate at or outside the self-similar scale V7, — £, so it suffices to examine the behavior of
u(t) restricted to discs D (y, VT, — ), for y € R? a point where energy concentrates. Let 7, — T, be
any time sequence. By Theorem 1.8, and after passing to a subsequence, there exists an integer M>1
and a sequence of M-bubble configurations Q, = (Q,, Qi ,..., Qﬁ,n) and sequences g—fn, ¥, as in
Definition 1.6 so that

d(u(tn), Qu: D(y, T — 1); 4, 7n) = 0 as n — oo. (1.32)
However, the decomposition in Theorem 1.1 involves a fixed collection of finitely many harmonic
maps, wi,...,wy (i.e., a collection independent of n). To find such a collection from the Q; , we

apply the Compactness Lemma 2.15 to each Q; ,, obtaining a fixed collection of bubbles {w; x }i; | for
each j € {1,..., 1\71}. A delicate point is that the scales and centers (b x n, [/ k,n) associated to the
harmonic maps w; x given by the Compactness Lemma 2.15 may not satisfy (1.6) for distinct j. But this
potential pitfall is remedied by the refined information in Theorem 1.8, which says u(t) approaches the
multi-bubble family at every smaller scale p, < VT — 1, (excluding of course the precise scales of the
bubbles themselves).

In Section 2, we give background information on harmonic maps and the harmonic map heat flow.
Much of Section 2 is classical, except perhaps the notions of scale and center of harmonic maps and
Lemma 2.12, which involves the propagation of localized L* estimates for solutions to (1.2), which we
did not find a reference for in the literature. Section 3 contains the proofs of the main theorems.

1.4. Notational conventions

Constants are denoted C, Cy, Cy, ¢, co,c1. We write A < Bif A < CBand A 2 Bif A > ¢B. Given
sequences A, B, we write A,, < B,, if lim, o A, /B, =0.

For any sets X, Y, Z, we identify ZX*¥ with (Z¥)X, which means that if ¢ : X XY — Z is a function,
then for any x € X, we can view ¢(x) as a function Y — Z given by (¢(x))(y) := ¢(x,y).

2. Preliminaries
2.1. Properties of harmonic maps

We use a few well-known features of finite energy harmonic maps w : R*> — S? — namely, their
smoothness, the invariance of harmonicity and the energy under conformal transformations of the
domain, and the fact that the energy is quantized.

Theorem 2.1. [15, Theorem 4.1.1][12, pg. 126, Proposition][27, Theorem 3.6] [19, Section 8, the
Remarque on pg. 65] Let w : R? — S? be a weak non-constant solution to (1.5) of finite energy. Then
w is smooth and extends as a smooth harmonic map from the sphere to itself of nonzero degree, which
minimizes the energy (1.1) in its degree class with E(w) = 4r| deg(w)).

Remark 2.2. The regularity statement above is due to Hélein and holds in the more general setting of
weak harmonic maps w € H (M, N), where M is a closed, two-dimensional, orientable Riemannian
manifold and N is a smooth compact Riemannian manifold. The extension of a smooth, finite energy
harmonic map w : R?> — S? to a smooth, finite energy harmonic map @ : S — S? is a consequence
of the conformal equivalence between R? and S \ {po} via the stereographic projection map and the
Removable Singularity Theorem of Sacks-Uhlenbeck [27]. Here we also use the fact, due to Eells
and Sampson [12], that in the case of orientable two-dimensional Riemannian manifolds M, N/, if
w: M — N is smooth and ¢ : M — M is a conformal diffeomorphism, then w o ¢ is harmonic
if and only if w is, and moreover, E(w) = E(w o ¢). The relationship between the topological degree
and the energy (energy quantization) generalizes to harmonic maps between closed, two-dimensional,
orientable, Riemannian manifolds w : M — N, where we have E(w) = Area(N)|deg(w)]; see, for
example, Lemaire [19, Section 8, the Remarque on pg. 65].
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2.1.1. The scale and center of a harmonic map
Given a non-constant harmonic map w : R?> — $? ¢ R3, recall the notion of scale A(w; o) and center
a(w;yo) from Definition 1.3 and Defintion 1.4.

Lemma 2.3 (Center and scale). Let yo € (0,27) and let w : R*> — S* ¢ R? be a non-constant harmonic
map. Then A(w) = Aw,yo) as in Definition 1.3 is uniquely defined and strictly positive. Moreover,
there exists a(w) = a(w,yo) as in Definition 1.4. For all b € R? and p € (0, o),

A(w(_Tb)) = Aw)u, and |a(w(Tb)) —-b-a(w)u| <2(w)pu. 2.1

Proof. Since E(w; D(0,R)) — E(w) as R — oo, it follows that the scale A(w) is well-defined. If
A(w) = 0, then there exists a, € R? so that

E(w;D(an,1/n)) = E(w) —vyo Vn>l1. 2.2)
If n # m, the D(ay, 1/n) N D(a,,, 1/m) # 0. Indeed, otherwise,
E(w) 2 E(w; D(an, 1/n)) + E(w; D(am, 1/m)) > 2E(w) - 2yo,

whence E(w) < 2yy < 4, which contradicts that w is not constant. Therefore, {a,},’, is a Cauchy

sequence in R?, and a,, — d.. Passing to the limit in (2.2) gives a contradiction.
To see that a center a(w) can be chosen, take 1, — A(w) and a,, € R? such that

E(w; D(an,,)) 2 E(w) = y0.

As before, we conclude that no two disks {D(an, 4,)}, | can be disjoint. Thus, a,, € R? lie in a compact

set, and we may assume that a, — a« as n — oo, which is a desired center. We note that A(w) is
uniquely defined, but a(w) is defined only up to a distance of 2A(w). The properties (2.1) are immediate
from the definitions. o

Lemma 2.4 (Decay of harmonic maps). There exists yg € (0, 27) with the following property. For any
0 < y < yo and any harmonic map w : R> — S* c R3, the exterior energy decays at the following rate:

E(w;R*\ D(a(w;y); RA(w,y))) < nR™* (2.3)

forallR > 2.
We use the following e-compactness result of Ding and Tian [9] in the proof of Lemma 2.4.

Lemma 2.5 (e-compactness). [9, Lemma 2.1] Let y € R? and let u : D(y, 1) — S*> ¢ R? belong to the
class W>2(D(y, 1); S?). Then there exists €y > 0,C > 0 such that if E(u; D(y, 1)) < €o, then

llu = wavgllw22(p(y,1/2)) < C(\/E(u; D(y, 1)) + ||T(u)||L2(D(y,1)))a 2.4

where uqayg denotes the mean of u over the disc D(y, 1). In particular,

It = sl b1/ < C(VE@ DG D) + 1T @) 2oy ) @5)
Proof of Lemma 2.4. With loss of generality, a(w;y) = 0 and A(w;y) = 1. Consider the harmonic map
@(z) = w(1/z) for which 0 is a removable singularity (see [27]) and E(®; D(0;1)) < y. Applying

Lemma 2.5, we conclude that

I1D? ll2(p0,1/2)) S V7
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whence @ € WP (D(0, 1/2)) for any 2 < p < co. From the equation A® + @|V@|* = 0, it follows that
D?@ e LP(D(0,1/2)) for any 2 < p < co. In particular, there exists an absolute constant yy > 0 such
that 0 < 7y < 7y ensures that

IVo(z)| <1 V|zl £1/2,

whence E(w,R?\ D(0,1/r)) = E(®,D(0,r)) < nr* for all r m]

<1
<3

Lemma 2.6 (Energy of multi-bubbles). Let y, € R?, p,, > 0 be sequences, and M € N. Let we, € S* be

a constant, let wy, . ..,wp be nontrivial harmonic maps, and let b, j € D(yn, py) and pi,,; € (0, )
for j e {l,..., M} be sequences so that
. HMn,j HMn, k |bn i~ n k| ) HMn,j
lim + + =0. (2.6)
n—o ;( (Mn,k HMn,j Z dist(by, j’aD(yn’pn))
Then
— b by u M
lim E(Q(we, 01 (——1), .. wn (S222)):D (v, pn) ) = ' Ew)), @7
Jim E(Qwe 01 (— =) om (=) Dl )| = ) E ()
Proof of Lemma 2.6. To simplify notation within the proof, we use the shorthand w, ; = w;( ';b"jj ).
n.,j

Expanding the energy, we obtain

E(Q(U)n,]w <o Wh, M) D(Yn, pn)) = ZE(wn /,D(yn,pn)) + = ) Z/ an,jvwn,k‘

J#k D (yn.pn)

By the separation condition (2.6) with respect to dD(y,, p») and Lemma 2.4,

E(wn,j;D(Ympn)) = E((Un,j) +0n(1)

as n — co. However, if j # k, then

‘ / Vwn, jVon i
D (yn-pn)

by the first term of (2.6). m]

< / Voo [Vani] = on(1) 2.8)

2.2. Properties of the harmonic map heat flow

2.2.1. Well-posedness
The starting point for our analysis of the HMHEF is the classical result of Struwe [28], which says that
the initial value problem is well-posed for data in the energy space and solutions are regular up to their
maximal time.

Following Struwe, we introduce the space,

VZ = {u [, T] xR* = §? ¢ R* | u is measurable, and

T
sup. E(u(®) + [ 10l + 19l ar < o}, 2.9)
te[r,T T

We use the shorthand VT = VOT .
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Theorem 2.7 (Local well-posedness). [28, Theorem 4.1] Let uy € E. Then there exists a maximal time
of existence T, = T, (up) and a unique solutionu € (\rr, VT to (1.2) with u(0) = ug. The solution u(t)
is regular (e.g., C?) on the open interval (0, T,).

A finite maximal time Ty < oo is characterized by the existence of an integer L > 1, a number €y > 0
and points {xg }69:1 c R? such that

limsup E(u(t); D(x¢,R)) > €, Y R>0, VI<{<LL. (2.10)

t—T,

The {x¢ };;1 are called bubbling points, and there are at most finitely many. There exists a finite energy
mapping u* : R — S2, called the body map, such that u(t) — u* as t — T, weakly in H' (R?; S?) and
strongly in HIIOC(R2 \ {xg}ézl; S?).

The energy E(u(t)) is continuous and nonincreasing as a function of t € [0,T,), and for any
t) <t € [0,Ty), there holds

E(u(t)) + / T @)IP, dr = E(u(ny)). @.11)

In particular, there exists E,. := lim,_,1, E(u(t)), and

T,
[ i a <. @.12)

Remark 2.8. Lemma 2.7 is proved by Struwe for the HMHF in the case of maps from a closed
Riemannian surface M to a compact Riemannian manifold A; see [28, Theorem 4.1]. The same
arguments hold for M = R?.

Lemma 2.9 (Localized energy inequality). There exists a constant C > O with the following property.
Let u(t) be a solution to (1.2) with initial data uy as in Lemma 2.7, on its maximal interval I,x = [0, T,).
LetO<t; <1y <T, Let R >0, ¢ € C3(R?) satisfy 0 < ¢(x) < 1 and |[V¢| < R™". Then

Ih—1
2

- (2.13)

/ V(12 3) P o ()7 dx < / IVu(tr, )P (x)? dx + CE (o)
RZ RZ

and

(tr—11)
R2

+IE@(m) = E(u(r2)).
(2.14)

[ 1wutoPowrac> [ [FutnoPec? a - c(Ew)
R2 R2

Proof of Lemma 2.9. Take the dot product of the equation (1.2) with d;u¢> and integrate by parts to
obtain the identity

1d 2
101G + 3 IPu01G: == 0, [L ot -aucnopwomer. @13)

Integrating the above from #; to #, we obtain the identity

2 1 1
/ 8, (t)$lI7, dr + §||V”(t2)¢”22 = EIIVM(I1)¢||22

1

%) 2
—/ Z/ Aju(t,x) - Bu(t,x)9,¢(x)p(x) dx,dr. (2.16)
1 j=1 R2
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The right-hand side above is bounded by

/ tz
n

The lemma readily follows after an application of Cauchy Schwarz, where we note that in obtaining
(2.14), we also make use of the energy identity (2.11). |

2 .
Z/ ﬁju(t,x)-6,u(t,x)8j¢(x)¢(x)dxdt|$/ E;MO)Ha,u(t)ngdet. 2.17)
j=l R2 1

Lemma 2.10. Let u, () be a sequence of HMHFs with initial data u, o € € defined on time intervals
I, := [0, 7,] for a sequence t, > 0 with lim,_,c T, = 0, and satisfying limsup,_,., E (un0) < co. Let
w be a harmonic map and let R,, > 0 be a sequence such that lim,,_,, T, R,;*> = 0. Suppose that

lim E(un0— w; D(0,2R,)) =0. (2.18)
n—oo

Then
lim E(u,(1,) —w;D(0,R,)) =0. (2.19)

Next, let €, > 0 be a sequence with €, < Ry, for all n and such that lim,,_, TnE,IZ =0.Let L > 1 be
an integer and let {xg};‘zl C R? be such that the discs D (x¢, €,) are disjoint and satisfy D(x¢, €,) C
D(0, Ry,) for each n and each € € {1, ..., L}. Moreover, |x¢ — x,y| = 100€, if € # m. Suppose that

L
lim E(un,o ~w:D(0.2R)\ | J D, z—len)) - 0. (2.20)
=1
Then
L
lim E(un(‘rn) —w:D(0,R,) \ UD(Xg,en)) = 0. 2.21)
n—oo

=1

Proof of Lemma 2.10. The proof is very similar to the Proof of Lemma 2.9. We prove the estimate
(2.21), as the proof of (2.19) is analogous. Set v, (t) := u,(t) — w. Then

Ayvn — Avp = un|Vun|* — 0|Vl (2.22)

Let ¢, € C(‘)"’ (Rz) and take the dot product of the above with 8,vn¢ﬁ. Recalling that d,;v,, = d;u,, L u,,
integrating by parts, and integrating in time from O to 7,,, we obtain the inequality

1 ™ 1
IVl + [ W 00,1 0 < 31V

+ / ' / 190 (0)]100 v (1) [V b bl i + / ' / V2 l8,vald? drdr. (2.23)
0 R2 0 R2

Now, let ¢, be cutoffs supported in the region D(0,2R;) \ U%:l D(x¢,27'€,)) and = 1 in the region
D(0,Ry,) \ U‘;f:l D(x¢, €,)), satisfying the bound |V¢,| < €,!. The first term of the last line above
satisfies

1

Tn
3 [ W0l e 20
0

./0 n/Rz|an(t)||(9zvn(t)||V¢n|¢,ndxdtS (E(un,0)+E(w))%+
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and the second term on the right above can be absorbed into the left-hand side of (2.23). Similarly,

Tn 1 T
/(; /RZ IVel?|0,vul ¢y dx dt < Tn||Vw||24 + E[J ||('“),vn(t)¢n||l2‘2 ds, (2.25)

and the second term on the right above can be absorbed into the left-hand side of (2.23). The limit (2.21)

readily follows. O

2.2.2. Local L™ estimates for the heat flow
We use the notation e’ to denote the heat propagator in R? — that is,

b=yl

1
ey(x) == — / e” T v(y)dy, (2.26)
47Tt R2
where here v : R2 — R3. We also recall Duhamel’s formula,
t
v(t) = e"v(0) + / "8 (9,v(s) — Av(s)) ds. (2.27)
0
Lemma 2.11 (Parabolic Strichartz estimates). [29, Lemma 2.5] There exists a constant Cy > 0 with the

following property. Let v € L>(R*;R3). Let T > 0, I := [0,T] and let F € L'([0,T]; L>*(R*;R?)). Let
v(t) denote the unique solution to the linear heat equation

3,\/ - AV =F
v(0) = vyp. (2.28)
Then
IVllL2 (r:re@2zsy) < Collvollrz + IF Nl 1.02rems))) - (2.29)

Proof. Setting (Tf)(t) := ¢'>f for t > 0, one has T*F = fooo e*AF(s) ds. Starting from the two-
dimension estimate ||(T£)(?)]leo < £~ f]l1, we have

TT*F — ® (t+s)AF d ,
(TT"F)(1) /0 e IAF(5) ds
whence
I(TT*F)()le < /Ooo(t+8)_1I|F(S)I|1ds=/Ow(l+u)_lIIF(ut)I|1du.

The right-hand side is L?((0, o)) bounded and we conclude that
WITT*Fll2 (0,00, 2 22)) S IFllL2((0,00),L.1 (R2)) -

Thus, (TT*F,F) = ||T*F||% < ”F”iz((o,oo),Ll(Rz))’ and by duality, we obtain the F = 0 case of (2.29),

viz. [Tvoll2((0,00),20(%2)) S lIVoll2- However, if vo = 0, then

v(t) = /Ot e"IAF(s) ds = ‘/OOOX[SQ] e"INF(s5) ds,
whence
VL2 ((0,00),22R2)) < /0°° lle "2 F ()12 ((5.00.10(2)) dS S /0°° IF ()2 ey ds,  (2.30)
as claimed. O
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Lemma 2.12. Let u,(t) be a sequence of solutions to (1.2) with initial data u, o € € N CO(R%;R3)
and limsup,,_, E(u,,0) < oo, defined on time intervals I,, := [0, 1,] for a sequence 1, > 0 with
lim,,—co 7, = 0. Let w be a harmonic map (possibly constant) and let R,, > 0 be a sequence so that
lim,, e 7, R;,% = 0. Suppose that

1im (11,0 = @l (D0.4,)) + E(itno = 3 D(0,4Ry)) ) = 0. 231)
Then
Jim flun (7a) = wllL= D (0,R) =0 (2.32)

Next, let €, > 0 be a sequence with €, < Ry, for all n and such that lim,,_,c Tne;2 =0.Let L > 1 be
an integer and let {)C(?}é‘:l C R? be such that the discs D(x¢, €,) are disjoint and satisfy D (x¢, €,) C
D(0, Ry,) for each n and each € € {1, ..., L}. Moreover, |x¢ — x;y| = 100€, if € # m. Suppose that

L
r}gr.}o (”un,O - wHLoO(D(O,“'Rn)\U;“:l D(x¢,47e,)) + E(un,O —w; D(O’ 4Rn) \ U D(Xg, 4716n))) =0.
=1

(2.33)

Then

1im [l (7) = @l (0, Ra UL, Dixrseny = O (2.34)
Proof. We begin with a solution u, () of the heat flow satisfying

lun(0) — wll=(p(0,4r,)) + E(n(0) — w, D(0,4Ry,)) = 0,(1).
We pick ¢, to be the ground state of the Dirichlet Laplacian on the disk D(0,3R,,/2) and set v(¢) =
(u(t) —w)¢y, dropping the index n for simplicity. We normalize ¢ (0) = 1, which means that ||@1 || = 1.
Then —A¢; = A3¢1, 22 ~ R;? and
v —Av = (|Vul*u — |[Vw*w)¢ — 2V (u — w)Vé, +/l%v.

Since ¢, is not globally smooth, we cannot solve this heat equation on the plane but rather need to use

the heat flow on the region Q = D (0, 3R,,/2) with Dirichlet boundary conditions. By the Beurling-Deny
theorem (see Davies [5, Theorem 1.3.5]), the heat flow is a contraction on L* (L), and we conclude that

max |[v(7)|le < [[v(0)[leo +/I|(IVM(S)IZM(S) ~ Vol w)¢1 |l ds
0<t<T I
+2 / IV (u(s) = @)V lloo ds + V[l (rxz2) (2.35)
I
with [0, 1,,] = 1. If /ﬁll | < %, then the final term gets absorbed to the left-hand side. Next,

I(1Vu(s)Pu(s) = [Volw)dills < 201629 (u(s) = 0)liZ + 192Vl v (5) o
+lwlleoll¢2V (1 = W)l (192V (1t = ) [loo + 2/ 2V w2),  (2.36)

where ¢, is a smooth cutoff to D(0, 2R,,) with ¢ ¢, = ¢1. We further bound

IV (u(s) — w) Vo1l < R, 162V (u(s) — @) ]leo
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using that ||[Véi|le < R,

n

X := L®(I; L°(R?)), Y = L>(I; L°(R*;R%)). Then (2.35) implies that

2 2 -
IVlix s o(1) + 7 + IVlx (wlly +7) + Iwlly + TR wlly,
which in turn simplifies to
2
IVllx < o(1) + (Ivllx + DIwlly-

To bound w, we use the PDE
2
rw = Aw = oV (u|Vul?) =2 )" V3 (u - w) ;2
j=1
—V(u-w)A¢s — $rV(w|Vo|?) = G.
By (2.29), and with Z := L' (I; L*(R*;R3),
Iwlly < IV(u(0) —w)gall2 +Gllz < o(1) +[|Gllz.

To bound G, we estimate with a smooth cutoff ¢3 to D (0, 3R,,) so that ¢¢3 = ¢2,

62V (u|Vul?) b < N2 Vlloll @3 Vull} + 162 Vaellooll g3 D?ull2
V3, (u — w)d;¢2ll» S R, |¢3D*(u — w)|l2
AG2V (1 — w)]la < R $3V (1 — w) |2

as well as ||¢2V(w|Vw|?)|l» < 1. Furthermore,

lp2Vitlloo < [[Wlleo + 1
lp3Vulls < llg3V(u —w)lls + 1
l¢3D%ull> < llp3D*(u — w)|l> + 1

uniformly in R,,. By (2.39) therefore,

wlly < o(1) + wl + /1 165V (u(s) — ) [[} ds + /1 163D (u(s) - w)|3 ds.

To perform energy estimates on u# — w, we apply the methods of Struwe [28] to the PDE
0 (- w) — A — w) = (u - w)|Vo|* +u(|Vul* - [Vo ?).

Integrating by parts against q%(%(u — w) implies that (with T = ;)

T T
_ 242 _ . _ 2
/0 /RZ |0; (1 — w)|“ ¢35 dxdt +/0 ./RZ V(u(t) - w) - V[0;(u — w)p3] dxdt

which follows by scaling. Define w(s) = ¢>V(u(s) — w) and let

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

T T
:/ (u—a))|Va)|2~6,(u—w)¢§dxdt+/ / u'(?t(u—w)¢§(|Vu(t)|2— |Vw|?) dxdr,
0 R2 0 R2
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which implies

T
/ / 100 ( — ) P62 dxd + / IV(u(T) - w) P62 d
0 R2 R2
T T
50(1)+/ /||vu(r)|2—|Vw|2|2¢§dxdt+/ /|V(u(z)—w)|2|V¢3|2dxdt (2.45)
0 R2 0 R2
T
$o(1)+/ /|V(u(r)—w)|4¢§dxdz.
0 R2

The final term on the second line of (2.45) is dominated by TR;;%(E(u(0)) + E(w)) and so can be
absorbed in the O(7,, R;?). Multiplying (2.43) by —¢§A (u — w) and integrating by parts yields

2 T T
Z/ /a,|aj(u—w)|2¢§dxdt+/ / |A (u(t) — w)|*¢3 dxdt
=0 JRr 0 JR?

2 T 2 T
=;AAZaj[(u—w)|Vw|2¢§]-aj(u—w)dxdt—zjz_;/o/Rza,(u—w)¢3aj¢3.aj(u—w)dxdr
T
- / / A(u - w) - [$3(|1Vu(t)|* - |Vo|*)u] dxdr, (2.46)
0 R2

which implies

T T
—1/ /|at(u—w)|2¢§dxdt+/ |V(u(T)-w)|2¢§dx+1/ /|A(u(;)—w)|2¢§dxdt
2Jo Jr2 R2 2Jo Jre
T
s0(1)+/ /|V(u(t)—w)|4¢§dxdt. (2.47)
0 R2

Adding this to (2.45), we obtain

T T
/ /|6t(u—w)|2¢§dxdt+/ |V(u(T)—w)|2¢’§‘dx+/ /|Dz(u(t)—w)|2¢§dxdt
0 R2 R2 0 R2
T
50(1)+/ /|V(u(z)—w)|4¢§dxdt. (2.48)
0 R2

For the third term on the left-hand side, we used another integration by parts to bound

T T
/ / |D?(u(t) — w)|*¢3 dxdt s/ / |A(u(t) — w)|*¢3 dxdt + 7, R, 2.
) R2 0 R2

[¢

By [28, Lemma 3.2],

T
/ /|V(u(z)—w)|4¢§dxdts sup/ [V (u(t,x) — w(x))|*dx
0 R2 D(0,3R,)

0<t<T

T
( / / D2 (u(r) - w) P} dxdr + 7, R;2). (2.49)
0 R2

By Lemma 2.10, the local energy on D (0, 3) is small. Hence, we conclude from (2.48) and the bound
(2.49) that

https://doi.org/10.1017/fmp.2024.15 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.15

18 J. Jendrej et al.

T T
/ /|a,(u—w)|2¢§dxdt+/ |V(u(T)—w)|2¢§dx+/ /|Dz(u(t)—w)|2¢§dxdt
0 R2 R2 0 R2
T
+/ /|V(u(t)—w)|4¢§dxdzso(1). (2.50)
0 R2

Inserting this bound into (2.42) yields ||w|ly = o(1), whence from (2.37), finally ||v|lx = o(1). This
finishes the proof for disks.

For the punctured disks, we would like to proceed in the same fashion. As a first step, it appears
that we would need to obtain bounds on the suitably normalized ground state eigenfunction ¢; of the
Dirichlet Laplacian on the punctured disk

L
D*(0,4R,) = D(0,4R) \ | | D(xe, €0/4),

=1
where x, are as stated in the lemma. This turns out to be misguided as we will now see, in addition
to being delicate in terms of obtaining the needed bounds on ¢; uniformly in the choice of holes. In
fact, it suffices to select ¢; smooth on Q = D*(0,4R,,), vanishing on dQ so that —A¢, = V¢ with
VL= < €, uniformly in all parameters. By rescaling, it will also suffice to set R,, = 1.

We define, with r = |x| and rp = |x — x¢|,

L
$10) = xo(r) | [ xe(ro) 2.51)
=1

with smooth functions y; > 0 on the interior of Q, 0 < j < L that we now specity. First, yo(r) = 1
for r < 2, and on the annulus 3 < r < 4, yo(r) agrees with the L*-normalized Dirichlet ground state
of the disk D(0,4). To define y¢, consider all radial Dirchlet eigenfunctions, {,} ", on the annulus
D(0,1) \ D(0,%). Then v, (r) = anJo(unr) + b,Yo(t,r), where u> is the eigenvalue for n > 1 and

an, b, € R. Since a2 +b% > 0,and ¥, (y) = ¥, (1) = 0, the spectrum is characterized by the conditions
Jo(unY)Yo(n) = Yo(uny)Jo(pn) = 0.

Note that the ratio R(x) := Yo(x)/Jo(x) is strictly increasing on the interval (0, p;) where p; > 0 is
the smallest positive zero of Jy, as well as on any subsequent interval (o, pj+1), j > 1. This follows
from the fact that the Wronskian Y{j(x)Jo(x) — Yo(x)J((x) = 2/(mx) > 0. The first crossing of the
graphs, which determines the smallest energy ) > 0, is determined by R(x) = R(yx). The expansion
R(x) = %logx + O(1) for x — 0+ shows that R(x) > R(x7y) for all 0 < x < pj, and the first crossing
occurs at x € (p1, p2) and so the ground state energy u; € (p1, p2). Similarly, we find the other energies
i € (pj,pj+1), for j > 1. We select an eigenfunction ¢, with py ~ y~L. This is possible due to the
zeros of Jy(x) forming, to leading order, an arithmetic progression.

We can now define y, in (2.51) by centering this ¢ for y = €, at x, and gluing it smoothly with
the constant 1 at a distance =~ €, away from the x, hole. The resulting function y, > 0 will then satisfy
xe(x) = % provided |x — x¢| = €.

The associated cutoff function ¢, satisfies

L
$1(x) = collg [l forall x € D(O,3R) \ | JD(xr, /2) (2.52)
£=1
with some absolute constant ¢y > 0, independently of R, €, and the choice of the centers x; as above.
It is clear from the preceding that the ground state would have energy ~ 1 and does not satisfy (2.52).
Furthermore, ||V¢1|lo < €, ']|¢1]leo and most importantly,

L
167 Al < ) Iz Axello < €7,
=0
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as desired. Because of our assumption 7,,€;> — 0 as n — oo, the proof above applies. In the final step,
we use (2.21) to control the L*-norm as before, with one modification: we apply [28, Lemma 3.2] locally
on €,-disks and then cover the punctured disk D*(0, 4R,,) with ¢,-disks followed by a summation over
the disks in the cover. Cf. [28, Lemma 3.1, 3.3]. O

2.2.3. Concentration properties of the heat flow

Here we record the fact that the harmonic map heat flow cannot concentrate energy at the self-similar
scale. The case of finite time blow-up was treated by Topping in [31], and the global in time case follows
quickly from a local energy inequality as in Lemma 2.9.

Lemma 2.13 (No self-similar concentration in the blow-up case). [31, Proof of Theorem 1.6, page 288]
Let u(t) be the solution to (1.2) with maximal time of existence Ty < oo and initial data uy € €. Let
xo € R? denote a bubbling point in the sense of Lemma 2.7 and suppose that r > 0 is sufficiently small
so that D(xg, r) does not contain any other bubbling point. Then

Jim E(u(1); D(xo.7) \ D (x0, aNTi = 1)) = E(u’; D(xo,7)) (2.53)

for any a > 0, where u* is as in Lemma 2.7. In particular, there exist Ty < Ty and functions v, & :
[To, T:) — (0, 00) such that lim, 1, (v(¢) + £(¢)) = 0 and

. &(t) T, —1\
JMim (m "0 ) =0, (2.54)
and so that
Jlim E(u(t); D(xo, v(1)) \ D(x0,£(1))) = 0. (2.55)

Lemma 2.14 (No self-similar concentration in the global case). Let u(t) be the solution to (1.2) with
initial data uq € E. Suppose that T, = co. Let y € R?. Then

lim E(u(1):R*\ D(y, V1) =0 (2.56)

Jor any a > 0. In particular, there exist Ty < oo and a function & : [Ty, ) — (0, o) such that

£ _
m —- =

tlin \/; 0, (2.57)
and so that
lim E(u(t);R*\ D(y,£(1))) = 0. (2.58)

Proof. Fixy € R%Zand @ > 0. Let € > 0 and, using (2.12), choose Tp > 0 so that

WEGOD (=, b e
[ ol ar) < 5 2.59)

0

Next, let 77 > Tp be sufficiently large so that

§|

a €
E(u(To); R\ D(y, —~)) < 5 (2.60)

for all T > T;. Fixing any such 7, we set
¢ (Ix]) = 1 = x(4 x| JaVT), 2.61)
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where y(r) is a smooth function on (0, ) such that y(r) = 1 forr < 1, y(r) = 0if r > 4, and
|x’(r)] < 1forall r € (0, c0). We now use the identity (2.16) on the time interval [Ty, T] and with the
function ¢ = ¢r to obtain the inequality

T
SIVa(T)or I, < SIVu@orl, + [ [u)] (0] 1Vor | o7 ar
To
VT, GO [
a T

0

< E(u(To);R*\ D(y,

10 ()12 dt) <e, (2.62)

which holds for all T > T;, completing the proof. O

2.3. Localized sequential bubbling

The following localized sequential bubbling lemma proved in a series of works by Struwe [28], Qing [23],
Ding-Tian [9], Wang [37], Qing-Tian [24] and Lin-Wang [20]. We state as a lemma below a summary
of these works, which can be found, for example, in Topping’s paper [30, Theorem 1.1].

Theorem 2.15 (Compactness Lemma). [23, Theorem 1.2], [30, Theorem 1.1] Let u,, : R 5 §2cR3
be a sequence of C* maps such that lim SUP,,_,00 E (ty) < 0. Let py, € (0, 0) be a sequence and suppose
that

Tim pl|T ()2 = 0. (2.63)

Then, for every sequence y, € R?, there exists a sequence R, — oo a fixed integer M > 0, a
constant C > 0, a harmonic map wq (possibly constant), non-constant harmonic maps wi, . .., Oy,
and sequences of vectors by ,,...,byn € D(yn, Cpn) and scales p11 5, ..., 1upm.n € (0,00) so that
max; pij n/pn — 0asn — oo and

M
Jim | i~ ano(— )=, 03 () 10,(9)): Dy Rupi)
,] J.n
M
+ |l — (w; (2.64)
" P i M) - (=) L= (D(ynRpn))
2
ﬂj,n ,Uk,n |bk,n _bj,nl ) ,u]n
+ ( + +
J-Z#:{ Hk,n  Hjn MjnMk,n Z dlst(bj n,aD(yn,Cpn))

In particular, lim,_,q §(un;D(yn,§np,,)) = 0 for any sequence 1 < R, < R,,. There exist L < M
points x1, ..., xg, € D(0,C) so that

Uy (Yn + pn') = wo weakly in HI(D(O, C);Sz)

Uy (yn + pn+) — wo strongly in w2 Z(D(O, O)\ {x1,...,x.};S?). (2.65)

loc

For each j € {1,..., M}, there exist a finite set of points S, possibly empty and with #S; < M — 1,
such that

tn(bjn+ Wjn') = w; strongly in W2 (R?\ S5 82). (2.66)

Finally, there exists an integer K > 0 so that

lim E(uy; D(yn, Rnpn)) = 4nK. (2.67)
n—oo
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Remark 2.16. Theorem 2.15 can be combined with Lemmas 2.13, 2.14 and the bound (2.12) to prove
a sequential decomposition as in Theorem 1.1 along the well-chosen sequence of times described in
Section 1.1; see, for example, [31, Section 2]. We note that the second statement (2.64) gives L
convergence on the whole disc D(y,, Ry p,) rather than just at the scales of the bubbles, which is all
that is required for & (u,,; D (yy,, npn)) to tend to zero for 1 < R, < R,; see Definition 1.6.

Remark 2.17. Parker [22] proved an earlier version of Theorem 2.15 in the case when the sequence u,,
consists of harmonic maps (i.e., 7 (u,) = 0 for each n). We use this restricted version of Theorem 2.15
(for sequences consisting only of harmonic maps) at several instances in the next section.

3. Proofs of the main results
3.1. The minimal collision energy

For the remainder of the paper, we fix a solution u(t) of (1.2), defined on the time interval I, = [0, T}),
where T, < oo in the finite time blow-up case and 7, = oo in the global case. We fix yy > 0 such that
yo < min{ g5, Tog g } and sufficiently small so that Lemma 2.4 holds. From now on, we omit the
subscript yo fromd,,, and 6, and for a harmonic map, w we write A(w) = A(w; yp) and a(w) = a(w;yo)
for the scale and center.

Our strategy is to study collisions of bubbles, which we define as follows.

Definition 3.1 (The minimal collision energy). Let K be the smallest natural number with the following
properties. There exist sequences y,, € R2, Pn, €n € (0,00), 0y, 7, € (0,T4) and > 0, with ¢, — O,
0<oy, <1y <Ty, 0,7y — T4, so that

1. 6(u(00); D(Yn, pn)) < €n;

2. 6(u(tn): D(yn, pn)) = 1;

3. the interval I,, := [0, T, satisfies |I,| < €,02;
4. E(u(0n); D(yn, pn)) — 4Km as n — oo;

We call [0, T,] a sequence of collision intervals associated to K and the parameters y,,, p,, €, and 7,
and we write [0y, Tn] € Ck (Vn, Pns €1, 1)

Remark 3.2. By Definition 1.6 and Property (1) in Definition 3.1, we can associate to each sequence of
collision intervals [0, T,] € Cx (Y, Ons €n, 1) sequences &,, v, € (0, c0) with limnﬂoo(;’j—: + ‘;—:) =0

and a sequence of constants w,, € S? so that

lim (E(M(O'n); D (¥, 4va) \ D(yn, 47 €0)) + (o) = a)n||L°°(D(yn,4v,,)\D(yn,4‘1§n))) =0. (3.
Using Property (3) in Definition 3.1, we can always ensure (by enlarging the excised discs above) that
[In] =10 — 00 < &7 (3.2)

Then, by Lemma 2.9 and Lemma 2.12, the limits above can be propagated throughout the whole collision
interval [, yielding

lim  sup  E(u(t); D(yn, vn) \ D(yn, &n)) + [u(t) — wnllLe (D (yn.vi)\D (yn.£0)) = 0- (3.3)

e telon,tnl

Moreover, the above holds after enlarging &, or shrinking v,, (i.e, for any gn, v, with &, < En < pp K
Vi < Vp).

Lemma 3.3 (Existence of K > 1). If Theorem 1.8 is false, then K is well-defined and K > 1.
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Proof of Lemma 3.3. Assume Theorem 1.8 is false (in either the case T, < oo or T} = o0). Then we can
find > 0, sequences 7, — T}, y, € R, 0 < pPn < oo with p, < Ty —t, in the case T, < oo and
0On < A/t in the case T, = oo so that

0(u(tn); D(yn,pn)) 21m, Vn, (3.4)
and sequences @, — 0 and 3, — oo so that

nli_)n;E(u(Tn% D (¥ns Bnpn) \ D(yn,@npn)) = 0. (3.5)

In case p, =~ Ty — 1, or p, = /i, the existence of ay,, B, as above is guaranteed by Lemma 2.13 or
Lemma 2.14.
We claim that there exists a sequence of times o, < 7,,, 05, — T}, such that

[0, ]l < py, and ’}i_I)I(}OPiHT(u(O'n))”iz =0. (3.6)

If not, we could find numbers ¢, cg > 0 and a subsequence of the 7, so that
Pall T@)?, > co. V€ [1a = cpp.Tal. 3.7)

But then

T. Tn Tn
[rmaomaz [7 imwoaza) [C ptase 68

T, —Ccph Tu—Cp}

and the above contradicts (2.12).
Using (2.14) from Lemma 2.9 and the fact that |E (u (o)) — E(u(71y,))| — 0 since oy,, 7, — T4 (see
Lemma 2.7), we see that (3.5) can be used to ensure that

Jim E(u(): D(yn, 27 Bupn) \ D (> 20npn)) = 0. (3.9)

Given the sequence o, in (3.6), we can apply the Compactness Lemma 2.15 to u(o,) and conclude that
after passing to a subsequence (which we still denote by o7,), we see that a bubble decomposition as in
(2.64) holds for some sequence R, — oo. Because of (3.9), we see that the harmonic map wy in (2.64)
must be constant (i.e., wy(x) = w € S?), and we can conclude that

321305(u(0'n);D(yn,Pn)) =0. (3.10)

By Lemma 2.6, we can find an integer K > 0 so that
E(u(0n); D(yn, pn)) — 4nK. (3.11)

We have shown that Properties (1)—(4) hold for the intervals [o;, 7,,]. This proves that K is well-defined
and > 0.

We claim that K > 1. Suppose K = 0 and y,,, pp, €, Oy, T, are as in Definition (3.1). But then, we
can find &,,, v, and w € S? as in (3.3) in Remark 3.2. By Lemma 2.9, we have

E(u(t); D(yn, pn)) = 0n(1), (3.12)
and by (3.3) in Remark 3.2, we have
En  Pn _
(7)) = Ol (D (v\D (s 0) + == + == = 0n(1), (3.13)
Pn Vn
which makes it impossible for (2) in Definition 3.1 to be satisfied. This proves that K > 1. O
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3.2. Lengths of collision intervals

We assume that Theorem 1.8 is false. Let K > 1 be as in Lemma 3.3 and let y, € R?, p, € (0, ),
e > 0,0 < 0oy <1y < T} with 0,7, = T4, and n > 0 be a choice of parameters given by
Definition 3.1 (i.e., [0%, Tn] € Ck (Y, Pn»> €15 1))-

Lemma 3.4 (Length of a collision interval). There exists 9 > O sufficiently small so that for each
n € (0,n9], there exists € > 0 and co > 0 with the following properties. Let [0, T] C [0y, Th] be any
subinterval such that

0(u(o); D(yn, pn)) < €, and 6(u(t); D(yn, pn)) = 1, (3.14)
and let w € Si and wy,...,wy be any collection of non-constant harmonic maps, and Vv =
VoV1s o vm) €= (€61, ..., Em) € (0,00)M* any admissible vectors in the sense of Definition 1.6
such that

€ < d(u(0), Q@); D(yn, pn); ¥, €) < 2e. (3.15)
Then
T—0 >c¢p max /l(a)]-)z. (3.16)
je{l,...M}

Corollary 3.5. Letng > 0 be as in Lemma 3.4, 1 € (0,n9], and [0+, 7] € Ck (Y, Pn» €n, 7). Then there
exist € € (0,1), co > 0nyg € Nand s, € (oy, 1) such that for all n > ny, the following conclusions
hold. First,

O(u(sn); D(yn, pn)) = €. (3.17)

Moreover, for each n > no, let My, € N, and O(wy,) be any sequence of M,,-bubble configurations, and
let Vy = Vi, Vins - s VM.n)s {;‘n = (Enérns - Emn) € (0,00)M*! be any admissible sequences in
the sense of Deﬁnition 1.6 such that

€ < d(u(sn), Q(@n); D(yns ), Vns €n) < 26 (3.18)
for each n, and define

Amax,n = Amax (85) = . Imax /l(w] n)- (3.19)
Jj=1 M,

Then sy, + codmax(5n)> < Tn, and
6(14(1‘); D(y}'h pn)) >€, Vte [Sm Sp + CO/lmax(Sn)z]- (3.20)

We make the following definitions.
Definition 3.6. We say that two triples (w;, @ n, A ) and (wjr, a s p, dj» n) Where w j, w j» are nontrivial
harmonic maps, a; »,a; n € RZ? are sequences of vectors in R2, and A i Ajrn € (0, 00) are sequences
of scales, are asymptotically orthogonal if

2
Ajn  Ajrn |ajn = ajon| ) .
Apn Ajn Ajndjn

lim (

n—oo

(3.21)

Definition 3.7. We say that a sequence of nontrivial harmonic maps § = {w,},’ | is a descendant

sequence of an ancestor sequence of harmonic maps $ = {Q,}" if AEQ")) — o0, and there exists a

constant C > 0 so that the discs D(a(w,), A(w,)) € D(a(,), C/l(Qn)) for all sufficiently large n.
We denote this relation by {w,} < {Q,}, and {w,} < {Q,} allows for equality. Given a natural
number M, a collection of sequences of harmonic maps (hi,...,0n) = {winty s s {winte,)
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with asymptotically orthogonal centers and scales are partially ordered by <. The roots are defined to
be the maximal elements relative to this partial order. In other words, a sequence of harmonic maps b;
is a root if it is not a descendant sequence of any ancestor sequence b for any ;' € {1,...,M}. We
denote by

R:={je{l,...,M}|b; is aroot}. (3.22)

Finally, to each root b;, we can associate a bubble tree 7 () := {b; | h;» < b;}.

Proof of Lemma 3.4. If the Lemma were false, we could find intervals [s,, t,] C [0, 7] so that

lim 6(u(sn); D(yn,pn)) =0, lim 6(u(ty); D(yn,pn)) > 0, (3.23)
n—oo n—oo
integers M,, > 0, sequences of M,-bubble configurations Q(w,), and sequences of vectors v, =
YnsVins o>V, ) € (0, co)Mntl £ — (éns €1y - sEm,n) € (0, c0)Mn*! guch that
1lim d(u(sn), Q(@n): D (Vs ) Vs ) = 0, (3.24)

and so that for Amax » := max;=1, m, A(w; ), we have

.....

1
fim Un =) (3.25)
n—oo max,n
Passing to a subsequence, we may assume that M,, = M is a fixed integer and w, = w € S? is a fixed
constant.
Consider the sequences of harmonic maps, ); = {w; »}," . forj = 1,..., M, together with sequences
of centers a(w; ,) and scales A(w; ), and the partial order < on (b1, ..., ) as in Definition 3.7.

Using the language of Definition 3.7, we observe that, after passing to a subsequence in n, there exists
a sequence R,, — oo so that for any root sequences h; = {w; n},” |, b7 = {w; .}, with j, j" € R, the
discs D(a(wj ), 4R,A(w;j n)) and D(a(wjr n),4R,A(w; ,)) are disjoint for each n for any sequence

R, < R,. By Lemma 2.4,
lim E(w; ;s R*\ D(a(w)n);4 ' Ryd(w) ) =0 (3.26)
n—oo

for each j € R and for any sequence R,, — oo, and hence, by (3.24),

i E(u(s): D(yusp) \ | D(@(@)). 47 Rud(@;0))) = 0 (3.27)
JER

for any sequence R, — oo.

Each of the sequences {w; n},., for j € {1,..., M} satisfies the hypothesis of the Compactness
Lemma 2.15 (noting that 7 (w; ,) = 0 since w; , is harmonic), and passing to a (joint) subsequence,
we can find non-negative integers M, a sequence R, < R, with 1 < R, < fn/l;élx,n, harmonic maps
wj o (possibly constant), nontrivial harmonic maps 6; , scales uj x » < A(w; ) and centers b; i , €

D(a(wj ), CA(w; ,)) for each j and where k € {1,..., M,}, satisfying (2.65), (2.66), and so that

M,

E(wj,n - ‘Uj,O(M) - Z (ij(m) - Hj,k(oo));Dj,n)

Awj,n) — Hjkn

. . M, —b.
+ ”wj,n - aﬁ,o(%) - kz:; (ij(ﬁ) - Hj,k(oo))

lim

n—oo

Lm(Dj,n)

+

M.

Hj.k,n + Hj.kn + |bj,k,n - bj,k’,n|2)_1 . Hj.k,n -0

& Hj k' n Hjk.n M knkj k' n ] diSt(bj’k’n, 6D(a(wj,n), C/l(wj,n)) ’
(3.28)
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where D; ,, = D(a(wj n),4RnA(wj ), C > 0 is some finite constant, and R, is a sequence, to be
fixed below, such that 1 < R, < R,. In this decomposition, we distinguish the (possibly constant)
harmonic maps w; o, which arise as the weak limits @ , (1(w; ) (- + a(w; n))) = w;,o, and we call
these the body maps associated to the sequence h; = {w; n}, .

Define the set of indices

Amax,n
Jmax = {j e{l,...,M}| C}l < % < C;, for each n for some C; > 1} (3.29)
j.n
and let
4nKy = Z E(wj). (3.30)
jejmax

That is, 47Ky is the sum of the energies of the body maps associated to the w; ,, arising from indices
J € Jmax- Note that Jn.x is a (possibly strict) subset of the set of indices R associated to the roots.

Case 1: First suppose that Ky = K, which means that J,x = R = {1,..., M} and all of the energy
in D(yn, pn) is captured by the body maps. In this case, the sequences {w; ,} have no concentrating
bubbles — that is, M; = 0 for each j, and we have

. T a((’-)j,n) . _
Tim E(w;, - w.f,o(Mw—M), D (@(w) 1), 4Ry A (@;.0))) =0 (3.31)
and
c—a(wjn,
lim [l - j,O(M) =0 (3.32)
n—eo Amax,n L (D(a(wj,n) 4Rn Admax,n))

for each j € {1,..., M}. Using (3.24), the fact that A(w; ) = Amax,» foreach j € {1,..., M}, and the
above, we can now fix (for Case 1) a sequence R,, < R, so that

lim E(u(s) - (i) b4t ). 4R ) =0 (3.33)
oo n 7,0 ﬂ(wj,n) > j.n)s nmax,n .
and
lim Hu(sn) - w,-,o(M) ~0 (3.34)
n—co ' Amax,n L>(D(a(wj,n) 4R Amax,n))
for each j € {1,..., M} (i.e., we need to additionally ensure that 4R, Amax.n < min{vj,,,}j”il). Using

Lemma 2.10 and Lemma 2.12 along with the fact that (¢, — sn)% < Amax,n, We can propagate these
estimates to time ¢, — that is,

tim £ ((02) = ;0= 2): D (a(0;,), Runn)) = 0 (3.35)
n—oo J /l(w,’n) > ’
and
c—a(w;jn)
I || T -0 3.36
"I_I’lgo u( n) @10 /lmax,n L (D(a(wj,n),Rndmax,n)) ( )
foreach j € {1,..., M}. Using Lemma 2.9 and that (z,, — sn)% < Amax,n, We can also propagate (3.27)
to time ¢, deducing
M
1im £ ((t) D (s ) \ | D(@(@;.0); Rudman)) = 0. (3.37)
j=1
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Combining (3.35), (3.36), (3.37), the disjointness of the discs D(a(w; ), RnA(w; »)), the asymptotic
orthogonality of the triples (w; 0, a(w; n), A(w;j n)), and Remark 3.2, we find that

Jim §(u(tn); D(yn, pn)) =0, (3.38)

which contradicts (3.23).
Case 2: Next, consider the case Ky < K. We show this case leads to a contradiction with the
minimality of K. Again, we will need R, — oo such that 4R, Amax,» < min{v; n};es.. and R, < R
We claim there exists an integer L > 1, sequences {Xg,n}t];‘:l with x¢ ,, € D(yn,&,) for each n and

each ¢ € {1,..., L}, and a sequence r,, such that
(t, — sn)% < Fp < Amax.ns (3.39)
such that the discs D (x¢ , ry) are disjoint for £ € {1, ..., L} and satisfy
L
lim E(u(sn); | DG rn)) = 47K — 4nK, (3.40)
n—oo €:1
as well as
lim Fen =Xl _ (3.41)
n—oo n
for £ # ¢’, and finally such that there exist sequences @, — 0, 8;, — oo so that
L
lim > E(u(a): D(xt.n Bur) \ D(xe.n @) = 0 (3.42)
=1
and a sequence &, so that
&y < &y < pn and D(xg, Burn) € D(yn, &n). (3.43)

We construct a set of sequences P := {{x¢,} : 1 < ¢ < L} and the radii {r,} as follows. Any root
h; with j € Jmax we call a dominant root. For any dominant root by;,, we define 7 (jo) = {b; < b;,}
as the bubble tree with root §;,, and D(jo) as the maximal elements of the pruned tree 7 (jo) \ {b;,}-

We define Py as the points y, , for £ € {1,...,L’} as an enumeration of all (i) a(w; ) with
h; € R\ Jmax (i.e., the centers of the roots that are not dominant), (ii) a(w; ) with ; € D(jy) for
~Pjg.k.n
l‘.fof)k,n

some jo € Jmax,» and (iii) sequences b, r n associated to harmonic maps 6 jo,k( ) for some

Jo € Jmax,n that are

o asymptotically orthogonal to every f; € D(jp)
o not descendants of any bh; € D(jo).

Passing to a joint subsequence, we can assume that the limits

(tn — Sn)%

lim ———— (3.44)
n—oco dist(yer n, Ye.n)

exist in [0, co] for all £ # ¢’ € {1,...,L"}. We define P by means of Py by the following algorithm:
we include the sequence yy, , € Po in the set P if

(tn - sn)%

m T8 o vee (... L))\ . (3.45)
n—eo dist(y¢y,n» Ye,n)
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For those y¢,,» € Po for which the above does not hold, we define the sets

1
PN
B(t) = {50 and any ¢ for which lim (tn = 5n)?

_Unmsn)? 0}. (3.46)
n—co dist(y¢,.n» Ye.n)

An index ¢ can be in at most one set B({p) (i.e., the sets B(£) = B(¢’) if £’ € B(¢£)). For each of the sets
B(£o), we let, for each n, x¢,,, denote the barycenter of the points y, ,, associated to indices £ € B({p).
We include the points x, , in the set P. This completes the construction of the set P, which consists
of finitely many (say L € N) sequences {x¢,} C D(yn,én) for £ € {1,...,L}.

We choose r, to be any sequence such that

(th = Sn)% ASRATIRSS /Imax,n’
Rn/l(wj,n) L Tn V] & Jmax- (3.47)
max(fj in.Ejn) <rn Yj€Tma.Vke{l,...,M;},

and such that the discs D (x¢_,, r,,) satisty (3.41). In view of the definition of jo € Jmax,
Amixn|a(@jo,n) = a(@j )] — o0

for all j € R\ Jmax. This ensures that for any x, ,, which is one of the sequences a(w; ,) for
J € R\ Jmax, the disc D(x¢ ,,rn) is separated from any of the discs D(a(wj,,n), Rndmax,n) for
Jo € Jmax by an amount > r,, (we are free to take R,, — oo to be diverging as slowly as needed).

We claim that the sequences of discs D (x¢,, ;) with x¢ , € P satisfy (3.40). To see this, first note
that for any jo € Jmax,

lim E(u(sn) —wjyol

n—oo

—a(wjn), t _
/l(w—,(,n)) D(a(wjy,n), 4RpnAmax.n) \ (L:Jl D (x¢ n, Vn)) =0, (3.48)

which follows from the construction of the set {)C[,n}é‘zl, the limit in (3.28) and the choice of r,,. Note
also that r,, < Amax,» means that

lim E(wjo,o(M); D Genra)) =0. (3.49)
=1

n—oo /l(wjo,n)

We can conclude from the above, (3.48), (3.30) and (3.27) that

L

lim E(u(sn); Do) \ | Dt rn)) - 47K, (3.50)
=1

The condition (3.40) follows then from above and the disjointness of the discs D (x¢_,,rn). The con-
dition (3.42) and the existence of the sequence 5,1 as in (3.43) follows from the construction of the set
P and the choice of r,,.

We claim that there must exist £; € {1,...,L}, n; > 0 so that, up to passing to a subsequence in n,
we have

O(u(tn); D(xe n>70)) = 11 (3.51)
To see this, we argue by contradiction. If (3.51) fails, then we would have

lim 6(u(t,); D(xppn,1n)) =0, VEe{l,...,L}. (3.52)
n—oo
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We will use the above to show that

nlggo 0(u(tn); D(yn, pn)) =0, (3.53)

which contradicts (3.23). To start, (z,, — sn)% < r, means we can use Lemma 2.9 and (3.42) to
propagate (3.40), (3.50) and (3.48) to time ¢,,, giving

Tim E(u(tn); O D(x¢.n, r,,)) - 47K — 47K, (3.54)
=1 )
Jim_ E () D(ns o) \ | Do) ) = 47K (3.55)
=1
) c=a(wjy,n) L
1im E(u(t,) - 10Ty D(@(@in): Radmas) | KUI Dlitsrn)) =0, (3:56)
for all jo € Jmax, Where in the last line we remark that for each ¢ € {1,...,L}, either the disc

D (x¢ 3 rn) is completely contained in D (a(w jy.n), RnAmax,n) OF disjoint from it.
Next, using AmaxnRn < min{v; ,}jegn, and max(u; i n,€jn) < rn Vj € JTna,Vk €
{L,...,M;}, we see that (3.24) can be combined with the middle line of (3.28) to yield

c - a(wjo,n)

0 3.57
/l(a)jo,n) ( )

lim ”u Sp) —W; =
n—oo ( n) ‘]0’0( L°°(D(a(u)jo,n),4Rn/lmax,n)\U(L';1D(x("nv4_lrn))

for all jo € Jmax- Since (¢, — sn)% < rp, Lemmas 2.12, (3.48) and (3.42) allow us to propagate the
above to time t,,, yielding

=0. (3.58)

T a(w [ n)
lim ||M th) —wW;j — e =
( n) JO’O( Lm(D(a(wjo,n);Rn/lmzlx,n)\U(gﬁ D(Xf.n n))

n—oo /l(wjo,n)

Using again Lemma 2.10 and (3.27), the construction of the sequences {x, ,} and the choice of
Amax,n > T > (ty — sn)% as well as r,, > RyA(w; ) for all j ¢ Jmax, we have

L
Tim E(u(tn); Dm )\ | | P(@(@s), Reduan) U DGenirn)|) =0, 359)
jejmax [:1
Now, by (3.;52), after passing to a joint subsequence in n, for each £ € {1,...,L}, we can find
an integer M,y > 0, a sequence of M,-bubble configurations Q(L; ), and sequences of vectors
Ve = (Vens Ve s - Ve i, ) a0d Een = (s ée1ms - -+ &4 7,.,) SO that
lim d(u(tn), Q) D(xe.nsn): Ve Een) = 0. (3.60)

Here, Q; = (Q.0, Qe 1ns - - - » Qf,ﬂ[,n)' Dropping the constants €, ,, € S? in the ]\7Ig—bubble config-
urations, consider finally the sequence (in ) of multi-bubbles formed by the constant w € S? and the
harmonic maps

C = a(wj,n)

IO }jejm. (3.61)

t=L.k=M, .
{Qekntesiiny > Aw)on}jedmm = {wj,o(
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For each j € Jnax, we define v; ,, := R, and ¢ ,, = r,,, and then defining

-

VI’L = (VVH (Vf,n)[{;l’ (Vj,n)jejmax)’ é:n = (gl’h (ff,l’t){{;]’ (fj,ﬂ)je-jmax)’
we claim that
- =L k=M, : A
nh—IEo d(bl(tn), Q(w’ (Qf’ksn)f:l’k:l B (U)j,o,n)jejmax)’D()’mpn), Y, ‘(;:n) - 07 (362)

which would yield (3.53). Indeed, by (3.60) and since all of the D(x¢ ,,r,) are disjoint and satisfy
(3.41), any distinct triples (¢ k.0, a(R2¢,k,n), A(2¢.k,n)) and (e k2 n, a(Qer k7.0), A(Qpr k7)) are
asymptotically orthogonal for (£,k) # (£’,k’). Moreover, for any £ and jo € Jmax for which
D(x¢,n,7n) € D(a(wjy,n)s RnA(wjy,n)), the triples

T a(wjo,n)
(¢, k,n, (¢, k,n)> A(Q¢,k,n)) and (wjo,o(—),a(wjo,n),/l(wjo,n))
/l(wjo,n)
are asymptotically orthogonal since r;,, < Amax,». Indeed,
c—alw:
lim E(w,O,O(M);D(xm,rn)) =0, Vjo€Tma VCE{l,....L} (3.63)
n—eo /l(“)jo,n
and
’}EIJQE(Qg’k,n;D(yn,pn) \D(x¢n,7n)) =0, VEe{l,...,L}, ke{l,. ..,M[}. (3.64)

These observations, together with (3.56), (3.58), the estimate (3.59) and Remark 3.2 (using now &,
instead of &), yield (3.62). This completes the proof of (3.51).
Having established (3.51), we claim that there exist times o, < ¢, so that

th—On < r2 and lim r, || T (u(Tn))l,2 = O. (3.65)
If not, we could find ¢, c; > 0 and a subsequence of the #,, for which
Pl T2, > ¢ Vi€ [ty —crptal. (3.66)

But then we would have

In In
Z/ , ||7'(u(t))||i2 dr > ¢y Z/ , r2de > cc Z 1 = oo, (3.67)
n In—cry n 1, n

n—Cr'p

which contradicts (2.12). Given the sequence o, as in (3.65), we can apply the Compactness
Lemma 2.15, so that after passing to a subsequence in n (still denoted by o7, t,), we have a bubble
decomposition as in (2.64) for some sequence R,, — co. The estimate (3.42) can be propagated to time
05, using Lemma 2.9, which gives

lim E(u(0y); D (x¢,n3 271 Burn) \ D(x¢,n;2aury)) = 0. (3.68)
n—oo

The above ensures that the harmonic map in (2.64) at scale r,, must be constant, which we denote by
@ € $2, and so we can conclude that in fact,

lim 6(u(on); D(x¢y,n,7n)) =0, (3.69)
n—oo
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By (2.67), we can find an integer K; > 0 so that
E(u(04); D(x¢y n,70)) — 47Ky as n — oo. (3.70)

Because of (3.51), we must have K; > 1 (since t,, — 05, < r,zl).

Consider the time intervals [0y, f,] and the discs D (x¢, ;). Property (1) from Definition 3.1 is
given by the first line in (3.69). Property (2) is given by (3.51). Property (3) is satisfied because of the
first estimate in (3.65), and property (4) because of (3.70).

Lastly, we claim that K; < K. This is clear if Ky > 0 since in that case, some energy lies at the scale
=~ Amax,n > p. If Ko = 0 and K| = K, then all of the energy in the larger discs D (y,, p,) would be cap-
tured within the sequence of discs D (x¢, ,, ). However, recall that there is at least one index jo such
that A(w j,,n) = Amax,n, and we have chosen r,, so that r,, << Amax,n = A(w,»), Which (by Definition 1.3)
implies at least 37 in energy concentrates outside the discs D (x¢, ,,75), a contradiction.

We conclude that K; < K and that [0, 1,] € Ck, (x¢,,n, 'n, €1,n,71) for some sequence €, — 0,
contradicting the minimality of K. This completes the proof. O

Proof of Corollary 3.5. Let ng be as in Lemma 3.4 and fix an 5 € (0,79]. Let € > 0 be given by
Lemma 3.4 and define s,, by

sp = 1inf{t € [0y, Tu] | 6(u(7); D(yn,pn)) = €, V7€ [t,T0l}, 3.7

which is well-defined for all sufficiently large n. Then 6 (u(sy,); D (v, pn)) = €. Define Apax(s,) as in
the statement of the result. By Lemma 3.4, it follows that s,, + codmax(5,)> < T, for all sufficiently
large n. The remaining claims hold by the choice of s,,. O

3.3. Proof of Theorem 1.8

Proof of Theorem 1.8. Assume the theorem is false. Let K > 1 and fix collision intervals [0, 7,] €
Cx (Yns Pn»> €1,1) as in Definition 3.1 and Lemma 3.3. We assume that > 0 is sufficiently small as in
Lemma 3.4 and let € > 0 and s,, be given by Corollary 3.5, so we have

0(u(sn), D(yn, pn)) = €. (3.72)

Let M,, be a sequence of non-negative integers, Q(w,) a sequence of M,,-bubble configurations, and
Vp € (0,00)Mn*l £ € (0, 00)Mn*! sequences so that

€ < d(u(sn), Q(@n); D (Vs pn); Vn&n) < 2e. (3.73)

We fix a choice of &, v, (the first components of the vectors g?n, v,) as in Remark 3.2 so that (3.2) and
(3.3) hold. Defining Amax.n = Amax (s,) as in Corollary 3.5, we have that [s,, s, + Coﬁrznax,n] C [on, Ta]
and moreover that

S(u(t); D(Yn, pn)) = €Vt € [5pySn+ Codbaenl (3.74)

for all n sufficiently large. Since sup, 7, E(u(#)) < oo we can, after passing to a subsequence, assume
M,, = M for some fixed integer M and that the constant w,, € S? in the M-bubble configuration Q(w,,)
are fixed (i.e., w, = w € S?).

We claim there exists ¢; > 0 such that for all n > n,

D IT@O)Z5 = €1, Yt € [50, 50 + Colmax.n]- (3.75)
If not, we could find a sequence t,, € [sy, 5, + Co/lrznax,n] C [0y, 7] such that

nh_l;lgo Amax,n | T (u(t2))llr2 = 0. (3.76)
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By the Compactness Lemma 2.15, for all x,, € R?, there exists a subsequence of the u(7,,) and a sequence
R, (x,) — oo, such that, for any sequence 1 <« R, < Ry (xn),

lim 6(u(ty); D(xp, Rydmax.n)) = 0. (3.77)
n—oo
By Lemma 2.9, we also have that

lim E(u(t,); D(yn, pn)) = 4Kn, (3.78)

where here we have used that |[0,, T,]| < p? to propagate Property (4) from Definition 3.1 from time
o, to time £,,. Note also that pfl > fﬁ > T, — 0, and Corollary 3.5 ensure that &, > Amax.n-
We claim that after passing to a subsequence, there exists an integer L > 0, sequences x¢_, for each

¢e{l,...,L}, anumber R > 2, and a sequence 1 <« 13,, < /l;ngmf,, so that
L T
E(u(5): D s p) \ | D s Rlmann) < 3. (3.79)
£=1
and
D(xt’,ns ﬁn/lmax,n) N D(xt”,ns ﬁnﬂmax,n) =0 (3.80)

for any ¢ # ¢’. We find the points x; ,, as follows. Passing to a subsequence, we can assume the existence
of the limits

la(wj,n) — a(wi,n)l

/lmax,n

lim

n—oo

€ [0, o] (3.81)

for each j # k. We define the index sets

N . . . . |a(wj,n)_a(wk,n)|
L()) = {] and any index k € {1,..., M} such that lim < oo}

n—o0

(3.82)

/1max,n

and note that for any distinct indices j, j’ either £(j) = L(j’) or they are disjoint. For each n and
for each of the sets £(j), we let xj),» denote the barycenter of the points a(wj, n), ..., a(wj,;,n)
where each j; € L£(j). There are L < M many distinct index sets £(j), and we let {X[,n}gzl be an
enumeration of the distinct xz ) .

Next, from (3.73), Lemma 2.4 and the definitions of d and Aax,,» We can find Ry > 2 so that

M
E(u(s0); D0ms ) \ | D(@(@j0), Ridmann)) < 5 (3.83)
J=1

for all sufficiently large n. From the above and the definition of the x, ,, we can find R > R; so that (3.79)
holds. The existence of a sequence 1 < R, < /lr‘nlax,nfn so that (3.80) holds follows from definition of
the Xt.n-

Consider each of the sequences x; , as the x, in (3.77) and find corresponding sequences Ry , SO
that for any sequence R, < Reop,

lim &(u(tp); D(x¢. s Rudmax.n)) =0, €=1,...,L. (3.84)
n—oo

Enlarge the sequence &, to a sequence g?,, as in Remark (3.2) (i.e., so that &, <« §~n < py). Then,
since all of the x¢ ,, € D(yn, &n) and Amax.n < &, We have

/lrnax,n

lim — =0 (3.85)
n—eo diSt(X[,n, oD ())n’ ‘fn))
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for each ¢. We can thus find a sequence R, < min{ﬁn, Ry onte=1
D(y,, &) for each £.
Enlarging the excised discs (replacing R by R,,) in (3.79), we obtain

. such that D(x¢ ,, Rpdmax.n) C

.....

L
g
E (53 D s o) \ | D ey Rudmann) < 5 (3.86)
£=1
We use Lemma 2.9 to propagate this bound forward to time ¢,,, giving
L
E(“(tn); D()’n, pn) \ U D(xf,n, Rn/lmax,n) <. (3.87)
£=1
However, by (3.84) (replacing R, , by R,), we can find integers K, so that
E(u(tn); D(x[,ns Rn/lmax,n)) — 4Ky as n — oo (3.88)
for each ¢ € {1, ..., L}. Combining the above with (3.78), we see that
L L
lim E(”(tn); D(yn, pn) \ U D(xt’,n, Rn/lmax,n)) =4Knm — Z 4K, (3.89)
n—oo
=1 £=1
Comparing the above with (3.87), it follows that },, 4K,m = 4K, and thus,
L
1im £ ((t): D (vns ) \ | DG, Rudmasn)) = 0. (3.90)
=1
From (3.84) and the definition of R,,, we have
L
lim " 8(u(tn); D(x¢.n Rudma.n)) = 0 (3.91)
n—oo =

and moreover that the discs D (x¢ n, RyAmax,n) are disjoint by (3.80) and the choice of R, < R,.
Combining (3.91), (3.85), the disjointness of the discs D (x¢ n, RyAdmax.n), (3.90), and Remark 3.2, we
conclude that

nh_r)go 0 (u(tn); D(yn, pn)) =0, (3.92)

which contradicts (3.74), proving (3.75).
By (3.75), we have

Sp+CoAmax (Sn)z Sn+c0 Amax (Sn)z
> [ T e Y, [ Ao (50) 21 2 coer 3 1= o
n n n n n

However, since the intervals [0, 7,,] are disjoint, the above contradicts the bound (2.12) — that is,

Sn+C0/lmax(Sn)2 T,
>/ IT@O)Rd < [T IT @l ar < (3.93)
7 Ysn 0
which completes the proof. O

3.4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using Theorem 1.8 as a main ingredient in the proof.
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Proof of Theorem 1.1. We consider the case of finite time blow-up (i.e., Ty < o0), noting that the analysis
for the global case is similar.

Let L > 1 and {x, }16:1 be the bubbling points given by the local theory of Struwe in Theorem 2.7.
Let pg > 0 be sufficiently small so that D (x¢;200) N D (x5 200) = 0 for each £ # m. By Theorem 2.7,
we have that

t—T,

L
lim E(u(t) ~u B2\ DG po)) - 0. (3.94)
=1

By Lemma 2.13, we know that for each ¢,

Jim E (u(t) = u"s D (xe; po) \ D(xes VT2 = 1)) =0, (3.95)
and since u* € &,
linTl E(u;D(xp; Ty — 1)) =0 (3.96)
t—T,

for each € € {1,..., L}. Hence, it suffices to examine the solution u(7) in the discs D (x¢; VT — t) for
each £ € {1,...,L}. Fix an £ and, to ease notation, we write y = x; below. By Theorem 1.8, we know

that for p(t) := VT — t, we have,

lim 6(u(1); D(y, p(1))) = 0. (3.97)

Now, let r, — T, be any sequence of times. By the above, we can find a sequence
1 < M, < (4n)"'E (uo), a sequence of M,-bubble configurations Q(wy), and sequences Yy =
(Vn, Vins e« +» VM,,,n)a gn = (é:na f],n’ cee ,(fM,,,n) such that

Jim d(u(tn). Q@n): D (3. p(1a)): V. ) = 0. (3.98)

Passing to a subsequence of the #,,, we may assume that M,, = M is a fixed integer and that the constants
wp € $? in the M-bubble configurations Q(w,,) are fixed (i.e., w, = w € S?). This proves the estimate
(1.10).

Since each of the w; , is a harmonic map (and thus 7 (w; ,) = 0), these sequences satisfy the
hypothesis of the Compactness Lemma 2.15. Therefore, after passing to a joint subsequence, for each
Jj € {l,...,M}, we can find integers M; > 0, harmonic maps 6,6, 1, ... 0;.m; (where only 6; o
is possibly constant), along with sequences of vectors b, € D(a(w;,),CjA(w; ,)) and scales
Hjkn < Awj ) satisfying (2.65), (2.66) and so that

M;

. —aw,) = b
Jim (0= 030( 75555 = 3 (01 (2 = 059 )i 1)
g k=1 Hon
M ;
—a(wj,) - “=bjin ” B
+“w”"_9”0( Awjn) )_;(Gj’k( Hjk.n )_9”"(00)) L=(Dj.n) =0 G99

where D ,, == D(a(w;j n), RyA(w; »)) for some sequence R, — oo, and where for each fixed j,

; . bikn—=biwnl*\ -1
lim 3 (Rkn Kok bjkn = Dkl ) =o. (3.100)

o S Hiken Hjkon HjknHMj,k n
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To make the notation for the scales and centers of the harmonic maps above more uniform, we also
introduce the notation

Hjon = Awjn)  bjon:=alw)y). (3.101)
Our goal is to find a collection of asymptotically orthogonal triples (w;, a; n, A, ) as in the statement of
Theorem 1.1. The sequences {(0 x, b k.n, ij.k.n) j:\’lklzchf are not guaranteed to be such a collection.

While (3.100) holds for each fixed j, the triples (6 x, b k.n, 1j k,n) and (0js kr, bjr g py Ujr k2,n) With
Jj # j’ might not be asymptotically orthogonal. As in Definition 3.7 and the proof of Lemma 3.4, we
define the set of indices R to be those associated to the roots (i.e., the maximal elements of the sequences
h; = {w; »} of harmonic maps under the partial order <). For each root b;,, we define the bubble tree

T(jo) :={b; < bj}.

Let Cyp > 0 be large enough so that h; < b;; implies D(a(w;.»), A(w;.n)) € D(a(wjyn), Cod(wjy.n))
for all n. The collection of all harmonic maps, together with scales and centers, concentrating inside the
discs D(a(wjy,n), Cod(wjy.n)) equals

M.
SR CT VNI s (3.102)
b; €T (jo)
We let

K(j, k)= {(j, k) and any (j', k") associated to a triple (w s k', b k' ns j7 k7 n)
not asymptotically orthogonal to (w; k, b} k.n, uj,k,n)} (3.103)

If #C(j, k) = 1, we keep the triple (8} x, b}k n, ij k,n) in our final collection — note that (1.9) and
(1.14) will be consequences of (3.98) (3.99), and (2.65) (2.66). Now consider a set of indices (ji, k1)
with h;, € T (jo) and such that #/C(j1, k1) > 2. After performing a fixed (in n) rescaling and translation
of each harmonic map 6, ; associated to an index (j, k) € K(j1, k1), we may assume that

bj,k,n = bj],kl,n and Mj ko = Hji kino Y(j, k) € K(j1, k1), (3.104)

and to simplify notation below, we simply write b,, = b}, k, » and p, = u;, k, »- By (3.98) and (3.99),
we can also find r,, — co anumber C; > 0, an integer L1 > 0, and a finite number of sequences of discs
D(censpne) € D(bp, Cruy) for € € {1,...,L;} and with

Pet.n
- : — 0 as n—o (3.105)
dlSt(Cf,}’h aD(bns Clﬂn))
so that
. 1
nlglgo E(u(tn); D(Cff,n, Zp{’,n) \ D(Cf,n, Epf,n)) =0 (3.106)
and
1
nli_r}goE(un;D(bn, 2rupin) \ D(bp, zrnﬂn)) =0 (3.107)
and
.—b L
tim E(u(t) = . (656(="2) = 6;(0)): Db rpt) \ | Demes o)) =0. (3.108)
(k)R (i kr) Hn P
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By Theorem 1.8 and (3.107), we know that,

1im 8(u(tn); D (b, rnpin)) = 0. (3.109)

This means that, after passing to a subsequence, we can find an integer M; r,, a sequence of
M;, r,-bubble configurations Q(€2,), with the nontrivial harmonic maps denoted by €,,, for

me{l,...,Mj r},sequences v, = (Vn, Vin,. .. ’VMjl,k] n)and &, = (&n, &1, . ..,fMjlka,n),so that

d(u(ty), Q(Qoo,n,Qn);D(bn,rnun);in,gn) — 0 as n — oo. (3.110)

Consider the centers and scales a(Qy,.), 1(2m ») associated to the harmonic maps €, ,. Using (3.105),
(3.106) (3.107) and (3.108), we see that there are only two possible cases.

Case 1: All of the harmonic maps €, ,, concentrate within the discs Uﬁ; 1 D(cens pen) (e, for
eachm € {1,...,M;, x }, we have D(a(Q.), A(Qm,n)) C D(cen,pe,n) forsome € € {1,...,L1}).
This means that

L,
1im E (u(t0): D (b rupta) \ | D(ctms i) = 0. G.111)
=1

In fact, comparing the above with (3.108), one can deduce that the harmonic maps

Z (;.1(x) — 6 x(c0)) = constant € R>.
(J.k) e (jr,k1)

In this case, we discard all of the harmonic maps with indices (j, k) € K(j1, k1) from the final collection.
Case 2: Exactly one of the harmonic maps Q,,, , has scale 1(Q,,, ») =~ p, and center |a(Qy,, n) —
by| < un, and the rest concentrate within the discs UZ‘I D(c¢n, pe.n)- We then have

Ly
1im E (u(tn) = @y D (s rutta) \ | Dt pen)) =0 (3.112)

and

=0. (3.113)

lim “u th) —Q
A [ Cn) = L (D bttt \Ufy D(€tnspin)
By another application of the Compactness Lemma 2.15, we can find a nontrivial harmonic map, which

we label ®;, ¢, , a non-negative integer P, scales v, ,, < iy, centers d, ,,, and nontrivial harmonic maps
0, satisfying (2.65) and (2.66), and so that

P
nh_IEO E(lean_(ajl ki Z @ (oo)) D(brurn,un))
p=1
P .
+ Hgml,n - ®j1,k1 Z -0 ( )) L”(D(bn,rny,,y))l =0 (3114)
p= p.n

We know that the harmonic map ®;, x, must be nontrivial because of (3.112) together with (3.108),
where the latter ensures that energy cannot concentrate within the region

1
D(by, rn/Jn) \ U D(Cf,m ,Dt’,n)
=1
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at scales smaller than y,,. Indeed, by (3.108), the scales and centers of the nontrivial harmonic maps ©,,
must all concentrate within the discs U?;I D(c¢ n, pe.n), and we can conclude that

L
. -—b
nh_I)I(}OE(u(tn) -0k (,u_n)v D(by, rupn) \ U D(ce,n, pf,n)) =0 (3.115)
" =1

and

=0 (3.116)

.= b,
) -0 4 (—" =
u(tn) = Bj. ) LS (D (b raptn) \UL, D(Ctnpen)

Hn

lim
n—oo

In this case, we discard all the triples (6 x, b i n» 4j,k,») Withindices (j, k) € K(j1, k1) from the final
collection and replace them with the triple (©}, ., b, k1> M)y ki.n)-

To summarize, we keep for the final decomposition any triples (6 k, b xn, 1},k,n) Withb; € T (jo)
if #K0(j, k) = 1. If #/C(j, k) > 1, we discard all of the triples (8 x, bk’ n, i) k,n) With indices
J' € KC(j, k) and, in the event of Case 2 above, we replace them with ®; i, b k n, i} k,». We perform this
analysis for each index jy € R, resulting in a final collection of triples that are mutually asymptotically
orthogonal and satisfy the conclusions of the theorem. O
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