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Abstract—Graphs and graph structured data are ubiquitous
in many applications as they readily represent datasets that lie
in irregular, yet structured, domains. Due to their popularity, a
plethora of methods have been developed to learn from graph-
structured data, which have been shown to be effective in many
real-world applications including biology, finance, and social
sciences, among others. However, these methods generally assume
that the observed graph is free of corruption. This assumption
does not hold in cases where the graph includes structural
contamination, such as anomalous edges, which can degrade
learning performance. This paper presents a method to identify
anomalous edges that can be employed prior to learning methods
to mitigate their effects. The proposed method employs link
prediction (LP) to assign likelihood scores to the observed edges.
As LP is not anomaly aware, we combine LP with ideas from
sampling and consensus algorithms. LP is applied to subgraphs
which tend to have fewer anomalies. Edge anomaly scores are
then obtained by judiciously combining LP prediction results
across subgraphs. Preliminary results indicate the effectiveness
of the proposed method.

I. INTRODUCTION

Recent years have seen a surge in machine learning and
signal processing on graphs and graph structured data. Such
data is encountered in many applications including biology,
economics and sociology where graphs represent dependent
entities and their associated data. For example, in sociology,
people and their relations can be represented as a graph
where personal attributes can be modeled as signals defined
on the graph. A plethora of methods have been developed to
learn from graph data for various problems including clus-
tering, embedding and classification. Although these methods
have increased our understanding regarding graph datasets,
they mostly assume that the available graph data is free of
corruptions, or anomalies. However, graph data can include
different types of anomalies resulting from deliberate attacks
or observational noise. One such corruption is anomalous
interactions, or edges, between entities that are not supposed to
be connected. Anomalous edges appear in a range of applica-
tions, such as fraudulent transactions in financial networks [1]
or spam calls in communication networks [2]. As anomalous
edges can degrade the performance of graph learning methods
[3], there is a strong need for developing approaches to detect
them in order to to mitigate their effects on algorithms.

Various methods have been developed for anomalous edge
detection and they can be grouped into three categories [4]:
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residual-based detection; embedding based detection; and sta-
tistical model based detection. Methods in the first category
seek a ‘“clean” version of the graph and consider residual
edges as anomalies. Such methods, identify “clean” graphs by
typically assuming the adjacency matrix is a low-rank matrix,
while anomalous edges are modeled as sparse corruptions [5],
[6]. Embedding based detection seeks vectorial representations
for edges using node or edge embedding approaches [7], [8].
Anomaly detection methods for vectorial data [9] are then used
to find anomalous edges. Finally, in statistical model based
detection the graph is assumed to be generated by a random
graph model [10], [4]. Edges deviating significantly from the
presumed model are deemed as anomalies.

Although the aforementioned methods have been used
successfully, they have some shortcomings that need to be
addressed. First, they typically rely on assumptions that might
not hold. For example, the low-rank assumption imposes spe-
cific structure on a graph, e.g. a community structure, which
is not the case for all observed graphs. Similarly, statistical
modeling relies on random graph models that might not be the
true model generated the graph. Secondly, existing anomalous
edge detection methods use all edges without explicitly distin-
guishing nominal edges from anomalous ones. For instance,
embedding based methods learn edge representations using all
edges instead of learning only from the uncorrupted edges,
which lowers the reliability of anomalous edge detection.
Finally, some methods assume existence of a training set of
clean edges, which may not always be available.

To address these shortcomings, this work puts forth a novel
link prediction (LP) based method for detecting anomalous
edges. In LP, a model that can identify missing edges is
learned from the observed graph; the LP model returns a
score indicating the likelihood of two nodes being connected.
The LP model can also be used to identify anomalous edges
by calculating scores for observed edges [11]. However, the
direct application of LP to detect anomalous edges is sub-
optimal, since existing LP models are agnostic to anomalous
edges. This in turn, can reduce the performance of LP for
anomaly detection. To overcome this issue, we propose a
novel scheme (LinkSAC), inspired by sampling and consensus
(SAC) approaches [12], [13], to improve LP for anomalous
edge detection. In particular, LinkSAC learns multiple LP
models from a set of subgraphs, rather than one LP model for
the whole graph. The subgraphs are sampled from the whole
graph such that they are ‘“cleaner” than the whole graph in
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the sense that they include lower number of anomalies. As
a result, edge likelihood scores learned from such subgraphs
are less affected by anomalies, improving the detection of
anomalous edges. The edge likelihood scores estimated by LP
for subgraphs are then combined through a consensus step, to
yield the final scores for anomaly detection.

The proposed method enjoys unique advantages compared
to the state-of-the-art anomalous edge detection approaches.
First, it does not make any assumptions about the structure of
nominal edges. Rather, it relies on the chosen LP algorithm
to decide what constitutes a normal edge. This enables one to
utilize different off-the-shelf LP algorithms to model nominal
edges, which in turn provides flexibility, in the sense that the
proposed algorithm can handle different types of graph data.
For instance, anomalous edge detection in attributed graphs
can be performed by simply using an LP algorithm that can
learn from node attributes [14]. Furthermore, the proposed
approach employs sampling to find “clean” subgraphs, hereby
mitigating the negative effects of anomalous edges when
modeling normal edges. Finally, the proposed approach is
unsupervised.

II. BACKGROUND
A. Graphs and Anomalous Edges

A graph is a mathematical object represented as a tuple
G = (V, E) where V is the node, or vertex, set with |[V| = N
and E C V x V is the edge, or link, set with |E| = M.
An edge between nodes w and v is represented as e,,. If
ew € E implies e,,, € E, then the graph is called undirected.
Unless otherwise noted, graphs considered are undirected and
extensions to other graph types are discussed when necessary.
The neighborhood of a node wu is defined as NV, = {v : ey, €
E} and d,, = |N,| is its degree. For a graph with anomalous
edges, F is partitioned into two, i.e., £ = F, U E, where E,
denotes the set of corrupted or anomalous edges and E. is
the set of “clean” or “nominal” edges and |E,| < |E.|. The
anomaly size of G is defined as 1(G) := |E,|/|E|. The next
subsections outline LP and SAC methods which are the basis
of our proposed method.

B. Link Prediction

In link prediction, one aims to identify missing edges in
a graph G by learning a model Mpp : V x V — {0,1},
that maps a node pair (u,v) to 0 or 1, with 1 indicating the
presence of an edge between u and v [15]. State-of-the-art
approaches for LP learn Mpp in a “supervised” fashion [16],
that is,

Mpp =C(F(u,v;0);¢), u,v €V, (1)

where F : V x V — R¢ is an embedding model, parametrized
by 6, that maps a node pair to a d-dimensional vector; C :
R? — {0,1} is a binary classifier with parameters ¢ which
assigns F (u,v; @) to the final result of 0 or 1. Learning Mpp
from the observed G is then equivalent to learning 6 and ¢.
Many LP algorithms have been proposed, each different on

the parametrization of F and C and the algorithm used for
estimating them [15], [17], [18].

Once 0 and ¢ are learned, one can also calculate an LP
score [, for a node pair (u,v) as follows:

luw = PF[C(]:(U,U;B); ¢> =1 | G]? (2)

where Pr[-] indicates the probability of an event. For an
unconnected node pair u and v, ey, € E, 1, indicates the
likelihood of u and v being connected with an edge, given
G. Next, we describe the basic principles of random sampling
and consensus methods.

C. Sampling and Consensus (SAC)

Consider a dataset X = {(x;,y;)}}V, where x; € R? are
data points with associated labels y; € R. Suppose that X
includes a subset of anomalous, or outlying, data points, X,,
that deviate from the true data distribution of X'. SAC is an
approach developed for robust learning from such datasets,
while mitigating the effects of A, on the estimated model. As
the name suggests, it consists of two steps: the sampling step,
and; the consensus step. During the sampling step, one learns
multiple models {M*}Z_,; each model is estimated from a
subsample X* C X with |X*| < N.If X'NX, = @, the model
Mt is not affected by X,. On the other hand, if X' N X, #
@, Mt is learned from a contaminated dataset, leading to a
degraded model. During the consensus step, one finds the best
performing M?:

M* = argmin L(M!, X), (3)
Mt
where £ is a loss function measuring the quality of M? when
it is applied to the whole dataset X'. M* is assumed to be
learned from a clean subsample and used as the final model.
The following section outlines how we use LP and SAC to
identify anomalous edges in a graph.

III. DETECTING ANOMALOUS EDGES WITH LP AND SAC

Consider a graph G = (V, E) whose edge set includes a
subset of anomalous edges represented as F,. The goal of
unsupervised anomalous edge detection is to identify E, using
only the information provided by G without any supervision.
In particular, our aim is to estimate an anomaly score, Sy,
for each edge e,, € F such that the scores for edges in F,
are higher than those in E..

An LP model Myp can be utilized for this problem as:

Sup = 1 = lyy, Veuw € E, 4

where [, is the likelihood score defined in (2). Different than
LP, where [,,’s are calculated for unconnected node pairs to
identify missing edges, (4) employs M1p to calculate scores
for observed edges F. In this case, [, indicates how well e,
fits to the overall topology of the graph. Small values of [,
indicate that e, is not likely to be an edge, i.e. an anomaly.
However, off-the-shelf LP algorithms assume all edges in F
to be true edges when learning the parameters € and ¢ of
(1). This assumption does not hold when anomalous edges
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Algorithm 1 LinkSAC
Input: G, Number of Subgraphs 7', Subgraph Size S
Output: Final Scores s,,’s

1: for (t € {1,...,T} do

2 G? + SubgraphSampler(G, S)

3: Mt + TrainLP(G")

4: S' + ApplyLP(M; », GY)

5

6

: end for
: Calculate s,, with (5) for all e,, € E

exist, which results in a drop in the quality of Myp, and
subsequently leading to a suboptimal anomaly score s,,.

To overcome this issue, we propose to integrate LP with
SAC to mitigate the effects of E, on s,,. Similar to SAC, our
proposed approach first samples 7" subgraphs G = (V, E)
from G, with |[V*| = S < |V| indicating the subgraph size.
Subgraphs are sampled such that | J|_, B = E and E' N E*
is not necessarily an empty set for ¢t # t'. From each G*, an
LP model M! ;, is learned and used to obtain a score set S* =
{st, : €, € E'} as described in (4). During the consensus
step, we aggregate these score sets per e,, € E to obtain the
final anomaly scores:

Suv = agg({st, 1 ewy € ENE'Y}), (5)

where agg(-) is an aggregation function, such as mean or
median. The proposed method is referred to as LinkSAC
and is summarized in Algorithm 1. There are two subpro-
cesses SubgraphSampler and TrainLLP (with corresponding
ApplyLP) in Alg. 1 that need to be selected and are discussed
below.

A. LP Model Selection

LP model selection is driven by two main considerations:
graph type; and presumed dynamics of nominal and anoma-
lous behavior. Different graph types benefit from tailored
algorithms, e.g., attributed graphs benefit from attribute-aware
LP models [14], while directed graphs, call for directional
LP models [19]. LP should also be selected based on the
assumptions related to the normal behavior in the graph.
For instance, if edges in E, are modeled to be homophilic,
i.e. occuring between similar nodes, then the chosen LP
algorithm should preserve this property [20]. In this case,
anomalous edges would correspond to the edges between
dissimilar nodes. Another example is community structured
graphs where anomalous edges occur between nodes from
different communities. In such a case, community-aware LP
models would be useful [21].

B. Subgraph Sampling

The key idea behind SAC approaches is that subsamples
should be either free from contamination or have minimal
levels of it. Extending this idea to Alg. 1, we want to find
subgraphs that are less contaminated compared to the whole
graph, i.e. n(G?) < n(QG). To find such subgraphs, exploration-
based graph sampling is used; subgraphs are sampled by

traversing over the graph topology with a stochastic process,
such as a random walk [22]. In particular, the sampler starts
from a seed node u( and iteratively moves over the graph to
obtain a sequence {u; € V : i = 0,1,2...} where u; is
the node visited by the sampler at the i-th iteration. Node
u; is randomly chosen based on the following probability
distribution defined over the node set,

731‘<U):Pr[ui:’l) | ui_l,ui_g,...,uo], veV. (6)
The sampler traverses the graph until it has visited S unique
nodes, collected in V. Then the induced subgraph, G* =
(Vt, E?), is deemed as one graph sample. In general, graph
exploration-based samplers differ based on the definition of
Pi’s, but typically lead to subgraphs which include topologi-
cally close nodes [23]. Since an anomalous edge is defined as
an edge between nodes that are not expected to be connected,
such as nodes that are topologically distant, it can be said that
exploration-based graph sampling is biased toward returning
clean subgraphs.

To make this discussion concrete, consider simple random
walk (SRW) based sampling, where P;(v) is defined as [24]

Piv) = {1/d"“ v & Mo ™)

0 otherwise.

Let W represent the simple random walker. Consider a node r
that is visited by WV during its sampling process. Assume there
are two edges incident to r: e, and e,, where e,s € E. and
ery € E,. Let Prle,s € E'| be the probability of e, being
in the sampled subgraph, which is equal to the probability
of both r and s being visited by W, i.e. Pr({r,s} C V?).
Similarly, define these probabilities for  and v. For our case,
it is desirable to have Pr({r,s} C V') > Pr({r,v} C V),
indicating clean edges are more probable to be in the sampled
graph than the anomalous ones. This occurs if it easier for W
to go to s from r than it is to go to v, which happens if there
are more and shorter paths between r and s than there are
between r and v.

In order to study this condition, we can consider the
commute distance of SRWs. For nodes u and v, the commute
distance c,, is the average number of steps a random walk
W starting at © needs to take to go to v for the first time and
come back to u [25]. ¢y, 1S a valid distance measure and it
reduces as the number of paths between two nodes increases
or the length of these paths decreases [26]. Based on commute
distance, we then have Pr({r,s} C V*) > Pr({r,0} C V) if
Crs < Cry-

As a valid distance measure, commute distance defines a
type of similarity between nodes such that it is smaller for
node pairs connected with a larger number of shorter paths.
Since by definition anomalous edges occur between dissimilar
node pairs, W is less likely to sample pairs connected with
an anomalous edge. This implies the proposed method learns
from subgraphs that are cleaner than overall graph.
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Table 1
PROPERTIES OF THE WIKIPEDIA AND FACEBOOK GRAPHS

Number of Nodes ~ Number of Edges

Wikipedia
Facebook

2,277
5,908

31,421
41,729

IV. NUMERICAL TESTS

In this section, the proposed algorithm is tested on real
world graphs with synthetically added anomalous edges. We
consider two undirected graphs: the Wikipedia graph [27] and
the Facebook graph [28]. The former dataset is a graph where
nodes represent English Wikipedia pages on chameleons and
edges reflect mutual links between them. The second graph
is the social network of verified Facebook politician pages
where edges correspond to mutual likes between the pages.
Basic properties of both graphs are shown in Table I. Two
different types of synthetic anomalies are added to the datasets:
1) pM unconnected node pairs are randomly selected and
connected with an edge where M is the number of edges
in the original graph and p > 0 determines the anomaly
size of the graph; and 2) adversarial attack anomalies, where
pM anomalous edges are added using the algorithm of [29],
which connects node pairs such that random walk based node
embedding methods are maximally harmed. This technique
has two hyperparameters: embedding dimension and random
walk length, which we set to 32 and 5, respectively. The
performance of the proposed LinkSAC, i.e. Alg. 1, is compared
to LP without SAC (referred to as noSAC). To evaluate the
effect of aggregation on the results of the proposed method,
two different aggregation functions are used: mean and me-
dian, denoted as LinkSAC - Mean and LinkSAC - Median,

noSAC LinkSAC - Mean LinkSAC - Median

Wikipedia - Random Wikipedia - Adversarial

0.90
0.75
0.60

AUPRC

0.45

0.30
T T T T T T T T T T

Facebook - Random Facebook - Adversarial
0.75

0.60
0.45

AUPRC

0.30
0.15

T T T T T 1 T T T T
0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10
Anomaly Size Anomaly Size

Figure 1. Performance of anomalous edge detection as a function of p.

respectively!. The LP algorithm in LinkSAC and noSAC is
variant of the algorithm proposed in [30]. In particular, we
use 5 topological features commonly used in link prediction
for F : V x V — RP®: the number of common neighbors,
preferential attachment, Jaccard similarity, Adamic Adar and
resource allocation [31]. For C, we employed a random forest
classifier with 100 trees, optimizing the Gini index. Subgraphs
are sampled using random walk with restart, which is a
random walk where at each iteration it can teleport back to the
initial node with probability 0.1. The sampled subgraphs have
S = |aN | nodes where 0 < o < 1 determines the subgraph
size. Number of subgraphs 7' is set to a value such that each
edge appears at least in 10 subgraphs. For all experiments, the
figure of merit is the area under precision and recall curve
(AUPRC). Let y € RM be a binary vector with y; = 1 if i-th
edge in F is anomalous. Also define y € RM where 7j; is the
anomaly score of ith edge in E returned by Alg. 1, i.e., if the
i-th edge is ey, then y; = s,,. AUPRC is then calculated
by constructing precision-recall curve by comparing y and y
and calculating the area beneath this curve. In the following
two experiments, average performance over 10 Monte Carlo
simulations is reported.

Experiment 1: We first study how the fraction of anoma-
lous edges (p) affects performance while fixing o to 0.05.
Results are reported in Figure 1. The proposed approach shows
superior performance than LP without SAC irrespective of the
aggregation function for both datasets and anomaly types. This
indicates that SAC improves LP algorithm as it mitigates the
effect of anomalous edges on LP. We observe that AUPRC
values are higher for random anomalies than adversarial ones.
As the latter is designed to cause more harm on the graph
structure while being less apparent, it is expected that their
detection is more challenging.

Experiment 2: In this experiment, we study the effect of
« on the proposed approach while fixing p to 0.05. The sub-
graphs employed in LinkSAC increase in size as « increases.
Furthermore, the anomaly size of each subgraph increases as
they get larger, since one needs to traverse larger parts of the
graph, resulting in distant node pairs being sampled together.
Thus, we expect the performance of the proposed method to
drop with increasing «. Figure 2 shows the AUPRC values
of all three methods. As expected the proposed approach
degrades with increasing « values. However, its performance
is still better than LP without SAC.

V. CONCLUSIONS

In this paper, we presented LinkSAC, a method to de-
tect anomalous edges using LP and SAC. Existing work on
anomalous edge detection assumes specific structures for the
graph, which may not hold in practice. LinkSAC address
this shortcoming by relying on LP, which enables one to
employ different LP algorithms suitable for the studied graph.
By integrating LP with SAC, our algorithm reduces effect

I'Code for the proposed method can be found at https://github.com/abdkarr/
LinkSAC
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Figure 2. Performance of anomalous edge detection as a function of c.

of anomalous edges on LP. Our future work will focus on
developing new subgraph sampling methods that minimize the
amount of anomalies in subgraphs based on the discussion
in Section III-B. Consensus step will also be investigated
from the perspective of crowdsourcing [32] to obtain better
aggregation functions. Finally, more extensive numerical tests
will be performed and comparison against existing anomalous
edge detection algorithms will be conducted.
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