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ABSTRACT

Over the past two decades, complex network theory has been used
to model both the functional and structural connectivity of the brain.
Different graph theoretic metrics have been used to characterize the
topology of brain networks. One important characteristic of brain
networks is the existence of hub nodes, which are central to neu-
ral integration. Previous methods for hub node identification are
primarily based on computing the centrality of the nodes based on
the functional connectivity network. However, these approaches to
hub identification may identify portions of large brain systems rather
than critical nodes of brain networks. In this paper, we introduce an
alternative view of hub nodes utilizing both the functional connectiv-
ity network and the neurophysiological signals defined on the nodes
of this network. An unsupervised learning method is proposed to
learn a graph filter that separates the hub nodes from normal nodes,
where the hub nodes are defined based on the homophily of a node
with respect to its neighbors. A metric to quantify the local total
variation is introduced to identify the possible hub nodes. The pro-
posed method is applied to electroencephalogram (EEG) data col-
lected from a study of error monitoring in the human brain. The
detected hub nodes are compared to existing methods.

Index Terms— Electroencephalogram (EEG), functional con-
nectivity, graph signal processing, hub node, graph filtering

1. INTRODUCTION

In the past two decades, the field of complex networks has emerged
as a powerful tool to characterize the structure and function of the
human brain using a variety of tools from graph theory and network
science [1]. In this line of research, the nodes of the network corre-
spond to the different brain regions and the edges correspond to the
structural or functional connectivity. Functional connectivity net-
works (FCNs) have been constructed from different modalities in-
cluding EEG, MEG and fMRI, where the edges correspond to the
pairwise similarity between the neurophysiological signals from dif-
ferent regions.

One of the key features of functional connectivity networks is
the identification of hub nodes [2, 3]. Hubs are nodes with many
edges or with edges that place them in central positions for facili-
tating information flow in a network. Hubs have been shown to be
central in brain communication and neural integration and partici-
pate widely across a diverse set of cognitive functions [4]. The high
level of centrality of brain hubs also renders them points of vulnera-
bility that are susceptible to disconnection and dysfunction in brain
disorders. Given the importance of hubs to network topology, the lo-
cations and functions of hubs in the brain are of paramount interest
to neuroscientists. The most commonly used metrics for identify-
ing hub nodes are the node degree, also known as degree centrality,
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eigenvector centrality, closeness centrality and betweenness central-
ity [4]. Prior research has shown that degree-based approaches to
hub identification are biased towards large brain systems rather than
critical nodes of brain networks [3]. Moreover, these methods only
rely on the functional connectivity network without considering the
neurophysiological signals recorded on the nodes of this network.

Recently, tools from the field of graph signal processing (GSP)
have been adapted to analyze brain signals with respect to the con-
nectivity graphs they reside on [5]. Concepts of graph Fourier trans-
form (GFT) and the corresponding notions of graph frequency com-
ponents and graph filters have been utilized to analyze brain sig-
nals. These GSP tools permit the decomposition of a graph signal
into different frequency components that represent different levels
of variability and have been used for analyzing structural-functional
coupling, dimensionality reduction, and classification [5, 6, 7]. In-
spired by these advances, in this paper we propose to identify the hub
nodes from the perspective of GSP, in particular using the concepts
of low and high graph frequency. In this work, we will define hub
nodes from the perspective of node homophily, i.e., nodes with sim-
ilar features tend to connect with one another. Hub nodes may differ
from their neighbors both in terms of their connectivity profile and
their signal value, thus having higher frequency content compared
to normal nodes. In recent years, graph neural networks (GNNs)
have been leveraged for various graph learning tasks including out-
lier (anomaly) detection [8, 9]. However, recent studies [10, 11] in-
dicate that most GNN models are not suitable for anomaly detection
as they force the representation of neighboring nodes to be similar
making the decision boundary between the normal and anomalous
classes closer. Moreover, most of the GNN-based node classifica-
tion methods are supervised or semi-supervised which makes them
unsuitable for hub node identification in FCNs as there is no label
information for hub nodes.

In this paper, we introduce an unsupervised graph signal pro-
cessing based approach for identifying hub nodes in FCNs. The pro-
posed approach is based on designing a graph filter for detecting
hub nodes with the following assumptions: (i) hub nodes are sparse
and heterophilic (high frequency/nonsmooth), i.e., have a more di-
verse set of connections, and (ii) the optimally filtered graph signal
is homophilic (low frequency/smooth) with respect to the graph. A
hub scoring function based on the local gradient of the nodes is also
introduced. In this paper, we evaluate the proposed method on iden-
tifying the hub nodes in FCNs constructed from electroencephalo-
gram (EEG) data, where the FCNs are constructed using the pair-
wise phase synchrony and the graph signals (attributes) are the EEG
amplitudes. In particular, we identify the hub nodes following an
error response in a Flanker task.

2. BACKGROUND
2.1. Functional Connectivity Networks

In this paper, reduced interference Rihaczek (RID-Rihaczek) time-
frequency phase synchrony is used to quantify the functional con-
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nectivity between two brain regions [12]. For a signal z;(t), the
RID-Rihaczek distribution is defined as [12]:
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where e 7 is the Choi-Williams kernel [13], eJeT is the kernel
function for the Rihaczek distribution [14], and A(@, 7) is the ambi-

guity function definedas A(0, 7) = [*°_ai(u+ §)x} (u — F)e’*du.

From this complex distribution, one can obtain the instantaneous
phase, ¢; (¢, f), and the phase difference between two signals x; and
x; as ¢;;(t, f) = arg [M] . Phase Locking Value

AT [Ci (&, HI1C; (£, )]
(PLV), which quantifies the phase synchrony between z; and x;, is
defined as the consistency of the phase differences across trials and
can be computed as:

1
PLVi;(t,f) = 3 ; )

R
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where R is the total number of trials and ¢; ; (¢, f) is the phase dif-
ference for the rth trial. Once the pairwise PLV values are com-
puted between all pairs of electrodes, the weighted adjacency ma-
trix corresponding to the FCN can be constructed as the average of
PLV; ;(t, f) within the time interval and frequency band of interest.

2.2. Graphs

A graph G = (V, E, A) is defined by a node set V with |V| =
N, an edge set E and the adjacency matrix A € RY*N . The
graph Laplacian is given by L = D — A, where D is the diag-
onal degree matrix defined as D;; = Zj A,;;. The normalized
Laplacian matrix Ly, is defined as L, = D™Y/?(D — A)D~!/2 =
Iy — D Y2ADY2 = Iy — A,,, where Ly is the identity matrix
of size N and A,, is the normalized adjacency matrix. The spec-
trum of L,, is composed of the diagonal matrix of the eigenvalues,
A =diag(A1, ..., An) with A1 < A2 < ... < Ay, and the eigen-
vector matrix U = [uy|usa| . .. |un] such that L, = UAUT.

2.3. Graph Filtering

A polynomial graph filter is described as the linear operator

T-1 T—1
H(@IL)=) hL'=U <Z htAf> U’
t=0 t=0

where T is the filter order and h;’s are the filter coefficients. The fil-
tered graph signal F is computed as F = H(L)F = UH(A)U'F,
where H(A) = diag(H (A1), - .., H(AN)).

Following the definitions in [15], we can define the ¢-th shifted
input signal as S® .= UA'U'F. S(i) can then be defined as
a T x P matrix corresponding to the ¢-th node where each row
corresponds to the ¢-th shifted input signal at the i-th node with
[S(iyle := [SV](;. F can the be rewritten as

5 T—1 T—1
F=U (Z h,tAt> UF=>" h:S®.
t=0 t=0

Hence, the filtered graph signal corresponding to the i-th node can
be computed as F; = 37" " hi[S®]; = h"S(;). The p-th column
of S(;) can be denoted as a T-dimensional vector, s?.

3. OPTIMAL GRAPH FILTERING FOR HUB NODE
IDENTIFICATION (GRAFHUB)

3.1. Problem Formulation

Given a graph with adjacency matrix A € R™”*"  and graph signal
F ¢ RY*", in this paper we focus on the detection of outliers or
hubs, where the outliers are assumed to be high frequency and sparse
compared to normal activity [16, 11]. The graph signal F' can be
decomposed as F; + F;,, where F; and F}, are the low- and high-
frequency parts, respectively. The goal is to learn a graph filter such
that the filtered signal, F', corresponds to the low-frequency activity
which is smooth with respect to the underlying graph structure. This
aim is formulated through the following cost function:

o||F — F||; + u(FTLF), (3)

where the first term corresponds to the sparsity of the outliers and the
second term quantifies the smoothness (graph total variation) and
a controls the tradeoff between these two terms. Expressing the
filtered signal as UH(A)U T F, the objective function becomes

T-1
i F-U A" |UTF
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T-1 T-1 @
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where h = [h1, ha,- -+, hr—_1] is the vector of normalized polyno-

mial filter coefficients.
3.2. Optimization

The proposed objective function is solved using ADMM [17]. By
T—1
introducing an auxiliary variable Z = F — U <Z htAt> U'F,

t=0
the optimization problem can be rewritten as

T—1 T—1
min tr <FTU <Z htAt> U'LU (Z htAt> UTF>
h.Z t=0 t=0
T—1
+al|Z]|, sth'h=1,Z=F—-U (Z htAt> U'F.
t=0
5)

The corresponding scaled augmented Lagrangian is

T—-1 T—-1
L£(Z,h, V) =u(F' U (Z htAt> U'LU (Z htAt> U'F)

t=0 t=0
T-1
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where V € RV*P is the Lagrange multiplier.
1. Z update: The variable Z can be updated as

ZF! = argmin L(Z, hk7Vk)7
Z

T-1
= argmin «||Z||1 + gHZ —(F - <Z hf[}) F)+ V|7,
Z t=0

T-1

=Sa(F-U (Z thf> U'F-V"),
t=0

(6)
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where S, /,(-) is the elementwise thresholding operator which is the
proximal operator of 1 norm [17].
2. h update: The filter coefficients h can be updated using:

h*™! = argmin C(ZkH,h, Vk),

h,hTh=1
T—1
= argmin 2(|Z"*' —F 4+ U <Z htAt) U'F+ V*||3
hhTh=1 2 =0
T-1 T-1
r <FTU (Z htAf> U'LU (Z htAf> UTF) G
t=0 t=0

Writing the terms in (7) as an elementwise multiplication, we have
P N
. 9 - .
(Zip = Fip+ Fip) + Vip)  + > > FpiLuFjp.
p=lij=1

Since F; = h'S;), we can define Fip = h's?, and rewrite our
cost function in (7) as

P N
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For updating h, we set V;, £ = 0, and after some algebraic manip-

ulation, we obtain h*! = — Y ~!b, where b = pi SN . s?
k+1 k

(ZED — Fp + Vi) and Y = Y0 23N, sPList +

ip
pSN sP P ). In order to satisfy the constraint h'h = 1, we
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normalize th by its norm |[h* ||,

3. V update: The Lagrangian multiplier can be updated using:

T—1
V= vE L pzFT —F 4+ U (Z h,’f“At> U'F). (8
t=0

These three variables are updated until convergence.

3.3. Convergence

The optimization problem in (5) is convex, and the proposed so-
lution is a two-block ADMM with convergence guarantees, which
can be shown using approaches in [18]. Particularly, our prob-
lem is in the form of the general ¢; regularized loss minimiza-
tion problem [18], where I(h) in our case is the convex func-

tion tr (FTU (275, heA') UTLU (75! heA') UTF), and
g(z) is the a||Z||, term. Therefore, our cost function satisfies the
assumptions for the convergence proof provided in [18].

3.4. Hub Node Scoring

Once we have the filtered graph signals, we use a scoring metric
based on graph’s local smoothness or variation defined as:

E(i) — E(i), ©)

where E(’L) = Z;\’:I Ai]'HFi.—FjHQ and E(Z) = Zj\;l A”HFZ—
F]‘. ||? are the local gradients at node i for the original and the fil-
tered signals, respectively. Once the score is computed for all nodes
1 € V, we identify the hub nodes as the ones with a z-score greater
than 3, i.e., |2| > 3.

scores(i) =

4. RESULTS

4.1. EEG Data and Pre-processing

EEG data is collected from a cognitive control-related error process-
ing study where participants were performing a letter version of the
speeded reaction Flanker task [19]. Each participant was presented
with a string of five letters at each trial. Letters could be congruent
(e.g., SSSSS) or incongruent stimuli (e.g., SSTSS) and the partici-
pants were instructed to respond to the center letter with a standard
mouse. Each trial began with 35ms of flanking stimuli (e.g. SS SS),
and followed by the target stimuli (e.g., SSSSS/SSTSS), which were
presented for 100 ms (total presentation time is 135ms). Trials were
followed by an inter-trial random interval ranging from 1200 to 1700
ms. The trials were conducted to study the Error-Related Negativ-
ity (ERN) after an error response, where each trial was one second
long. Total number of trials was 480 in which the total number of
error trials in different participants varied from 20 to 61.

The EEG was recorded using The ActiveTwo system (BioSemi,
Amsterdam, The Netherlands). The international 10/20 system is
followed for placement of 64 Ag—AgCl electrodes. The sampling
frequency of the data was 512 Hz. After removal of the trials with
artifacts, the Current Source Density (CSD) Toolbox [20] was em-
ployed to minimize the volume conduction.

As previous studies indicate increased synchronization associ-
ated with the ERN in the theta frequency band (4-7 Hz) and 25-75
ms time window [19, 21, 22], all analysis was performed for this
time and frequency range. The average phase synchrony, i.e., PLV in
(2), corresponding to the theta band and 25-75 ms time window was
computed to construct the 64 X 64 connectivity matrices for each
subject. In order to obtain the graph signals, the EEG recordings for
each subject and trial were first bandpass filtered within the 6 band
and the time samples from 0-100 ms time window were extracted.
These filtered and windowed time series are averaged across trials
and used as the graph signals, F € R%***? in GraFHub framework.
In this paper, we consider data from 20 participants. '

4.2. Identification of Hub Nodes

We compare the prediction of hub nodes by GraFHub with three
groups of methods that are commonly used for unsupervised out-
lier or hub detection. The first group is clustering methods, includ-
ing One-Class Support Vector Machines (OCVSM) [23] and Ro-
bust Random Cut Forest (RRCForest) [24]. Both of these methods
learn an anomaly region and classify the nodes based on whether the
node resides within the region or not. As there are no prior training
data, the methods are implemented in an unsupervised manner. The
second group includes statistical methods, such as Principal Com-
ponent Analysis (PCA) [25] and Local Outlier Factor (LOF) [26].
PCA identifies the normal subspace to reconstruct the data and finds
anomalies using the reconstruction error. LOF uses data density to
find anomalies based on neighbor distance. Both of these classes of
methods are only applied directly to the attribute matrix without us-
ing the connectivity information. The final group is graph theoretic
centrality measures such as the eigenvector and closeness centrality
[4]. These metrics quantify a node’s influence by how many other
highly influential nodes it is connected to. Unlike our method, none
of these methods utilizes both the adjacency matrix corresponding
to the FCN and the EEG signal.

IThe code for GraFHub:
GraFHub

https://github.com/a5sunbro/
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Participant number ~ GraFHub OCVSM  PCA LOF RRCforest  Eigenvector  Closeness
1 P8 PO3,P10 POz P8 P8, PO8 P8, POS P4, P10 P3, POz
2 FCz, P8, 02 FCz, TP8 POz FCz FCz O2 FCz, 02 FT7,P8 CP3,P1
3 AF7 F2,P2 POz P10,PO8 FCz,PO8  AF7,F4 Cl1,CP1
4 FT8, FCz AF7,Fpz POz FC4,FCz FT8,FCz 1z, FT8 CP3,C2
5 P8, PO8 CP5,FZ PO7, F4 PO7,F4 FT8, P10 P7,Cz
6 PO7 FCo6, P4 1z F6, FC6 P6, 02 Cs. 1z Cl,Cz
7 F6, P6 FC6,P4 Iz F6,FC6  P6,02 Fpl, AF8 Cl1,PO4
8 CPz, P6 POz PS5, PO3 FCz Fpl, FCz P4, P6 F7,FCl1
9 FCz 1z, Pz POz, FCz FT8,FCz FT8,FCz A7, AF8 PO3, Pz
10 FCz, P4 Pz,PO4 POz, FCz FCz,P4  FCz P4 Fz, F6 C3,0z
11 FC4 AF7,C3 C5,FC4 FC4, P8 T7,P7 01, P6
12 Fpl, FCz CP3,FT8 FCz Fpz, FCz  Fpz, FCz Fpl, PO3 FC4, FC2
13 FCz Iz, F6 FP1,FCz  Fpl,FCz  PO7,PO8 Cl,Cz
14 Cs PO7,C2 POz, FCz C5,FCz F7,FCz F7,F8 Fz,C2
15 FC2 PO3. 1z FC2 Fp2,FC2  F5,01 CPz, FC4
16 AF3,Fp2,FCz  C5,POz FCz FCz FP2, FCz AF3, F2 C3,C4
17 FCz C1,CP4 FCz FCI,FCz FC1,FCz  C5,F8 PO3, F4
18 Cz F1,C3 POz, FCz  FCz,Cz FCz,Cz AFz, FT8 FC2, P10
19 FCz, C2 P1,P10 FCz F4,FCz C2,CP2 PO3,Cz

20 AF7 CPl, 1z AF7,F8 AF7, FP2 CP4, CP2 AF3, C5

Table 1: List of hub nodes detected by GraFHub and other methods
for the 20 participants

Region Frontal Central Parietal Occipital Temporal

Percentage of hubs 19% 45% 23% 10% 3%

Table 2: Percentage of hub nodes in different regions.

Table 1 lists the hub nodes identified by the different methods.
Overall, our method’s predictions are highly correlated with PCA,
LOF, RRCForest, and Eigenvector Centrality. However, methods
such as PCA are unable to detect hub nodes for certain participants.
Moreover, for some of the participants, methods like OCSVM, PCA
and eigenvector centrality detect electrodes such as Iz (over the in-
ion) as the hub node whereas GraFHub mostly detects frontal-central
regions as hubs.

Consistent with the role of medial frontal theta in coordinating
widespread cortical networks during cognitive control, the most con-
sistently identified hub nodes are in the frontal-central regions (see
Table 2). Prior research [12, 27] indicates that error-related nega-
tivity amplitude response is highest over mid-frontocentral sites and
mid-frontal scalp sites likely reflecting medial frontal cortex activity
act as a strong “hub” for information flow.

4.3. Time Dynamics of Hub Nodes

Next, we evaluated the time dynamics of the identified hub nodes.
Fig. 1 shows the topological map of the local total variation, i.e., the
indicator of a hub node, as a function of time for a sample partici-
pant. From this figure, it can be seen that for the first 32 ms after the
response, the local total variation is highest in the parietal-occipital
regions as the stimulus is visual. From 32-64 ms after the response,
this topomap gets more focused around FCz, corresponding to error
monitoring. Similarly, Fig. 2 illustrates the anomaly score at the
three hub nodes, FCz, P8 and O2, for the same participant. It can
be seen that while this score is higher for the parietal and occipi-
tal electrodes for the first 40 ms, after this time point FCz becomes
more prominent as expected indicating high mid-frontal activity dur-
ing error-response.

5. CONCLUSIONS

In this paper, we introduced an unsupervised graph signal processing
based approach to identify the hub nodes in FCNs. Unlike prior work
which either considers the EEG waveforms or the functional con-
nectivity matrices for hub node identification, the proposed method
utilizes both the phase synchrony based connectivity matrix and the

Fig. 1: Spatial distribution of hub score across time for participant
2.

= ~Threshold
==FCZ
=P8

oz

80 90 100
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Fig. 2: Score of the hub nodes from participant 2 over time. Nodes-
mal with hub score (dashed line) over the threshold are predicted to
be hubs.

EEG waveform. The hub detection problem is formulated as a fil-
ter design problem with the following two key assumptions: 1) the
number of hub nodes is small, i.e., sparsity; 2) the hub nodes’ sig-
nal amplitudes are different than their neighbors, i.e. heterophily.
These two assumptions are incorporated in an optimization problem
to learn the best graph filter to separate the hub nodes from nor-
mal nodes. A local total variation metric is introduced to quantify
the "hubness’ of a node based on the filtered signals. The proposed
framework is applied to a study of error-related negativity from 20
participants. The detected hub nodes are compared to other com-
monly used hub identification and anomaly detection methods. It
is seen that the proposed method consistently identifies hub nodes
in the mid-frontal central and parietal-occipital regions. We also il-
lustrated the ability of the method to track the hub node’s score as a
function of time highlighting the correlation between the peak of hub
score with ERN amplitude. Future work will focus on improving this
method by extending the framework for joint hub node identification
across a group of subjects or modalities.
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