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Abstract—A comprehensive understanding of the topology of
the electric power transmission network (EPTN) is essential for
reliable and robust control of power systems. While existing
research primarily relies on domain-specific methods, it lacks
data-driven approaches that have proven effective in modeling
the topology of complex systems. To address this gap, this
paper explores the potential of data-driven methods for more
accurate and adaptive solutions to uncover the true underly-
ing topology of EPTNs. First, this paper examines Gaussian
Graphical Models (GGM) to create an EPTN network graph
(i.e., undirected simple graph). Second, to further refine and
validate this estimated network graph, a physics-based, domain-
specific refinement algorithm is proposed to prune false edges and
construct the corresponding electric power flow network graph
(i.e., directed multi-graph). The proposed method is tested using
a synchrophasor dataset collected from a two-area, four-machine
power system simulated on the real-time digital simulator (RTDS)
platform. Experimental results show both the network and flow
graphs can be reconstructed using various operating conditions
and topologies with limited failure cases.

Index Terms—critical infrastructure, data-driven modeling,
electric power transmission, Gaussian graphical models, graph
construction

I. INTRODUCTION

Electric power transmission networks (EPTN) are dynamic

complex systems that connect power generating sites to load

locations, such as electrical substations, where power is dis-

tributed. This critical infrastructure requires real-time control,

as power generated must be consumed immediately due to the

network’s limited storage capability. Thus, reliably monitoring

and modeling the EPTN topology is of utmost importance

for making optimal power control decisions. Inaccuracies in

the topology model can be caused by equipment malfunctions

(breakers, relays, isolators), or false data injection attacks [1].

Such inaccuracies can result in catastrophic consequences,

including blackouts and brownouts. Therefore, there is a

pressing need for additional resilient, reliable, and accurate

modeling techniques.

Traditionally, EPTN topology has been modeled using the

circuit breaker status information (i.e., connected or not)

and other supervisory control and data acquisition (SCADA)

sensors [2]. However, the introduction of phaser measurement

units (PMUs) has provided an abundance of data related to

the underlying physics of the EPTN, such as the magnitude

and phase angle for the voltage and current at particular points

in the network. Compared to traditional SCADA monitoring,

PMUs offer high temporal resolution, allowing for dynamic

events to be closely monitored. SCADA information has a

time resolution of 0.16-0.5 Hz, compared to PMUs 30-240

Hz [3]. Prior approaches that have attempted to harness PMU

data for EPTN topology modeling have been highly domain

specific, utilizing rule-based and search-based approaches that

exploit the underlying physics of the EPTN [4, 3, 1].

PMU data enables more general data-driven machine learn-

ing approaches. However, studies using algorithms such as

deep learning or graph signal processing have largely focused

on downstream tasks such as fault detection, time-series pre-

diction, predicting optimal power flow, or data interpolation,

while often assuming the EPTN topology to be given [5, 6, 7].

As a result, the application of machine learning approaches

for modeling the true underlying EPTN topology has largely

gone unexplored. Therefore, this paper aims to initiate the

exploration of machine learning for modeling the true EPTN

topology (i.e., graph structure learning). Additionally, it ex-

plores the novel combination of machine learning and domain-

specific approaches such that the domain-specific approach

acts as a form of physics-based verification of the modeled

graph topology. Moreover, the proposed ideas are tested using

a time synchronized PMU (i.e., synchrophasor) dataset col-

lected from a real-time EPTN simulation [3].

The proposed approach is delineated into a two-stage pro-

cess. In Stage 1, graph structure learning employs the Gaussian

graphical models (GGMs) [8]. GGMs establish multivariate

relationships by learning the conditional dependencies or the

“structure” of a network. While extensively used in the fields

like genomics and broader -omics fields [9], neuroscience [10],

and psychology [11], GGMs have not been used to directly

estimate the true EPTN topology. The resulting undirected

simple graph estimated by GGMs can be interpreted as a

network graph for the EPTN, representing the static physical

connectivity of the nodes in the EPTN. Stage 2 consists

of graph refinement, using a domain-specific physics-based

scoring metrics [3]. Here, the estimated network graph from

Stage 1 undergoes refinement by computing edge scores based
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Fig. 1: Kundur’s two-area, four-machine test power system model with PMUs installed.

on the connectivity, pruning false edges, and then converting

the network graph into a directed multi-graph which is inter-

preted as a flow graph. This flow graph depicts the power flow

in the EPTN, accommodating parallel edges. An alternative

perspective of these two stages is that Stage 1 attempts to

reduce the search space for Stage 2 by estimating a sparser

network graph. In the worst case scenario, Stage 1 produces

a fully connected network, similar to the exhaustive search

method proposed by Venayagamoorthy et al. [3].
This paper’s contributions are summarized as follows:

• Exploration of data-driven GGMs for network graph

estimation using a two-area four-machine power system

model RTDS synchrophasor dataset.

• Proposal of a domain-specific graph scoring algorithm

for refining and validating the modeled network graph

by pruning false edges and generating the corresponding

flow graph.

• Discussion concerning challenges faced by the GGMs

and the proposed graph refinement algorithm, along with

those presented by EPTN data.

II. BACKGROUND

This section briefly introduces the ideas of GGMs using

convex and non-convex penalties, along with EPTN concepts

and a very basic EPTN topology.

A. Gaussian Graphical Modeling
Graphical modeling is a technique for inferring dependen-

cies between random variables. Graphical models (GMs) are

represented via a graph G = (V,E) defined by a set of

p nodes or vertices V = {1, ..., p} and a set of edges E.

The structure or topology of G is typically defined using

an adjacency matrix A. GMs are technically derived as a

multivariate joint distribution containing certain conditional

independencies [8]. As such, vertices are associated with

random variables X = (X1, ..., Xp) while the edges represent

the conditional dependencies. Thus, conditional independence

is represented by the lack of an edge between any two variables

Xi and Xj . In other words, within GMs, the edge {i, j} is

absent from E if the random variables Xi and Xj associated

to the nodes i and j satisfy the pairwise Markov property such

that

Xi⊥Xj | XV \{ij}, (1)

which means that Xi is conditionally independent of Xj when

conditioned on all other random variables XV \{ij}.

One common approach for estimating an undirected proba-

bilistic graphical model in an unsupervised fashion are Gaus-

sian graphical models (GGMs), where X ∼ N (μ,Σ) is

assumed to be a multivariate Gaussian distribution with a mean

vector μ and a covariance matrix Σ [8]. Using the precision

matrix θ = Σ−1, the conditional dependencies can be derived

such that an edge between i and j exist if and only if θij �= 0.

An adjacency matrix defining the graph connectivity (i.e.,

dependencies) can then be derived using non-zero entries of θ.

Thus, the goal of GGMs is to estimate θ provided an empirical

covariance Σ̂ derived from the data.

A classical approach for estimating a sparse dependency

graph precision matrix θ is the graphical lasso (glasso) [12,

13]. Glasso is a penalized maximum likelihood estimator that

uses the convex �1 norm penalty ‖θ‖1 to enforce sparsity on

θ by minimizing

min
θ�0

− log det(θ) + tr(Σ̂θ) + λ‖θ‖1, (2)

where λ is the regularization parameter, det(·) is the determi-

nant, and tr(·) is the trace.

Alternatively, non-convex penalty formulations have also

been explored to obtain estimators with more desirable prop-

erties, such as the oracle property and unbiasedness, which

tend to lead to sparser models that have the same or better

prediction accuracy than glasso [14, 15, 11]. The generalized

form of a non-convex estimator can be achieved by minimizing

a general penalized maximum likelihood estimator

min
θ�0

− log det(θ) + tr(Σ̂θ) + λg(θ), (3)

where g(·) is a non-convex, sparsity-inducing surrogate ob-

jective. By simply setting g(θ) = �1 the problem is reduced

to glasso. Classical non-convex penalties include smoothly

clipped absolute deviation (SCAD) [16], minimax concave

penalty (MCP) [17], arctangent penalty (ATAN) [18], and

seamless �0 penalty (SELO) [19].

B. Electric Power Transmission Network

EPTNs are vast, geographically distrusted systems that

distribute electrical power over long distance at a high voltage.
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(a) Network Graph (b) Complete (c) Partial-Left (d) Partial-Right

Fig. 2: Depiction of the network graph and the corresponding flow graphs for each topology.

Their primary purpose of an EPTN is moving electrical

power from energy generating locations (e.g., power plants)

to electrical substations with very few connection points along

the way. This is in contrast to distribution networks, which

are local lines that transfer electrical power from substations

to consumers with large numbers of connection points. The

combination of the transmission and distribution networks is

typically referred to as the electrical grid.

Fig. 1 depicts a very simple EPTN known as Kundur’s two-

area, four-machine symmetrical power system. This system is

divided into two areas which serve as grouping mechanisms

for shared control. Each area has two generators (i.e., power

plants) and four buses (i.e., nodes) where an additional bus is

used to join the two areas so that power might be exchanged.

The gray shaded regions represent buses where the color of the

bus number resents generators (green), transmission (orange),

and distribution (red). The branches (i.e., edges) connecting

the buses have their names given above the line and the

distance given below. Each bus has a time synchronized PMU

for measuring the voltage phasors (blue circle) and branch

current phasors (green squares) where a GPS is used for

time synchronization. A given bus can have multiple current

phasor measurements, as each branch (i.e., edge) connected

to a bus is assigned a current phasor measurement. A phasor

measurement consists of a magnitude and angle measurement.

Additionally, buses (7, 8) and (8, 9) have double transmission

branches (i.e., multi-edges). Finally, the distribution buses

12 and 13 represent load consuming nodes (i.e., leaf nodes)

which can be interpreted as substations feeding power to the

distribution network. The typical power flow then is from the

generators to the load consuming nodes.

III. METHODOLOGY

This section covers the simulated synchrophasor dataset,

network graph modeling using GGMs, and network graph

refinement for pruning false edges and constructing the corre-

sponding flow graph. For the latter, a domain specific graph

score algorithm is proposed which harnesses the physics of

the EPTN contained within the synchrophasor dataset.

A. Simulated Synchrophasor Data

A synchrophasor dataset generated by a real-time digital

simulator (RTDS), a multiprocess computer system for power

system simulations, is employed to observe power flow over

time. This dataset captures both voltage and current phasors

in conjunction with the time-domain. This allows for a more

realistic and high-fidelity dataset to be generated, unlike other

works which rely on computer simulation software (e.g.,

MATPOWER) where data samples are generated by varying

the load of the system and no current or time information can

be captured [6, 7]. Further details regarding the data generation

are provided by [3] although a brief overview of the data is

given below.

The synchrophasor dataset is generated using a two-area

four-machine power system model (Fig. 1) on a RTDS. PMUs

collect data at a rate of 30 Hz where a total of 1800 samples

are collected over 60 seconds. Data is collected only once the

system has reached a steady state. There are three different

network topologies (Fig. 2) which are denoted as complete,

partial-left, and partial-right. The complete topology uses the

original two-area four-machine network structure (Fig. 2b).

The partial-left topology uses the same network structure but

disconnects one of the dual transmissions branches between

buses (7, 8) (Fig. 2c). Likewise, the partial-right topology

uses the same network structure, but disconnects one of the

dual transmissions branches between buses (8, 9) (Fig. 2d).

Any “disconnected” branch is still reported in the data, but

the current magnitude measurement is reported as a near zero

value (i.e., no power flow). These two partial datasets can be

used to test the detection of branches that no longer have any

power flow (i.e., a topology change).

Additionally, each dataset is collected using three different

operating conditions of low, medium, and high loads (ex-

act power flow values are available in [3]). Each operating

condition (i.e., load type) indicates power consumption by

nodes 12 and 13. The low load signifies a low power demand,

prompting generators to reduce power production. Conversely,

high load signifies a high power demand, prompting generators

to increase power production. The medium load then simply

lies in between the low and high load power demand. Thus,

the load type affects the entire network’s power flow, simu-

lating different power demands and assessing the viability of

modeling the EPTN topology across various levels of demand.

A total of nine datasets are collected, representing three

network topologies and three operating conditions for each

topology. Each dataset consists of 83 features in total, where

each bus has two voltage phasor (e.g., magnitude and angle)

features and at least two current phasor features, with the total

number of current features being determined by the number

of branches per bus. Finally, while included in the data, the

generators (i.e., buses 1-4) and distribution nodes (i.e., buses

12 and 13) will not be used in favor of focusing on the
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connectivity between the transmission nodes (i.e., buses 5-11).

B. Stage 1: Network Graph Modeling

In order to estimate the network graph structure from data,

GGMs using convex and non-convex penalties are employed.

In particular, the convex estimator glasso and estimators using

the non-convex penalties SCAD, MCP, ATAN, and SELO1 are

utilized as these are well explored methods for approximating

the sparse precision matrix θ [16, 17, 18, 19, 20, 11].

Typically, the input for these estimators is an empirical cor-

relation matrix R with the dimensions p×p where p = 7 (i.e.,

the number of transmission buses). However, to capture the

potential high dimensional interactions between the features,

a rational quadratic kernel (RQK) is employed instead. RQK

can be seen a mixture of radial basis function kernels and is

defined as

RQK =
(
1 +

d(xi, xj)
2

2αl2

)−α

(4)

where α controls the scale mixture and l is the length scale

of the kernel, and d(·, ·) is the Euclidean distance.

To compute the RQK similarity matrix, all current-related

features (i.e., edge features) are excluded due to the non-

uniform number of current phasor measurements per bus,

leading to an inconsistency in the number of features per

each node. Thus, only node-specific voltage phasor features

are employed for this phase, leaving 14 voltage features in total

(two phasor features per node) for the seven nodes (5-11). The

data is then standardized across PMU features, meaning all

magnitude features across all nodes are standardized together,

and the same process is applied to the angle features. Using all

1800 data samples and 14 voltage features, the data is flattened

into a matrix with dimensions equal to the number of nodes by

voltage phasor measurements times the number data samples

(e.g., (7, 3600).2

Given the RQK similarity matrix as input, the GGM out-

puts an estimated precision matrix θ containing the partial

dependencies. Transforming θ into the estimated network

adjacency matrix Â is done by setting all the non-zero values

to one. Any index containing a zero represents the conditional

independence between the respective two variables given all

other node variables.

One caveat of the considered estimators is the requirement

of hyperparameter selection. In particular, glasso requires the

selection of one regularization parameter λ. Meanwhile, the

non-convex estimators require the selection of two hyperpa-

rameters: the regularization parameter λ and the shaping pa-

rameter γ. To select the best model (i.e., hyperparameters), two

different metrics are employed, which yield varying results.

The first metric is the extended Bayesian information criterion

(EBIC) [21]. A lower EBIC score indicates a potentially more

“preferred” model, where scores are relative to the problem.

The major benefit of EBIC is that it does not require the

1All estimators are executed using the implementations provided by the R package
GGMncv [11].

2That is, 7 nodes, 2 × 1800 = 3600 features as there are 2 phasor measurements
per node and 1800 data samples per dataset.

ground truth for computation. The second metric is the Fβ-

score, a generalized version of the F-score, where recall is

considered β times as important as precision. However, the Fβ-

score requires access to the ground truth. For these controlled

experiments, the underlying ground truth is available for both

the network and flow graphs, yet this might not always be

the case as GGMs are typically formulated as unsupervised

methods.

C. Stage 2: Network Graph Refinement
Stage 2 refines the GGM network graph estimation and

converts it into its corresponding flow graph. Recall, the output

of the GGM estimator is an undirected simple graph, which is

interpreted as a network graph. Therefore, the network graph

needs to be converted into a directed multi-graph to represent

a flow graph. Thus, when converting to a flow graph, direction

needs to be determined and edges need to be expanded into

multi-edges if they exist. Furthermore, the initial network

graph estimation can include false edges, which will need to

be pruned. All this can be achieved by using the power flow

physics inherently contained within the synchrophasor dataset.

A novel domain specific algorithm, inspired by [3], denoted

as the Power Network Graph Score (PNGS) is proposed for

Stage 2. PNGS aims to harness the physics of the current

phasor measurements, which could not be properly utilized

in Stage 1. Current phasor measurements allow for three

crucial concepts to be accounted for: 1) The number of in-

flows (incoming edges) and out-flows (outgoing edges) for a

particular node can be derived, thus determining the power

flow direction of an edge; 2) A number of metrics can be

computed using current and power differences to generate an

edge score, where the higher the score, the more likely the

edge is a false edge; 3) Multi-edges can be accounted for as

each edge has a current phasor, thus an edge score can be

computed for each edge. This can be done as long as the

estimated network graph possesses a connection between two

nodes.

The core idea of PNGS lies in computing a score for each

edge in the estimated network graph. PNGS aims to learn

a score matrix S of shape p × p. S functions similarly to

an adjacency matrix, but now each element contains scores

for the potential edges determined by the estimated network

graph adjacency matrix Â. Thus, for each pair of nodes, a set

of scores is computed based on the potential edges between

them and assigned to the corresponding node-pair index in S.

Edges with lower scores are likely to represent true edges,

while edges with higher scores are likely to represent false

edges. A value of infinity is used to represent impossible edges

(i.e., edges that can not exist based on the computed in-flows

and out-flows of a node) while a value of NaN (i.e., Not a

Number) is used to represent edges that are not in. Similar

to an adjacency matrix, the rows of S represent out-flows

and columns represent in-flows, with the main diagonal being

NaNs to represent the lack of self-connections.

For PNGS to function, partial information about the true

graph, denoted as Ḡ, must be extracted using the current
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phasor information. Thus, Ḡ contains information concerning

the total number of nodes, the total number of edges, and

the number of edges for each node including the number of

in-flows and out-flows. Computing the total edges contained

within the true graph is equal to half the number of current

phasor measurements, assuming no PMUs are taken offline.

This is because each branch has a current measure taken at

the beginning and end of the branch. Likewise, the number of

edges for each node is equal to the number of current phasor

measurements reported for a node divided by two3 In-flows

Ḡins(n) and out-flows Ḡouts(n) can then be determined for

each node by looking at the current angle such that if the

current angle is greater than 180 degrees it is an in-flow while

any angle less than 180 it is an out-flow4.

Given Ḡ and Â, the edge score can be computed by looping

over all nodes in Ḡ where n represents the current node. This

is done by first checking the number of out-flows Ḡouts(n)
for n. If n has no out-flows Ḡouts(n) = ∅, no out-going edges

can exist for n and the row indexed at n in S is set to infinity.

Given n has out-flows, each connected node ñ is then checked.

If ñ has no in-flows Ḡins(ñ) = ∅, no incoming edge can exist

between (n, ñ) and the corresponding value for S is set to

infinity. Given ñ has in-flows, it must be determined if any

of the out-flows Ḡouts(n) match with the in-flows Ḡins(ñ).
Before any computation can be done, all possible pairs C
between Ḡouts(n) and Ḡins(ñ) must be generated.

For each pair (out, in) in C, three scores proposed by

[3] are computed using various aspects of the voltage and

current phasor measurements. Absolute current flow difference

(ACFD) aims to compute the absolute difference between the

out-flow and in-flow current magnitudes:

ACFD(out, in) =
∣∣|Iout| − |Iin|∣∣, (5)

where the I represents the current magnitude, out represents

the out-flows of n, and in represents the in-flows of ñ.

Absolute power flow difference (APFD) aims to compute the

absolute different between the out-flow and in-flow power.

APFD(out, in) =
∣∣|V outIout cos(δout − αout)|
− |V inIin cos(δin − αin)|∣∣, (6)

where V represents the voltage magnitude, δ the voltage angle,

α the current angle. Finally, the mean power loss (MPL) aims

to compute the real power loss for a given power line:

MPL(out, in) =
∣∣∣Re

((
V out∠δin − V in∠δin

)

· (I
out∠αout + Iin∠αin

2

)∗)∣∣∣,
(7)

where Re denotes the real part and ∗ denotes the conjugate.

For each equation, the mean is computed over the total number

of data samples (i.e., time steps) m.

Once all pairs have been exhausted, Equations (5), (6), and

(7) are summed and stored inside a local score matrix Ŝ with

3The division is done to account for each phasor measurement having two features
(magnitude and angle).

4This method can not be applied to generators as their measurements are typically
obfuscated by transformers.

dimensions |Ḡouts(n)|× |Ḡins(ñ)|. Ŝ is then stored with S at

the index at (n, ñ) to represent all the scores for the potential

connections between the two nodes. Given a completed S,

refinement can be naively done by looking at each node’s edge

scores and taking the top k smallest scores where k is equal

to the number of out-flows for a node. As mentioned, the idea

is that the k top smallest edge scores should represent the true

edges (i.e., smallest values). The result is then a multi-edge

directed adjacency matrix. Algorithm 1 summarizes the PNGS

process for Stage 2.

Algorithm 1: Power network graph score (PNGS)

1 Parameters: partial graph Ḡ, estimated adjacency

matrix Â
2 Initialize score matrices S with shape p× p
3 foreach n ∈ Ḡ do
4 Â(n) ← set of nodes connected to n in Â
5 Ḡouts(n) ← set of outgoing edges from n in G
6 if Ḡouts(n) = ∅ 	 No outgoing edges
7 then
8 S(n, Â(n)) ← ∞
9 continue

10 foreach ñ ∈ Â(n) do
11 Ḡins(ñ) ← set of incoming edges for ñ in Ḡ
12 if Ḡins(ñ) = ∅ 	 No incoming edges
13 then
14 S(n, ñ) ← ∞
15 continue
16 C ← pairs between Ḡouts(n) and Ḡins(ñ)

17 Initialize Ŝ with shape |Ḡouts(n)| × |Ḡins(ñ)|
18 foreach (out, in) ∈ C do
19 Ŝ(out, in) ← APFD(out, in) +

ACFD(out, in) + MPL(out, in)

20 S(n, ñ) = Ŝ

IV. EXPERIMENTS

The experiments conducted within this section aim to assess

the ability of GGMs and PNGS to reproduce the true network

and flow graphs under various topology and load changes. As

such, the goal is to explore how GGMs might fail and to test

if using PNGS for graph refinement can accommodate for the

shortcomings of GGMs5.

For all experiments, the RKQ kernel parameters are set

to α = 1 and l = 50. Likewise, each GGM estimator

will search over 100 different λ values, generated using the

exponential log scale between 0.001 and 200. Thus, for each

λ, a new model is fitted. The selection of γ is done by using

each estimator’s corresponding recommended value: SCAD

γ = 3.7, MCP γ = 2.0, while the rest of the non-convex

penalties use γ = 0.01. The default values produced relatively

5All results and code can be found at https://github.com/RL-BCI-Lab/gc4eptn.
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(a) Ground Truth (b) High (c) Medium (d) Low

Fig. 3: (a) The ground truth network graph adjacency matrix. The RQK similarity matrices computed for the complete topology

are depicted using the (b) high load, (c) medium load, and (d) low laod. The x-axis and y-axis represent the bus/node number.

sufficient results, negating the need for additional computa-

tional resources [11]. The best network graph estimation is

selected using the lowest EBIC and highest Fβ-score. For

Fβ-score β = 2 is selected in order to put emphasis on

retaining the underlying ground truth graph. This is crucial

as the Stage 2 can not add edges, it can only validate and

prune existing edges. Therefore, it is more desirable to have

slightly more dense graphs that contain the underlying ground

truth than sparse graphs that do not.

A. High Loading Condition and Complete Topology

Baseline experiments are conducted using the high load for

the complete topology, allowing for an idealized EPTN setup

to be tested. Before running Stage 1, it is useful to first observe

the RQK similarity matrix, as it can provide insights into the

potential difficulty of the network estimation problem. Fig. 3b

depicts the RQK matrix for the high load. When compared

with the ground truth adjacency matrix (Fig. 3a), it can be

seen that the RQK matrix produces higher similarity values

for nodes with edges (e.g., (6, 5)) versus those that do not

(e.g., (11, 5)).
The network graph estimation for all GGM estimators and

the corresponding refined flow graphs are depicted in Fig. 4.

When selecting using Fβ-score, all non-convex penalties result

in an Fβ-score of 1 while glasso results in an Fβ-score of 0.97.

Thus, we observe that using non-convex penalties enables

estimating the true network graph directly. While glasso still

requires refinement, it only estimates a single false edge.

However, when selecting using EBIC, all non-convex penalties

lead to an Fβ-score of 0.71. On the other hand, glasso performs

slightly worse with a resulting Fβ-score of 0.68. The reasoning

for the decreased Fβ-score for all estimators is due to denser

network graphs estimations. Although the recall scores for

EBIC selected network graphs are perfect, the precision scores

suffer significantly. This is the first indication that EBIC

might not be well suited for selecting the best network graph

estimations. Yet, Fβ-score selection clearly shows that it is

possible for GGMs to directly recover the true network graph.

B. Topology and Load Changes

Next, experiments using various combination between dif-

ferent topologies and loads are presented. To simplify the

F
β
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(a) Glasso (b) SCAD (c) MCP (d) ATAN (e) SELO

Fig. 4: Estimated network graphs (1st and 3rd rows) using each

GGM estimator and their corresponding flow graphs (2nd and

4th rows) for the complete topology and high load type. Best

network graph estimations are selected using Fβ-score (1st and

2nd rows) and EBIC (3rd and 4th rows). The dotted lines for

the network graph indicate edges pruned using PNGS.

analysis of this section, specific focus is placed on the SELO,

as it is one of the top performing penalties. Albeit, all GGM

estimators do perform relatively similar to one another, with

glasso having a tendency to produce more dense network

graphs. In addition to the medium and low loads, a new “all”

load type is included, which combines all three loads into

one dataset. This is used to simulate the change of loads over

time. As a consequence, the all load dataset contains 5400

data samples as compared to the normal 1800.

Fig. 3 depicts the RQK similarity matrices for the complete

topology and high, medium, and low loads. It can be observed

that the similarity among the ground truth nodes is typically

high. However, as the load decreases, some connected nodes

start to lose their high similarity (e.g., (5, 6) and (8, 9)).
This drop in similarity indicates a potential problem as it

could become harder to distinguish true connections from false

connection as some nodes can have similar values, yet not be

connected (e.g., (5, 11) or (11, 9)). As such, this highlights

the problem of value similarity between unconnected nodes

within the synchrophasor dataset, which is likely to arise for
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other EPTN datasets as well.

Table I reports the performance for both network graph

prediction and flow graph refinement using all topologies and

load types, where the top SELO models are selected using Fβ-
score. For the most part, SELO can reconstruct the underlying

ground truth graph with the addition of a few false edges,

regardless of the load or topology type. This is indicated

by the relatively high Fβ-scores. When looking at the recall

and precision metrics, it can be seen that the recall is almost

always perfect, indicating the true network graph is contained

within the estimation. Yet, precision tends to suffer as it ranges

between 0.60 to 1 (a value of .60 translates to approximately

4 false edges). As almost all results report a perfect recall

score, refinement using PNGS allows for the recovery of the

true flow graph. For the perfect estimation cases which receive

an Fβ-score of 1 (e.g., high load, complete and partial-left

connectives), Stage 2 only needs to add direction and expand

edges into multi-edges.

However, there is a point of failure that can be observed.

That is, as the load decreases (from high to low) the problem

tends to become more difficult (i.e., higher likelihood of false

similarities between nodes to arise). It can be seen that for the

complete topology and low load that SELO does not properly

maintain the underlying ground truth graph indicated by its

lower recall score as it fails to predict the edge between (8, 9) .
This is likely, due to its low RQK similarity of 0.36 (Fig. 3d).

As a result, after refinement, this edge remains missing and

the reported metrics are even lower. This is because the flow

graph metrics are computed using the true directed multi-graph

adjacency matrix and edge (8, 9) has multi-edges, yet none

were estimated. This highlights the limitation of PNGS for

graph refinement, as it can not add edges retrospectively. Thus,

placing emphasis on the importance of the initial network

estimation.

Additional metrics regarding SELO model selection using

EBIC are reported in Table II. It can be seen that the EBIC

selected network graph estimations have lower Fβ-scores. This

is due to EBIC selecting more dense graph estimations, in

turn leading to more false edges and a lower precision score.

Even with the more dense graph predictions, EBIC too suffers

from the same failure case as Fβ-score when estimating the

graph for the complete topology and low load. Furthermore,

EBIC selection fails to ever recover the exact underlying true

network graph for any topology or load.

Finally, a contradiction arises when the EBIC values for

the same topologies and loads are compared across Table I

and Table II. In particular, it can be seen that while Table II

reports lower EBIC values, yet it reports worse Fβ-scores

(specifically due to precision). For example, take the complete

topology with a high load, where the EBIC selected network

graph estimation reports an EBIC value of 5431.85 while the

Fβ-score selected network graph estimation reports an EBIC

value of 7505.18. The objectively better estimation is the latter,

yet it receives a higher EBIC value. This indicates that a

lower EBIC value does not represent a “better” network graph

estimation. Thus, a more representative metric that does not

TABLE I: All topologies and load results using SELO where

the best model is selected using Fβ-score.

Connec-
tivity

Loads Network Graph Flow Graph

Fβ Precision Recall EBIC Fβ Precision Recall

Complete High 1.00 1.00 1.00 7505.18 1.00 1.00 1.00

Med 0.91 0.67 1.00 4981.20 1.00 1.00 1.00

Low 0.83 0.83 0.83 5713.06 0.79 1.00 0.75

All 1.00 1.00 1.00 28999.48 1.00 1.00 1.00

Partial-
Left

High 1.00 1.00 1.00 5603.90 1.00 1.00 1.00

Med 0.97 0.86 1.00 4559.94 1.00 1.00 1.00

Low 0.88 0.60 1.00 1964.18 1.00 1.00 1.00

All 1.00 1.00 1.00 26821.58 1.00 1.00 1.00

Partial-
Right

High 0.91 0.67 1.00 4806.79 1.00 1.00 1.00

Med 0.88 0.60 1.00 3462.52 1.00 1.00 1.00

Low 0.88 0.60 1.00 1472.08 1.00 1.00 1.00

All 0.91 0.67 1.00 26361.21 1.00 1.00 1.00

TABLE II: All topologies and load results using SELO where

the best model is selected using EBIC.

Connec-
tivity

Loads Network Graph Flow Graph

Fβ Precision Recall EBIC Fβ Precision Recall

Complete High 0.71 0.33 1.00 5431.85 1.00 1.00 1.00

Med 0.81 0.46 1.00 4442.88 1.00 1.00 1.00

Low 0.69 0.42 0.83 3875.21 0.79 1.00 0.75

All 0.79 0.43 1.00 27666.75 1.00 1.00 1.00

Partial-
Left

High 0.79 0.43 1.00 4172.09 1.00 1.00 1.00

Med 0.81 0.46 1.00 3230.33 1.00 1.00 1.00

Low 0.83 0.50 1.00 1475.61 1.00 1.00 1.00

All 0.86 0.55 1.00 25769.53 1.00 1.00 1.00

Partial-
Right

High 0.77 0.40 1.00 4105.60 1.00 1.00 1.00

Med 0.81 0.46 1.00 3204.76 1.00 1.00 1.00

Low 0.75 0.38 1.00 1327.54 1.00 1.00 1.00

All 0.83 0.50 1.00 25807.94 1.00 1.00 1.00

require knowledge of the underlying ground truth is required.

V. LIMITATIONS

As this work is highly exploratory, there are a handful of

limitations that need to be addressed before application in

the real-world. While the proposed graph construction and

refinement can help recover the true graph from data, it is

observed that the metric used to select the “best” graph affects

the quality of the chosen estimated network graph. While only

GGMs were tested for network graph estimation, any other

data-driven approach is vulnerable to this hyperparameter and

graph selection challenge. Thus, developing a new metric,

specifically one that does not require a ground truth, for EPTN

evaluation acts as a vital future point of investigation. For

instance, utilizing the PNGS as a metric for model selection,

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 26,2025 at 15:01:39 UTC from IEEE Xplore.  Restrictions apply. 



not just for refinement, could act as a starting point. Moreover,

due to the simplicity of the simulated EPTN provided here,

more complex load settings and network topology experi-

ments are needed to further solidify the robustness of the

proposed graph construction and refinement algorithm based

on GGMs. Finally, although the estimations do not need

to occur at the sampling rate of the PMUs, the bounds at

which the proposed algorithm can produce estimations needs

to be further explored. In particularly, algorithmic speed needs

to be investigated on various larger network topologies and

contrasted against prior domain specific approaches.

VI. CONCLUSION

A data-driven power flow graph construction of a simulated

electric power transmission network, the Kundur’s two-area

four-machine power system, has been investigated in this

paper. The two-stage data driven graph construction leverages

GGMs using convex and non-convex penalties to achieve an

initial sparse estimation of the network graph and further

refinement to discover a power flow graph using the novel

physics-based PNGS algorithm.

VII. ACKNOWLEDGMENT

This work has been supported by the National Science

Foundation under Grant ECCS 2234031 and ECCS 2234032.

The opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the sponsors.

REFERENCES

[1] D. Madurasinghe and G. K. Venayagamoorthy, “An Ef-

ficient and Reliable Electric Power Transmission Net-

work Topology Processing,” IEEE Access, vol. 11, pp.

127 956–127 973, 2023.

[2] M. Kezunovic, “Monitoring of Power System Topol-

ogy in Real-Time,” in Proceedings of the 39th Annual
Hawaii International Conference on System Sciences
(HICSS’06), vol. 10, Jan. 2006, pp. 244b–244b.

[3] G. K. Venayagamoorthy, D. Madurasinghe, and R. Rat-

nakumar, “Graph Models of Electric Power Transmission

Networks Using Synchrophasor Data,” in SoutheastCon,

Mar. 2024, pp. 592–597.

[4] M. Farrokhabadi and L. Vanfretti, “State-of-the-art of

topology processors for EMS and PMU applications and

their limitations,” in 38th Annual Conference on IEEE
Industrial Electronics Society, Oct. 2012, pp. 1422–1427.

[5] W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and

Y. Wang, “A Review of Graph Neural Networks and

Their Applications in Power Systems,” Journal of Mod-
ern Power Systems and Clean Energy, vol. 10, no. 2, pp.

345–360, Mar. 2022.

[6] C. Dinesh, J. Wang, G. Cheung, and P. Srikantha, “Com-

plex Graph Laplacian Regularizer for Inferencing Grid

States,” in IEEE International Conference on Communi-
cations, Control, and Computing Technologies for Smart
Grids, Oct. 2023, pp. 1–6.

[7] X. Pan, M. Chen, T. Zhao, and S. H. Low, “DeepOPF:

A Feasibility-Optimized Deep Neural Network Approach

for AC Optimal Power Flow Problems,” IEEE Systems
Journal, vol. 17, no. 1, pp. 673–683, Mar. 2023.

[8] M. Drton and M. H. Maathuis, “Structure learning in

graphical modeling,” Annual Review of Statistics and Its
Application, vol. 4, no. 1, pp. 365–393, 2017.

[9] M. Altenbuchinger, A. Weihs, J. Quackenbush, H. J.

Grabe, and H. U. Zacharias, “Gaussian and Mixed

Graphical Models as (multi-)omics data analysis tools,”

Biochimica et Biophysica Acta, vol. 1863, no. 6, Jun.

2020.

[10] M. Dyrba, R. Mohammadi, M. J. Grothe, T. Kirste, and

S. J. Teipel, “Gaussian Graphical Models Reveal Inter-

Modal and Inter-Regional Conditional Dependencies of

Brain Alterations in Alzheimer’s Disease,” Frontiers in
Aging Neuroscience, vol. 12, 2020.

[11] D. R. Williams, “Beyond lasso: A survey of nonconvex

regularization in gaussian graphical models,” 2020.

[12] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse

covariance estimation with the graphical lasso,” Biostatis-
tics, vol. 9, no. 3, pp. 432–441, 2008.

[13] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, “Model

selection through sparse maximum likelihood estimation

for multivariate gaussian or binary data,” The Journal of
Machine Learning Research, vol. 9, pp. 485–516, 2008.

[14] J. Fan, Y. Feng, and Y. Wu, “Network exploration via the

adaptive lasso and scad penalties,” The Annals of Applied
Statistics, vol. 3, no. 2, p. 521, 2009.

[15] J. Ying, J. V. de Miranda Cardoso, and D. Palomar, “Non-

convex sparse graph learning under laplacian constrained

graphical model,” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 7101–7113, 2020.

[16] J. Fan and R. Li, “Variable selection via nonconcave

penalized likelihood and its oracle properties,” Journal
of the American Statistical Association, vol. 96, no. 456,

pp. 1348–1360, 2001.

[17] C.-H. Zhang, “Nearly unbiased variable selection under

minimax concave penalty,” The Annals of Statistics,

vol. 38, no. 2, pp. 894–942, 2010.

[18] Y. Wang and L. Zhu, “Variable selection and parameter

estimation with the atan regularization method,” Journal
of Probability and Statistics, vol. 2016, 2016.

[19] Z. Li, S. Wang, and X. Lin, “Variable selection and

estimation in generalized linear models with the seamless

l0 penalty,” The Canadian journal of statistics, vol. 40,

no. 4, pp. 745–769, 2012.

[20] Y. Wang, Q. Fan, and L. Zhu, “Variable selection and

estimation using a continuous approximation to the �1
penalty,” Annals of the Institute of Statistical Mathemat-
ics, vol. 70, no. 1, pp. 191–214, 2018.

[21] R. Foygel and M. Drton, “Extended Bayesian Infor-

mation Criteria for Gaussian Graphical Models,” in

Advances in Neural Information Processing Systems,

vol. 23. Curran Associates, Inc., 2010.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 26,2025 at 15:01:39 UTC from IEEE Xplore.  Restrictions apply. 


