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Abstract. Statistical parity metrics have been widely studied and
endorsed in the Al community as a means of achieving fairness, but
they suffer from at least two weaknesses. They disregard the actual wel-
fare consequences of decisions and may therefore fail to achieve the kind
of fairness that is desired for disadvantaged groups. In addition, they are
often incompatible with each other, and there is no convincing justifica-
tion for selecting one rather than another. This paper explores whether
a broader conception of social justice, based on optimizing a social wel-
fare function (SWF), can be useful for assessing various definitions of
parity. We focus on the well-known alpha fairness SWF, which has been
defended by axiomatic and bargaining arguments over a period of 70
years. We analyze the optimal solution and show that it can justify demo-
graphic parity or equalized odds under certain conditions, but frequently
requires a departure from these types of parity. In addition, we find that
predictive rate parity is of limited usefulness. These results suggest that
optimization theory can shed light on the intensely discussed question of
how to achieve group fairness in Al
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1 Introduction

There is growing demand within industry and government for assurance that
machine learning (ML) models respect and promote equality of impact across
protected groups [18,25] and comply with legal requirements [17,42]. This con-
cern arises in contexts that range from hiring and parole decisions to mortgage
lending and credit ratings. One prominent method of satisfying these ethical
and legal goals is the use of statistical parity metrics [3]. For example, one might
assess two groups have equal approval rates (demographic parity), whether the
approval and rejection rates of qualified candidates are equal (equalized odds), or
whether the fraction of qualified candidates among those approved is the same
(predictive rate parity).

There are at least two problems, however, with reliance on statistical parity
as a measure of fairness. One is that parity metrics take no account of the actual
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utility consequences of being selected or rejected. Presumably, group disparities
are viewed as unjust because different groups derive unequal benefits from the
selection process. Yet an assessment of these benefits requires consideration of
the actual welfare outcomes of selecting or rejecting individuals. For example,
rejecting a member of a disadvantaged group may have greater negative conse-
quences than rejecting a member of an advantaged group. The standard parity
metrics take account only of the number of individuals selected or rejected, not
the impacts of these decisions.

A second problem is that parity metrics are frequently incompatible with each
other [14,19,29] and, in particular, imply different trade-offs between fairness
and accuracy [5,29]. As a result, there is often no consensus on which metric
is appropriate in a given context. This is illustrated by the famous debate over
parole decisions between ProPublica and Northpointe (now Equivant) regarding
whether the latter’s COMPAS product is fair, with one side claiming that the
model is unfair because it fails to achieve equalize odds, and the other side
claiming it is fair because it achieves predictive rate parity [1,16]. Lacking any
further grounds for settling this dispute, the debate has (for now) reached a
stalemate. Ideally, one would justify (or reject) a parity metric by appealing to
a broader principle of justice.

In this paper, we explore an approach for evaluating group parity metrics via
their effects on the welfare of individuals in each group. The aim is to connect the
debate about group parity with the rich tradition of welfare economics, where
policies are evaluated by their effects on social welfare, as measured by a social
welfare function (SWF). Such a function can take into account the distribution
of utilities as well as overall welfare. We ask whether a selection policy that
optimizes social welfare, as measured by a SWF, results in some particular form
of group parity or requires departure from the standard parity measures. Our
underlying hypothesis is that insights obtained from optimization theory can
shed light on the vexing problem of fairness in Al.

As a first step in this research program, we investigate the parity implica-
tions of alpha fairness [36,43], a well-known family of SWFs parameterized by
a nonnegative real number «a. Larger values of « indicate a stronger empha-
sis on fairness as opposed to maximizing total utility, the latter corresponding
to a = 0. Alpha fairness can therefore evaluate the trade-off of fairness and
accuracy, a perennial issue in machine learning. Other special cases include the
maximin (Rawlsian) criterion (o = 0o) and proportional fairness, also known as
the Nash bargaining solution (o = 1). We ask what are the parity implications
of a given level of fairness as indicated by a.

Our purpose here is not to defend alpha fairness as a fairness criterion, but to
explore the implications of a criterion that has already been extensively defended.
Alpha fairness in its various forms has been studied for over 70 years by investi-
gators that include two Nobel laureates (John Nash and J. C. Harsanyi). Nash
[38] gave an axiomatic argument for his bargaining solution in 1950, while Rubin-
stein, Harsanyi and Binmore [6,21,41] supplied bargaining arguments. Lan et.
al [30,31] provided an axiomatic derivation for general alpha fairness and pro-
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posed an interpretation of the o parameter. Bertsimas et al. [5] studied resulting
equity /efficiency trade-offs. Alpha fairness has also seen a number of practi-
cal applications, particularly in telecommunications and other engineering fields
[28,34,36,39,43|.

After a brief survey of related work, we first establish a general solution to
the problem of maximizing alpha fairness subject to a constraint on the num-
ber of individuals selected. We then present a utility model that allows us to
relate group characteristics to the implications of alpha fairness. Following this,
we describe specific implications for demographic parity, equalized odds, and
predictive rate parity, and draw conclusions from these results.

2 Related Work

Statistical group parity metrics are the most widely studied approach to fairness
in AT and machine learning. Much of this research is surveyed in [10,35]. However,
a welfarist approach is beginning to receive recognition in Al fairness literature,
e.g. [4,8,11,13,15,23,24,33]. One motivation is pragmatic: social welfare can
provide a “common currency” with which one can justify the choice of parity
metric, when the typical justifications are incommensurate [20]. For example,
arguments for individual fairness appeal to procedural justice concerns, while
arguments for group fairness appeal to distributive justice [7,32]. When a model
cannot satisfy both of these values, it is necessary to justify one’s choice. Another
motivation for a welfarist approach is ethical: one may wish to strive for group
parity to make disadvantaged groups better off, rather than to achieve equality
for its own sake [9,37].

Social welfare functions have been used in optimization models for some
time, as surveyed in [13,27,40]. Aside from alpha fairness, SWFs that balance
equity and efficiency include Kalai-Smorodinsky bargaining [26] and threshold
functions [12,22,44].

Despite the large literature on SWFs and group parity metrics, we describe
here what is, to our knowledge, the first explicit connection between them.

3 The Basic Model

We address the task of selecting individuals from a population to receive a benefit
or resource, such as a mortgage loan or a job interview. Some individuals belong
to a protected group that is disadvantaged with respect to qualification status.
We define binary variables D,Y, Z to indicate whether an individual is selected
(D = 1), qualified (Y = 1), or protected (Z = 1). To simplify notation, we use
D to represent D = 1 and —D to represent D = 0, and similarly for Y and Z.
We have demographic parity when P(D|Z) = P(D|-Z), equalized odds (in
the positive sense of equality of opportunity) when P(D|Y,Z) = P(D|Y,~Z),
and predictive rate parity when P(Y|D,Z) = P(Y|D,—Z). We interpret the
conditional probability P(D|Z) as the fraction of protected individuals who are
selected, and similarly for the other probabilities. The latter two types of parity
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are typically defined in terms of qualifications that are determined after the
fact, such as whether a mortgage recipient repaid the loan, a job interviewee was
hired, or a parolee committed no further crimes. In addition, calculation of the
odds ratio requires knowledge of how many rejected candidates are qualified.

To assess utilitarian outcomes, we suppose that an individual ¢ experiences
expected utility u; = a; 4 b; if selected, and a baseline utility u; = b; if rejected.
We refer to a; as the selection benefit. It can be negative (indicating that selection
is harmful), but we assume that b; > 0 and a; + b; > 0 because alpha fairness is
not defined for nonpositive utilities. This assumption can be met by a positive
translation of the utility scale if necesssary.

We assess the desirability of a utility distribution w = (ug, ..., u,) with the
alpha fairness social welfare function, given by

. Zu%_a,ifozZOanda#l
—a L

Zlog(ui), ifa=1

Alpha fairness is achieved by maximizing W, (u) subject to a limit on the number
of individuals that can be selected.

We let binary variable z; = 1 when individual ¢ is selected. The expected
utility gained by individual i is therefore a;x; + b;. The social welfare resulting
from a given vector @ = (z1,...,2,) of selection decisions, as measured by the
alpha fairness SWF, is

Wa(u) = (1)

n

1
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Wa(x) = n =t (2)
Z log(a;x + b;), ifa=1

If m (< n) individuals are to be selected, one achieves alpha fairness for a given
« by maximizing W, (z) subject to ., x; = m. A maximizing vector & can
be deduced using a simple greedy algorithm. We first consider the case a # 1.
The top expression in (2) can be written as

n

Zbl 4 Z ((ass + by~ = b1=) (3)
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Since the first term is a constant, we can maximize (3) by maximizing its second
term, which can be written as

S (b)) = Y ) (1)

7.\z7:1 i|mi:1

where we define

Aia) = { T = ((a; + b)) b}fa),%fQEO, a#l
log(a; + b;) — log(b;), ifa=1
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The term A;(«) is the increase in welfare that results from selecting individual
i (for a given a # 1). We can maximize (4) subject to Y ., #; = m by selecting
the m individuals with the largest welfare differential A;(c). A similar argument
applies for a = 1. Thus we have

Theorem 1. If A, () > - > A, («), where 71,..., 7T, i a permutation of
1,...,n, then one can mazimize W, (x) subject to >+, x; = m by setting r; = 1
fori=m,. ..., and x; =0 fori = mmy1,...,Tp.

At this point we can easily check whether achieving alpha fairness results in the
various forms of group parity by observing whether their definitions are satisfied
when individuals 7, ..., T, are selected.

4 Modeling Protected and Nonprotected Groups

While Theorem 1 specifies an alpha fair selection policy for any given set of
individual utility parameters (ai,b1),...(an,by), it yields limited insight into
how the utility characteristics of protected and nonprotected groups affect alpha
fair selections. In addition, the large number of parameters makes relationships
difficult to analyze in a comprehensible fashion.

We address these issues by supposing that the expected utilities in the two
groups occur on sliding scale. Specifically, we suppose that the selection ben-
efits a; in the nonprotected group are distributed uniformly on a scale from a
maximum Ap,x down to a minimum Ay, (< Amax), and selection benefits in
the protected group vary uniformly from @y down t0 amin(< @max). A nonuni-
form distribution is more realistic, but it requires a complicated analysis that
is harder to interpret, while yielding basically the same qualitative results. To
further simplify analysis, we suppose that the base utility has the same value
B for all nonprotected individuals, and the same value b for all protected indi-
viduals. We assume that B > b and, consistent with the previous section, that
Apin + B > 0 and ap;, + b > 0. Finally, we suppose that the protected group
comprises a fraction 3 of the population, with 0 < 8 < 1.

We further assume that individuals within a given group are selected in
decreasing order of their selection benefit. Thus if a fraction S of nonprotected
individuals are selected, the last individual selected in that group has the selec-
tion benefit A(S) = (1 — S)Amax + SAmin and a social welfare differential of

[e%

As(a) = { 1%((14(5) +B) T - Bl—a), ifa>0,a#1
log (A(S) + B) —log(B), ifa=1

Similarly, if a fraction s of individuals are selected in the protected group, the
last individual selected has the selection benefit a(s) = (1 — $)amax + $@min and
the social welfare differential

Alfa) = ﬁ((a(s) + b)lfa — l)lfo‘)7 fa>0,a#1
° log (a(s) + b) — log(b), ifa=1
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We will suppose that the population is large enough that .S and s can be treated
as continuous variables. This simplifies the analysis considerably without mate-
rially affecting the conclusions.

Since the social welfare differential is a monotone increasing function of the
selection benefit, selecting individuals in order of decreasing welfare differential
is, within each group, the same as selecting in order of decreasing selection bene-
fit. By Theorem 1, selection in order of decreasing welfare differential maximizes
the alpha fairness SWF subject to ), x; = m if we select individuals until the
desired fraction ¢ = m/n of the population is selected. This occurs when

oc—(1-05)S
B

We first take note of the ranges within which S and s can vary, subject to
(5). Since we must have 0 < .S <1 and 0 < s <1, S can vary in the range from
Stin t0 Smax, Where

(1-0)S+pBs=0, or s=s(5)= (5)

o—pf . o
Smin = maX{O, m}, Smax = min {1, 1— /8}
and s can vary from $(Smax) t0 $(Smin). Now since Apax > Amin, As(a) is
monotone decreasing in S. Similarly, A’ («) is monotone decreasing in s, so that
A (sy(a) is monotone increasing in S. This means that we can consider three
cases, illustrated by Fig. 1:

(a) Ag,,, () > A;(Smm)(a) and Ag_
(b) Ag, (@) < Alg (@) and Ag
(c) Ag,,,, (@) > A/s(Smin)(O‘) and Ag

(a) > A;(Smax)(a).
() < A;(s ().
(c)

(@) <Al

min max

max )

max ‘max )

min (b) Smax Stmin (c) Smax

min (a) 'max
Fig. 1. Cases (a), (b), and (c) in the proof of Theorem 2
Theorem 2. Suppose that individuals are selected in decreasing order of their

selection benefit, and let S* and s* = s(S*), respectively, be the fraction of the
nonprotected and protected groups selected at the end of the selection process.
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Then for a sufficiently large population, S* and s* achieve alpha fairness if and
only if
v e . o [ P 1-p )
(S*,s%) = (ml {1’717/8}’ ﬁﬁ[l mln{l,ia }D,m case (a)
Y o o P . a . (6)
(S*,s%) = (1—ﬁ[1 mln{l,aH, mln{l, }), in case (b)
Ag+(a) = A’S(S*)(a), in case (c)

Proof. Recall that by Theorem 1, alpha fairness is achieved by selecting individu-
als in decreasing order of their welfare differential until S = s(.S). We consider the
three cases separately. (a) Because Ag(a) > A{ g (a) for all S € [Smin, Smax];
we select entirely from the nonprotected group until it is exhausted, and then
move to the protected group if necessary to select a fraction o of the population.

Thus we can set
S* = min{SmaX, %} = min{l, ﬁ}

where the first equality is due to the fact that we must have S* = o/(1 — )
in order to select a fraction o if the population if ¢ < 1 — 3, and the sec-
ond equality is due to the definition of Spa.x. The expression given in (6) for
s* = s(S*) follows directly from the definition of s(S*), and it is easily checked
that $min < 8 < Smax using the definitions of sy, and Spmax. (b) The argu-
ment is very similar to that of the previous case. (¢) In this case, some but
not all individuals are selected in both groups. Let (S,s) be the fraction of
the nonprotected and protected individuals selected at any given point in the
selection process. We first show that Ag(a) = A’ («) for a sufficiently large pop-
ulation. Let Ag and A; be the welfare differentials of the last two nonprotected
individuals selected, and A{, and A] the differentials of the last two protected
individuals selected. Their selection order is necessarily one of the following:
(Ag, Af, A1, AY), (Ao, AG, AL, Ar), (A, Ao, A1, AY), (Af, Ag, A, Ar). In each
case, |A; — Al is at most max{Ay — Ay, A — A}}. For a sufficiently large
population, Ag — Ay and A — A} are arbitrarily small, and so |A; — A} is arbi-
trarily small. Thus we have Ag(a) = Al(a) throughout the selection process,
and in particular at the end of the process, when (S5, s) = (S*, s*). The theorem
follows. O

To explore how alpha fair selection policies depend on the utility charac-
teristics of protected and nonprotected groups, we define three scenarios that
represent qualitatively different practical situations.

Scenario 1. Protected individuals are somewhat less likely to benefit from being
selected, as when those selected for job interviews are less likely to be
hired due to less obvious qualifications. Here, [Amin, Amax] = [0.5,1.5] and
[@min, Gmax] = [0.2,1].

Scenario 2. Some protected individuals can benefit more than anyone else from
selection, as when talented but economically disadvantaged individuals are
admitted to a university. Here, [Amin, Amax] = [0.5,0.8] and [@min, Gmax] =
0.2,1].
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Fig. 2. Alpha fair selection rates, assuming overall selection rate of 0.25
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Fig. 3. Alpha fair selection rates, assuming overall selection rate of 0.6
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Fig. 4. Alpha fair selection rates, assuming overall selection rate of 0.8
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Scenario 8. Significantly many protected individuals are likely to be harmed
by selection, as when failure to repay a mortgage results in eviction. Here,
[Amin, Amax] = [0.5,1] and [@min, Gmax] = [—0.5, 1].

Plots of alpha fair selection policies in these scenarios appear in each of Figs. 2,
3 and 4. The three figures respectively assume overall selection rates of ¢ =
0.25,0.6,0.8. These selection rates are chosen to be less than, equal to, and
greater than a qualification rate of 0.6, which will be assumed for subsequent
plots of alpha fair odds ratios and predictive rates.

The plots show the relationship between alpha fair selection rates (5, s) and
the chosen value of «. As expected, larger values of « (indicating a greater empha-
sis on fairness) result in higher selection rates in the protected group (dashed
curves) and lower rates in the nonprotected group (solid curves). Scenario 1 calls
for lower section rates in the protected group than Scenario 2 because of the
greater utility cost of achieving fairness in Scenario 1; recall that alpha fairness
consider total utility as well as Rawlsian fairness. Both scenarios require select-
ing the entire protected group for sufficiently large o, except when o = 0.25, in
which case the small number of selections does not exhaust the protected group.
In Scenario 3, by contrast, the protected group’s selection rate approaches 2/3
asymptotically, because only 2/3 of the group benefits from being selected in
this scenario.

5 Demographic Parity

Demographic parity is achieved when P(D|-Z) = P(D|Z). In the above model,
this occurs when s = S = ¢. As it turns out, cases (a) and (b) of Theorem 2 do
not apply, and we can achieve demographic parity only by choosing a value of «
(if one exists) dictated by case (c).

Theorem 3. An alpha fair selection policy for a given o results in demographic
parity if and only if there exists a selection rate S* that satisfies the equation
Ag-(a) = Al.(a), in which case (S*,S*) is such a policy.

Proof. We first note as follows that neither case (a) nor (b) in Theorem 2 applies.
In case (a), demographic parity requires that

nfi 75} o o (L)
min 71—/6 =0, Or min 0'71—/6) =

This cannot hold, because § > 0 and o < 1. Case (b) is similarly ruled out. We
are therefore left with case (c), wherein Theorem 2 implies that S* = s(S*) if
and only if Ag« (o) = Al (@), as claimed. O

In Figs. 2, 3 and 4, demographic parity is achieved at the value of o where the
rising and falling curves for a given scenario intersect. For example, if the overall
section rate is o = 0.6, parity is achieved in Scenario 1 when o = 0.833 (Fig. 3).
An important lesson in these plots is that a relatively small value of « frequently
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results in parity. That is, parity achieves a rather modest degree of fairness when
utilities are taken into account. Indeed, proportional fairness (o = 1), which is
something of an industrial benchmark, typically calls for selecting a significantly
greater fraction of the protected group than the nonprotected group. This is
not the case in Scenario 3, however, where parity requires selecting protected
individuals who receive minimal benefit and even harm from being selected. For
example, no value of « corresponds to parity when o = 0.8 (Fig. 4) because alpha
fairness never endorses harmful choices.

2.5
2
©
S 15 ——Scenario 1
©
~ ——Scenario 2
1 / ——Scenario 3
0.5
0 s
0 0.2 0.4 0.6 0.8 1

Overall selection rate

Fig. 5. Values of alpha that achieve demographic parity

Figureb provides a fuller picture of the relation between the selection rate
o and parity-achieving values of a. As o increases, parity corresponds to larger
values of « because it becomes necessary to select protected individuals who
benefit little from selection. The curves for Scenarios 1 and 2 happen to meet
at ¢ = 1 in this example because Anin, Gmin, B, and b are the same in the two
scenarios. We also note that a — oo as 0 — 2/3 in Scenario 3 because o > 2/3
requires selecting individuals who are harmed by selection.

Interestingly, smaller values of o correspond to parity in Scenario 2 than in
Scenario 1, despite the fact that rejection can be quite costly to some members
of the protected group in Scenario 2 (due to their higher selection benefits).
This occurs because a purely utilitarian assessment already takes this cost into
account.

6 Equalized Odds

Equalized odds are achieved when P(D|Y,Z) = P(D|Y,~Z). To define equal-
ized odds in the above model, we suppose that a fraction ) of nonprotected
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individuals are qualified, and a fraction g of protected individuals are qualified.
The a fraction (1 — 8)Q + Bq of the population is qualified. We also make the
reasonable assumption that the selection benefit is greater for qualified individ-
uals than unqualified individuals within a given group. Thus since Ag(«) and
Al () are monotone decreasing as S and s increase, the qualified individuals in
the nonprotected group consist of the fraction @ with the largest welfare differ-
entials. The odds ratio for the nonprotected group is S/Q when S < @ and 1
when S > @, since in the latter case all the qualified individuals are selected.
Thus the odds ratio is min{1,S/Q} for the nonprotected group, and similarly
for the protected group. This means that we have equalized odds when

S
min {—, 1} = min {f, 1}
Q q
This leads to the following theorem. It is convenient to define p to be the ratio
of the fraction selected to the fraction of the population that is qualified, so that
o

(1-83)Q + Bq

Theorem 4. An alpha fair selection policy (S*,s(S*)) for a given « results in
equalized odds if and only if one of the following holds:

ST=Qp<Q and s(57)=qp<gq (7)
S*>Q and s(S*)>q (8)

p:

Proof. We consider four mutually exclusive and exhaustive cases:
(a) S* <@ and s(S*) <g¢q (¢) S* > @ and s(S*) < ¢
(b) S* <@ and s(S*) > ¢ (d) S* > Q and s(S*) > ¢

In case (a), equalized odds is equivalent to S*(«)/Q = s*(«)/q, which implies
S* = Qp and s(S*) = gp in (7) due to (5). Conversely, we can see as follows that
either of the conditions (7) and (8) implies equalized odds. Under condition (7),
the values for S* and s(S*) in (7) imply S*/Q = s(5*)/q, and we have equalized
odds. Under condition (8), both odds ratios are 1, and we again have equalized
odds. In case (b), equalized odds implies S* = @, in which case condition (8) is
satisfied. Conversely, the case hypothesis is consistent with only condition (8), in
which case both odds ratios are 1 and we have equalized odds. Case (c) is similar.
In case (d), one of the conditions (7)—(8) is necessarily satisfied (because the lat-
ter is satisfied), and we necessarily have equalized odds, because both odds ratios
are 1. [J

To continue the example of the previous section, we suppose that the quali-
fication rates are (@, q) = (0.65,0.5), so that a fraction 0.6 of the population is
qualified. Figures6 and 7, corresponding to ¢ = 0.25 and ¢ = 0.6, show alpha
fair odds ratios for various a.. No plot is given for ¢ = 0.8 because nearly all of the
odds ratios are 1 due to the fact that considerably more individuals are selected
than are qualified. In the important special case where the number selected is
equal to the number qualified (Fig.7), equalized odds is achieved only by an
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Fig. 6. Alpha fair odds ratios, assuming overall selection rate of 0.25.
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Fig. 7. Alpha fair odds ratios, assuming overall selection rate of 0.6.

accuracy-maximizing solution: precisely the qualified individuals are selected in
both groups. This rules out any adjustment for fairness. The odds ratio is per-
haps more useful when limited resources compel one to reject significantly many
qualified individuals. In this event, somewhat smaller values of o are typically
necessary to achieve equalized odds than demographic parity (Fig.6). In Sce-
nario 2, a purely utilitarian solution already achieves a higher odds ratio for the
protected group, since some of its qualified members derive more utility from
selection than anyone in the nonprotected group.

7 Predictive Rate Parity

Predictive rate parity is achieved when P(Y'|D,Z) = P(Y|D,—Z). The predic-
tive rate for the nonprotected group is @/S when S > @ and 1 when S < @,
since in the latter case all the selected individuals are qualified. Thus the pre-
dictive rate is min{@/S,1} for the nonprotected group, and similarly for the
protected group. This means that we have predictive rate parity when
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min {%, 1} = min {g, 1}
This leads to the following theorem, whose proof is very similar to the proof of
Theorem 4.

Theorem 5. An alpha fair selection policy (S*,s(S*)) for a given « results in
predictive rate parity if and only if one of the following holds:

S"=Qp=Q and s(57)=qp=q (9)
S*<Q and s(S*)<gq (10)

Note that the expressions for S* and s(S*) in (9) are the same as in (7).

Figures8 and 9, corresponding to ¢ = 0.6 and ¢ = 0.8, show alpha fair
predictive rates for various «. There is no plot for ¢ = 0.25, because nearly all of
the predictive rates are 1. We also note that larger predictive rates correspond
to smaller values of «.

10 / ~ Scenario 1,
\ Ss
R nonprotected

N ~s
o 09 ~ N T e Scenario 1,
® 038 N ] protected
g - \\\ Scenario 2,
e N nonprotected
@ 0.6 \\\ Scenario 2,
o Seeel protected
0.5 i Scenario 3,
0.4 nonprotected
0 05 1 15 2 2.5 3 35 "7 Scenario 3,
protected

alpha

Fig. 8. Alpha fair predictive rates, assuming overall selection rate of 0.6.
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Scenario 2,
nonprotected
Scenario 2,
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Scenario 3,
0.4 nonprotected
0 0.5 1 1.5 2 2.5 3 3.5 -=m=w Scenario 3,
protected

Predictive rate

Fig. 9. Alpha fair predictive rates, assuming overall selection rate of 0.8.
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8 Conclusion

Our aim in this paper has been to explore the extent to which social welfare opti-
mization can assess well-known statistical parity metrics as criteria for group
fairness in AIL. Our focus on alpha fairness allows us to address parity ques-
tions by appealing to a well-studied concept of just distribution with theoretical
underpinning. We conclude in this section by recalling the two problems asso-
ciated with parity metrics and summarizing how they might be addressed from
an optimization perspective.

1. Accounting for welfare. The alpha fairness criterion allows us to take explicit
account of welfare implications, for various levels of fairness as indicated by the «
parameter. We find that for certain values of « and certain group characteristics,
an alpha fair selection policy can result in group parity of any of the three types.
Yet it can also call for significant statistical disparity in order to achieve an
acceptable distribution of utilities.

In particular, the alpha values that result in parity typically lie significantly
below that corresponding to proportional fairness (aw = 1)—except when some
individuals in the protected group are actually harmed by being selected, in
which case larger values of « correspond to parity. Since proportional fairness is
the most widely defended and applied variety of alpha fairness, it is noteworthy
that it often requires, not parity, but higher selection rates for the protected
group than for the rest of the population. In addition, a lower level of fairness
(i.e., a smaller «) is necessary to achieve parity when rejection is more costly to
members of the protected group than the rest of the population, other things
being equal. This is because even a purely utilitarian accounting already takes
this cost into account.

2. Selecting and justifying parity metrics. We derive a number of conclusions
regarding the choice of parity metric. In general, we find that the implications
of alpha fairness depend heavily on how many individuals are selected relative
to the total number qualified, at least where equalized odds and predictive rate
parity are concerned.

To elaborate on this, we first suppose that the total number selected is the
same (or approximately the same) as the total number who are qualified in
the population as a whole. In this case, demographic parity follows the pattern
described above, in which relatively small values of « result in parity, except
when some protected individuals are harmed by selection. Yet equalized odds,
as well as predictive rate parity, are achieved if and only if the odds ratios
and the predictive rates are 1 in both groups. This corresponds to an accuracy
maximizing policy of selecting all and only qualified individuals. As a result,
neither equalized odds nor predictive rate parity reflects any consideration of
fairness beyond mere accuracy, and consequently neither is suitable as a fairness
criterion in this context.

We next suppose that the total number selected is significantly less than
the number qualified, presumably a common situation due to limited resources.
In this case, equalized odds is generally achieved for smaller values o than are
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required for demographic parity, considerably smaller when some protected indi-
viduals are harmed by selection. This indicates that demographic parity demands
a greater emphasis on fairness than equalized odds. This is consonant with the
fact that equalized odds is sometimes seen as more easily defended, perhaps on
grounds of equality of opportunity, than is demographic parity, which may reflect
a desire to compensate for historically unjust discrimination. As for the predic-
tive rate, it is almost always 1 when a significant number of qualified individuals
are rejected, since those who make it through the sieve are almost always qual-
ified. This means that predictive rate parity is likely to be achieved simply due
to the high rejection rate and is therefore of little value as a fairness criterion.

Finally, we suppose that the number selected is significantly greater than the
number qualified. Here, the odds ratio loses interest because it is almost always 1.
While predictive rate parity becomes meaningful in this case, decision makers
may be reluctant to select more individuals than are qualified. To the extent this
is true, predictive rate parity has limited usefulness. A possible exception arises
in the controversy over parole mentioned earlier. Predictive rate parity might
be defended on the ground that a lower recidivism rate in the protected group
(and therefore a higher predictive rate) may reflect stricter parole criteria than
for other inmates [2]. Greater fairness may therefore require a reduction in the
predictive rate of the protected group, which we have seen can be achieved by
choosing a larger value of a. If this is taken as justifying a practice of paroling
more individuals than are qualified (perhaps in order to reduce the predictive
rate of protected individuals without tightening the criteria for others), then
predictive rate parity could be a suitable criterion.

In summary, demographic parity can under certain conditions correspond
to an alpha fair policy, but it may result in less fairness than desired for the
protected group. Equalized odds can be a useful criterion when fewer individuals
are selected than are qualified to be selected, but it corresponds to an even lesser
degree of fairness. Predictive parity is a meaningful fairness measure only in the
perhaps rather uncommon situation when decision makers select significantly
more individuals than are qualified.

The foregoing conclusions regarding equalized odds and predictive rate par-
ity rest on the assumption that, within a given group, qualified individuals are
selected before unqualified individuals. This assumption might be defended on
the ground that (a) qualified individuals are likely to benefit more from being
selected, and (b) individuals who benefit more from being selected are selected
first in the group. Assumption (a) might be based on observations that less
qualified individuals pose a greater risk of defaulting on a mortgage, failing to
secure a job, committing a crime while on parole, and so forth, and therefore
have less expected benefit. As for (b), there is no apparent rationale, based on
either expected utility or fairness, for selecting individuals within a group in any
other order. It therefore seems reasonable to suppose (b) is true before assessing
fairness.

We believe these results suggest that there is potential in an optimization
perspective to inform fairness debates in AI. Further research could explore the
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parity implications of alternative social welfare functions, such as the Kalai-
Smorodinsky and threshold criteria cited earlier. A particularly interesting
research issue is the extent to which achieving fairness in the population as
a whole can result in a reasonable degree of parity across all groups. This would
obviate the necessity of selecting which groups to regard as protected, and how
to balance their interests.
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