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Abstract
Cooperative perception that integrates sensing capabilities from both infrastructure and vehicle perception sensors can
greatly benefit the transportation system with respect to safety and data acquisition. In this study, we conduct a preliminary
evaluation of such a system by integrating a portable lidar-based infrastructure detection system (namely, Traffic Scanner
[TScan]) with a Society of Automotive Engineers (SAE) Level 4 connected and automated vehicle (CAV). Vehicle-to-every-
thing (V2X) communication devices are installed on both the TScan and the CAV to enable real-time message transmission
of detection results in the form of SAE J2735 basic safety messages. We validate the concept using a case study, which aims at
improving CAV situation awareness and protecting vulnerable road user (VRU) safety. Field testing results demonstrate the
safety benefits of cooperative perception from infrastructure sensors in detecting occluded VRUs and helping CAVs to plan
safer (i.e., higher post-encroachment time) and smoother (i.e., lower deceleration rates) trajectories.
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Sensing and perception of road traffic and driving envi-
ronment are critical in autonomous driving and intelli-
gent transportation system (ITS) applications. Camera,
radar, and lidar are commonly used types of sensor in
transportation systems, for both vehicles and infrastruc-
ture. The operational effectiveness of such sensors
installed in a vehicle is affected by their limited range
and by other vehicles and fixed objects that partially
occlude the surroundings of the vehicle. Elevated sensors
at the infrastructure side can effectively alleviate the
occlusion issue. However, the main downside of roadside
sensors is their fixed location, with their detection ability
decreasing with distance. This problem might be aggra-
vated with a fixed tilting angle that might be non-optimal
for some traffic situations. Nevertheless, adding roadside
sensors with real-time data transmission and processing,
and fusing complementary information from connected
and automated vehicles (CAVs) and roadside sensors in
a cooperative sensing and perception system could signif-
icantly enhance the vehicles’ perception range and navi-
gation quality. This potential improvement is expected

to benefit individual CAVs and flow-level traffic control
and analysis in many ITS applications.

Although some vehicles are connected and capable of
receiving and broadcasting traffic and road information,
the initial low percentage of such vehicles does not offer
sufficient coverage or rate of information transmission in
vehicle-to-vehicle communication. Thus, supplementing
the sensing capabilities of CAVs with roadside units is
justified. Such a roadside perception system will continue
to be beneficial even when the proportion of CAVs is
higher, since the information redundancy improves the
resilience and reliability of the system. The limitation of
most existing infrastructure-based sensing systems is that
they are installed at fixed locations (e.g., at intersections)
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and cover a relatively small area (e.g., 100–150m radius).
Because of the high cost of infrastructure sensors, only a
limited number of critical locations (e.g., with complex
traffic conditions, higher accident rates) are likely to be
selected for sensor installation. Furthermore, because of
the changing traffic and environmental conditions, the
need for such sensing at road network locations might
change over time. For instance, although a highway seg-
ment is not typically considered a critical location, a tem-
porary work zone or poor pavement conditions during
adverse weather might pose a challenge to travelers for
safe and efficient navigation in such cases.

To address the aforementioned needs for a coopera-
tive sensing and perception system, we conduct a prelimi-
nary evaluation of such a system by integrating a
portable lidar-based infrastructure detection system
(namely, Traffic Scanner [TScan] [1]) with a Society of
Automotive Engineers (SAE) Level 4 CAV, as shown in
Figure 1. The TScan uses lidar sensors to detect and track
various types of road user in real time, including trucks,
cars, pedestrians, and bicycles. The CAV is equipped
with a wired control system and various onboard sensors,
including lidar, camera, and radar. In addition, vehicle-
to-everything (V2X) communication devices are installed
on both the TScan and the CAV to enable real-time mes-
sage transmission of perception data, including detection
results. We validate the functionality of the cooperative
perception system and evaluate its benefit using a case
study, which aims at improving CAV situation awareness
and protecting vulnerable road user (VRU) safety. Field
testing results show that the cooperative perception sys-
tem provides the vehicle with advanced information,
which would otherwise not be available because of

occlusions, in a timely manner; this improves both safety
and driving comfort.

The main contributions of this paper can be summar-
ized as follows.

1. We conduct a preliminary evaluation of a lidar-
based infrastructure–vehicle cooperative percep-
tion system between the TScan and CAV.

2. We demonstrate the safety benefits of such coop-
erative perception systems in real-world applica-
tions (i.e., VRU protection) using field tests.

The rest of the paper is organized as follows. The next
section first gives an overview of the system and then
introduces each system component in detail. Then follow
an analysis of the detection accuracy of the TScan and a
description of a case study to show the benefit of the
cooperative perception system. The conclusion of the
paper includes a discussion of potential implementation
scenarios.

Cooperative Perception System

System Overview

Figure 2 shows the overall structure of the cooperative
perception system. In the vehicle platform, a lidar sensor
is used for perception, owing to its high-level accuracy in
providing depth information and a 360� field of view.
The main reason for choosing lidar over other perception
sensors is that lidar is usually considered to have high
detection accuracy among all perception sensors, espe-
cially in providing accurate distance measurements in the

Figure 1. (a) Traffic Scanner (TScan) (photo credit: Andrew Tarko); (b) Level 4 connected and automated vehicle (photo credit: Yiheng
Feng).
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3D environment; this is highly important in safety-critical
applications, such as VRU protection. Furthermore,
lidar is not sensitive to changes in ambient light condi-
tions; therefore, it can also work during nighttime. A
clustering-based 3D object detection module from the
Autoware autonomous driving platform is used to detect
the surrounding objects and the Hungarian algorithm (2)
plus Kalman filter (3) association and tracking module is
applied to track the objects and generate continuous tra-
jectories. The object list generated from the tracking
algorithm is fed into an information fusion module.
Meanwhile, the TScan also utilizes lidar and applies a
similar object detection and tracking pipeline to generate
a detected object list. Coordinate transformation is per-
formed to convert local coordinates to Global
Positioning System (GPS) coordinates. Each object in the
list is then encoded into an SAE J2735 basic safety mes-
sage (BSM) and broadcast through a roadside unit
(RSU). Note that if there are several objects in the list,
then several BSMs are sent at the same time. An onboard
unit (OBU) is installed on the vehicle platform to receive
the BSMs and to forward the information to the infor-
mation fusion module. Two Cohda MK5 devices are
used to form the V2X communication device. The imme-
diate forwarding of messages (IFM) function is used to
send the detection results through a radio signal. Note
that although MK5 devices only support dedicated short
range communication (DSRC), the same message proto-
col and forwarding function can be applied in the V2X
communication environment. The information fusion
unit uses a predefined area (i.e., the roadway area) to
geofence the objects and fuses the object lists by remov-
ing redundant observations. The fused information is
then input to a path planner, in which a customized heur-
istic algorithm provides longitudinal vehicle control,
while the pure pursuit algorithm (4) provides lateral vehi-
cle control. Finally, the path planner outputs the vehicle

speed and steering angle to a wired control system for
execution. In the vehicle platform, all components are
synchronized through the robot operating system (ROS).

In the next section, the components of the TScan and
the vehicle platform are described in detail.

TScan

The TScan is a portable microscopic traffic data acquisi-
tion system that utilizes lidar technology. Two trailer-
based prototypes were developed at the Purdue Center
for Road Safety with support from the Joint
Transportation Research Program (JTRP) of the
Indiana Department of Transportation and Purdue
University and the NEXTRANS Center at Purdue
University. The hardware platform of the TScan is
shown in Figure 3.

The TScan has two lidar sensors:

� Velodyne HDL 32E, with a maximum range of
80m and a vertical field of view from +10� to
230�

� Ouster OS2 64 BH, with a maximum range of
200m and a vertical field of view from 0� to
211.25�.

The sensors are mounted on pan-tilt motors. The two
sensors’ range and field of view complement each other
and are combined with the pan-tilt motors. This provides
users with the flexibility to tilt the sensors individually, as
required, to cover the intersection effectively, minimizing
the blind spot caused as a result of the limited vertical
field of view of the lidar sensors. Data from both the lidar
sensors are fused at the point cloud level. Perception
algorithms described in Bandaru et al. (1) are applied to
the fused point cloud data to detect objects. A fisheye
camera is used to record video, which is used for

Figure 2. Overall structure of the cooperative perception system.
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verification of events by human operators. A Garmin 18x
LVC GPS unit is used to obtain GPS coordinates in the
field and keep time. All the sensors and motors are
mounted on a custom-fabricated aluminum casing. All
the electronics needed to control and operate the sensors
and motors are present inside the enclosed portion of the
casing, along with a fanless industrial computer equipped
with an eighth-generation Intel core i7 processor to pro-
cess the data in real time.

The TScan uses a few minutes of data to identify
background. Then, during real-time operation, the back-
ground is removed and the remaining points are clus-
tered. Each cluster potentially represents a moving
object. These clusters are tracked over time using a com-
bination of a Kalman filter, for state estimation, and a
Hungarian assignment algorithm, for association. The
corrected Kalman estimates for every object in the field
of view are then broadcast every 0.1 s. More details of
the TScan can be found in Bandaru et al. (1).

Vehicle Platform

The CAV testing platform is equipped with sensors
including a 64-layer high-resolution lidar sensor, a long-
range radar for vehicle and collision detection, and an

RGB camera for front view image perception. For vehi-
cle localization, it features a dual-antenna high-resolu-
tion GPS with a real-time kinematics correction function
enabled, and an inertial mass unit installed for kine-
matics measurement.

Perception Based on 3D Point Cloud Data. In this work, we
mainly use lidar as the perception sensor, deployed in
Autoware AI (5). First, we execute a point cloud down-
sampling process, with the aim of downsampling the raw
point cloud data obtained from the lidar sensor on the
CAV. The primary goal of downsampling is to eliminate
noise from the raw point cloud data, a process influenced
by the number of points within a voxel. We have config-
ured the voxel size to be 0.01m and the measurement
range to be 200m.

After downsampling the point cloud, we execute the
first stage of ground removal using a ray ground filter
from the Autoware platform. In the downsampled point
cloud, we initially separate the ground details radially.
Then the ground is identified using geometric informa-
tion related to the ego vehicle. Within each ray, we deter-
mine whether a point belongs to the ground based on the
distance and the angle between points. This method can
successfully be used to remove the ground that is far
away from the ego vehicle, thereby potentially reducing
errors in the downstream clustering algorithm. In this
study, we set the clipping height at 1m and the minimum
point distance at 1.5m. We divide the point cloud into
different rays at intervals with a radius of 0.08, and
points are checked if their corresponding radius is larger
than 0.01. For ray ground filtering, we set the local maxi-
mum slope at 8, the general maximum slope at 5, and
the minimum height threshold at 0.05. Points will be
rechecked and reassigned to different classes if their dis-
tance to the closest point is greater than 0.2m.

After the ground removal, the Euclidean-based clus-
tering method is used for clustering-based detection, to
identify the locations of vehicles and VRUs. Data points
that are less than 60 cm above the ground are ignored.
This setting is determined by the height of the lidar sen-
sor mounted on the CAV to avoid impact with stationary
road obstacles, such as cement piers, which are near the
area of interest of the experiment. In the clustering algo-
rithm, the clustering distance is set to 0.75m. The mini-
mum number of points within a cluster is set to 20, and
the maximum to 100,000. We also perform another voxe-
lization process to downsample the point cloud and
ensure the accuracy of the clustering result. At this stage,
the leaf size for clustering is set to 0.2m. A size-based
naı̈ve filtering method is applied to filter out stationary
and large objects based on the results from the Euclidean
point cloud clustering algorithm. Only clusters of lengths,
widths, and heights ranging between 0.1m and 1m are

Figure 3. Traffic Scanner (TScan) hardware platform (photo
credit: Andrew Tarko).
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recognized as VRUs. The lower bound is incorporated to
reduce the effect of noisy predictions.

Association and Tracking Algorithm. After obtaining results
from the perception module, the detection results are
assigned to tracks and then updated with a Kalman filter.
This Kalman filter-based tracking mechanism is inherited
from the Simple Online and Real-time Tracking (SORT)
algorithm (6), which was previously employed for image-
based object tracking. The SORT algorithm operates by
combining detection information (e.g., from object detec-
tors) with a simple linear assignment problem (LAP) sol-
ver for frame-to-frame tracking of object identities.

Detection results, accompanied with corresponding
time information, are obtained using the perception mod-
ule. A constant-speed Kalman filter is then applied to
predict the expected object location from the previous
detection. Subsequently, a cost matrix is calculated based
on the prediction and the current observation result.
Using the cost matrix, the Hungarian matching algo-
rithm (2) is applied to match the prediction with the cur-
rent observation. For each initial matching result, the
cost is checked to ensure that it does not exceed a prede-
fined threshold. If the cost is larger than the threshold,
the prediction for the previous observation is unmatched,
and its corresponding track is updated with the predic-
tion only. The unmatched observations are used to initia-
lize new tracks, and each observation is considered as the
first frame of each new track. If the prediction from the
previous observation matches the current observation,
the corresponding track is updated with the result of the
Kalman filter, which is the posterior result after correc-
tion with the matched observation. In this framework,
the quality of association relies on the detector and, thus,
is sensitive to noise.

Information Fusion. After obtaining data from the vehicle
perception module and BSMs from the TScan, we imple-
ment decision-level information fusion to reduce redun-
dancy in the downstream path planning module. As
implemented in the CARMA system (7), we execute
decision-level fusion.

In this work, given the same object, we might have
detections from both the CAV and the TScan.
Duplication of detections can affect the performance of
the downstream module. Therefore, we first perform a
redundancy check and then combine duplicated detec-
tions, based on location data. If the distance between
two detections is less than a certain threshold (e.g., one
vehicle length), we consider them to belong to the same
vehicle and use the averaged location.

Owing to the complexity of the experiment site, there
might be objects with similar locations but completely
different kinematic profiles. Therefore, the speed of

detection results is also taken into consideration when
performing decision-level merging. Based on the loca-
tion, speed, and dimensional information of the detected
object, we construct a complete bipartite graph G=(S,
T; E) for decision-level fusion. In this bipartite graph, S
represents the set of infrastructure vertices (i.e., bound-
ing boxes detected from the infrastructure side), T repre-
sents the set of vehicle vertices (i.e., bounding boxes
detected from the vehicle side), and E denotes the set of
edges in the graph connecting S and T. Each edge carries
a nonnegative cost c(i,j) of objects i and j. This cost func-
tion is the weighted sum of various factors, including
vehicle dynamic features (e.g., location and speed) and
appearance features (e.g., the shape of the bounding
box). Any edge that carries a cost higher than a predeter-
mined threshold is removed. For vertices connected to at
least one edge, we apply the Kuhn–Munkres algorithm
(8) to find the maximum matching between two observa-
tions representing a single object. Any unmatched ver-
tices are considered to be unique observations. We retain
these as the results of the cooperative perception process.

In addition to redundancy removal, we conduct geo-
fencing to eliminate all detected objects outside the antici-
pated detection area. The results, after decision-level
fusion from the CAV perception and the TScan detec-
tion, are then fed into the CAV’s path planning module,
which will be introduced in the next section.

Path Planner. The path planning for the CAV can be
divided into two parts: lateral control and longitudinal
control. Similar to the work of Chen et al. (9), the pure
pursuit lateral controller is utilized for trajectory follow-
ing. For longitudinal control of the CAV, the Gipps car-
following model (10) is utilized to interact with objects in
the same lane. Finally, a post-encroachment time (PET)-
based speed planner (11) is implemented when the CAV
is interacting with objects from the side (e.g., at an
intersection).

For the PET-based speed planner, once an object is
detected, we first calculate the potential conflict point
location, considering the object’s current location, its
speed in the X and Y directions, and the planned trajec-
tory of the CAV. We then ascertain whether the object is
close to the conflict point, and a virtual front vehicle
(serving as a red signal) is placed at the conflict point if
the object is within a predefined geofencing area, regard-
less of its speed. In this case, the CAV will yield to the
object to avoid a crash. If the object is outside the prede-
fined geofencing area, we calculate the PET for the
object and the CAV. If the PET for the object and the
CAV is greater than 2 s, then the CAV will maintain its
constant speed. However, if the PET for the object and
CAV is less than 2 s, we determine whether the object
has already crossed the conflict point. If not, the CAV’s
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speed is reduced to obtain the 2 s PET (and also yield to
the object). If the object already crossed the conflict
point more than 2 s before, the CAV resumes the free-
flow speed.

Experiments

TScan Detection Accuracy Test

First, we validate the accuracy of the TScan detection
results. It is critical that the TScan sends accurate infor-
mation about object locations. The experiment was con-
ducted in the North Stadium parking lot on Purdue
University campus on March 17, 2023. The TScan was
staged at the north end of the parking lot, while the
CAV circled the parking lot, as shown in Figure 4a. The
blue block represents the TScan. The yellow shaded area
represents the geofencing area of the TScan and the red
circle approximates the CAV’s driving route. Detection
results from the TScan (i.e., the CAV) were sent through
BSMs to the CAV. The location data in the BSMs (i.e.,
GPS coordinates) were compared with the GPS coordi-
nates collected from the CAV’s real-time kinematics
(RTK) GPS. We consider the coordinates collected from
the RTK GPS as ground truth since they are given with
centimeter-level accuracy.

The distribution of the detection error is shown in
Figure 4b. The coordinates are defined to be consistent
with the vehicle coordinate system, where the X-axis
points forward from the vehicle and the Y-axis points to
the left when the vehicle is facing forward. Most of the
errors in the Y-axis range from 21.5m to 0.5m, with a
few outliners between 22.5m and 23m. There is a sys-
tematic error in the X-axis since all errors are positive,

ranging from about 0.5m to 2.5m. This is because the
TScan considers the center of the bounding box as its
coordinate while the RTK GPS receiver is not installed
in the middle of the vehicle. The distance from the GPS
receiver to the center of the vehicle along the X-axis is
about 1.60m. As a result, the actual error distribution
along the X-axis is about 20.9m to 0.9m. Since the dis-
tance from the GPS receiver to the center of the vehicle
along the Y-axis is only 0.09m, we ignore this small dif-
ference. In summary, the error distribution validates the
detection accuracy of the TScan.

Case Study: Scenario Setup

We designed a case study to demonstrate the benefit of
the cooperative perception system in improving VRU
safety at intersections. The experiment was staged at the
Purdue Research Park parking lot, as shown in Figure
5a. In the experiment design, a VRU travels from west
to east (red route), while the CAV travels from south to
north (green route). These routes have a conflict point at
the T-intersection. Because of the building and parked
vehicles (blue blocks), the VRU is occluded and cannot
be observed by the onboard sensors of the CAV when it
approaches the T-intersection. The TScan (yellow circle)
is located at the northeast corner of the intersection so
that it can observe the VRU and CAV at the same time.
The orange-shaded areas represent the TScan’s geofen-
cing areas. To ensure safe tests, we constructed a model
VRU by attaching two large U-Haul boxes to a Backfire
G2 skateboard, as shown in Figure 5b. The size of the
model VRU is similar to a teenager (about 50 in. tall);
we named him Reckless Jack. The skateboard can be

Figure 4. Traffic Scanner (TScan) detection error analysis: (a) test setup and (b) error distribution.
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controlled remotely to move at different speeds. We con-
ducted three different experiments, as follows.

� Experiment 1. The VRU and the vehicle approach
the intersection at the same time without the
TScan; the vehicle is driven by a human driver.

� Experiment 2. The VRU and the vehicle approach
the intersection at the same time without the
TScan; the vehicle is driven autonomously.

� Experiment 3. The VRU and the vehicle approach
the intersection at the same time with the TScan;
the vehicle is driven autonomously.

Figure 5. Case study scenario design: (a) scenario demonstration; (b) vulnerable road user, ‘‘Reckless Jack’’. (Photo credit: Yiheng Feng.)

Figure 6. Results of Experiment 1: (a) impact of vehicle and vulnerable road user (VRU); (b) vehicle speed profile. (Photo credit: Vamsi
Bandaru.)
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In Experiments 2 and 3, the free-flow speed of the
CAV was set to 5m/s. In Experiment 1, the driver was
asked to drive at a similar speed. Our central hypothesis
is that the TScan is able to detect the VRU before he
arrives at the intersection, leading to a safer and
smoother vehicle reaction.

Test results are presented next.
In the first experiment, a human driver (from our

research team) was asked to drive the vehicle to pass the
intersection without knowing about the VRU’s existence.
The driver did not even notice the appearance of the
VRU from the left and crashed into him, as shown in

Figure 6a. The speed profile of the vehicle observed from
the TScan is shown in Figure 6b. It can be seen that, at
the time of impact, the driver had not taken any actions
(e.g., braking). Note that the vehicle’s speed exceeded the
suggested speed (i.e., 5m/s) at the time of impact; this
might also be the cause of the crash.

In the second experiment, the autonomous driving sys-
tem took control of the vehicle, followed the same route,
and interacted with the VRU. Figure 7a is a snapshot of
the first time point, in which the VRU was detected by
the lidar sensor (white box). The distance to the CAV
was only 14.0m. Figure 7b shows the front camera view

Figure 7. Experiment 2: lidar and camera view: (a) lidar detection results; (b) camera view. (Photo credit: Hanlin Chen).

Figure 8. Connected and automated vehicle (CAV) and vulnerable road user (VRU) trajectory and speed profiles of Experiment 2: (a)
trajectory profiles; (b) speed profiles.
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at the same moment. It can be seen that, when the lidar
sensor captured the VRU, he was already very close to
the intersection. The CAV detected a potential conflict
and applied hard braking to avoid the crash. The trajec-
tory and speed profiles of the CAV and the VRU (after
detection) are shown in Figure 8. The three time points
marked in the trajectory plot are the first time that the
VRU was detected (31.7 s), the time when the VRU
passed the conflict point (33.0 s), and the time when the
CAV passed the conflict point (38.1 s). From the CAV’s
speed profile, it can be seen that, after the detection of
the VRU at 31.7 s, it applied hard braking with a

maximum deceleration of 25.12m/s2 to avoid the crash.
Compared with Experiment 1, with a human driver, the
vehicle was able to make a complete stop and avoid a
crash, owing to the detection of the VRU and the shorter
reaction time.

In the third experiment, the CAV and VRU
approached the intersection in the same way as in
Experiment 2. In this experiment, the TScan detected the
objects in the geofenced area and broadcast details of
detected objects in real time to the vehicle through
BSMs. Figure 9 shows a few snapshots from the TScan
fisheye camera recording of the whole scenario.

Figure 9. Experiment 3 scenario demonstration: (a) objects near the intersection at 5:20 s, (b) objects started interaction at 5:23 s, (c)
connected and automated vehicle (CAV) stopped for vulnerable road user at 5:26 s; (d) CAV passed conflict point at 5:30 s. (Photo credit:
Vamsi Bandaru.)
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The trajectory and speed profiles of the CAV and the
VRU collected from the vehicle platform are shown in
Figure 10. The four time points marked in the trajectory
plot are the first time that the VRU’s information was
received by the CAV from the TScan (15.95 s), the time
when the CAV started to react to the VRU, owing to the
planned PET (16.69 s), the time when the VRU passed
the conflict point (21.74 s), and the time when the CAV
passed the conflict point (27.43 s). The speed profile of
the CAV shows a much smoother trend, with an average
deceleration of 20.49m/s2 and a maximum deceleration
of 22.21m/s2, which are much lower than those in
Experiment 2.

Figure 11 shows the corresponding trajectory and
speed profiles recorded from the TScan for the same
experiment. The speed profile of the CAV also shows
that it has slowed down to allow the VRU to pass
through. The thin yellow line shows the predicted future
trajectory of the detected objects. The dotted yellow
shows the past trajectory.

This experiment demonstrates the benefit of coopera-
tive perception from infrastructure sensors in improving
CAV situation awareness, safety, and driving comfort, as
well as VRU safety. The safety effect can be further
demonstrated by the PET plots between the CAV and
VRU given in Figure 12. Figure 12a shows the PET pro-
file in Experiment 2 from the first detection of the VRU
until the VRU had passed the conflict point. When the
VRU was detected, the PET was already very low.
Although the vehicle braked hard, the final PET when
the VRU passed the conflict point was still less than 1 s.
Figure 12b shows the PET profile in Experiment 3 from
the time that the TScan detected the VRU until the

VRU passed the conflict point. It can be seen that the
PET dropped from 5 s to around 1 s when the CAV
started to react to the VRU (at 16.69 s). Afterward, the
PET started to increase and maintained within a safe
boundary.

Conclusions and Discussion

In this study, we conducted a preliminary evaluation of a
cooperative perception system by integrating a portable
infrastructure detection system (TScan) with a CAV.
Both the TScan and the vehicle platform used 3D lidar-
based detection to perceive the driving and traffic envi-
ronment. The detection results were transmitted and
shared through V2X communications in real time. A
field experiment was designed to determine the benefit of
cooperative perception in improving CAV situation
awareness and VRU safety. The test results demonstrate
that, with perception data from the infrastructure, the
CAV was able to detect the VRU earlier to avoid crashes
and plan a smoother vehicle trajectory. Although the
evaluated system shows benefits from cooperative per-
ception, there are still limitations, including the follow-
ing. (1) The system has a blind spot, which is around the
deployment location of the lidar sensor. To solve this
problem, several sensors are needed to provide full cover-
age. (2) Because of the mechanism of lidar detection, it is
difficult to identify the class of the object (e.g., a bicycle
or a scooter). Cameras should be added to conduct
object classification and the results should be fused with
the lidar detection results. (3) Lidar sensors may have
reduced performance in adverse weather conditions, such

Figure 10. Connected and automated vehicle (CAV) and vulnerable road user (VRU) trajectory and speed profiles of Experiment 3
(from CAV): (a) trajectory profiles; (b) speed profiles.
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Figure 11. Connected and automated vehicle (CAV) and vulnerable road user (VRU) trajectory and speed profiles of Experiment 3
(from the TScan).

Figure 12. Post-encroachment time (PET) profile comparison: (a) PET profile in Experiment 2; (b) PET profile in Experiment 3.
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as heavy rain or snow. (4) Owing to the changed location
and field of view of each deployment, the lidar sensors
need to be calibrated every time for reference point calcu-
lation, coordinates transformation, and geofencing. An
automated calibration process is needed for fast deploy-
ment in the future.

We mainly utilized the cooperative perception system
for CAV path planning and VRU protection to improve
safety. Such systems can be implemented in many other
transportation and vehicle applications. First, different
sensor fusion models can be tested based on transmitted
data. In our implementation, decision-level fusion is
applied where the information is transmitted as BSMs. If
the raw sensor data are transmitted, data level fusion
models, such as those of Zhang et al. (12), can be tested.
Another alternative is the use of feature level fusion
models, such as those of Bai et al. (13), where only
extracted features (e.g., using convolutional neural net-
works [CNNs]) are transmitted, instead of raw sensor
data. The performance of different fusion technologies
can be evaluated from several perspectives, such as accu-
racy and latency. The cooperative perception system can
also serve as a new data source for traffic control appli-
cations, such as intersection management (14, 15) and
eco-routing (16, 17). However, only a limited number of
studies have explored the differences in quality, quantity,
and distribution between the data from cooperative per-
ception and existing sources, such as loop detectors and
connected vehicle trajectories. For example, traffic data
collected from cooperative perception are highly clus-
tered around sensors (e.g., a CAV or an infrastructure
location), rather than randomly distributed on a road-
way. Based on the new data pattern, existing traffic state
estimation or traffic control models may need to be mod-
ified. The portability of the infrastructure perception sys-
tem facilitates its deployment in temporary sites, such as
work zones. Through real-time detection and prediction,
potential work zone intrusion can be detected in advance
and warning messages can be sent promptly to workers’
smart vests, through V2X communication, to improve
safety. Finally, offline processed trajectories collected
from a cooperative perception system can be further uti-
lized to investigate long-term safety performance, such
as traffic conflicts or crash estimation (18, 19).
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