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Abstract—Model-based and learning-based methods are two
main approaches modeling car-following behaviors. To combine
advantages from both types of models, this study introduces a novel
approach, IDM-Follower, which generates a sequence of the follow-
ing vehicle’s trajectory using a recurrent autoencoder informed
by a physical car-following model, the Intelligent Driving Model
(IDM). We design an innovative neural network (NN) structure
with two independent encoders and an attention-based decoder
to predict the trajectory sequence. The loss function accounts
for discrepancies from both the physical car-following model and
the NN predictions. Numerical experiments are conducted using
simulated and real world (i.e., NGSIM) datasets under different
data noise levels with varying weights between the learning loss
and the model loss. Testing results show the proposed approach
outperforms both model-based and learning-based baselines under
real and high noise levels. The optimal integrating weight between
the model and learning component is significantly influenced by
data quality, which affects both prediction accuracy and safety
metrics.

Index Terms—Model-informed machine learning, car following
model, deep learning, attention.

I. INTRODUCTION

REDICTING driving behavior is critical for many trans-
portation applications. Car-following is the most common
driving behaviors which attracts tremendous research inter-
ests [1], [2]. As the edge computing and V2X communication
technologies advance, incorporating real-time prediction into
intelligent vehicle planning and transportation system manage-
ment is becoming more popular [3]. Numerous car-following
models have been developed to describe human driving behav-
iors considering the contextual factors related to physics, road
geometry, and driving parameters [4].
There are two major methods in modeling car-following
behaviors. Model-based methods describe car-following behav-
iors with explicit mathematical equations while learning-based
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methods usually mapping leading-following vehicle relations
by neural networks (NN). Both model-based and learning-based
approaches offer unique advantages and drawbacks. Character-
ized by their explicit structures and limited parameters, model-
based methods align well with aggregated driving patterns. For
example, Newell’s first-order car following model [5] is one of
the most widely used car-following models in transportation lit-
erature. However, model-based methods don’t consider hetero-
geneity in driving behaviors, thus may perform poorly in cases
with atypical following behavior and/or noisy data. On the other
hand, learning-based methods can handle heterogeneous driving
behaviors with NN trained by a large amount of data. With more
and more sensors being installed on both smart vehicles and
infrastructure, acquiring enough training data becomes feasible.
However, lacking of interpretability is the major shortcoming
of (deep) learning-based methods since the mapping relations
within the NN is difficult to explain. Moreover, when the training
data set is noisy or deviates from the ground truth, learning-based
methods may perform poorly. To leverage the advantages of both
methods, physics or model informed machine learning methods
have been proposed in the last few years. This new type of
methods integrate physical models with NN and outperform both
model-based and learning-based methods [6], [7], [8].

In this paper, we propose a model-informed deep learning
method, called IDM-Follower, to predict long sequence car-
following trajectories. Particularly, we integrate the intelligent
driving model (IDM) with a sequence-to-sequence nerual net-
work structure using two encoders and one attention-based
decoder. Position and velocity sequences are encoded separately
to generate the following vehicle trajectory sequence. We de-
sign a hybrid loss function that integrates the calibrated IDM
model into the NN. Both simulated and real-world trajectories
are tested under multiple levels of GPS noises. Results show
that the proposed IDM-Follower has promising performance in
term of robustness against GPS noises and outperforms several
baseline models. The contributions of this paper are summa-
rized as below: 1) We introduce a sequence-to-sequence model-
informed prediction framework that integrates a conventional
car-following model with a customized NN. 2) We analyze
the optimal weights between the model loss and learning loss
under different noise levels. and 3) Our proposed model exhibits
robustness against GPS noises, making it suitable for a wide
range of field applications.
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II. LITERATURE REVIEW

Early car-following models aim to capture the dynamics of
driver behaviors by focusing on how drivers adapt their speeds
and headways in response to the actions of preceding vehicles
such as General Motors (GM) Model [9], and Gipps Model [10].
Recent notable car-following model, such as Intelligent Driving
Model (IDM) [11], exemplifies a time-continuous approach that
incorporates a driver’s preferred speed, along with their accel-
eration and deceleration behaviors. Its design is geared towards
emulating naturalistic driving patterns and adeptly simulating
diverse traffic conditions, including stop-and-go waves. Never-
theless, the IDM’s reliance on simplified assumptions and a con-
strained set of parameters often hampers its ability to accurately
reflect the complexities inherent in real-world driving behaviors
even though there are a few researches calibrates the model by
various methods [12], [13]. This limitation not only leads to
prediction errors but also renders the model particularly sensitive
to parameter calibration, thereby complicating its validation and
fine-tuning processes.

Recent studies have witnessed the emergence of various
learning-based methods, attributing to their proficiency in iden-
tifying complex patterns within large-scale datasets. Focusing
on the application of NNs for predicting car-following driv-
ing behaviors, Jia et al. [14] developed a four-layer NN that
processes inputs such as relative speed, follower speed, max-
imum desired speed, and the gap between two vehicles to
predict the following vehicle’s subsequent acceleration. Zhou
et al. [15] employed a basic recurrent neural network (RNN)
to model drivers’ car-following behavior, showing enhanced
performance compared to the IDM [11]. However, conventional
RNNs face challenges in handling long-range dependencies due
to the gradient vanishing problem, which arises when train-
ing gradients become excessively small or large. To overcome
these limitations, Huang et al. [16] utilized Long Short-Term
Memory (LSTM) networks, which captures realistic driving
patterns by integrating data from surrounding vehicles. Zhang
et al. [17] implemented an LSTM architecture, named HRC
LSTM, that processes 2-D positions (longitudinal and lateral)
of nearby vehicles within a detection area. Both LSTM-based
models have been validated using the NGSIM dataset. Lately,
Ma and Qu [18] proposed a sequence-to-sequence model using
a LSTM network for car-following predictions. Zhu et al. [19]
proposed a long-sequence trajectory prediction model consider-
ing historical context by attention mechanisms. The proposed
transformer NN takes the first 4 s car-following trajectories
as input and predict the next 12 s. Zhang et al. [20] pro-
posed an attention-based interaction-aware trajectory prediction
model with an encoder-decoder structure with graph attention
networks.

Model-informed learning approaches integrate traditional
car-following models with machine learning techniques to lever-
age the strengths of both model and learning based approaches.
By incorporating physical models into machine learning frame-
works, the model-informed methods can outperform both clas-
sical and learning-based models. Yuan et al. [8] proposed a
stochastic physics regularized Gaussian process (PRGP) model
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for macroscopic traffic state estimation. Taking Gaussian pro-
cess as the learning model, this study implemented a mixed
structure of learning framework along with a new loss function
including both physical and learning-based losses. The proposed
PRGP framework was tested on I-15 Highway data in Utah.
The results showed that the PRGP could improve the prediction
accuracy with a properly selected physics model. On the other
hand, performance would get worse if an inappropriate physics
model was integrated. Similarly, Shi et al. [7] and Huang [6]
proposed physics-informed deep learning (PIDL) frameworks
that integrate NNs with the Lighthill Whitham-Richards(LWR)
model to construct fundamental diagrams of a highway seg-
ment. Similar lost functions are designed that combine data
and physical losses. A recent study [21] tried to apply the
same framework that integrated NNs with car-following mod-
els. Two representative car-following models, namely IDM and
optimal velocity model (OVM) are integrated with a NN to
predict the acceleration of the following vehicle based on the
velocity and gap between the leading and following vehicles.
Moreover, a novel structure was developed that could simultane-
ously calibrate the car-following model parameters and predict
the following vehicle’s acceleration. However, this framework
can only predict step by step, rather than an entire sequence
simultaneously. Inspired by previous studies, this paper proposes
a deep learning-based sequence-to-sequence vehicle trajectory
prediction method integrated with the IDM car-following model,
named IDM-Follower.

III. METHODOLOGY
A. Problem Statement

Define X () and Y () representing the trajectories for the lead-
ing and following vehicles respectively. The leading vehicle’s
trajectory consists of two time-series sequence that represent
position (Sg;)) and velocity (V)(; )) while the following vehicle’s
trajectory includes only the position vector (Sﬁ(f)). For each
sequence, t is used as the time index and T is the total time
steps (i.e., trajectory length).

Further, we define the NN-based car-following model Fj :
X® — V) parameterized by 6. Note that we denote the pre-
dicted quantities with a tilde, to distinguish them from observed
values. Similarly, we define the model-based model F, : X (¥ —
?l(s) with parameter A. The function F is represented by a
NN, while the function F; is a set of physics-based equations.
Then IDM-Follower, the model-informed car-following trajec-
tory predictor, can be defined as Fp,. : X)) — }"’;‘?,,Vz‘ =
1,...,N. The goal is to train an optimal parameter set 6*
for the NN with regularization from the physical car-following
model with optimal parameters A* which is pre-calibrated from
historical observations.

Equations (1) to (3) explain the formulations of the learning
component and model component. The learning component,
implemented through a NN, produces a time-series position
vector to delineate the following trajectory. Conversely, the
output of the model component is an acceleration vector at each
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time step. This acceleration vector is subsequently converted
into a time-series position vector, the same as the output of the
learning component, to ensure uniformity in representation.
Learning-based component:
Fp (X“)) =5 Vi=1,..,N (1)

Model-based component:

Fy (s%(8), v (1), sy (1))

. t
Sﬁ:{// @l (m) dm Vtzl,...,T} 3)
' 0

Given the definitions, the model-informed trajectory predic-
tion task can be formulated as Equation (4).

N
mjn |87, - 5V
i=—1

st. 8 . = Four(X?), Vi=1,...,N

a?t) vi=1,....N (2

“

2

B. Neural Network Architecture

Standard RNNs process sequential data by factoring compu-
tation processes with symbolic positions from input and output
sequences, generating a series of hidden states k. as a function
of the previous hidden state h(;_y) and the input at . However,
this approach poses challenges for long sequential data, such
as vehicle trajectories, due to the decay of model memory in
lengthy historical contexts. To address the issue, we introduce
an encoder-decoder architecture to extract hidden features from
the input trajectory, thereby generating a latent vector that encap-
sulates the complex information within. This architecture allows
the decoder to reconstruct the output data based on this latent
vector. Within our proposed model, the encoder initially expands
the input states, specifically the leading vehicle’s position and
speed, into a hidden layer. This is a critical step where sequence
features are extracted and stored. To account for different scales
in position and velocity sequences, two separate encoders are
employed to encode the leading vehicle’s position and velocity
information, respectively. This approach ensures precision, as
each encoder independently handles distinct data types. Subse-
quently, the decoder, integrating two hidden layers from these
encoders, reconstructs the following vehicle’s trajectory. The at-
tention layerin the decoder leverages outputs from both encoders
to generate a context vector. This vector signifies the attention
weights between the two encoded latent vectors. Following
this, the position sequence decoder processes the latent vector
received from the encoder, producing the following trajectory
while incorporating the context vector from the attention layer.
To provide a comprehensive understanding, the NN’s structure
is depicted in Fig. 1, with its parameters detailed below.

Encoder: LSTM (input size=1, hidden size=128, layers=2)
key network: Linear (256, 128) value network: Linear (256, 128)

Decoder: LSTM (input size=128, hidden size=128,
layers=1) Attention (key size = 128, value size = 128) output
layer: Linear (256, 1)
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Fig. 1.  Architecture of IDM-follower.

Update

v B
Loss = .|%Z|5}'.'.(U - &
N

Fig. 2. Model-informed training workflow.

C. Model-Informed Car-Following Trajectory Prediction

Fig. 2 shows the work flow for the model-informed learning
framework. The inputs include the leading trajectory as well
as a calibrated IDM model with optimal parameter set A* as
the informed car-following model. A loss function with two
components is utilized to compute gradient during the training
process. The loss function is shown in Equation (5). The first
component, Lossgf), evaluates the discrepancies between the
NN predictions and the observed following vehicle trajectory,
while the second component, Lossf;), assesses the differences
between the NN predictions and IDM model predictions. These
two components are linearly combined with a parameter .
The combined loss function’s gradient is then calculated and

employed to update the NN parameters 6.

Lossy). = (1 — p)Lossy’ + pLoss,. (5)

i 1 T & i
Lossg = \/ 7, SV = SPOP  ©

i 1 T = = (i
Loss;! = \/ DN O RN O )

During the training stage, the following trajectories of the

model component (denoted as g&i,) is generated by a calibrated
IDM model using the ground truth leading vehicle trajectories.
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TABLE 1
AVERAGE DISPLACEMENT FOR THREE LEVELS OF GPS NOISE(M)

Noise level NGSIM  SUMO
None 0 0
Real 1.79 1.82
High 5.63 5.66

For the learning component, noisy leading vehicle trajectories
are used as training data. When the training is complete, only
noisy leading vehicle trajectories are needed in the execu-
tion/testing step. This framework is versatile and can be applied
to any NN structures and car-following models.

IV. CASE STUDY

To evaluate the efficacy of the model-informed framework, we
conduct a series of numerical experiments using both simulation
and real-world datasets. This section outlines the experimental
setup, including data processing, noise generation, and results
analysis. The simulated trajectories are generated by Simulation
of Urban MObility (SUMO), whereas the real-world trajectory
data is extracted from the Next Generation Simulation (NGSIM)
Lankershim Blvd dataset. A few benchmark models are also im-
plemented for performance comparison. Furthermore, various
levels of GPS noises are incorporated in the training data, with
the intention to mimic real-world GPS data qualities.

A. GPS Noise Generation

GPS inaccuracies arise from various factors such as signal ar-
rival, ionospheric effects, ephemeris impacts, and multipath dis-
tortions [22]. It is important that the proposed method is robust
against GPS noises. We adopted the GPS error model developed
by [23] to add offsets to both simulation and NGSIM data. In
the model, latitude and longitude GPS points are independently
calibrated with two univariate autoregressive integrated moving
average (ARIMA) models respectively. Since this study mainly
considers one dimensional driving behavior, only longitudinal
GPS error is added. Three levels of GPS noises are considered in
the case study. The first level represents no GPS noise (i.e., none).
The second level represents real-world GPS noises collected
from [23] (i.e., real), while the third level considers high noises
(i.e., high.) The average noises under different levels for the two
datasets are shown in Table I.

B. Dataset Processing and Training

A single-lane road with constant flow rate is created in SUMO
to generate the simulation dataset. A fixed-time traffic signal is
placed to create varying driving behaviors. Since SUMO vehicle
trajectories are generated by the IDM car-following model, the
optimal model parameters can be directly obtained from the
simulation environment. The obtained parameters are displayed
in the first row of Table II. As a result, the IDM model used
for SUMO data can be considered as “perfect”. On the other
hand, the NGSIM dataset includes bidirectional trajectories of
three to four lanes in a roughly 1600-foot street, encompassing
three signalized intersections. The dataset contains 30 minutes
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TABLEII
OPTIMAL IDM PARAMETERS FOR DIFFERENT DATASETS (A*)

Dataset v T (s) S0 a b 8 MAE (m)
SUMO 16.7 1 25 3 45 4 1.98
NGSIM[12] 1597 1.3 157 249 239 4 3.01

TABLE III

TRAINING PARAMETERS AND DETAILED SETTINGS
Hyperparameter Name SUMO NGSIM
Max Epoch 200 300
Optimizer Adam Adam
Learning Rate 0.001 0.001
Learning Rate Weight Decay 1LOx107% LOx107%
Batch Size 128

64
Train, Test and Validate (4471, 1788, 2682) (1730, 494, 741)

of raw data. A Kalman Filter [24] is first applied to remove
noise caused by video processing. The output data is treated
as the ground truth trajectories. Unlike simulation data where
the optimal IDM model parameters can be obtained directly
from SUMO, the IDM parameters used for the NGSIM dataset
require calibration. We utilize the calibration results from an
existing study [12], shown in the second row of Table II. We
further validate the parameters by calculating the average final
displacement error (FDE) in the processed trajectory pairs. The
average FDE is 3.01 m, which is deemed within an acceptable
€rTor range.

Considering 50 m as the maximum car-following distance,
we extract car-following trajectory pair with a resolution 0of 0.1s
with a 8 s length. The leading vehicle’s trajectory is recorded as
a position-time and velocity-time sequence while the following
vehicle’s trajectory is processed to be a position-time sequence.
Three levels of GPS noises are added to the position sequences.
The SUMO dataset and NGSIM dataset have 8942 and 2972
data points respectively. The datasets are divided into training,
validation, and testing sets with ratios of 0.5, 0.2, and 0.3,
respectively. Due to the differences in sizes and data patterns,
different training parameters are applied fodr different datasets.
The details are shown in Table III.

C. Results and Analysis

1) Prediction Performance Testing: Three baseline models
are used for comparison: LSTM_AE, Transformer, and a cali-
brated IDM. Fig. 3 illustrates the architectures of the first two
baseline models. The LSTM_AE model employs identical NN
layers for both the encoder and decoder. The Transformer model
seperately encode leading position and velocity as source and
target sequence with identical encoder structure resepectively
and output the following trajectory. Mean Average Error (MAE)
is used to assess the prediction performance.

Table IV shows the prediction performance from these models
under the three GPS noises levels. Interestingly, the LSTM_AE
model exhibits superior performance in both datasets when
there is no GPS noise. It means classic seq-to-seq model is
sufficient to map the leading-following trajectory relation with
clean data (i.e., The NGSIM data after Kalman filter), and
simplified driving patterns (i.e., the same car-following behavior
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Following Trajectory

Following Trajectory
Fig. 3. Baseline model architecture: LSTM_AE (left) Transformer_baseline
(right).

TABLE IV
PREDICTION PERFORMANCE FOR TWO PROPOSED DATASET (MAE: M)

Testing Model ~ None Real High
DM 198 341 540
LSTM_AE 160 3.00 6.52
SUMO Transformer 376 417 567
IDM-Follower  1.72 217 237
DM 229 399 6.63
LSTM_AE 227 6.62 594
NGSIM Transformer 415 4.26 6.44
IDM-Follower  2.62 3.08 3.44

generated from SUMO). However, when GPS noises are intro-
duced as in real-world situations, the proposed IDM-Follower
surpasses all baseline models, particularly under high noise
levels. This is mainly because the additional GPS displacements
influence the data and disrupt the patterns between the gap
and velocity. Additionally, the Transformer baseline is more
sensitive to GPS noises. Therefore, the baseline models may
struggle to accurately capture the coupling errors patterns from
both heterogeneous driving behaviors and GPS errors without
the assistance from the IDM model. With a properly designed
model-informed framework, the performance becomes more
robust and can better handle noisy inputs. To further evaluate
the influence of the model component in the model-informed
framework, we analyze the optimal weight (%) under different
noise levels.

2) Analysis on Optimal Integration Ratio: In the loss func-
tion (5), p dictates how much information from the physical
model is informed. To analyze the sensitivity on p, we vary the
value of i from 0 to 0.9 with a step of 0.1 with ten experiments
using the same datasets. The results from SUMO and NGSIM
datasets are presented in Tables V and VI respectively.

Results indicate that the optimal weight varies with different
noise levels. Under none-noise level, the IDM-Follower tends
to rely more on the observed data (i.e., lower p value) since the
observed data matches the patterns of real driving behaviors
pretty well. However, the optimal p value increases as the
increase of the noise level, which shows a consistent pattern in
both datasets. This is because higher noise will downgrade the
quality of the data by adding random fluctuation in the training
dataset, which deviates from normal car-following behaviors. As
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Fig. 4. Predictions from IDM-follower different integration weight (i) in
NGSIM dataset (high noise).

a result, more weights from the model component (i.e., higher p
value) can help regularize the training process and improve the
prediction results.

Fig. 4 illustrates an example of the IDM-Follower predictions
with different weights p under high GPS noise levels, using
the NGSIM dataset. The blue curve represents the leading
vehicle trajectory with GPS noises while the orange curve
and the green curve represent the “clean” trajectories of the
leading and following vehicle respectively (i.e., ground truth).
The prediction results of different weights (x) are shown in
the red, purple and brown curves. When p = 0, only data loss
is considered in the training, and the IDM-follower becomes
a pure data-driven approach. The predicted trajectory exhibits
a constant displacement to the ground truth following vehicle
trajectory, similar as the constant displacement between the
noisy and clean leading vehicle trajectories. This case indicates
that the pure data-driven method may carry the data noise to
the prediction results. Moreover, at the beginning of the predic-
tion horizon, the predicted trajectory even intersects with the
leading vehicle trajectory, which violates basic car-following
rules and physical laws. With the increase values of p, the
predicted following vehicle trajectories are “dragged” towards
the ground truth following trajectory due to the integration of
the model loss. Combining optimal weight values from Ta-
ble VI under different noise levels, the results provide insights
on selecting the best hyperparameter p: the more noises ex-
ist in the data, the higher weights of the model component
should be considered in the training. Note that this conclusion
is only true when the integrated model can accurately repre-
sent the driving behavior. If an incorrect or poor performance
model is integrated, the performance of the model-informed
framework may even get worse, as shown in the previous
study [8].

A further investigation on Time to Collision (TTC) is conduct
to evaluate the safety performance of the IDM-Follower. The
minimum TTC of the predicted following trajectory is used as
the metric, as it indicates the most dangerous moment of the
entire trajectory. Further, we only consider the trajectories that
have minimum TTC smaller than 10 s as shown in Equation (8).
The minimum TTC distributions under varying integration
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TABLE V
PREDICTION ERROR UNDER DIFFERENT WEIGHTS (yt) IN SUMO DATASET

Noise level =0 u=01 =02 =03 a=04 u=05 =06 a=07 =08 a=09
None 1.80 1.78 1.72 1.80 1.84 1.80 1.89 221 204 2.16
Real 337 3.04 2.84 2.81 232 2.28 2.17 222 225 2.26
High 6.62 622 5.69 492 428 3.70 3.16 2.59 246 237

TABLE VI
PREDICTION ERROR UNDER DIFFERENT WEIGHTS (,u.) IN NGSIM DATASET

Noise level  {=0 p=0.1 u=02 u=03 u=04 u=05 L=06 u=0.7 L=0.8 u=09
None 2.89 262 2.74 283 2.80 2.08 318 .60 3438 376
Real 335 3.42 336 339 331 3.08 3.19 3.56 3.44 3.17
High 6.77 5.43 5.29 5.11 457 4.20 4.29 3.82 3.68 344

TTC Distribution (NGSIM, Real-noise)
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(a) TTC Distribution for NGSIM Dataset under Real GPS Noise
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Fig.5. Time-to-collision (TTC) distributions for NGSIM dataset with various
GPS noise.

weights and noise levels from the NGSIM dataset are shown in
Fig. 5. Two thresholds are defined. One threshold of two seconds
(the green dotted line) is employed to identify conflicts, while a
more stringent criterion of 0.5 seconds is used as the threshold
for near-crash scenarios (the red dotted line). The number of
conflicts and number of near crash scenarios are calculated
and shown in Fig. 5. It can be seen that under the real noise
level, p = 0.5 results in the lowest number of conflicts and near
crash scenarios. Under the high noise level, p = 0.9 results in
the lowest number. This result is consistent with the prediction
accuracy and suggests that an optimal integration weight can
also enhance safety performance of the predicted trajectories by
mitigating unsafe driving behaviors.

|59 - 5P o)

TTCY = min { min @ @ ,
Pt - o @)

min t

V. CONCLUSION AND DISCUSSION

In this study, we introduced a model-informed deep learn-
ing framework called IDM-Follower to predict sequential car-
following trajectories with noisy observations. Employing a

sequence-to-sequence model architecture that comprises mul-
tiple encoders, which take position and velocity information as
inputs, along with an attention-based decoder, the IDM-Follower
was trained with a composite loss function that integrated both
data-driven and classical IDM information. Simulation and
real-world datasets under varying noise levels were utilized for
testing. Results indicated that the IDM-Follower outperformed
two baseline learning models and pure IDM under noisy data.
The study shows that choosing a proper integration weight on
physical models could improved the model performance from
both accuracy and safety perspective. Moreover, this study also
demonstrates the potential for incorporating physical models
into a sequence-to-sequence prediction model. One limitation
of this study is that it does not consider lane changing behaviors.
Our future work includes building a new prediction framework
that accommodates multi-lane scenarios as well as theoretical
analysis on choosing optimal weights between the model-based
component and learning-based component.
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