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Abstract. Complex reactive systems such as 5G cellular networks must have
flexible configuration options to fit different deployment scenarios. However,
not every possible configuration combination is risk-free. Some of them may
lead to availability issues or even security vulnerabilities. Asking the system
engineers to check each configuration via model checking for every deployment
or re-configuration is impractical if not impossible.
In this paper, we propose the concept of secure configuration space and develop a
symbolic model checking algorithm, INCISE, to compute a large configuration
space for a given reactive system. Such a space will be characterized by a logical
condition (e.g., a Boolean formula). A system engineer can check any candidate
configuration against the condition with a single SAT query to know whether it
is secure. The target properties could be general safety and liveness properties.
The algorithm enjoys the same benefits including efficiency and expressiveness as
modern symbolic model checkers. We demonstrate the algorithm’s performance
on industrial benchmarks and leverage it to address security issues in cellular
network protocols.

Keywords: formal analysis, network system and protocol, symbolic model checking,
secure configuration space

1 Introduction

Model checking is a powerful tool to verify systems. It can either provide solid proof that
the system is correct and secure with regard to a set of properties, or find a counterexample
that demonstrates the system indeed violates the properties. Such a process can help
detect design errors, mitigate attacks, or certify that the design is correct.

There is an implicit assumption for traditional model checking: for all reachable
states, the system should always be correct and secure. This is usually the case for
hardware systems. For instance, an integrated circuit should always follow the specified
behaviors regardless of the inputs. However, for some other systems, this is not true.

Network protocols and network systems are highly complex and flexible. A large
number of configurable parameters are left open by the protocol designers to the system
engineers and administrators. The purpose of doing so is to allow better flexibility to fit
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different circumstances. Nevertheless, not every configuration is correct and secure. Only
with a high level of expertise can the system engineers be confident of their configurations.
In addition, network protocols usually have multiple participants. One participant can
check if its own system is correctly configured, yet the correctness of the entire system
involving all participants is hard to guarantee. Behaviors of reactive systems may also
depend on the environment. The designers may not be able to foresee all potential
environments that can affect the system’s execution. A system working well under one
circumstance may have vulnerabilities under others.

It is highly desirable for the system engineers to run verification before those complex
systems are released to customers. On the other hand, network deployment should be
agile: to be adjusted responsively and to be deployed in real-time. It is impractical for
those engineers to wait on-site for the time-consuming verification process to finish
before they can actually deploy them. To make things worse, if one configuration or
environment is proved unsafe, the entire process needs to be iterated again.

Does there exist an approach to execute the time-consuming model checking process
beforehand? Traditional model checking problem is a decision problem: given a formal
model M, a set of correctness properties P and an initial condition I, it decides whether
(M, I) |= P. One can encode the configurations or the environments into I and run model
checking for every possible pattern. Unfortunately, because the number of patterns grows
exponentially as the number of configurable parameters grows, this approach is not
affordable.

In this paper, we create the concept called secure configuration space: any configura-
tions lying in the space are guaranteed to be secure. We then propose an algorithm named
INCISE (INcremental ConfIguration Space sEarch). It translates the decision problem
into a search problem: given a formal model M and a set of correctness properties P, the
algorithm finds a secure configuration space in a concise Boolean formula. The system
engineers can now query if a candidate configuration or an environment is within the
space with a single SAT query, which can be finished in a negligible amount of time.
We concentrate on finite-state transition systems, but the same methodology can be
generalized to infinite-state transition systems [19, 25]. Because our proposed algorithm
is based on cutting-edge model checking algorithms, it enjoys high performance and
expressiveness, while its results still have rigorous mathematical guarantees.

The proposed approach differs from precondition inference [22] and preimage com-
putation [39] in three main aspects. i) Our algorithm can deal with the rich languages
of LTL and CTL properties. ii) Our algorithm is fully symbolic and thus scales to large
systems. iii) Our algorithm is incremental and thus can easily adapt to various use cases.
When real-time checking is required, the algorithm can return a partial secure config-
uration space, which is a sound approximation of the whole space of secure patterns.
When full coverage is preferred, it also initiates a second stage that iteratively enlarges
the found space until convergence.

Contributions: The contributions of our paper include:

– We propose the concept of secure configuration space and demonstrate its strength
on network system verification and deployment.

– We design an efficient secure configuration space search algorithm, INCISE, to
enhance the capability of state-of-the-art model checking algorithms. We develop
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techniques to enlarge secure configuration spaces. The results guarantee soundness
and will approximate the maximal secure configuration space.

– We demonstrate ways to encode configurations into formal specifications and lever-
age the found secure configuration space for validation and correction.

– We investigate the cellular emergency call system with our approach. Besides,
experiments on industrial benchmarks show that our algorithm achieves a 55.7%
improvement in space coverage compared with other invariant-based model checking
algorithms at a minimal overhead.

2 Motivation

The demand for computing the secure configuration space emerges when we tried to
integrate formal methods into network studies. This section explains how the concept
of secure configuration space can be applied to network protocols. We use the cellular
emergency call system as an example.

The cellular emergency call system plays an essential role in public safety and thus
deserves a careful analysis by formal methods. Nevertheless, the critical mission in this
analysis is not to prove that the system is always secure and reliable. In fact, it is not:
complaints about the system’s availability can easily be found online [28]. Existing
formal verification tools can point out some situations where the system is insecure.
Instead, we were expecting to figure out a practical way to mitigate vulnerabilities and
prevent potential attacks.

Traditional model checking deals with systems which have fixed initial conditions.
However, during our collaboration with major cellular network carriers and network
device manufacturers, we realized that it is impractical to provide only one single config-
uration for the system. Cellular network system involves multiple participants. Different
carriers have divergent concerns when configuring their systems. As for emergency
calls, each country has its local emergency numbers, regulations, and historical settings.
All those differences make a universal configuration impossible. Meanwhile, cellular
network protocols keep evolving. Major upgrades take place in around ten years, while
standard organizations publish minor revisions every three months. A single unified
configuration may not meet the requirements of new versions.

From the view of formal verification researchers, we believe a generic way to fulfill
the carriers’ requirements is to provide a configuration space: one configuration is
guaranteed to be secure if it lies in this space. The need for secure configuration space
also exists in other network protocols. For instance, system administrators of routing
protocols (e.g., BGP and OSPF) would like to know routing policy configurations’
boundaries, where converged routing tables are always secure.

We have collected the emergency call system configurations of three world-leading
carriers. Their configurations differ in many ways, yet running model checking can easily
find violations to the basic requirements specified in the protocols. Meanwhile, it is
not straightforward to fix those violations. For example, one carrier noticed a potential
vulnerability in the deployed system: some emergency calls from their subscribers cannot
be properly routed. This carrier attempted to mitigate the issue by modifying system
configurations. With model checking, we found that the modification introduces another
problem: roaming users cannot dial emergency numbers when the screen is locked.
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Fig. 1. Architecture of INCISE.

Therefore, it is not practical to trial-and-error every possible configuration pattern,
and a more systematic method is urgently needed. We believe our work on secure
configuration space search can address this challenge. We will show more details about
this motivating example in §8.

3 Preliminaries

A finite state transition system M : (i,x, I,Tr) is described by the primary inputs i, the
state variables x, the initial condition I(x), and the transition relation Tr. Tr(i,x,x′) is a
mapping from the input values and the current state to the next state. The next state is
denoted by the primed state variables x′.

A state s is a Boolean assignment to all state variables. Specifically, it is a cube which
is a conjunction of literals, and each literal is either a variable or the negation of the
variable. A state either satisfies a formula: s |= E, or falsifies it: s ̸|= E. If s |= E, we call
that s is an E-state. The set of all E-states is denoted as E-set. The negation of a cube is a
clause, which is a disjunction of literals. A trace is a sequence of states s0,s1 · · · , where
any adjacent pairs of states (si,si+1) is a valid transition: ∃i : (i,si,s′i+1) ∈ Tr, and s0 ∈ I.

During model checking, the model is checked in conjunction with a set of correct-
ness properties. Correctness properties are formulas describing those specifications the
model should meet. Safety properties specify that some bad things should never happen.
Liveness properties specify that some good things should eventually happen. A secure
state is such a state that once reached, the model will always satisfy the correctness
properties from then on. A model is secure if all its initial states are secure states.

4 INCISE: the Algorithm of Secure Configuration Space Search

Conventional network system verification uses model checking in such a way: a config-
uration is conjoined with the specification to check whether it is secure. If it turns out
to be insecure or suffers from attacks, the engineer makes changes until the model is
proven to be correct.

We suggest an alternative method. The model checking algorithm is executed in
advance to figure out the safe configuration space. The engineer can then query any
particular configuration to check if it resides in the safe configuration space, or select the
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closest safe configuration if the current one is unsafe. The former step is executed only
once, so any duplicated efforts are avoided. The latter step has a minimal computational
burden and can be finished in real-time.

Searching for the secure configuration space is not a trivial task. There is an exponen-
tial number of assignments to all configuration variables, so it is impractical to enumerate
all assignments to check whether they satisfy the correctness properties. We address this
challenge by proposing a new algorithm, INCISE. The procedures of applying INCISE
on system verification are shown in Fig. 1 and are detailed in sections (§4-§6). The paper
is organized logically for clarity, and that differs from the chronological order of Fig. 1.

Informally, finding the secure configuration space requires i) to find a close to
minimal Boolean representation, ii) to approximate the underlying maximal secure state
space, and iii) to determine the security of states with model checking. INCISE addresses
the three objectives simultaneously. It searches for a large set of secure states during
model checking, while attempting to minimize the returned Boolean formula.

Detailed discussions on how it efficiently searches for the secure configuration space
about safety and liveness properties are presented in §4.1 and §4.2, respectively.

4.1 Secure Space Search for Safety Properties

Secure Space Search as Inductive Model Checking A safety property P specifies that
some bad things should never happen. Given the initial conditions, the model checking
problem can be treated as a reachability problem: whether a ¬P-state is reachable from
an I-state. If it does, a trace that connects those two states is a counterexample that
refutes the safety property.

Otherwise, the model checking algorithm needs to construct a proof for unreachability.
One symbolic approach is to build an inductive proof. Specifically, it finds an inductive
invariant IV , such that the IV -set includes all initial states (1), IV itself is inductive (2),
and the IV -set has no intersection with the ¬P-set (3):

I ⇒ IV, (1)
IV ∧Tr ⇒ IV ′, (2)

IV ⇒ P. (3)

There must exist at least one such IV if the model satisfies the safety property.
It follows that every IV -state is a secure state, because s |= P and there exist no traces

from s to ¬P-states. So the first step to search for the secure state space is to find an IV .

Searching Inductive Invariants with IC3 There are many approaches to find such an
invariant [14,15,32,33,36,38,42]. Among those, we choose IC3 [14] as our starting point
because i) it adopts symbolic techniques such as inductive generalization and clause
propagation thus has been proved to be efficient [24], and ii) it searches backward from
¬P, thus tends to find a larger IV if multiple IV s exist. A larger IV contains more secure
states.

IC3 is a symbolic model checking algorithm. It aims to construct an IV incrementally.
During the execution, IC3 maintains a sequence of frames F0,F1, · · · ,Fk, where F0 = I.
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A frame Fi consists of a set of clauses, denoted as Fi-clauses. Any clauses belonging
to a frame should also belong to the previous frames: Fi+1-clauses ⊆ Fi-clauses for
0 ≤ i < k. It indicates that the Fi-set is a subset of the Fi+1-set. Moreover, every frame
should be inductive relatively to its previous frame: Fi−1 ∧Tr ⇒ F ′

i . An IV is found
and the algorithm terminates if any two adjacent frames meet with each other: when
Fi = Fi+1, Fi ∧Tr ⇒ F ′

i , and thus Fi becomes an invariant.
In every iteration, the algorithm starts to query: Fk ∧Tr ⇒ P′. If the query fails, there

must exist a state s∗, such that s∗∧Tr ⇒¬P′. Therefore, s∗ must be excluded from IV
as well as from Fk. The negated clause c∗ = ¬s∗ is guaranteed to be inductive relative to
at least one previous frame [14]. Let Fm be such a frame with maximal i. IC3 then runs
inductive generalization: it finds a minimal inductive subclause cmin ⊆ c∗ by dropping as
many literals as possible in c∗. During this process, cmin should satisfy

– initiation: I ⇒ cmin, and
– consecution: Fm ∧ cmin ∧Tr ⇒ c′min (inductive relative to Fm)

This generalization helps to exclude a large number of states, instead of a single state, at
a time. cmin is then conjoined with each of F0,F1, · · · ,Fm.

The above process may break the relatively inductive relations between adjacent
frames. In that case, IC3 continues with the same process on a predecessor state t∗ of s∗.
An iteration finishes when no more s∗ can be found, and the relative inductive relation is
reconstructed. Then a new frame Fk+1 = P is added to the sequence of frames to start a
new iteration.

If initiation fails in any processes, there must be a trace from an I-state to a ¬P-state.
IC3 returns the counterexample and disproves the property P.

Initial-blind Invariant Construction A model checking problem decides whether
(M, I) |= P. Its result is depending on both the model and the corresponding initial
condition. In comparison, for the secure space search problem, models are not classified
into safe and unsafe ones. Instead, a model partitions its state space as secure and
insecure. The model should satisfy the target property if all its assigned initial states
were secure.

A secure space search algorithm should be agnostic to initial conditions. The original
IC3 algorithm i) keeps track of traces that can reach ¬P-states through s∗ and t∗. When
the I-set intersects with any of those states, IC3 terminates and concludes the model is
unsafe. ii) Its inductive generalization process queries initiation when it attempts to drop
a literal. Hence, all clauses in any frames should satisfy initiation, i.e., containing the
whole I-set.

We deactivate the initial conditions to bypass i) and ii). The I-set thus becomes an
empty set, and any IV -clauses are now independent of the initial conditions. With this
modification, the algorithm will not be terminated by counterexamples, but it is still
guaranteed to terminate when two adjacent frames meet. Specifically, k is monotonically
increasing while the total number of states is finite, there must be two identical frames
as soon as k is greater than the number of states. In the worst case, the foremost frames
are monotonically strengthened and eventually converge to the empty set.
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A drawback of this approach is the over-generalization of the minimal inductive sub-
clauses. Originally, the generalizations of F1-clauses are limited by the initial conditions
through initiation, and a previous frame limits the generalizations of the clauses in every
subsequent frame through consecution. Having no constraints in the initial condition
voids initiation and could result in stronger clauses that exclude more states. Stronger
clauses mean smaller frames, and that in turn weakens the consecution constraints for all
subsequent frames. A model can have multiple IV s. The drawback above increases the
chance of finding a relatively small IV , even the empty set as

We limit the extent of generalization, thus mitigating the drawback mentioned above
and improving the chance of finding a relatively larger IV . We introduce a method that
penalizes over-generalization while still maintaining efficiency. Every time a literal is
dropped, we let a growing chance to terminate the current generalization and return the
current inductive subclause. Consecution remains to be a hard constraint to generalization.
Such a method tends to produce weaker clauses. Recall that in every iteration, the newly
added frame, Fk+1, is set to P. In other words, the algorithm searches backward from the
largest possible secure space. As all frames consist of weaker clauses, they tend to move
closer to P during the early iterations. As a result, the algorithm has a greater opportunity
to return an IV that covers more states.

When the computed IV is used by system engineers, the cost of storing and querying
it is minimal when compared with the cost of IV construction. IV is derived from one
frame, and the algorithm maintains a multiple of frames during execution. Additionally,
each frame is queried by the SAT solver at least once in every iteration of the algorithm.

4.2 Secure Space Search for Liveness Properties

A liveness property specifies that some good things, described by a liveness condition,
should eventually happen. It can be equivalently formulated as that a liveness event
q should eventually always hold (♢□q). Several efficient symbolic model checking
algorithms have been proposed for liveness checking, including FAIR [9], LTS [16],
and k-liveness [20]. Safety properties are theoretically easier to check than liveness
properties [20]. LTS and k-liveness reduce liveness checking to safety checking. The
original liveness property holds if the corresponding safety condition is verified. We
choose k-liveness as our base algorithm. k-liveness is the state-of-the-art liveness check-
ing algorithm with the best efficiency among the above-mentioned algorithms [20]. More
importantly, the safety secure state space search algorithm proposed in §4.1 can still be
applied after the liveness to safety conversion by k-liveness.

Fundamentally, k-liveness makes use of a simple observation: if a liveness event q
will eventually always hold, the number of ¬q-states along any traces must be bounded
by a constant k. So the remaining challenge is to find the value of k.

k-liveness runs an iterative decision process to find k. In each iteration, one additional
absorbing circuitry is attached to the q event signal [20]. This circuitry can eliminate
the foremost ¬q-state along all paths from I-states. Then the algorithm checks a safety
property: event q holds forever along all traces (□q). The property is satisfied when
every ¬q-state along each path is absorbed. This process will repeat k times until the
liveness property is proved.
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However, there is a caveat when directly applying the safety secure state search
algorithm to the k-liveness result: every single state, when set to the initial state, can have
a different k value. For this reason, the k value corresponds to one initial state does not
necessarily cover all secure states. To address this challenge, we observe that k copies of
absorbing circuitries can still absorb less than k ¬q-states. Let ki be the k value when
state si is set to be the initial state. With ki copies of absorbing circuitries added, the
corresponding secure state space will also contain state s j, if k j ≤ ki.

But another state, sl , is not included if kl > ki. Our algorithm addresses this issue by
computing a kmax, which should be sufficiently large to cover most of the secure states.
It selects a set of random initial states, each of them is a secure state to the liveness
property. By assigning kmax as the greatest k among n randomly selected initial states,
regardless of the distribution, the secure state space corresponds to kmax covers n

n+1 of
all secure states in estimate [34].

It is unnecessary to query for k from scratch when running k-liveness for each initial
state. Instead, we can always maintain the current kmax as well as the model with kmax
copies of absorbing circuitries. The model only needs to be incrementally updated when
an incoming state requires a larger k.

5 Enlargement of Secure Configuration Space

5.1 Maximal Secure State Space

The algorithm proposed in §4 attempts to find a large IV , but a maximal or close-to-
maximal IV is always desirable if the timing budget allows. The maximal IV always
exists and it contains exactly all secure states. According to the definition, ¬P is never
reachable from a secure state and is reachable from an insecure state. There exist no
valid transitions from the set of all secure states to the insecure ones, and the maximal
IV interpolates these two sets.

We propose three techniques that can further expand the IV found by INCISE. These
techniques can be initiated in turn until converging to the maximal IV or when the timing
budget is exhausted.

5.2 Inclusive Expansion

This technique aims to find a larger IV , which includes and expands the current IV .
In specific, the new IV interpolates the current non-maximal IV and the underlying
maximal one. This is enforced by executing the algorithm in §4.1 (the basic INCISE)
again with one exception: setting the current IV as the initiation constraint. Hence, all
new clauses generated in the execution contains the current IV , and so is the resulted
new IV . For example, as shown in Fig. 2, suppose IV1 is the current IV found by the
basic INCISE. IV2 could be the resulted new IV by setting IV1 as the initiation constraint
and executing INCISE again.

Is it possible to apply this technique iteratively until converging to the maximal IV ?
As the current IV expands, it becomes an even stronger constraint for inductive gener-
alization. IC3 relies on inductive generalization to accelerate convergence. Thwarting
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Fig. 2. Techniques to enlarge the secure configuration space. Suppose IV1 is the initial secure
state space found by the basic INCISE, Inclusive Expansion (§5.2) sets IV1 as the initiation
constraint and expands the secure state space to IV2; Parallel Expansion (§5.3) sets S6 as the
initiation constraint, and yields a larger secure state space IV2 ∪ IV3.

inductive generalization will largely increase the execution time. After a few itera-
tions, the algorithm is prohibited from terminating within a reasonable amount of time.
Therefore, this technique alone does not guarantee to find the maximal IV .

5.3 Parallel Expansion

An IV from a single IC3 execution has limited flexibility, as later produced clauses
are dependent on former ones in each frame. Meanwhile, the maximal IV could be
irregular, containing multiple separate components. Thus, we have observed that a single
IV produced by IC3 is hard to cover the underlying maximal IV .

Parallel expansion attempts to cover the underlying maximal IV with multiple invari-
ants. To be specific, it picks a state which is secure and not yet covered by the current IV ,
finds a new IV containing the state, and joins the new IV with the current one. Such a
new IV can be found by setting this uncovered state as the initiation constraint in a new
IC3 execution. For example, suppose IV2 in Fig. 2 is the current IV after executing the
basic INCISE as well as the inclusive expansion technique. S6 is a secure state which has
not yet been covered by the current IV . INCISE could yield a new IV , IV3, by setting S6
as the initiation constraint. Thus, IV2 ∪ IV3 is the expanded IV after parallel expansion.

This technique has the same drawback as the inclusive expansion technique: the time
required for each execution increases after several successful attempts. Because it is
unknown whether an uncovered state s ∈ ¬IV ∧P is indeed secure, one needs to draw
a sample from that space, and then query if ¬P is reachable from s. As the current IV
converging to the maximal IV , more trials are required to find a valid sample in estimate.
In practice, we run inclusive expansion and parallel expansion alternatively, depending
on their efficiencies during execution.

5.4 Invariant Weakening

Alongside the techniques mentioned above, we can weaken the Boolean formula of IV
to enlarge it. To implement this idea, this technique eliminates clauses in IV , while the
new IV after elimination is still an invariant.
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It considers the mutually exclusive formula of the invariant condition: IV ∧Tr ⇒
¬IV ′. The invariant condition should hold when this formula is unsatisfiable. Notice
that the negated formula can be efficiently created by introducing auxiliary Tseitin
Variables [40]. Then a SAT solver is utilized to extract an unsatisfiable core [26], a subset
of clauses that together makes the formula unsatisfiable. A clause in IV can be eliminated
if neither itself nor its corresponding clauses in ¬IV ′ are in the unsatisfiable core.

This technique takes only 1 SAT query, as opposed to a large number of SAT queries
for an IC3 execution. So it can be initiated throughout the enlargement process.

6 Secure Configuration Space in Practice

So far, we have derived algorithms to compute IV , which is a succinct representation of
the results from the time-consuming model checking process. In this section, we show
how to efficiently query it to obtain a secure configuration or to determine whether a
configuration is secure.

6.1 Configuration State Variables

One way to encode configurations into a formal specification is through adding configu-
ration state variables: x = xcon f +xs. The values of the configuration state variables xcon f
keep unchanged after the initialization, while the values of the normal state variables xs
evolve in every state transition. INCISE does not distinguish the two sets of variables
when searching for the secure configuration space. Another way is to encode configu-
rations without explicit configuration state variables, such that x = xs. The model has
different behaviors depending on the initial values of the state variables, which implicitly
encode the system configurations.

6.2 Querying the Security of a Configuration

A configuration is secure if all corresponded initial states reside in IV . The task is trivial
if the configuration scon f is a full assignment to x and only one corresponded initial state
exist: the security can be decided by a single SAT query SAT (IV ∧ scon f ). If scon f is
a partial assignment, a system engineer may want to ensure all possible initial states
overlapping with scon f are secure. In that regard, we check whether the secure state space
intersects with the complement of the partial assignment: SAT (¬IV ∧ scon f ). If it does,
scon f is not necessarily secure, and users need to refine it. If the result is unsatisfiable,
we can safely claim scon f is secure. The Boolean formula for ¬IV can be obtained by
introducing auxiliary Tseitin variables [40] and executing CNF simplification [27, 31].

Secure configuration spaces make other interesting applications possible, for instance,
the “minimum revision”. Network verification tools have a common feature: suggesting a
correct alternative configuration when the original one is insecure. Leveraging the secure
configuration space, users can find such a configuration that is as close as possible to
the original configuration. In specific, Hamming distances can be efficiently encoded as
cardinality constraints in CNF [7]. To find a correct alternative in IV that has a distance
no more than n from the original configuration, one can query SAT (IV ∧ card(scon f ,n)),
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Fig. 3. Comparisons of coverage in Cumulative Distribution Function (CDF) for 466 HWMCC
benchmarks with safety properties. (a) Safe benchmarks: our algorithm (INCISE) achieves better
coverage than traditional algorithms on safe benchmarks. INCISE can reach 100% coverage on
more than 50% of these benchmarks, which is 55.7% better than the other algorithms. (b) Unsafe
benchmarks: our algorithm still works on unsafe benchmarks, while the other algorithms cannot
find a valid invariant.

where card(scon f ,n) denotes the cardinality constraint that the Hamming distance is at
most n. Searching for n in an ascending order gives the configuration with the minimal
revision. Applying such a configuration can fix the violations, while it will only incur a
small impact on the deployed system.

7 Evaluation

7.1 Implementation

Our system consists of three parts. Part 1 is based on the reference IC3 implementa-
tion [12]. We added functionalities that support initial-blind model checking and control
the extent of generalization. We also maintain a symbol mapping from the variables in
IV to the state variables. Part 2 uses the k-liveness implementation in the IIMC [13] for
constraint extraction and computing the k value. Part 3 integrates the above two parts and
the enlargement techniques. For liveness properties, it constructs safety properties as well
as revised models by leveraging Part 2, and pass them to Part 1. Additionally, it can query
a configuration against a secure configuration space and computes the minimum revision
if the configuration is insecure. We made these implementations and modifications in
∼1050 lines of code.

Part 1 and Part 2 are based on the reference implementations of IC3 and k-liveness,
respectively. Nevertheless, INCISE is not depending on any particular versions of these
algorithms, and can benefit from their more efficient variants.

7.2 Performance Analysis

Metrics and Testbed We evaluate the performance of INCISE from two aspects: i)
execution time and ii) coverage of secure states. Recall that any states in IV must be
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Fig. 4. Comparisons of execution time in CDF for 413 HWMCC benchmarks with safety properties.
(a) Safe benchmarks: our algorithm (INCISE) runs slightly slower than the original IC3, but can
finish on all benchmarks that the original IC3 can finish. (b) Unsafe benchmarks: Our algorithm
still works on unsafe benchmarks, while traditional algorithms cannot find a valid invariant.

indeed secure, but an IV found by INCISE may not be the maximal secure state space
that covers all secure states. Coverage is defined as the ratio of the secure space found
by INCISE to the underlying maximal secure state space.

Computing this ratio analytically is difficult in practice. So we estimate it by sampling
sufficiently many random configurations and count if each is secure and covered by IV .
For binomial data, drawing 1,000 samples can achieve a 95% confidence interval of 0.04
in the worst case.

All experiments are executed on a machine with 128GB of RAM and a 2.9GHz
processor. Only one thread was allowed at a time throughout our evaluation.

Evaluation for Safety Benchmarks We collected all single safety benchmarks from
HWMCC [11] benchmark suites from 2008 to 2020. The benchmarks are classified into
two categories: safe ones, which do not violate the corresponding properties given their
original initial states, and unsafe ones, which violate the properties from their original
initial states. To estimate the coverage ratio, we randomly draw 1,000 independent
states for every benchmark, and compute their ground truth (safe/unsafe when set as the
initial state) using ABC [17]. Duplicate benchmarks as well as those taking too long to
generate the ground truth (over 1,200 seconds on ABC) were dropped. Afterward, 466
benchmarks were remaining.3

Safe configuration space is a new concept. As far as we are aware, no other algorithms
aim to compute it. However, there exists efficient SAT-based symbolic model checking
algorithms such as IC3 and FSIS [15], and they can also find an inductive invariant that
is a sound subset of all secure states. In this regard, we compare INCISE against original
IC3 and FSIS to show its performance for safety benchmarks.

We attempt inclusive extension 2 times and parallel extension 1 time after the basic
INCISE execution for every benchmark.

3 We have released raw experimental results in GitHub: https://github.com/FormalCellular/Secu
reCofigurationSpace
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Table 1. Secure configuration space search results of INCISE on 20 HWMCC benchmarks with
liveness properties.

Bench #Latch kmax Time(s) AC Ratio Bench #Latch kmax Time(s) AC Ratio
Safe Benchmarks

cuabq2mf 35 11 1.05 96.3% lmcs06bc57sp3 129 27 32.13 99.9%
cuffl10 151 26 3.74 93.6% lmcs06brp0 89 2 1.26 100%
culock 11 102 95.12 97.8% lmcs06brp2 89 9 3.01 100%
cusarb16 50 27 1.53 85.4% lmcs06mutex0 13 5 0.58 100%
cutf3 35 7 2.24 90.1% lmcs06prodcell2 172 99 649.75 100%
lmcs06abp4p1 54 26 17.69 99.8% lmcs06prodcell4 172 88 656.75 100%
lmcs06bc57sp1 129 56 215.20 100% lmcs06short0 10 2 0.49 99.5%
lmcs06bc57sp2 129 73 179.66 100% lmcs06srg5p0 46 8 0.97 100%

Unsafe Benchmarks
cujc128f 129 1 3.01 100% lmcs06short1 10 1 0.85 100%
lmcs06mutex1 13 2 1.17 96.1% lmcs06srg5p2 46 1 1.35 99.2%

Fig. 3 (a) compares the coverage of our algorithm against IC3 and FSIS in Cumulative
Distribution Function (CDF). The x-axis represents the coverage ratio, while the y-axis
represents the portion of benchmarks that have their coverage greater than that x value.
For instance, if a line goes across (0.8, 0.6), it means for 60% of all benchmarks, the
coverage is better than 80%. It is shown that our algorithm achieves significantly better
coverage. Specifically, on 202 out of the 389 benchmarks, our algorithm achieves the
best possible coverage, i.e., it finds out all secure states among the 1,000 samples. This
result is a 55.7% improvement compared with the other algorithms.

Fig. 3 (b) plots the CDF of INCISE on unsafe benchmarks. Original IC3 and FSIS
cover no states, as they cannot deal with the situation that the initial state is not secure. It
can be seen that the coverage of INCISE on the unsafe benchmarks is worse than that on
the safe benchmarks. We suppose it is because unsafe benchmarks are more difficult for
model checkers in nature.

Fig. 4 (a) and (b) show the execution time of the algorithms in CDF. Similarly, if a
line intersects with a point (101, 0.8), for 80% of the benchmarks, their execution time is
less than 10 seconds. It turns out INCISE requires more execution time than the original
IC3, mainly due to the enlargement. This overhead is reasonable since a conventional
model checking algorithm can only validate a single configuration at a time. For all
benchmarks that IC3 can finish in 1,200 seconds, INCISE can also finish.

Evaluation for Liveness Benchmarks INCISE reduces a liveness checking problem to
a safety checking problem. The key challenge here is how to find a suitable k, which is
neither too small (so that it reduces the coverage) nor too large (which increases the size
of the model checking problem). Remember that every secure state, when set to the initial
state, may have a different k value, representing the number of absorbing circuitries it
requires. Given a value of k, the AC (accuracy) ratio depicts the proportion of secure
states that require less or equal to k such circuitries. For each of the benchmarks, we
initiate k-liveness 19 times on 19 randomly selected secure initial states and pick up the



14 Y. Li et al.

0 10 20 30 40 50
# Trials

0.5

0.6

0.7

0.8

0.9

1.0

AC
Ra

tio

(a)

0 10 20 30 40 50
# Trials

0.5

0.6

0.7

0.8

0.9

1.0
(b)

Fig. 5. The AC Ratio gets improved when the number of random trials increases. After 19 trials, the
estimate of the AC Ratio is greater than 0.95. The trends of the two sub-figures are different because
they are collected from two distinct families of benchmarks: (a) CU series and (b) LMCS06 series.

largest k among all trials. Theoretically, the largest k is greater than or equal to 95% of
all ks in estimation [34].

We collected all liveness benchmarks from HWMCC benchmark suites from 2008 to
2020. Duplicate benchmarks and those taking too long to generate the ground truth (over
1,200 seconds on default k-liveness [13]) are dropped. Table 1 lists the total execution
time and the AC Ratio for those benchmarks. The benchmarks can still be successfully
solved in the timing budget when the AC Ratio reaches an ideal level.

Furthermore, we demonstrate how the AC Ratio gets improved when the number of
random k-liveness trials grows. The x-axis in Fig. 5 (a) and (b) represents the numbers of
trials, while the y-axis represents the average AC Ratio of 100 random tests. Each line is
corresponding to a benchmark. As it is supposed to be, the AC Ratio gets improved when
the number of trials grows. After 19 trials, the estimate is greater than 0.95. The two
sub-figures’ trends are different because they were collected from two distinct families
of benchmarks: (a) CU series and (b) LMCS06 series.

8 Case Study: Cellular Emergency Protocols

We have successfully applied INCISE to extract the secure configuration space of
the cellular emergency call system. Our approach resolved real-world availability and
security issues in the systems of three world-leading cellular network carriers. We use
this case study to show how the proposed algorithm can be applied to network protocols.

An emergency call session involves two parties: the user equipment (UE) and the
cellular network provider (Carrier). Though all UEs and Carriers follow the same proto-
cols for emergency call services, their designers’ understandings and implementations
of the protocols could vary. For example, UEs are made by various manufacturers and
are using different operating systems; Carriers have distinct business considerations and
device providers. Hence, given the flexibility of configurations in protocols, different
parties have their preferences to determine each option.

Following the emergency call-related protocols [2–5], we built a formal model of
emergency call system by extracting the related states, transitions, conditions, and ac-
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Table 2. Secure configuration space search results for the cellular emergency call system.

Total
#Secure Algorithm Time(s) Found

#Secure Coverage

518
INCISE (Basic) 0.036 367 70.8%±3.9%

w/Inclusive Expansion 0.069 518 100%±0%
w/Parallel Expansion 0.068 518 100%±0%

tions [6, 35]. The skeleton of the model is based on the state machine of the cellular
network call setup process described in [4]. All configurations in the emergency number
identification process were modeled as configuration state variables. The formal specifi-
cation and the corresponding CTL properties went through the same secure configuration
space search processes as those in Section 7.2. The specification of the emergency call
system as well as the corresponding verification codes will be made publicly available.

In the first stage, we assigned the cellular network configurations of three major
carriers to the formal model and checked them with a model checker. The system violates
the properties with any of those configurations. We verified the counterexamples we
yielded with off-the-shelf UEs on those three carriers. One counterexample we found
and reproduced has surprised our collaborating carrier: a roaming user, whose home
country uses a different emergency number, cannot dial the local emergency number
on the locked screen emergency dial panel. This study suggests a new problem: how
could a system engineer know if a configuration is secure in real-time and leverage all
the benefits of a model checker? How can the engineer fix a newly discovered issue on a
fast-evolving system by finding a secure configuration?

We believe the secure configuration space is the answer. We applied our proposed
algorithm, INCISE, to generate the secure configuration space for the formal specification
of the cellular emergency call system. We first applied the basic INCISE to the model, and
then used the inclusive expansion and parallel expansion to enlarge the generated secure
configuration space. We used the same sampling strategy to measure their coverages.

As shown in Table 2, the three versions can all finish very quickly, in just several mil-
liseconds. The basic INCISE can reach a 70.8% (±3.9%) coverage at a 95% confidence
level. Given such a coverage, a random secure configuration proposed by an engineer
has a large probability to bypass the model checking process and get verified in real-time.
Both enlargement techniques can trade-off execution time for better coverage. After
performing any of them, the coverage can reach 100% over all the secure samples. In
this case, the real-time judgment is both sound and complete. Following the methods in
Section 6, we extracted the “minimum revision” from the three major carriers’ deployed
configurations. The revised configurations can solve all the counterexamples we found.

9 Related Work

9.1 Symbolic Model Checking Algorithms

Graph-based Checking: Binary Decision Diagram (BDD) is a symbolic model which
provides a canonical representation for Boolean formulas [18]. Recent SAT-based model
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checking algorithms have significantly outperformed BDD-based algorithms in terms of
execution time and memory consumption [21]. When applying BDD to our problem,
determining whether each state satisfies a correctness property may require a traversal
on the diagram. Instead, INCISE can determine the security of a state in 1 SAT query
once the invariant is found.

Safety Checking: SAT-based symbolic model checking with backward search [32]
iteratively blocks cubes that can reach an error. At termination, it can find a weak invariant,
which is desirable for the secure state search. However, it lacks advanced concepts to
improve efficiencies like relative induction and clause propagation, as seen in IC3 [14].
Moreover, the algorithm only guarantees soundness when it terminates, meaning it is not
possible to use an intermediate result as a partial secure state space. k-induction [38] and
interpolation [33] are improvements to the bounded model checking [10]. They can find
invariants as IC3 does, but their efficiency is believed to be behind the state-of-the-art
IC3 algorithm [24].

Liveness Checking: Similar to k-liveness, Liveness-to-safety [37] translates a liveness
problem to a single safety problem. However, k-liveness incrementally generates safety
problems based on the k value, which allows the trade-off between completeness and
execution time. FAIR [16] incrementally constructs fair cycles in the state transitions
using symbolic safety checkers. Although FAIR is capable to find a secure state space for
liveness properties, it does not reduce liveness problems to safety ones. Thus, it cannot
benefit from the techniques for safety secure state search.

9.2 Formal Methods for Cellular Network Security

Formal methods provide an automatic and exhaustive way to verify the cellular network
protocols and systems. Tu et al. [41] analyzed the control plane interaction between 3G
and 4G systems by formally modeling their interaction and applying model checkers.
Hussain et al. [30] specified 4G NAS layer protocols by NuSMV. Furthermore, they
instrumented the specification with a Dolev-Yao style adversary model to study the
security of 4G protocols. Hou et al. [29] formally specified the cellular emergency call
system by TLA+ and discovered several availability and security issues on it. Symbolic
theorem provers also have been used to formally verify the Authentication and Key
Agreement (AKA) protocols of 3G [1] and 5G [8, 23]. To summarize, existing work
mainly focuses on how to specify and verify protocols and systems. In comparison,
INCISE aims to find a secure configuration space from a formal model. From that
space, INCISE can efficiently validate a secure configuration or correct an insecure one.
INCISE is also complementary to existing work and can directly utilize their formal
models.

10 Conclusion

In this paper, we propose a novel concept called secure configuration space. Facilitated
by the secure configuration space, system engineers can query whether a configuration
satisfies either safety or liveness properties in real-time; security researchers can figure
out the way to tame a problematic system.
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We present an algorithm, INCISE, to compute the secure configuration space. It
leverages state-of-the-art symbolic model checking algorithms. INCISE computes a
decent sound result in a short period of time. Moreover, the result can be further improved
as much as the timing budget allows until convergence. Experiment results on industrial
benchmarks demonstrate the efficiency and flexibility of INCISE. We also showcase the
capability of our proposed algorithm with a security study on cellular network protocols.
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Table of Notation

A Symbol Table

Notation Description
x state variables
x′ next state variables
s a state; an assignment to x
s′ the next state version of s
literal a variable or its negation
cube a conjunction of literals
clause, c a disjunction of literals
E a formula
E-state a state s satisfies E: s |= E
E-set the set of all E-states
M a finite state transition system M : (i,x, I,Tr)
i primary input variables
I initial condition
Tr transition relation
trace a sequence of states, s.t. s0 |= I and any si,s′i+1 |= Tr.
P a property
Fi a frame in IC3 algorithm; a conjunction of clauses
Fi-clauses all clauses in Fi
IV inductive invariant
s∗ / c∗ a state violating the consecution condition / c∗ = ¬s∗

cmin a minimal inductive subclause of a clause c

q
the liveness event; a formula which should be
eventually always satisfied

xcon f / xs
the state variables that encode configurations
x = xcon f + xs

scon f an assignment to xcon f


