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Dynamical systems are widely used in mathematical models in engineering and in the applied 
sciences. However, the parameters of these systems are usually unknown and they must be 
estimated from measured data. Performing parameter estimation and quantifying the uncertainty 
in these estimates becomes critical to realize the predictive power of dynamical systems. In some 
applications, only measurements about the states of an ensemble of systems are available, where 
each one evolves according to the same model but for different parameter values, leading to 
aggregate data problems. In this case, an approach proposed in the literature is to estimate a 
density that is consistent with some estimates of the expected value of some quantities of interest. 
To solve the problem in practice, the density is discretized and, to solve the resulting ill-posed 
problem, Tikhonov regularization is used. In this work, we propose a Bayesian model that shows 
this approach can be interpreted as a maximum a posteriori estimate for the density. We show that 
the infinite-dimensional problem defining the MAP can be reformulated as a finite-dimensional 
problem that does not require discretizing the density. In several cases of interest, this problem 
is convex, unconstrained, and the objective function is smooth. Thus, it can be solved using 
algorithms with optimal convergence rates. The trade-off is that the objective is defined by an 
integral. However, our results characterize the regularity of the integrand, allowing the use of 
tailored numerical schemes to approximate it. Furthermore, our theoretical results characterize 
the form of the optimal density, whereas our numerical results illustrate the performance of our 
method and confirm our theoretical findings.

1. Introduction

Dynamical systems are a cornerstone of mathematical modeling in engineering and in the applied sciences. Models based on 
dynamical systems are broadly used due to their predictive power [1,2] and due to the availability of numerical methods that 
accurately simulate them [3–5]. However, in practical applications these models depend on unknown parameters that must be 
estimated from some observed trajectories of the system. Thus, to realize the predictive power of dynamical systems in practice, it 
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is not only important to develop methods to estimate these parameters from experimental measurements, but also to quantify the 
uncertainty in these estimates, and their impact on the predictions obtained from numerical simulations [6–9].

Typically, several quantities of interest (QoIs) are measured, possibly with errors, from observed trajectories. These measurements 
are then used to estimate the unknown parameters and to quantify the uncertainty on these estimates, i.e., the objective is to 
perform model calibration and/or inverse uncertainty quantification [8, Chapter 1]. If we have measurements of the QoIs from several 
trajectories generated by the same system, i.e., a system for which there is no uncertainty in the parameters, we obtain a longitudinal 
data problem [10]. In this case, the likelihood can usually be characterized and Bayesian methods are well-suited to simultaneously 
estimate the unknown parameters, e.g., using the posterior expectation or the maximum a posteriori (MAP), and to quantify the 
uncertainty in these estimates (see, e.g., [8, Chapter 8]). However, in some applications one can only measure the QoIs from 
trajectories generated by an ensemble of systems that evolve according to the same model, but may do so according to different 
values of the unknown parameters. As a concrete example, estimating the unknown parameters in the CAR T-Cell cancer model 
proposed by Schacht et al. [11] requires measuring the amount of T-cells in mice. As this measurement cannot be performed in the 
same mouse at different times, a cohort is used, and one measurement is performed for each mouse. Thus, we have observations about 
systems that evolve according to the same model, but for different values of the unknown parameters. In this case, the parameters 
are assumed to be random variables with an unknown distribution, and we obtain what is called an aggregate data problem (see, 
e.g., [12] or [13, Chapter 5]). Thus, the natural object to estimate is the unknown probability distribution of the parameters, and to 
quantify the uncertainty in this estimate.

Banks et al. [14] propose to estimate the probability density by enforcing consistency with the expected value of a QoI estimated 
from several measurements made about an ensemble of systems. Since the object to be estimated is a density, and thus an infinite-
dimensional object, this is a nonparametric method. To compute this density in practice, they propose to discretize it, e.g., using a 
mesh, splines, or other approximations, to then solve a least-squares problem enforcing consistency with the measured data (see, 
e.g., [13, Chapter 5] or [15, Chapter 14]). The discretization leads to a parametric method which may lead to determined or 
underdetermined problems depending on the number of constraints imposed on the density and the number of degrees of freedom 
used to discretize it. The authors in [16] extended this approach by enforcing additional constraints on the unknown density, such 
as constraining the value of its higher-order moments, or the dispersion of the state of the system around a given point at specific 
times. To compute a discretized density satisfying these constraints efficiently, the authors leverage convex programming and the 
Koopman operator. This relies on the fact that the method proposed by Banks et al. leads to a convex least-squares problem, and on 
the fact that a single probability density at the initial time that can be pushed forward in time by the system dynamics using the 
Koopman operator. In fact, when the constraints are linear, they become constraints on the expected value of the Koopman operator 
applied to a QoI [17]. To regularize the solution to a possibly underdetermined system, which occurs when the degrees of freedom 
of the discretization exceed the number of constraints, the authors propose penalizing the values of the density at its discretization 
points by its !2-norm squared, i.e., by applying Tikhonov regularization [18]. The resulting problem can be interpreted as Tikhonov 
regularization for moment constraints on the unknown discretized density.

Although this approach has appealing properties, some open questions remain about its practical implementation. On one hand, 
solving the problem by discretizing the density can implicitly restrict its support, and, when the discretization is over a mesh as 
suggested in [17], it can preclude the use of the method in several practical applications. There is a growing number of engineering 
problems where the input to the model and its parameters are high-dimensional. For instance, the quantification of uncertainties in 
Mars’ atmospheric entry, descent, and landing processes due to the uncertainty present in the atmosphere density, the initial states, 
and other model parameters [19], wind-turbine simulators that take time series of simulated wind speed as the input to predict 
mechanical loads on its sub-structures and fatigue [20], and the study of variations on fabrication processes on nano-scale chip 
design, such as the surface roughness of interconnects and the random doping effects in transistors, that influence the performance 
of chips [21].

On the other hand, Tikhonov regularization has several computational benefits, particularly its use of a smooth and strongly 
convex regularizer, and it is widely used to solve ill-posed or ill-conditioned inverse problems. However, its use as a regularization 
strategy to estimate a probability density lacks an intuitive statistical interpretation, particularly in contrast to other regularizers, 
such at the KL divergence [22]. This limits the appeal of the approach, and makes the interpretation of its results challenging. 
Consequently, both developing a theoretical framework that allows us to interpret this method as a classical estimation proce-
dure, and developing implementations of this method that are computationally efficient, along with suitable theoretical guarantees, 
would foster its adoption for uncertainty quantification in aggregate data problems involving high-dimensional dynamical sys-
tems.

1.1. Contributions

To introduce the method, consider the case of a dynamical system in ℝ𝑎 given by
)

𝜒!(𝑒) = " (𝑒,!(𝑒))

!(0) = !0
where there is uncertainty in the initial condition. For simplicity, suppose that we have an estimate !𝑒0 of the expected state at a time 𝑒0. Then, to estimate the uncertainty on the initial condition from observations about the state of the system, we may look for a 
density ⋆ that satisfies the constraint
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∫ !(𝑒0,!0)⋆(!0)𝑎!0 ≈ !𝑒0 ,

where ! = !(𝑒, !0) is the state at time 𝑒 for the initial condition !0. There is an infinite number of densities satisfying this constraint 
exactly. The method proposed in [16] involves solving the convex problem

minimize
⋆

𝐶∫ ⋆(!0)2𝑎!0 +
1
2
((((∫ !(𝑒0,!0)⋆(!0)𝑎!0 − !𝑒0

((((
2

2

subject to ⋆ ≥ 0, ∫ ⋆(!0)𝑎!0 = 1,
(1)

for some regularization parameter 𝐶 > 0 and over a suitable functional space. This problem can be interpreted as Tikhonov regular-
ization on moment constraints. A direct approach to solve this problem numerically in low-dimensions is to discretize the integrals 
using 𝑋 ∶= 𝐷𝑎 equispaced nodes {!0,𝑔}. Then, by defining

# =
)
⋃
⋃⟨

⋆(!0,1)
⋮

⋆(!0,𝑋 )

⟩
⋂
⋂{

and $𝑔 =
)
⋃
⋃⟨

𝜂𝑔(𝑒0,!0,1)
⋮

𝜂𝑔(𝑒0,!0,𝑋 )

⟩
⋂
⋂{

we may solve

minimize
#

𝐶Δ𝜂𝑎
2 }#}22 +

1
2
(𝑎

𝑔=1(Δ𝜂
𝑎)$𝑔, #|2 − 𝜂𝑒,𝑔)2

subject to # ≥ 0, Δ𝜂𝑎)!, #|2 = 1

where ! is the vector with all its entries equal to one and Δ𝜂 is the discretization step. On one hand, this is a convex optimization 
problem with a number of variables that is exponential in the number of dimensions, precluding the use of this method for high-
dimensional problems. On the other hand, it is not intuitive why (1) is an efficient estimation procedure for the density, nor what is 
the class of possible densities that can be selected by this procedure.

In this work, we introduce a Bayesian model that provides a theoretical framework to interpret (1) as a MAP estimate for the 
density. This not only relates Tikhonov regularization to nonparametric estimation, in the sense that the parameter lies on an infinite-
dimensional space [10], but possibly with Bayesian nonparametric methods [23]. Furthermore, we provide a method to solve (1)
without needing to discretize the density. By leveraging convex duality, we prove that, even in general cases, the problem (1) can 
be reduced to a smooth, finite-dimensional convex optimization problem in 𝑎 + 1 variables which involves the computation of a 
𝑎-dimensional integral. Furthermore, the dual problem allows us to provide a closed-form expression for the optimal density, a result 
that has both computational and statistical implications.

We consider the following as the main contributions of our work.

(i) Tikhonov regularization as a MAP estimate: We propose a Bayesian model that provides a rigorous justification for using 
Tikhonov regularization on moment constraints to perform input uncertainty quantification, and allows us to interpret the 
computed density as a MAP estimate for this model.

(ii) Connections to regularized regression: When we have incomplete linear measurements about some QoIs, we show that 
solving (1) is equivalent to solving a regularized regression problem for the expected values of the QoIs themselves.

(iii) Geometry and support: We explicitly study the effect of restricting the support of ⋆ to a convex set Ω, showing through 
theoretical results and numerical experiments that it has a significant impact on the estimated density.

(iv) Closed-form expressions: We provide closed-form expressions for the optimal probability density, showing the explicit de-
pendence of the probability density both on the QoIs and on the dynamics of the system.

(v) High-dimensional problems: We show that by solving a finite-dimensional convex problem with a number of variables that 
is proportional to the number of QoIs, we may recover the optimal solution to (1), enabling the efficient implementation of 
the method for high-dimensional problems.

1.2. Organization

The paper is organized as follows. In Section 2 we develop a Bayesian model that allows us to interpret Tikhonov regularization 
as a MAP estimate for the density. In Section 3 we show that the infinite-dimensional convex problem defining the MAP leads to an 
equivalent finite-dimensional problem. In Section 4 we explore the connections between our method and a regularized regression 
problem for the expected values of the QoIs. In Section 5 we discuss efficient methods to find an optimal solution to the optimization 
problem we introduce. In Section 6 we show study the performance of the method in terms of the kind of densities it selects, and the 
effect of the support on them. We conclude in Section 7 with a discussion of our results.
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2. Uncertainty quantification by Tikhonov regularization

2.1. The model

In this work, we consider random differential equations [8, Chapter 3] in ℝ𝑎 of the form
)

𝜒!(𝑒) = " (𝑒,!(𝑒))

!(0) = !0
where !0 ∼(𝜂0 (2)

for some unknown probability measure (𝜂0 on ℝ𝑎 . Typically, it will have a density ⋆𝜂0 with respect to a reference measure 𝐻 such 
as the Lebesgue measure. We assume that this equation accurately models the physical phenomenon of interest, that is, that any 
model uncertainty [8, Chapter 2] is negligible. In practical applications, we only have available sample trajectories ! = !(𝑒, !0) of the 
system for a few realizations of !0 and for each one of these realizations we typically measure a small number of fixed quantities of 
interest (QoIs) 𝛼1, … , 𝛼, . Since the fluctuations in the values of these QoIs are only due to the fluctuations in the initial condition, we 
represent these QoIs as a function

% =& (!0).

We shall assume that the QoIs can be computed to high accuracy and precision, so that there are no significant numerical uncer-
tainties [8, Chapter 2] associated to this model. The measurement of the QoIs is typically corrupted by additive noise, which is 
statistically independent of !0. Therefore, instead of % we observe

' =& (!0) + ( (3)
for some centered random vector (. Thus, a sample !(1)0 , … , !(𝐷)0 of unknown initial conditions leads to a sample of QoIs %(1), … , %(𝐷)
and measurements '(1), … , '(𝐷) from which we want to quantify the uncertainty on the initial condition, that is, to quantify the input 
uncertainty [8, Chapter 3] in (2). This is sometimes called an aggregate data inverse problem [10,12]. In this case, it is not sufficient 
to provide a point estimate for the initial condition, as it is a random variable. Hence, it is necessary to find a suitable probability 
distribution that approximates (𝜂0 and thus the uncertainty on !0.

Instead of formulating a Bayesian model directly from (3) we proceed as follows. We assume throughout that ( ∼ (0, 𝜔2),). 
Then

' {% ∼ (%,𝜔2),).

To model the distribution of % we decompose its behavior in terms of an average value .% and fluctuations around this average that 
do not depend on exogenous parameters, that is, we assume that

% { .% ∼(% { .%

for some probability measure (% { .%. To model the behavior of the average, let {(𝜂0 {𝜕 ∶ * ) Θ} be a parametric model for the 
distribution of !0 with parameter space Θ 𝑇ℝ𝜏 and let

.% {* = "!0∼(𝜂0 {𝜕
[& (!0)].

Finally, we let (𝜕 be a prior for *. This leads to the Bayesian model

}
⎪
⎪
⎨
⎪
⎪⎩

' {% ∼ (%,𝜔2),),

% { .% ∼(𝛼 { .𝛼,

.% {* = "!0∼(𝜂0 {𝜕
[& (!0)],

* ∼(𝜕 .

(4)

If (𝜕 {𝐵 is the posterior obtained from this model, then the posterior for !0 is

#[!0 )𝑐] = ∫
Θ

(𝜂0 {𝜕(𝑐)𝑎(𝜕 {𝐵(𝜕)

The dimension 𝜏 of the parameter space Θ constrains the flexibility of the model we use for .% which, in turn, constraints the flexibility 
of the posterior for !0. For this reason, we will introduce a parameter space Θ and a suitable prior measure (𝜕 on Θ that allows us to 
control the flexibility of the model, focusing on the asymptotic regime for 𝜏 𝛾 1. Furthermore, instead of aiming to find, or sample 
from, the posterior distribution, we will focus on characterizing the maximum a posteriori (MAP) for the parameter *. However, before 
proceeding, we discuss some extensions of this model and its connections with previous work.
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2.1.1. Partial measurements of QoIs
In some applications, we cannot measure the full set of QoIs for the sample trajectories. The results we will present extend 

naturally to the case in which we observe incomplete linear measurements of the QoIs. In other words, we assume that there exists a 
𝑅 + , matrix + such that we are only able to measure +%. This leads to the partial measurement model

' =+& (!0) + (.

In this case, for %′ =+% the model (4) simply becomes

}
⎪
⎪
⎨
⎪
⎪⎩

' {%′ ∼ (%′,𝜔2)𝑅)

%′ { .%′ ∼ (𝛼′ { .𝛼′

.%′ {* =+"!0∼(𝜂0 {𝜕
[& (!0)]

* ∼(𝜕
and the same results that hold for (4) will hold for this model. It is straightforward to see this is equivalent to (3) if we define 
& ′ =+& . However, in Section 4 we discuss the advantages of treating the measurement matrix + separately from the QoIs.

2.1.2. Connection with the Koopman operator
A special case of QoIs has the form

& (!0) =
)
⋃
⋃⟨

𝑟1(!(𝑒1,!0))
⋮

𝑟,(!(𝑒𝐷,!0))

⟩
⋂
⋂{

for some known instants 𝑒1, … , 𝑒𝐷 and functions 𝑟1, … , 𝑟, . In this case, we may represent the QoIs in terms of the Koopman opera-
tor [24,25]. If we denote as Φ𝑒(!0) ∶= !(𝑒, !0) the flow of the system [2, Chapter 1] then the Koopman operator ℎ𝑒 maps ̂ ∶ℝ𝑎 →ℝ
to

ℎ𝑒̂ (!0) ∶= ̂ (Φ𝑒(!0)).

This allows us to write

& (!0) =
)
⋃
⋃⟨

ℎ𝑒1𝑟1(!0)
⋮

ℎ𝑒,𝑟,(!0)

⟩
⋂
⋂{
.

The expected value of & can also be represented in terms of the pushforward of (𝜂0 under Φ𝑒 at each 𝑒1, … , 𝑒, . In fact,

∫ ℎ𝑒̂ (!0)𝑎(𝜂0 (!0) = ∫ ̂ (Φ𝑒(!0))𝑎(𝜂0 (!0) = ∫ ̂ (!𝑒)𝑎Φ𝑒
∗(𝜂0 (!𝑒)

or, equivalently, !(𝑒, !0) ∼Φ𝑒
∗(𝜂0 when !0 ∼(𝜂0 . Hence,

"!0∼(𝜂0
[& (!0)] =

)
⋃
⋃
⋃⟨

"!0∼(𝜂0
[ℎ𝑒1𝑟1(!0)]
⋮

"!0∼(𝜂0
[ℎ𝑒,𝑟,(!0)]

⟩
⋂
⋂
⋂{
=
)
⋃
⋃
⋃⟨

"!𝑒1∼Φ
𝑒1
∗ (𝜂0

[𝑟1(!𝑒1 )]
⋮

"
!𝑒,∼Φ

𝑒,
∗ (𝜂0

[𝑟,(!𝑒, )]

⟩
⋂
⋂
⋂{
.

This identity has been used previously in [16,17] to reduce the computational burden of computing the expected values in the 
right-hand side, which requires sampling from the measures Φ𝑒1

∗ (𝜂0 , … , Φ𝑒,
∗ (𝜂0 , by sampling from (𝜂0 and then applying the maps 

Φ𝑒1 , … , Φ𝑒, .

2.1.3. Parametric systems
In the random differential equation (2) only !0 is assumed to be uncertain. However, random differential equations in ℝ𝑎 of the 

form
)

𝜒'(𝑒) = ,(𝑒,'(𝑒),-0)

'(0) = '0
where ('0,-0) ∼((𝐵0 ,𝑆0) (5)

where both the initial condition '0 and a 𝛽-dimensional parameter 𝑆0 distribute according to an unknown probability measure ((𝐵0 ,𝑆0)
are frequent in practice. An equation of this form can be represented as the equation of the form (2) in ℝ𝑎 +ℝ𝛽 by defining

! ∶=
[
'
-

]
, !0 ∶=

[
'0
-0

]
, " (𝑒,!) =

[
,(𝑒,',-)

0

]
and (𝜂0 =((𝐵0 ,𝑆0),

and then considering the random differential equation
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)

𝜒!(𝑒) = " (𝑒,!(𝑒))

!(0) = !0
where !0 ∼(𝜂0

The first 𝑎 state variables of a trajectory of this system correspond to a trajectory of (5). In this form, the uncertainty is on the initial 
condition and thus our methods can be applied to quantify the uncertainty in any finite-dimensional parameter of the equation.

2.2. Tikhonov regularization as non-parametric maximum a posteriori

To define a family {(𝜂0 {𝜕 ∶ * ) Θ} for !0 that can adapt to complex data we proceed as follows. First, in most practical 
applications we can usually assume that the initial condition !0 must belong to a sufficiently large bounded set. Therefore, we choose 
a compact set Ω 𝑇 ℝ𝑎 containing the possible values of !0, and we fix a finite positive Borel measure 𝐻Ω on Ω that will act as a 
dominating measure; we further assume, without loss of generality, that Ω is the support of 𝐻Ω. We will restrict ourselves to probability 
measures on Ω that have a density ⋆ with respect to 𝐻Ω, i.e., measures for which we have ( = ⋆𝐻Ω, and for which the densities belong 
to the space of (classes of equivalence of 𝐻Ω-almost everywhere equal) 𝐻Ω-square-integrable functions

𝑀2
𝐻(Ω) ∶=

}
⎪
⎨
⎪⎩
< ∶ Ω→ℝ ∶ ∫

Ω

<(!0)2𝑎𝐻Ω(!0) <∞
⎫
⎪
⎬
⎪⎭
,

which becomes a Hilbert space when endowed with the inner product

)<, 𝑂|𝑀2
𝐻
= ∫

Ω

<(!0)𝑂(!0)𝑎𝐻Ω(!0).

To ensure that the integral expressions that arise are well-defined, we assume that the QoIs also belong to this space, whence

∫
Ω

}& (!0)}22 𝑎𝐻Ω(!0) <∞. (6)

Since 𝐻Ω is finite, the functions in 𝑀2
𝐻(Ω) are absolutely integrable and 1 ) 𝑀2

𝐻(Ω). As a consequence, the subset of probability 
densities

>𝐻 ∶=
}
⎪
⎨
⎪⎩
⋆ )𝑀2

𝐻(Ω) ∶ ⋆ ≥ 0, ∫
Ω

⋆(!0)𝑎𝐻Ω(!0) = 1
⎫
⎪
⎬
⎪⎭

in 𝑀2
𝐻(Ω) is closed and convex.
Restricting ourselves to densities in >𝐻 allows us to leverage standard techniques to construct finite-dimensional approximations 

to approximate a density ⋆. Let ̈𝐷 𝑇 𝑀2
𝐻(Ω) be a finite dimensional subspace with dim(̈𝐷) = 𝐷. Since not all elements of ̈𝐷 are 

densities, we define

>𝐻,𝐷 ∶= ̈𝐷 ∩ >𝐻 (7)
Let <1, … , <𝐷 be an orthonormal basis for ̈𝐷 and, to simplify notation, define

. =
)
⋃
⋃⟨

<1
⋮
<𝐷

⟩
⋂
⋂{
.

When ⋆ ) >𝐻,𝐷 we can represent the density as

⋆ = )$, .| =
(𝐷

𝑔=1 𝛿𝑔<𝑔 (8)
for a suitable coordinate vector $ ) ℝ𝐷. An appealing property of this representation is that the expected value of any function 
̂ )𝑀2

𝐻(Ω) with respect to this density depends only on the orthogonal projection ̂̈𝐷 of ̂ onto ̈𝐷. In fact,

"!0∼⋆[̂ (!0)] =
(𝐷

𝑔=1 𝛿𝑔 ∫
Ω

<𝑔(!0)̂ (!0)𝑎𝐻Ω(!0) =
(𝐷

𝑔=1 𝛿𝑔 ∫
Ω

<𝑔(!0)̂̈𝐷 (!0)𝑎𝐻Ω(!0) = "!0∼⋆[̂̈𝐷 (!0)].

This becomes useful, for instance, when the distance from ̂ to ̈𝐷 is small, or when ̈𝐷 encodes some desirable property of ⋆, such 
as smoothness or localization.

It is not clear a priori if >𝐻,𝐷 is empty. To ensure it is not, and to parameterize densities of the form (8) in terms of their coordinates, 
we need to first restrict the possible values of this vector to ensure that the expansion defines a density. We defer the proof of this 
proposition to Appendix A.1.
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Fig. 1. Random densities on Ω = [−1, 1] with 𝐻Ω the Lebesgue measure sampled from the set >𝐻,𝐷 generated by the normalized Legendre polynomials and the prior 
in (9). The blue line shows the expected density, whereas the red lines show sampled densities. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Proposition 1. Suppose that <1, … , <𝐷 are bounded and that <1 is strictly positive on Ω. Then there exists a convex set Θ̈𝐷 𝑇ℝ𝐷−1 with 
non-empty interior, a vector $𝐷 )ℝ𝐷, and a 𝐷 + (𝐷 − 1) matrix / with / ∗/ = ) and / ∗$𝐷 = 0 such that

)$, .| ) >𝐻,𝐷 ⇔ 0 * )Θ̈𝐷 ∶ $ = $𝐷 + / *.

In particular, >𝐻,𝐷 is non-empty.

Proposition 1 and the representation (8) allows us to identify the set of parameters Θ̈𝐷 with the set of densities >𝐻,𝐷 whence a 
prior on * ) Θ̈𝐷 will induce a prior on ⋆ ) >𝐻,𝐷. Fix 𝐶 > 0 and define on ℝ𝐷−1 the probability density with respect to the Lebesgue 
measure given by

⋆𝜕(*) =
𝑣Θ̈𝐷 (*)⊗

−𝐶}*}2212

∫Θ̈𝐷 ⊗−𝐶}*}
2
212 𝑎*

, (9)

where the normalizing factor is strictly positive as Θ̈𝐷 has non-empty interior, and where 𝑣Θ̈𝐷 is the indicator function of the set 
Θ̈𝐷 . In Fig. 1 we see how this approach can help us draw random densities from >𝐻,𝐷.

Suppose that (𝛼 { .𝛼 has density

⋆% { .%(%) 2 ⊗−𝑂(%, .%)

for some function 𝑂 on ℝ𝑎 +ℝ𝑎 . If we use the prior for * in (9) in the model (4) then the likelihood is proportional to

𝑣Θ̈𝐷 (*) exp
(
−
}' − %}22

2𝜔2

)
exp

⎛
⎜
⎜⎝
−𝑂

⎛
⎜
⎜⎝
%,∫

Ω

& (!0)⋆*(!0)𝑎𝐻Ω(!0)
⎞
⎟
⎟⎠

⎞
⎟
⎟⎠
exp

(
−𝐶2 }*}

2
2

)

where the constant factors depend on 𝐶 and 𝜔. Instead of attempting to compute, or to sample from, the posterior we will compute 
the maximum a posteriori (MAP) estimate for *, which is the solution to

maximize
*)ℝ𝜏 ,%)ℝ, ,

log(𝑣Θ̈𝐷 (*))−
1

2𝜔2
}' − %}22 −𝑂

⎛
⎜
⎜⎝
%,∫

Ω

& (!0)⋆*(!0)𝑎𝐻Ω(!0)
⎞
⎟
⎟⎠
− 𝐶

2 }*}
2
2

The term log(𝑣Θ̈𝐷 (0)) essentially imposes the constraint * )Θ̈𝐷 whereas % remains unconstrained. Hence, we write

maximize
*)Θ̈𝐷

−𝑀
⎛
⎜
⎜⎝

(𝜏
𝑔=1 𝜕𝑔 ∫

Ω

& (!0)<𝑔(!0)𝑎𝐻Ω(!0),'
⎞
⎟
⎟⎠
− 𝐶

2 }*}
2
2

where

𝑀( .%,') ∶= inf
%)ℝ,

(
𝑂(%, .%) + 1

2𝜔2
}%− '}22

)

is the Moreau envelope [26, Definition 1.22] of 𝑂 on its first argument. The envelope enjoys some regularity, namely, if %↦ 𝑂(%, .%) is 
lower semicontinuous and majorizes a quadratic for a fixed .% then ' ↦𝑀( .%, ') is continuous [26, Example 1.24 and Theorem 1.25].
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This problem is the classical problem of ridge regression or Tikhonov regularization to estimate *. It is clearly a finite-dimensional 
problem and, when 𝑀 is convex on .%, it is also convex. We can leverage Proposition 1 to represent this problem in terms of ⋆ itself. 
In fact, since <1, … , <𝐷 are orthonormal, we have the isometry

}⋆}2
𝑀2
𝐻
= }$}22 = }$𝐷 + / *}22 = }$𝐷}22 + }*}22.

Since the constraint * ) Θ̈𝐷 is equivalent to ⋆* ) >𝐻,𝐷 and the norm of $𝐷 is independent of *, finding the MAP for * is equivalent 
to finding the density that solves the problem

maximize
⋆)>𝐻,𝐷

−𝑀
⎛
⎜
⎜⎝∫Ω

& (!0)⋆(!0)𝑎𝐻Ω(!0),'
⎞
⎟
⎟⎠
− 𝐶

2 }⋆}
2
𝑀2
𝐻
. (10)

This problem is also a form of regularization, but for the density itself, which emphasizes the choice of ̈𝐷 over the particular choice 
of basis <1, … , <𝐷. If {̈𝐷}𝐷)ℕ is an increasing sequence of subspaces for which

⋃
𝐷)ℕ ̈𝐷 =𝑀

2
𝐻(Ω) (11)

then, from (7), we conclude that the asymptotic regime when 𝐷 𝛾 1 leads to the infinite-dimensional problem

maximize
⋆)>𝐻

−𝑀
⎛
⎜
⎜⎝∫Ω

& (!0)⋆(!0)𝑎𝐻Ω(!0),'
⎞
⎟
⎟⎠
− 𝐶

2 }⋆}
2
𝑀2
𝐻
. (12)

This is a nonparametric method in that the parameter, i.e., the density ⋆, lies on an infinite-dimensional space. We can prove that, 
under suitable conditions and in a suitable sense, the sequence of MAP estimates found by solving (10) for increasingly large values 
of 𝐷 converges to a density found by solving (12). We defer the proof of the proposition to A.2

Proposition 2. Suppose that {̈𝐷}𝐷)ℕ is an increasing sequence of finite-dimensional subspaces of 𝑀2
𝐻(Ω) for which (11) holds, and suppose 

𝑀 is non-negative and continuous on its first argument. Furthermore, suppose that for every 𝐷 ) ℕ the problem (10) has an optimal solution 
⋆𝜋,𝐷 and that (12) has at least one solution. Then a subsequence of {⋆𝜋,𝐷}𝐷)ℕ converges weakly to a solution to (12).

The proposition formalizes the intuition that a solution to (12) represents the limit of MAP estimates for the density. However, 
to be truly considered a MAP estimate, we would need to introduce a suitable prior on the set >𝐻. This would result in a Bayesian 
nonparametric method [23]. We do not address the question whether there exists such a prior. Instead, we focus on analyzing the 
properties of (12), that is, the existence, uniqueness, and features of its optimal solution.

3. Analysis of the variational problem

We study the family of problems induced by (12) given by

minimize
⋆)𝑀2

𝐻 (Ω), .%)𝑘∶⋆≥0
1
2}⋆}

2
𝑀2
𝐻
+ 1
𝐶
𝑀(+ .%,')

subject to ∫
Ω

⋆(!0)𝑎𝐻Ω(!0) = 1, ∫
Ω

⋆(!0)& (!0)𝑎𝐻Ω(!0) = .%,
(13)

where 𝑘 𝑇 ℝ, is a closed convex set representing restrictions on .% induced by the prior (𝛼 { .𝛼, e.g., non-negativity constraints, 
bound constraints or norm constraints, and 𝑀 is a loss function which we assume is convex on its first argument. The regularization 
parameter 𝐶 > 0 controls the trade-off between the loss and the squared-norm penalization term on ⋆.

Proposition 3. There exists a unique minimizer to (13).

We defer the proof of this proposition to Appendix B.1. Observe that the method proposed in [16] is equivalent to solving

minimize
⋆)𝑀2

𝐻 (Ω)∶⋆≥0
1
2}⋆}

2
𝑀2
𝐻

subject to ∫
Ω

⋆(!0)𝑎𝐻Ω(!0) = 1, ∫
Ω

⋆(!0)& (!0)𝑎𝐻Ω(!0) = .%
(14)

and that this is a particular case of (13).
From now on, we let ⋆𝜋 be the optimal solution to (13) and we let (𝜋 ∶= ⋆𝜋𝐻Ω be the probability measure associated to the 

optimal density ⋆𝜋. Since (13) is an infinite-dimensional problem, it is necessary to find numerical approximations to its solution. 
Although this may be achieved by constructing suitable spaces ̈𝐷, we leverage convex duality instead to reformulate the problem in 
an equivalent form that is amenable to accurate approximations of its solution.
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3.1. The dual problem

Instead of attempting to solve or to approximate (13) directly, we leverage convex duality to find an equivalent formulation that 
is amenable to numerical methods for high-dimensional optimization problems. We briefly review the arguments behind convex 
duality. First, rewrite (13) as the equivalent problem,

minimize
⋆)𝑀2

𝐻 (Ω), .%)ℝ, ,1)ℝ𝑅
1
2}⋆}

2
𝑀2
𝐻
+ #𝑀2+

𝐻
(⋆) + 1

𝐶
𝑀(1,') + #𝑘 ( .%)

subject to ∫
Ω

⋆(!0)𝑎𝐻Ω(!0) = 1, ∫
Ω

⋆(!0)& (!0)𝑎𝐻Ω(!0) = .%, + .% = 1,
(15)

where #𝑀2+
𝐻
is the indicator function of the closed and convex cone of non-negative functions in 𝑀2

𝐻(Ω), and #𝑘 is the indicator function 
of the convex set 𝑘 𝑇ℝ, . If we define the Hilbert spaces

𝐹> ∶=𝑀2
𝐻(Ω) +ℝ, +ℝ𝑅 and 𝐹𝜀 ∶=ℝ +ℝ, +ℝ𝑅,

the linear map  ∶𝐹> →𝐹𝜀 as

(⋆, .%,1) = )
⋃
⋃⟨

− ∫Ω ⋆(!0)𝑎𝐻Ω(!0)
− ∫Ω ⋆(!0)& (!0)𝑎𝐻Ω(!0) + .%

−+ .%+ 1

⟩
⋂
⋂{
,

the vector 2 )𝐹𝜀 as

2 =
)
⋃
⋃⟨

−1
$
$

⟩
⋂
⋂{
,

and the convex functions ̂ ∶𝐹> →ℝ and G ∶𝐹𝜀 →ℝ as

̂ (⋆, .%,1) = 1
2}⋆}

2
𝑀2
𝐻
+ #𝑀2+

𝐻
(⋆) + 1

𝐶
𝑀(1,') + #𝑘 ( .%),

G(H,3,4) = #0((H,3,4)− 2),

then (15) can be written equivalently as the unconstrained problem
minimize
(⋆, .%,1))𝐹>

̂ (⋆, .%,1) + G((⋆, .%,1)− 2). (16)

We call this the primal problem and its optimal solution (⋆𝜋, .%𝜋, 1𝜋) the optimal primal variables. Its dual problem is
maximize
(H,3,4))𝐹𝜀

− ̂𝜋(−∗(H,3,4))− G𝜋(H,3,4) (17)

where ̂𝜋 and G𝜋 are the convex conjugates [27, Definition 13.1] of ̂ and G and ∗ ∶𝐹𝜀 →𝐹> is the adjoint of . The optimal 
solution (H𝜋, 3𝜋, 4𝜋) yields the optimal dual variables. In some cases, solving the dual problem may be much easier than solving the 
primal problem. However, this is useful only if we are able to recover the optimal primal variables by solving the dual problem. When 
strong duality holds, the optimal values for (16) and (17) coincide, and we may obtain the optimal primal variables from the optimal 
dual variables. In the literature, this is also referred as total duality. We defer the proof of the following theorem to Appendix B.2.

Theorem 1. Strong duality holds for (13). The dual problem is the finite-dimensional problem

maximize
H,3,4

−I(H,3) + H − 1
𝐶
𝑀𝜋(−𝐶4,')− #𝜋𝑘 (+

𝑒4 −3),

where 𝑀𝜋 is the convex dual of 𝑀 on its first variable, #𝜋𝑘 is the convex dual of #𝑘 and I ∶ℝ +ℝ, →ℝ is the convex function

I(J,5) = 1
2 ∫

Ω

(J + )5, & (!0)|2)2+𝑎𝐻Ω(!0). (18)

Furthermore, if (H𝜋, 3𝜋, 4𝜋) are the optimal dual variables then the optimal primal variables are
⋆𝜋(!0) ∶= (H𝜋 + )3𝜋, & (!0)|2)+,

.%𝜋 ∶= ∫
Ω

(H𝜋 + )3𝜋, & (!0)|2)+& (!0)𝑎𝐻Ω(!0),

1𝜋 ∶=+ .%𝜋.
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There are several consequences of this result. First, the theorem fully characterizes class of density functions that can be obtained 
by solving (13). Hence, when the optimal dual variables H𝜋, 3𝜋 are known, we may evaluate the optimal probability density to 
compute any statistics about the initial condition and about the QoIs. Second, the class of density functions is no more complex than 
that defined by the QoIs. To be concrete, if 𝑟1, … , 𝑟, are the components of & , then the optimal probability density can only have 
the form

⋆𝜋(!0) =
(
H𝜋 +

(𝛽
𝑔=1K

𝜋
𝑔 𝑟𝑔(!0)

)
+

or, equivalently, it must be the positive part of some function in the span of 1, 𝑟1, … , 𝑟𝛽 ) 𝑀2
𝐻(Ω). Third, we may change the 

properties of the optimal density found by solving (13) by modifying the reference measure 𝐻Ω. Fourth, it shows that we can 
solve (13) by solving its dual problem, which is equivalent to the convex minimization problem

minimize
H,3,4

I(H,3)− H + 1
𝐶
𝑀𝜋(−𝐶4,') + #𝜋𝑘 (+

𝑒4 −3). (19)

This problem is not only finite-dimensional, having 1 + , + 𝑅 variables, but also unconstrained. Each one of the terms in the dual 
objective encodes the information about the problem: the first about the QoI & , the second about the loss 𝑀, and the third about the 
a priori constraints we impose on .%. Usually, the last two terms reflect modeling choices and there is some freedom to select them. In 
particular, we may choose the priors in such a way that the loss 𝑀 and the set of constraints 𝑘 have a small computational burden 
when solving (19). In contrast, the first term depends on the QoIs and the available data. As a consequence, it is typically the first 
term that will contribute most to the computational cost.

The complexity of solving an unconstrained optimization problem depends on the regularity of its objective function. An important 
property of I is that it is differentiable, with Lipschitz continuous derivatives. We defer the proof to Appendix B.4.

Proposition 4. The function I defined in (18) is continuously differentiable, with partial derivatives

LJI(J,5) = ∫
Ω

(J + )5, & (!0)|2)+𝑎𝐻Ω(!0),

35I(J,5) = ∫
Ω

& (!0)(J + )5, & (!0)|2)+𝑎𝐻Ω(!0).

In particular, 3I is Lipschitz continuous with

Lip(3I) ≤ ∫
Ω

max{1,}& (!0)}22}𝑎𝐻Ω(!0).

Therefore, when 𝑀𝜋 and #𝜋𝑘 are differentiable, we may solve (19) using gradient descent or projected gradient descent. These 
algorithms are simple to implement, and their accelerated versions attain optimal convergence rates on the class of convex functions.

A natural question is whether we can leverage similar arguments to solve (13) when ⋆ is restricted to a finite-dimensional subspace 
̈𝐷 of 𝑀2

𝐻(Ω). Interestingly, a similar result to Theorem 1 holds in this case.

Theorem 2. Let ̈𝐷 𝑇 𝑀2
𝐻(Ω) be a finite-dimensional subspace containing at least one strictly positive function. Let 1̈𝐷 , 𝑟1,̈𝐷 , … , 𝑟,,̈𝐷 be the orthogonal projections of 1, 𝑟1, … , 𝑟𝐷 onto ̈𝐷 and define &̈𝐷 accordingly. Consider the problem

minimize
⋆)̈𝐷 , .%)ℝ, ,1)ℝ𝑅

1
2}⋆}

2
𝑀2
𝐻
+ #̈ +

𝐷
(⋆) + 1

𝐶
𝑀(1,') + #𝑘 ( .%)

subject to ∫
Ω

⋆(!0)𝑎𝐻Ω(!0) = 1, ∫
Ω

⋆(!0)& (!0)𝑎𝐻Ω(!0) = .%, + .% = 1.

where ̈ +
𝐷 is the closed convex cone of non-negative functions in ̈𝐷. Then strong duality holds for this problem, and its dual problem is the 

finite-dimensional problem

maximize
H,3,4

−I𝐷(H,3) + H −
1
𝐶
𝑀𝜋(−𝐶4,')− #𝜋𝑘 (+

𝑒4 −3).

where I𝐷 ∶ℝ +ℝ, →ℝ is the convex function

I𝐷(J,5) =
1
2 ∫

Ω

(
J1̈𝐷 (!0) + )5, &̈𝐷 (!0)|2

)2

+
𝑎𝐻Ω(!0).

Furthermore, if the primal problem is feasible, and (H𝜋, 3𝜋, 4𝜋) are the optimal dual variables then the optimal primal variables are
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⋆𝜋(!0) ∶=
(
H𝜋1̈𝐷 (!0) + )3𝜋, &̈𝐷 (!0)|2

)
+
,

.%𝜋 ∶= ∫
Ω

(
H𝜋1̈𝐷 (!0) + )3𝜋, &̈𝐷 (!0)|2

)
+
& (!0)𝑎𝐻Ω(!0),

1𝜋 ∶=+ .%𝜋.

3.2. Covariance terms

A critical condition to apply duality for (13) is that the constraints on the expectation are linear in the density, i.e.,

∫
Ω

& (!0)⋆(!0)𝑎𝐻Ω(!0) = .%.

In general, this constraint could be replaced by any other convex constraint and our arguments would apply with minor modifications. 
An exception would be any explicit constraints on the covariance matrix, as these would take the form

6 ∶= ∫
Ω

!0⋆(!0)𝑎𝐻Ω(!0) and % ∶= ∫
Ω

(!0 − 6)(!0 − 6)M ⋆(!0)𝑎𝐻Ω(!0);

while the former is convex, the second is not. We can overcome this limitation as follows. From the linear equality constraints

6 ∶= ∫
Ω

!0⋆(!0)𝑎𝐻Ω(!0) and 7 ∶= ∫
Ω

!0!M0 ⋆(!0)𝑎𝐻Ω(!0)

we recover the covariance as % = 7 − 66M . Then, a convex loss or a convex penalization term for 7 and 6 can be added to the 
objective function in (13). Similarly, some constraints can be imposed by choosing a suitable set 𝑘 . In both cases, the same arguments 
used in Theorem 1 allow us to compute the dual of the problem.

3.3. Special problem instances

3.3.1. Quadratic loss
A typical choice for the loss in problems of the form (13) is the quadratic loss. In this case,

𝑀(1,') = 1
2}1− '}22 and 𝑘 =ℝ, .

This loss is obtained, for instance, when using the prior

⋆% { .%(%) 2 ⊗
− 1

2N2
}%− .%}2 .

From this,

𝑀𝜋(1,') = 1
2}4}

2
2 + )4, '| and #𝜋𝑘 (3) = #0(3).

Since

#0(+𝑒4 −3) <∞ ⇔ 3 =+𝑒4,

this instance of the problem becomes

minimize
H,4

I(H,+𝑒4)− H + 𝐶
2 }4}

2
2 − )4, '|2.

This instance of (23) is unconstrained, and the objective is differentiable with Lipschitz gradient. Hence, it can be solved using 
gradient descent with acceleration [28–30]. The computational burden at each iteration of the algorithm is then dominated by the 
computing the value of I and of its derivatives.

3.3.2. Lebesgue measure and star domains
In practice, the computational burden of solving (19) will be dominated by the cost of evaluating I and its derivatives. However, 

for some special choices of Ω and 𝐻Ω we can represent I as an integral over the closed Euclidean ball .O2. In this case, instead of 
developing quadrature rules for every Ω we may use quadrature methods over the fixed set .O2; the trade-off is that the regularity of 
the integrand may decrease.

Recall that a closed set Ω 𝑇ℝ𝑎 is star-shaped with respect to some !P )Ω if it contains a neighborhood of !P and if for any ! )Ω
the ray

{!P + 𝜏(!− !P) ∶ 𝜏 > 0}
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does not intersect the boundary of Ω more than once [31, Section 2]. Its Minkowski functional

Q0(!) ∶= inf{𝑒 > 0 ∶ 𝑒! )Ω0},

is positively homogeneous, non-negative and continuous and [31, Theorem 1]

Ω ∶= {! )ℝ, ∶ Q0(!) ≤ 1}.

Suppose that Ω is star-shaped with respect to some

!P ) &'((Ω).

By translating Ω we have

I(J,5) = 1
2 ∫
Ω0

(J + )5, & (!0 + !P)|2)2+𝑎!0

where Ω0 ∶=Ω − !P contains a neighborhood of the origin. Let Q0 be the Minkowski functional associated to Ω0 and let

M (!) =
)}!}2

Q0(!)
! ! ≠ 0

$ ! = 0.
(20)

Then

M ∶ .O2 →Ω0

is an homeomorphism. First, M is continuous by inspection and

Q0(M (!)) = }!}2
implies M ∶ .O2 →Ω0. Its inverse is

M −1(!) =
Q0(!)
}!}2

!. (21)

Since the same arguments show M −1 ∶ Ω0 → .O2 is continuous we conclude M is an homeomorphism. This map allows us to represent 
I as an integral over the closed unit ball by changing the integrand. We defer the proof of the following result to Appendix B.5.

Theorem 3. Let Ω be a star shaped set with respect to some !P ) &'((Ω) and let 𝐻Ω be the Lebesgue measure. Under the change of variables 
!↦ M (!) we have

I(J,5) = 1
2 ∫
.O2

(
J +

⟨
5, &

(}!0}2
Q0(!0)

!0 + !P
)⟩

2

)2

+

(}!0}2
Q0(!0)

)𝑎
𝑎!0. (22)

The representation in (22) nicely shows the influence of & and Ω on the dual objective. The integrand is a product of two factors. 
The first one is essentially the same as the integrand in (18). The second is a weight that quantifies how different is Ω0 from .O2. 
This weight is homogeneous of degree 0 and it depends only on the direction of the integrand, but not on its magnitude. Remark the 
dependence on the quotient is exponential on the dimension, whence the points that will contribute the most to the integral are those 
where the quotient is larger.

4. Interpretation as regularized regression

The problem (13) can be interpreted both as using MAP to estimate a density ⋆, or as a regression problem to estimate the 
expected value .%. In fact, if we let R𝑟 =R𝑟 ( .%) be the optimal value to (14) then (13) becomes

minimize
.%)𝑘

R𝑟 ( .%) +
1
𝐶
𝑀(+ .%,'). (23)

This is a regularized regression problem to estimate .%. Observe that it is finite-dimensional, and that the number of variables is equal 
to the number , of QoIs. The terms that depend on the density ⋆ in (13) act implicitly as a regularizer on the estimate of .%. In this 
context, it is of interest to determine the properties of the regularizer. We defer the proof of the proposition to Appendix C.1.

Proposition 5. Suppose

∫
Ω

}& (!0)}22 𝑎𝐻Ω(!0) <∞.
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Then, the function R𝑟 ∶ℝ, →ℝ is proper and convex. Furthermore, its domain is the convex set

)*+(R𝑟 ) ∶=
}
⎪
⎨
⎪⎩
∫
Ω

⋆(!0)& (!0)𝑎𝐻Ω(!0) ∶ ⋆ )𝑀2
𝐻(Ω), ⋆ ≥ 0, ∫

Ω

⋆(!0)𝑎𝐻Ω(!0) = 1
⎫
⎪
⎬
⎪⎭

(24)

Under mild assumptions (23) has at least one optimal solution [27, Proposition 11.13]. One important consequence of this result 
is that (13) implicitly enforces the constraint .% ) )*+(R𝑟 ). In turn, this constraint depends both on the choice of & and the set Ω. In 
fact,

)*+(R𝑟 ) 𝑇 ,-.{& (!0) ∶ !0 )Ω}.

In the special case when Ω is a convex body, we can show that at least in some special cases )*+(R𝑟 ) is open and hence this 
inclusion may be strict. We defer the proof to Appendix C.2.

Proposition 6. Suppose that Ω is a convex body, that 𝐻Ω is the Lebesgue measure, and that

& (!0) = !0.

Then )*+(R𝑟 ) = &'((Ω). Furthermore, R𝑟 ( .%) →∞ as .%→ /)(Ω).

The statement extends with minor modifications to other choices of measure 𝐻Ω on Ω. Remark that, in general, if 𝐻Ω is absolutely 
continuous with respect to the Lebesgue measure then the same arguments in the proposition yield

)*+(R𝑟 ) 𝑇 0122
(
𝑎𝐻Ω
𝑎!0

)
.

The formulation (23) shows a clear distinction between the full and partial measurement models. The partial measurement model 
allows us to codify the effect of & in the regularization term, whereas the measurement matrix + appears only in the loss. There 
is an extensive literature on the performance of estimators based on regularized regression. Results of this type can be applied to 
understand how close is the optimal solution to (23) to the true expectation .%0.

4.1. Linear systems and convex sets

When the system (2) is linear and the QoIs are also linear in the state, we obtain a special case of (23). By a slight abuse of 
notation, we write

& (!0) =&!0
for a , + 𝑎 matrix & . Suppose that Ω is a convex body. Then, we may decompose the regularization function R𝑟 as follows. Let 
R◦
𝑟 =R◦

𝑟 (6) be the optimal value of the problem

minimize
⋆)𝑀2

𝐻 (Ω)∶⋆≥0
1
2 ∫

Ω

⋆(!0)2𝑎𝐻Ω(!0)

subject to ∫
Ω

⋆(!0)𝑎𝐻Ω(!0) = 1, ∫
Ω

⋆(!0)!0𝑎𝐻Ω(!0) = 6.

By Proposition 5 and 6 we deduce that R◦
𝑟 is proper, convex and )*+(R◦

𝑟 ) = &'((Ω). Then, the value of R𝑟 =R𝑟 ( .%) is the optimal 
value of the problem

minimize
6)ℝ𝑎

R◦
𝑟 (6) subject to &6 = .%.

Therefore, we can rewrite (23) equivalently as

minimize
6)ℝ𝑎 , .%)𝑘

R◦
𝑟 (6) +

1
𝐶
𝑀(+ .%,') subject to &6 = .%. (25)

In some cases, this problem can be further reduced to a standard form. We defer the proof to Appendix C.3.

Proposition 7. Suppose that Ω is a closed Euclidean ball of radius S > 0 and center 60 and that 𝐻Ω is the Lebesgue measure. Then there 
exists a non-decreasing convex function < ∶ [0, 1] →ℝ such that

R◦
𝑟 (6) = <

(}6− 60}2
S

)
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and <(𝜏) →∞ as 𝜏 → 1. Furthermore, (25) becomes

minimize
6)ℝ𝑎 , .%)𝑘 , 𝜏≥0 <(𝜏) + 1

𝐶
𝑀(+ .%,') subject to &6 = .%,

}6− 60}2
S

≤ 𝜏.
Therefore, for linear systems and observables, and in the Euclidean ball and (a scaling of) the Lebesgue measure, the regularization 

effect on the expectation is very similar to that of Tikhonov regularization. This once again shows the implicit effect that the choice 
of Ω and of reference measure 𝐻Ω has on the behavior of the method.

5. Implementation

We now discuss some methods that can be used to solve numerically a special instance of (19). We will assume that 𝑀𝜋 is 
differentiable with Lipschitz gradient, that 𝑘 =ℝ, and that the measure 𝐻Ω is a probability measure on Ω; to make this assumption 
explicit, from now on we write (Ω. From these assumptions, it follows from the arguments in Section 3.3.1 that the dual problem 
has the form

minimize
H,4

I(H,+𝑒4)− H + 1
𝐶
𝑀𝜋(𝐶4,') (26)

Furthermore, if we define

ℎ(J,5,!0) ∶=
1
2 (J + )5, & (!0)|2)2+

then I can be represented as

I(J,5) = ∫
Ω

ℎ(J,5,!0)𝑎(Ω(!0) = "!0∼(Ω [ℎ(J,5,!0)].

Therefore, we can interpret (26) as either a deterministic or stochastic convex optimization problem. Depending on this choice, 
different algorithms can be implemented in practice.

5.1. Gradient descent methods

As (26) is unconstrained with a convex and smooth objective function, perhaps the simplest and most efficient method to solve 
this problem is accelerated gradient descent (GD) [28,32,29,30]. However, to simplify the exposition we will focus on gradient 
descent without acceleration. Given (H0, 40) and a sequence of steps {𝜏𝐷}𝐷)ℕ we define for 𝐷 ≥ 0 the iterates

H𝐷+1 = H𝐷 − 𝜏𝐷(LJI(H𝐷,+𝑒4𝐷)− 1),

4𝐷+1 = 4𝐷 − 𝜏𝐷(+35I(H𝐷,+𝑒4𝐷)− ' + 𝐶4𝐷),

In practice, the steps can be selected using backtracking, or they can be constant. In this case, from Proposition 4, the step 𝜏 must 
satisfy

1
𝜏
> 1

2 (1 + }+}op)∫
Ω

max{1,}& (!0)}22}𝑎(Ω(!0) +
1
2𝐶Lip(3𝑀

𝜋)

to ensure convergence.
Gradient descent requires evaluating at least the gradient of I at each iteration. Both I and 3I are defined in terms of integrals 

that need to be approximated numerically for possibly large 𝑎. We discuss cubature formulæ and the sample average approximation 
(SAA). Both methods essentially construct an approximation Î of I from which Î and 3Î can be computed efficiently. In practice, 
one can construct a low-accuracy approximation Î using few nodes or samples, to first find an approximation (Ĥ𝜋, ̂4𝜋) to the solution 
to (26) in a few iterations, and then use this approximation as an initial iterate to solve (26) using a more accurate approximation.

5.1.1. Cubature formulæ
A first approach is to approximate I in low dimensions is to use cubature formulæ. They can be designed to exploit the structure 

of the integrand to obtain theoretical guarantees about their approximation properties [33,34]. A disadvantage is that they need to 
be tailored to the class of functions over which one wants to achieve an exact approximation, i.e., the degree of the formula, and to 
the domain of integration, e.g., the hypercube [35,36], the simplex [36,37] or the ball [36]. Their complexity, i.e., the number of 
nodes required for a desired accuracy, increases exponentially as the dimension increases (however, see [35,38]). Furthermore, their 
accuracy may vary according to the choice of (Ω.

When (Ω is a scalar multiple of the Lebesgue measure on Ω we can leverage Theorem 3 to represent I as the integral over the 
unit ball. In this case, we can use cubature formulæ for the Euclidean ball. Let

ℎ◦(J,5,!0) =
1
2

(
J +

⟨
5, &

(}!0}2
Q0(!0)

!0 + !P
)⟩

2

)2

+

(}!0}2
Q0(!0)

)𝑎
.
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Theorem 3 allows us to write

I(J,5) =
{L .O2(0,1){

{Ω{

1

∫
0

⎛
⎜
⎜
⎜⎝

1
{LO2(0,1){ ∫

L .O2(0,1)

ℎ◦(J,5, S3)𝑎V(3)
⎞
⎟
⎟
⎟⎠
S𝑎−1𝑎S

=∶
{L .O2(0,1){

{Ω{

1

∫
0

.ℎ◦(J,5, S) S𝑎−1𝑎S

Since there are terms in the definition of ℎ◦ that are homogeneous of degree 0, we have

ℎ◦(J,5, S3) = 1
2

(
J +

⟨
5, &

(}3}2
Q0(3)

S3+ !P
)⟩

2

)2

+

(}3}2
Q0(3)

)𝑎
,

whence the regularity of .ℎ◦(J, 5, S) is controlled by that of & . Standard cubature formulæ can be used to approximate the integral on 
the radial variable, e.g., Gauss-Jacobi formulæ for J = 𝑎 − 1 and W = 0. To evaluate .ℎ◦ at the nodes, we may use cubature formulæ on 
the unit sphere, e.g., see [39,40].

5.1.2. Sample average approximation
Although cubature formulæ provide reasonable approximations, their limitations make them effective only in very low dimen-

sions. As the systems under study become high-dimensional systems, Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods 
become more appropriate. In MC the nodes are sampled according to the probability measure (Ω whereas in QMC they are cho-
sen from a low-discrepancy sequence [41–43]; in both, the nodes are assigned the same weight. In the optimization literature, e.g., 
see [44], this approach leads to the sample average approximation (SAA) method to solve (26).

In MC the key idea is to use the approximation

Î(J,5) ∶= 1
𝑋

𝑋(
𝑔=1

ℎ(J,5,!(𝑔)0 ) (27)

where !(1)0 , … , !(𝑋)
0 are i.i.d. samples from (Ω. Remark the samples are not modified once drawn. The gradient can be readily 

computed as

LJÎ(J,5) = 1
𝑋

𝑋(
𝑔=1

(J + )5, & (!(𝑔)0 )|2)+,

35Î(J,5) = 1
𝑋

𝑋(
𝑔=1

(J + )5, & (!(𝑔)0 )|2)+& (!(𝑔)0 ).

Therefore, it suffices to pre-compute {& (!(𝑔)0 )}𝑋𝑔=1 to evaluate Î and its gradient efficiently.
The key quantity to control the accuracy is the variance of the approximation (27) which itself depends on (J, 5). The following 

provides a bound on the variance as a function of (J, 5). We defer its proof to Appendix D.1.

Proposition 8. Let (J, 5) )ℝ +ℝ, and let !0 ∼(Ω. Let 𝜔2 = 𝜔2(J, 5) be the variance of the random variable ℎ(J, 5 , !0). Then

𝜔2(J,5) ≤ 2{J{2}5}22"!′0 ,!0
iid∼(Ω

[}& (!0)−& (!′0)}2] + }5}42 "!′0 ,!0
iid∼(Ω

[}& (!0)}22}& (!0)−& (!′0)}22].

Therefore, the approximation will tend to be accurate for small values of J and }5}2. This can be used as a way to increase the 
number of samples in (27) depending on the magnitude of the approximate solution found.

In QMC the approximation in (27) is constructed from points !(1)0 , … , !(𝑋)
0 that belong to a low-discrepancy sequence. The 

approximations converge faster than those obtained with MC, and significant improvements can be obtained in some cases; in others, 
the performance might be comparable to that of QMC [45]. There are standard constructions for low-discrepancy sequences in the 
hypercube, e.g., Halton, Sobol or Faure sequences. These can be used in the approximation (27) by scaling Ω and extending ℎ by zero 
outside Ω. However, this leads to a possibly discontinuous integrand, which may substantially impact the performance of QMC. For 
this reason, the strategy introduced for the cubature formulæ can be appropriate, in which we leverage Theorem 3 to represent I
as an integral over the unit !2-ball. In this case, we can use a classical one-dimensional sequence over the interval [0, 1] to integrate 
.ℎ◦ on S and then use the low-discrepancy sequence proposed in [46] to approximate the values of .ℎ◦.

5.2. Stochastic approximation methods

One of the drawbacks of (27) is that, similarly to cubature formulæ, we may need a very large number of samples to approximate 
the objective function accurately. An alternative approach is to use stochastic approximation (SA)methods [44]. A popular SA method 
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is stochastic gradient descent (SGD) which uses the gradient of the integrand on a random sample at each iteration. Let {!(𝑔)0 }𝑔)ℕ be 
an i.i.d. sequence of (Ω random vectors. Given an initial iterate (H0, 40) and a sequence of steps {𝜏𝐷}𝐷)ℕ we define the iterates

H𝐷+1 = H𝐷 − 𝜏𝐷(−1 + (H𝐷 + )+𝑒4𝐷, & (!(𝐷)0 )|2)+),
4𝐷+1 = 4𝐷 − 𝜏𝐷(3𝑀𝜋(𝐶4𝐷,') + (H𝐷 + )+𝑒4𝐷, & (!(𝐷)0 )|2)+),

for 𝐷 ≥ 0. In contrast to SAA, the samples change at each iteration. Hence, the computational cost is dominated by the evaluation of 
& at a single point. However, the cost-per-iteration decreases at the expense of a decreased convergence rate.

One important factor impacting the performance of SGD is the choice of steps. It is known that if I is strongly convex then the 
steps may be chosen so that 𝜏𝐷 ∼ 𝐷−1. However, as we do not know if the objective is strongly convex beforehand, we consider steps 
such that 𝜏𝐷 ∼ 𝐷−112 [44].

In general, we may use a batch to estimate the gradient of I . Define the unbiased gradient estimate

,𝐷(J,5) =
1
X

X(
𝑅=1

3ℎ(J,5,!(𝐷,𝑅)0 ) (28)

where !(𝐷,1)0 , … , !(𝐷,X)
0

𝑔𝑔𝑎∼ (Ω. One of the factors that impact the performance of SGD is the variance of this estimate. We defer the 
proof of the following proposition to Appendix D.2.

Proposition 9. We have the bound

"!(𝐷,1)0 ,…,!(𝐷,X)
0 ∼(Ω

[},𝐷(J,5)−3I(J,5)}22] ≤ 1
X

({J{+ 6}5}22)"!′0 ,!0∼(Ω [}& (!′0)−& (!0)}22]

+ 2
X

}5}22"!′0 ,!0∼(Ω [}& (!′0)}22}& (!′0)−& (!0)}22].

Once again, the variance approximation becomes accurate for small values of J and }5}2. This can be used as a way to select the 
size of the batch in (28) depending on the size of H and +𝑒4.

5.3. Samplers

Both in SAA and SGD it is necessary to be able to sample from (Ω. When Ω is convex and (Ω admits a density with respect to 
the Lebesgue measure, we can use hit-and-run [47] to sample efficiently from (Ω. This method is particularly efficient when (Ω is 
the uniform probability measure UNIF(Ω). One of its advantages is that the distribution of !(𝐷)0 converges efficiently to UNIF(Ω) in 
total variation, namely, in Y(𝑎3) steps [48, Corollary 1.2]. Furthermore, each iteration is computationally inexpensive: to sample 
uniformly from the unit sphere it suffices to sample from , ∼𝑋($, )𝑎 ) and let 3 = ,1},}2, and for the sets Ω that we consider, 
finding the intersection between a line and its boundary is efficient. Remark that we may get good approximations for the integral 
even though the distribution of the current iterate may still be far from the uniform distribution.

Another alternative when Ω is simple, or the system is low-dimensional, is to use rejection sampling. This is particularly useful 
when Ω is an !𝛽-ball as in this case we may use either an !∞-ball or an !2-ball containing it to sample from the corresponding 
uniform measure.

6. Experiments

6.1. A linear oscillator

As an illustrative example we consider a damped harmonic oscillator

𝜂̈+ Q 𝜒𝜂+K2𝜂 = 0

with 𝜂(0) = 1 and 𝜒𝜂(1) = 0. The reduction to a first-order system yields
)

𝜒!(𝑒) = " (𝑒,!(𝑒))

!(0) = !0
for 8 =

[
0 1

−K2 −Q

]
and !0 =

[
1
0

]
. (29)

This system has the form (2) for (𝜂0 = [[0 1]∗ and it is instructive to study the probability densities that are obtained by the method 
in this case. Using an atomic measure to model uncertainty allows us to study whether the optimal density ⋆𝜋 is able to concentrate 
around this point. Assume that the QoIs are

𝛼1(!0) = 𝜂1(2,!0), 𝛼2(!0) = 𝜂2(4,!0), 𝛼3(!0) = 𝜂1(6,!0), 𝛼4(!0) = 𝜂2(8,!0).

Then & can be written explicitly in terms of !0 as
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Table 1
Bias and feasibility for the optimal probability measure.
Ω S }!0 −9!0∼𝐻𝜋 [!0]}2 }& (!0)−9!0∼𝐻𝜋 [& (!0)]}2

𝐶 𝐶

100 10−1 10−2 10−3 100 10−1 10−2 10−3

.O1 0.5 9.76E-01 8.55E-01 7.07E-01 6.22E-01 7.32E-01 6.01E-01 4.88E-01 4.47E-01
1.0 9.18E-01 6.58E-01 4.00E-01 2.26E-01 6.68E-01 4.26E-01 2.25E-01 1.64E-01
2.0 7.60E-01 3.34E-01 8.98E-02 4.40E-02 5.19E-01 1.90E-01 3.42E-02 2.02E-02

.O2 0.5 9.67E-01 8.03E-01 6.61E-01 5.82E-01 7.24E-01 5.59E-01 4.26E-01 3.81E-01
1.0 8.87E-01 5.61E-01 3.17E-01 1.82E-01 6.35E-01 3.67E-01 1.83E-01 1.32E-01
2.0 6.91E-01 2.26E-01 4.60E-02 6.76E-03 4.49E-01 1.37E-01 4.82E-02 1.39E-02

.O∞ 0.5 9.56E-01 7.64E-01 6.19E-01 5.63E-01 7.09E-01 5.16E-01 3.84E-01 3.14E-01
1.0 8.58E-01 4.89E-01 2.91E-01 1.15E-01 6.13E-01 2.95E-01 1.64E-01 8.82E-02
2.0 6.34E-01 1.75E-01 2.02E-02 1.49E-02 4.04E-01 1.03E-01 9.87E-03 1.56E-02

.O+
1 0.5 8.40E-01 7.61E-01 6.16E-01 5.56E-01 7.02E-01 6.16E-01 4.85E-01 4.03E-01

1.0 6.92E-01 4.80E-01 2.99E-01 1.87E-01 6.38E-01 4.31E-01 2.42E-01 1.34E-01
2.0 5.79E-01 3.02E-01 2.20E-01 7.57E-02 5.49E-01 2.55E-01 1.15E-01 6.66E-02

.O+
2 0.5 8.04E-01 7.14E-01 5.86E-01 5.48E-01 6.95E-01 6.07E-01 5.03E-01 4.00E-01

1.0 6.63E-01 4.40E-01 2.60E-01 1.84E-01 6.41E-01 4.28E-01 2.58E-01 1.82E-01
2.0 6.92E-01 4.08E-01 2.12E-01 9.71E-02 5.94E-01 2.77E-01 1.32E-01 6.29E-02

.O+
∞ 0.5 7.79E-01 6.99E-01 5.83E-01 5.81E-01 6.94E-01 6.02E-01 4.88E-01 4.62E-01

1.0 6.56E-01 4.40E-01 2.62E-01 1.85E-01 6.50E-01 4.42E-01 2.32E-01 1.58E-01
2.0 8.26E-01 4.59E-01 2.27E-01 1.14E-01 6.35E-01 3.15E-01 1.46E-01 7.23E-02

& (!0) =
)
⋃
⋃
⋃⟨

):1, ⊗8 !0|2
):2, ⊗28 !0|2
):1, ⊗48 !0|2
):2, ⊗68 !0|2

⟩
⋂
⋂
⋂{
=

)
⋃
⋃
⋃
⋃⟨

:∗1⊗
8

:∗2⊗
28

:∗1⊗
48

:∗2⊗
68

⟩
⋂
⋂
⋂
⋂{

!0 =∶&!0. (30)

Fig. 2a shows how 𝜂 and 𝜒𝜂 evolve in time, whereas Fig. 2b shows the trajectory of the system in state space. Fig. 2c shows the 
QoIs being measured. The QoI (30) can be computed efficiently and with high accuracy, i.e., the matrix 8 is non-defective and 
its exponential can be computed from its eigendecomposition, allowing us to focus on the density obtained with the method. To 
compare the effect that Ω has on the results, we consider 6 possible convex bodies: the closed !1-ball .O1, the closed !2-ball .O2, the 
closed !∞-ball .O∞, and their intersections with the positive orthant, which we denote as .O+

1 , .O+
2 and .O+

∞. In all cases we assume 
that 𝐻Ω is the uniform measure. These choices will help us evaluate the impact of incorporating a priori information on Ω, i.e., the 
fact that !0 ≥ 0. To approximate I we use Monte Carlo and we draw 10,000 samples from 𝐻Ω in each case using rejection sampling.

In Fig. 3 we show the densities obtained for .O2. As & is a linear map, in all cases the density is the positive part of an affine 
function. For S = 112 we have that !0 4 Ω and the problem becomes infeasible as 𝐶 → 0. In Figs. 3a-3d we see that the density 
concentrates in the boundary as 𝐶 → 0. In addition, there seems to be a small bias towards negative values of 𝜒𝜂. This is a consequence 
of the particular structure of the matrix & . For S = 1 we have that !0 ) /)(Ω). As shown in Proposition 6, this implies that the 
problem becomes infeasible as 𝐶 → 0. Figs. 3e-3h show the optimal density concentrating near the boundary. Observe that, as 𝐶 → 0, 
the expected value of (𝜋 approaches the true !0. Finally, for S = 2.0 we have !0 ) &'((Ω). As Figs. 3i-3l show, when 𝐶 → 0 the 
density somewhat concentrates around !0 and the expected value quickly approaches the true !0. However, as & is linear, the set 
of possible densities is not flexible enough to truly concentrate around the true !0, generating instead a large dispersion around it.

In Fig. 4 we show the densities obtained for S = 1 and all of the 6 choices of Ω. Remark that in all cases we have that !0 ) &'((Ω). 
In general, the behavior as 𝐶 → 0 is the same observed for the !2-ball, and the density concentrates near the boundary and near !0. 
However, the behavior of the optimal density behaves quite differently depending on the choice of Ω. In fact, as 𝐶 → 0 the dispersion 
on the marginal for 𝜒𝜂 depends almost exclusively on the choice of Ω, yielding the least dispersion for .O1, and the largest for .O∞. By 
considering the closed !𝛽-balls intersected with the positive orthant, we are adding a priori information about the values of 𝜂(0) and 
𝜒𝜂(0). However, this leads to a bias in the expected value of (𝜋. The magnitude of this bias and its behavior as 𝐶 → 0 depends on the 
structure of the boundary of Ω at !0.

In Table 1 we report the !2-bias when estimating !0 by the expected value of (𝜋 and the feasibility error between the true 
expected value & (!0) and that obtained using (𝜋.

This example also allows us to compare the densities obtained by solving the finite-dimensional approximations discussed in 
Sections 2.2 and 3.1. For this comparison we consider Ω = .O∞ and 𝐶 = 10−1, and we use the prior induced by the Haar wavelet basis 
on [−1, 1]2. A crucial property of the Haar wavelet basis is that it is piecewise constant, enabling the efficient characterization of 
the set Θ̈𝐷 . The results obtained from the finite-dimensional approximations up to a level 𝑀 ) {1, 2, 3} can be seen in Fig. 5; recall 
that there are 4𝑀+1 basis functions for each choice of 𝑀. As the decomposition level increases, the finite-dimensional approximation 
begins to resemble the solution shown in Fig. 4i. In Fig. 5d we see that the 𝑀2

𝐻 -distance decreases, as expected.



Journal of Computational Physics 513 (2024) 113141

18

E. Villalón, Q. Yang and C.A. Sing Long

Fig. 2. (a) Evolution of the state variables 𝜂 and 𝜒𝜂 on the time interval [0, 20] for the damped oscillator (29) for Q = 114 and K = 1. (b) Trajectory in phase space for 
𝑒 ) [0, 20]. (c) Observed values of the state variables. (d, e, f) Diagram of .O1, the .O2 and .O∞ in blue, and .O+

1 , .O+
2 and .O+

∞ in red.

Therefore, the finite-dimensional approximations do converge to the solution to the infinite-dimensional problem. This validates 
our interpretation of the problem as the limit of the finite-dimensional models.

6.2. Failure on a linear flow system

Another illustrative example is to consider a linear flow system on a graph (Fig. 6). At the initial time the first node always has 
concentration equal to 1 whereas all other nodes always have concentration equal to zero. The normal state of the system occurs 
when the flow goes through node 2 and ends up at node 3, i.e., the capacity of the edges 2 → 4 and 4 → 2 are zero (Fig. 6a). The 
failure state occurs when the capacity of the edges 2 → 4 and 4 → 2 are non-zero and, as a consequence, there is a leak from node 2 
to node 4 (Fig. 6b). The goal of this problem is to quantify the uncertainty on both on the initial condition and on the parameters 
P2→4 and P4→2 from measurements of the concentration at nodes 1 and 3 at times {1.0, 2.0, … , 9.0, 10.0}.

We consider three scenarios of failure. In Scenario A the trajectories are randomly generated according to P2→4 ∼ (2→4 with 
(2→4 = BETA(30, 10) and P4→2 ∼ (4→2 for (2→4 = BETA(1510.85, 10); in this case "[P2→4] = 0.75 and "[P4→2] = 0.15 (Fig. 6c). The 
sample trajectories and the average measurements are shown in Fig. 6d. In Scenario B the trajectories are generated from a mixture 
with probability 112 between the normal state, i.e., P2→4 = P4→2 = 0, and the trajectories in Scenario B (Fig. 6e). Finally, in Scenario 
C we consider that the system operates normally for 𝑒 ≤ 2.0, but then fails for 𝑒 > 2.0 where the parameters distribute as in Scenario 
A (Fig. 6f). In each case, we use the average observations over 100 samples.

To use the method we represent the model as the system of ODEs

𝜒\1(𝑒) = −P1→2\1(𝑒)

𝜒\2(𝑒) = −(P2→3 + P2→4(𝑒))\2(𝑒) + P1→2\1(𝑒) + P4→2(𝑒)\4(𝑒)

𝜒\3(𝑒) = P2→3\2(𝑒)

𝜒\4(𝑒) = −P4→2(𝑒)\4(𝑒) + P2→4(𝑒)\2(𝑒)

𝜒P2→4(𝑒) = 0

𝜒P4→2(𝑒) = 0.
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Fig. 3. Optimal density ⋆𝜋 for .O2 for radii S ) {0.5, 1.0, 2.0} and 𝐶 ) {100, 10−1, 10−2, 10−3}. In each case, the values of the density have been normalized to the 
interval [0, 1], the true !0 is represented as a red dot, and the expected value for ⋆𝜋 is shown as a white dot.

If we let

1 =
)
⋃
⋃
⋃⟨

\1
\2
\3
\4

⟩
⋂
⋂
⋂{
, - =

[
P2→4
P4→2

]
and ! =

[
1
-

]

then we have the non-linear system
)

𝜒!(𝑒) =;(!(𝑒))!(𝑒)

!(0) = !0
(31)

where

;(!) =

)
⋃
⋃
⋃
⋃
⋃
⋃⟨

−P1→2 0 0 0 0 0
P1→2 −(P2→3 + 𝜂5) 0 𝜂6 0 0
0 P2→3 0 0 0 0
0 𝜂5 0 −𝜂6 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⟩
⋂
⋂
⋂
⋂
⋂
⋂{

.

We consider the QoIs & ∶ℝ6 →ℝ20 given by
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Fig. 4. Optimal density ⋆𝜋 for S = 1.0 and 𝐶 ) {10, 10−1, 10−2, 10−3}. In each case, the values of the density have been normalized to the interval [0, 1], the true !0 is 
represented as a red dot, and the expected value for ⋆𝜋 is shown as a white dot.

Fig. 5. Solutions to the finite-dimensional problems using the Haar wavelet basis on .O∞. For each level 𝑀 of the decomposition the corresponding subspace ̈𝐷
has dimension 𝐷 = 4𝑀+1 . The 𝑀2

𝐻 -distance between the optimal density ⋆𝜋 obtained by solving the infinite-dimensional problem and the finite-dimensional problems 
decreases as expected.

𝑟1(!0) = \1(1,!0), … , 𝑟10(!0) = \1(10,!0), 𝑟11(!0) = \3(1,!0), … , 𝑟20(!0) = \3(10,!0)

and the measure (𝜂0 on ℝ6 for !0 is

(𝜂0 = [1 ⊗[0 ⊗[0 ⊗[0 ⊗^2→4 ⊗^4→2.
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Fig. 6. (a, b) Graph representing the normal and failure states of the system. (c) Probability densities for P2→4 and P4→2 . (d, e, f) Trajectories generated from 100 
samples of P2→4 and P4→2 under each of the failure scenarios. In each case, the solid line represents the average trajectory whereas the red dots represent the average 
measurements.

For the numerical experiments, we use P1→2 = P2→3 = 1. As the solutions to the system diverge exponentially if P2→4 < 0 or P4→2 < 0
it is reasonable to impose that the support of the measure on the last 2 variables is contained in the positive orthant. Consequently, to 
perform the experiments we choose Ω as either S .O+

1 , S .O
+
2 or S .O+

∞, or as Cartesian products of the form S .O𝛽1 +S .O
+
𝛽2
for 𝛽1, 𝛽2 ) {1, 2, ∞}

and some radius S > 0. To avoid the boundary effects shown in Section 6.1 we choose S = 5. To approximate I we use Monte Carlo 
and we sample 10,000 from 𝐻Ω in each case using rejection sampling. In all cases we let 𝐻Ω be the uniform measure on Ω and we 
let 𝐶 = 10−3. Finally, we solve numerically (31) using SciPy’s implementation of the RK45 method with absolute tolerance 10−4 and 
relative tolerance 10−6.

If Fig. 7 we show numerical approximations for the marginals for (𝜋 for the selected choices 5 .O+
1 , 5 .O2 + 5 .O+

1 and 5 .O+
1 + 5 .O+

2 for 
Ω. To approximate the marginals for variables taking values in [0, 5] we divided the interval in 10 bins, whereas for variables taking 
values in [−5, 5] we divided the interval in 20 bins. The probability of each bin under (𝜋 was approximated with 20,000 Monte 
Carlo samples independent from those used to approximate I .

The marginals obtained for 5 .O+
1 for the components of 10 concentrate near zero, except the marginal for \0,1 (rows 1 to 3 of 

Fig. 7). However, the marginals cannot concentrate sufficiently near zero. As a consequence the expected values of \0,2 and \0,3 tend 
to be too large. This may also be the reason why the marginals for \0,4 assign large probability to large values of \0,4. In contrast, the 
marginals for P2→4 and P4→2 capture the behavior of these variables reasonably well, as the marginal for P4→2 is more concentrated 
toward the origin than the marginal for P2→4. This behavior is consistent for all scenarios. Finally, in Figs. 8a-8c we see the trajectory 
associated to the expected value of 10, P2→4 and P4→2. Although they capture reasonably well the measurements of \1 in time, they 
tend to overestimate the average measurements for \3. This is itself a consequence of overestimating \0,4.

Observe that the marginals obtained for 5 .O2 +5 .O+
1 for the components of 10 spread over the interval [−5, 5] but concentrate near 

the origin (rows 4 to 6 of Fig. 7). As a consequence, the probability of observing a negative value is large. However, the expected 
values for \0,2 and \0,3 are closer to the initial condition of the system for Scenarios A and B; for Scenario C the expected value for 
\0,3 is negative and that for \0,4 is much larger. This suggests the dynamics of the system constrain these two variables. In all cases, 
the marginals for P2→4 and P4→2 behave in a similar manner, suggesting that in this setup the method cannot differentiate between 
the effect of these two variables. Figs. 8d-8f show the trajectory associated to the expected values of !0, P2→4 and P4→2. Choosing Ω
as a Cartesian product allows for more flexibility, and as a consequence, the trajectories seem to be a good fit to the observations in 
all scenarios. However, note that the initial condition may have negative entries. This effect can be mitigated by choosing a suitable 
set 𝑘 in (13).

Finally, the marginals obtained for 5 .O+
1 + 5 .O+

2 for the components of !0 behave similarly to those obtained for 5 .O+
1 (rows 7 to 9 

in Fig. 7). Remark that for this choice the marginals for \0,1 and \0,4 behave similarly and their expected values are also similar. As 
for 5 .O+

1 we also see that the densities for P2→4 and P4→2 then to capture the overall relation between P2→4 and P4→2. In Figs. 8g-8i the 
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Fig. 7. Marginals for (𝜋 for selected choices of Ω under each of the failure scenarios. Rows 1 to 3 show the results for 5 .O+
1 , rows 4 to 6 for 5 .O2 + 5 .O+

1 and rows 7 to 
9 for 5 .O+

1 + 5 .O+
2 . The vertical line indicates the expected value.
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Fig. 8. Trajectories for the expected value "!0∼(𝜋 [!0].

trajectories for the expected value show similarities with those obtained for 5 .O+
1 . However, for Scenario C the differences between 

this trajectory and the average observations for \3 are quite large. This is due to the fact that an overestimate of \0,2 has a strong 
impact on the limiting value of \3.

6.3. Chemical reaction network

To illustrate the application of our method to a high-dimensional, non-linear system, we consider a chemical reaction network. 
These can be described by the reaction rate equations, which are a non-linear system of ODEs that model the time-evolution of 
the concentrations of the chemical species in the system [49]. If the system has 𝐷 species and we let < ) ℝ𝐷 = <(𝑒) denote the 
concentrations, then the reaction rate equations become

𝜒<(𝑒) =
(𝛽

𝑔=1 _𝑔ℎ𝑔(<(𝑒))2𝑔 (32)
where 𝛽 is the number of chemical reactions in the system, _1, … , _𝛽 > 0 are the reaction rate constants, ℎ1, … , ℎ𝛽 ∶ ℝ𝐷 → ℝ are 
the propensity functions and 21, … , 2𝛽 ) ℝ𝐷 are the stoichiometry vectors. In this case, we shall assume the initial concentrations <0
are fixed. However, the rate constants will be random. We assume _𝑔 ∶= [𝑔_∗𝑔 where _∗𝑔 > 0 is a known reference value for the rate 
constant of the 𝑔-th reaction and [1, … , [𝛽 are i.i.d. LOGNORMAL(−𝜔212, 𝜔) for 𝜔 = log(10)12. This ensures the rates vary roughly 
across 2 orders of magnitude and that the expected value of _𝑔 is close to its reference value _∗𝑔 .
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Fig. 9. Concentrations for the observed species C3H8 , H2 , CH4 , C3H6 , C2H6 and C2H4 . The dotted lines represent sample trajectories. The solid line represents the 
average trajectory, while the circles represent the average value of the observations. The dashed line represents the trajectory associated to the reference values _∗. 
The dashed-dotted line represents the trajectory associated to the average rates "=∼𝐻0 [=].

We choose Ω = [10−2_∗1 , 10
+2_∗1] +… + [10−2_∗𝛽 , 10+2_∗𝛽] and 𝐻Ω as the joint density of the random variables 10J1_∗1 , … , 10J𝛽_∗𝛽

for J1, … , J𝛽
𝑔𝑔𝑎∼ UNIF([−2, 2]). To perform the simulations, we consider a medium-sized reaction system modeling propane pyrolysis 

with 38 chemical species and 98 reactions [50, Section IV.B]. We simulate the system for 𝑒 ) [0, 10] and observe every Δ𝑒 = 1 starting 
at 𝑒 = 1 the concentrations of the 6 most chemically relevant species in the system: C3H8, H2, CH4, C3H6, C2H6 and C2H4 (Fig. 9). 
We sample 100 trajectories to compute the average observation. The trajectories are found by solving (32) numerically using SciPy’s 
implementation of the Radau method with absolute tolerance 10−8 and relative tolerance 10−10. To approximate the objective 
function, we use 10,000 samples from 𝐻Ω.

In Fig. 10 we show the marginals obtained for 6 chemically relevant reactions C3H8 → CH3 + C2H5, CH3 + H2 → H + CH4, 
C3H5+ H2 → H + C3H6, H + C3H6 → C3H5+ H2, C2H5+ H2 → H + C2H6 and CH3+ C2H6 → C2H5+ CH4 for 𝐶 = 10−2. As we 
can see, the marginal remains almost flat over the interval. This may be a consequence of the fact that the system is ill-conditioned, 
that the variations of & are small, and that the amount of measurements is not sufficient to accurately characterize the uncertainty. 
Furthermore, there is a bias in the estimate. In Fig. 11 we see the sample trajectories from the optimal density (𝜋.

7. Discussion

Our experiments show that the method we proposed to compute the optimal density can be implemented efficiently. For typical 
choices of Ω for low-dimensional problems, rejection sampling and stochastic approximation methods are sufficient to obtain good 
results. For high-dimensional problems, stochastic gradient descent may perform well. In this case, the main cost is evaluating the 
map & . Furthermore, the closed-form expression for the optimal density allows us to compute statistics that may be relevant when 
quantifying the uncertainty in the quantities of interest. In particular, this allows us to compute the marginal distributions of these 
quantities.

We have seen that the choice of Ω has a strong impact on the results. Although choosing a “small” Ω could have computational 
advantages when approximating I it may render the problem ill-conditioned as was shown in Section 6.1. When the density 
accumulates near the boundary of Ω its geometry will strongly influence the structure of, e.g., the marginals. The results in Section 6.2
show that even if the densities concentrate near the boundary, the expected value may be biased. Furthermore, the geometry of the 
boundary of Ω will determine if the density is such that the marginals concentrate for all or only some of the state variables.
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Fig. 10. Histograms for the optimal marginal densities for 𝐶 = 10−2 and the selected reactions C3H8 → CH3 + C2H5 , CH3 + H2 → H + CH4 , C3H5 + H2 → H + 
C3H6 , H + C3H6 → C3H5+ H2 , C2 H5+ H2 → H + C2H6 and CH3+ C2H6 → C2H5+ CH4 . The densities are in the logarithm of the rate. As we can see, the density 
remains almost uniform over the interval of interest.

Fig. 11. Concentrations for the observed species C3H8 , H2 , CH4 , C3H6 , C2H6 and C2H4 for the optimal density for 𝐶 = 10−2 . The dotted lines represent sample 
trajectories from the optimal density. The solid line represents the average trajectory, while the circles represent the average value of the observations. The dashed 
line represents the trajectory associated to the reference values _∗. The dashed-dotted line represents the trajectory associated to the average rates "=∼(𝜋 [=].
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When the density does not accumulate near the boundary, the interplay between Ω, and dynamics of the system and the measured 
quantities of interest will determine how the optimal density distributes mass in Ω. The experiments in Section 6.2 show that even 
though this may lead to a better estimate of certain parameters, e.g., the initial condition, the optimal density may assign probability 
to non-physical values. As mentioned before, this can be mitigated by choosing in (13) a suitable set 𝑘 of constraints for the expected 
value. It is interesting to see that some choices of Ω may be better suited for some tasks. As an example, our results in Section 6.2
show that to estimate the initial condition with the expected value it is better to allow for wider intervals. In contrast, to capture the 
relation between the capacities it may be more appropriate to allow for narrower intervals.

In our experiments we have emphasized the role of the expected value of the initial conditions to assess the performance of the 
method. However, our results provide a closed-form expression for the density from which other statistics could be evaluated. As 
an example, in the experiments in Section 6.1 a much better estimate would be the mode. In fact, Fig. 4 suggests that when the 
system and the measurements are linear, the mode will be at the boundary of Ω. The experiments in Section 6.2 suggest the same. In 
general, the choice of a suitable statistic would depend on the properties of the system and the available measurements of quantities 
of interest.

Finally, our results show that the structure of the family of densities that can be found by the method depends strongly on 
how complex the dynamics of the system are, or how complex are the observations about the system. For linear ODEs and linear 
observations our results show that the probability density ⋆𝜋 must be the positive part of an affine function. As a consequence, to add 
expressiveness to the probability measure (𝜋 found by the method it may be necessary to use more complex reference measures 𝐻Ω
on Ω or mixtures.

8. Conclusion

In this work, we propose a Bayesian model to quantify input uncertainty on random differential equations. Furthermore, we 
construct a family of priors for the probability density of the initial condition for which the maximum a posteriori estimate for 
the density can be computed using Tikhonov regularization on moment constraints for the density. This provides an underlying 
statistical model for the method proposed by Meyers et al., built on early work by Banks et al., to perform uncertainty quantification 
in aggregate data problems. Under a convexity assumption on the model, we leveraged duality to deduce an equivalent finite-
dimensional formulation, which for typical cases becomes an unconstrained convex problem with a smooth objective function. This 
allowed us to provide a full theoretical characterization of the family of densities that can be obtained by the method, along with 
their dependence in the parameters of the problem. Although the trade-off is that the objective function involves a high-dimensional 
integral, we have shown that the problem can be solved efficiently using standard approximation methods. We believe that our results 
may lead to the development of more efficient implementations by using tailored numerical integration methods. Furthermore, our 
analysis yields insight about the flexibility of the approach when performing uncertainty quantification for high-dimensional systems 
by showing the interplay between the support of the density, the dynamics of the system, and the constraints being enforced.

Our work leaves some questions open. First, our method shows that there is a subtle interplay between the dynamics of the 
system, the observations about it, and the support of the probability measure that is to be found. Understanding this interplay would 
help practitioners make an informed choice of support or constraints for the expected values depending on the properties of the 
system. Second, we have shown that the structure of the probability densities found by the method is restricted by the system and 
the measured quantities of interest. A question of interest is to determine the size of the class of densities with this structure. Finally, 
it is an open question whether the optimal probability density can be refined to improve the performance of the method according to 
some criterion. These questions will be explored as future lines of research.
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Appendix A. Proof of main results in Section 2

A.1. Proof of Proposition 1

Define for 𝑔 ) {1, … , 𝐷} the averages

.<𝑔 = ∫
Ω

<𝑔(!)𝑎𝐻Ω(!)

and the vector .. )ℝ𝐷 accordingly. Let

𝑘𝐷 ∶=
⋂

𝜂)Ω{$ )ℝ𝐷 ∶ )$, ..| = 1, )𝛿, .(𝜂)| ≥ 0}.

It is clear this is a closed and convex set in ℝ𝐷. If ⋆ ) >𝐻,𝐷 then ⋆ = )$, .| for some $ )ℝ𝐷. Since ⋆ ≥ 0 and its integral with respect 
to 𝐻Ω equals 1 we deduce that

)$, ..| = 1 and 𝜂 )Ω ∶ )$, .(𝜂)| ≥ 0

whence $ ) 𝑘𝐷. Conversely, if $ ) 𝑘𝐷 then ⋆ ∶= )$, .| is such that ⋆ ≥ 0 then it is straightforward to see that ⋆ ) >𝐻,𝐷.
From the hypotheses it follows that .<1 > 0 whence .<−1

1 <1 ) >𝐻,𝐷. Thus, both >𝐻,𝐷 and 𝑘𝐷 are non-empty sets. Let $𝐷 ∶= ..1} ..}22. Then )$𝐷, ..| = 1. Let 11, … , 1𝐷−1 ) ℝ𝐷 be orthonormal vectors such that )1𝑔, ..| = 0 for 𝑔 ) {1, … , 𝐷 − 1}, and let / be the matrix 
with 11, … , 1𝐷−1 as its columns. By construction we have that / ∗$𝐷 = 0. We define the set

Θ̈𝐷 ∶=
{
𝜕 )ℝ𝐷−1 ∶ $𝐷 +

(𝐷−1
𝑔=1 𝜕𝑔1𝑔 ) 𝑘𝐷

}

which is closed and convex since it is the preimage of the affine map *↦ $𝐷 + / *. If * ) Θ̈𝐷 then, by construction, $𝐷 + / * ) 𝑘𝐷. 
Conversely, if $ ) 𝑘𝐷 we can always write

$ = J0$𝐷 +
(𝐷−1

𝑔=1 𝜕𝑔1𝑔,

for some * )ℝ𝐷−1. It suffices to show that J0 = 1. Note that

1 = ) .., $| = J0) .., $𝐷| = J0
whence * ) Θ̈𝐷 . It remains to show that Θ̈𝐷 has non-empty interior. Define $1 = .<−1

1 :1. Then ⋆ = )$1, .| = .<−1
1 <1 belongs to >𝐻,𝐷

whence $1 ) 𝑘𝐷. Therefore, let

$ = $𝐷 + / (/ ∗$1 + *) = $1 + / *

for some * to determine. Define

⋆ = )$, .| = )$1, .|+ )/ *, .| = 1
.<1
<1 + )/ *, .|.

Note that ⋆ has integral equal to one for any choice of *. Therefore, we must show it is non-negative to conclude that ⋆ ) >𝐻,𝐷. Since 
<1, … , <𝐷 are bounded, there is O > 0 such that }.(𝜂)}2 ≤O for 𝜂 )Ω. Hence, it suffices to have

{)/ 𝜕, .(𝜂)|{ ≤ }/ *}2}.(𝜂)}2 ≤O}*}2 ≤ .<−1
1 inf𝜂)Ω<1(𝜂) ≤ .<−1

1 <1(𝜂)

to conclude that ⋆ ≥ 0. Since this is satisfied for any * such that

}*}2 ≤ 1
O .<1

inf𝜂)Ω<1(𝜂)

and the right-hand side is strictly positive, we conclude that Θ̈𝐷 has non-empty interior.

A.2. Proof of Proposition 2

Let {⋆𝜋,𝐷}𝐷)ℕ be the sequence of solutions to the finite-dimensional problems (10), and let ` denote the objective function, 
which is independent of 𝐷. As 𝑀 is non-negative, ` is non-positive. First, since ̈1 𝑇 ̈𝐷 for any 𝐷 ) ℕ we have that >𝐻,1 𝑇 >𝐻,𝐷
whence ` (⋆𝜋,1) ≤ ` (⋆𝜋,𝐷). Since 𝑀 is non-negative, this implies that 2` (⋆𝜋,1) ≥ 𝐶}⋆𝜋,𝐷}2

𝑀2
𝐻
. Hence, using the fact that >𝐻,𝐷 𝑇 >𝐻 , we 

conclude that the sequence {⋆𝜋,𝐷}𝐷)ℕ is a norm-bounded sequence in >𝐻 . By the Banach-Alaoglu theorem, by possibly passing to a 
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subsequence, we can assume without loss that it converges weakly to a density ⋆𝜋,∞. Since >𝐻 is convex and closed, it is also weakly 
closed. Thus ⋆𝜋,∞ ) >𝐻 .

Now, let ⋆𝜋 be the solution to the infinite-dimensional problem (12) and let ⋆𝜋𝐷 be the projection of ⋆𝜋 onto the closed convex 
set >𝐻,𝐷. Since the closure of the union of the subspaces {̈𝐷}𝐷)ℕ is all of 𝑀2

𝐻(Ω), we have that {⋆𝜋𝐷 }𝐷)ℕ converges in norm to ⋆𝜋. By 
construction, we have that ` (⋆𝜋𝐷 ) ≤ ` (⋆𝜋,𝐷) ≤ ` (⋆𝜋).

Now, remark that the map

⋆↦ ∫
Ω

⋆(!0)& (!0)𝑎𝐻Ω(!0)

is strongly (or norm) continuous and weakly continuous. Since the 𝑀2
𝐻 -norm also strongly continuous, we conclude that ̀ is strongly 

continuous whence

` (⋆𝜋) = limsup𝐷→∞ ` (⋆𝜋𝐷 ).

On the other hand, the 𝑀2
𝐻 -norm is also strongly lower semicontinuous and thus weakly sequentially lower semicontinuous [27, 

Theorem 9.1]. This implies that ` is weakly sequentially upper semicontinuous whence

lim sup𝐷→∞ ` (⋆𝜋,𝐷) ≤ ` (⋆𝜋,∞).

Combining these two facts, we conclude that

` (⋆𝜋) = limsup𝐷→∞ ` (⋆𝜋𝐷 ) ≤ lim sup𝐷→∞ ` (⋆𝜋,𝐷) ≤ ` (⋆𝜋,∞) ≤ ` (⋆𝜋)
whence ⋆𝜋,∞ is a solution to the infinite-dimensional problem, proving the claim.

Appendix B. Proofs of statements in Section 3

B.1. Proof of Proposition 3

Define the linear map  ∶𝑀2
𝐻(Ω) →ℝ, as

 (⋆) ∶= ∫
Ω

& (!0)⋆(!0)𝑎𝐻Ω(!0)

which, by (6) and the Cauchy-Schwarz inequality, is bounded. As ℝ, is finite-dimensional,  has closed range. Consider the auxiliary 
problem

minimize
⋆)𝑀2

𝐻 (Ω)

1
2}⋆}

2
𝑀2
𝐻
+ 1
𝐶
𝑀(+ (⋆),')

subject to ⋆ ≥ 0, )1, ⋆|𝑀2
𝐻
= 1,  (⋆) ) 𝑘 .

where 1 denotes the function that is identically equal to one over Ω; since 𝐻Ω is finite, 1 )𝑀2
𝐻 . The objective function in the above is 

strongly convex [27, Definition 10.7] and the feasible set is closed and convex. Hence, there is a unique minimizer ⋆𝜋 for the above 
problem [27, Proposition 11.8]. Let .%𝜋 ∶= (⋆𝜋). We claim (⋆𝜋, .%𝜋) is an optimal solution to (13). If (⋆, .%) is feasible for (13) then 
⋆ is feasible for the above auxiliary problem and thus

1
2}⋆

𝜋}2
𝑀2
𝐻
+ 1
𝐶
𝑀(+ .%𝜋,') = 1

2}⋆
𝜋}2

𝑀2
𝐻
+ 1
𝐶
𝑀(+ (⋆𝜋),')

≤ 1
2}⋆}

2
𝑀2
𝐻
+ 1
𝐶
𝑀(+ (⋆),')

= 1
2}⋆}

2
𝑀2
𝐻
+ 1
𝐶
𝑀(+ .%,')

where we used the fact that .% = (⋆) by feasibility of (⋆, .%). Hence, the objective value of (⋆, .%) is at least that of (⋆𝜋, .%𝜋). We conclude 
(⋆𝜋, .%𝜋) is an optimal solution to (13). To show it is the only solution, if we let (⋆, .%) be any other solution, then, from the strong 
convexity of the quadratic term on ⋆ in the objective, it follows that ⋆ = ⋆𝜋. By feasibility, we conclude that .%= (⋆) = (⋆𝜋) = .%𝜋.

B.2. Proof of Theorem 1

First, it is apparent that  ∶𝐹> →𝐹𝜀 is bounded and that its adjoint ∗ ∶𝐹𝜀 →𝐹> is given by

∗(H,4,3) =
)
⋃
⋃⟨

−(H + )3, & (!0)|2)
3−+∗4

4

⟩
⋂
⋂{
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The function ̂ ∶𝐹> → (−∞, +∞] is ̂ is proper, convex and lower semicontinuous, with domain

)*+(̂ ) = {(⋆, .%,1) )𝐹> ∶ ⋆ ≥ 0, .% ) 𝑘},

whereas G ∶𝐹𝜀 → (−∞, +∞] is proper, convex and lower semicontinuous. Furthermore, it is polyhedral. Note that

)*+(G) = {2}

and that )*+(G) ∩ 345&'((()*+(̂ ))) ≠ 5. In fact,

()*+(̂ )) = {(𝜏,>,0) )ℝ +ℝ, +ℝ𝑅 ∶ 𝜏 < 0}.

This follows from the fact that we may choose

⋆ ≡ {𝜏{
𝐻Ω(Ω)

, .% = {𝜏{
𝐻Ω(Ω) ∫

Ω

& (!0)𝑎𝐻Ω(!0) +> and 1 = {𝜏{
𝐻Ω(Ω) ∫

Ω

+& (!0)𝑎𝐻Ω(!0) ++>+ 0

to obtain (𝜏, >, 0) = (⋆, .%, 1). By [27, Fact 15.25] we conclude that the origin belongs to the strong relative interior of )*+(G) −()*+(̂ )). Therefore, by [27, Theorem 15.23] strong duality holds. On one hand, the convex dual of ̂ is

̂𝜋(⋆, .%,1) = sup
(⋆′ , .%′ ,1′))𝐹>

)(⋆, .%,1), (⋆′, .%′,1′)|− ̂ (⋆′, .%′,1′)

= sup
⋆′)𝑀2

𝐻

(
)⋆, ⋆′|𝑀2

𝐻
− 1

2}⋆
′}2
𝑀2
𝐻
− #𝑀2+

𝐻
(⋆)

)

+ sup
.%′)ℝ,

() .%, .%′|2 − #𝑘 ( .%′)
)
+ sup

1′)ℝ𝑅

(
)1, 1′|2 − 1

𝐶
𝑀(1′,')

)

= 1
2}⋆}

2
𝑀2
𝐻
+ sup
⋆′)𝑀2

𝐻

(
−1
2}⋆− ⋆

′}2
𝑀2
𝐻
− #𝑀2+

𝐻
(⋆)

)
+ #𝜋𝑘 ( .%) +

1
𝐶
𝑀𝜋(𝐶1,')

= 1
2}⋆}

2
𝑀2
𝐻
− 1

2}⋆−}
2
𝑀2
𝐻
+ #𝜋𝑘 ( .%) +

1
𝐶
𝑀𝜋(𝐶1,')

= 1
2}⋆+}

2
𝑀2
𝐻
+ #𝜋𝑘 ( .%) +

1
𝐶
𝑀𝜋(𝐶1,')

where ⋆+, ⋆− denote the positive and negative parts of ⋆. On the other, the convex dual of G is

G𝜋(H,3,4) = )(H,3,4), 2| = −H.

We conclude that the dual objective becomes
1
2 ∫

Ω

(H + )3, & (!0)|2)2+𝑎𝐻Ω(!0) + #𝜋𝑘 (+
∗4 −3) + 1

𝐶
𝑀𝜋(−𝐶4,')− H

as desired. Finally, by [27, Theorem 19.1], if (⋆𝜋, .%𝜋, 1𝜋) )𝐹> and (H𝜋, 3𝜋, 4𝜋) )𝐹𝜀 are optimal primal and dual variables then

−∗(H𝜋,3𝜋,4𝜋) ) L̂ (⋆𝜋, .%𝜋,1𝜋) and (H𝜋,3𝜋,4𝜋) ) LG((⋆𝜋, .%𝜋,1𝜋)).
From

L̂ (⋆, .%,1) = {(⋆+<,0,,) ∶ < ≤ 0, ⋆< = 0, , ) 𝐶−1L𝑀(1,')}

it follows that the first condition implies

H𝜋 + )3𝜋, & (!0)| = ⋆𝜋(!0) +<𝜋(!0).
This is possible only if

⋆𝜋(!0) = (H𝜋 + )3𝜋, & (!0)|)+.

B.3. Proof of Theorem 2

This result is proven by slightly modifying the arguments used in the proof of Theorem 1. We use the same notation as in that 
proof. Define the space 𝐹𝐷

> ∶= ̈𝐷 + ℝ, + ℝ𝑅. Consider the restriction  ∶ 𝐹𝐷
> → 𝐹𝜀 . The critical difference is to observe that the 

adjoint ∗ ∶𝐹𝜀 →𝐹𝐷
> becomes
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∗(H,4,3) =
)
⋃
⋃⟨

−(H1̈𝐷 + )3, &̈𝐷 (!0)|2)
3−+∗4

4

⟩
⋂
⋂{
.

Define the convex function ̂𝐷 ∶𝐹𝐷
> →ℝ

̂𝐷(⋆, .%,1) =
1
2}⋆}

2
𝑀2
𝐻
+ #̈ +

𝐷
(⋆) + 1

𝐶
𝑀(1,') + #𝑘 ( .%)

Since there exists a strictly positive function <1 ) ̈𝐷 we have that ̈ +
𝐷 is non-empty. Therefore, the primal problem associated to the 

finite-dimensional problem is
minimize
(⋆, .%,1))𝐹𝐷>

̂𝐷(⋆, .%,1) + G((⋆, .%,1)− 2) (B.1)

with dual
maximize
(H,3,4))𝐹𝜀

− ̂𝜋𝐷 (−∗(H,3,4))− G𝜋(H,3,4). (B.2)
To prove strong duality holds, note that ̂𝐷 is proper, convex and lower semicontinuous, with domain

)*+(̂𝐷) = {(⋆, .%,1) )𝐹𝐷
> ∶ ⋆ ≥ 0, .% ) 𝑘}.

As in the proof of Theorem 1, we have that )*+(G) ∩ 345&'((()*+(̂𝐷))) ≠ 5. In fact,

()*+(̂𝐷)) = {(𝜏,>,0) )ℝ +ℝ, +ℝ𝑅 ∶ 𝜏 < 0}

follows from the fact that we may choose

⋆ ≡ {𝜏{
.<1
<1, .% = {𝜏{

𝐻Ω(Ω) ∫
Ω

& (!0)𝑎𝐻Ω(!0) +> and 1 = {𝜏{
𝐻Ω(Ω) ∫

Ω

+& (!0)𝑎𝐻Ω(!0) ++>+ 0

to obtain (𝜏, >, 0) =(⋆, .%, 1). Hence, strong duality holds. It remains to compute ̂𝜋𝐷 . We have that

̂𝜋𝐷 (⋆, .%,1) = sup
(⋆′ , .%′ ,1′))𝐹𝐷>

)(⋆, .%,1), (⋆′, .%′,1′)|− ̂(⋆′, .%′,1′)

= sup
⋆′)̈𝐷

(
)⋆, ⋆′|𝑀2

𝐻
− 1

2}⋆
′}2
𝑀2
𝐻
− #̈ +

𝐷
(⋆)

)

+ sup
.%′)ℝ,

() .%, .%′|2 − #𝑘 ( .%′)
)
+ sup

1′)ℝ𝑅

(
)1, 1′|2 − 1

𝐶
𝑀(1′,')

)

= 1
2}⋆}

2
𝑀2
𝐻
+ sup
⋆′)̈𝐷

(
−1
2}⋆− ⋆

′}2
𝑀2
𝐻
− #̈ +

𝐷
(⋆)

)
+ #𝜋𝑘 ( .%) +

1
𝐶
𝑀𝜋(𝐶1,')

= 1
2}⋆}

2
𝑀2
𝐻
− 1

2}⋆−}
2
𝑀2
𝐻
+ #𝜋𝑘 ( .%) +

1
𝐶
𝑀𝜋(𝐶1,')

= 1
2}⋆+}

2
𝑀2
𝐻
+ #𝜋𝑘 ( .%) +

1
𝐶
𝑀𝜋(𝐶1,'),

proving the theorem.

B.4. Proof of Proposition 4

Let ℎ(𝜏) = 𝜏2+12. Then ℎ is differentiable with Lipschitz derivative ℎ′(𝜏) = 𝜏+; its Lipschitz constant is 1. Fix !0 and let

,(J,5) = J + )5, & (!0)|2.
Then

{ℎ(,(J,5))− ℎ(,(J0,50))− ℎ′(,(J0,50))(,(J,5)− ,(J0,50){
((J − J0)2 + }5 − 50}22)112

=
{,(J,5)− ,(J0,50){

((J − J0)2 + }5 − 50}22)112

|||||||

1

∫
0

ℎ′((1− 𝜏),(J0,50) + 𝜏,(J,5))− ℎ′(,(J0,50))𝑎𝜏
|||||||

≤ 1
2

(,(J,5)− ,(J0,50))2

((J − J0)2 + }5 − 50}22)112
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≤ (J − J0)2 + }& (!0)}22}5 − 50}22
((J − J0)2 + }5 − 50}22)112

≤max{1,}& (!0)}22}((J − J0)2 + }5 − 50}22)112.
Hence,

{I(J,5)−I(J0,50)− LJI(J0,50)(J − J0)− )35I(J0,50), 5 − 50|2{
((J − J0)2 + }5 − 50}22)112

≤ ⎛
⎜
⎜⎝∫Ω

max{1,}& (!0)}22}𝑎𝐻Ω(!0)
⎞
⎟
⎟⎠
((J − J0)2 + }5 − 50}22)112

from where the first statement follows. The second statement follows from similar arguments, and the fact that ℎ′ is Lipschitz 
continuous. We omit the details for brevity.

B.5. Proof of Theorem 3

The theorem is a consequence of a change of variables using M . Although it is invertible with continuous inverse, it is not 
differentiable and it is not Lipschitz over .O2. For this reason, we cannot apply the change of variables formula directly.

We proceed as follows. Let [ > 0. Define

𝑐[ ∶= .O2 ⧵ [O2 = {! ) .O2 ∶ [ ≤ }!}2 ≤ 1}

and

Ω[0 ∶= {M (!) ∶ ! )𝑐[} = {! )Ω0 ∶ [ ≤ Q0(!) ≤ 1}.

Both {𝑐[}[>0 and {Ω[0}[>0 are decreasing sequences. Consider the approximation

I[(J,5) = 1
2 ∫
Ω[0

(J + )5, & (!0 + !P)|2)2+ 𝑎!0.

The integrand is non-negative and I[ →I pointwise as [→ 0 by the monotone convergence theorem [51, Theorem 2.4.1]. We will 
use the change of variables formula for each I[ and then conclude by applying a limit argument.

For simplicity, we write ,(!) = }!}21Q0(!). Note , is well-defined for ! ≠ 0 and there exists 𝑘, > 0 such that

6! ≠ 0 ∶ 1
𝑘,

≤ ,(!) ≤ 𝑘, .
We first prove the following auxiliary result.

Lemma 1. The map M ∶𝑐[ →Ω[0 defined in (20) is Lipschitz with Lipschitz inverse M −1 ∶ Ω[0 →𝑐[ defined in (21).

Proof of Lemma 1. Let !, !′ )𝑐[ . Then

M (!)− M (!′) = ,(!)(!− !′) + (,(!)− ,(!′))!′.

The first term can be bounded by }!− !′}2. For the second term, note that

{,(!)− ,(!′){ ≤ {}!}2 − }!′}2{
Q0(!)

+ }!′}2
||||

1
Q0(!)

− 1
Q0(!′)

||||
≤ 1
[
}!− !′}2 +

||||
1

Q0(!)
− 1
Q0(!′)

|||| .

Finally, note that for 𝑒, 𝜏 ) [[, 1] with 𝜏 ≤ 𝑒
||||
1
𝑒
− 1
𝜏
|||| =

|||||||

𝑒

∫
𝜏

𝑎J
J2

|||||||
≤ 1
[2

{𝑒− 𝜏{

from where

}M (!)− M (!′)}2 ≤ 𝑘,}!− !′}2 + 1
[
}!− !′}2 + 1

[2
{Q0(!)− Q0(!′){
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and we conclude from the fact that Q0 is Lipschitz continuous. To prove this claim, remark that since Q0 is continuous, it is uniformly 
continuous on .O2(0, 1). Let a > 0 and let [ > 0 be such that

}!′ − !}2 < [ ⇒ {Q0(!′)− Q0(!){ < a
for !′, ! ) .O2(0, 1). Then, for any !′, ! )ℝ𝑎 with !′ ≠ ! we can choose J = [12}!′ − !}2 so that

{Q0(!′)− Q0(!){ = 1
𝐶
{Q0(𝐶!′)− Q0(𝐶!){ < a

𝐶
= a
[
}!′ − !}2.

The same arguments can be applied to prove M −1 is Lipschitz continuous. We omit the details for brevity. □

Hence, M is differentiable Lebesgue a.e. by Rademacher’s theorem [52, Theorem 2, Section 3.1.2]. Let 𝜀M denote its differential 
matrix. Then, we can apply the change of variables formula [52, Lemma 1, Section 3.3.1 and Theorem 2, Section 3.3.3], to obtain

I[(J,5) = 1
2 ∫
𝑐[

(J + )5, & (M (!0) + !P)|2)2+{det(𝜀M (!0)){𝑎!0.

We can further simplify the term involving the Jacobian using the following lemma.

Lemma 2. The function , ∶𝑐[ →ℝ𝛽 is differentiable Lebesgue a.e. Furthermore, if ! is a point of differentiability, then )3,(!), !|2 = 0.

Proof of Lemma 2. The arguments in the proof of Lemma 1 show , is Lipschitz continuous. Hence, by Rademacher’s theorem it is 
differentiable Lebesgue a.e. If ! is a point of differentiability, then

lim
!′→!

{,(!′)− ,(!)− )3,(!), !′ − !|2{
}!′ − !}2

= 0.

However, for any J > 0 and ! ≠ 0

,(J!) =
}J!}2
Q0(J!)

=
{J{}!}2
{J{Q0(!)

= ,(!)

whence , is homogeneous of degree 0. If we take !′ = (1 + J)! for J sufficiently small, it follows that !′ − ! = J! and

lim
J→0

{J{{)3,(!), !|2{
{J{}!}2

=
{)3,(!), !|2{

}!}2
= 0

whence the lemma follows. □

Therefore, there is a subset of 𝑐[ of full Lebesgue measure where both M and , are differentiable. If ! is such a point, then

𝜀M (!) = ,(!))𝑎 + !3,(!)𝑒 ⇒ det(𝜀M (!)) = ,(!)𝑎 (1 + ,(!)−𝑎)3,(!), !|2) = ,(!)𝑎

where we used the identity det() + .%1𝑒) = 1 + ) .%, 1|2. We conclude that

I[(J,5) = 1
2 ∫
𝑐[

(
J + )5, & (,(!)!+ !P)|2

)2
+ ,(!)

𝑎𝑎!.

As I[ →I pointwise, the theorem follows.

Appendix C. Proof of main results in Section 4

C.1. Proof of Proposition 5

We use the same notation as in the proof of Proposition 5. Note that

R𝑟 ( .%) = inf
{

1
2}⋆}

2
𝑀2
𝐻
∶ ⋆ )𝑀2

𝐻(Ω), ⋆ ≥ 0, )1, ⋆|𝑀2
𝐻
= 1,  (⋆) = .%

}
. (C.1)

Hence, R𝑟 ( .%) = +∞ if and only if the set

{⋆ )𝑀2
𝐻(Ω) ∶ ⋆ ≥ 0, )1, ⋆|𝑀2

𝐻
= 1,  (⋆) = .%}

is empty. Hence, the domain of R𝑟 is given by (24). It is direct to verify it is convex. To show it is non-empty, it suffices to choose 
⋆ ≡ 11𝐻Ω(Ω) to conclude that

1
𝐻Ω(Ω) ∫

Ω

& (!0)𝑎𝐻Ω(!0) ) )*+(R𝑟 )
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whence R𝑟 is proper.
To prove the convexity of R𝑟 , observe that the objective in (C.1) is strongly convex [27, Definition 10.7] and that the feasible 

set is closed. Then, there exists a unique ⋆𝛼 such that [27, Proposition 11.8]

R𝑟 ( .%) =
1
2}⋆𝛼}

2
𝑀2
𝐻
.

Let .%1, .%2 ) )*+(R𝑟 ), let ⋆1 = ⋆𝛼1 and ⋆2 = ⋆𝛼2 , and let 𝜕 ) [0, 1]. Since

𝜕⋆1 + (1− 𝜕)⋆2 ≥ 0, )1, 𝜕⋆1 + (1− 𝜕)⋆2|𝑀2
𝐻
= 1 and  (𝜕⋆1 + (1− 𝜕)⋆2) = 𝜕 .%1 + (1− 𝜕) .%2

we see that

R𝑟 (𝜕 .%1 + (1− 𝜕) .%2) ≤ 1
2}𝜕⋆1 + (1− 𝜕)⋆2}2𝑀2

𝐻

≤ 1
2𝜕}⋆1}

2
𝑀2
𝐻
+ 1

2 (1− 𝜕)}⋆2}
2
𝑀2
𝐻

= 𝜕R𝑟 ( .%1) + (1− 𝜕)R𝑟 ( .%2).

Therefore, we conclude R𝑟 is convex.

C.2. Proof of Proposition 6

By the choice of & we have )*+(R𝑟 ) 𝑇Ω. To show &'((Ω) 𝑇 )*+(R𝑟 ) let 60 ) &'((Ω) and let S > 0 be such that O(60, S) 𝑇 &'((Ω). 
Then, it suffices to choose

⋆(!0) ∶=
1

𝐻(O(60, S))
𝑣O(60 ,S)

to conclude that 60 ) )*+(R𝑟 ). Now, it remains to show that 60 ) /)(Ω) 4 )*+(R𝑟 ). Suppose there is ⋆ ) 𝑀2
𝐻(Ω) with ⋆ ≥ 0 and 

)1, ⋆|𝑀2
𝐻
= 1 such that

60 = ∫
Ω

⋆(!0)!0 𝑎!0 ⇒ ∫
Ω

⋆(!0)(!0 − 60)𝑎!0 = 0.

Let 0 )𝑋Ω(60) where 𝑋Ω denotes the normal cone. Define for 𝜏 ≥ 0

Ω𝜏 ∶= {!0 )Ω ∶ )0, !0 − 60| ≤ 𝜏}
and observe that Ω =Ω0. If ⋆ ≥ 0 on a measurable set 𝑐 𝑇Ω𝜏 for some 𝜏 < 0 then

∫
𝑐

⋆(!0))0, !0 − 60|2 𝑎!0 ≤ 𝜏∫
𝑐

⋆(!0)𝑎!0 < 0.

However, this implies

0 = ∫
Ω∩𝑐

⋆(!0))0, !0 − 60|2 𝑎!0 + ∫
Ω⧵𝑐

⋆(!0))0, !0 − 60|2 𝑎!0

< 𝜏∫
𝑐

⋆(!0)𝑎!0 + ∫
Ω⧵𝑐

⋆(!0))0, !0 − 60|2 𝑎!0.

We conclude that

0 < −𝜏∫
𝑐

⋆(!0)𝑎!0 < ∫
Ω⧵𝑐

⋆(!0))0, !0 − 60|2 𝑎!0 ≤ 0

which is a contradiction unless 𝜏 = 0. Therefore, ⋆ must be supported on

Ω∩ {!0 )ℝ𝑎 ∶ )0, !0 − 60|2 = 0} 𝑇 {!0 )ℝ𝑎 ∶ )0, !0 − 60|2 = 0}.

Since the set in the right-hand side has Lebesgue measure zero, we conclude ⋆ = 0. This contradiction proves the first statement of the 
proposition. To prove the second, let 60 ) /)(Ω) and let {6𝐷}𝐷)ℕ be a sequence in &'((Ω) with 6𝐷 → 60. Let {⋆𝐷}𝐷)ℕ be the sequence 
of optimal solutions to (14) for each 6𝐷. Suppose that {R𝑟 (6𝐷)}𝐷)ℕ remains bounded by a constant 𝑘 > 0. This implies that }⋆𝐷}𝐷)ℕ
is norm bounded in 𝑀2(Ω). Since norm bounded sequences are weakly convergent the sequence has a weak limit ⋆0 ) 𝑀2(Ω) [27, 
Theorem 2.33]. Since the set {⋆ )𝑀2(Ω) ∶ ⋆ ≥ 0, )1, ⋆|𝑀2 = 1} is norm closed, it is weakly closed and ⋆0 also belongs to this set [27, 
Theorem 3.34]. However, the function ̂ (!0) = 𝜂0,𝑔 is in 𝑀2(Ω) for each 𝑔 ) {1, … , 𝑎}. Therefore,
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∫
Ω

⋆𝐷(!0)𝜂0,𝑔𝑎!0 = 6𝐷 → 60 = ∫
Ω

⋆0(!0)𝜂0,𝑔𝑎!0.

However, 60 lies in the boundary. Using the same arguments as before, we reach a contradiction. This proves the claim.

C.3. Proof of Proposition 7

We show that R◦
𝑟 is invariant under transformations of the form M (6) =?(6− 60) + 60 for any 𝑎 + 𝑎 orthogonal matrix ?. The 

value of R◦
𝑟 (M (!0)) is the optimal value of the problem

minimize
⋆)𝑀2

𝐻 (Ω)∶⋆≥0
1
2 ∫

Ω

⋆(!0)2𝑎!0

subject to ∫
Ω

⋆(!0)𝑎𝐻Ω(!0) = 1, ∫
Ω

⋆(!0)!0𝑎𝐻Ω(!0) = M (6).

However, M induces an isometric isomorphism  ∶ 𝑀2
𝐻(Ω) ↦ 𝑀2

𝐻(Ω) given by  (⋆)(!0) = ⋆(M (!0)). Therefore, the optimal value to 
the above problem is equivalent to

minimize
⋆)𝑀2

𝐻 (Ω)∶⋆≥0
1
2 ∫

Ω

⋆(!0)2𝑎!0

subject to ∫
Ω

⋆(!0)𝑎!0 = 1, ∫
Ω

⋆(!0)M (!0)𝑎!0 = M (6),

whence R◦
𝑟 (M (6)) = R◦

𝑟 (6). It follows that the function ̂ ∶ .O2(0, 1) → ℝ given by ̂ (0) = R◦
𝑟 (S0 + 60) is invariant under any 

orthogonal transformation. We conclude that ̂ (0) = <(}0}2) for some non-negative function < and, by a suitable change of variable, 
we arrive to the first statement. Note that < ≥ 0 as R◦

𝑟 ≥ 0. Furthermore, since ̂ (0) = <(}!}2) is convex on .O2(0, 1) then < must be 
convex and non-decreasing. Finally, from Proposition 6 we deduce that <(𝜏) →∞ as 𝜏 → 1 as this implies 6→ /)(Ω). The second 
statement follows by standard arguments and the fact that < is non-decreasing. We omit the proof for brevity.

Appendix D. Proof of main results in Section 5

D.1. Proof of Proposition 8

We have the bound

𝜔2(J,5) = ∫
Ω

(ℎ(J,5,!0)−I(J,5))2𝑎(Ω(!0)

= ∫
Ω

⎛
⎜
⎜⎝∫Ω

(ℎ(J,5,!0)− ℎ(J,5,!′0))𝑎(Ω(!′0)
⎞
⎟
⎟⎠

2

𝑎(Ω(!0)

≤∬
Ω

(ℎ(J,5,!0)− ℎ(J,5,!′0))
2𝑎(Ω(!′0)𝑎(Ω(!0).

From the identity

1
2 (P + 𝜂2)

2
+ − 1

2 (P + 𝜂1)
2
+ = (𝜂2 − 𝜂1)

1

∫
0

(P + 𝜕𝜂2 + (1− 𝜕)𝜂1)+ 𝑎𝜕

for any P, 𝜂1, 𝜂2 )ℝ we deduce

{ℎ(J,5,!0)− ℎ(J,5,!′0){ ≤
⎛
⎜
⎜⎝

1

∫
0

(J + )5, (1− 𝜕)& (!′0) + 𝜕& (!0)|)+𝑎𝜕
⎞
⎟
⎟⎠
{)5, & (!0)−& (!′0)|2{

≤ ⎛
⎜
⎜⎝

1

∫
0

((1− 𝜕)(J + )5, & (!′0)|2)+ + 𝜕(J + )5, & (!0)|2)+)𝑎𝜕
⎞
⎟
⎟⎠
{)5, & (!0)−& (!′0)|2{

=
(1
2 (J + )5, & (!′0)|2)+ + 1

2 (J + )5, & (!0)|2)+)
)
{)5, & (!0)−& (!′0)|2{
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≤ }5}2
(
{J{+ 1

2}5}2(}& (!0)}2 + }& (!′0)}2)
)
}& (!0)−& (!′0)}2

the proposition follows.

D.2. Proof of Proposition 9

Since

,𝐷(J,5)−3I(J,5) = 1
X

X(
𝑅=1∬Ω

(3ℎ(J,5,!(𝐷,𝑅)0 )−3ℎ(J,5,!0))𝑎(Ω(!0)𝑎(Ω(!
(𝐷,𝑅)
0 )

we have

"!0∼(Ω },𝐷(J,5)−3I(J,5)}22 =
1
X2

X(
𝑅=1∬Ω

}3ℎ(J,5,!(𝐷,𝑅)0 )−3ℎ(J,5,!0)}22𝑎(Ω(!0)𝑎(Ω(!
(𝐷,𝑅)
0 )

= 1
X ∬

Ω

}3ℎ(J,5,!′0)−3ℎ(J,5,!0)}22𝑎(Ω(!0)𝑎(Ω(!′0)

From

{LJℎ(J,5,!′0)− LJℎ(J,5,!0){ = {(J + )5, & (!′0)|2)+ − (J + )5, & (!0)|2)+{
≤ }5}2}& (!′0)−& (!0)}2

and

}35ℎ(J,5,!′0)−35ℎ(J,5,!0)}2 ≤ {(J + )5, & (!′0)|2)+ − (J + )5, & (!0)|2)+{}& (!′0)}2
+ (J + )5, & (!0)|2)+)}& (!′0)−& (!0)}2

≤ (}5}2}& (!′0)}2 + {J{+ }5}2)}& (!′0)−& (!0)}2
we deduce

}3ℎ(J,5,!′0)−3ℎ(J,5,!0)}22 ≤ 2}& (!′0)−& (!0)}22(}5}22 + (}5}2}& (!′0)}2 + {J{+ }5}2)2)
from where the inequality follows. We omit the details for brevity.
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