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estimated from measured data. Performing parameter estimation and quantifying the uncertainty
in these estimates becomes critical to realize the predictive power of dynamical systems. In some
applications, only measurements about the states of an ensemble of systems are available, where
each one evolves according to the same model but for different parameter values, leading to
aggregate data problems. In this case, an approach proposed in the literature is to estimate a
density that is consistent with some estimates of the expected value of some quantities of interest.
To solve the problem in practice, the density is discretized and, to solve the resulting ill-posed
problem, Tikhonov regularization is used. In this work, we propose a Bayesian model that shows
this approach can be interpreted as a maximum a posteriori estimate for the density. We show that
the infinite-dimensional problem defining the MAP can be reformulated as a finite-dimensional
problem that does not require discretizing the density. In several cases of interest, this problem
is convex, unconstrained, and the objective function is smooth. Thus, it can be solved using
algorithms with optimal convergence rates. The trade-off is that the objective is defined by an
integral. However, our results characterize the regularity of the integrand, allowing the use of
tailored numerical schemes to approximate it. Furthermore, our theoretical results characterize
the form of the optimal density, whereas our numerical results illustrate the performance of our
method and confirm our theoretical findings.

1. Introduction

Dynamical systems are a cornerstone of mathematical modeling in engineering and in the applied sciences. Models based on
dynamical systems are broadly used due to their predictive power [1,2] and due to the availability of numerical methods that
accurately simulate them [3-5]. However, in practical applications these models depend on unknown parameters that must be
estimated from some observed trajectories of the system. Thus, to realize the predictive power of dynamical systems in practice, it
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is not only important to develop methods to estimate these parameters from experimental measurements, but also to quantify the
uncertainty in these estimates, and their impact on the predictions obtained from numerical simulations [6-9].

Typically, several quantities of interest (Qols) are measured, possibly with errors, from observed trajectories. These measurements
are then used to estimate the unknown parameters and to quantify the uncertainty on these estimates, i.e., the objective is to
perform model calibration and/or inverse uncertainty quantification [8, Chapter 1]. If we have measurements of the Qols from several
trajectories generated by the same system, i.e., a system for which there is no uncertainty in the parameters, we obtain a longitudinal
data problem [10]. In this case, the likelihood can usually be characterized and Bayesian methods are well-suited to simultaneously
estimate the unknown parameters, e.g., using the posterior expectation or the maximum a posteriori (MAP), and to quantify the
uncertainty in these estimates (see, e.g., [8, Chapter 8]). However, in some applications one can only measure the Qols from
trajectories generated by an ensemble of systems that evolve according to the same model, but may do so according to different
values of the unknown parameters. As a concrete example, estimating the unknown parameters in the CAR T-Cell cancer model
proposed by Schacht et al. [11] requires measuring the amount of T-cells in mice. As this measurement cannot be performed in the
same mouse at different times, a cohort is used, and one measurement is performed for each mouse. Thus, we have observations about
systems that evolve according to the same model, but for different values of the unknown parameters. In this case, the parameters
are assumed to be random variables with an unknown distribution, and we obtain what is called an aggregate data problem (see,
e.g., [12] or [13, Chapter 5]). Thus, the natural object to estimate is the unknown probability distribution of the parameters, and to
quantify the uncertainty in this estimate.

Banks et al. [14] propose to estimate the probability density by enforcing consistency with the expected value of a QoI estimated
from several measurements made about an ensemble of systems. Since the object to be estimated is a density, and thus an infinite-
dimensional object, this is a nonparametric method. To compute this density in practice, they propose to discretize it, e.g., using a
mesh, splines, or other approximations, to then solve a least-squares problem enforcing consistency with the measured data (see,
e.g., [13, Chapter 5] or [15, Chapter 14]). The discretization leads to a parametric method which may lead to determined or
underdetermined problems depending on the number of constraints imposed on the density and the number of degrees of freedom
used to discretize it. The authors in [16] extended this approach by enforcing additional constraints on the unknown density, such
as constraining the value of its higher-order moments, or the dispersion of the state of the system around a given point at specific
times. To compute a discretized density satisfying these constraints efficiently, the authors leverage convex programming and the
Koopman operator. This relies on the fact that the method proposed by Banks et al. leads to a convex least-squares problem, and on
the fact that a single probability density at the initial time that can be pushed forward in time by the system dynamics using the
Koopman operator. In fact, when the constraints are linear, they become constraints on the expected value of the Koopman operator
applied to a Qol [17]. To regularize the solution to a possibly underdetermined system, which occurs when the degrees of freedom
of the discretization exceed the number of constraints, the authors propose penalizing the values of the density at its discretization
points by its £,-norm squared, i.e., by applying Tikhonov regularization [18]. The resulting problem can be interpreted as Tikhonov
regularization for moment constraints on the unknown discretized density.

Although this approach has appealing properties, some open questions remain about its practical implementation. On one hand,
solving the problem by discretizing the density can implicitly restrict its support, and, when the discretization is over a mesh as
suggested in [17], it can preclude the use of the method in several practical applications. There is a growing number of engineering
problems where the input to the model and its parameters are high-dimensional. For instance, the quantification of uncertainties in
Mars’ atmospheric entry, descent, and landing processes due to the uncertainty present in the atmosphere density, the initial states,
and other model parameters [19], wind-turbine simulators that take time series of simulated wind speed as the input to predict
mechanical loads on its sub-structures and fatigue [20], and the study of variations on fabrication processes on nano-scale chip
design, such as the surface roughness of interconnects and the random doping effects in transistors, that influence the performance
of chips [21].

On the other hand, Tikhonov regularization has several computational benefits, particularly its use of a smooth and strongly
convex regularizer, and it is widely used to solve ill-posed or ill-conditioned inverse problems. However, its use as a regularization
strategy to estimate a probability density lacks an intuitive statistical interpretation, particularly in contrast to other regularizers,
such at the KL divergence [22]. This limits the appeal of the approach, and makes the interpretation of its results challenging.
Consequently, both developing a theoretical framework that allows us to interpret this method as a classical estimation proce-
dure, and developing implementations of this method that are computationally efficient, along with suitable theoretical guarantees,
would foster its adoption for uncertainty quantification in aggregate data problems involving high-dimensional dynamical sys-
tems.

1.1. Contributions

To introduce the method, consider the case of a dynamical system in R? given by
x(1) = £, x(0)
x(0) =x,

where there is uncertainty in the initial condition. For simplicity, suppose that we have an estimate E,O of the expected state at a
time #,. Then, to estimate the uncertainty on the initial condition from observations about the state of the system, we may look for a
density p that satisfies the constraint
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/x(to,xo)p(xo)dxo ~ Xy

where x = x(#, x) is the state at time ¢ for the initial condition x,. There is an infinite number of densities satisfying this constraint
exactly. The method proposed in [16] involves solving the convex problem

2
R 1 -
rmm;mze A/p(xo)zdx0+ 3 ||/x(to,x0)p(x0)dx0 - X, ,

(€))
subjectto p >0, /p(xo)dxo =1,

for some regularization parameter A > 0 and over a suitable functional space. This problem can be interpreted as Tikhonov regular-
ization on moment constraints. A direct approach to solve this problem numerically in low-dimensions is to discretize the integrals
using N :=n? equispaced nodes {xg,}- Then, by defining

p(xo,1) x;(tg, Xo,1)
p= : and a;= :
p(xo N) x;(tgs X0, n)

we may solve

AAx4 1 d _
S lols + 5 X (Ax¥(a;. p)y =%,

subjectto p >0, Axd(l, pr=1

minimize
p

where 1 is the vector with all its entries equal to one and Ax is the discretization step. On one hand, this is a convex optimization
problem with a number of variables that is exponential in the number of dimensions, precluding the use of this method for high-
dimensional problems. On the other hand, it is not intuitive why (1) is an efficient estimation procedure for the density, nor what is
the class of possible densities that can be selected by this procedure.

In this work, we introduce a Bayesian model that provides a theoretical framework to interpret (1) as a MAP estimate for the
density. This not only relates Tikhonov regularization to nonparametric estimation, in the sense that the parameter lies on an infinite-
dimensional space [10], but possibly with Bayesian nonparametric methods [23]. Furthermore, we provide a method to solve (1)
without needing to discretize the density. By leveraging convex duality, we prove that, even in general cases, the problem (1) can
be reduced to a smooth, finite-dimensional convex optimization problem in d + 1 variables which involves the computation of a
d-dimensional integral. Furthermore, the dual problem allows us to provide a closed-form expression for the optimal density, a result
that has both computational and statistical implications.

We consider the following as the main contributions of our work.

(i) Tikhonov regularization as a MAP estimate: We propose a Bayesian model that provides a rigorous justification for using
Tikhonov regularization on moment constraints to perform input uncertainty quantification, and allows us to interpret the
computed density as a MAP estimate for this model.

(ii) Connections to regularized regression: When we have incomplete linear measurements about some Qols, we show that
solving (1) is equivalent to solving a regularized regression problem for the expected values of the Qols themselves.

(iii) Geometry and support: We explicitly study the effect of restricting the support of p to a convex set Q, showing through
theoretical results and numerical experiments that it has a significant impact on the estimated density.

(iv) Closed-form expressions: We provide closed-form expressions for the optimal probability density, showing the explicit de-
pendence of the probability density both on the Qols and on the dynamics of the system.

(v) High-dimensional problems: We show that by solving a finite-dimensional convex problem with a number of variables that
is proportional to the number of Qols, we may recover the optimal solution to (1), enabling the efficient implementation of
the method for high-dimensional problems.

1.2. Organization

The paper is organized as follows. In Section 2 we develop a Bayesian model that allows us to interpret Tikhonov regularization
as a MAP estimate for the density. In Section 3 we show that the infinite-dimensional convex problem defining the MAP leads to an
equivalent finite-dimensional problem. In Section 4 we explore the connections between our method and a regularized regression
problem for the expected values of the Qols. In Section 5 we discuss efficient methods to find an optimal solution to the optimization
problem we introduce. In Section 6 we show study the performance of the method in terms of the kind of densities it selects, and the
effect of the support on them. We conclude in Section 7 with a discussion of our results.
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2. Uncertainty quantification by Tikhonov regularization
2.1. The model

In this work, we consider random differential equations [8, Chapter 3] in R? of the form

{ x(1) = f (1, x(0))

where  xo ~ 1L, ()]
x(0) =x,

for some unknown probability measure I, on R¢. Typically, it will have a density Py, With respect to a reference measure y such
as the Lebesgue measure. We assume that this equation accurately models the physical phenomenon of interest, that is, that any
model uncertainty [8, Chapter 2] is negligible. In practical applications, we only have available sample trajectories x = x(z, x)) of the
system for a few realizations of x,, and for each one of these realizations we typically measure a small number of fixed quantities of
interest (Qols) uy, ... ,u,. Since the fluctuations in the values of these Qols are only due to the fluctuations in the initial condition, we
represent these Qols as a function

u="U(xp).

We shall assume that the Qols can be computed to high accuracy and precision, so that there are no significant numerical uncer-
tainties [8, Chapter 2] associated to this model. The measurement of the Qols is typically corrupted by additive noise, which is
statistically independent of x,. Therefore, instead of u we observe

y=U(xp) +¢ 3
(1)

0 5
and measurements y(!, ..., y" from which we want to quantify the uncertainty on the initial condition, that is, to quantify the input
uncertainty [8, Chapter 3] in (2). This is sometimes called an aggregate data inverse problem [10,12]. In this case, it is not sufficient
to provide a point estimate for the initial condition, as it is a random variable. Hence, it is necessary to find a suitable probability
distribution that approximates I, and thus the uncertainty on x,.

for some centered random vector €. Thus, a sample x . ,xg') of unknown initial conditions leads to a sample of Qols u", ..., u®

Instead of formulating a Bayesian model directly from (3) we proceed as follows. We assume throughout that &€ ~ A0, 621 o
Then
ylu NN(u,cerq).
To model the distribution of u we decompose its behavior in terms of an average value & and fluctuations around this average that
do not depend on exogenous parameters, that is, we assume that
ula~1II, la

for some probability measure II, ;. To model the behavior of the average, let {II
distribution of x, with parameter space ® C R* and let

xo|6 - @ €O} be a parametric model for the
ul0= Exo~ﬂx0 1o LU (x0)]-

Finally, we let I1, be a prior for 6. This leads to the Bayesian model

ylu~ N@,o?1,),
u|l_lNHu|,;,

#10=Eq ., ,[UG)),
6 ~Tl,.

4

If [Ty, is the posterior obtained from this model, then the posterior for x is

Plx, € Al = / I, o(A)dIl,) ,(6)
[C]

The dimension s of the parameter space ® constrains the flexibility of the model we use for & which, in turn, constraints the flexibility
of the posterior for x,. For this reason, we will introduce a parameter space ® and a suitable prior measure I1, on ® that allows us to
control the flexibility of the model, focusing on the asymptotic regime for s> 1. Furthermore, instead of aiming to find, or sample
from, the posterior distribution, we will focus on characterizing the maximum a posteriori (MAP) for the parameter 6. However, before
proceeding, we discuss some extensions of this model and its connections with previous work.
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2.1.1. Partial measurements of Qols
In some applications, we cannot measure the full set of Qols for the sample trajectories. The results we will present extend
naturally to the case in which we observe incomplete linear measurements of the Qols. In other words, we assume that there exists a
m X g matrix A such that we are only able to measure Au. This leads to the partial measurement model
y=AU(xy) + €.
In this case, for u’ = Au the model (4) simply becomes
ylu ~N@W, o*I,)
u |l_ll NHI/W’
0= AEXo~“x0 " [U (x)]
6~T1l,

and the same results that hold for (4) will hold for this model. It is straightforward to see this is equivalent to (3) if we define
U’ = AU. However, in Section 4 we discuss the advantages of treating the measurement matrix A separately from the Qols.

2.1.2. Connection with the Koopman operator
A special case of Qols has the form

U, (x(t,xg))
U(xy) = :
U, (x(t,,xp))

for some known instants 7, ..., 7, and functions Uy, ..., U,. In this case, we may represent the Qols in terms of the Koopman opera-

tor [24,25]. If we denote as ®'(x,) : = x(t, x,) the flow of the system [2, Chapter 1] then the Koopman operator K, maps f : RY - R
to

K, f(xq) 1= f(P"(x0))-

This allows us to write

K, U, (xo)
U(xy) = : .
K,q U,(xp)
The expected value of U can also be represented in terms of the pushforward of IT 0 under @ at each 7,...,7,. In fact,

/K,f(xo)dl'lxo(xo) = / f(q)'(xo))dﬂxo(xo) = /f(X,)dqﬁon(x,)
or, equivalently, x(t, x,) ~ ‘D;on when x, ~ HXO. Hence,

Exyon, [Ki Ui(x0)] Exfl ~a T, WU1(x;,)]
By, [U(x0)] = ; = :
ExO~HXO [Ktq Uq(xo)] Exrq N(D;q HX() [Uq(xtq )]
This identity has been used previously in [16,17] to reduce the computational burden of computing the expected values in the
right-hand side, which requires sampling from the measures @;‘ IO, CI>:f II,, by sampling from IT, and then applying the maps
o, ..., Dl

2.1.3. Parametric systems
In the random differential equation (2) only x, is assumed to be uncertain. However, random differential equations in R4 of the
form

y() =gt y(1), %)
where  (yo,99) ~ Iy, g ”

y(0) =y,

where both the initial condition y, and a p-dimensional parameter  distribute according to an unknown probability measure I, o,
are frequent in practice. An equation of this form can be represented as the equation of the form (2) in R? x R” by defining

. . .y, 9
R A L

and then considering the random differential equation
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{ x(t)= £, x()
where  xo ~II
x(0) =x,

The first d state variables of a trajectory of this system correspond to a trajectory of (5). In this form, the uncertainty is on the initial
condition and thus our methods can be applied to quantify the uncertainty in any finite-dimensional parameter of the equation.

2.2. Tikhonov regularization as non-parametric maximum a posteriori

To define a family {Il, 5 : 6 € ©} for x, that can adapt to complex data we proceed as follows. First, in most practical
applications we can usually assume that the initial condition x;, must belong to a sufficiently large bounded set. Therefore, we choose
a compact set Q C R? containing the possible values of x, and we fix a finite positive Borel measure y on Q that will act as a
dominating measure; we further assume, without loss of generality, that Q is the support of ;. We will restrict ourselves to probability
measures on Q that have a density p with respect to pg,, i.e., measures for which we have IT = pjug,, and for which the densities belong
to the space of (classes of equivalence of yg-almost everywhere equal) yg-square-integrable functions

Li(Q):: P Q-oR: /(p(xo)zdug(xo)<oo ,
Q

which becomes a Hilbert space when endowed with the inner product

(Q.v)p2 = / @(xo)w (x0)d py(xp)-
Q

To ensure that the integral expressions that arise are well-defined, we assume that the Qols also belong to this space, whence

/ 1T (x0)II3 d gy (x) < co. ©
Q

Since yug is finite, the functions in Li(Q) are absolutely integrable and 1 € Li(Q). As a consequence, the subset of probability
densities

P, = pELi(Q): pZO,/p(xO)dﬂQ(xo)Zl
Q

in Lﬁ(Q) is closed and convex.

Restricting ourselves to densities in P, allows us to leverage standard techniques to construct finite-dimensional approximations
to approximate a density p. Let V, C Li(Q) be a finite dimensional subspace with dim(V,,) = n. Since not all elements of V,, are
densities, we define

P,,:=V,nP, @)
Let ¢4, ..., ¢, be an orthonormal basis for ¥, and, to simplify notation, define
b1
o=|:
Pn

When p € P, , we can represent the density as

p=(a. @)=Y _ ao, ®)

for a suitable coordinate vector a € R". An appealing property of this representation is that the expected value of any function
fe Li (Q) with respect to this density depends only on the orthogonal projection fy, of f onto V,. In fact,

E,,lfxl=Y 4 / @) f (o) o (%)= Y, 4, / @,(X0) fy, (X0)d o (xg) = Ey L fy, (xp)].
Q Q

This becomes useful, for instance, when the distance from f to V), is small, or when V, encodes some desirable property of p, such
as smoothness or localization.

It is not clear a priori if P, , is empty. To ensure it is not, and to parameterize densities of the form (8) in terms of their coordinates,
we need to first restrict the possible values of this vector to ensure that the expansion defines a density. We defer the proof of this

proposition to Appendix A.1.
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(a) Normalized Legendre polynomials (b) Random densities of degree 1 (c) Random densities of degree 2 (d) Random densities of degree 4

Fig. 1. Random densities on Q = [—1,1] with pg, the Lebesgue measure sampled from the set P, , generated by the normalized Legendre polynomials and the prior
in (9). The blue line shows the expected density, whereas the red lines show sampled densities. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

Proposition 1. Suppose that ¢, ..., ¢, are bounded and that ¢ is strictly positive on Q. Then there exists a convex set Oy, C R~ with
non-empty interior, a vector a, € R", and a n X (n — 1) matrix V with V*V =1 and V *a, =0 such that

(a,9)€P,, < 316€0y : a=a,+V0.

In particular, P,

. 1S NoN-empty.

Proposition 1 and the representation (8) allows us to identify the set of parameters Oy, with the set of densities P, , whence a
prior on 6 € ©y, will induce a prior on p € P, ,. Fix 4> 0 and define on R"~! the probability density with respect to the Lebesgue
measure given by

Yo, (@) H1OI3/2
Vn

-6z ;o
/@)v e 2/ do

n

py(0) = )

where the normalizing factor is strictly positive as ©;, has non-empty interior, and where yg,, is the indicator function of the set
n

Oy, . In Fig. 1 we see how this approach can help us draw random densities from P, ,,.

Suppose that I1,,| ; has density

uli

Pu) 2 () eV

for some function y on RY x R4 If we use the prior for @ in (9) in the model (4) then the likelihood is proportional to

)
ly—ul

Xoy, (@) exp 752

A
exp| -y u,/U(xo)pe(xo)dﬂg(xo) exp <—§||9||§)
Q

where the constant factors depend on A and o. Instead of attempting to compute, or to sample from, the posterior we will compute
the maximum a posteriori (MAP) estimate for 0, which is the solution to

- 1 A
Shaximize log(xe, () - glly —ul}-v]|u / U (xg)po(x0)d pug(xp) | — EII9||§
Q

The term log( Xe, (z)) essentially imposes the constraint 8 € ®Vn whereas u remains unconstrained. Hence, we write
n

. s A
m%)égl;:ze -L Zi:l Oi/U(xo)(Pi(xo)dﬂg(xo)»y —5”9”%
Q

where

o o 2
L@.y) := inf, <w(u,u)+ ﬁllu—sz)

is the Moreau envelope [26, Definition 1.22] of y on its first argument. The envelope enjoys some regularity, namely, if u — y(u, ) is
lower semicontinuous and majorizes a quadratic for a fixed @ then y — L(@, y) is continuous [26, Example 1.24 and Theorem 1.25].



E. Villalén, Q. Yang and C.A. Sing Long Journal of Computational Physics 513 (2024) 113141

This problem is the classical problem of ridge regression or Tikhonov regularization to estimate 0. It is clearly a finite-dimensional
problem and, when L is convex on #, it is also convex. We can leverage Proposition 1 to represent this problem in terms of p itself.
In fact, since ¢y, ..., @, are orthonormal, we have the isometry

2 2 2 2 2
IIPIIL% = llall; = lla, + VOI; = lla,ll; + 161]5-

Since the constraint 6 € ©y, is equivalent to py € P, , and the norm of a,, is independent of 6, finding the MAP for 6 is equivalent
to finding the density that solves the problem

- A
maximize — L| | U(x)p(x)dpq(x).y [~ 5ol (10)
PEP, » 2 Ly
Q
This problem is also a form of regularization, but for the density itself, which emphasizes the choice of ¥V, over the particular choice
of basis @1,...,@,. If {V,},cy is an increasing sequence of subspaces for which
_72
U =L@ an

then, from (7), we conclude that the asymptotic regime when n>> 1 leads to the infinite-dimensional problem

.. A

maxipize | [ UGo)o(odnat.y |- 210l (12)
pEPﬂ 2 Lﬂ

Q

This is a nonparametric method in that the parameter, i.e., the density p, lies on an infinite-dimensional space. We can prove that,
under suitable conditions and in a suitable sense, the sequence of MAP estimates found by solving (10) for increasingly large values
of n converges to a density found by solving (12). We defer the proof of the proposition to A.2

Proposition 2. Suppose that {V,,},cy is an increasing sequence of finite-dimensional subspaces of Li (Q) for which (11) holds, and suppose
L is non-negative and continuous on its first argument. Furthermore, suppose that for every n € N the problem (10) has an optimal solution
p*" and that (12) has at least one solution. Then a subsequence of {p*"},cn converges weakly to a solution to (12).

The proposition formalizes the intuition that a solution to (12) represents the limit of MAP estimates for the density. However,
to be truly considered a MAP estimate, we would need to introduce a suitable prior on the set P,. This would result in a Bayesian
nonparametric method [23]. We do not address the question whether there exists such a prior. Instead, we focus on analyzing the
properties of (12), that is, the existence, uniqueness, and features of its optimal solution.

3. Analysis of the variational problem

We study the family of problems induced by (12) given by

minimize  2llpl, + 5 L(4.y)
PELZ(Q),GEC: p>0 2 22
13)
subject to /P(xo)dug(xo) =1, /p(xo)U(xO)dﬂQ(xo) _—
e Q

where C C R? is a closed convex set representing restrictions on & induced by the prior Il,;, e.g., non-negativity constraints,
bound constraints or norm constraints, and L is a loss function which we assume is convex on its first argument. The regularization
parameter A > 0 controls the trade-off between the loss and the squared-norm penalization term on p.

Proposition 3. There exists a unique minimizer to (13).

We defer the proof of this proposition to Appendix B.1. Observe that the method proposed in [16] is equivalent to solving

minimize 1 ||p||2
peL2(@):p20 2 L;

14
subject to /P(xo)dﬂg(xo)=1= /ﬂ(xo)U(xo)dllQ(xo):l_‘
Q Q

and that this is a particular case of (13).

From now on, we let p* be the optimal solution to (13) and we let IT* := p* ug, be the probability measure associated to the
optimal density p*. Since (13) is an infinite-dimensional problem, it is necessary to find numerical approximations to its solution.
Although this may be achieved by constructing suitable spaces V,, we leverage convex duality instead to reformulate the problem in
an equivalent form that is amenable to accurate approximations of its solution.
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3.1. The dual problem

Instead of attempting to solve or to approximate (13) directly, we leverage convex duality to find an equivalent formulation that
is amenable to numerical methods for high-dimensional optimization problems. We briefly review the arguments behind convex
duality. First, rewrite (13) as the equivalent problem,

. 1 5 1 _
minimize =llpll%, +1,24(p) + = L(v,y) + ()
peL%(Q),aeRY,veR 2 7Lt A ¢
(15)
subject to / p(x0)dpug(xg) =1, /p(xO)U(xO) dug(xg)=u, Aua=v,
Q Q

where [, 2+ is the indicator function of the closed and convex cone of non-negative functions in L‘Zl (Q), and [ is the indicator function
U
of the convex set C C RY. If we define the Hilbert spaces
Xpi=L.(@XRIXR" and X, :=RxRIXR",

the linear map B : Xp — X as

__/_Q p(xg)d pg(xp)
B(p,a,v)=| — /Q p(x)U (xo)d pg(xg) +u |,
—Au+v

the vector r € X, as

-1

and the convex functions f : Xp >R and g: X, > R as
_ 1, 2 1 _
f(p.a.v)=> II/JIIL‘% +lpe() + zL(v, y) +lc@),
g 0,8) =lo((n,@,8) —r),
then (15) can be written equivalently as the unconstrained problem

minimize ,u,v)+ g(B(p,u,v) —r).
minim XZP f(p,u,v) + g(B(p,u,v) —r) (16)

We call this the primal problem and its optimal solution (p*,@*,v*) the optimal primal variables. Its dual problem is

r(;nggg{Z; - =B (1,0,8) - g"(n,0,&) 17)

where f* and g* are the convex conjugates [27, Definition 13.1] of f and g and B* : X, — X is the adjoint of B. The optimal
solution (n*,w*,&*) yields the optimal dual variables. In some cases, solving the dual problem may be much easier than solving the
primal problem. However, this is useful only if we are able to recover the optimal primal variables by solving the dual problem. When
strong duality holds, the optimal values for (16) and (17) coincide, and we may obtain the optimal primal variables from the optimal
dual variables. In the literature, this is also referred as total duality. We defer the proof of the following theorem to Appendix B.2.

Theorem 1. Strong duality holds for (13). The dual problem is the finite-dimensional problem
maximize — H(n,®)+n— lL*(—/lg, y) —I5(A'E - w),
n.0.5 A

where L* is the convex dual of L on its first variable, ﬂé is the convex dual of |- and H : R X RY — R is the convex function
1
H@p=3 [ @+ 6.0 duax. as)
Q

Furthermore, if (n*,@*, £*) are the optimal dual variables then the optimal primal variables are
P*(x0) 1= (" + (@™, U(xg))o)s,

= /('1* +(@*, U(x0))2) U(xq) d g (),
Q

v* = Au*.
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There are several consequences of this result. First, the theorem fully characterizes class of density functions that can be obtained
by solving (13). Hence, when the optimal dual variables n*,®* are known, we may evaluate the optimal probability density to
compute any statistics about the initial condition and about the Qols. Second, the class of density functions is no more complex than
that defined by the Qols. To be concrete, if Uy, ..., U, are the components of U, then the optimal probability density can only have
the form

p*(x0) = (,7* n Zle wl.*U[(xo))+

or, equivalently, it must be the positive part of some function in the span of 1,Uy, ..., U,e Li(Q). Third, we may change the
properties of the optimal density found by solving (13) by modifying the reference measure pq. Fourth, it shows that we can
solve (13) by solving its dual problem, which is equivalent to the convex minimization problem

minimize H(y, ) —n+ 1 L*(=2£,y) + I5(A'E — ). (19)
n.o.& A

This problem is not only finite-dimensional, having 1 + g + m variables, but also unconstrained. Each one of the terms in the dual
objective encodes the information about the problem: the first about the QoI U, the second about the loss L, and the third about the
a priori constraints we impose on &. Usually, the last two terms reflect modeling choices and there is some freedom to select them. In
particular, we may choose the priors in such a way that the loss L and the set of constraints C have a small computational burden
when solving (19). In contrast, the first term depends on the Qols and the available data. As a consequence, it is typically the first
term that will contribute most to the computational cost.

The complexity of solving an unconstrained optimization problem depends on the regularity of its objective function. An important
property of H is that it is differentiable, with Lipschitz continuous derivatives. We defer the proof to Appendix B.4.

Proposition 4. The function H defined in (18) is continuously differentiable, with partial derivatives

aaH(a,ﬂ)=/(a+<ﬂ, U (x0))2)d uo(x),
Q

VyH(a, )= / U (xo)(@+ (B, Ulxo)) )y d g (xo).
Q
In particular, V H is Lipschitz continuous with

Lip(VH) < / max{ L, [U(xo)l13} d g (xo).
Q

Therefore, when L* and Hé are differentiable, we may solve (19) using gradient descent or projected gradient descent. These
algorithms are simple to implement, and their accelerated versions attain optimal convergence rates on the class of convex functions.

A natural question is whether we can leverage similar arguments to solve (13) when p is restricted to a finite-dimensional subspace
v, of Lfl(Q). Interestingly, a similar result to Theorem 1 holds in this case.

Theorem 2. Let V, C Li () be a finite-dimensional subspace containing at least one strictly positive function. Let 1y, .U,y ,..., U,y be
the orthogonal projections of 1,Uy, ..., U, onto V, and define Uy, accordingly. Consider the problem

o 1 2 1 _
peVngg}fzveeRm 3 IIPIIL,% +ly+(p) + AL(V’ y) + (@)
subject to / p(x0)dpug(xg) =1, / p(x DU (xg)dpg(xg)=u, Au=v.

Q Q

where V'* is the closed convex cone of non-negative functions in V,. Then strong duality holds for this problem, and its dual problem is the
finite-dimensional problem

maxirréize - H,(n,0)+n-— %L*(—/lf, y) —I5(A'E - w).

1,0,

where H,, : Rx RY — R is the convex function

2
Hywf)=1 / (v, G0+ 48, Uy, ko) ) dratxo).

Q

Furthermore, if the primal problem is feasible, and (1*,®*, ") are the optimal dual variables then the optimal primal variables are

10



E. Villalén, Q. Yang and C.A. Sing Long Journal of Computational Physics 513 (2024) 113141
. *
P (xg) 1= ('1 Ly, (xo) + (@™, UV,,(xo)>2)+’

a* ;:/<,7*1Vn(x0)+<w*, UVn(xo))2>+ U (x0) d g (o),
Q
v* = Au*.

3.2. Covariance terms

A critical condition to apply duality for (13) is that the constraints on the expectation are linear in the density, i.e.,

/ U (o)) o (xg) = .
Q

In general, this constraint could be replaced by any other convex constraint and our arguments would apply with minor modifications.
An exception would be any explicit constraints on the covariance matrix, as these would take the form

H Z=/x0p(x0)d/49(x0) and X :=/(xo—ﬂ)(xo—H)TP(xo)dMQ(xo)é
Q Q

while the former is convex, the second is not. We can overcome this limitation as follows. From the linear equality constraints

uo= / xop(x)dpug(xy) and X := / xX{ p(x0)d pigy (%)
Q Q

we recover the covariance as £ = X — uu’. Then, a convex loss or a convex penalization term for X and u can be added to the
objective function in (13). Similarly, some constraints can be imposed by choosing a suitable set C. In both cases, the same arguments
used in Theorem 1 allow us to compute the dual of the problem.

3.3. Special problem instances

3.3.1. Quadratic loss
A typical choice for the loss in problems of the form (13) is the quadratic loss. In this case,

Lw,y)= %Ilv -yll; and C=RY
This loss is obtained, for instance, when using the prior
1

pualy oce” 57

From this,

L*w.)= 1€+ (& y) and 1) =ly(@)
Since

WA E-—w) <0 & o=A'E,
this instance of the problem becomes

minr}’rgnize Hn, A'&) —n+ % €15 = (& ¥)a-

This instance of (23) is unconstrained, and the objective is differentiable with Lipschitz gradient. Hence, it can be solved using
gradient descent with acceleration [28-30]. The computational burden at each iteration of the algorithm is then dominated by the
computing the value of H and of its derivatives.

3.3.2. Lebesgue measure and star domains

In practice, the computational burden of solving (19) will be dominated by the cost of evaluating H and its derivatives. However,
for some special choices of Q and ug we can represent H as an integral over the closed Euclidean ball B,. In this case, instead of
developing quadrature rules for every Q we may use quadrature methods over the fixed set B,; the trade-off is that the regularity of
the integrand may decrease.

Recall that a closed set Q C R is star-shaped with respect to some x, € Q if it contains a neighborhood of x, and if for any x € Q
the ray

{x,+s(x—x.):5>0}

11



E. Villalén, Q. Yang and C.A. Sing Long Journal of Computational Physics 513 (2024) 113141
does not intersect the boundary of Q more than once [31, Section 2]. Its Minkowski functional
7o(x) :=inf{r>0: tx €Qy},
is positively homogeneous, non-negative and continuous and [31, Theorem 1]
Q:={xeR?: yy(x)<1}.
Suppose that Q is star-shaped with respect to some

x, €int(Q).

By translating © we have

H(a,p)= % /(a +(B. Ulxg+x,)))%dx,
Q

where Q, :=Q — x, contains a neighborhood of the origin. Let y, be the Minkowski functional associated to Q, and let

IIx]l»
T(x)= {60(”)6 e 20)

x=0.
Then
T:B,-Q

is an homeomorphism. First, T' is continuous by inspection and

ro(T(x) = llx|l2
implies T : B, — Q. Its inverse is

Ty = 0 @1)
IxIl,

Since the same arguments show T~! : Q, — B, is continuous we conclude T is an homeomorphism. This map allows us to represent
H as an integral over the closed unit ball by changing the integrand. We defer the proof of the following result to Appendix B.5.

Theorem 3. Let Q be a star shaped set with respect to some x, € int(€2) and let ug be the Lebesgue measure. Under the change of variables
x — T'(x) we have

1 (B0 2 [ lxllz !
fep= 2 / (a " <ﬁ7 v <Y0(xo)x0 +xc> >2>+ <y0(x0)> 4% @2

B

The representation in (22) nicely shows the influence of U and Q on the dual objective. The integrand is a product of two factors.
The first one is essentially the same as the integrand in (18). The second is a weight that quantifies how different is Q, from B,.
This weight is homogeneous of degree 0 and it depends only on the direction of the integrand, but not on its magnitude. Remark the
dependence on the quotient is exponential on the dimension, whence the points that will contribute the most to the integral are those
where the quotient is larger.

4. Interpretation as regularized regression

The problem (13) can be interpreted both as using MAP to estimate a density p, or as a regression problem to estimate the
expected value @. In fact, if we let Ry = Ry;(@2) be the optimal value to (14) then (13) becomes

minimize Ry (@) + 1 L(Au,y). (23)
ueC A

This is a regularized regression problem to estimate &. Observe that it is finite-dimensional, and that the number of variables is equal
to the number g of Qols. The terms that depend on the density p in (13) act implicitly as a regularizer on the estimate of &. In this
context, it is of interest to determine the properties of the regularizer. We defer the proof of the proposition to Appendix C.1.

Proposition 5. Suppose

/ ||U(x0)||§ dpug(xy) < .
Q

12



E. Villalén, Q. Yang and C.A. Sing Long Journal of Computational Physics 513 (2024) 113141

Then, the function Ry : R? — R is proper and convex. Furthermore, its domain is the convex set

dom(Ry) := / P(x)U (xo)d pg(xg) = p € L2(R), p 20, / p(x0) d g (xg) = 1 (24)
Q Q

Under mild assumptions (23) has at least one optimal solution [27, Proposition 11.13]. One important consequence of this result
is that (13) implicitly enforces the constraint # € dom(Ry;). In turn, this constraint depends both on the choice of U and the set Q. In
fact,

dom(Ry;) Cevx{U(xp) : x5 € Q}.
In the special case when Q is a convex body, we can show that at least in some special cases dom(Ry;) is open and hence this

inclusion may be strict. We defer the proof to Appendix C.2.

Proposition 6. Suppose that Q is a convex body, that g, is the Lebesgue measure, and that
U(xy) = x.
Then dom(Ry;) = int(Q2). Furthermore, Ry (1) = oo as it — bd(Q).

The statement extends with minor modifications to other choices of measure ug on Q. Remark that, in general, if ug, is absolutely
continuous with respect to the Lebesgue measure then the same arguments in the proposition yield

d
dom(Ry;) C supp <§> .
0

The formulation (23) shows a clear distinction between the full and partial measurement models. The partial measurement model
allows us to codify the effect of U in the regularization term, whereas the measurement matrix A appears only in the loss. There
is an extensive literature on the performance of estimators based on regularized regression. Results of this type can be applied to
understand how close is the optimal solution to (23) to the true expectation .

4.1. Linear systems and convex sets

When the system (2) is linear and the Qols are also linear in the state, we obtain a special case of (23). By a slight abuse of
notation, we write

U(x,)=Ux,

for a ¢ X d matrix U. Suppose that Q is a convex body. Then, we may decompose the regularization function R, as follows. Let
R‘[’[ = R;I(”) be the optimal value of the problem

minimize 4 / p(x0)%d gy ()
PELE(Q): p20 29

subject to /P(xo)dﬂg(xo) =1, /ﬂ(xo)xodﬂg(xo) =H.
Q Q

By Proposition 5 and 6 we deduce that R;’] is proper, convex and dom(R?I) =int(Q). Then, the value of Ry = Ry (@) is the optimal
value of the problem
minimdize R}, (n) subjectto Upu=a.
HER
Therefore, we can rewrite (23) equivalently as

minimize Ry, (p) + 1 L(Au,y) subjectto Uu=u. (25)
ueRd aeC A

In some cases, this problem can be further reduced to a standard form. We defer the proof to Appendix C.3.

Proposition 7. Suppose that Q is a closed Euclidean ball of radius r > 0 and center p and that g, is the Lebesgue measure. Then there
exists a non-decreasing convex function ¢ : [0, 1] — R such that

RS (1) = ( 17 —rﬂo||2>

13
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and @(s) — co as s — 1. Furthermore, (25) becomes

minimize  o(s)+ LL(AGy) subjectto Uu=a, HZHollz
pHERT ZEC, 520 A r

Therefore, for linear systems and observables, and in the Euclidean ball and (a scaling of) the Lebesgue measure, the regularization
effect on the expectation is very similar to that of Tikhonov regularization. This once again shows the implicit effect that the choice
of Q and of reference measure g has on the behavior of the method.

5. Implementation

We now discuss some methods that can be used to solve numerically a special instance of (19). We will assume that L* is
differentiable with Lipschitz gradient, that C = R? and that the measure g, is a probability measure on ; to make this assumption
explicit, from now on we write Il,. From these assumptions, it follows from the arguments in Section 3.3.1 that the dual problem
has the form

minirglize H@n,A'E)—n+ % L*(A&,y) (26)
1,
Furthermore, if we define

ha, B, %)) = 3@+ (B, UGk,

then H can be represented as

H(a,p)= / h(a, B, xy) dllg(x) = Ex ., [(a, B, xp)].
Q

Therefore, we can interpret (26) as either a deterministic or stochastic convex optimization problem. Depending on this choice,
different algorithms can be implemented in practice.

5.1. Gradient descent methods

As (26) is unconstrained with a convex and smooth objective function, perhaps the simplest and most efficient method to solve
this problem is accelerated gradient descent (GD) [28,32,29,30]. However, to simplify the exposition we will focus on gradient
descent without acceleration. Given (1, ;) and a sequence of steps {s, },cn We define for n > 0 the iterates

Mpt1 =My — sn(aaH(rIn’ Argn) - 1)’
§n+l = én - Sn(AVﬂH(nn’Atgn) -yt Agn)v

In practice, the steps can be selected using backtracking, or they can be constant. In this case, from Proposition 4, the step s must
satisfy

1 1 1 .
> S+ |1 Allgy) / max{ L, U (xo) 13} dTlg o) + 5 ALip(VL*)

to ensure convergence.

Gradient descent requires evaluating at least the gradient of H at each iteration. Both H and V H are defined in terms of integrals
that need to be approximated numerically for possibly large d. We discuss cubature formulae and the sample average approximation
(SAA). Both methods essentially construct an approximation H of H from which fI and VA can be computed efﬁc1ently In practice,

one can construct a low-accuracy approximation b2 using few nodes or samples, to first find an approximation (7* ,§ ) to the solution
to (26) in a few iterations, and then use this approximation as an initial iterate to solve (26) using a more accurate approximation.

5.1.1. Cubature formule

A first approach is to approximate H in low dimensions is to use cubature formula. They can be designed to exploit the structure
of the integrand to obtain theoretical guarantees about their approximation properties [33,34]. A disadvantage is that they need to
be tailored to the class of functions over which one wants to achieve an exact approximation, i.e., the degree of the formula, and to
the domain of integration, e.g., the hypercube [35,36], the simplex [36,37] or the ball [36]. Their complexity, i.e., the number of
nodes required for a desired accuracy, increases exponentially as the dimension increases (however, see [35,38]). Furthermore, their
accuracy may vary according to the choice of I1g.

When I, is a scalar multiple of the Lebesgue measure on Q we can leverage Theorem 3 to represent H as the integral over the
unit ball. In this case, we can use cubature formula for the Euclidean ball. Let

\ 1 llxoll, 2 xoll \?
wepn=g (o (p0 (=) ) (55)

14




E. Villalén, Q. Yang and C.A. Sing Long Journal of Computational Physics 513 (2024) 113141

Theorem 3 allows us to write

1

H(a,B) = 19B,0, D] 1 / h°(a, B,ro)dS@) | r*~dr
’ [ [0B,(0, )] o
0 0B,(0,1)
1
0B,(0,1 _
_. 195,0.D sz(ll ) h(a, B, r* dr

Since there are terms in the definition of 4° that are homogeneous of degree 0, we have

. B loll, * (Nl )
e {ee o () ) ()

whence the regularity of 7°(a, B, r) is controlled by that of U. Standard cubature formulz can be used to approximate the integral on
the radial variable, e.g., Gauss-Jacobi formula for « = d — 1 and f = 0. To evaluate h° at the nodes, we may use cubature formule on
the unit sphere, e.g., see [39,40].

5.1.2. Sample average approximation

Although cubature formula provide reasonable approximations, their limitations make them effective only in very low dimen-
sions. As the systems under study become high-dimensional systems, Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods
become more appropriate. In MC the nodes are sampled according to the probability measure Il whereas in QMC they are cho-
sen from a low-discrepancy sequence [41-43]; in both, the nodes are assigned the same weight. In the optimization literature, e.g.,
see [44], this approach leads to the sample average approximation (SAA) method to solve (26).

In MC the key idea is to use the approximation

N
@B =+ Y e px) @7)
i=1

where xél) Y ,ng ) are i.id. samples from Ilg. Remark the samples are not modified once drawn. The gradient can be readily

computed as

N
0, 1@ p) =+ Y@+ (B, UG,
i=1

N
Vpll(af)=+ 2+ (b UGD)),UGD).

Therefore, it suffices to pre-compute { U(xg))}fi | to evaluate f and its gradient efficiently.
The key quantity to control the accuracy is the variance of the approximation (27) which itself depends on («, #). The following
provides a bound on the variance as a function of (a, ). We defer its proof to Appendix D.1.

Proposition 8. Let (a, f) € R X R? and let x( ~ 1. Let 62 = 62(a, P) be the variance of the random variable h(a, B, x). Then

2 2 2 N2 4 2 N
o P <A IBIGE,,  w, 10G)=UGIFI+IBILE, VNG = UGIE]

Therefore, the approximation will tend to be accurate for small values of « and ||B]|,. This can be used as a way to increase the
number of samples in (27) depending on the magnitude of the approximate solution found.

In QMC the approximation in (27) is constructed from points xf)l), ,x(()N) that belong to a low-discrepancy sequence. The
approximations converge faster than those obtained with MC, and significant improvements can be obtained in some cases; in others,
the performance might be comparable to that of QMC [45]. There are standard constructions for low-discrepancy sequences in the
hypercube, e.g., Halton, Sobol or Faure sequences. These can be used in the approximation (27) by scaling Q and extending 4 by zero
outside Q. However, this leads to a possibly discontinuous integrand, which may substantially impact the performance of QMC. For
this reason, the strategy introduced for the cubature formula can be appropriate, in which we leverage Theorem 3 to represent H
as an integral over the unit #2-ball. In this case, we can use a classical one-dimensional sequence over the interval [0, 1] to integrate
h° on r and then use the low-discrepancy sequence proposed in [46] to approximate the values of 7°.

5.2. Stochastic approximation methods

One of the drawbacks of (27) is that, similarly to cubature formula, we may need a very large number of samples to approximate
the objective function accurately. An alternative approach is to use stochastic approximation (SA) methods [44]. A popular SA method
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is stochastic gradient descent (SGD) which uses the gradient of the integrand on a random sample at each iteration. Let {xg) }ien be
an i.i.d. sequence of Il random vectors. Given an initial iterate (7, ;) and a sequence of steps {s,},cn We define the iterates

Mt =My = Sy (=1 + (1, + (A'E,, UGxg))p),
Erir =&y = 5, (VL* &, y) + (1, + (A8, UG,

for n > 0. In contrast to SAA, the samples change at each iteration. Hence, the computational cost is dominated by the evaluation of
U at a single point. However, the cost-per-iteration decreases at the expense of a decreased convergence rate.

One important factor impacting the performance of SGD is the choice of steps. It is known that if H is strongly convex then the
steps may be chosen so that s, ~ n~!. However, as we do not know if the objective is strongly convex beforehand, we consider steps
such that s, ~ n~'/2 [44].

In general, we may use a batch to estimate the gradient of H. Define the unbiased gradient estimate

M
1
gn(@p)=— Y Vh(a, B.x") (28)
m=1
id
where xg"l) e ,x(o"’M ) I1. One of the factors that impact the performance of SGD is the variance of this estimate. We defer the

proof of the following proposition to Appendix D.2.

Proposition 9. We have the bound
2, 1 2 , 2
E o oo, 18,00 8) = VH @ B < 3ol +6l1BIE) By g [1U () = UGxo)I3)

2
+ 27 18I Exg sy rig U QI I1U () = U o) 3]

Once again, the variance approximation becomes accurate for small values of « and || §||,. This can be used as a way to select the
size of the batch in (28) depending on the size of # and A’E.

5.3. Samplers

Both in SAA and SGD it is necessary to be able to sample from Il,. When Q is convex and Il admits a density with respect to
the Lebesgue measure, we can use hit-and-run [47] to sample efficiently from Ily. This method is particularly efficient when Il is
the uniform probability measure UNIF(Q). One of its advantages is that the distribution of xf)") converges efficiently to UNIF(Q2) in
total variation, namely, in o®d?) steps [48, Corollary 1.2]. Furthermore, each iteration is computationally inexpensive: to sample
uniformly from the unit sphere it suffices to sample from g ~ N(0,1,) and let ® = g/||g|l,, and for the sets Q that we consider,
finding the intersection between a line and its boundary is efficient. Remark that we may get good approximations for the integral
even though the distribution of the current iterate may still be far from the uniform distribution.

Another alternative when Q is simple, or the system is low-dimensional, is to use rejection sampling. This is particularly useful
when Q is an ¢,-ball as in this case we may use either an 7 -ball or an #,-ball containing it to sample from the corresponding
uniform measure.

6. Experiments
6.1. A linear oscillator

As an illustrative example we consider a damped harmonic oscillator
X+yx+ @*x=0
with x(0) =1 and x(1) = 0. The reduction to a first-order system yields

{ x(1) = f (1, %(0))

0 1 1
for F= and x,= . (29)
x(0) = x, [ ? —7] 0 [0]

—@

This system has the form (2) for I1, = Jyy}+ and it is instructive to study the probability densities that are obtained by the method
in this case. Using an atomic measure to model uncertainty allows us to study whether the optimal density p* is able to concentrate
around this point. Assume that the Qols are

up(xg) =x1(2,%0),  ur(xg) =x2(4,x0), uz(xy) =x1(6,%xp), uy(xy) =x,(8, ).

Then U can be written explicitly in terms of x, as
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Table 1
Bias and feasibility for the optimal probability measure.
Q r 19 = E ¢ i+ [Xo11l2 1U(xg) = E ., [U(x)]l
A A
10° 107! 1072 103 100 107! 1072 1073

B, 0.5 9.76E-01 8.55E-01 7.07E-01 6.22E-01 7.32E-01 6.01E-01 4.88E-01 4.47E-01
1.0 9.18E-01 6.58E-01 4.00E-01 2.26E-01 6.68E-01 4.26E-01 2.25E-01 1.64E-01
2.0 7.60E-01 3.34E-01 8.98E-02 4.40E-02 5.19E-01 1.90E-01 3.42E-02 2.02E-02

B, 0.5 9.67E-01 8.03E-01 6.61E-01 5.82E-01 7.24E-01 5.59E-01 4.26E-01 3.81E-01
1.0 8.87E-01 5.61E-01 3.17E-01 1.82E-01 6.35E-01 3.67E-01 1.83E-01 1.32E-01
2.0 6.91E-01 2.26E-01 4.60E-02 6.76E-03 4.49E-01 1.37E-01 4.82E-02 1.39E-02

B 0.5 9.56E-01 7.64E-01 6.19E-01 5.63E-01 7.09E-01 5.16E-01 3.84E-01 3.14E-01
1.0 8.58E-01 4.89E-01 2.91E-01 1.15E-01 6.13E-01 2.95E-01 1.64E-01 8.82E-02
2.0 6.34E-01 1.75E-01 2.02E-02 1.49E-02 4.04E-01 1.03E-01 9.87E-03 1.56E-02

B} 0.5 8.40E-01 7.61E-01 6.16E-01 5.56E-01 7.02E-01 6.16E-01 4.85E-01 4.03E-01
1.0 6.92E-01 4.80E-01 2.99E-01 1.87E-01 6.38E-01 4.31E-01 2.42E-01 1.34E-01
2.0 5.79E-01 3.02E-01 2.20E-01 7.57E-02 5.49E-01 2.55E-01 1.15E-01 6.66E-02

B 0.5 8.04E-01 7.14E-01 5.86E-01 5.48E-01 6.95E-01 6.07E-01 5.03E-01 4.00E-01
1.0 6.63E-01 4.40E-01 2.60E-01 1.84E-01 6.41E-01 4.28E-01 2.58E-01 1.82E-01
2.0 6.92E-01 4.08E-01 2.12E-01 9.71E-02 5.94E-01 2.77E-01 1.32E-01 6.29E-02

BY 0.5 7.79E-01 6.99E-01 5.83E-01 5.81E-01 6.94E-01 6.02E-01 4.88E-01 4.62E-01
1.0 6.56E-01 4.40E-01 2.62E-01 1.85E-01 6.50E-01 4.42E-01 2.32E-01 1.58E-01
2.0 8.26E-01 4.59E-01 2.27E-01 1.14E-01 6.35E-01 3.15E-01 1.46E-01 7.23E-02

(ey, e;_xoh eTQ;
(e, e xg)y ele
U(xy) = = 2 x,=:Ux,. 30
(x0) (e1, *Fxy)s eretF [0 0 (30)
(ey, ¥F x), e;efF

Fig. 2a shows how x and x evolve in time, whereas Fig. 2b shows the trajectory of the system in state space. Fig. 2c shows the
Qols being measured. The Qol (30) can be computed efficiently and with high accuracy, i.e., the matrix F is non-defective and
its exponential can be computed from its eigendecomposition, allowing us to focus on the density obtained with the method. To
compare the effect that Q has on the results, we consider 6 possible convex bodies: the closed ¢,-ball B, the closed ¢,-ball B,, the
closed ¢, -ball B, and their intersections with the positive orthant, which we denote as BY, B; and B7. In all cases we assume
that yq is the uniform measure. These choices will help us evaluate the impact of incorporating a priori information on Q, i.e., the
fact that x, > 0. To approximate H we use Monte Carlo and we draw 10,000 samples from g in each case using rejection sampling.

In Fig. 3 we show the densities obtained for B,. As U is a linear map, in all cases the density is the positive part of an affine
function. For r = 1/2 we have that x, ¢ Q and the problem becomes infeasible as 4 — 0. In Figs. 3a-3d we see that the density
concentrates in the boundary as A — 0. In addition, there seems to be a small bias towards negative values of x. This is a consequence
of the particular structure of the matrix U. For r = 1 we have that x;, € bd(Q). As shown in Proposition 6, this implies that the
problem becomes infeasible as A — 0. Figs. 3e-3h show the optimal density concentrating near the boundary. Observe that, as A — 0,
the expected value of IT* approaches the true x,. Finally, for r = 2.0 we have x, € int(Q). As Figs. 3i-31 show, when A — 0 the
density somewhat concentrates around x, and the expected value quickly approaches the true x,. However, as U is linear, the set
of possible densities is not flexible enough to truly concentrate around the true x, generating instead a large dispersion around it.

In Fig. 4 we show the densities obtained for » = 1 and all of the 6 choices of Q. Remark that in all cases we have that x;, € int(Q).
In general, the behavior as 4 — 0 is the same observed for the #,-ball, and the density concentrates near the boundary and near x,.
However, the behavior of the optimal density behaves quite differently depending on the choice of Q. In fact, as A — 0 the dispersion
on the marginal for % depends almost exclusively on the choice of Q, yielding the least dispersion for B;, and the largest for B,. By
considering the closed #,-balls intersected with the positive orthant, we are adding a priori information about the values of x(0) and
%(0). However, this leads to a bias in the expected value of IT*. The magnitude of this bias and its behavior as A — 0 depends on the
structure of the boundary of Q at x,,.

In Table 1 we report the ¢,-bias when estimating x,, by the expected value of IT* and the feasibility error between the true
expected value U(x) and that obtained using IT*.

This example also allows us to compare the densities obtained by solving the finite-dimensional approximations discussed in
Sections 2.2 and 3.1. For this comparison we consider Q = B, and A= 10!, and we use the prior induced by the Haar wavelet basis
on [—1,1]%. A crucial property of the Haar wavelet basis is that it is piecewise constant, enabling the efficient characterization of
the set ©, . The results obtained from the finite-dimensional approximations up to a level L € {1,2,3} can be seen in Fig. 5; recall
that there are 4L+! basis functions for each choice of L. As the decomposition level increases, the finite-dimensional approximation
begins to resemble the solution shown in Fig. 4i. In Fig. 5d we see that the Li—distance decreases, as expected.
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10 — x(t) 10 — x(t)
— X(t) 1.0 — X(t)
0.5 0.5
0.5
0.0 T o0 0.0
£
-05 -0 -05
-1.0
-1.0 -1.0
5 10 15 20 25 -1.0 -0.5 0.0 0.5 1.0 5 10 15 20 25
t x(t) t
(a) x and % (b) Evolution in state space (c) Measurements

1.0 1.0 1.0

0.5 0.5 05
x 0.0 x 0.0 X 0.0

-0.5 -0.5 -0.5

-10 -1.0 -1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X X
(d) By and By (e) By and B} (f) Bs and B,

Fig. 2. (a) Evolution of the state variables x and x on the time interval [0, 20] for the damped oscillator (29) for y = 1 /4 and w = 1. (b) Trajectory in phase space for
1 €[0,20]. (c) Observed values of the state variables. (d, e, f) Diagram of B,, the B, and B, in blue, and B}, B; and B, in red.

Therefore, the finite-dimensional approximations do converge to the solution to the infinite-dimensional problem. This validates
our interpretation of the problem as the limit of the finite-dimensional models.

6.2. Failure on a linear flow system

Another illustrative example is to consider a linear flow system on a graph (Fig. 6). At the initial time the first node always has
concentration equal to 1 whereas all other nodes always have concentration equal to zero. The normal state of the system occurs
when the flow goes through node 2 and ends up at node 3, i.e., the capacity of the edges 2 — 4 and 4 — 2 are zero (Fig. 6a). The
failure state occurs when the capacity of the edges 2 — 4 and 4 — 2 are non-zero and, as a consequence, there is a leak from node 2
to node 4 (Fig. 6b). The goal of this problem is to quantify the uncertainty on both on the initial condition and on the parameters
¢4 and ¢,_,, from measurements of the concentration at nodes 1 and 3 at times {1.0,2.0,...,9.0,10.0}.

We consider three scenarios of failure. In Scenario A the trajectories are randomly generated according to ¢, 4, ~ Il,_4 with
IT,_ 4 = BETA(30,10) and c4_,, ~I,_,, for II,_, = BETA(15/0.85,10); in this case E[c,_4] =0.75 and E[c,_,,] = 0.15 (Fig. 6¢). The
sample trajectories and the average measurements are shown in Fig. 6d. In Scenario B the trajectories are generated from a mixture
with probability 1/2 between the normal state, i.e., ¢,_,4 = ¢4_,, =0, and the trajectories in Scenario B (Fig. 6e). Finally, in Scenario
C we consider that the system operates normally for ¢ < 2.0, but then fails for > 2.0 where the parameters distribute as in Scenario
A (Fig. 6f). In each case, we use the average observations over 100 samples.

To use the method we represent the model as the system of ODEs

01(t) = —c1,01 (D)
0y (1) = —=(cpy3 + o s (DU (1) + o 01 () + ¢4 0 ()04 (1)
U3(t) = ¢y 30,(1)
04(1) = —c4_r (Ov4(1) + o 4 (DL, (2)
é_4(0=0

b4 n(H)=0.
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2 2 2 2
1 1 1 1
20 20 7 £ 0 y <0 4
-1 -1 -1 -1
-2 -2 -2 -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Xo Xo Xo Xo

(a) r=05, 2=10° (b) r=05,2=10" (c) r=05,21=10" (d) r=05,2=10"
(e) r=10, 1=10° (f) r=10, 2=10" (g) r=1.0,2=1072 (h) r=10, 21=1073
2 2 2 2
1 » 1 1 1
20 4 20 L0 L0
-1 -1 -1 -1
2 -2 -2 -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

(i) r=2.0, 2= 10° (j) r=2.0,2=10" (k) r=2.0,1=1072 (1) r=20,2=1073

Fig. 3. Optimal density p* for B, for radii r € {0.5,1.0,2.0} and 4 € {10°,107",1072,1073}. In each case, the values of the density have been normalized to the
interval [0, 1], the true x,, is represented as a red dot, and the expected value for p* is shown as a white dot.

If we let
vy
v=| ], «9=[C2_’4] and x=[v]
U3 €42 9
Uy
then we have the non-linear system
x(1) = C(x(1))x(1)
1
x(0) =x
where
—Cin 0 0 0 00O
iy —(cp3+x5) 0 x4 0 O
| o €3 0 0 00O
C=l X5 0 —x5 0 0
0 0 0 0 00O
0 0 0 0 00O

We consider the Qols U : RS — R given by
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-1 0 1 -1 ] 1

(a) By, 1=10° (b) By, 1=10° (¢) Bw, 1=10° (d) Bt, A=10° (e) By, 1=10° (f) B, 1=10°
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X X0

() Bf, A=10" (k) Bf, A=10" (1) B, 2=10""

ey 0 1 En o 1

(p) Bf, 1=1072 (q) B, 1=107 (r) Bt, 1=1072

(rn) E], 1=1072

-1 0 1 -1 o 1 -1 0 1 -1 o 1
X X0 X X

(t) By, 1=1073 (1) Bw, A= 1073 (v) Bf, A=1072 (w) Bj, 1=107 (x) B, 1= 1073

Fig. 4. Optimal density p* for r=1.0 and A € {1°,107!,1072,1073}. In each case, the values of the density have been normalized to the interval [0, 1], the true X, is
represented as a red dot, and the expected value for p* is shown as a white dot.
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(a) Decomposition up to level L = 1 (b) Decomposition up to level L = 2 (c) Decomposition up to level L = 3 (d) Lﬁ—distance

Fig. 5. Solutions to the finite-dimensional problems using the Haar wavelet basis on B, . For each level L of the decomposition the corresponding subspace V,
has dimension n = 4%+, The Li -distance between the optimal density p* obtained by solving the infinite-dimensional problem and the finite-dimensional problems
decreases as expected.

Ui(xg)=v1,x0), ..., Ujg(xg)=0v(10,xp), U j(xg)=0v3(1,%0), ..., Uyy(xg)=05(10,x0)

and the measure IT, on R® for x, is

I, =6 ® ) ® ) @6 ® w4 ® 7y
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(a) Normal state graph (b) Failure state graph (c) Density for cy—4 and c4—»

(d) Scenario A (e) Scenario B (f) Scenario C

Fig. 6. (a, b) Graph representing the normal and failure states of the system. (c) Probability densities for ¢,_, and c,_,,. (d, e, f) Trajectories generated from 100
samples of ¢,_, and ¢,_,, under each of the failure scenarios. In each case, the solid line represents the average trajectory whereas the red dots represent the average
measurements.

For the numerical experiments, we use c;_,, = ¢,_,3 = 1. As the solutions to the system diverge exponentially if ¢, ,, <0 or ¢4_,, <0
it is reasonable to impose that the support of the measure on the last 2 variables is contained in the positive orthant. Consequently, to
perform the experiments we choose Q as either r1§+,r1§2+ or rBY,, or as Cartesian products of the form r]E_?pI xrB;’Z for p;,py € {1,2,00}
and some radius r > 0. To avoid the boundary effects shown in Section 6.1 we choose r = 5. To approximate H we use Monte Carlo
and we sample 10,000 from g, in each case using rejection sampling. In all cases we let g be the uniform measure on Q and we
let A=1073. Finally, we solve numerically (31) using SciPy’s implementation of the RK45 method with absolute tolerance 10~* and
relative tolerance 1079,

If Fig. 7 we show numerical approximations for the marginals for IT* for the selected choices SBT, 5B, x 51§;r and 51§;r X 51§£r for
Q. To approximate the marginals for variables taking values in [0, 5] we divided the interval in 10 bins, whereas for variables taking
values in [—-35,5] we divided the interval in 20 bins. The probability of each bin under IT* was approximated with 20,000 Monte
Carlo samples independent from those used to approximate H.

The marginals obtained for 5 B1+ for the components of v, concentrate near zero, except the marginal for v (rows 1 to 3 of
Fig. 7). However, the marginals cannot concentrate sufficiently near zero. As a consequence the expected values of v, and v, 3 tend
to be too large. This may also be the reason why the marginals for v, 4 assign large probability to large values of v, 4. In contrast, the
marginals for ¢,_,, and c,_,, capture the behavior of these variables reasonably well, as the marginal for ¢,_,, is more concentrated
toward the origin than the marginal for c,_,,. This behavior is consistent for all scenarios. Finally, in Figs. 8a-8c we see the trajectory
associated to the expected value of v, c,_,4 and c4_,,. Although they capture reasonably well the measurements of v, in time, they
tend to overestimate the average measurements for v;. This is itself a consequence of overestimating v 4.

Observe that the marginals obtained for 5B, X 51?1+ for the components of v, spread over the interval [-5, 5] but concentrate near
the origin (rows 4 to 6 of Fig. 7). As a consequence, the probability of observing a negative value is large. However, the expected
values for v, and vy 3 are closer to the initial condition of the system for Scenarios A and B; for Scenario C the expected value for
Vg3 is negative and that for v, is much larger. This suggests the dynamics of the system constrain these two variables. In all cases,
the marginals for ¢,_,4 and ¢4_,, behave in a similar manner, suggesting that in this setup the method cannot differentiate between
the effect of these two variables. Figs. 8d-8f show the trajectory associated to the expected values of x, ¢,_4 and ¢,_,,. Choosing Q
as a Cartesian product allows for more flexibility, and as a consequence, the trajectories seem to be a good fit to the observations in
all scenarios. However, note that the initial condition may have negative entries. This effect can be mitigated by choosing a suitable
set C in (13).

Finally, the marginals obtained for 5B} x 5B for the components of x, behave similarly to those obtained for 5B} (rows 7 to 9
in Fig. 7). Remark that for this choice the marginals for v, and v, 4 behave similarly and their expected values are also similar. As
for SBT we also see that the densities for ¢,_,, and c,_,, then to capture the overall relation between ¢,_,, and ¢,_,,. In Figs. 8g-8i the
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Fig. 7. Marginals for IT* for selected choices of Q under each of the failure scenarios. Rows 1 to 3 show the results for SBT, rows 4 to 6 for 5B, X SBI* and rows 7 to
9 for 531* X 53; . The vertical line indicates the expected value.
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Fig. 8. Trajectories for the expected value E, 1. [x,].

trajectories for the expected value show similarities with those obtained for SB;’. However, for Scenario C the differences between
this trajectory and the average observations for v; are quite large. This is due to the fact that an overestimate of v, has a strong
impact on the limiting value of v5.

6.3. Chemical reaction network

To illustrate the application of our method to a high-dimensional, non-linear system, we consider a chemical reaction network.
These can be described by the reaction rate equations, which are a non-linear system of ODEs that model the time-evolution of
the concentrations of the chemical species in the system [49]. If the system has n species and we let ¢ € R" = ¢(¢) denote the
concentrations, then the reaction rate equations become

HOE Zle kih;(c@)r; o

where p is the number of chemical reactions in the system, ki, ... ,k[, > 0 are the reaction rate constants, hy, ..., hp :R" > R are
the propensity functions and ry,...,r, € R" are the stoichiometry vectors. In this case, we shall assume the initial concentrations ¢,
are fixed. However, the rate constants will be random. We assume k; := §;k where k} > 0 is a known reference value for the rate
constant of the i-th reaction and &, ...,8, are i.i.d. LOGNORMAL(=62/2,6) for ¢ = log(10)/2. This ensures the rates vary roughly
across 2 orders of magnitude and that the expected value of k; is close to its reference value k.
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Fig. 9. Concentrations for the observed species C;Hg, H,, CH,, C3H,, C,Hy and C,H,. The dotted lines represent sample trajectories. The solid line represents the
average trajectory, while the circles represent the average value of the observations. The dashed line represents the trajectory associated to the reference values k*.
The dashed-dotted line represents the trajectory associated to the average rates E;_,, [k].

We choose Q = [IO_ZkT, 10+2k’1‘] X ... X [lO‘zk;, 10+2k:] and ugq as the joint density of the random variables 10% k7, ..., lO"Pk;

foray,...,a, “ UNIF([-2,2]). To perform the simulations, we consider a medium-sized reaction system modeling propane pyrolysis
with 38 chemical species and 98 reactions [50, Section IV.B]. We simulate the system for 7 € [0, 10] and observe every At = 1 starting
at t =1 the concentrations of the 6 most chemically relevant species in the system: C;Hg, H,, CH,, C3H¢, C,H¢ and C,H, (Fig. 9).
We sample 100 trajectories to compute the average observation. The trajectories are found by solving (32) numerically using SciPy’s
implementation of the Radau method with absolute tolerance 10~® and relative tolerance 10~'°. To approximate the objective
function, we use 10,000 samples from pugq.

In Fig. 10 we show the marginals obtained for 6 chemically relevant reactions C;Hg — CH; + C,Hs, CH; + Hy, — H + CHy,
C3Hs + H, —» H + C3H, H + C3Hy — C3H; + H,, C,Hs + H, — H + C,Hg and CH; + C,Hg — C,Hs + CH, for A= 1072, As we
can see, the marginal remains almost flat over the interval. This may be a consequence of the fact that the system is ill-conditioned,
that the variations of U are small, and that the amount of measurements is not sufficient to accurately characterize the uncertainty.
Furthermore, there is a bias in the estimate. In Fig. 11 we see the sample trajectories from the optimal density IT*.

7. Discussion

Our experiments show that the method we proposed to compute the optimal density can be implemented efficiently. For typical
choices of Q for low-dimensional problems, rejection sampling and stochastic approximation methods are sufficient to obtain good
results. For high-dimensional problems, stochastic gradient descent may perform well. In this case, the main cost is evaluating the
map U. Furthermore, the closed-form expression for the optimal density allows us to compute statistics that may be relevant when
quantifying the uncertainty in the quantities of interest. In particular, this allows us to compute the marginal distributions of these
quantities.

We have seen that the choice of Q has a strong impact on the results. Although choosing a “small” Q could have computational
advantages when approximating H it may render the problem ill-conditioned as was shown in Section 6.1. When the density
accumulates near the boundary of Q its geometry will strongly influence the structure of, e.g., the marginals. The results in Section 6.2
show that even if the densities concentrate near the boundary, the expected value may be biased. Furthermore, the geometry of the
boundary of Q will determine if the density is such that the marginals concentrate for all or only some of the state variables.
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Fig. 10. Histograms for the optimal marginal densities for A =102 and the selected reactions C;Hy — CH; + C,Hs, CH; + H, — H + CH,, C;Hy + H, > H +
C;Hg, H + C3Hg — C3Hs + H,, C, Hy + H, — H+ C,Hg and CH; + C,Hg — C,Hs + CH,. The densities are in the logarithm of the rate. As we can see, the density
remains almost uniform over the interval of interest.
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,S 4 X 6 ,S 4 X ,:)
<& time (s) & time (s) & time (s)
S S N

Fig. 11. Concentrations for the observed species C;Hg, H,, CH,, C;H,, C,H, and C,H, for the optimal density for 4 = 1072. The dotted lines represent sample
trajectories from the optimal density. The solid line represents the average trajectory, while the circles represent the average value of the observations. The dashed
line represents the trajectory associated to the reference values k*. The dashed-dotted line represents the trajectory associated to the average rates E;_;. [k].
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When the density does not accumulate near the boundary, the interplay between €, and dynamics of the system and the measured
quantities of interest will determine how the optimal density distributes mass in Q. The experiments in Section 6.2 show that even
though this may lead to a better estimate of certain parameters, e.g., the initial condition, the optimal density may assign probability
to non-physical values. As mentioned before, this can be mitigated by choosing in (13) a suitable set C of constraints for the expected
value. It is interesting to see that some choices of Q may be better suited for some tasks. As an example, our results in Section 6.2
show that to estimate the initial condition with the expected value it is better to allow for wider intervals. In contrast, to capture the
relation between the capacities it may be more appropriate to allow for narrower intervals.

In our experiments we have emphasized the role of the expected value of the initial conditions to assess the performance of the
method. However, our results provide a closed-form expression for the density from which other statistics could be evaluated. As
an example, in the experiments in Section 6.1 a much better estimate would be the mode. In fact, Fig. 4 suggests that when the
system and the measurements are linear, the mode will be at the boundary of Q. The experiments in Section 6.2 suggest the same. In
general, the choice of a suitable statistic would depend on the properties of the system and the available measurements of quantities
of interest.

Finally, our results show that the structure of the family of densities that can be found by the method depends strongly on
how complex the dynamics of the system are, or how complex are the observations about the system. For linear ODEs and linear
observations our results show that the probability density p* must be the positive part of an affine function. As a consequence, to add
expressiveness to the probability measure I1* found by the method it may be necessary to use more complex reference measures g
on Q or mixtures.

8. Conclusion

In this work, we propose a Bayesian model to quantify input uncertainty on random differential equations. Furthermore, we
construct a family of priors for the probability density of the initial condition for which the maximum a posteriori estimate for
the density can be computed using Tikhonov regularization on moment constraints for the density. This provides an underlying
statistical model for the method proposed by Meyers et al., built on early work by Banks et al., to perform uncertainty quantification
in aggregate data problems. Under a convexity assumption on the model, we leveraged duality to deduce an equivalent finite-
dimensional formulation, which for typical cases becomes an unconstrained convex problem with a smooth objective function. This
allowed us to provide a full theoretical characterization of the family of densities that can be obtained by the method, along with
their dependence in the parameters of the problem. Although the trade-off is that the objective function involves a high-dimensional
integral, we have shown that the problem can be solved efficiently using standard approximation methods. We believe that our results
may lead to the development of more efficient implementations by using tailored numerical integration methods. Furthermore, our
analysis yields insight about the flexibility of the approach when performing uncertainty quantification for high-dimensional systems
by showing the interplay between the support of the density, the dynamics of the system, and the constraints being enforced.

Our work leaves some questions open. First, our method shows that there is a subtle interplay between the dynamics of the
system, the observations about it, and the support of the probability measure that is to be found. Understanding this interplay would
help practitioners make an informed choice of support or constraints for the expected values depending on the properties of the
system. Second, we have shown that the structure of the probability densities found by the method is restricted by the system and
the measured quantities of interest. A question of interest is to determine the size of the class of densities with this structure. Finally,
it is an open question whether the optimal probability density can be refined to improve the performance of the method according to
some criterion. These questions will be explored as future lines of research.
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Appendix A. Proof of main results in Section 2
A.1. Proof of Proposition 1

Define for i € {1, ...,n} the averages

@i :/(Pi(x)dﬂg(x)
Q
and the vector @ € R" accordingly. Let

C,:= ﬂxeg{a ER": {(a, ) =1, (a, p(x)) > 0}.

It is clear this is a closed and convex set in R". If p € P, , then p = (a, ¢) for some a € R". Since p > 0 and its integral with respect
to ug equals 1 we deduce that

(a, p)=1 and xeQ: (a, p(x))=>0

whence a € C,. Conversely, if a € C, then p :=(a, @) is such that p > 0 then it is straightforward to see that p€ P, ,,.

From the hypotheses it follows that ¢, > 0 whence (7)1_1(p | € P, ,. Thus, both P, , and C, are non-empty sets. Let a, := @/ ||q')||§.
Then (a,, ) =1. Let vy, ...,v,_; € R" be orthonormal vectors such that (v;, @) =0 for i € {1,...,n — 1}, and let V' be the matrix
with vy,...,v,_; as its columns. By construction we have that ¥*a, = 0. We define the set

1
oy, :={eeR"—1 a,+ Y ﬁiv,-eCn}

which is closed and convex since it is the preimage of the affine map 6 — a, + V0. 1f 6 € ©y, then, by construction, a, + V6 €C,.
Conversely, if a € C,, we can always write

n—1
a=qya,+ 2[:1 O,v;,
for some 0 € R"~!. It suffices to show that a, = 1. Note that

1=(@, a)= a9, a,) = a

whence 6 € ©y, . It remains to show that ©y, has non-empty interior. Define a; = (i)l‘le 1- Then p=(a;, @)= (i)l‘l(p | belongs to P, ,
whence a, € C,. Therefore, let

a=a,+VV*a +0)=a,+V0O
for some 60 to determine. Define
1
p=(a, ¢)=(a;, p)+(V6, @)= P +(V6. ).
1

Note that p has integral equal to one for any choice of 6. Therefore, we must show it is non-negative to conclude that p € P, . Since
@1, ..., @, are bounded, there is B > 0 such that ||@(x)||, < B for x € Q. Hence, it suffices to have

V0, ) < IV O, llp(oll, < BlIOI, < @7 infreq @1 (x) < &7 0 (x)
to conclude that p > 0. Since this is satisfied for any @ such that

1 .
0|, < —inf x
el < B, xe@ @1(X)
and the right-hand side is strictly positive, we conclude that ©;, has non-empty interior.
A.2. Proof of Proposition 2

Let {p*"},en be the sequence of solutions to the finite-dimensional problems (10), and let F denote the objective function,
which is independent of n. As L is non-negative, F is non-positive. First, since V; C V, for any n € N we have that P,, C P,,
whence F(p*!) < F(p*"). Since L is non-negative, this implies that 2F(p*') > ﬂllp*’"lliz. Hence, using the fact that P, , C P,, we

U
conclude that the sequence {p*"},cy is a norm-bounded sequence in P,. By the Banach-Alaoglu theorem, by possibly passing to a
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subsequence, we can assume without loss that it converges weakly to a density p*®. Since P, is convex and closed, it is also weakly
closed. Thus p** € P,.

Now, let p* be the solution to the infinite-dimensional problem (12) and let p:,‘ be the projection of p* onto the closed convex
set P, ,. Since the closure of the union of the subspaces {V},¢y is all of Li(Q), we have that {p},cy converges in norm to p*. By

construction, we have that F(p}) < F(p*") < F(p*).
Now, remark that the map

P’—’/P(xo)U(xo)dﬂQ(xo)
Q

is strongly (or norm) continuous and weakly continuous. Since the Lfl -norm also strongly continuous, we conclude that F is strongly
continuous whence
F(p*)=limsup,_, F(p)).

On the other hand, the Li-norm is also strongly lower semicontinuous and thus weakly sequentially lower semicontinuous [27,
Theorem 9.1]. This implies that F is weakly sequentially upper semicontinuous whence

limsup,_, ., F(p*") < F(p*).

Combining these two facts, we conclude that

F(p*)=limsup,_, F(p¥) <limsup,_, F(p*") < F(p*°) < F(p*)

whence p*® is a solution to the infinite-dimensional problem, proving the claim.
Appendix B. Proofs of statements in Section 3
B.1. Proof of Proposition 3

Define the linear map U" : Li(ﬂ) — R as

Vp) := / U (xq)p(x0) d oy (xo)
Q

which, by (6) and the Cauchy-Schwarz inequality, is bounded. As R is finite-dimensional, U" has closed range. Consider the auxiliary
problem

minimize l||p||2L2 + lL(AU'(P)’ y)
ser2@ 20 hi A

subjectto  p>0, (l,p);2=1, U(p)€C.
u

where 1 denotes the function that is identically equal to one over Q; since g, is finite, 1 € Li. The objective function in the above is
strongly convex [27, Definition 10.7] and the feasible set is closed and convex. Hence, there is a unique minimizer p* for the above
problem [27, Proposition 11.8]. Let u* :=U"(p*). We claim (p*,u*) is an optimal solution to (13). If (p, &) is feasible for (13) then
p is feasible for the above auxiliary problem and thus

S10* I, + LAy = 310", + 5 LAV (*).9)
1
2
1
T2

1
loll3, + < LAV (p), y)
"

<
2 1 _
IIPIILﬁ + 7 L(A#.y)

where we used the fact that i = U'(p) by feasibility of (p, &). Hence, the objective value of (p, &) is at least that of (p*,u*). We conclude
(p*,u*) is an optimal solution to (13). To show it is the only solution, if we let (p,iz) be any other solution, then, from the strong
convexity of the quadratic term on p in the objective, it follows that p = p*. By feasibility, we conclude that i = U'(p) = U'(p*) = u’*.

B.2. Proof of Theorem 1

First, it is apparent that B : Xp — X, is bounded and that its adjoint B* : X, —» X is given by

—(n+ (o, U(xp)),)
B*(”Ivng)= (I)—A*§
4
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The function f : Xp — (—00,+0] is f is proper, convex and lower semicontinuous, with domain

dom(f)={(p,a,v)EXp: p=20,ueC},

whereas g : X — (—o00,4+0o0] is proper, convex and lower semicontinuous. Furthermore, it is polyhedral. Note that

dom(g) = {r}
and that dom(g) N relint(3(dom(f))) # @. In fact,

B(dom(f))={(s,w,z) ERXRIxR" : s<0}.
This follows from the fact that we may choose

[s] Qe [s]
Ho(Q)’ Ho ()

Is|
Ho(Q

p= / U(xp)dug(xp)+w and v= ) AU (xp)d pg(xy) + Aw +z
Q Q
to obtain (s,w, z) = B(p,a,v). By [27, Fact 15.25] we conclude that the origin belongs to the strong relative interior of dom(g) —
B(dom(f)). Therefore, by [27, Theorem 15.23] strong duality holds. On one hand, the convex dual of f is

ffp.avy= sup ((p.av), (. v))- o .a',v)

0 .a' v)eXp

_ ’ _l m2 o _
= sup ((p,p >L,24 2”/’ ||L[2,{ ”L/24+(p)

p’EL;Z‘

+ sup ((@, @), —lc@)) + sup ((v, vy, — %L(v',y))

' eRY v'eRm
= Lo, + sup (=Lip= 12, = 1,200 ) + 5@ + L L,y
2 L’z‘ pel? 2 L%« Lt ¢ A ’
"
= Lo, = Loz, vz + Lty
Flel = S lo-Il, + 8@ + 7 .y
)

where p, p_ denote the positive and negative parts of p. On the other, the convex dual of g is

1 1
=S losll3, +1E@ + S L* (v, y)
13

g*(n7ms§) = ((n’msé)’ r) =-n.

We conclude that the dual objective becomes

2 / 1+ (@, UGk dpiglg) + (A"~ 0) + S L*(<36.9) — 1
Q

as desired. Finally, by [27, Theorem 19.1], if (p*,d*,v*) € X p and (n*,®*,&*) € X are optimal primal and dual variables then

-B* (", 0%, EX)edf(p*,a*,v*) and (n*,@*,E%)€dg(B(p*,a*,v™)).

From

Af(pa,v)={(p+¢,0,8) : p<0,pp=0,ge€ 1"IL(®,y)}

it follows that the first condition implies

n* +{*, U(xy)) = p™(xy) + 0™ (xo).

This is possible only if
P (xg) = (1 + (@™, U(x()))s-
B.3. Proof of Theorem 2

This result is proven by slightly modifying the arguments used in the proof of Theorem 1. We use the same notation as in that
proof. Define the space X', :=V, X R? x R™. Consider the restriction B : X}, — X . The critical difference is to observe that the
adjoint B* : X, - X', becomes
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—(nly, + (@, Uy, (30))2)
B*("I»g,(‘)): G)—A*§
3

Define the convex function f, : X}, - R

_ 1 1 _
Fulp.a,v)==1pl%, +1,+(p) + ~ L, y) + Ic(@)
202 Ve A

Since there exists a strictly positive function ¢, € ¥, we have that V* is non-empty. Therefore, the primal problem associated to the
finite-dimensional problem is

minimize £, (p,@,v) + g(B(p,ut,v) —r) (B.1)

(p,ﬁ,v)ex;’, .
with dual

maximize — f*(-B*(y,®,&)) —g*(n, ®, ).

maximize fr B (n,0,8) - g™ (n,0,8) (B.2)

To prove strong duality holds, note that f, is proper, convex and lower semicontinuous, with domain

dom(f,)={(p.a,v) € X}, : p>0,a€C}.

As in the proof of Theorem 1, we have that dom(g) N relint(3(dom(f,))) # @. In fact,

B(dom(f,))={(s,w,z) ERXRIXR" : 5 <0}
follows from the fact that we may choose
[s] Is| I's

_ |
p=E—q@, =———— [ Uxpduo(xy)+w and v= AU (xp)dpo(xg) + Aw + z
Py 1 MQ(Q)Q 0)d Ha(Xg ﬂQ(Q)Q 0)d Ha(Xg

to obtain (s,w, z) = B(p, a1, v). Hence, strong duality holds. It remains to compute f:. We have that

fravy= sup  ((pa,v), (o' i V) - fp i V)
(p’,u',v’)ex;

1
= sup ((p, Pz =105, —UV;(/)))
i

eV,
+ sup ((&, @), —lc@)) + sup ((V, v'), - lL(”’J’))
' eRd v'eRm A

1 1 _ 1
==lol, + sup (==llp= /1%, = ly+(p) ) + 5@ + — L*(Av,y)
L 2 Ly n A

2 uo ey,
= Lo, = Loz, v i@ + Lrr Gy
27z N2 e A ’

— l 2 * (= l *
= S0, +12@ + L7 Gy,

proving the theorem.
B.4. Proof of Proposition 4

Let h(s) = si /2. Then h is differentiable with Lipschitz derivative A’(s) = s, ; its Lipschitz constant is 1. Fix x,, and let
q(a, B)=a+ (B, U(x()),-
Then

|h(a(a, B) — h(a(ag, By)) — I (a(ag. Bo))a(a, B) — alag, Bo)l
(@ —a? + (18— Byl

1
lq(a, B) — q(ay, By)| / , /
= h((1 - , B)—nh , d
@0y + 18— Bol 72 J ((1 = 5)q(ag, By) + sq(a, B)) — h' (q(ay, By)) ds

(q(as ﬁ) - q(a(% ﬁ()))z
(@—ap? + [1p— BolP)/2

<1
2
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(@ = ap)? + UGl — Bol2
< 2
(@ = ap)> + 1B = BolID/?
2 2 24172
<max {1, [ U(xo)l3) (@ = ap)* + 15 = Bol19)'/*.

Hence,

[H (a, B) — H(ag, By) — 0, H (a9, Bo)(a — ag) = (Vg H(ap, Bo): B~ Bo)al
(@=a) + 1B = BolI)'/?

< / max{ 11U Geo)l12) diaxo) | (@ — a? + 18 = Boll2)/2
Q

from where the first statement follows. The second statement follows from similar arguments, and the fact that A’ is Lipschitz
continuous. We omit the details for brevity.

B.5. Proof of Theorem 3

The theorem is a consequence of a change of variables using 7. Although it is invertible with continuous inverse, it is not
differentiable and it is not Lipschitz over B,. For this reason, we cannot apply the change of variables formula directly.
We proceed as follows. Let § > 0. Define
A% :=By)\6B,={x€B,: 6§<|x|]l, <1}

and

Q) :={T(x): x€A’}={x€Q): §<yy(x)<1}.

Both {A®%};., and {Qg} s>0 are decreasing sequences. Consider the approximation

1
H@.p)=5 / @+ (B, Uxg +%.)))7 d%o.
o
The integrand is non-negative and H® — H pointwise as § — 0 by the monotone convergence theorem [51, Theorem 2.4.1]. We will

use the change of variables formula for each H® and then conclude by applying a limit argument.
For simplicity, we write g(x) = ||x||,/yy(x). Note g is well-defined for x # 0 and there exists C, > 0 such that

1
Vx#0: C—Sq(x)SCq.
q

We first prove the following auxiliary result.
Lemma 1. The map T : A® — Q¢ defined in (20) is Lipschitz with Lipschitz inverse T~ : Q0 — A° defined in (21).

Proof of Lemma 1. Let x,x’ € A°. Then

T(x) = T(x") = g(x)(x = x") + (g(x) — q(x")x".

The first term can be bounded by ||x — x’||,. For the second term, note that

1 1

Yo(x) - Yo(x")
1 1

Yo(X) }’o(x’)
Finally, note that for ¢, s € [, 1] with s <7

xll, = 1%l +
Yo(x)

lg(x) — g(x")| < X1l

1 '
< =llx—=xl, +
slx =l

|1 2)=| [ el < Ly
t s aZ| ™ 82

N
from where

1 1
IT(x) = T(x"ll; < Cyllx = x'll; + lx- x|ly + 2 [70(x) = 7o(x")]
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and we conclude from the fact that y, is Lipschitz continuous. To prove this claim, remark that since y,, is continuous, it is uniformly
continuous on BZ(O, 1). Let € > 0 and let § > 0 be such that

lx" = xll, <6 = lr(x") = ro(x)l <e

for x', x € B,(0, 1). Then, for any x’,x € R¢ with x” # x we can choose a = §/2||x” — x||, so that
1 £ _€
lro(x") = ro(0)| = 7 lro(Ax") = ro(Ax)| < 7= 5”3‘/ = x|l

The same arguments can be applied to prove T~ is Lipschitz continuous. We omit the details for brevity. []

Hence, T is differentiable Lebesgue a.e. by Rademacher’s theorem [52, Theorem 2, Section 3.1.2]. Let DT denote its differential
matrix. Then, we can apply the change of variables formula [52, Lemma 1, Section 3.3.1 and Theorem 2, Section 3.3.3], to obtain

H(a,p) = % /(a + (B, U(T(xy) + xc)>2)i| det(DT (xg))| dx.

AS

We can further simplify the term involving the Jacobian using the following lemma.
Lemma 2. The function q : A% — RP is differentiable Lebesgue a.e. Furthermore, if x is a point of differentiability, then (Vq(x), x), = 0.
Proof of Lemma 2. The arguments in the proof of Lemma 1 show g is Lipschitz continuous. Hence, by Rademacher’s theorem it is

differentiable Lebesgue a.e. If x is a point of differentiability, then

. 1a(x") = g(x) = (Vg(x), x" — x),|
lim =
x'—>x ||x’ — x||2

0.

However, for any « > 0 and x #0
_Mlaxlly  lalllxll;

rolax) ~— laly(x)

q(ax) q(x)

whence ¢ is homogeneous of degree 0. If we take x’ = (1 + a)x for « sufficiently small, it follows that x’ — x = ax and

lal[{Vg(x), x)o| _ [(Va(x), x)o| _
a=0  |alllx|l, llx|l»

whence the lemma follows. []

Therefore, there is a subset of A% of full Lebesgue measure where both T and ¢ are differentiable. If x is such a point, then

DT(x) = q(x)I 4 + xVq(x)' = det(DT(x)) = q(x)* (1 + () (Vq(x), x)3) = g(x)*
where we used the identity det(I + av') = 1 + (&, v),. We conclude that

1

H’(a.p)= 5/(a+<ﬁ, Ug(0x +x,)),) . 4(x)dx.

AS

As H® — H pointwise, the theorem follows.
Appendix C. Proof of main results in Section 4
C.1. Proof of Proposition 5
We use the same notation as in the proof of Proposition 5. Note that
Ry (@) = inf { %Ilplliﬁ P PELLQ, p20, (1 p) 2 =1, V(p) = a} . (GRY)
Hence, Ry (#1) = +oo if and only if the set

(peLy(@): p20, (1, p)p2 =1, V(p) =i}

is empty. Hence, the domain of Ry; is given by (24). It is direct to verify it is convex. To show it is non-empty, it suffices to choose
p =1/pq(Q) to conclude that
1

m g/ U(xg)d pug(xy) € dom(Ry;)
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whence Ry; is proper.
To prove the convexity of Ry, observe that the objective in (C.1) is strongly convex [27, Definition 10.7] and that the feasible
set is closed. Then, there exists a unique p, such that [27, Proposition 11.8]
| 2
Ry@=3lp, 1}

Let &y, a1, € dom(Ry), let p; =p, and py =p,,, and let § € [0, 1]. Since

Opy +(1=0)pr 20, (1.6p +(1=0)ps) 2 =1 and U(6py +(1 = 0)py) =0 +(1 = )y

we see that

_ _ 1
Ry (Ouy + (1 —0)uy) < 3 [16p; +(1 — 9),02||2L2
"

1 2 1 2
< 59”/71 ||L‘2‘ + 5(1 - G)HpZHL,Z,
=0Ry (@) + (1 — O)Ry (@y).

Therefore, we conclude Ry; is convex.
C.2. Proof of Proposition 6

By the choice of U we have dom(Ry;) C Q. To show int(2) C dom(Ry,) let u, € int(€2) and let r > 0 be such that B(u,r) C int(Q).
Then, it suffices to choose

(xg) 1= —
PO B, P

to conclude that u, € dom(R;;). Now, it remains to show that p, € bd(€2) Z dom(R;;). Suppose there is p € Lfl (Q) with p >0 and
(1, p);2 = 1 such that
H

Ho = / p(.‘xo)xo de => /p(xo)(xo - [lo) de =0.
Q Q
Let z € Nq(uy) where N denotes the normal cone. Define for s > 0

Q 1={xy€Q: (z, x5 — py) <s}

and observe that Q = Q. If p > 0 on a measurable set A C Q; for some s < 0 then

/p(xo)(z, Xo— Hg)pdxg < s / p(xg)dxy <O0.
A A

However, this implies

0= / P(X){z, Xo — Ho)a dXo + / P(X0)(z, X = Ho)a dxg
onA a4

<s / p(xO)de + / p(xO)<Z, Xy — [l0>2 de.
A Q\A

We conclude that

0<-s / p(xg)dxy < / p(x)(Z, Xy — Hy)p dxg <0
A o\4

which is a contradiction unless s = 0. Therefore, p must be supported on

Qni{xgeR: (z, x5 — py) =0} C {xg ER? : (z, x5 — fy), = 0}.

Since the set in the right-hand side has Lebesgue measure zero, we conclude p = 0. This contradiction proves the first statement of the
proposition. To prove the second, let p, € bd(Q) and let { 1, } ,cn be a sequence in int(€2) with u, — py. Let {p,},cn be the sequence
of optimal solutions to (14) for each u,. Suppose that { R;(u,,)} ,en remains bounded by a constant C > 0. This implies that ||p,,||,,en
is norm bounded in L?(®). Since norm bounded sequences are weakly convergent the sequence has a weak limit p, € L*(Q) [27,
Theorem 2.33]. Since the set {p € L*(Q) : p>0,{l, p);2 = 1} is norm closed, it is weakly closed and p, also belongs to this set [27,
Theorem 3.34]. However, the function f(x() = x,; is in L2(Q) for each i € {1,...,d}. Therefore,
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/Pn(xo)xo,idxo =Hy = Mo = / Po(X0)xo,1d%p.
Q Q
However, p lies in the boundary. Using the same arguments as before, we reach a contradiction. This proves the claim.

C.3. Proof of Proposition 7

We show that R}, is invariant under transformations of the form T'(u) = Q(u — py) + p for any d X d orthogonal matrix Q. The
value of R;’] (T'(x)) is the optimal value of the problem

R 1
minimize = / p(xo)zdxo
peL2(@): p20 2 )

subject to / p(xg)d pg(xp) =1, / p(xg)xod po(x9) =T ().
Q Q

However, T induces an isometric isomorphism 7 : Li (Q) > L/24 (Q) given by T (p)(xy) = p(T(x)). Therefore, the optimal value to
the above problem is equivalent to

minimize 1 / p(xo)zdxo
pEL2(Q): p20 29

subject to /p(xo)dxo =1, /p(xO)T(xO)de =T(w),
Q Q

whence R?](T(,u)) = RI°J(;4). It follows that the function f : B,(0,1) - R given by f(z) = R;’}(rz + yp) is invariant under any
orthogonal transformation. We conclude that f(z) = ¢(||z]||,) for some non-negative function ¢ and, by a suitable change of variable,
we arrive to the first statement. Note that ¢ > 0 as R‘L’] > 0. Furthermore, since f(z) = ¢(||x||,) is convex on B,(0, 1) then ¢ must be
convex and non-decreasing. Finally, from Proposition 6 we deduce that ¢(s) — oo as s — 1| as this implies y — bd(2). The second
statement follows by standard arguments and the fact that ¢ is non-decreasing. We omit the proof for brevity.

Appendix D. Proof of main results in Section 5
D.1. Proof of Proposition 8
We have the bound
o*(a, )= / (h(a, B, xq) — H(a, B))*dT1go(x()
Q

2

=/ /(h(a,ﬁ,xo)—h(a,ﬁ,x(')))dl'lg(xf)) dllg(xo)

Q \Q

< // (h(at, B x0) — (@, B, X)) PdTlg(x)dTlg (x).
Q

From the identity
1
1 1
§(c+x2)i— §(c+x1)i=(x2—x1)/(c+9x2+(1 —-0)x,), do
0

for any ¢, x;,x, € R we deduce

1
|h(a, B.xo) = h(a, B, x)| < /(a +(B. (1 = OU (x) + U (x))).d0 | [{B, U(xo) = U (xp)),|
0

1
< /((1 = 0)(a+ (B, U(x()))y +0(a + (B, U(x)),))d0 [I{B. U(xp) = U(x))s|
0

= (3@ + (B UG, + 3@+ (B, Uk ) B, UGxg) = Uy

34



E. Villalén, Q. Yang and C.A. Sing Long Journal of Computational Physics 513 (2024) 113141

<181 (1a1+ SIB1.AU G + 1V G ) 1U Gy = Ul

the proposition follows.
D.2. Proof of Proposition 9
Since
L M
g(@p)~VH@p) = // (Vh(a, B, x"") = V h(a, B, x0))d g (xo)dTIg(xy"")
m=1 )
we have

M
E, o, lg.(@. 8) - VH(a, P} = % D / IV A, B.x"™) = Vh(a, B, xo)l|2dT1g(x)d Mg (x"™)
Q

M m=1
= % / 1V h(a, B, x}) = Vh(a, B, x0)||3d 1 (x0)d g (x))
Q

From

|0 h(at, B, x[)) — 0, h(a, B, X0)| = (@ + (B, Uxp)))y — (@ + (B, U(xg))2) |

< 1Bl IIU (xg) = U(xo)ll

and

IV gh(a. B.x}) = V gh(a, B. xo)ll2 < (@ + (B, U(x})))y — (@+ (B, Uxg))), Ul

+ (@ + (B, Ux)) IV (x() = Uxo)ll
<UBILIU DI, +lal + [ BIDIU () = Uxp)lly

we deduce

IVA(a, B.x}) — Vh(a, B, x)l13 < 21U (x) = U)IABIE + Bl NU DI, + lal + 11811)%)

from where the inequality follows. We omit the details for brevity.
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