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a b s t r a c t 
In this perspective, we explore the historical evolution, photochemical processes, and distinct utility of 
photoiniferter polymerization. We aim to provide a practical guide encompassing the selection of inifer- 
ter and monomer, coupled with the optimization of light wavelengths to conduct efficient photoinifer- 
ter polymerizations. We delve into the impact of iniferter structure on photophysical properties and the 
resulting polymerization behavior. Furthermore, we highlight ongoing research effort s employing pho- 
toiniferter polymerization, emphasizing its potential applications in cutting-edge areas of research such 
as 3D printing and the synthesis of ultra-high molecular weight polymers ( ≥106 g mol-1 ). Through this 
perspective, we aim to clarify both the fundamental principles and the practical considerations of pho- 
toiniferter polymerization, ultimately advancing its utility and paving the way for innovative applications 
in polymer science. 

© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies. 

1. Introduction 
Ciamician, a pioneer in photochemistry, proposed in 1912 that 

visible light could become the resource of the future, particu- 
larly for mediating complex chemical reactions [ 1 ]. Light provides 
many appealing advantages for chemical synthesis compared with 
thermally induced reactions, e.g., spatial and temporal control [ 2–
6 ]. The photoiniferter process utilizes the advantages of light- 
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mediated reactions for polymer synthesis and advanced material 
design [ 7 , 8 ]. Photoiniferter polymerization is a light-mediated rad- 
ical polymerization that traditionally employs a thiocarbonylthio 
compound that can harness the energy provided by light to fa- 
cilitate radical initiation, chain growth, and polymerization con- 
trol [ 9 , 10 ]. Specifically, the thiocarbonylthio compound partakes in 
ini tiation, degenerative chain trans fer , and reversible ter mination 
( iniferter ) and is crucial to the success of the chemistry.7 (Note: 
Although the latter process is well known as “reversible termina- 
tion,” in light of IUPAC guidance suggesting “termination” be re- 
served to describe reactions where chain carriers are irreversibly 
converted to non-propagating species, we have elected to refer to 
the reaction of a thiocarbonylthiyl radical with the propagating 
chainend as “reversible combination.” This terminology is intended 
to prevent confusion, as the IUPAC-recommended term of “re- 
versible deactivation” could also describe the degenerative transfer 
reaction.) 

The phenomenon and model for reversible–deactivation radi- 
cal polymerization (RDRP) was first proposed by Takayuki Otsu 
and his colleagues [ 11 , 12 ] at a time when the polymer chemistry 
community was investigating the complex nature of initiation and 
the impact of radical generation on chain-growth polymerization 
[ 13 ]. It was reasoned that the idea of uninterrupted radical chain 
growth would confer great synthetic utility, enabling the synthe- 
sis of sophisticated macromolecules with complex architectures 
and sequences [ 12 , 14–17 ]. Implementing conditions that prevented 
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Fig. 1. Scheme of Otsu and coworker’s first photoiniferter polymerizations with methyl methacrylate and styrene under UV irradiation. A linear relationship between Mn 
and monomer conversion was reported with these reactions, satisfying one of the facets of a controlled polymerization. 
irreversible termination events became the foundation in build- 
ing a model for living polymerization, first reported through an- 
ionic polymerization conditions by Szwarc in 1956 [ 13 ]. Kennedy, 
shortly thereafter, reported on carbocationic polymerization us- 
ing initiator-transfer agents (inifers) [ 18 ]. The polymerization used 
alkyl halides like cumyl chloride, along with a Lewis acid such as 
boron trichloride which acts as the inifer for the cationic poly- 
merization [ 19 , 20 ]. Sequentially, Otsu’s proposed “living” radical 
polymerization using an iniferter was originally achieved by us- 
ing a thiocarbonylthio compound which dissociated via thermal or 
photo-stimulus. Dissociation of the iniferter generated one radical 
that was reactive enough to initiate polymerization and another 
less reactive (persistent) radical that could prevent irreversible ter- 
mination. The less reactive persistent radical was proposed to par- 
take in reversible combination with the growing polymer chain to 
reduce the rate of undesired radical-radical coupling. Additionally, 
the thiocarbonylthio end-group was credited with enhancing the 
uniform growth of polymer chains via degenerative chain transfer 
[ 11 ]. Since bimolecular termination events are suppressed rather 
than a total absence of termination, photoiniferter polymerization 
has become known as a controlled polymerization rather than a 
true living polymerization. 

Classic parameters of RDRP include 1. first-order kinetic behav- 
ior that indicates constant radical flux throughout the course of 
the reaction; 2. tunable molecular weights that are based on re- 
action stoichiometry and monomer conversion; 3. designed (usu- 
ally narrow) molecular weight distributions; 4. polymer chain-end 
fidelity that allows for successful chain extensions [ 17 ]. Otsu was 
able to partially demonstrate the classic parameters of RDRP in 
1982 via a seminal publication where thermal iniferter polymer- 
ization of methyl methacrylate (MMA) and styrene (St) and pho- 
toiniferter polymerizations of MMA and St under ultra-violet (UV) 
irradiation was demonstrated ( Fig. 1 ) [ 11 ]. 

Although understanding of RDRP has grown exponentially since 
this first report and many more RDRP methods have been re- 
ported since (including: nitroxide mediated polymerization (NMP) 
[ 21–24 ], atom transfer radical polymerization (ATRP) [ 25–31 ], re- 
versible addition—fragmentation chain-transfer (RAFT) polymeriza- 
tion [ 15 , 32–39 ], etc.), the versatility of photoiniferter polymeriza- 
tion is evidenced by its resurgence in recent years [ 28 , 40–46 ]. 
We notice that the information pertaining to this topic can be 
vast, making it daunting to newcomers; as such, we find this per- 
spective timely in light of the vast amount of literature that pi- 
oneers this polymerization process. Features such as the photo- 
chemistry and electronic behavior of thiocarbonylthio compounds 
under irradiation are pertinent to understanding the polymeriza- 

tion mechanism and accurately interpreting results derived from 
photoiniferter polymerizations. Detailed compatibility of various 
photoiniferters with vinyl monomers to achieve polymers with 
low-to-moderate dispersity will also be explored, in addition to 
the applications of this polymerization approach. Thus, the primary 
goal of this perspective is to effectively introduce photoiniferter 
polymerization to a broader audience and facilitate its adoption by 
the greater scientific community. 
2. Photoiniferter and raft polymerization 

The concept of a photoiniferter polymerization remains un- 
changed from Otsu and coworker’s initial reports with dithio- 
carbamates [ 47 ]; however, immense progress has been made to- 
wards improving polymerization control. The word “photoiniferter”
clearly communicates both the role of the molecule during poly- 
merization and the stimulus applied for the homolytic dissocia- 
tion that provides the radicals needed for initiation and propa- 
gation. In photoiniferter polymerization, an electron in the inifer- 
ter is excited by the absorbance of light. The absorbance of light 
due to the C = S bond facilitates β-scission of the neighboring C—
S bond which connects the R-group to the thiocarbonylthio moi- 
ety. Cleavage of the C—S bond generates a carbon-centered radi- 
cal and another less reactive thiocarbonylthio radical ( Fig. 2 ). The 
carbon-centered radical is proposed to initiate polymerization by 
reacting with monomer, while the thiocarbonylthiyl radical is capa- 
ble of reversible combination to deactivate growing polymer chains 
[ 48 ]. Photoiniferter polymerization is also regulated by a degener- 
ative chain transfer process where a radical on a growing poly- 
mer chain is transferred to a dormant polymer chain bearing a 
thiocarbonylthio chain end. Rapid transfer of the polymeric radical 
activates the dormant chain and deactivates the growing polymer 
chain, allowing for the uniform growth of all polymer chains over 
the course of the polymerization [ 49 ]. The contribution of each 
mechanism is dependent on the choice of iniferter and monomer, 
and is discussed in Section 5 . 

Due to the participation of a thiocarbonylthio species and a 
mechanism of degenerative chain transfer as a form of control 
within a photoiniferter polymerization, many publications have as- 
sociated photoiniferter polymerization with RAFT polymerizations, 
using terminology such as “Photo-RAFT” or “Photoiniferter-RAFT.”
However, the originally proposed mechanism of RAFT polymer- 
ization requires the use of an exogenous initiator, which is usu- 
ally dissociated using heat, and its thiocarbonylthio species is pro- 
posed to only participate in degenerative chain transfer and does 
not participate in reversible combination ( Fig. 2 ) [ 50–53 ]. Thus, 

2



R.W. Hughes, M.E. Lott, R.A. Olson S et al. Progress in Polymer Science 156 (2024) 101871

Fig. 2. The mechanisms of (A) Photoiniferter polymerization, (B) RAFT polymerization, and (C) PET-RAFT polymerization. 
the thiocarbonylthio species in a RAFT polymerization is more ap- 
propriately termed a chain transfer agent (CTA). Photoinitiated- 
RAFT is a common adaptation of conventional RAFT polymeriza- 
tion, whereby the exogenous initiator is photoactivated (i.e., a pho- 
toinitiator) [ 54 , 55 ]. Therefore, the presence of an exogenous initia- 
tor excludes categorization as a photoiniferter polymerization. 

A more complicated distinction is between photoiniferter poly- 
merization and photo-electron/energy transfer-RAFT (PET-RAFT) 
polymerization. PET-RAFT polymerization involves the use of a 
photocatalyst that is excited by light and transfers an elec- 
tron/energy to the thiocarbonylthio moiety [ 56 ]. PET-RAFT can pro- 
ceed by both an oxidative and reductive catalytic mechanism to 
confer high degrees of control over the polymerization ( Fig. 2 ). 
Given the presence of a catalyst, PET-RAFT has more flexibility 
to fine-tune the irradiation wavelength, whereas photoiniferter re- 
quires absorption of light directly by the thiocarbonylthio species 
[ 57 ]. However, under particular wavelengths of light, the thio- 
carbonylthio unit in a PET-RAFT polymerization can undergo the 
same three mechanistic aspects of the photoiniferter process, but 
the presence of an exogenous catalyst in PET-RAFT polymeriza- 
tion has generally precluded its classification as a photoiniferter 
polymerization. Another mechanistic consideration with PET-RAFT 
polymerization is since the exogenous catalyst transfers an elec- 
tron/energy to the thiocarbonylthio functionality and the thiocar- 
bonylthio molecule also participates in reversible combination, it 
has been suggested that an alternative descriptor could be photo- 

electron/energy transfer-iniferter (PET-iniferter) polymerization, as 
proposed by Johnson and coworkers [ 3 ]. 

The absence of exogenous initiator in photoiniferter polymer- 
ization has been proposed to potentially lead to more well-defined 
polymers with narrower dispersities when compared to polymers 
prepared via RAFT polymerization. Recent work by Kwon et al. 
elucidated the fraction of dead chains during the synthesis of 
poly(methyl acrylate) (PMA) by photoiniferter polymerization and 
RAFT polymerization. The photoiniferter polymerization led to ∼3% 
of dead chains, which was determined by UV–vis analysis, while 
the corresponding RAFT polymerization led to a much larger frac- 
tion of dead chains at 15% despite having a slower rate of polymer- 
ization [ 58 ]. This level of control in photoiniferter polymerization 
has allowed for the synthesis of controlled ultra-high-molecular 
weight (UHMW, 106 g mol-1 ) polymers with narrow dispersities by 
using this approach [ 59–61 ]. 
3. Iniferter classification 
3.1. Classification by stimulus 

Iniferters can be classified by symmetry and the stimulus ap- 
plied to trigger homolytic cleavage ( Fig. 3 ) [ 12 ]. Otsu et al. had 
documented cases of thermal, photo, and redox iniferters which 
all followed the proposed model for “living” radical polymeriza- 
tion [ 12 , 62 , 63 ]. Thermal iniferters undergo dissociation of a weak 
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Fig. 3. Various methods of iniferter classification based on the stimulus used for 
iniferter dissociation and symmetry. 
bond triggered by heat (such as a disulfide bond, bond dissocia- 
tion energy (BDE) ≈ 16 kcal/mol) [ 64 , 65 ]. A photoiniferter poly- 
merization most commonly uses a thiocarbonylthio compound that 
undergoes photolysis of the C—S bond by β-scission upon irradi- 
ation. Both thermal and photoiniferters are single molecules that 
generate two radicals after dissociation initiated by a stimulus and 
are still relevantly termed iniferters. Redox iniferters consisted of 
two-components and were based on the redox reaction of nickel 
(Ni0 ) with an organic halide (R—X), such as benzyl chloride, to 
form the benzyl radical, which can initiate polymerization. The ox- 
idized Ni complex and C—X bond at the chain-end further engage 
in a reversible combination mechanism to control chain growth 
[ 14 ]. Redox iniferters do partake in initiation and reversible com- 
bination; however, since degenerative chain transfer is not ex- 
pected, we find that this previously classified term is outdated and 
does not fit the current criteria of an iniferter. Among these vari- 
ous classification types, it is also important to note that the syn- 
thetic relevance of thermal and redox iniferters has diminished, 
largely due to the later discovery of RAFT polymerization and ATRP 
[ 28 , 32 , 34 , 56 , 66 ]. In a similar fashion, ATRP also uses transition 
metal catalysts which react with a dormant alkyl halide to form 
a carbon centered radical capable of propagation and an oxidized 
transition metal complex which can then deactivate the growing 
polymer chain [ 67 , 68 ]. 
3.2. Classification by symmetry 

Iniferters can be categorized as symmetrical C–C types (pos- 
sessing higher-order symmetry elements such as C2 ) and un- 
symmetrical A–B types (only containing the universal symmetry 
element- C1 /I) ( Fig. 3 ) [ 12 ]. Due to the symmetric nature of C–
C iniferters, two identical relatively stable radicals are generated 
upon homolytic bond cleavage. This approach tends to result in 
polymers with high dispersities as a consequence of inefficient ini- 
tiation [ 12 , 63 , 69 ]. By adjusting the intensity of the applied stimu- 
lus, the rate of iniferter dissociation can be tuned to obtain poly- 
merizations with varying levels of control [ 70 ]. Perrier and cowork- 
ers used this method with symmetrical bis(trithiocarbonate) disul- 
fides, reporting that higher energy blue light resulted in increased 
photodegradation rates and poorer control during polymerization 
of MMA, as compared to the same polymerization carried out un- 
der green light. Alternatively, the polymerization of methyl acrylate 
(MA) using these iniferters was inhibited under green light and re- 
quired conditions that more strongly favored initiation. The inhi- 
bition of MA polymerization was caused by the increased stability 

of the R-group after monomer addition, which reduced the rate of 
iniferter reactivation [ 70 ]. 

The common drawbacks associated with C–C iniferters can also 
be resolved using unsymmetrical A–B iniferters. In this case, the A 
radical is tuned to be more reactive towards addition to monomer 
to promote rapid initiation (crucial for low dispersity), while the B 
radical is much less/non-reactive towards monomer initiation and 
primarily participates as a control agent during the polymeriza- 
tion via reversible combination [ 14 ]. The lack of symmetry in A–B- 
type iniferters enables the synthesis of polymers with predictable 
molecular weights and architectures. As a result, asymmetric A–B 
type iniferters are now employed most commonly. 
4. Photochemistry of Photoiniferters 

Successful photoiniferter polymerizations hinge on light absorp- 
tion and electronic excitation for efficient photolysis [ 57 ]. Key fac- 
tors such as light intensity, wavelength, and the specific iniferter 
employed play pivotal roles in shaping the outcome of photoinifer- 
ter polymerization. We thus seek to consider these concepts from 
a photophysical point of view to obtain an understanding of the 
photochemical processes that result. 
4.1. Light intensity 

Every chain polymerization is comprised of an initiation, prop- 
agation, and termination step. In thermal polymerizations, ther- 
mal radical initiators decompose when exposed to a given tem- 
perature to generate radicals that initiate polymerization. The ob- 
tained rate of initiation ( Ri ) can be defined by the Arrhenius equa- 
tion, Ri = Ai × e−

Ea,i 
RT , where Ai represents the pre-exponential fac- 

tor for initiation, Ea,i is the activation energy for initiation, R is 
the universal gas constant, and T is temperature in Kelvin [ 17 , 71 ]. 
Through this equation, it is found that increasing temperature re- 
sults in an increase in Ri due to a higher quantity of initiator 
molecules at or above the activation energy required for decom- 
position. Simply put, in thermal polymerizations radical genera- 
tion and therefore Ri (and the resulting overall polymerization ki- 
netics) can be tuned through temperature. In photoiniferter poly- 
merization, light intensity can also be altered to tune radical gen- 
eration and Ri . In photo-initiated polymerizations, Ri can be de- 
fined by the following equation, Ri = φ × I, where φ is the quan- 
tum yield (which represents the efficiency of radical generation 
per absorbed photon) and I is the intensity of light (photons per 
unit area per unit time) [ 71 ]. In this case, a higher light inten- 
sity will result in an increase in Ri . By assuming steady state ki- 
netics where the rate of initiation is equal to the rate of termina- 
tion, we can determine the effect of light intensity on the rate of 
polymerization. Given that the rate of polymerization ( Rp ) equa- 
tion is Rp = kp [M][P∗] ( kp is the rate constant for propagation, [M] 
is monomer concentration, [P∗] the concentration of active prop- 
agating radicals and [P∗] = √ 

2 f kd [I] 
kt (where f is the efficiency of 

initiator decomposition, kd is the rate constant for initiator de- 
composition, [I] is the concentration of the initiator, and kt is the 
rate constant for termination), we can see that the Rp ∝ √ 

Ri . Since 
Ri = φ × I, it can be concluded that Rp ∝ √ 

I . Amongst others, John- 
son and coworkers observed that using higher light intensities led 
to faster polymerizations [ 72 , 73 ]. For example, using a difunctional 
trithiocarbonate for the polymerization of N -isopropylacrylamide, 
it was observed that higher intensity light generated more radi- 
cals which predictably led to faster polymerizations. However, the 
increased rate of polymerization came at the expense of control, 
likely due to the increased generation of radicals in solution caus- 
ing more irreversible termination events (the same phenomena ob- 
served when increasing temperature in thermal polymerizations). 
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Fig. 4. Displaying the electronic excitations available using thiocarbonylthio 
molecules. 
Increased dispersities at higher light intensities evidenced the de- 
crease in control of polymerization. Further in this study, lower 
light intensities afforded polymerizations with the best control. 
4.2. Light wavelength 

Light wavelength is an essential consideration in photoinifer- 
ter polymerizations, as it can be used to target specific elec- 
tronic excitations, leading to differences in polymerization out- 
comes. To achieve effective iniferter photolysis, the chosen wave- 
length of light is usually aligned with the absorbance of the in- 
iferter. However, recent reports by Barner-Kowollick have demon- 
strated through the use of action plots that the wavelength of a 
molecules absorbance and the wavelength at which reactivity is 
optimized can be vastly different [ 74–76 ]. For photoiniferter poly- 
merization, when the iniferter absorbs energy from light, typically 
UV or visible light, electronic excitation occurs, and an electron is 
promoted from its ground state to a higher energy state. Deter- 
mining whether an electronic excitation is possible is dependent 
on adherence to the electronic selection rules, which state: 
• The total spin for an electronic excitation cannot change, i.e., 

!S = 0 [ 77 ]. 
• The change in total orbital angular momentum !L = 0, ∓ 1 this 

is the La Porte rule but only applies to molecules that have an 
inversion center [ 78 ]. 

• The change in total angular momentum can be !J = 0, ∓1. 
• The initial and final wavefunctions must change in parity. 

Electronic transitions that obey selection rules will display 
strong absorbance by UV–vis spectroscopy and can be quan- 
titatively described through extinction coefficients. The extinc- 
tion coefficient is a measure of how likely an electronic tran- 
sition is to occur, i.e., electronic transitions that obey the elec- 
tronic selection rules will display large extinction coefficients ( ε
∼ 10,0 0 0 M−1 cm−1 ). Practically, the lower extinction coefficient 
means that fewer excitation processes occur, potentially altering 
excitation/relaxation pathways and thereby affecting the quantity 
of generated radicals—a critical factor in governing the polymer- 
ization process. The nature of the solvent is also important, with 
polarity affecting the energy of the electronic transitions that dic- 
tate photochemistry. 
4.3. Electronic transitions 

In molecular orbital theory, the electronic transitions can be 
thought of as exciting an electron from a bonding or non-bonding 
orbital into an antibonding orbital [ 79 ]. The following excitations 
are possible: σ→ σ ∗, π→ π ∗, n → π ∗, and n → σ ∗ ( Fig. 4 ) [ 80 ]. Due 
to the high energies required for excitation to the σ ∗, these elec- 
tronic transitions are not usually targeted. Classically targeted ex- 
citations in photoiniferters are the π→ π ∗ and the n → π ∗. These 
excitations appear in the UV or visible region, making them highly 
accessible with simple photoreactor setups [ 81 ]. The π→ π ∗ tran- 
sition leads to excitation of an electron from the C = S π-bond into 

the analogous antibonding orbital, while the n → π ∗ transition in- 
volves excitation of an electron from a lone pair on the sulfur atom 
of the C = S bond, into the C = S π-antibonding orbital. Excitation of 
an electron from the π-orbital to the π ∗-orbital in thiocarbonylthio 
photoiniferters requires around 300 nm light, the extinction coef- 
ficient for this transition is large due to agreement with the elec- 
tronic selection rules ( Fig. 4 ) [ 82 ]. 

The energy difference between the n and the π ∗ orbitals is 
smaller than that for the π→ π ∗, and consequently requires longer 
wavelength light to access [ 83 ]. As a result of the lower energy 
light required, it is hypothesized that excitation occurs from S0 to 
the first excited singlet state (S1 ), and then proceeds to the first 
excited triplet state (T1 ) by intersystem crossing due to the small 
energy gap between S1 and T1 [ 82 ]. Thus, the change in spin asso- 
ciated with the n → π ∗ transition results in a much lower extinction 
coefficient compared to that of the π→ π ∗. Once excited, the in- 
iferter can proceed via one of 3 pathways: 1. return to the ground 
state by radiative processes such as fluorescence or phosphores- 
cence; 2. by non-radiative pathways; or 3. lead to a photochemical 
reaction [ 84 ]. 

Additional mechanistic insights of these electronic excitations 
were further reported on by Kwon, et al. though quantum chem- 
ical (QC) calculations and polymerizations [ 57 , 58 ]. While certain 
photoiniferter polymerizations lacked control at room temperature 
when targeting the n → π ∗ transition, heating improved molecular 
weight control. This report suggests heating light-mediated poly- 
merizations can overcome potential activation barriers involved in 
photolysis. 

The quantum yields of thiocarbonylthio molecules also remain 
largely unexplored, though excitation of the n → π ∗ transition has 
been shown to lead to faster photolysis than when targeting the 
π→ π ∗ transition of trithiocarbonates and xanthates.6 The fact that 
lower energy light can be used is appealing and could be impor- 
tant where light sensitivity is considered. 

While all these reports offer valuable mechanistic insights, the 
precise comprehension of the photochemical processes involved in 
photoiniferter polymerization remains incomplete. Interdisciplinary 
research methods are actively addressing this shortcoming of un- 
derstanding. 
4.4. Influence of iniferter R- and Z-Group on photochemistry 

Targeting various transitions with different photoiniferters can 
result in distinct outcomes on the control of the polymeriza- 
tion, since the wavelength of light required to target these elec- 
tronic excitations is highly dependent on the iniferter structure 
( Fig. 5A ). The π→ π ∗ transitions of all iniferters are similar in ex- 
citation wavelength, appearing between 270 and 320 nm ( Fig. 5B ); 
however, the iniferter structure greatly affects the location of the 
n → π ∗ transition ( Fig. 5C ) [ 85 ]. The iniferter structure can be di- 
vided into R-group and Z-group effects. First, we will discuss the Z- 
group effects, since the effects on wavelength absorbance are more 
pronounced. 

The four common classes of thiocarbonylthio photoiniferters 
are trithiocarbonates, dithiobenzoates, xanthates, and dithiocarba- 
mates ( Fig. 5A ). The π→ π ∗ transition for most trithiocarbonates 
appears at ∼310 nm, while the n → π ∗ transition requires less en- 
ergy for excitation and generally arises at ∼450 nm [ 33 , 86 ]. The 
n → π ∗ excitation of trithiocarbonates is responsible for the color 
of the iniferter, and since most trithiocarbonates absorb in the blue 
region of the visible spectrum, they appear yellow-orange. 

Dithiobenzoates absorb green light and appear red due to the 
absorbance of the n → π ∗ transition, which is located at much 
longer wavelengths, than observed for other iniferters because of 
the increased conjugation [ 87–92 ]. 
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Fig. 5. (A) General structure of common iniferters used in photoiniferter polymerization. (B) Representation of the π→ π ∗ transitions for the respective iniferters. (C) Repre- 
sentation of the of n→ π ∗ transition for the respective iniferters. 

Xanthate excitations are observed at shorter wavelengths, be- 
cause of the electron-donating oxygen atom adjacent to the 
C = S bond resulting in larger HOMO-LUMO gaps than are found 
for trithiocarbonates [ 59 ]. The resulting increased energy gap 
is evidenced by the shift in absorbance for photoexcitations to 
higher energy. The π→ π ∗ transition of xanthates is found around 
280 nm while the n → π ∗ excitation is hypsochromically shifted to 
365 nm [ 10 , 93 ]. Dithiocarbamate photoexcitations are also shifted 
to shorter wavelengths due to the increased donating ability of the 
nitrogen atom, leading to a π→ π ∗ absorbance of around 280 nm 
( Fig. 5 ) [ 44 ]. The ability to target specific electronic excitations 
across the visible and UV regions by careful selection of pho- 
toiniferter structure is a key benefit of this polymerization method 
and may prove particularly useful when conducting polymerization 
in the presence of sensitive biological (macro)molecules [ 4 , 49 , 94 ]. 

The different Z-groups of iniferters control not only the wave- 
length of light required to target electronic excitations but also the 
rate of photolysis. Photolysis of xanthates has been demonstrated 
to be much faster than that of trithiocarbonates. The accelerated 
rate of photolysis can be attributed to the increased resonance do- 
nating effect of the oxygen atom in xanthates causing a lower bond 
dissociation energy of the C—S bond (38.1 kcal/mol)[ 95 ] compared 
to that of trithiocarbonates (41.5 kcal/mol) [ 10 , 95 ]. 

Qiao and coworkers among others have demonstrated that the 
rate of initiation during photoiniferter polymerization is dependent 
not only on the Z-group of the iniferter, but also on the nature 
of the R-group formed upon photolysis [ 96 , 97 ]. Common R-groups 
of photoiniferters are shown in Fig. 6 . Trithiocarbonate iniferters 
with R-groups that cleave to form less stabilized radicals suffer 
from slow initialization due to a slow rate of iniferter photolysis. 
Interestingly, more stabilized R-group radicals such as those gen- 
erated on tertiary-cyano-functionalized groups demonstrate lim- 
ited inhibition. These findings suggest the rate-determining step 
for photoiniferter initiation is the rate of C—S photolysis and not 
the sequential rate of radical addition to monomer (i.e., reinitia- 
tion). Although slow initialization is often observed with iniferters 
that cleave to form less stabilized R-group radicals, the polymeriza- 
tions can be controlled due to the high-chain-transfer capability of 
the trithiocarbonate. To remedy the slow initiation observed for R- 

groups which form less stabilized radicals, a higher light intensity 
can also be used to accelerate photolysis. 

The monomer being polymerized also needs to be taken into 
consideration when conducting a photoiniferter polymerization 
since photolysis of a polymer bearing an iniferter may be differ- 
ent than the original iniferter. A monomer which generates a sta- 
ble radical will in most cases permit efficient photolysis; however, 
a monomer unit which takes on the structure of a poor “R” group 
upon homolysis will hinder photolytic cleavage during polymeriza- 
tion. 
5. Matching monomers to iniferters 

In addition to matching the iniferter to the wavelength of 
light used during polymerization, it is important to consider the 
monomer being polymerized [ 9 , 16 , 17 , 98 ]. Iniferter-monomer pair- 
ing will affect the rates of β-fragmentation during the initializa- 
tion period and degenerative transfer during polymerization. More- 
over, while a considerable body of literature prescribes CTA selec- 
tion during RAFT polymerization [ 99 , 100 ], the effect of photolysis 
and reversible combination must also be considered during pho- 
toiniferter polymerization. The discussion that follows highlights 
examples from the literature that aid in identifying iniferters for 
the polymerization of common classes of vinyl monomers. 
5.1. Degenerative chain transfer vs. reversible combination 

Deactivation of the propagating radical can occur by both de- 
generative chain transfer and reversible combination. When com- 
bined with photolysis, the rates at which these reactions occur in- 
fluence the rate of polymer deactivation and determine the level of 
molecular weight control during polymerization. To achieve rapid 
initiation, it is important to consider the R-group radical stability 
( Fig. 7A ). Enhanced stability of the R-group radical allows for effi- 
cient β-fragmentation of the iniferter to the R-group, which facil- 
itates rapid consumption of the iniferter and the uniform growth 
of polymer chains. In consequence, an iniferter that fragments to 
create stable R-group radicals, such as those stabilized by the cap- 
todative effect, promotes efficient β-fragmentation [ 101 ]. As in the 
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Fig. 6. UV–vis spectra displaying trithiocarbonate photodegradation with respect to time. Adapted with permission from Reference [ 97 ]. Copyright© 2016, Royal Society of 
Chemistry. 

Fig. 7. (A) Equation for the chain transfer constant. (B) Chain transfer constants of common iniferters in styrene at 110 °C, Bn = Benzyl [ 42 ]. Adapted with permission from 
Reference [ 42 ]. Copyright© 20 0 0, John Wiley and Sons. 
case of RAFT polymerization, the stability of the R-group radical 
that results after either β-fragmentation or photolysis of the pho- 
toiniferter can also affect the rate of reinitiation, further empha- 
sizing the importance of considering the relative stability of the 
R-group radical compared to the propagating chain end. 

The degree of degenerative chain transfer and reversible com- 
bination that a polymerization undergoes can be evaluated by 

considering radical stabilities and chain transfer constants ( Fig. 7 , 
9 ). Common monomers that yield relatively stable propagating 
radicals include acrylamides, acrylates, methacrylates, and styren- 
ics (i.e., “more-activated monomers” (MAMs)). MAMs are typi- 
cally paired with an iniferter with a high chain-transfer con- 
stant ( Ctr ) such as trithiocarbonates and dithiobenzoates ( Fig. 9A , 
Fig. 9B ) [ 34 , 66 , 102 ]. Ctr is defined as the ratio of the rate con- 
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Fig. 8. (A) Generic polymerization scheme with varying degrees of protonation of the switchable RAFT agents (SRAs) to tune activities. (B) Size-exclusion chromatography 
(SEC) traces of polymers obtained from photoiniferter polymerization using different amounts of triflic acid (TfOH) to protonate the switchable raft agent. Adapted with 
permission from Reference [ 109 ]. Copyright© 2023, John Wiley and Sons. 
stant of chain transfer ( ktr ) to the kp ( Fig. 7A ). The very high Ctr 
of dithiobenzoates and trithiocarbonates during polymerizations 
of MAMs ( Fig. 7 ) suggests control using these iniferters is likely 
dominated by degenerative chain transfer rather than photolysis. 
Monomers that yield less stabilized propagating radicals include 
vinyl esters, vinyl amides, and vinyl halides (i.e., “less-activated 
monomers” (LAMs)). LAMs tend to be better controlled by inifer- 
ters with low Ctr values, such as xanthates and dithiocarbamates 
( Fig. 7A , Fig. 9B ) [ 16 ]. For example, while xanthates are gener- 
ally poor RAFT agents for the polymerization of MAMs, employ- 
ing xanthates during photoiniferter polymerization of some MAMs 
provides acceptable control. [ 10 , 45 , 103 ] Since the Ctr of xanthates 
with MAMs is low, it is reasonable to attribute the majority of 
control to reversible combination/initiation. However, the relative 
contributions of each deactivation mechanism in determining con- 
trol during photoiniferter polymerization is still a subject of debate 
and highly dependent on reaction conditions [ 104 ]. This aspect of 
photoiniferter polymerization provides versatility with respect to 
iniferter and monomer combinations[ 85 , 105 , 106 ] and even allows 
for the synthesis of block copolymers with reversed blocking order 
(vide infra). 

Tunable Z-groups of chain transfer agents for RAFT polymer- 
ization were first introduced by Rizzardo, Moad, and Thang [ 107 ]. 
By tuning the Z-group the chain-transfer constant can also be al- 
tered. Classically this has been achieved with a dithiocarbamate 
with a pyridine ring attached that can be protonated or depro- 
tonated [ 107 , 108 ]. The Qiao group demonstrated that by control- 
ling the degree of protonation of the pyridine ring in photoinifer- 
ter polymerization the polymer molecular weight distribution can 
be tuned ( Fig. 8 ) [ 109 ]. When protonated the iniferter has a high 
Ctr and provides good control over molecular weight and disper- 
sity during the polymerization of MAMs. When carried out under 
conditions where the iniferter was deprotonated, the resulting low 
Ctr of the iniferter led to poor control. These results suggest that 
exogenous modulation of iniferter structure is a viable strategy to 
tune the chain length distribution [ 109 ]. 

To provide guidance on matching monomer and iniferter re- 
activities, see Fig. 9 . As discussed in earlier sections, there are 
multiple ways to classify a controlled polymerization, including a 
linear evolution of number-average molecular weight versus con- 
version, low dispersity, and chain-end fidelity. Fig. 9B has se- 
lected one of these parameters of a controlled polymerization, 
namely dispersity, to provide guidance for matching iniferters with 
monomers. 

6. Depolymerization 
While polymer degradation is potentially one way to address 

the accumulation of plastic waste [ 120–130 ], more recently depoly- 
merization has risen as an attractive alternative approach [ 131–
137 ]. Cleavage of the thiocarbonylthio group under irradiation can 
be used not only for chemical transformations but also to improve 
the chemical recyclability of polymers. Initial reports by Gramlich 
and coworkers and Anastasaki and coworkers demonstrated that 
poly(methacrylates) bearing labile chain-ends such as dithioben- 
zoates and trithiocarbonates could be activated to induce depoly- 
merization [ 138 , 139 ]. Inspired by this approach, recent progress 
has demonstrated that the rate of depolymerization in solution can 
be accelerated using light in conjunction with heat to induce C—
S photolysis directly[ 140 ] or with a photocatalyst ( Fig. 10 ) [ 141 ]. 
Alternatively, bulk depolymerization of poly(methyl methacrylate) 
synthesized by photoiniferter polymerization achieved ∼90% de- 
polymerization through the cleavage of thermolytically labile end 
groups, the fidelity of which was ensured by photoiniferter poly- 
merization [ 142 ]. 

The emerging technology of depolymerization is particularly 
timely, not only because of the potential for enhanced sustainabil- 
ity but also because the process can potentially be used to address 
current persisting challenges in polymer science [ 132 , 142–144 ]. For 
example, investigation into the fate of the thiocarbonylthio moiety 
upon depolymerization by Anastasaki and coworkers[ 145 ] led to 
the first reports of controlled depolymerization [ 146 , 147 ]. Continu- 
ing to combine depolymerization methodologies to address chemi- 
cal waste is an important consideration toward a more sustainable 
future [ 148 ]. 
7. Applications of photoiniferter polymerization 

Photoiniferter polymerization has been used to afford materi- 
als with improved mechanical properties, to achieve high through- 
put methodologies, and to provide precise control over polymer 
sequence. In this section, we will discuss how photoiniferter poly- 
merization can be used to synthesize polymers with wide-reaching 
applications. 
7.1. Ultra-high-molecular-weight (UHMW) polymers 

UHMW polymers are desirable due to their robust mate- 
rial properties and ability to mimic many naturally occurring 
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Fig. 9. (A) Common R-groups on iniferters with general structure R–S–(C= S)–Z for various monomers; MMA = methyl methacrylate, HPMAM = N -(2- 
hydroxypropyl)methacrylamide, St = styrene, MA = methyl acrylate, DMAAm = dimethyl acrylamide, AN = acrylonitrile, VAc = vinyl acetate, NVP = N -vinylpyrrolidone. 
Adapted with permission from Reference [ 9 ]. Copyright© 2022, John Wiley and Sons. (B) R = C12 H15 or C3 O2 H; R+ = CH3 or C3 O2 H; R+ + = C12 H15 or C4 H9 ; R+ + + = CH3 or H; 
R+ + + + = CO2 C2 H5 , C2 O2 H, or CN [ 110–119 ]. 
X/X+ = alkyl groups or H; X+ + = C or N; X+ + + = O or N. Boxes intentionally left blank are due to no literature or data matching iniferter to specified monomers. 
+++ = resulting polymerization dispersity of 1.00 — 1.29∗

++ = resulting polymerization dispersity of 1.30 —1.49∗

+ = resulting polymerization dispersity of 1.50 — 2.00∗

- = substantial retardation or not achieving targeted molecular weight combined with high dispersities 
∗Under cited conditions 
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Fig. 10. Light-mediated depolymerization through (A) photoiniferter type photoly- 
sis or (B) photoredox catalyst. Adapted with permission from Reference [ 140 ] and 
[ 141 ]. Copyright© 2022, American Chemical Society and Royal Society of Chemistry. 
biomacromolecules [ 59 , 149–151 ]. Often, UHMW polymers are de- 
fined as polymers of molecular weight ≥106 g mol-1 [ 149 , 152 ]. 
High molecular weight polymers can be readily generated by con- 
ventional radical polymerization; however, lack of control over 
both molecular weight and molecular weight distributions, tied 
with the inability to achieve advanced architectures limits the 
applications of materials synthesized by this approach [ 149,150 ]. 
To obtain the benefits offered by UHMW polymers and expand 
their application, RDRP methods can be used [ 59 , 61 ]. There are 
reports on forming high molecular weight polymers via RDRP 
methods [ 153–155 ], however, the synthesis of UHMW polymers 
by RDRP has been particularly challenging [ 59 , 61 , 156–158 ]. To fa- 
vor high molecular weights, monomers with high kp and low 
rates of termination are desired [ 59 ]. Until recently, many of the 
reports synthesizing UHMW polymers have utilized high pres- 
sure, aqueous media, or ionic liquids [ 157 , 159–164 ] to increase 
kp [ 165 , 166 ]. However, photoiniferter polymerization is an attrac- 
tive method to synthesize polymers with predictable UHMW and 
low dispersity under ambient conditions [ 59–61 , 167–169 ]. For ex- 
ample, it has been reported that high/UHMW polyacrylates and 
polyacrylamides synthesized by photoiniferter polymerization had 
dramatically improved thermal, mechanical, and adhesive prop- 
erties. Based on these findings, applications using these materi- 
als in pressure-sensitive adhesives have been reported [ 152 , 170 ]. 
UHMW polyacrylamides synthesized by photoiniferter polymeriza- 
tion are amenable to post-polymerization modification with a li- 
brary of amines via transamidation of the acrylamide [ 168 ]. In 
addition, UHMW polymethacrylates synthesized via photoiniferter 
polymerization bearing pendent β-triketones have been shown to 
be highly reactive towards amines, with the diketoenamine prod- 
uct able to undergo catalyst-free dynamic transamidation in the 

presence of excess amines [ 169 ]. UHMW polymers synthesized via 
photoiniferter polymerization have also demonstrated promise as 
high-performance flocculants [ 164 ]. UHMW polyacrylamides syn- 
thesized via photoiniferter polymerization with a narrow molec- 
ular weight distribution (MWD) exhibited improved flocculation 
efficiencies compared to a commercial benchmark with a broad 
MWD [ 164 ]. 
7.2. 3D-Printing and oxygen tolerance 

Photoiniferter polymerization has also been employed in a va- 
riety of 3D printing applications [ 171–173 ]. Initial reports relied 
on trithiocarbonates, however, slow rates of photolysis of trithio- 
carbonates are potentially detrimental to large-scale open-to-air 
methods [ 174 ]. Despite trithiocarbonates being the most widely 
used thiocarbonylthio compounds for photoiniferter polymeriza- 
tion, xanthates are particularly appealing for additive manufac- 
turing because of the resulting high polymerization rates and 
greater oxygen-tolerance compared to trithiocarbonate-mediated 
photoiniferter polymerizations. Rapid photolysis leads to quench- 
ing of radicals by oxygen, therefore oxygen is less of a concern 
due to the high concentration of radicals in solution. Hartlieb and 
coworkers demonstrated that by combining the high rates of pho- 
tolysis of xanthates with the high degrees of chain transfer of 
trithiocarbonates, efficient multiblock copolymers could be synthe- 
sized under open-to-air conditions at more rapid rates than by us- 
ing trithiocarbonates alone [ 48 ]. Given the appeal of conducting 
3D printing open to air, developments in this field included us- 
ing xanthates with high-intensity light such that nearly quantita- 
tive monomer conversion was achieved in < 30 s [ 95 ]. The authors 
demonstrated the self-healing ability of the 3D-printed polymers 
by cutting the material and re-welding to result in similar material 
properties to the original film ( Fig. 11 ). 
7.3. Dispersed systems 

About 20 % of global polymer production is synthesized via dis- 
persed polymerizations [ 175 ], and despite the potential challenges 
of light scattering associated with many heterogeneous systems, 
photoiniferter polymerization has proven to be viable in dispersed 
media [ 176–178 ]. Boyer and Zetterlund have investigated pho- 
toiniferter polymerization in miniemulsion conditions and found 
that surfactant loading is a crucial parameter in the system [ 179 ]. 
If the concentration of free surfactant in the continuous phase is 
too high, undesired initiation in the continuous phase (secondary 
nucleation) occurs, which results in poor molecular weight distri- 
butions and low kp,app as a result of the “frustrated entry” phe- 
nomenon. As mentioned previously, UHMW polymers can be syn- 
thesized via photoiniferter polymerization; however, the high vis- 
cosity of the polymerization solution limits processability. The high 
viscosity generated is widely thought to be necessary for the syn- 
thesis of UHMW polymers to reduce termination events [ 180–
182 ]. To circumvent the high viscosities that accompany UHMW 
polymerization solutions, miniemulsion conditions have been em- 
ployed [ 60 , 183 ]. Miniemulsion conditions maintain high viscosity 
within the droplets but a low reaction mixture viscosity such that 
the synthesized polymers are far more easily processed. Dispersed 
systems rely on the confined space and segregation effects which 
typically result in greater rates of polymerization and higher de- 
grees of polymerization control when compared to homogenous 
polymerizations [ 184–186 ]. Within these systems an additional im- 
portant aspect to consider is partitioning of the iniferter, particu- 
larly the thiocarbonylthio radical that results from photolysis, as 
this results in fewer control agents per particle leading to a loss of 
control. To further the potential use of photoiniferter polymeriza- 
tion in miniemulsion conditions, UHMW polymers have recently 
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Fig. 11. Photoiniferter polymerization as a means to weld 3D-printed polymers. 
Adapted with permission from Reference [ 95 ]. Copyright© 2022, American Chem- 
ical Society. 
been synthesized in flow, which is promising for the scale-up of 
this process on an industrial scale [ 167 ]. 

Self-assembled amphiphilic block copolymers have garnered 
significant interest due to their ability to act as nanocarri- 
ers, nanoreactors, and contrast agents [ 187–190 ]. In addition to 
photoiniferter polymerization being used for synthesis in clas- 
sic dispersed systems, it has also been used to form nanopar- 
ticles via polymerization-induced self-assembly (PISA). PISA uti- 
lizes a solvophilic polymer which can be chain extended with 
a solvophilic monomer to create a solvophobic block that self- 
assembles during polymerization to form nanoparticles [ 191–193 ]. 
Despite the vast majority of work in this area relying on RAFT poly- 
merization to synthesize polymeric nanoparticles [ 194–200 ], pho- 
toiniferter polymerization is an additional method that has shown 
promise. One of the first reports on photoiniferter-mediated PISA 
involved the chain extension of poly(oligoethylene methacrylate) 
bearing an ω-end trithiocarbonate with benzyl methacrylate us- 

Fig. 12. (A) Reaction scheme of a 25 g scale, one-pot nanoparticle synthesis. (B) 
The polymerization solution transitioned from clear and homogeneous before PISA 
(blue) to an opaque, heterogeneous solution after 5 min of UV irradiation (yellow). 
(C) SEC traces revealed a shift to higher molecular weight upon chain extension 
of macroiniferter. (D) Spherical micelles were obtained as observed by transmission 
electron microscopy (TEM) imaging. Adapted with permission from Reference [ 103 ]. 
Copyright© 2023, John Wiley and Sons. 

ing either green or blue light. Well-defined polymeric nanoparti- 
cles were formed, albeit after extended reaction times [ 201 ]. In 
another seminal report, O’Reilly and coworkers demonstrated that 
higher order assemblies were preferentially formed when using 
photoiniferter polymerization vs RAFT polymerization for PISA due 
to loss of end-group functionality in the core [ 202 ]. 

One possible drawback of photoinferter polymerization in 
PISA is the extended reaction times required compared to 
photoinitiated-RAFT [ 203 ]. To circumvent the high reaction times 
required for photoiniferter-mediated PISA, Sumerlin and cowork- 
ers demonstrated that well-defined nanoparticles could be synthe- 
sized in < 30 min by leveraging the rapid rates of photolysis of xan- 
thates ( Fig. 12 ) [ 103 ]. Alternatively, Zetterlund, Boyer, Junkers, and 
coworkers have demonstrated that the extended reaction times 
using trithiocarbonate-mediated photoiniferter polymerization for 
PISA can be overcome by conducting photoiniferter PISA in flow 
[ 204 ]. Using the designed flow reactor, micelles, worms, and vesi- 
cles were obtained from the same batch depending on the degree 
of polymerization of the core-forming block [ 204 ]. 

11



R.W. Hughes, M.E. Lott, R.A. Olson S et al. Progress in Polymer Science 156 (2024) 101871

Fig. 13. Pathways outlining mechanistic considerations for block copolymer sequence inversion via RAFT and photoiniferter polymerization. Adapted with permission from 
Reference [ 44 ]. Copyright© 2019, American Chemical Society. 
7.4. Sequence control 

When preparing block copolymers by RDRP, it is impor- 
tant to consider the blocking sequence. In RAFT polymerization, 
monomers that form more stabilized radicals are polymerized first 
and then chain extended with monomers that form less stabilized 
radicals, a practice that accounts for preferential fragmentation of 
the intermediate radical formed by chain transfer during the ini- 
tialization period [ 99 , 100 ]. Reversing the blocking order during 
RAFT polymerization generally results in poor blocking efficiency 
and multimodal molecular weight distributions. While inversion of 
the prescribed polymerization order has been achieved in special- 
ized heterogeneous conditions [ 205 ], photoiniferter polymerization 
allows for the synthesis of reverse-sequence block copolymers un- 
der homogenous conditions. 

In photoiniferter polymerization, reversed blocking order can 
be achieved as a consequence of C—S photolysis overcoming the 
bias of intermediate radical fragmentation to the more stabilized 
radical. Sumerlin and coworkers reported that inversion of block- 
ing order was most efficient in providing narrow molecular weight 
distributions when a macro-iniferter bearing a dithiocarbamate or 
xanthate chain end was used, i.e. , when the polymer had end- 
groups capable of more rapid rates of photolysis than trithiocar- 
bonates ( Fig. 13 ) [ 44 ]. The ability to tune the sequence to this de- 
gree provides the ability to reach previously unattainable copoly- 
mers. 

Sequence control of polymers during photoiniferter poly- 
merization methods has also been demonstrated via single- 
unit monomer insertion (SUMI), such as the report from 
Aerts et al. [ 206 ]. describing the first sequential visible- 
light-initiated SUMI of N,N -dimethylacrylamide to 4-((((2- 
carboxyethyl)thio)carbonothioyl)thio)−4-cyanopentanoic acid 
in an aqueous solution. The SUMI process was found to be most 
efficient when using red light. Blue light was also investigated but 
was less efficient for SUMI, an observation ascribed to a greater 
extent of photolysis observed when using blue light [ 206 ]. 
8. Conclusions and future directions 

While bearing many similarities to RAFT polymerization, pho- 
toiniferter polymerization provides an additional approach to well- 
defined polymers under a wide variety of conditions. Indeed, the 
renaissance of photoiniferter polymerization represents a signifi- 

cant development in the field of RDRP, offering a versatile and effi- 
cient platform for polymer synthesis under mild conditions. Its op- 
erational simplicity and compatibility with a variety of monomers 
echo the strengths of RAFT polymerization but with the added 
benefits of light-mediated control, offering opportunities for spa- 
tial and temporal regulation that are sometimes not as read- 
ily achieved via RAFT polymerization. Arguably, some of the ad- 
vances facilitated by this technique are often overlooked due to in- 
consistencies in nomenclature, with photoiniferter polymerization 
frequently being described as a variant of RAFT polymerization, 
with terms such as "photo-RAFT" or "photoiniferter-RAFT" being 
adopted. This terminology can obscure the distinct mechanisms of 
these processes, where RAFT polymerization typically requires an 
exogenous initiator, whereas photoiniferter polymerization is di- 
rectly initiated by photolysis of the iniferter itself. A more consis- 
tent application of terminology would not only clarify these dis- 
tinctions but also highlight the unique capabilities of photoinifer- 
ter polymerization. Looking forward, the integration of photoinifer- 
ter techniques promises to enhance the scope of polymer synthe- 
sis, enabling precise control over polymer architecture and func- 
tionality while overcoming traditional challenges of achieving well- 
defined UHMW (co)polymers and prescribed blocking sequences. 
The ongoing refinement of photoiniferter systems is expected to 
address current limitations and expand utility in materials science 
and biotechnology, ultimately leading to innovative materials de- 
signed with unprecedented precision. 
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