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1 Introduction

Let  C C”" be a bounded, strictly pseudoconvex domain with C°°-smooth
boundary 92. Two important geometric objects associated to €2 are the (unique)
complete Kdhler-Einstein metric gx g with Ricci curvature —1 and the Bergman
metric gg, which is also complete and Kéhler. The boundary behaviors of the two
metrics are intimately related to the CR geometry of the boundary 9€2. The two
notions of flatness that we shall consider in this chapter concern the vanishing of an
obstruction to C*°-smoothness up to the boundary of a log potential of the respective
metrics. In what follows, the abbreviated terminology “flat CR hypersurface” refers
to a strictly pseudoconvex CR hypersurface that is flat in either of these two senses.

In Sect. 2, we first recall the two notions of Bergman logarithmic flatness and
obstruction flatness and collect some intriguing open questions. After that, we recall
some known results about the two types of such flat CR hypersurfaces. We also
establish some new results along the way in our discussion. The 3-dimensional
flat CR hypersurfaces are much better understood than higher-dimensional ones.
In Sect.2.4, we discuss some of the known results in the 3-dimensional case.
For example, every 3-dimensional Bergman logarithmically flat hypersurface is
spherical, which means that their CR structures are locally equivalent. This is
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not true for obstruction flat ones, but compact 3-dimensional obstruction flat
hypersurfaces are expected to be spherical. The latter is sometimes referred to as
the Strong Ramadanov Conjecture and is still open.

In Sect. 3, we survey and discuss existence results for flat CR hypersurfaces,
noncompact and compact, that are nonspherical in higher dimensions. It remains,
however, an interesting question to determine “how many” Bergman logarithmically
and obstruction flat (and nonspherical) CR hypersurfaces there are with distinct
local CR structures. The question makes sense as the two notions of flatness only
depend on the local CR geometry of the hypersurface. A countably infinite family of
compact such hypersurfaces was constructed in [37] for each real dimension 2n + 1
with n > 2. The most significant new results of this chapter are probably the ones
in Sect. 4. Among other results, we construct an uncountably infinite family of flat
(in both senses) CR hypersurfaces {My} in C"*1 for each n > 2, such that each
M,, is homogeneous and has transverse symmetry (but is noncompact) and any pair
My, Mg with a # B has distinct local CR structures.

2 Background

2.1 The Kdihler-Einstein Metric

Let @ C C" be as in Sect. 1. The (unique) complete Kdhler—Einstein metric gg g on
Q2 with Ricci curvature —1 is given by

(8kE)gp = (logu™ V), = (1)

where u is the unique solution in 2 of the Dirichlet problem

J(u)::(—l)”det(” ”5>=1 inQ.

Zo uZam

(2)
u=20 on 082.

The uniqueness of a solution u# was established by Fefferman [22], who also showed
that there are approximate solutions p € C>() to this Dirichlet problem. More
precisely, he showed that there are smooth functions p in  such that J(p) = 1 +
O@(p"™), p > 0inQ and p = 0 on 9S2, and any such approximate solution p is
unique modulo O (p"*2). Such approximate solutions are called Fefferman defining
functions.

The existence of an actual solution u € C®(Q)NC*3/27€(Q) to (2) was proved
by Cheng—Yau [8]. The boundary regularity of ¥ was improved to C"t27¢(Q) by
Lee—-Melrose [29], who demonstrated that u has the asymptotic expansion

0.¢]
w~p > n(p"Mlogp), ny e C@Q), 3)
k=0
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where p is a Fefferman defining function for 2. Graham [23, 24] showed that the
coefficients n;, for k > 1, are local CR invariants of the boundary 9<2 modulo
o(p"t).In particular, the function n4|yg is a local CR invariant of 9€2, and Graham
(op. cit.) also proved that, in fact, n |y = O if and only if the Cheng—Yau solution
u is C*® () (which implies that n; = 0 in Q for all kK > 1). The local CR invariant
n1lag is called the obstruction function and will be denoted by . We shall say that
0K is obstruction flat if O = 0. The prototype of an obstruction flat hypersurface is
the unit sphere or, more generally, any spherical hypersurface, i.e., a hypersurface
that is locally CR diffeomorphic to a piece of the unit sphere.

We observe that since the obstruction function O is determined by the local
CR geometry of the strictly pseudoconvex hypersurface d€2, we may define this
invariant on a strictly pseudoconvex hypersurface X in a complex manifold in an
obvious way. The notion of obstruction flatness then also carries over to strictly
pseudoconvex hypersurfaces X in a complex manifold.

2.2 The Bergman Metric

The Bergman metric in €2 is given by

(88)qp = (0g K)zy55, @)

where K = K(z, z) denotes the Bergman kernel of 2 (the reproducing kernel of
the subspace of holomorphic functions in L%(Q)) on the diagonal. Fefferman [21]
showed that K has an asymptotic expansion

K=t ylogp. by eC¥@. 5)
P

where we take p to be a Fefferman defining function of 2. The coefficients ¢ mod
O(p”“) and ¥ mod O (p°°) are determined by the local CR geometry of 9$2; see
[21,2,26]. It is further known that ¢ = n!/7" + O (p?). We say that 9S2 is Bergman
logarithmically flat if the log coefficient ¢ vanishes to infinite order (i.e., ¥ = 0
mod O (p®°)). By the localization property of the Bergman kernel (cf. [21, 5, 19,
27]), Bergman logarithmic flatness only depends on the local CR geometry of the
boundary, and we can define Bergman logarithmic flatness for any germ of strongly
pseudoconvex CR hypersurface M in C™. We say M is Bergman logarithmically
flat if, for some (and therefore every, by the localization property of the Bergman
kernel) smoothly bounded strongly pseudoconvex domain G with M C 9G, the
coefficient function v in the Fefferman expansion (5) of K¢ vanishes to the infinite
order along M. Furthermore, a CR hypersurface X (in a complex manifold) is called
Bergman logarithmically flat if it is so as a germ of CR hypersurface at every p € X.
The prototype of a Bergman logarithmically flat hypersurface is the unit sphere or
any spherical hypersurface.
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In order to observe an analogy with the construction of the Kéhler-Einstein
metric above, we introduce the function

1

v =K, (©6)

which is C*®(Q) N C"127¢(Q) and v = 0 on 9<. In fact, we have an asymptotic
expansion of the same type as that for the Cheng—Yau solution u,

vy Ep"logp), Ep e CX @), @
k=0

where we may take, near the boundary 0€2,

k 1
£k =k (%) ¢ T ®)

for some combinatorial constants ¢ # 0 with ¢g = 1. We note that in this case
C°°-smoothness up to <2 is obstructed by the coefficient ¥ of the log term in
Fefferman’s asymptotic expansion of K, as &, for k > 1, vanishes to infinite order
at the boundary if and only if v does (cf. [23]). Thus, the function v is C®(Q)
if and only if ¢ vanishes to infinite order at 0<2. Moreover, in analogy with the
Kéhler—FEinstein metric above, we can express the Bergman metric as

(88)qp = (ogv™ "), . ©9)

While the Cheng—Yau solution u and the function v associated with the Bergman
kernel have similar asymptotic expansions at d€2, a major difference between the
two functions is that u solves the partial differential equation J (1) = 1, whereas v
does not (in any apparent way) come from a differential equation. In fact, we have
the following result, which is a slight sharpening of a key step in Huang—Xiao’s
resolution [28] of the Cheng Conjecture.

Proposition 2.1 Let @ C C", with n > 3, be a bounded, strictly pseudoconvex
domain with C*°-smooth boundary 02, and let v be the function given by (6). Then,

J(v) = % +0(p?) (10)

and the following are equivalent:

(i) It holds that

J () = % +o(pd). 1)



Bergman Logarithmically Flat and Obstruction Flat Hypersurfaces and Their. . . 119

(ii) It holds that

J(v) = % +0(p"). (12)

(iii) 02 is spherical.

Remark 2.2 The implication (i) = (iii) is contained in [34], but in terms of
the so-called Bergman function instead of J(v); see the remark at the end of this
subsection.

Proof of Proposition 2.1 First, we recall the following result that follows from
Fefferman’s calculation on pp. 399—400 in [22]:

Lemma 2.3 Let x and n be C?-smooth functions in a neighborhood of 32 such
that x = 0 on 0K2. Then, forany s > 2, v = x + nx?* satisfies

J(v) = (1—|—(n—|—2—s)snxs_l) J(x)+ O0(x®). (13)

By repeating this calculation, mutatis mutandi, with v = x 4 nx® log x instead
of v = x + nx?®, we also obtain the following:

Lemma 2.4 Let x and n be C?-smooth functions in a neighborhood of 32 such
that x = 0 on 0<2. Then, forany s > 3, v = x + nx* log x satisfies

J@ = (14 (1 + 2= 9y slog x + (1 +2 = 260" ™)) J(0+0 (" log ).
(14)

We shall now apply Lemma 2.4 to the function v given by (6). We observe that,
by the asymptotic expansion (7), there is a function 77 € C"T1=¢ near 9Q such that
v=p&y+ np" 2 log p. We note at any point p € 9€2, and it holds that p(p) = 0,
Eo(p) =c = (;—,ﬂ)_ﬁ and 77(p) = a for some a € R. We want to rewrite this in
the form v = x + nx" 2 log x, where x = pé& for some & € C"+1~¢ near 92. By
comparing the two expressions, we note that this can be done if we can solve the
two equations

E+nE"2plogs = £

nem2 — . (15)
for § = &(p,&0.7) and n = n(p,&o, n) near the point (p, &g, 76,1 =
O, c,a;c, C,f’T). One can readily verify the system (15) is nondegenerate in (£, n) at
this point. Therefore a straightforward application of the Implicit Function Theorem
guarantees that this is the case. Moreover, the functions & = &(p, &(, 77) and
n = n(p, &y, n) are smooth (in fact, real analytic) in the arguments (p, &, 17); thus
&, n becomes C"t1=¢ functions near 92 after the composition. Moreover, by the
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first equation in (15), we see & = £, + O (p"T!). We now apply Lemma 2.4 to the
function v = x + nx" 2 log x with x = p& as above. Lemma 2.4 implies that

J(v) = J(p&) + O(p"t1. (16)

Since pé = p&y + O(p"*?), Lemma 2.3 with s = n + 2 then implies J(p§) =
J(pE(y) + O(p"*?). Consequently,

J() = J(pgg) + 0(p"t1h. (17)
If we introduce the function

¢ —n!/7"
Py = ——F—,
e

1

then we can write ¢ = n!/m" + P> p?, which implies that p&( = p¢~ "1 = yx+nx°>,

where
h 1/(n+1)
X = (—,) 1Y
n!
and where
1/ n\@=D/@+D
Nlea = e (F) Prlsq. (18)

If we apply Lemma 2.3 with v = p&, = x + 1>, then we conclude that

J(pEg) = (143 — Dnx)J (x) + 0(p) = (1 +3(n — 1)77)(2)7;—, + 00,
(19)

since J(x) = 7" /n!J(p) = 7" /n! + O(p"*!) and n > 3. Here we have used the
fact that p is a Fefferman defining function. The conclusion (10) follows from (17)
and (19).

It remains to establish the equivalence of the statements (i)—(iii). We first prove
(i) = (iii). Equations (17) and (19) together imply that (11) holds if and only if
nlae = 0, which by (18) is equivalent to P>|3o = 0. On the other hand, P;|3q is

known to be a nonzero constant multiple of | § |2, where § = wBii is the Cartan—

Chern-Moser CR curvature tensor of 3€2 and || S||2 = Saﬁvﬂ sepvit (cf. [10, 23, 28]).

Since being spherical can be characterized by the vanishing of | S|, the implication
(i) = (iii) of the proposition is proved.

To prove (iii) = (ii), we recall that ¢ mod O(p™1 and ¥ (mod O(p™))
are determined by the local CR geometry of 9€2. Thus, if 02 is spherical, then
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¢ =nl/7" + O0(p"t1) and ¥ = 0 to infinite order at 2. Moreover, thE obstruction
function O = 0, which implies that the Cheng—Yau solution u is C*°(€2). Thus, the
Cheng—Yau solution u is a Fefferman defining function. Taking p = u in (5), by (6),
we get

n

n+1
v =up" T 4+ OU™) =u <n—'> + o).
n!

The conclusion (12) now follows from Lemma 2.3 with s = n + 2.
To complete the proof of the equivalence of (i)-(iii) and, hence, that of the
proposition, we simply note that (ii) obviously = (i). O

We end this subsection with some remarks that are somewhat tangential to the
main theme of this chapter. We recall that, for n > 3, a boundary point p € 9Q2
is said to CR umbilical if the CR curvature tensor S,z,; vanishes at that point.
Thus, being spherical is equivalent to being CR umbilical in an open neighborhood.
We observe that the proof of Proposition 2.1 readily yields the following pointwise

result.

Proposition 2.5 Let @ C C", with n > 3, be a bounded, strictly pseudoconvex
domain with C°°-smooth boundary 02 and let v be the function given by (6). Then,
a point p € 02 is CR umbilical if and only if

. ) "
lim p(2) (J (v(2)) — —,) =0. (20)
i=p n:

For our second remark, we observe that if (11) holds, then the Bergman metric
is asymptotically Kdhler—Einstein (with Ricci equal to —1) in the sense that
Ric(gp) = —gp + o(1), i.e., every component of the tensor Ric(gp) + gp is o(1)
as z — 0%2. The converse can also be verified. Indeed, a pointwise result along the
lines of Proposition 2.5 can be established using the same ideas as in the proof of
Proposition 2.1.

Proposition 2.6 Let 2 C C", with n > 3, be a bounded, strictly pseudoconvex
domain with C*°-smooth boundary d2. Then, a point p € 02 is CR umbilical if
and only if

le_I}}] (Ric(gp)(z) +gB(2)) =0. 1)

Proof Tt follows easily from the identity Ric(g) = —(log G),,z;, where G = detpg,
and the well-known formula

J(f)

det[(—log f)z,z5] = et (22)
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that the components of the tensor Ric(gp)(z) + gp(z) can be expressed as

(Ric(gp)(2) +gB(2)qp = —(log J(v))z,z5- (23)
It follows from (17) and (19) in the proof of Proposition 2.1 that
an
JW) =143 = DuxH)— + 0, (24)

where x and 7 are as in that proof. It follows that there is a C?-smooth function P
such that

log J (v) = p?P,. (25)

Moreover, in view of (18) and the arguments in the proof of Proposition 2.1, it holds
that P»|3q is a nonzero constant times the norm squared of the CR curvature, ||S I2.
Thus, (23) implies that

Zli_r)t}) (Ric(gp)(2) +8B(2)gp = CPy, (z)pg(p)llS(p)llz, Vi<a,B <n,
(26)
for some nonzero constant c. The proposition then follows from the above identity.

O

As our final remark, we note that by using the identity (22), it is not difficult to
show that

1 G
J) = ———
(m+ 1" K
where G = detgp as above. The function B = G/K is sometimes called the

Bergman function. This is the function referred to in Remark 2.2.

2.3 The Ramadanov Conjecture and an Analogous Question
Jor Obstruction Flat Boundaries

We first recall the Ramadanov Conjecture [35]:

Ramadanov Conjecture If Q@ C C", n > 2, is a bounded, strictly pseudoconvex
domain with C*°-smooth boundary 02 and if 02 is Bergman logarithmically flat,
then 0S2 is spherical.

The Ramadanov Conjecture has been established in C? by the work of Burns,
Graham, and Boutet de Monvel [24, 4]. Indeed, in this case it suffices that ¢ =
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O (p?) for 92 to be spherical. The Ramadanov Conjecture is still open in C”* with
n > 3, but it is known to fail if we instead consider domains €2 in more general
complex manifolds [20] or Stein spaces [17] as long as the complex dimension n of
the space is at least 3.

We observe that the Ramadanov Conjecture can be formulated in terms of the
flatness of the first log coefficient £, in the asymptotic expansion of the function v
introduced in (6), since & is flat if and only if v is flat. As observed above, flatness
of ¢ is also equivalent to C°°-smoothness up to the boundary of v.

One may ask the same question in the context of the Kéhler—FEinstein metric.
Asking for C°°-smoothness up to the boundary of the Cheng—Yau solution is,
as mentioned above, equivalent to obstruction flatness. Thus, the analogue of the
Ramadanov Conjecture for the Cheng—Yau solution would be:

Obstruction Flatness Conjecture If Q@ C C" n > 2, is a bounded, strictly
pseudoconvex domain with C°-smooth boundary 02 and if 92 is obstruction flat,
then 0S2 is spherical.

The Obstruction Flatness Conjecture is open in all dimensions n > 2, although
there is ample evidence for its correctness when n = 2. For example, the first
author and Curry have shown that in C? the conjecture holds if one assumes in
addition that 92 has an infinitesimal CR symmetry [15, 13] or, more generally, an
approximate infinitesimal automorphism [11]. We recall that €2 has an infinitesimal
CR symmetry if and only if there exists a holomorphic vector field near 02
whose real part is tangent along 0€2. Possessing an approximate infinitesimal
automorphism is equivalent to the existence of a holomorphic vector field such that
its real part is, roughly speaking, more tangent than normal along 9€2; the reader is
referred to [11] for the precise definition.

2.4 The Two-Dimensional Case

For domains € C? (or more generally in a complex surface), there is a precise
and direct relation between the two notions of flatness. Graham [24] has shown
that in this case, the obstruction function O equals a nonzero constant times the
restriction to d€2 of the log term coefficient i of the Bergman kernel K. Thus,
Bergman logarithmic flatness implies obstruction flatness. We recall that in C? (or
in a complex surface), the Ramadanov Conjecture holds and, in fact, a stronger
statement holds: If ¥ = O(p?) along the boundary 3<2, then d<2 is spherical. The
Obstruction Flatness Conjecture can then be reformulated as asserting the stronger
statement that ¥ = O (p) implies that d<2 is spherical. Hence, in C? the Obstruction
Flatness Conjecture has sometimes been called the Strong Ramadanov Conjecture.

For domains @ C C2, a local version of the Ramadanov Conjecture holds.
Indeed, if ¥ = O(p?) along an open piece U of the boundary 9<2, then U is spher-
ical. This follows from the proof of this conjecture in [24, 4]. The corresponding
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local version of the Obstruction Flatness Conjecture (a.k.a. the Strong Ramadanov
Conjecture) is false, however, as was first demonstrated by Graham [23]. In fact,
the following, which is a consequence of Theorem 3.2 in [16] and Chern—Moser’s
normal forms theory [9], holds true:

Theorem 2.7 There are uncountably infinite families of obstruction flat strictly
pseudoconvex hypersurfaces in C? that are pairwise locally CR inequivalent.

Proof Recall from [9, pp. 246-247] that a real analytic hypersurface X in C? with
a non-umbilical point pp € X can be put in a special Chern—-Moser normal form at
po = (0, 0) as follows:

Imw = |z|* + 2Re z*72 (1 + A%z +iAlRe w) +0@®), 27)

where A% € C, Al- € R are such that (AO-)2 and Al. are invariants, and
O(8) denotes terms that are of (unweighted) order at least 8 in (z, z, Rew). By
the proof of Theorem 3.2 in [16], we may pose a Cauchy problem for the totally
characteristic partial differential operator K from [23], associated with obstruction
flat hypersurfaces, with the data

p=Imw — |z|> — 2Re z*72 (1 + A%z +iAl; Re w) 28)

on the real hyperplane Rez = 0, and produce, via the Cauchy—Kowalevski
Theorem, a unique obstruction flat hypersurface whose Chern—Moser normal form
at 0 is of the special form (27). Clearly, using this construction, the existence of
families of obstruction flat hypersurfaces as in the statement of Theorem 2.7 follows.

O

It was also shown in [16] that there are nonspherical obstruction flat hypersur-
faces in C? with transverse infinitesimal CR symmetries, which implies that the
local versions of the positive results on the Obstruction Flatness Conjecture in
[15, 13, 11] do not hold.

2.5 Flat Rigidity of the Unit Sphere

While both the Ramadanov Conjecture in C"*, for n > 3, and the Obstruction
Flatness Conjecture, for all n > 2, are open, they are known to hold for small
deformations of the unit sphere. To describe this more precisely, we let Zy, ..., Z,
denote a local frame, near some point p € §2"~!, for the (1, 0)-vector fields that
define the standard CR structure on the unit sphere $**~! = 9B” in C". Any abstract
smooth CR structure on the sphere S?"~! whose underlying contact structure is
isotopic to the standard one is CR diffeomorphic to a deformation of the standard
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structure given, near p, by the vector fields

289 = Zy + 1, 25, (29)
where ©u = /LaB is a smooth deformation tensor with L°°-norm < 1; and we

are using the summation convention. The deformation tensor u = u,”, defined
locally in this way near p, defines a global deformation tensor, i.e., a global section
of (T1.0§2n—1y* @ T1.0§27=1 " Since the underlying contact structure for these
deformations is fixed (to be the standard one on $2"~1), the deformation tensor %
completely determines the CR structure, and we shall denote the deformed structure
by (S>~1, w).

We shall be concerned with CR structures that are close to the standard
structure (S*"~1, 0). More precisely, we shall require the C¥-norm of p, || x for a
sufficiently large k (e.g., k > 6 suffices), to be small; in particular, the CR structure
(5271, 1) will remain strictly pseudoconvex. We observe a fundamental difference
between the lowest dimensional case, n = 2, and n > 3. In the former case, most
deformations (S3, i) are not CR diffeomorphic to a CR structure on $3 obtained
by deforming the unit sphere inside C? (indeed, they are not even embeddable
locally) and the ones that form a proper Fréchet submanifold inside the space of all
deformations; the reader is referred to [7, 30, 12] for a discussion. We point out that
even when the CR structure (5>, x) is not locally embeddable, the CR invariant O
can still be defined, and, hence, the notion of obstruction flatness carries over to this
situation. In this case, however, the connection with an ambient complete Kédhler—
Einstein metric is no longer valid, although a connection to a different ambient
metric problem does exist; the reader is referred, e.g., to [14] for a discussion. The
notion of Bergman logarithmically flat makes less sense for CR structures that are
not locally embeddable.

In the case n > 3, it follows from Boutet de Monvel’s CR embedding theorem
[3] and Lempert’s stability theorem [30] that any deformed structure (Szn_l, W) is
CR diffeomorphic to one obtained by deforming the unit sphere inside C".

By combining the results of Curry and the first author [13, 11, 11] (for the
obstruction flat statement) and the resolution of the Ramadanov Conjecture (for the
Bergman logarithmically flat statement) in the case n = 2 and that of Hirachi [25]
in the case n > 3, one obtains the following:

Theorem 2.8 Let ("1, w), for n > 2, be a sufficiently small deformation of the
standard CR structure (S*"~1, 0) of the unit sphere. If (S*"~1, n) is obstruction flat
or Bergman logarithmically flat (in the locally embeddable case), then (S*"~!, 1)
is CR diffeomorphic to (§*"~1, 0).

While Theorem 2.8 offers evidence of the validity of the Ramadanov Conjecture
and the Obstruction Flatness Conjecture for domains in C", we note that the
conjectures can also be posed for smoothly bounded (relatively compact) strictly
pseudoconvex domains €2 in more general complex manifolds and, in this context,
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both conjectures would fail when n > 3. The remainder of this chapter will focus on
investigating this phenomenon more closely in the special context of disk bundles
over Kéhler manifolds.

3 Flat Hypersurfaces in Higher Dimension

In this section, we shall investigate the local CR geometry of compact, obstruction
flat, strictly pseudoconvex hypersurfaces in higher dimensions. While the Obstruc-
tion Flatness Conjecture is still open in two dimensions, i.e., for 3-dimensional CR
manifolds (embeddable in complex manifolds or not), there is ample evidence for its
validity. If true, then the local CR geometry of 3-dimensional, compact, obstruction
flat, strictly pseudoconvex hypersurfaces is trivial; they are all spherical. As men-
tioned above, however, both the Ramadanov and Obstruction Flatness Conjecture
fail for boundaries of domains in complex manifolds of higher dimension. Hence,
the next challenge is to understand the (local) CR equivalence classes of compact,
obstruction flat, strictly pseudoconvex hypersurfaces. As a first step in this direction,
we shall consider a special class of such, namely, unit circle bundles over Kéhler
manifolds.

3.1 The Setup

Let M be a Kihler manifold of dimension m, endowed with a Kéhler metric g.
The associated Kéhler form will be denoted by w. Let L — M be a negative
holomorphic line bundle equipped with a Hermitian metric # “quantizing” (M, g);
i.e., the metric g is induced by the curvature of (L, h) — M via

/1 _
w = ——090logh.
2
We shall denote the dimension of the complex manifold L by n = m + 1. The Ricci
curvature Ric(g) induces an endomorphism Ric(g)*: TM — T M, given in a local
coordinate chart z = (z1, ..., Zm) by

X% R,%X7,

where

X =X"0/0z,,  Rup=-—
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and where we raise and lower indices by the metric; e.g., R,P = gPH Ryp with
g~ ! = g% denoting the inverse of the matrix g = 8ap
We shall denote by D(M, h) and X (M, h) the unit disk bundle and the unit circle
bundle, respectively, i.e.,
DM,h)={velL:|v,<l1},
Y(M,h)={vel: =1}

(30)

When M and (L, h) — M are fixed, we shall abbreviate D(M, h) and (M, h)
by D and X, respectively. It is a well-known result of Grauert that X is a smooth
strictly pseudoconvex hypersurface in L. If M is compact, then £ is compact and
comprises the boundary 0D. If M is noncompact, then in general X is merely a
proper subset of d D, and d D may be neither smooth nor strictly pseudoconvex.

3.2 Sufficient Conditions for Obstruction Flatness

The endomorphism Ri c(g)tI has, pointwise, m real eigenvalues A < --- < A, that
form real-valued functions on M. We have the following sufficient condition for
obstruction flatness from the authors’ joint work with H. Xu [18]:

Theorem 3.1 Let (L,h) — M be a negative Hermitian holomorphic line bundle
over a Kdhler manifold (M, g) such that the curvature of h induces the metric g
as in Sect. 3.1. If the eigenvalues of the Ricci endomorphism Ric(g)* are constant,
then ¥ (M, h) is obstruction flat.

Remark 3.2 The prototype of a situation (but not the only one) where the Ricci
eigenvalues are constant is where (M, g) is Kihler—Einstein or, more generally, a
product of Kéhler-Einstein manifolds. If, for example, M = M| x ... X My is
a product of Kihler—Einstein manifolds (M;, g') such that Ric(g') = u;g’, then
the Ricci eigenvalues are wy, ..., i, with each eigenvalue having multiplicity =
dim M;. Another prototype is when (M, g) is a homogeneous Kéhler manifold.

3.3 Examples of Bergman Logarithmic Flatness

Recall the only Bergman logarithmically flat hypersurfaces in C2 are the spherical
ones, by the work of Burns, Graham, and Boutet de Monvel [23, 4]. In higher
dimensions, there exist noncompact Bergman logarithmically flat hypersurfaces
in C" that are not spherical. There are also compact examples realized as circle
bundles X (M, h) that arise from a negative line bundle (L, &) quantizing a compact
Kédhler manifold (M, g) as in (30). The first such examples were constructed by
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Engli§ and Zhang [20]. They showed that the corresponding circle bundle must be
Bergman logarithmically flat if (M, g) is an irreducible Hermitian symmetric space
of compact type. Furthermore, this circle bundle is spherical precisely when M is
the projective space (note this fact also follows from the combined work of Webster
[36] and Bryant [6], cf. Theorem 4.1). Later Loi—-Mossa—Zuddas [32] proved that
3 (M, h) is Bergman logarithmically flat if (M, g) is a compact simply connected
homogeneous Kihler—Einstein manifold of classical type.

It is then natural to ask about the case when (M, g) is a Hermitian symmetric
space of noncompact type, i.e., a bounded symmetric domain. We pause to recall
some preliminaries on bounded symmetric domains. A Hermitian symmetric space
of noncompact type can be realized as a convex and circular bounded domain
containing 0 in some complex Euclidean space, via the Harish—Chandra realization,
equipped with the (possibly normalized) Bergman metric. Such realizations will
be called bounded symmetric domains. A bounded symmetric domain is called
irreducible if it cannot be written as the product of two of such domains. We next
recall the notion of generic norms. Let €29 be an irreducible bounded symmetric
domain and denote by K (z, z) its Bergman kernel. Write Vg, for the volume of
in the Euclidean measure, and y for the genus of €2g (which is a positive integer

1

associated to o, cf. [33]). Then (Vq,K(z,z)) ¥ gives a Hermitian polynomial,
denoted by N(z, 7). The polynomial N is called the generic norm of 2.

Now let 2 = @ x --- x £; be a bounded symmetric domain in C7, where
each ©;,1 < i < [, is an irreducible bounded symmetric domain in C?Z with
n = Zﬁzl n;. Denote by N;(z;,z;), 1 < i < [, the generic norm of €2;. Next let
L = Q x C be the trivial line bundle over €2. Equip L with the Hermitian metric #,
where

l

o) =[] (Vi 7)™ (31)

i=1

Here every k; is a positive real number. Note the negative of the Chern class
—c1(L, h) = 3dlogh induces a complete homogeneous Kihler metric wg on Q.
Note wgq is also a product of Kihler—Einstein metrics on Q;s. Moreover, the disk
and circle bundles of (L, h) are given by the following, respectively:

l
D(Q, h) := !(z, HeaxC: 5P <J] (Ni(z,-,z—,-))"f} c crt, (32)
i=1

l
£(Q.h) = {(z, feaxC: =[] (N,-<z,-,z—,->)""} cctl. 33
i=1
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The Bergman kernel Kp(z, &, Z, E) of D(L2, h) was computed by Ahn—Park [1].
Write

1§12
[Tio (N (Zi,Z_i))ki

r(Z9§9Z75):1_

Note r is a local defining function of (€2, ). By Theorem 2.5 in [1], we see
"t K extends smoothly across X (€2, h). Let D’ C D(£2, h) be a small smoothly
bounded strongly pseudoconvex domain that shares an open piece of boundary
M C 2(2, h) with D(2, h). Then writing K ps for the Bergman kernel of D’,
by the localization property of the Bergman kernel (see, e.g., Theorem 4.2 in [19]),
r"*1 K extends smoothly across M. By inspecting the Fefferman expansion of
K pr, we conclude that M is Bergman logarithmically flat; since M can be arbitrarily
chosen, so is (€2, #). Thus we have observed the following fact.

Proposition 3.3 Let Q@ = Q1 x --- x ; be a bounded symmetric domain in C7,
where each Q2;,1 < i < [, is an irreducible bounded symmetric domain in (C?f
with n = Zf’:l n;. Denote by Ni(zi,7;),1 < i < I, the generic norm of ;. If
all k;, 1 < i < [, are positive real numbers, then (2, h) in (33) is Bergman
logarithmically flat.

4 CR Equivalence Classes of Flat Hypersurfaces

Although Theorem 3.1 allows for a wide range of compact (or noncompact,
of course) locally isometrically inequivalent Kéhler manifolds (M, g) as base
manifolds, it is not at all clear that the corresponding unit sphere bundles X (M, h)
are locally CR inequivalent. To elucidate the issue, and also characterize those
(M, g) in the context of Theorem 3.1 that give rise to spherical unit circle bundles
(M, h), we state the following result, which is a consequence of the work of
Webster [36] and Bryant [6] combined with Theorem 3.1:

Theorem 4.1 Let (L, h) — M be a negative Hermitian holomorphic line bundle
over a Kdhler manifold (M, g) such that the curvature of h induces the metric g
as in Sect. 3.1. Assume that the eigenvalues of the Ricci endomorphism Ric(g)? are
constant. Then, (M, h) is obstruction flat. Furthermore, (M, h) is spherical if
and only if (M, g) is locally holomorphically isometric to one of the following:

(i) (B", ug-1) for some € R*
(ii) (CP", ugy) for some u € Rt
(iii) (C", go)
(iv) (B! x CP", ug_1 x ugy) for some 1 <1 <n — 1 and some n € RT

where g. denotes the canonical complete metric of constant holomorphic curvature
c on the corresponding space form.
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We note that the base manifolds within each category (i)—(iv) are conformally
isometric, whereas two manifolds from different categories are locally and con-
formally isometrically inequivalent. Nevertheless, their unit sphere bundles are
all spherical and, hence, locally CR equivalent. We shall see in the following
two subsections that this spherical case is in a sense special. In particular, we
shall consider more general products of base manifolds with constant holomorphic
sectional curvature metrics and provide conditions that guarantee that the unit circle
bundles are locally CR equivalent if and only if the base manifolds are conformally
isometrically equivalent.

4.1 Rigidity of Unit Circle Bundles Over Bounded Symmetric
Domains

As a special case of Theorem 3.1, if a negative line bundle (L, h) quantizes a
homogeneous Kihler manifold (M, g), then the circle bundle ¥ is obstruction flat.
In general, homogeneous manifolds are more tractable than the broader class of
Kéhler manifolds with constant Ricci eigenvalues. Among homogeneous Kihler
manifolds, one can further distinguish the Hermitian symmetric spaces. Recently,
the second author studied the CR geometry of the corresponding circle bundle
when the base manifold (M, g) is a Hermitian symmetric space of noncompact
type, i.e., a bounded symmetric domain. A rigidity phenomenon was discovered
for local CR mappings between such circle bundles. Using this rigidity result, one
can construct countably infinite families of compact, obstruction flat CR manifolds
that are pairwise locally CR inequivalent (see Theorem 4.3).

Following the notions in Sect. 3.3, let Q2 = 2 x - - - X ; be a bounded symmetric
domain in C”, where each ©2;,1 < i < [, is an irreducible bounded symmetric
domain in CZi with n = Zﬁzl n;. Denote by N;(z;,7zi),1 < i < I, the generic
norm of ;. Let L = © x C be the trivial line bundle over 2. Equip L with the
Hermitian metric 4 as defined in (31), where every k;, there is a positive real number.
Note the negative of the Chern class —ci(L, h) = 90 logh of (L, h) induces a
complete homogeneous Kihler metric wg on €2, which is a product of Kéhler—
Einstein metrics on Q;s. Let D(S2, h) and X (€2, h) be as defined in (32) and (33),
respectively. From Proposition 3.3, we see X (€2, /) is Bergman logarithmically flat;
from Theorem 3.1 (see also Remark 3.2), we know X (€2, /) is obstruction flat as
well.

We also consider a similar set of disk and circle bundles as above. Let Q =
Ql X oo X SZ be a bounded symmetric domain i in C", where each SZ 1 <j<m,

is an irreducible bounded symmetric domain in (Cw’ ; withn = > ", 1. Denote by

1’\7,~ (wj, w;), 1 §~j < m, the ggneric norm of SNZJ-. Next let ZNZ 2 x C be the trivial
line bundle over €2, and equip L with the Hermitian metric &, where
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As before, the negative of the Chern class —c; LZ , ﬁ) = 90 log i of (Z,Nﬁlinduces a
complete homogeneous Kiéhler metric wg on 2. The disk bundle of (L, &) is given
by

t
D(Q,h) == {(w,n) e 2xC: ]_[ N(w,,w,)) Yot

The corresponding circle bundle 2(5, Z) is defined similarly by replacing the
inequality with an equation. In [37], the second author proved the following rigidity
result.

Theorem 4.2 Let all k;’s and Ei ’s in the above be positive integers, and assume
at least one k; and at least one E equal to 1. Let F be a nonconstant continuous
CR map from an open connected piece of (2, h) to E(SNZ, ﬁ). Then the following
statements hold:

(1) The map F extends to a rational biholomorphism from D(S2, h) to D(?Z, }7).
(2) The two bounded symmetric domains ($2, wq) and (2, wg) are holomorphi-
cally isometric.

Note X (2, k) is not compact in C"**!, and its (compact) closure in C"*! is not
a smooth hypersurface in general. On the other hand, we may consider the circle
bundles over compact quotients of bounded symmetric domains. Let X = X x

- x X; be a compact quotient of Q = Q| x --- x ;, where X;, 1 <i <[, is
a compact manifold covered by €2;. Note X; naturally inherits the Kdhler—Einstein
metric from €2;. Write L;, 1 <i <[, for the anti-canonical line bundle of X;, which
locally is the same as that of 2;. Letg = (q1, - - - , ;) be a tuple of positive integers
and consider the line bundle

74 q
Ly=L]"®...®L/.

It is routine to verify that the circle bundle of L, is locally CR equivalent to the
hypersurface defined by

l
H N (Zl’ Zl qul.

. . ki
Here y; is the genus of ;. By picking ¢; = l_[, 1%i 1 < i < [ for some

positive integers k;’s, and taking an appropriate root lof & locally, we further see
the above hypersurface is locally CR equivalent to the one defined in (33). Using
this observation and Theorem 4.2, we can prove the following result (Theorem 1.14
in [37]). See [37] for the detailed proof.
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Theorem 4.3 Let n > 2. There exists a countably infinite family F of compact real
analytic CR hypersurfaces (realized as circle bundles over complex manifolds) of
real dimension 2n + 1 such that the following hold:

(1) Every CR hypersurface M € F is obstruction flat and Bergman logarithmically
flat. Moreover, every M € F is locally homogeneous and has transverse
symmetry.

(2) For every pair of (distinct) CR hypersurfaces My, M € F, any open pieces
U C My andV C M» are not CR diffeomorphic.

4.2 CR Curvature Eigenvalues of Unit Circle Bundles over
Products of Space Forms

Consider two Kéhler manifolds (M, g) and (M’, g’) quantized by two negative line
bundles (L, k) and (L', h'), respectively, as in Sect. 3.1. We observe that if M and
M’ are locally (holomorphically) conformally isometric, then their corresponding
circle bundles X (M, h) and X(M’', h’) are locally CR equivalent. To see that,
assume f is a local holomorphic map at pyp € M from M to M’ and preserves the
metric: f*(g’) = ug up to a conformal constant i > 0. Note in some local charts
at po € M and gy := f(pg) € M’, the circle bundles X (M, h) and X (M’, h’) can
be written as follows, respectively:

1E17h(z,2) = 1; 0?0 (w, W) = 1.

Here z and w denote the local coordinates of M and M’, while &, n denote the local
fiber coordinates of L, L', respectively. By the conformal isometry assumption, we
have

00 logh'(f, f) = nddlogh(z, 7).

This yields that ' ( f, ) = h*|e®|? for some local holomorphic function ¢ at pg. It
follows that we have a local CR diffeomorphism from (M, k) and (M’, h’") over
po and gg given by

(2,8) = (f(2), e PEM). (34)

It is natural to ask whether the converse of the above observation holds. By
Theorem 4.1, the converse fails in general, even for space forms and their products.
In the following, we shall show the converse still holds for products of three or more
space forms under some mild conditions: If X (M, h) and (M, h') are locally CR
diffeomorphic, then (M, g) and (M’, g’) are locally conformally isometric.
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For that, we shall consider unit circle bundles over a base manifold of the form

M=M: x... xMcp,
where each M, is a complex space form (always taken to be simply connected) of
dimension m; equipped with a complete metric g’ of constant holomorphic sectional
curvature ¢; and where M is equipped with the product metric g = g! x ... x
gP. Let (M, g’) be another such product of space forms. We note that for the two
products of space forms (M, g) and (M’, g), being locally conformally isometric
is the same as being (globally) conformally isometric. The latter means there is a
biholomorphism from M and M’ that preserves the metric: f*(g’) = ug up to a
conformal constant & > 0. We also observe the following easy fact, whose proof
will be omitted.

Lemmad4.4 Let (M, g) and (M', g') be two products of space forms as above,
where M = M., x ... X Mcp and M’ = Mc’l X ... X Mcé[. Write the two tuples
c=(c1,+,cp)andc’ = (c}, -+, c,). Assume p = q and, after a permutation of
Mél,s and a scaling of ¢ by a factor a > 0 : ¢ — ac, we have dim M., = dim MC,/-

foralli and c = ¢'. Then (M, g) and (M’, g') are conformally isometric.

We also assume that there is a Hermitian holomorphic line bundle (L, h) — M
inducing the metric g as in Sect. 3.1; we can, e.g., take L = L'®...® LP with
metric o = h'...hP, where each (L', h') — M, is as in Sect.3.1. (Note the
existence of such a line bundle poses an extra condition on those ¢; > 0.) The unit
circle bundle X (M, h) gives rise to a strictly pseudoconvex hypersurface in L which
is obstruction flat by Theorem 3.1. The CR dimension of ¥ (M, h) ism = n — 1.
Moreover, since M is a simply connected homogeneous Kihler manifold, X (M, h)
is a homogeneous CR hypersurface.

We shall now assume thatn = dimL =m +1=m; + ... +m, +1 > 3;
in other words, the dimension m of M is at least 2. A fundamental CR invariant of
Y = X(M, h) is then the Chern—-Moser CR curvature tensor Saﬂvﬂ, which can be
defined using either Moser’s normal form [9], Cartan—Chern’s parabolic geometry
construction, or Webster’s pseudohermitian geometry [36]; the reader is referred
to these papers for details of the construction. We lower the index 8 using the Levi
form to obtain a trace-free (2, 2)-tensor S, Bvii with Hermitian curvature symmetries
and with the property that the CR manifold is spherical if and only if the CR
curvature vanishes in a neighborhood. When defined relative to a pseudohermitian
structure, i.e., with a given choice of contact form 6, the CR curvature tensor SuP, i
remains invariant under changes of contact form 0 = "0, whereas the Levi form
84p changes by gy B = e'g, - Using the Levi form to raise and lower indices, we
obtain an endomorphism

st 02 o7 0% 5 710x o 7103,
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where © denotes the symmetric tensor product, given in a local frame Zy, ..., Z,,
for T710% and with a choice of 6 by

XOYr 8% x7yY,
where X = X%Z,, Y = Y#Zg € T!0%. This endomorphism is a weighted CR

invariant in the sense that it is a pseudohermitian invariant, which transforms under
changes of contact form 6 = 0 by S% = e“S¥, as is easily verified. In particular,

if we denote by A1, ..., A, the eigenvalues (repeated according to multiplicity) of
Stata point p € X relative to some contact form 6, then the m-tuple (A1, ..., Ay)
is a CR invariant modulo permutations and scaling (A, ..., Ay) > a(Ay, ..., Ay)

for a > 0. We shall make use of this observation to study the CR equivalence classes
of X =X(M,h)forM =M. x...x M., as above.

Now, let M = M., x ... X M., take p = Iélzh(z,Z) — 1 as a local defining
function for ¥ = X (M, h) in some local chart and trivialization, and choose the
contact form 6 = iglog |S|2h(z, 7). Then (see [36]), the Levi form of ¥ is S!-
invariant and coincides with the Kéhler metric g; the pseudohermitian curvature
of ¥ is S'-invariant and coincides with the curvature tensor Raﬂv,; of M; the CR
curvature tensor Saﬁ v 18 S invariant as well, coincides with the Bochner tensor of
M, and is obtained by the following formula:

1
Sochﬂ = Raﬁvﬂ - m—H(RaBgVﬂ + Raﬂg‘)ﬁ + Ruﬁgaﬂ + Rvﬂgaﬁ)

N R
(m+ 1)(m +2)

(8op&vin + 8yp8&an),  (35)

where R, B = R, B is the Ricci tensor and R = R,,” is the scalar curvature.

Next, recall that if (M, g) is a Kdhler manifold of constant holomorphic sectional
curvature ¢ (and not the product manifold for a moment), then the curvature tensor
is given by

RozBu;l = C(gafjgvﬂ + gUBga,;).

Thus, for our product manifold M = M., x ... x M, 9 the curvature tensor can be
written

p
R = 2 ¢i (85805 + 8158k ) 36)
i=1

where the tensors g; 3 are defined as follows. Foreachi =1, ..., p, let Z(’;[,- ,al =

I,...,m;, be alocal frame for M, and Zy,a =1,..., m, the corresponding local

frame for M such that ()« Zy = chx—(m1+...+m,-,1) wheno e {mi+...+m;_1 +

1,...,mi+...+m;} and = O otherwise; here, 7r; denotes the projection M — M,,.
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We define
g;B =g (m)xZq, (T(,‘)*Zﬂ).

One readily checks that

p
R, = ch (mi + gz R=) cimi(mi +1). (37)

i=1 i=1

By an abuse (but great simplification) of notation, we shall denote by Z, a collection
of (1, 0)-vector fields on X such that the projection 7: ¥ — M identifies the
various curvature tensors on X with those on M as explained above.

To investigate the eigenvalues of the CR curvature endomorphism S*, we note
that the collection of local sections

=Zy O Zg, i<j=1,....,p, o =1,....my, p/=1,....mj,

¢ <
(38)

lﬂj

where ¢« = m +. —I—m,—l—oz'andﬁ—ml—l— +m,—|—,31 formsaframefor
7198 o T10%. It is straightforward to check, using (35) and (37), that the ¢ oip)

are also eigenvectors for S*. Moreover, the eigenvalues are readily computed and
seen to be constant as functions of p € X. The details of these calculations are left
to the diligent reader. We summarize these observations in the following:

Proposition 4.5 Let M = M, x.. Mc,, (L,h) > M, and & = (M, h), be as
described above. Then, ¢ ;ji g given by (38) form a complete system of eigenvectors

or the CR curvature operator S*. The eigenvalues A;; and their multiplicities d;;, for
/4 8 j P J

which ¢ gl

as functlons of p € ¥ and given by

o' =1,...,m;, B/ = 1,...,mj, are the eigenvectors, are constant

? : Z (m1+ e+ —— (= 2m) (39
ii = (m + 1)(m + 2) mp(mj Cl m — m;)ci,
gy = Mt D
2

and fori < j,

YT m+ D(m +2)

2
Zmz(ml + Det = == (mi + Dei + (mj + 1)ey)

(40)

d,’j =mim;j.
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Remark 4.6 We observe that it may happen that there is an eigenvalue A such that
A = A;; for multiple different pairs (i, j). In this case, the multiplicity of A is then
(of course) the sum of the corresponding individual multiplicities d;; .

Remark 4.7 If there is only one factor (i.e., M itself has constant holomorphic
sectional curvature), then there is only one eigenvalue and that is A = 0; in other
words, the CR curvature is identically zero, implying that X is spherical. If there
are two factors, one checks readily that all eigenvalues are multiples of c; + ¢3. In
particular, if ¢; + ¢ = 0, then the CR curvature is identically zero and X is again
spherical. This is consistent with Theorem 4.1 above.

We temporarily fix p and my, --- , m,, and as above let m = Zle m;. Denote
by A: R” — RP? the linear map whose ith component A;, 1 <i < p, is given by

( p) E mi+1)eg+——@m— ) 41)
Ai(cy,...,cC my(m C m—2m;)c;.
l 1 l 1 l l l m 2 1 l

T+ D(m+2) &

As noted in Remark 4.7, when p = 1, the rank of A is zero; when p = 2, the rank
is either zero or one. In neither case is A invertible. However, for p > 3, we have
the following:

Lemma4.8 Fixp >3 andmy,--- ,m, > 1, and let m = Zle m;. Assume that

m—2m; > 0fori =1,...,p. Then, the linear map A: R? — RP? given by (41)

is invertible. Consequently, if A(c) = aA(c) for some c,c’ € RP and a € R, then
/

c=ac.

Proof Let us denote by

. 2mi(m; + 1) P _ 2(m —2m;)
Cm+Dm+2)’ T o om+2

o

We observe that the algebraic structure of A noted above, we may assume (after
a permutation of the components if necessary) that 8; > B, > ... > g p = 0.
Moreover, only the last (smallest) number 8, can equal O (since p > 3). A simple
row reduction scheme now shows that

p—1
o]
detA=p... B, |ap+8,[1+> —|]|- (42)
= A
The conclusion easily follows, since «; > O foralli = 1,..., p and ; > 0 for
i<p-—1 i

Let (M, g) be a product of space forms and ¥ = X (M, h) is the unit circle
bundle in (L, h) — (M, g) as above. We will show under some conditions, we
can recover (M, g), up to conformal isometry, from the CR curvature of X. The
strategy can be roughly summarized as follows: First under some mild conditions,
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the value of p can be recovered, and the subcollection of the p eigenvalues A;;, for
i = 1,..., p, can be identified among the full collection of eigenvalues, relative
to some contact form 0; and the k;is are mutually distinct. From this we can then
recover the dimensions of factor M éi s from the multiplicities d;; of A;;. Finally with
the help of Lemma 4.8, the set of the holomorphic sectional curvatures {cy, ..., cp}
can be uniquely determined modulo scaling a — {acy, ..., acp} fora > 0.

The first technical problem in this context, which is alluded to in Remark 4.6,
occurs when the CR curvature endomorphism S* has an eigenvalue A that corre-
sponds to multiple A’ ;- In this case, one would need to properly split the eigenvalue
A and its multiplicity into individual A;;s and d;;s, which a priori could potentially
be done in multiple ways. To address this issue, we introduce the full eigenvalue map
A: RP — RP(PHD/2 given in components A;; fori < j by the right-hand sides of
(39) and (40); we are using here pairs (l j) with i < j to index the components of
a vector & € R? (P+1/2. e note that A” = A;. The following is easy to check, and
we omit its proof.

Lemma 4.9 Write S for the set of c € RP > 3, for which either Aji(c) =
,/]/(c) for some i and i’ # j', or A”(c) i1ir(¢) for some i # i'. Then S is a
finite union of (p — 1)-dimensional subspaces of RP.

The scheme described above to recover the holomorphic sectional curvatures
c¢; and the dimensions m; of the M; in the product M = M. x ... x Mcp,
provided that we can identify the subcollection of eigenvalues A;;, now works for
c=(c1,...,cp) € RP\S.

We proceed by identifying two situations where this scheme to recover the
conformal isometry class of the base manifold can be executed. The first result is

the following:

Proposition 4.10 Fix m > 3. Let F| be the family of unit circle bundles ~ (M, h)
of CR dimension m, which arises from a negative line bundle (L, h) quantizing a
Kdhler manifold (M, g) satisfying the following conditions:

(1) (M, g) is a product of space forms: M = M¢ X ... X M, for some p =
p(M) >3 and M éi s, depending on M. Besides, their dimensions satisfy m —
2m; >0, fori =1,...p.

(i) ¢; = 0(orc; <0), foralli =1,...p

(iii) ¢ =(c1,...,¢cp) &S, where S is given by Lemma 4.9.

Then (M, h), X (M', h') € F| are locally CR equivalent if and only if (M, g) and
(M’, g') are conformally isometric.

Proof By the discussion at the beginning of this subsection, it suffices to prove the
“only if” part. For that, we first give the algorithm of recovering M, up to conformal
isometry, from the eigenvalues of the CR curvature operator St of (M, h). Note
that conditions (ii) and (iii) guarantee that the p largest (or smallest) eigenvalues of
st correspond to the A;; fori = 1, ..., p,and the A;i s are mutually distinct. Without
loss of generality, we assume they are the largest ones. Furthermore, by rearranging
the factors M s in M, we can assume Ajj > --- > App.
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Next pick the largest eigenvalue of S*. Call it A1 and write k for its multiplicity.
Then A1 = X1, and by Proposition 4.5, k; can be uniquely written as k; =
W. Note m is the dimension of M., . Then pick the second largest eigenvalue
A» of S*, which must equal to Ay, and write k» for its multiplicity. Again by
Proposition 4.5, kp can be uniquely written as k; = w and my is the
dimension of M,,. Keep doing this until the m’s add up to m. Note the number
of ms is then precisely p. In this way, we recover both p and m/s. Once they are
determined, we can define the linear map A: R” — RP? as in (41). Finally, since
we know the values of Aj; > --- > A, (relative to some contact form 6), by
Lemma 4.8, we can recover the values of c;s modulo positive factor scaling.

If X(M, h), X(M', h') € F; are locally CR equivalent, then their CR curvature
operators have the same set of eigenvalues, up to a positive factor scaling.
Moreover, if we sort both sets of eigenvalues in descending order, the corresponding
multiplicities are equal. Write M’ = M, ¢ XX Mc/q . Repeating the above algorithm

to (M’, g'), we see M and M’ satisfy the conditions in Lemma 4.4. Hence, they must
be conformally isometric. |

Remark 4.11 The proof of Proposition 4.10 does not provide much information
on the structure of the local CR diffeomorphism between X (M, h), X(M’', h’) (if
exists). We stress that, unlike Theorem 4.2, one cannot expect the rationality and
rigidity result to hold for the local CR mappings in Proposition 4.10, as the local
CR diffeomorphism may take the form as in (34). In general, this map is not rational
and does not extend to a biholomorphism between the corresponding disk bundles.

Our second result along these lines allows mixed signs of the holomorphic
sectional curvatures, but at the expense of fixing the dimensions of the factors:

Proposition 4.12 Fix p > 3 and m = pmg for some mo > 2. Consider the family
F1 of unit circle bundles X (M, h), where M = M., X ... x M., (L, h) — M,
and (M, h) are as in Proposition 4.5 and where m; = moq fori = 1,...p and
c=(c1,...,¢p) €S. Then ¥ (M, h), X (M', h') € Fy are locally CR equivalent if
and only if (M, g) and (M', g') are conformally isometric.

Proof 1In this case, we identify the eigenvalues A;; by considering the multiplicities
of the eigenvalues of S*. Let A be an eigenvalue of S%. If A corresponds to some A;;,
then it corresponds to precisely one A;; (as ¢ € S), and thus its multiplicity equals to

W' If A corresponds to some A;; with i < j, then it cannot correspond to any
Aii, butit may correspond to multiple A;;’s withi < j: A;, .-+, A j, forsome k >
1. Then its multiplicity equals to km(z). Since mg > 2, we have km(z) > mo(mo+1)/2.
Thus the multiplicity w identifies the A;;. The proof is concluded as above

and the details are left to the reader. O

Using the above results, we can construct some families of obstruction flat
CR manifolds that are pairwise locally CR inequivalent. To construct examples of
compact types, in the settings of Propositions 4.10 and 4.12, we may use as the
building blocks (M., g') of (P™, w;g1), and compact quotients of (B, u;g_1)
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and (C™ | gg). Observe that since we insist that the metrics are induced by
holomorphic line bundles (L;, h;) — M,,, we are restricted to, e.g., taking L;
to be integral powers of the (anti-)canonical line bundle, which means that we
obtain holomorphic sectional curvatures of the form ¢; = £1/k; (or 0) for integers
ki. These families are necessarily only countably infinite. Since this compact case
was already covered by Theorem 4.3, we will not elaborate it here. It remains an
interesting question to ask whether there exists an uncountably infinite family of
compact hypersurfaces with the properties in Theorem 4.3. In the remainder of the
section, we shall concentrate on the construction of noncompact obstruction flat CR
manifolds.

Theorem 4.13 Let n > 2. There exists a family F, parameterized by
J={02, - Ap) 1 1> 2y > >y >0},

of (noncompact) real analytic CR hypersurfaces in C*t! such that the following
hold:

(1) Every CR hypersurface M € F is obstruction flat and Bergman logarithmically
flat. Moreover, every M € F is homogeneous and has transverse symmetry.

(2) For every pair of (distinct) CR hypersurfaces My, M>» € F, any open pieces
U C My andV C M> are not CR diffeomorphic.

Remark 4.14 We recall that in C?, every Bergman logarithmically flat CR hyper-
surface must be spherical; and there exist (noncompact) real analytic nonspherical
CR hypersurfaces that are all obstruction flat and transversally symmetric (see
[23, 24, 16]).

Proof of Theorem 4.13 We will utilize a simple and useful case of Proposition 4.10
where all m; = 1 and ¢; < 0O (so that m = p). In this case, each M; is a unit disk
equipped with the (normalized) Poincaré metric. We first fix various notations and
make some observations. Fix n > 2 and A be a (n — 1) tuple of real numbers
A=, -, Ay eJ,where T ={(A, -+, Ap): 1> >--->A,>0}. O

Consider the homogeneous CR hypersurface

D=l =@ ) e A xC:gP

n
=0 -laP[]a—-1z»HY ccrth
j=2
We first note:

Lemma 4.15 Every X, C Crtlon e J, is a homogeneous, obstruction flat
and Bergman logarithmically flat, strongly pseudoconvex real hypersurface with
transverse symmetry.
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Proof Write h(z,7) = (1 — |z1|>)™! ]_[;?22(1 — |zj|2)—)‘1. Note with M being the
n-dimensional polydisk A”, we have ¥, is indeed the circle bundle X (M, h) of
the Hermitian line bundle (M x C, h). Consequently, X, has transverse symmetry.
By earlier discussions of this subsection, X, is homogeneous and obstruction flat.
Furthermore, note the polydisk is a special case of bounded symmetric domains and
the generic norm of a disk is 1 — |z |2. Then =, is a special case of X (€2, &), which
is defined in (33). By Proposition 3.3, ¥, is Bergman logarithmically flat. |

We now prove Theorem 4.13. For that, we first consider the case n > 3.

Lemma 4.16 Letn > 3. Then F := {%, C C'*' 1 e T} gives a family of CR
hypersurfaces in C" 1 with mutually distinct local CR structure. More precisely,
and X,/ in F are locally CR equivalent if and only if . = )\'.

Proof 1t suffices to prove for the “only if”” part. For that, we shall apply Proposi-
tion 4.10 for the special case where all m; = 1 and ¢; < 0 (so that m = p), and
p = n > 3. For ¢ < 0, denote by A, the unit disk equipped with the normalized
Poincaré metric of constant Gaussian curvature c¢. Write M for the product of the

normalized Poincaré disks M = A_» x A_» X ---A_ >, A € J. As already
A An

observed, the metric on M is induced by the Kéhler form 90 log h, where as above,
h(z,Z2) = (1 — |z;/»)! ]_[?zz(l — lz; |2)~%i. Moreover, ¥, is the circle bundle
¥ (M, h). We also note that conditions (i) and (ii) of Proposition 4.10 are satisfied
in this setting. Next, let the set S be as in condition (iii) there, which is a finite union

of (n — 1)-dimensional subspaces of R", and write

2 2
T = :(Az,...,kn)€j|c,: <_2,_k_2,...,_z)€3},

Assume X, and X/, where A, 1" € J \ T, are locally CR equivalent. Write the
two tuples

( ) ) 2 2 d
[o— C’...,C = —L, e, —— " an
1 n » »

/. / / 2 2
C ':(Cl""’cn): _2’_7/2’.'.’_E .

Then it follows from (the proof of) Proposition 4.10 that, after a permutation of the
factors if necessary, ¢ and ¢’ are proportional by a constant @ > 0. But ¢ and ¢’ are
already in the decreasing order, and the largest component for both tuples is —2. We
thus must have @ = 1,and A; = A, forall i,ie., A = A

Finally to finish the proof of the lemma, it suffices to prove that 7 = (. We
recall S is defined in Lemma 4.9 in terms of /i,- j fori < j, where the latter is given
by the right-hand sides of (39) and (40). By these expressions, as all m; = 1 and
¢i < 0, we have A;;(c) < /i,-/j/(c) for any i and i’ # j’. Moreover, for . € J, the
corresponding c satisfies ¢; # ¢ for i # j. This yields that /i,-i(c) +* A jj(c) for
i # j. Consequently, 7 = @. |
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It is clear that Theorem 4.13 follows from Lemmas 4.15 and 4.16 whenn > 3. It
remains to prove it for the case n = 2. In this case, ¥, C C3 is defined by

7 = (1 = z211HA = 221, (21, 22) € A%, L € (0, 1).

By taking a local logarithm of the above equation and applying a simple change of
coordinates, we see X, is locally CR diffeomorphic to the hypersurface

Hy, = {(z1, 22, &) € A’ x C : Im& = log(1 —|z11%) + Alog(1 —|z2|H)}, & € (0, 1).

The latter hypersurface was studied by Loboda in [31, Theorem 1], where it was
proved that for A, A" € (0, 1), H, and H, s are locally CR equivalent if and only if
A = A/. Consequently, we have the following lemma which corresponds to n = 2.

Lemma 4.17 Write G := {Z;, c C3 : A € (0, 1)}. Then G is a family of CR
hypersurfaces with mutually distinct local CR structure. More precisely, X, and
X,/ in G are locally CR equivalent if and only if A = ).

We finally combine Lemmas 4.15 and 4.17 to establish Theorem 4.13 for n = 2.
O
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