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Abstract—The presence of digital twins (DTs) has expanded
within the consumer electronics area due to its inherent benefits
of high-fidelity modeling and predictive insight. However, DT
deployment remains costly and constrained in providing the
fundamental functionalities required by consumer electronics
systems due to massive computation and communication. The
emergence of mobile edge computing (MEC) has made DT de-
ployment feasible to achieve data-driven modeling and consumer-
centric concurrently with low communication costs. This article
proposes an MEC-based DT deployment scheme in the smart
home domain. The cloud service can predict subsequent sensor
updates leveraging the MEC platform’s human activity recog-
nition result of residential environments. In addition, with deep
reinforcement learning (DRL), it can track the essential data
to maintain sensor update consistency between both physical
and virtual sides. We implement experimental evaluation with
two real-world residential datasets, and the results demonstrate
that our scheme maintains high-level sensor update consistency
while being energy-efficient in different residential environments,
which illuminates the promising prospects of DT implementation
in MEC and consumer electronics.

Index Terms—Mobile edge computing, digital twin, deep rein-
forcement learning, human activity recognition, sensor inference

I. INTRODUCTION

A hypothesis pursued by a few people revolves around
the co-existence of other universes alongside ours. In these
alternate universes, an event we recognize might have entirely
different outcomes, and these hypothetical alternate universes
are called parallel universes. Ever since its conception, the
idea of parallel universes has inspired us to depict a different
and better world and formalize the states and mechanisms of
entities within our reach. Doing so encourages one to simulate
and access all possible results through many decision check-
points. Following the principle of parallel universe, something
is called digital twin (DT) and is referred to as a digital replica
of a set of living or non-living physical entities in our world.

A DT represents its physical twin as a minuscule abstraction
of the world and stands in a small parallel universe. This is
done by including all its physical twin components, which
reveals the potential sub-system evolution in many applications
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of information technology, industry, and manufacturing sectors
[1]. Furthermore, leveraging the economical and convenient
DT setup allows more flexible approaches to simulate and
validate our design and models and extend the settings in the
real world. In this digital era, the DT technique has garnered
massive attention due to its merits of being intelligent, effi-
cient, economical and sustainable, and has been proposed to
be integrated into many complicated and rigorous scenarios,
such as the DT human [2], DT city [3], and DT visualization
[4], which targets on enhancing the information convergence
between the physical and digital spaces of the systems.

Nonetheless, the effectiveness of DTs is significantly con-
strained by physical limitations such as network conditions,
computational capacity, and energy costs associated with the
deployed facilities and equipment [5]–[7]. With the prevalence
of ever-increasing Internet of Things (IoT) devices, the poten-
tial DT designs for these devices are even more restricted as
they are impractical and inefficient in constantly formulating
real-world conditions and updating the DT status of physical
devices. To achieve improved synchronization, it is essential
to consider the unique features obtained from the status of
existing data while injecting insight into the future status.
Furthermore, it is justifiable to develop dedicated models
that work in conjunction with different IoT ecosystems, e.g.,
residential environments with a variety of human behavior
and device data generation patterns [8]–[10]. One of the
most critical points to maintaining the physical twin and DT
consistency is facilitating timely updates of time-sensitive data
that helps to prevent unnecessary resource wastage.

Thanks to the mobile edge computing (MEC) technique,
which brings considerable computing resources closer to the
place of data generation, we have gained the capability of
addressing matters of change responsively. With the advance-
ment of hardware, mobile edge devices tend to be more
computatively designed and capable of dealing with massive
local requests in the IoT context [11]–[13]. However, there is
still a communication bottleneck between edges and the central
server, colloquially called the cloud, which is known for being
relatively cost-inefficient, insecure, and lagged in dealing with
remote data [14]. Before pushing service requests to the cloud,
the data preprocessing at the edge side would significantly
reduce workloads and enable more concurrent threads in
the cloud. The preprocessing strategies can be customized
regarding edge servers and their users’ physical environments,
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thus enabling personalized DT constructions on the cloud
site. The edge server is responsible for the preprocessing and
securing mechanism, which obscures local features, enables
essential information flow, and enhances synchronization [15],
[16].

This article fully takes the characteristics of edge and
cloud computing into consideration. Leveraging human activ-
ity recognition (HAR) results, we propose an MEC-assisted
DT deployment scheme to increase DT fidelity regarding
sensor update inference at a low cost. With the emerging deep
reinforcement learning (DRL) technology, the edge servers
deployed in residential environments can investigate the lo-
cal caches of sensor readings and obtain residents’ activity
patterns. It is also trained to extract the essential features
that facilitate the sensor update inference in the cloud server
and decisions for DT updates, leading to highly consistent
sensor update sequences in the cloud’s virtual space and the
residential environment’s physical space while reducing the
communication cost of cloud-edge synchronization.

The remainder of this article is organized as follows. We
introduce the related work in Section II and present the system
model and some key concepts, such as the data format and
communication mechanism, in Section III. After being aware
of an overview of the system, the setup and algorithms are
clarified in Section IV. Finally, we evaluate the performance
and effectiveness of our DT formation in Section V and
conclude this article in Section VI.

II. RELATED WORKS

A. Sensor-based Human Activity Recognition
The proposition of DT humans probably enhances the future

full lifecycle health management [17] and mobility service
in transportation [18]. These functionalities are closely tied
to human activity patterns. Developing a precise and realistic
DT human requires dense and heterogeneous placement of
advanced sensors and the collection of massive amounts of
data. Sensor-based HAR is a feasible approach to deducing
human behavioral patterns.

Broad literature has considered sensor-based HAR as an
economical solution [19]. Pattamaset et al. [20] divided the
indoor sensors into multiple groups to identify human activi-
ties based on the room distribution to reduce the irrelevant data
upload. Bouchabou et al. [21] directly measured the changes
in each sensor deployed in residential environments, converted
the changes into vectors of feature, and trained a convolutional
neural network model to identify human activities. Gumaei et
al. [22] introduced a multimodal body sensory approach to
realize human activity with a hybrid deep learning model.

Despite the primary domain of activity recognition in the
edge server, the sensory-data-based services running in the
cloud might target the sensor networks and their management
and measurement. The existing methods [23]–[25] addressed
the sensor inference by concentrating on correlation-based
inference, causal representation domain adaption, or resorting
to hidden Markov models; however, none of them interpreted
sensor update inference conducted at the cloud server in the
DT deployment context and connected it to regular HAR tasks
in the edge server.

Our approach extends beyond pure sensor-based HAR so-
lutions, demonstrating the application of low-cost MEC-based
DT deployment. In this article, we utilize HAR and sensor
update inference as an illustrative example to demonstrate the
practicability of DT deployment in an MEC environment.

B. DT Deployment in MEC Environments

The advancement of MEC has enabled DT deployment to be
more realistic and accessible for mobile end-users. Wang et al.
[18] proposed a data-driven and cloud-edge-device system to
facilitate the mobility DT creation by interconnecting various
mobility entities. Fan et al. [26] proposed a vehicular lane-
changing solution for connected autonomous vehicles with
real-time safety property and foresight intelligence, where
sensing and computing capability are enhanced in mobile
edge servers. Experience of the physical MEC network is
formulated in a DT format to support real-world decisions.
Do-buy et al. [27] introduced a DT-aided design for industrial
automation, which captures the real-time status of IoT devices
and MEC servers and determines the offloading scheme that
optimizes the end-to-end latency while subjecting to multiple
quality-of-service and resource constraints. Zhou et al. [28]
proposed a dual-reinforcement learning scheme with DT layers
in an edge-cloud structured system to determine client node
and global aggregation frequency for federated learning. The
edge server has demonstrated notably powerful computation
and communication capabilities in these scenarios. Nonethe-
less, the challenge remains in effectively and seamlessly
integrating high-level DT with MEC-based interconnected
services.

III. SYSTEM MODEL

With real-world data, DTs stack various functional layers
to the stunning virtual creation, acting beyond the traditional
simulation technology and interacting with reality proactively.
In this circumstance, a huge amount of data assimilation is es-
sential to the DT construction, which is also greatly limited by
infrastructures, such as network throughput and computational
capacity. Specifically, in residential IoT services, the home en-
vironment is equipped with various sensors and devices, such
as motion detectors, cameras, temperature-humidity sensors,
and wearable devices, which serve as fundamental sources of
information.

A cloud platform would assimilate the data generated from
IoT sensors (e.g., HAR) in a variety of residential environ-
ments to create the DTs of specific domains (e.g., sensor
update inference) for further usages, e.g., security setting
adjustment, sensor management, and elderly care. A more
frontier application is the DT incorporation into the metaverse
to promote the virtual reality fusion experience with a broad
range of sensors [29]. The data generated from many sensors
of numerous residential cases can accumulate to a vast volume,
posing significant traffic burdens on the cloud server.

Consequently, the formation of high-fidelity DT objects
encounters critical difficulties in terms of accessibility and
availability. As an intermediary, introducing edge servers can
play a significant role in alleviating these concerns. The edge
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s er v er m a n a g es a n d pr e pr o c ess es t h e r a w l o g of d e pl o y e d
s e ns ors wit hi n a r e a c h a bl e dist a n c e of t h e h o m e e n vir o n m e nt.
It e xtr a cts a n d u pl o a ds o nl y t h e ess e nti al f e at ur es, g u ar a nt e ei n g
t h at d at a utili z ati o n o n t h e cl o u d sit e f or D T c o nstr u cti o n is
l e giti m at e a n d ef fi ci e nt.

A. Pr o bl e m F or m ul ati o n

We ass u m e a t ot al of N I o T s e ns ors ar e d e pl o y e d i n a
h o m e e n vir o n m e nt m o nit or e d b y a d e di c at e d e d g e s er v er, a n d
t h e st at us of e a c h s e ns or c a n b e c a pt ur e d i n e v er y ti m est a m p
i n d e x e d b y t, d e n ot e d b y

s t = ( s 1 , t, s2 , t, · · · , sN, t ), t ∈ N .

T h e e d g e s er v er m a n a g es t h e st at us c h a n g es of s e ns ors. A
st at us c h a n g e c is d e n ot e d as

c = ( n, t, s n, t , yt ), ∀ s n, t ≠ s n, t − 1 , t > 0 ,

w h er e y t is t h e r esi d e nt a cti vit y l a b el of ti m e t i n a n a cti vit y s et
Y , a n d e a c h c h a n g e c is ass o ci at e d wit h a n a cti vit y l a b el. W h e n
s er vi n g t h e r esi d e nti al e n vir o n m e nt, t h e e d g e s er v er m ai nt ai ns
t h e l o gs of s e ns or st at us c h a n g e s e q u e n c e1 as

C = c 1 , c2 , · · · , cT |t( c 1 ) ≤ t( c 2 ) · · · ≤ t( c T ) .

Ta ki n g H A R as a n e x a m pl e, t h e e d g e s er v er is r es p o nsi bl e f or
tr a c ki n g t h e st at us of s e ns ors a n d dir e ctl y r es p o n di n g t o h u m a n
a cti viti es, e. g., h e alt h a n d w ell- b ei n g ass ess m e nts; D Ts at t h e
cl o u d s er v er f o c us o n e xt e nsi v e m a n a g e m e nt p ur p os es a n d
e n h a n c e d s er vi c es. I n t his arti cl e, w e c o nsi d er t h e i nf er e n c e
of s e ns or u p d at e i n D Ts, i. e., N = { n c 1 , nc 2 , · · · , nc T

} .
O n e i m p ort a nt c o n c e pt r el at e d t o D Ts, n a m el y fi d elit y, is

br o a dl y i ntr o d u c e d t o m e as ur e t h e m at c hi n g d e gr e e b et w e e n
virt u al cr e ati o ns a n d p h ysi c al e ntiti es. T h e D T fi d elit y is
d et er mi n e d b y h o w a c c ur at el y t h e virt u al m o d el c a n r e pr es e nt
a ct u al s e ns or c h a n g es i n t h e r esi d e nti al e n vir o n m e nt. T h o u g h
t h e e d g e s er v er c a n a c c ess t h e s e ns or st at us, u pl o a di n g r a w
s e ns or st at us t o t h e cl o u d is i n a p pr o pri at e c o nsi d eri n g t h e
pri v a c y iss u e [ 3 0] or d o m ai n diff er e n c e b et w e e n t h e e d g e a n d
cl o u d s er v er. I nst e a d, s e ns or st at us c a n b e p ass e d t o a f e at ur e
e xtr a ct or f or f urt h er d o m ai n a d a pti o n b ef or e b ei n g u pl o a d e d
t o t h e cl o u d s er v er. H o w e v er, t his c o m pr essi o n i n a n e xtr a ct or
mi g ht h a m p er t h e fi d elit y of c o nstr u ct e d D Ts.

A n ot h er o bst a cl e aff e cti n g t h e D T fi d elit y is t h e a c q uisiti o n
of d at a s a m pl es fr o m e d g e s er v ers. I n m a n y i nst a n c es, c o n-
ti n u o us d at a s a m pli n g is dis a d v a nt a g e o us w h e n a d di n g D Ts
o n t h e cl o u d s er v er d u e t o t h e d e ns e c o n n e cti vit y wit h di v ers e
M E C e n vir o n m e nts. M or e o v er, s o m e i nf or m ati o n is n ot criti c al
t o D T m ai nt e n a n c e. As a r es ult, w h e n c o nstr u cti n g D Ts, a
cl o u d s er v er s h o ul d s el e cti v el y i d e ntif y t h e c o ntri b uti o n of
p ot e nti all y p er c ei v e d c h a n g es i n s e ns ors at a l ar g e s c al e. T his
r ais es t h e r e q uir e m e nt r e g ar di n g i nt elli g e nt d e cisi o n- m a ki n g
of c o n n e cti o n.

I n ess e n c e, t h e d e m a n ds f or s e c ur e a n d s el e cti v e d at a
s a m pli n g u n d ers c or e t h e i m p ort a n c e of t h e s e m a nti c a n al ysis
c a p a bilit y of D Ts i n e n visi o ni n g r e al-ti m e d at a pr o c essi n g.
T his als o e ns ur es t h at s e nsiti v e i nf or m ati o n is a p pr o pri at el y

1 T his is r ef err e d t o as “s e q u e n c e ” t hr o u g h o ut t h e r est of t his arti cl e.
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m a n a g e d a n d pr ot e ct e d b y t h e e d g e s er v er. O ur eff ort, wit h
t h e a d v a n c e of M E C a n d D R L, t a c kl es t h e st at e d c o n c er ns
eff e cti v el y w h e n d e pl o yi n g D Ts.

B. S yst e m D esi g n

We pr es e nt a n o v er vi e w of t h e M E C s yst e m d esi g n i n Fi g.
1. As s h o w n i n t h e m o d el a gr e e m e nt pr o c ess of Fi g. 1, ( 1)
r esi d e nts ar e r e q uir e d t o c o ns e nt t o t h e c o nstr u cti o n of t h e
D T i n t h e cl o u d a n d t h e cl o u d’s a c c ess t o d at a i n t h e M E C
e n vir o n m e nt. ( 2) R esi d e nts p er mit t h e M E C s er v er t o c oll e ct
d at as ets, i n cl u di n g t h e st at us c h a n g es of s e ns ors a n d t h eir
ass o ci at e d a cti vit y l a b els, a n d tr ai n t h e m o d els f or s m art h o m e
r es p o ns es. M E C s er v er pr o c e e ds d at a pr o visi o ni n g t o ai d t h e
D T c o nstr u cti o n i n t h e cl o u d, i n w hi c h s e nsiti v e i nf or m ati o n
h as b e e n r e m o v e d. ( 3) I n t h e m o d el tr ai ni n g a n d d e pl o y m e nt
pr o c ess, t h e e d g e s er v er tr ai ns a m o d el t o tr a nsf or m t h e st at us
c h a n g e l o g i nt o a bstr a cti o n, i. e., f e at ur e e xtr a ct or, a n d a n ot h er
m o d el t h at c o nt e xt u ali z es t h e a bstr a cti o n wit hi n t h e s er vi c e
d o m ai n, i. e., a cti vit y cl assi fi er . ( 4) T h e cl o u d s er v er is i n v ol v e d
i n m o d el tr ai ni n g wit h t h e M E C- gr a nt e d d at a f or m a n a g e m e nt
p ur p os es, e. g., i nf erri n g t h e u p c o mi n g s e ns or c h a n g e i n r e al-
ti m e a n d d et er mi ni n g t h e ti mi n g f or d at a s y n c hr o ni z ati o n
b et w e e n t h e e d g e a n d cl o u d s er v er.

O n c e t h e tr ai ni n g is fi nis h e d, t h es e m o d els ar e e n c a ps ul at e d
i n t h e e d g e a n d cl o u d s er v ers t o s er v e t h e r esi d e nts. We will
n e xt r e v e al D T c o nstr u cti o n d et ails.

I V. D E P L O Y M E N T D E T A I L S F O R D T C O N S T R U C T I O N

T his s e cti o n will first e x pl ai n t h e m oti v ati o n b e hi n d o ur
d esi g n a n d d e pl o y m e nt. We r e ali z e t h at it is criti c al t o c o nsi d er
t h e i nt elli g e n c e i n D T c o nstr u cti o n, s p e ci fi c all y:

• I nt elli g e nt C o m p r essi o n : T h e s e ns or st at us c h a n g es c a n-
n ot b e dir e ctl y r e v e al e d t o t h e cl o u d b e c a us e of pri v a c y
c o n c er ns; h o w e v er, t h e cl o u d still n e e ds a c c ess t o t h e i n-
f or m ati o n r e g ar di n g t h e p oi nt of i nt er est t o m ai nt ai n D T.
T h e e d g e s er v er c a n c o m pr ess t h e s e ns or y o bs er v ati o ns,
all o wi n g f or t h e u pl o a d of a c o n d e ns e d a bstr a cti o n t o
r e pr es e nt t h e c urr e nt st at es of all s e ns ors.

• I nt elli g e nt S a m pli n g : M er el y utili zi n g t h e s e ns or u p d at e
pr e di cti o n i n t h e cl o u d is i ns uf fi ci e nt t o c o nstr u ct a hi g h-
fi d elit y D T; it is still n e c ess ar y t o s a m pl e s o m e k e y
i nf or m ati o n fr o m t h e e d g e s er v er t o m ai nt ai n c o nsist e n c y

T hi s arti cl e h a s b e e n a c c e pt e d f or p u bli c ati o n i n I E E E Tr a n s a cti o n s o n C o n s u m er El e ctr o ni c s. T hi s i s t h e a ut h or' s v er si o n w hi c h h a s n ot b e e n f ull y e dit e d a n d 
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Fi g. 2: T h e d et ail e d fr a m e w or k D R L d e pl o y m e nt f or o pti mi zi n g d at a u pl o a di n g str at e g y.

b et w e e n t h e p h ysi c al a n d di git al r e al ms. T his n e c essit at es
ass o ci ati n g t h e p oi nt of i nt er est wit h t h e o bs er v ati o n a n d
t h e s u bs e q u e nt d e cisi o n- m a ki n g p oli c y.

F ort u n at el y, d e e p l e ar ni n g t e c h n ol o g y c a n b e us e d t o f a-
cilit at e t h e s u bj e ct ass o ci ati o n, a n d t h e g e n er at e d a bstr a cti o n
i n t er ms of H A R c a n b e dir e ctl y utili z e d t o e n h a n c e s e ns or
u p d at e i nf er e n c e. Als o, a c c or di n g t o t h e o bs er v ati o n fr o m
e d g e s er v ers, w e c a n d eri v e t h e d e cisi o n- m a ki n g p oli c y wit h
o pti mi z e d s a m pli n g c ost a n d p h ysi c al- di git al c o nsist e n c y. T his
gi v es ris e t o o ur s c h e m e, a n d t h e g e n er al i d e a i n cl u d es ali g ni n g
t h e o bs er v ati o n wit h t h e u p c o mi n g s e ns or c h a n g e usi n g a l o n g-
s h ort-t er m m e m or y ( L S T M) m e c h a nis m t h at c a pt ur es t h e l o n g-
a n d s h ort-t er m f e at ur es fr o m hist ori c al s e ns or y b e h a vi ors [ 3 1],
[ 3 2], a n d d eri vi n g a d e cisi o n- m a ki n g p oli c y t h at m a xi mi z es
t h e r e w ar d o bt ai n e d fr o m s a m pli n g k e y c h a n g es wit h D R L
t e c h n ol o g y [ 3 3]. A d et ail e d d e pl o y m e nt M E C- b as e d D T d e-
pl o y m e nt fr a m e w or k wit h D R L is ill ustr at e d i n Fi g. 2.

A. I nf or m ati o n A bstr a cti o n wit h E m b e d di n g

We a d o pt a d e di c at e d a bstr a cti o n m o d el M a b s i n t h e
e d g e s er v er t h at e x pl oits i m pli cit s e ns or u p d at e c orr el ati o n
a n d o ut p uts st at e a bstr a cti o n. F or a n ar bitr ar y o bs er v ati o n
wi n d o w, w e e m pl o y t h e L S T M u nits t o e xtr a ct t h e s e q u e n-
ti al i nf or m ati o n of s e ns or st at us c h a n g es a n d ass o ci at e t h e m
t o t h eir a cti vit y, w hi c h h as b e e n br o a dl y a d o pt e d i n H A R
c o nt e xt [ 2 1], [ 3 4], [ 3 5]. T o l e ar n t h e f e at ur es of diff er e nt
a cti viti es, w e gr o u p e v er y M c o ns e c uti v e st at us c h a n g es wit h
t h e s a m e a cti vit y l a b el i nt o a n o bs er v ati o n wi n d o w, i. e.,
C k = { c k 1

, ck 2
· · · , ck M

} ⊂ C a n d y c k 1
= y c k 2

· · · = y c k M
.

F or a wi n d o w C k , w e t a k e e a c h c h a n g e c k ∗ a n d c o m bi n e s e ns or
n a m es a n d t h eir c orr es p o n di n g r e a di n gs { s n i , ti }

M
i = 1 t o f or m

t h e v o c a b ul ari es. F or e x a m pl e, a m oti o n s e ns or [ 3 6] n a m e d
M 0 0 4 a n d wit h a st at us of O N r es ults i n a w or d M 0 0 4 O N .
T h e n w e c o n v ert all w or ds i nt o e m b e d di n g v e ct ors { x i }

M
i = 1

wit h a v e ct or l e n gt h of d e m b e d u nits usi n g t h e e m b e d di n g l a y er
[ 3 7], i. e., L e m b e d , w h er e

x i = L e m b e d (n i , sn i , ti ), ∀ n i ∈ { N } , sn i , ti ∈ { s n, t } .

N e xt, o n e c a n f e e d t h e e m b e d di n g v e ct ors i nt o a n L S T M l a y er
L l s t m a n d g e n er at e a s et of hi d d e n st at es h C k

wit h a v e ct or
l e n gt h of d h i d d e n u nits as t h e s e ns or st at us a bstr a cti o n, i. e.,

h C k
= L l s t m { x i }

M
i = 1 .

H er e b y, w e c o m pl et e t h e c o m p o n e nt of a f e at ur e e xtr a ct or. T h e
a bstr a cti o ns fr o m t h e f e at ur e e xtr a ct or will b e ass o ci at e d wit h
t h eir c orr es p o n di n g a cti vit y y C k

, e. g., R e a d , wit h a n a cti vit y
cl assi fi er. T h e a cti vit y cl assi fi er is a c c o m plis h e d b y f e e di n g
t h e hi d d e n st at es t o a f ull y c o n n e ct e d ( F C) l a y er t h at m a ps
t h e v e ct ors of a l e n gt h of d h i d d e n u nits t o a n e w o n e wit h
d o u t p u t = | Y| u nits, i. e., L f c , f oll o w e d b y t h e pr e di cti o n of

ŷ C k
= ar g m a x j l o g S oft m a x W T

a b s h C k
+ b a b s ,

w h er e W a b s a n d b a b s ar e t h e w ei g ht a n d bi as p ar a m et ers of
L f c , a n d j is t h e p ositi o n i n d e x of a v e ct or t h at i n di c at es
t h e pr e di ct e d a cti vit y. H er e b y, a n a bstr a cti o n m o d ul e M a b s ,
i n cl u di n g a f e at ur e e xtr a ct or a n d a cti vit y e xtr a ct or, is tr ai n e d
b y mi ni mi zi n g t h e n e g ati v e l o g-li k eli h o o d l oss ( N L L) b et w e e n
pr e di cti o ns a n d t h e gr o u n d tr ut h of a cti vit y l a b els [ 3 8].

B. S a m pli n g Ti mi n g D et er mi n ati o n

T h e e d g e s er v er m ai nt ai ns t h e l o g of s e ns or st at us c h a n g es
b ut will n ot u pl o a d t h e m u nl ess it p ert ai ns t o m e a ni n gf ul
u p d at es i n D T r efr es hi n g, w hi c h f u n d a m e nt all y a v oi ds u n-
n e c ess ar y c o m m u ni c ati o n w hil e e n visi o ni n g D T fr es h n ess.
H o w e v er, o n e c o ul d n ot f or es e e if t h e u p c o mi n g s e ns or st at us
u p d at e w o ul d l e a d t o a si g ni fi c a nt D T r efr es h. T his criti c alit y
of s e ns or u p d at es f or D T c o nstr u cti o n h as r ar el y b e e n st u di e d,
a n d it is als o c h all e n gi n g t o d et er mi n e d u e t o t h e c o nt e xt
v ari et y.
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Fi g. 3: T h e m e c h a nis m t o d et er mi n e t h e u pl o a d ti mi n g.

H o w e v er, t h e cl o u d s er v er c a n i m p os e hist ori c al d at a r e pl a y
o n t h e tr ai ni n g d at as et t o d eri v e a n o pti m al p oli c y f or d et er-
mi ni n g t h e u p d at e s a m pli n g ti mi n g t o ai d D T r e pr es e nt ati o n.
F or m all y, d e n ot e t h e s a m pli n g ti mi n g s et of a s e q u e n c e C as

T C = { τ i = tj } t j ∈ { T } ,

w h er e τ i i n di c at es t h e i-t h s a m pli n g a n d tj is t h e ti m e of t h e
j -t h st at us c h a n g e i n a s e q u e n c e.

As a c o m pr o mis e f or e ns uri n g D T a v ail a bilit y, o n e s h o ul d
s el e cti v el y dr o p s o m e s a m pli n g o p p ort u niti es, t h us l e a di n g t o
s o m e u n a v oi d a bl e i nf or m ati o n l oss r e g ar di n g s e ns or u p d at e
c h a n g es. N e v ert h el ess, o ur g o al is t h e cr e ati o n of a virt u al
s p a c e t h at mirr ors t h e p h ysi c al s p a c e cl os el y. M ai nt ai ni n g
s p a c e c o nsist e n c y b et w e e n p h ysi c al a n d virt u al s p a c e i n o ur
dis c uss e d d o m ai n i m pli es t h e c o nsist e n c y b et w e e n t h e s e ns ors
t o u p d at e i nf err e d fr o m t h e st at es i n t h e cl o u d a n d i n t h e a ct u al
r esi d e nti al s etti n g. Wit h t h e st at e of a pr e di ct e d s e q u e n c e
st or e d i n t h e cl o u d, t h e cl o u d s er v er c o ul d pr e di ct t h e f oll o wi n g
s e ns or t o u p d at e, d et er mi n e if s y n c hr o ni z ati o n wit h t h e r e al
w orl d (i. e., e d g e s er v er) is r e q uir e d, a n d r e q u est f or t h e
c o n n e cti o n i n a d v a n c e.

T his is p artl y d o n e b y a g e n er ati o n m o d el M g e n wit h L S T M
u nits pr e di cti n g t h e n e xt u p d at e d s e ns or i n t h e D T. T h e tr ai ni n g
pr o c ess st arts b y f e e di n g a wi n d o w i nt o a n L S T M l a y er t o
o bt ai n a hi d d e n a bstr a cti o n c o nt ai ni n g t h e i nf or m ati o n of t h e
n e xt s e ns or t o u p d at e, n a m el y ĥ C k

. T his hi d d e n a bstr a cti o n of
D T will b e c o n c at e n at e d wit h t h e f e at ur e fr o m M a b s of e d g e
t o pr e di ct t h e n e xt s e ns or t o u p d at e n̂ C k

. N e xt, t h e v e ct or of
r a w pr e di cti o ns o n n̂ C k

will b e c o m p ar e d wit h t h e a ct u all y
c h a n g e d s e ns or n C k

t o c al c ul at e t h e N L L l oss. T h e l oss will b e
us e d t o u p d at e t h e g e n er ati o n m o d el M g e n , w hi c h gr a d u all y
g ai ns t h e c a p a bilit y of pr e di cti n g t h e n e xt s e ns or t o u p d at e
wit h t h e i n p ut of t h e c urr e ntl y st or e d s e ns or u p d at es i n D T.
T h e pr e di ct e d s e ns or will b e a p p e n d e d t o t h e wi n d o w a n d f e d
b a c k t o t h e L S T M l a y er i n t h e n e xt ti m est a m p r e c urr e ntl y.

I n pr a cti c e, t h e w h ol e T C c a n b e br o k e n d o w n i nt o m ulti pl e
T C k

f or b ett er tr a c e a bilit y a n d f e at ur e c a pt uri n g. T o s h o w-
c as e t h e d eri v ati o n of e a c h T C k

, w e pl ot t h e m e c h a nis m of
d et er mi ni n g e a c h s y n c hr o ni z ati o n s a m pli n g as ill ustr at e d i n
Fi g. 3. I niti all y, t h e cl o u d s er v er p oss ess es t h e u p d at e d s e ns or
i nf or m ati o n fr o m t h e cl o u d i n ti m e τ i . T h e cl o u d s er v er will
n ot s et u p c o m m u ni c ati o n wit h t h e e d g e s er v er u ntil t h e ti m e
τ i + 1 . D uri n g t his p eri o d, t h e D T will b e r efr es h e d b y M g e n . I n
ti m e τ i + 1 , t h e e d g e s er v er u pl o a ds t h e (i + 1 )-t h a ct u al u p d at e d
s e ns or t o t h e cl o u d s er v er t o r efr es h t h e D T. T h e r efr es h e d D T
will b e f urt h er us e d f or f ut ur e s a m pli n g ti mi n g d e cisi o ns.

T h e d et er mi n ati o n of t h e s a m pli n g ti mi n g s et will i n fl u e n c e
t h e q u alit y of D T, s p e ci fi c all y r e fl e ct e d i n t h e fi d elit y, i. e., F T C

C .
C o n cl usi v el y, t h e o pti mi z ati o n g o als c o nsist of m a xi mi zi n g
t h e c o nsist e n c y fi d elit y of all d e cisi o n- m a ki n g sl ots wit h t h e
s a m pli n g ti mi n g s et T C f or a gi v e n s e q u e n c e C , d e n ot e d as

F T C

C =
1

T
t ∈ { T }

1 { n ( h c l o u d , t ) = n t } ,

w h er e n (h cl o u d, t ) a n d n t ar e t h e i nf err e d s e ns or a n d a ct u al
u p d at e d s e ns or i n ti m e t, r es p e cti v el y a n d h cl o u d, t is t h e
a bstr a cti o n of cl o u d’s D T i n ti m e t. It is w ort h n oti n g t h at
w e will d e n ot e t h e a bstr a cti o n as h C k

, h τ i
, h t , h cl o u d or h e d g e

i nt er c h a n g e a bl y b as e d o n t h e r ef er e n c e of wi n d o ws, s a m pli n g
d e cisi o ns, ti m est e ps, or t h e l o c ati o ns of g e n er ati o n.

T o o pti mi z e c o nsist e n c y, a n i d e al s a m pli n g ti mi n g s e q u e n c e
w o ul d e nt ail t h e s y n c hr o ni z ati o n of e a c h u p d at e d s e ns or,
e ns uri n g t h at all s e ns or u p d at e p att er ns ar e i nst a nt a n e o usl y
i n c or p or at e d i nt o t h e D T. N o n et h el ess, as pr e vi o usl y d et ail e d
fr o m t h e r es o ur c e p ers p e cti v e, t his a p pr o a c h c a n b e b ot h
u n n e c ess ar y a n d dif fi c ult t o i m pl e m e nt. F or m all y, t h e a v er a g e
c o m m u ni c ati o n ef fi ci e n c y Q T C

C wit h t h e s a m pli n g ti mi n g s et
T C f or a gi v e n s e q u e n c e C , c a n b e r e pr es e nt e d b y

Q T C

C =
| TC |

| C|
.

T h e o v er all p erf or m a n c e of a D T d e pl o y m e nt f or C is
i m pr o v e d b y m a xi mi zi n g

R C (T C ) = F T C

C − Q T C

C .

H o w e v er, C c a n n ot b e pr e d et er mi n e d a n d u n d er g o es d y n a mi c
c h a n g es i n pr a cti c al a p pli c ati o ns, a n d a n o pti m al T C is n ot
dir e ctl y s ol v e d. We pr o p os e a D R L fr a m e w or k t h at l e ar ns
fr o m t h e tr ai ni n g d at a a n d c a n b e a p pli e d t o p ot e nti al a cti vit y
tr a nsiti o ns i n t h e r e al w orl d. A D R L- b as e d s a m pli n g m o d el
M s a p c a n i n di c at e if t h e s yst e m s h o ul d s c h e d ul e a n ot h er r e al-
w orl d s y n c hr o ni z ati o n s a m pli n g i n t h e n e xt p h ysi c al s e ns or
u p d at e, w hi c h will b e d et ail e d i n S e cti o n I V- C. I nt uiti v el y,
w e c a n dir e ctl y r e pl a y t h e hist ori c al s e q u e n c e wit h M g e n

a n d d eri v e t h e t ar g eti n g s a m pli n g m o d el M s a p wit h t h e
s y n c hr o ni z ati o n s u p p ort e d b y t h e M E C e n vir o n m e nt. N o w, w e
st art a pr o bl e m f or m ali z ati o n of t h e M ar k o v D e cisi o n Pr o c ess
( M D P) t o d eri v e o ur D R L m et h o d [ 3 3], [ 3 9].

C. D R L D e pl o y m e nt D et ails

Ai mi n g t o i m pr o v e t h e o v er all c o nsist e n c y fi d elit y of t h e
g e n er at e d D T w hil e r e d u ci n g t h e c o m m u ni c ati o n c ost i n t h e
cl o u d s er v er, t h e d e pl o y m e nt is r e ali z e d b y t h e s a m pli n g m o d el
M s a p , w hi c h t a k es cl o u d D T a bstr a cti o n h cl o u d as i n p ut.
T h e st at e of cl o u d D T a bstr a cti o n c a n i n di c at e t h e c h oi c e
of w h et h er t h e n e xt a ct u al u p d at e d s e ns or r e c or d e d i n t h e
e d g e s er v er s h o ul d b e s y n c hr o ni z e d or n ot. T his s a m pli n g
ti mi n g d et er mi n ati o n pr o bl e m c a n b e f or m ul at e d as a n M D P,
r e pr es e nt e d b y Γ = ( O , A , R , P , γ), w h er e O , A , R , P a n d
γ ar e t h e s ets of o bs er v ati o ns a n d a cti o ns, r e w ar d f u n cti o n,
tr a nsiti o n f u n cti o n, dis c o u nt e d f a ct or, r es p e cti v el y, a n d t h e
d et ails ar e as f oll o ws:
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1) Observation space O: For observation windows, we
discretize their sensor readings and tokenize the combination
of each sensor name and its reading. With Mgen and Tanh
activation [40], the observation of DT abstraction can be
converted into a hidden state vector hcloud with a fixed length
dhidden and each position in hcloud is in the range of (−1, 1).
Msap takes hcloud as input, which leads to the observation
o ∈ O =

{
(−1, 1)

}dhidden .
2) Action space A: An action a ∈ A dictates the sampling

strategy of the cloud server based on the perceived information
in both physical and virtual space, which can take a value from
the set {0, 1}, with 1 indicating sampling from the edge server
and 0 otherwise.

3) Reward function R: After deciding on an action, one
can receive an instant reward r ∈ R = O × A → R
to imply the contribution of this action to DT fidelity and
sampling cost. The system is devoted to constantly optimizing
the expected discounted return as E

[∑∞
k=0 γ

krt+k

]
, where γ

is the discount factor that accounts for the long-term effect on
aggregated rewards. Specifically, the reward is formulated as:

rt =

{
1− at if n(ĥt) = nt,

1− at − κ elsewise,

where κ is the penalty for the sensor inference accuracy
compromise. With this reward design, the system guarantees
the consistency reward while considering sampling cost in
synchronization.

4) Transition function P: According to the decision of
action at, the probability of state transition is given as P ,
which follows p(ot+1|ot, at) = O × A × O → [0, 1]. With
P , the long-term reward can be estimated, thus enabling the
refinement of Msap that considers the future impact. In this
context, the strategy is to determine if the next actual updated
sensor in physical space should be sampled.

We adopt an Advantage Actor-Critic architecture [41], [42]
to establish Msap, which learns an actor and critic from
the training data to determine the sampling timing and es-
timates the long-term reward based on the current decision,
respectively. As shown in Fig. 2, the actor of Msap takes the
abstraction of DT, i.e., hcloud as input to derive the action. By
responding based on the actions of the actor, instant rewards
are calculated to shape the critic that evaluates the long-term
reward resulting from adopting the current action.

Formally, the actor and critic algorithms are concretized as
parameterized functions that perform vectorization operations
with the provided input:

• Critic: The critic is a parameterized function V θv (·)
with parameters θv . With the critic, an advantage can be
estimated that yields the difference between the returns
and the baseline V (ot), as

A(ot, at) ≈ rt + γV θv (ot+1|ot, at)− V θv (ot) = δ(ot).

We can estimate the critic parameters with the replay of
the training data.

• Actor: The actor is a parameterized function πθu(at|ot)
with parameters θu, which quantifies the probability of

choosing action at based on ot. We expect to use the ad-
vantage function to guide the optimization of the policy.
Thus, the policy gradient of the actor with the current
critic can be calculated by differentiating the loss

L(θu) = log πθu(at|ot)δ(ot).

Meanwhile, we also consider the critic, which is updated
by minimizing the loss function of

L(θv) =
1

2
δ2(ot).

Finally, we jointly optimize the θv and θu by considering
the overall loss

J(θu, θv) = L(θu) + L(θv).

We present learning details of our proposed DRL-based sam-
pling control in Algorithm 1. The replay of derived rewards
on the training data will be utilized to update both actor and
critic parameters, finally leading to the sampling model Msap.

Algorithm 1: DRL-based Sampling Control.
Input: Timesteps for per actor update M , mini-batch

size B, training dataset in format of
observation windows.

Output: Sampling model Msap.
1 Initialization:
2 Initialize the parameters of critic and actor for Msap,

namely θv and θu, ;
3 for m = 1 to max-iterations do
4 Stage 1: Generating Trajectories
5 Reset the environment, get initial observation o(0)

with B sequences;
6 for k = 0 to M − 1 do
7 Sample actions a(k) using θu given o(k);
8 Execute a(k) in DT system;
9 Observe reward r(k+1) and next state o(k+1);

10 Store the transition from policy
< (o(k),a(k+1), r(k+1),o(k+1) >;

11 Stage 2: Parameters Training
12 Compute advantage estimates δ of the current

policy function using critic parameters θv for the
stored transitions;

13 Update the overall loss J wrt. θu and θv within the
batch and backward the gradient from loss;

14 Return the final sampling model Msap.

V. EXPERIMENTAL EVALUATION

In this section, we adopt two real-world human activity
datasets, Aruba and Milan [36], [43], to demonstrate the
practicability of our proposed framework. Each dataset is
used to represent one residential environment and a specific
MEC environment is set up to serve individual needs. Both
datasets include a table of sensor change events with at-
tributes of date, time, sensor value. Specifically, each event
may include a begin or end tag along with the activ-
ity category to indicate the action transition. The Aruba
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identifies 12 activity categories, namely Meal Preparation,
Relax, Eating, Work, Sleeping, Wash Dishes, Bed to Toilet,
Enter Home, Leave Home, Housekeeping, Respirate, and
Other while Milan identifies 15 activity categories as
Bed-to-Toilet, Chores, Desk Activity, Dining Rm Activity,
Eve Meds, Guest Bathroom, Kitchen Activity, Leave Home,
Master Bathroom, Meditate, Watch TV, Sleep, Read, Morn-
ing Meds, Master Bedroom Activity. The capability of deal-
ing with a wide spectrum of human activities will greatly
demonstrate the practicability of our proposed DT deployment
scheme. The sensor and activity columns in the dataset are
extracted as described in Section IV-A.

Firstly, we pre-segment the whole dataset according to the
tags of begin and end of all activity labels. For each segment,
we construct multiple observation windows with a length of
M = 100 and step size 1, in which all sensor status changes
are of the same activity classes. For segments shorter than
100 units in length, we pad the windows with zeros at the
beginning. We remove all windows regarding the label Other
to focus on meaningful DT construction in targeting activities.
We downsample the Aruba dataset to ensure comparability
with the Milan dataset in terms of data point volume. To enable
our proposed training scheme, all observation windows are
split into a training set and a testing set with a ratio of 7:3, and
the data in the training set are further partitioned into training
and validation sets with the same ratio. In the experiments, we
train Mabs, Mgen and Msap with Pytorch 2.1.0 and CUDA
version 12.0 on a device with Intel Xeon Gold 6242@2.60
GHz CPU and NVIDIA Tesla V100 GPU. All the following
training was conducted over three random seeds.

A. Performance in Model Mabs

Firstly, we train the abstraction model of edge server Mabs

processing the data in HAR domain. It includes an embedding
layer Lembed that converts each tokenized sensor reading in the
given window into vectors of length dembed = 64. Next, the
embedding vectors are passed to Llstm, generating a hidden
state vector of length dhidden. The hidden state will pass
the Tanh activation function along with Lfc and LogSoftmax
function to determine the activity label among doutput options.
The model is optimized by Adam [40] with a learning rate
of 1e-3. The batch size is set as 2048. We adopt the early
stopping mechanism, which terminates the training when the
classification loss stops to decrease in the validation dataset
for 100 episodes. The model with the best performance in the
validation dataset is used for testing.

The weighted F1-scores [44] and NLL loss for the testing
dataset in Aruba and Milan are presented in Table I. In
both residential environments, the capability and robustness
of the model are generally improved as dhidden increases.
This result indicates the importance of the feature-capturing
capability of the abstraction, which impacts the future DT
construction. However, there is minimal room for performance
enhancement when considering a sufficiently large dhidden. In
practice, dhidden should be delicately set to trade off the model
performance and the communication cost. The service provider
can consider an acceptable length of hidden features in model
deployment.

We illustrate confusion matrices of Aruba and Milan res-
idential environments from Mabs with dhidden = 256 in
Fig. 4. The figure shows that most activity classes can be
correctly recognized by Mabs, demonstrating that domain
knowledge regarding HAR is embedded in the abstraction.
Meanwhile, we can also observe some fundamental defects in
the abstraction model as some types of observation windows
cannot be correctly identified in both datasets. For example,
some of Leave Home windows labeled by 4 are mistreated as
Enter Home denoted by 2 in Aruba; most of Eve Med win-
dows labeled by 4 in Milan are misidentified as Morning Med
with a label 11. The cause could stem from the ambiguity
in the chosen features. Given the low weight of the number
of samples relative to the total, its impact on the weighted
F1 score is subtle. To address precision challenges related to
feature representativeness in the physical domain, additional
effort should be directed toward enhancing data quality and
refining model architecture which is not the scope of this
article.
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Fig. 4: A sample of the confusion matrices of Aruba (left) and
Milan (right) datasets obtained from Mabs with dhidden =
256. The darker cells along the diagonal signify the higher
number of samples, illustrating a more capable model.

B. Performance in Model Mgen

We consider the temporal correlation in the sequence using
LSTM units and conduct real-time pattern recognition for the
next updated sensor inference using the generation model, i.e.,
Mgen. In DT deployment, the cloud server can sample the
actual updated sensors and HAR features from the edge server.
The updated sensor sequence encoded to a state hcloud while
incorporating stored hedge, is fed into FC layers to infer the
next sensor to update. In our experiment, we directly set the
hidden state of the LSTM encoder as dhidden = 256 to encode
the sensor sequence and obtain enough domain information.
Related model training parameters are the same as Mabs.

Our proposed Mgen takes both the DT status and the
edge domain information of HAR into consideration in the
way of concatenating both abstractions of edge and cloud,
namely Edge-Cloud-Fusion. To evaluate its performance, we
compare it with two baselines: 1) Edge-FC utilizes only
feature obtained from the edge server to generate sensor
word; and 2) Cloud-LSTM recurrently append the next sensor
from training data while predicting the next sensor to update.
We evaluate the performance of these methods in Table II.
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Weighted F1-Score

dhidden = 32 64 128 256

Aruba 99.36± 0.02 99.57± 0.09 99.73± 0.07 99.79± 0.03

Milan 99.49± 0.05 99.67± 0.07 99.71± 0.05 99.71± 0.05

Average NLL Loss

dhidden = 32 64 128 256

Aruba 0.026± 0.005 0.014± 0.003 0.010± 0.001 0.009± 0.003

Milan 0.023± 0.001 0.016± 0.003 0.015± 0.005 0.016± 0.004

TABLE I: The model performance of Mabs in terms of Weighted F1-Score and Average NLL Loss with different hidden state
length dhidden.

Aruba Milan

Average Precision (%) Average NLL Loss Average Precision (%) Average NLL Loss

Edge-FCC 61.85± 0.27 1.102± 0.007 62.33± 0.33 1.050± 0.009

Cloud-LSTM 78.77± 0.66 0.691± 0.011 92.38± 0.11 0.279± 0.003

Edge-Cloud-Fusion 85.28± 0.47 0.527± 0.004 93.96± 0.08 0.212± 0.001

TABLE II: The model performance of Mgen in different schemes on next sensor inference task with hidden state length
dhidden = 256.

We can easily observe the superiority of Edge-Cloud-Fusion
method over the other methods, which reaches an accuracy of
85.28% and 93.96% on Aruba and Milan, respectively. These
results surpass those of the Cloud-LSTM method by 6.51%
and 1.58%, respectively. As the Edge-FC only relies on the
HAR domain knowledge, it neglects the mechanism of sensor
update, thus failing to yield sensor change patterns correctly.
Although Cloud-LSTM captures the pattern of sensor updates,
it lacks the context information, thus leading to fidelity loss. As
shown in Table II, it has been noted that domain knowledge
effectively transitions from HAR to sensor inference on the
cloud server by leveraging features extracted at the edge server,
as demonstrated by the performance of Edge-Cloud-Fusion.
This implies that the cloud server can infer the sensor changed
in a timestamp by utilizing the edge abstraction and Mgen.
The inference performance can be influenced by many factors,
such as activity complexity, the number of sensors involved,
and underfitting. We will prove that a robust and capable
generation model is crucial to the efficiency of DT construction
and the efficacy of Msap.

0.2 0.4 0.6 0.8
Sampling Freq. (Aruba)

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

= 1

= 1

= 2

= 2

= 3

= 3

= 4
= 4

0.2 0.4 0.6 0.8
Sampling Freq. (Milan)

30

40

50

60

70

80

90

= 1

= 2
= 3 = 4

= 1

= 2
= 3= 4

RS
Cloud DRL
Fusion DRL

Fig. 5: The accuracy-sampling efficiency performance of
Msap with DRL-based Sampling and Random Sampling
(RS) strategies in Aruba (left) and Milan (right) datasets and
different penalty settings with dhidden = 256.
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Fig. 6: The reward performance of Msap with Cloud DRL
and Fusion DRL in Aruba (upper) and Milan (lower) datasets
and different penalty settings with dhidden = 256.

C. Performance in Model Msap

The DRL-based Msap encodes the inferred sensor into a
cloud feature as the current state, represented by a vector
length of dhidden = 256. In training, γ is set as 0.99, learning
rate is set as 3e-4, and batch size B is 256. We simulate a
baseline strategy in which the cloud server randomly samples
the actual updated sensors from the edge server with a fixed
probability. In comparison, our proposed DRL-based method
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penalizes those sampling slots that generate a fault prediction
in the reward function and selects the slots to sample from
the edge according to the guidance of Msap. We set the
penalty κ in reward to multiple values. With a large penalty,
the policy tends to prevent fidelity loss, thus encouraging more
sampling. Also, we explore the impact of the edge feature
in the sampling process. The method that merely uses the
features of the cloud server is denoted as Cloud DRL while
the method that takes the fusion abstractions from Mgen as
inputs is denoted by Fusion DRL. Fig. 5 plots the performance
of Msap with Cloud DRL and Fusion DRL Sampling and
Random Sampling (RS) strategies in Aruba (left) and Milan
(right) datasets obtained from Mabs with dhidden = 256.
We can easily observe that the DRL methods outperform
the RS strategy as they gain insight into DT and associate
each state with their importance. This significantly reduces the
unnecessary data synchronization with the edge server. With
the same number of times in sampling data from the edge,
the accuracy of sensor inference with the DRL-based methods
is higher than the RS method. When comparing Fusion DRL
with Cloud DRL, it is evident that for different penalty values,
the scatter plots of Fusion DRL are positioned in the upper
left relative to those of Cloud DRL, which exhibits better
accuracy-sampling efficiency. This observation underscores the
significance of integrating physical and virtual elements. This
conclusion is further illustrated in Fig. 6, which plots the
obtained rewards from the testing dataset in different training
episodes based on Cloud DRL and Fusion DRL. As shown in
Fig. 6, we depict the training trajectories of Cloud DRL and
Fusion DRL under various penalty values using dashed and
solid lines, respectively. It is clear that all rewards initially
increase at the start of training and then converge after a certain
number of episodes, illustrating the effectiveness of the DRL
method. Furthermore, the rewards achieved with Fusion DRL
are higher than those from Cloud DRL under the same dataset
and penalty setting, demonstrating the effectiveness of edge-
cloud fusion in practice.

VI. CONCLUSION

In this article, we propose a low-cost and high-fidelity
digital twin (DT) implementation scheme with the mobile
edge computing (MEC) environment to aid the cloud service.
Taking the residential human activity recognition task as an
example, we first employ an abstraction model with the long
short-term memory (LSTM) to extract an abstract represen-
tation aligned with the point of interest of service. Next, we
exploit the feature extracted from the abstraction model and
train a data upload timing model with deep reinforcement
learning (DRL) to improve the DT fidelity while reducing
communication costs. With the aid of mobile edge servers,
the deployment can be customized for different consumer
scenarios. Extensive empirical studies with different residential
environments demonstrate the applicability of our proposed
deployment scheme. In the future, we will continue to optimize
the deployment of low-cost and high-fidelity DTs in extensive
emerging consumer electronics paradigms, such as blockchain
and metaverse.
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