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Abstract—The presence of digital twins (DTs) has expanded
within the consumer electronics area due to its inherent benefits
of high-fidelity modeling and predictive insight. However, DT
deployment remains costly and constrained in providing the
fundamental functionalities required by consumer electronics
systems due to massive computation and communication. The
emergence of mobile edge computing (MEC) has made DT de-
ployment feasible to achieve data-driven modeling and consumer-
centric concurrently with low communication costs. This article
proposes an MEC-based DT deployment scheme in the smart
home domain. The cloud service can predict subsequent sensor
updates leveraging the MEC platform’s human activity recog-
nition result of residential environments. In addition, with deep
reinforcement learning (DRL), it can track the essential data
to maintain sensor update consistency between both physical
and virtual sides. We implement experimental evaluation with
two real-world residential datasets, and the results demonstrate
that our scheme maintains high-level sensor update consistency
while being energy-efficient in different residential environments,
which illuminates the promising prospects of DT implementation
in MEC and consumer electronics.

Index Terms—Mobile edge computing, digital twin, deep rein-
forcement learning, human activity recognition, sensor inference

I. INTRODUCTION

A hypothesis pursued by a few people revolves around
the co-existence of other universes alongside ours. In these
alternate universes, an event we recognize might have entirely
different outcomes, and these hypothetical alternate universes
are called parallel universes. Ever since its conception, the
idea of parallel universes has inspired us to depict a different
and better world and formalize the states and mechanisms of
entities within our reach. Doing so encourages one to simulate
and access all possible results through many decision check-
points. Following the principle of parallel universe, something
is called digital twin (DT) and is referred to as a digital replica
of a set of living or non-living physical entities in our world.

A DT represents its physical twin as a minuscule abstraction
of the world and stands in a small parallel universe. This is
done by including all its physical twin components, which
reveals the potential sub-system evolution in many applications
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of information technology, industry, and manufacturing sectors
[1]. Furthermore, leveraging the economical and convenient
DT setup allows more flexible approaches to simulate and
validate our design and models and extend the settings in the
real world. In this digital era, the DT technique has garnered
massive attention due to its merits of being intelligent, effi-
cient, economical and sustainable, and has been proposed to
be integrated into many complicated and rigorous scenarios,
such as the DT human [2], DT city [3], and DT visualization
[4], which targets on enhancing the information convergence
between the physical and digital spaces of the systems.

Nonetheless, the effectiveness of DTs is significantly con-
strained by physical limitations such as network conditions,
computational capacity, and energy costs associated with the
deployed facilities and equipment [5]-[7]. With the prevalence
of ever-increasing Internet of Things (IoT) devices, the poten-
tial DT designs for these devices are even more restricted as
they are impractical and inefficient in constantly formulating
real-world conditions and updating the DT status of physical
devices. To achieve improved synchronization, it is essential
to consider the unique features obtained from the status of
existing data while injecting insight into the future status.
Furthermore, it is justifiable to develop dedicated models
that work in conjunction with different IoT ecosystems, e.g.,
residential environments with a variety of human behavior
and device data generation patterns [8]-[10]. One of the
most critical points to maintaining the physical twin and DT
consistency is facilitating timely updates of time-sensitive data
that helps to prevent unnecessary resource wastage.

Thanks to the mobile edge computing (MEC) technique,
which brings considerable computing resources closer to the
place of data generation, we have gained the capability of
addressing matters of change responsively. With the advance-
ment of hardware, mobile edge devices tend to be more
computatively designed and capable of dealing with massive
local requests in the IoT context [11]-[13]. However, there is
still a communication bottleneck between edges and the central
server, colloquially called the cloud, which is known for being
relatively cost-inefficient, insecure, and lagged in dealing with
remote data [14]. Before pushing service requests to the cloud,
the data preprocessing at the edge side would significantly
reduce workloads and enable more concurrent threads in
the cloud. The preprocessing strategies can be customized
regarding edge servers and their users’ physical environments,
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thus enabling personalized DT constructions on the cloud
site. The edge server is responsible for the preprocessing and
securing mechanism, which obscures local features, enables
essential information flow, and enhances synchronization [15],
[16].

This article fully takes the characteristics of edge and
cloud computing into consideration. Leveraging human activ-
ity recognition (HAR) results, we propose an MEC-assisted
DT deployment scheme to increase DT fidelity regarding
sensor update inference at a low cost. With the emerging deep
reinforcement learning (DRL) technology, the edge servers
deployed in residential environments can investigate the lo-
cal caches of sensor readings and obtain residents’ activity
patterns. It is also trained to extract the essential features
that facilitate the sensor update inference in the cloud server
and decisions for DT updates, leading to highly consistent
sensor update sequences in the cloud’s virtual space and the
residential environment’s physical space while reducing the
communication cost of cloud-edge synchronization.

The remainder of this article is organized as follows. We
introduce the related work in Section II and present the system
model and some key concepts, such as the data format and
communication mechanism, in Section III. After being aware
of an overview of the system, the setup and algorithms are
clarified in Section IV. Finally, we evaluate the performance
and effectiveness of our DT formation in Section V and
conclude this article in Section VI.

II. RELATED WORKS
A. Sensor-based Human Activity Recognition

The proposition of DT humans probably enhances the future
full lifecycle health management [17] and mobility service
in transportation [18]. These functionalities are closely tied
to human activity patterns. Developing a precise and realistic
DT human requires dense and heterogeneous placement of
advanced sensors and the collection of massive amounts of
data. Sensor-based HAR is a feasible approach to deducing
human behavioral patterns.

Broad literature has considered sensor-based HAR as an
economical solution [19]. Pattamaset et al. [20] divided the
indoor sensors into multiple groups to identify human activi-
ties based on the room distribution to reduce the irrelevant data
upload. Bouchabou et al. [21] directly measured the changes
in each sensor deployed in residential environments, converted
the changes into vectors of feature, and trained a convolutional
neural network model to identify human activities. Gumaei et
al. [22] introduced a multimodal body sensory approach to
realize human activity with a hybrid deep learning model.

Despite the primary domain of activity recognition in the
edge server, the sensory-data-based services running in the
cloud might target the sensor networks and their management
and measurement. The existing methods [23]—-[25] addressed
the sensor inference by concentrating on correlation-based
inference, causal representation domain adaption, or resorting
to hidden Markov models; however, none of them interpreted
sensor update inference conducted at the cloud server in the
DT deployment context and connected it to regular HAR tasks
in the edge server.

Our approach extends beyond pure sensor-based HAR so-
lutions, demonstrating the application of low-cost MEC-based
DT deployment. In this article, we utilize HAR and sensor
update inference as an illustrative example to demonstrate the
practicability of DT deployment in an MEC environment.

B. DT Deployment in MEC Environments

The advancement of MEC has enabled DT deployment to be
more realistic and accessible for mobile end-users. Wang et al.
[18] proposed a data-driven and cloud-edge-device system to
facilitate the mobility DT creation by interconnecting various
mobility entities. Fan er al. [26] proposed a vehicular lane-
changing solution for connected autonomous vehicles with
real-time safety property and foresight intelligence, where
sensing and computing capability are enhanced in mobile
edge servers. Experience of the physical MEC network is
formulated in a DT format to support real-world decisions.
Do-buy et al. [27] introduced a DT-aided design for industrial
automation, which captures the real-time status of IoT devices
and MEC servers and determines the offloading scheme that
optimizes the end-to-end latency while subjecting to multiple
quality-of-service and resource constraints. Zhou et al. [28]
proposed a dual-reinforcement learning scheme with DT layers
in an edge-cloud structured system to determine client node
and global aggregation frequency for federated learning. The
edge server has demonstrated notably powerful computation
and communication capabilities in these scenarios. Nonethe-
less, the challenge remains in effectively and seamlessly
integrating high-level DT with MEC-based interconnected
services.

III. SYSTEM MODEL

With real-world data, DTs stack various functional layers
to the stunning virtual creation, acting beyond the traditional
simulation technology and interacting with reality proactively.
In this circumstance, a huge amount of data assimilation is es-
sential to the DT construction, which is also greatly limited by
infrastructures, such as network throughput and computational
capacity. Specifically, in residential IoT services, the home en-
vironment is equipped with various sensors and devices, such
as motion detectors, cameras, temperature-humidity sensors,
and wearable devices, which serve as fundamental sources of
information.

A cloud platform would assimilate the data generated from
IoT sensors (e.g., HAR) in a variety of residential environ-
ments to create the DTs of specific domains (e.g., sensor
update inference) for further usages, e.g., security setting
adjustment, sensor management, and elderly care. A more
frontier application is the DT incorporation into the metaverse
to promote the virtual reality fusion experience with a broad
range of sensors [29]. The data generated from many sensors
of numerous residential cases can accumulate to a vast volume,
posing significant traffic burdens on the cloud server.

Consequently, the formation of high-fidelity DT objects
encounters critical difficulties in terms of accessibility and
availability. As an intermediary, introducing edge servers can
play a significant role in alleviating these concerns. The edge
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server manages and preprocesses the raw log of deployed
sensors within a reachable distance of the home environment.
It extracts and uploads only the essential features, guaranteeing
that data utilization on the cloud site for DT construction is
legitimate and efficient.

A. Problem Formulation

We assume a total of N IoT sensors are deployed in a
home environment monitored by a dedicated edge server, and
the status of each sensor can be captured in every timestamp
indexed by ¢, denoted by

st = (S1,6,52,6, - »Sne), t €N

The edge server manages the status changes of sensors. A
status change ¢ is denoted as

c= (n: t: S‘n._.t) yt): Vs‘n._.t 5& S‘n._.t—].) t > 0)

where y; is the resident activity label of time ¢ in an activity set
Y, and each change c is associated with an activity label. When
serving the residential environment, the edge server maintains

the logs of sensor status change sequence' as

C = {cluc'Z! e )Or|t(61) S t(cz} e S t(cT)}

Taking HAR as an example, the edge server is responsible for
tracking the status of sensors and directly responding to human
activities, e.g., health and well-being assessments; DTs at the
cloud server focus on extensive management purposes and
enhanced services. In this article, we consider the inference
of sensor update in DTs, ie., N = {n¢,,ney, -+, ey )

One important concept related to DTs, namely fidelity, is
broadly introduced to measure the matching degree between
virtual creations and physical entities. The DT fidelity is
determined by how accurately the virtual model can represent
actual sensor changes in the residential environment. Though
the edge server can access the sensor status, uploading raw
sensor status to the cloud is inappropriate considering the
privacy issue [30] or domain difference between the edge and
cloud server. Instead, sensor status can be passed to a feature
extractor for further domain adaption before being uploaded
to the cloud server. However, this compression in an extractor
might hamper the fidelity of constructed DTs.

Another obstacle affecting the DT fidelity is the acquisition
of data samples from edge servers. In many instances, con-
tinuous data sampling is disadvantageous when adding DTs
on the cloud server due to the dense connectivity with diverse
MEC environments. Moreover, some information is not critical
to DT maintenance. As a result, when constructing DTs, a
cloud server should selectively identify the contribution of
potentially perceived changes in sensors at a large scale. This
raises the requirement regarding intelligent decision-making
of connection.

In essence, the demands for secure and selective data
sampling underscore the importance of the semantic analysis
capability of DTs in envisioning real-time data processing.
This also ensures that sensitive information is appropriately

I'This is referred to as “sequence” throughout the rest of this article.
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Fig. 1: The overview of the MEC system design.

managed and protected by the edge server. Our effort, with
the advance of MEC and DRL, tackles the stated concerns
effectively when deploying DTs.

B. System Design

We present an overview of the MEC system design in Fig.
1. As shown in the model agreement process of Fig. 1, (1)
residents are required to consent to the construction of the
DT in the cloud and the cloud’s access to data in the MEC
environment. (2) Residents permit the MEC server to collect
datasets, including the status changes of sensors and their
associated activity labels, and train the models for smart home
responses. MEC server proceeds data provisioning to aid the
DT construction in the cloud, in which sensitive information
has been removed. (3) In the model training and deployment
process, the edge server trains a model to transform the status
change log into abstraction, i.e., feature extractor, and another
model that contextualizes the abstraction within the service
domain, i.e., activity classifier. (4) The cloud server is involved
in model training with the MEC-granted data for management
purposes, e.g., inferring the upcoming sensor change in real-
time and determining the timing for data synchronization
between the edge and cloud server.

Once the training is finished, these models are encapsulated
in the edge and cloud servers to serve the residents. We will
next reveal DT construction details.

IV. DEPLOYMENT DETAILS FOR DT CONSTRUCTION

This section will first explain the motivation behind our
design and deployment. We realize that it is critical to consider
the intelligence in DT construction, specifically:

« Intelligent Compression: The sensor status changes can-
not be directly revealed to the cloud because of privacy
concerns; however, the cloud still needs access to the in-
formation regarding the point of interest to maintain DT.
The edge server can compress the sensory observations,
allowing for the upload of a condensed abstraction to
represent the current states of all sensors.

« Intelligent Sampling: Merely utilizing the sensor update
prediction in the cloud is insufficient to construct a high-
fidelity DT; it is still necessary to sample some key
information from the edge server to maintain consistency
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Fig. 2: The detailed framework DRL deployment for optimizing data uploading strategy.

between the physical and digital realms. This necessitates
associating the point of interest with the observation and
the subsequent decision-making policy.

Fortunately, deep learning technology can be used to fa-
cilitate the subject association, and the generated abstraction
in terms of HAR can be directly utilized to enhance sensor
update inference. Also, according to the observation from
edge servers, we can derive the decision-making policy with
optimized sampling cost and physical-digital consistency. This
gives rise to our scheme, and the general idea includes aligning
the observation with the upcoming sensor change using a long-
short-term memory (LSTM) mechanism that captures the long-
and short-term features from historical sensory behaviors [31],
[32], and deriving a decision-making policy that maximizes
the reward obtained from sampling key changes with DRL
technology [33]. A detailed deployment MEC-based DT de-
ployment framework with DRL is illustrated in Fig. 2.

A. Information Abstraction with Embedding

We adopt a dedicated abstraction model Mgy in the
edge server that exploits implicit sensor update correlation
and outputs state abstraction. For an arbitrary observation
window, we employ the LSTM units to extract the sequen-
tial information of sensor status changes and associate them
to their activity, which has been broadly adopted in HAR
context [21], [34], [35]. To learn the features of different
activities, we group every M consecutive status changes with
the same activity label into an observation window, i.e.,
Ck = {Ckl':ckz T :Ckm} C C and yckl = yckz e = kaM'
For a window Cg, we take each change ¢, and combine sensor
names and their corresponding readings {sn, ¢+, }M, to form
the vocabularies. For example, a motion sensor [36] named
MO004 and with a status of ON results in a word MOO4ON.
Then we convert all words into embedding vectors {x;}M,

with a vector length of dempeq units using the embedding layer
[37], i.e., Lembed, Where

X = ‘cembed(nh S’n,-,ti):vni € {N}zsm,ti € {Sn?t}'

Next, one can feed the embedding vectors into an LSTM layer
Listm and generate a set of hidden states hg, with a vector
length of dp;g4en Units as the sensor status abstraction, i.e.,

hC;c = »Cistm ({Xi }i\il)

Hereby, we complete the component of a feature extractor. The
abstractions from the feature extractor will be associated with
their corresponding activity yc,, e.g., Read, with an activity
classifier. The activity classifier is accomplished by feeding
the hidden states to a fully connected (FC) layer that maps
the vectors of a length of dpjggen UNits to a new one with
doutput = || units, ie., Lg., followed by the prediction of

ﬁck = argmax; ]_Og Softmax (Wfbshck + babs) ’

where Wy and bgpe are the weight and bias parameters of
L., and j is the position index of a vector that indicates
the predicted activity. Hereby, an abstraction module Mg,
including a feature extractor and activity extractor, is trained
by minimizing the negative log-likelihood loss (NLL) between
predictions and the ground truth of activity labels [38].

B. Sampling Timing Determination

The edge server maintains the log of sensor status changes
but will not upload them unless it pertains to meaningful
updates in DT refreshing, which fundamentally avoids un-
necessary communication while envisioning DT freshness.
However, one could not foresee if the upcoming sensor status
update would lead to a significant DT refresh. This criticality
of sensor updates for DT construction has rarely been studied,
and it is also challenging to determine due to the context
variety.
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Fig. 3: The mechanism to determine the upload timing.

However, the cloud server can impose historical data replay
on the training dataset to derive an optimal policy for deter-
mining the update sampling timing to aid DT representation.
Formally, denote the sampling timing set of a sequence C as

Te ={mi =tj}t,eqry

where 7; indicates the i-th sampling and ¢; is the time of the
j-th status change in a sequence.

As a compromise for ensuring DT availability, one should
selectively drop some sampling opportunities, thus leading to
some unavoidable information loss regarding sensor update
changes. Nevertheless, our goal is the creation of a virtual
space that mirrors the physical space closely. Maintaining
space consistency between physical and virtual space in our
discussed domain implies the consistency between the sensors
to update inferred from the states in the cloud and in the actual
residential setting. With the state of a predicted sequence
stored in the cloud, the cloud server could predict the following
sensor to update, determine if synchronization with the real
world (i.e., edge server) is required, and request for the
connection in advance.

This is partly done by a generation model M ., with LSTM
units predicting the next updated sensor in the DT. The training
process starts by feeding a window into an LSTM layer to
obtain a hidden abstraction containing the information of the
next sensor to update, namely he, . This hidden abstraction of
DT will be concatenated with the feature from M, of edge
to predict the next sensor to update n¢,. Next, the vector of
raw predictions on 7i¢, will be compared with the actually
changed sensor ng, to calculate the NLL loss. The loss will be
used to update the generation model M ge,, Which gradually
gains the capability of predicting the next sensor to update
with the input of the currently stored sensor updates in DT.
The predicted sensor will be appended to the window and fed
back to the LSTM layer in the next timestamp recurrently.

In practice, the whole 7¢ can be broken down into multiple
Te, for better traceability and feature capturing. To show-
case the derivation of each 7¢,, we plot the mechanism of
determining each synchronization sampling as illustrated in
Fig. 3. Initially, the cloud server possesses the updated sensor
information from the cloud in time 7;. The cloud server will
not set up communication with the edge server until the time
Ti+1. During this period, the DT will be refreshed by M ger. In
time 7;41, the edge server uploads the (¢+1)-th actual updated
sensor to the cloud server to refresh the DT. The refreshed DT
will be further used for future sampling timing decisions.

The determination of the sampling timing set will influence
the quality of DT, specifically reflected in the fidelity, i.e., Fgc.
Conclusively, the optimization goals consist of maximizing
the consistency fidelity of all decision-making slots with the
sampling timing set 7¢ for a given sequence C, denoted as

1
Fle = T > Un(hrowa)=ne}s
te{T}

where n(hgouqs) and n; are the inferred sensor and actual
updated sensor in time ¢, respectively and hgouq,; is the
abstraction of cloud’s DT in time ¢. It is worth noting that
we will denote the abstraction as he,, hr,, hs, heioudq OF hegge
interchangeably based on the reference of windows, sampling
decisions, timesteps, or the locations of generation.

To optimize consistency, an ideal sampling timing sequence
would entail the synchronization of each updated sensor,
ensuring that all sensor update patterns are instantaneously
incorporated into the DT. Nonetheless, as previously detailed
from the resource perspective, this approach can be both
unnecessary and difficult to implement. Formally, the average
communication efficiency Q;’;E with the sampling timing set
Tec for a given sequence C, can be represented by

[Tel
C|

The overall performance of a DT deployment for C is
improved by maximizing

Re(Te) = FJe — QJF.

QF =

However, C cannot be predetermined and undergoes dynamic
changes in practical applications, and an optimal 7. is not
directly solved. We propose a DRL framework that learns
from the training data and can be applied to potential activity
transitions in the real world. A DRL-based sampling model
M qp can indicate if the system should schedule another real-
world synchronization sampling in the next physical sensor
update, which will be detailed in Section IV-C. Intuitively,
we can directly replay the historical sequence with Mge,
and derive the targeting sampling model Mo, with the
synchronization supported by the MEC environment. Now, we
start a problem formalization of the Markov Decision Process
(MDP) to derive our DRL method [33], [39].

C. DRL Deployment Details

Aiming to improve the overall consistency fidelity of the
generated DT while reducing the communication cost in the
cloud server, the deployment is realized by the sampling model
Mqap, which takes cloud DT abstraction hgouq as input.
The state of cloud DT abstraction can indicate the choice
of whether the next actual updated sensor recorded in the
edge server should be synchronized or not. This sampling
timing determination problem can be formulated as an MDP,
represented by ' = (O, A, R, P, ), where O, A,R,P and
~ are the sets of observations and actions, reward function,
transition function, discounted factor, respectively, and the
details are as follows:
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1) Observation space O: For observation windows, we
discretize their sensor readings and tokenize the combination
of each sensor name and its reading. With M., and Tanh
activation [40], the observation of DT abstraction can be
converted into a hidden state vector h.,,q With a fixed length
dhidden and each position in hjeyq is in the range of (—1,1).
Mqp takes hejoyq as input, which leads to the observation
0e® = {(_17 1)}dhidden.

2) Action space A: An action a € A dictates the sampling
strategy of the cloud server based on the perceived information
in both physical and virtual space, which can take a value from
the set {0, 1}, with 1 indicating sampling from the edge server
and 0 otherwise.

3) Reward function R: After deciding on an action, one
can receive an instant reward 1 € R = O x A — R
to imply the contribution of this action to DT fidelity and
sampling cost. The system is devoted to constantly optimizing
the expected discounted return as E {Zi’;o fykrt+k] , where ~y
is the discount factor that accounts for the long-term effect on
aggregated rewards. Specifically, the reward is formulated as:

if n(flt) = Ny,

1-— Qg
Tt = .
1—a; — Kk elsewise,

where « is the penalty for the sensor inference accuracy
compromise. With this reward design, the system guarantees
the consistency reward while considering sampling cost in
synchronization.

4) Transition function P: According to the decision of
action a, the probability of state transition is given as P,
which follows p(oty1ot,a:) = O x A x O — [0,1]. With
‘P, the long-term reward can be estimated, thus enabling the
refinement of M, that considers the future impact. In this
context, the strategy is to determine if the next actual updated
sensor in physical space should be sampled.

We adopt an Advantage Actor-Critic architecture [41], [42]
to establish M,,, which learns an actor and critic from
the training data to determine the sampling timing and es-
timates the long-term reward based on the current decision,
respectively. As shown in Fig. 2, the actor of M, takes the
abstraction of DT, i.e., h.jo,q as input to derive the action. By
responding based on the actions of the actor, instant rewards
are calculated to shape the critic that evaluates the long-term
reward resulting from adopting the current action.

Formally, the actor and critic algorithms are concretized as
parameterized functions that perform vectorization operations
with the provided input:

e Critic: The critic is a parameterized function V% (.)
with parameters 6,,. With the critic, an advantage can be
estimated that yields the difference between the returns
and the baseline V' (o), as

A(Ot, at) ~ Tt + 'yV9” (0t+1|0t,at) — V‘gv (Ot) = (S(Ot).

We can estimate the critic parameters with the replay of
the training data.

e Actor: The actor is a parameterized function 7%« (a;|o;)
with parameters 6, which quantifies the probability of

choosing action a; based on o;. We expect to use the ad-
vantage function to guide the optimization of the policy.
Thus, the policy gradient of the actor with the current
critic can be calculated by differentiating the loss

L(0.,) = log 7% (as|0;)d(oy).
Meanwhile, we also consider the critic, which is updated

by minimizing the loss function of

L) =

Finally, we jointly optimize the 6, and 6, by considering
the overall loss

52(0t)~

J(04,0,) = L(8,) + L(6,).

We present learning details of our proposed DRL-based sam-
pling control in Algorithm 1. The replay of derived rewards
on the training data will be utilized to update both actor and
critic parameters, finally leading to the sampling model M.

Algorithm 1: DRL-based Sampling Control.

Input: Timesteps for per actor update M, mini-batch
size B, training dataset in format of
observation windows.

Output: Sampling model M.

1 Initialization:

2 Initialize the parameters of critic and actor for M,
namely 60, and 0,, ;

3 for m = 1 to max-iterations do

4 Stage 1: Generating Trajectories

5 Reset the environment, get initial observation o)

with B sequences;

6 for k=0t M —1 do
7 Sample actions a ) using ¢, given o();
8 Execute a ) in DT system;
9 Observe reward 7 (34 1) and next state 0(x41);
10 Store the transition from policy
<(O(k)s Bk1), T (k1) O(k+1) >
11 Stage 2: Parameters Training
12 Compute advantage estimates d of the current

policy function using critic parameters 6, for the
stored transitions;

13 Update the overall loss J wrt. 6, and 6, within the
batch and backward the gradient from loss;

14 Return the final sampling model M .

V. EXPERIMENTAL EVALUATION

In this section, we adopt two real-world human activity
datasets, Aruba and Milan [36], [43], to demonstrate the
practicability of our proposed framework. Each dataset is
used to represent one residential environment and a specific
MEC environment is set up to serve individual needs. Both
datasets include a table of sensor change events with at-
tributes of date, time, sensor value. Specifically, each event
may include a begin or end tag along with the activ-
ity category to indicate the action transition. The Aruba
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identifies 12 activity categories, namely Meal_ Preparation,
Relax, Eating, Work, Sleeping, Wash_Dishes, Bed_to_Toilet,
Enter_Home, Leave_Home, Housekeeping, Respirate, and
Other while Milan identifies 15 activity categories as
Bed-to-Toilet, Chores, Desk_Activity, Dining_Rm_Activity,
Eve_Meds, Guest_Bathroom, Kitchen_Activity, Leave_Home,
Master_Bathroom, Meditate, Watch_TV, Sleep, Read, Morn-
ing_Meds, Master_Bedroom_Activity. The capability of deal-
ing with a wide spectrum of human activities will greatly
demonstrate the practicability of our proposed DT deployment
scheme. The sensor and activity columns in the dataset are
extracted as described in Section IV-A.

Firstly, we pre-segment the whole dataset according to the
tags of begin and end of all activity labels. For each segment,
we construct multiple observation windows with a length of
M = 100 and step size 1, in which all sensor status changes
are of the same activity classes. For segments shorter than
100 units in length, we pad the windows with zeros at the
beginning. We remove all windows regarding the label Other
to focus on meaningful DT construction in targeting activities.
We downsample the Aruba dataset to ensure comparability
with the Milan dataset in terms of data point volume. To enable
our proposed training scheme, all observation windows are
split into a training set and a testing set with a ratio of 7:3, and
the data in the training set are further partitioned into training
and validation sets with the same ratio. In the experiments, we
train Mgps, Mgen, and M, with Pytorch 2.1.0 and CUDA
version 12.0 on a device with Intel Xeon Gold 6242@2.60
GHz CPU and NVIDIA Tesla V100 GPU. All the following
training was conducted over three random seeds.

A. Performance in Model M g,

Firstly, we train the abstraction model of edge server M ¢
processing the data in HAR domain. It includes an embedding
layer L¢mpeq that converts each tokenized sensor reading in the
given window into vectors of length dempeq = 64. Next, the
embedding vectors are passed to L;s:m, generating a hidden
state vector of length dp;qgen. The hidden state will pass
the Tanh activation function along with L. and LogSoftmax
function to determine the activity label among doytpyt Options.
The model is optimized by Adam [40] with a learning rate
of le-3. The batch size is set as 2048. We adopt the early
stopping mechanism, which terminates the training when the
classification loss stops to decrease in the validation dataset
for 100 episodes. The model with the best performance in the
validation dataset is used for testing.

The weighted F1-scores [44] and NLL loss for the testing
dataset in Aruba and Milan are presented in Table I. In
both residential environments, the capability and robustness
of the model are generally improved as dj;qqen increases.
This result indicates the importance of the feature-capturing
capability of the abstraction, which impacts the future DT
construction. However, there is minimal room for performance
enhancement when considering a sufficiently large dp;qgen. In
practice, dp;dq4en Should be delicately set to trade off the model
performance and the communication cost. The service provider
can consider an acceptable length of hidden features in model
deployment.

We illustrate confusion matrices of Aruba and Milan res-
idential environments from M, with dp;q4en = 256 in
Fig. 4. The figure shows that most activity classes can be
correctly recognized by M, demonstrating that domain
knowledge regarding HAR is embedded in the abstraction.
Meanwhile, we can also observe some fundamental defects in
the abstraction model as some types of observation windows
cannot be correctly identified in both datasets. For example,
some of Leave_Home windows labeled by 4 are mistreated as
Enter_Home denoted by 2 in Aruba; most of Eve_Med win-
dows labeled by 4 in Milan are misidentified as Morning_Med
with a label 11. The cause could stem from the ambiguity
in the chosen features. Given the low weight of the number
of samples relative to the total, its impact on the weighted
F1 score is subtle. To address precision challenges related to
feature representativeness in the physical domain, additional
effort should be directed toward enhancing data quality and
refining model architecture which is not the scope of this
article.

Fig. 4: A sample of the confusion matrices of Aruba (left) and
Milan (right) datasets obtained from M s with dpiggen =
256. The darker cells along the diagonal signify the higher
number of samples, illustrating a more capable model.

B. Performance in Model Mgy,

We consider the temporal correlation in the sequence using
LSTM units and conduct real-time pattern recognition for the
next updated sensor inference using the generation model, i.e.,
Mgen. In DT deployment, the cloud server can sample the
actual updated sensors and HAR features from the edge server.
The updated sensor sequence encoded to a state h.j,,q While
incorporating stored h.qqc, is fed into FC layers to infer the
next sensor to update. In our experiment, we directly set the
hidden state of the LSTM encoder as d};q4en, = 256 to encode
the sensor sequence and obtain enough domain information.
Related model training parameters are the same as M ;.

Our proposed M., takes both the DT status and the
edge domain information of HAR into consideration in the
way of concatenating both abstractions of edge and cloud,
namely Edge-Cloud-Fusion. To evaluate its performance, we
compare it with two baselines: 1) Edge-FC utilizes only
feature obtained from the edge server to generate sensor
word; and 2) Cloud-LSTM recurrently append the next sensor
from training data while predicting the next sensor to update.
We evaluate the performance of these methods in Table II.
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Weighted F1-Score

dhidden = 32 64 128 256
Aruba 99.36 £ 0.02 99.57 £ 0.09 99.73 £ 0.07 99.79 £ 0.03
Milan 99.49 + 0.05 99.67 + 0.07 99.71 £ 0.05 99.71 £ 0.05
Average NLL Loss
dhidden = 32 64 128 256
Aruba 0.026 + 0.005 0.014 + 0.003 0.010 + 0.001 0.009 + 0.003
Milan 0.023 + 0.001 0.016 4+ 0.003 0.015 + 0.005 0.016 + 0.004

TABLE I: The model performance of M, in terms of Weighted F1-Score and Average NLL Loss with different hidden state
length dpidden-

Aruba Milan
Average Precision (%) Average NLL Loss Average Precision (%) Average NLL Loss
Edge-FCC 61.85 4+ 0.27 1.102 4+ 0.007 62.33 £0.33 1.050 % 0.009
Cloud-LSTM 78.77 + 0.66 0.691 + 0.011 92.38 +0.11 0.279 £ 0.003
Edge-Cloud-Fusion 85.28 +0.47 0.527 + 0.004 93.96 + 0.08 0.212 4+ 0.001

TABLE II: The model performance of Mg, in different schemes on next sensor inference task with hidden state length

Ahidden = 256.

We can easily observe the superiority of Edge-Cloud-Fusion
method over the other methods, which reaches an accuracy of
85.28% and 93.96% on Aruba and Milan, respectively. These
results surpass those of the Cloud-LSTM method by 6.51%
and 1.58%, respectively. As the Edge-FC only relies on the
HAR domain knowledge, it neglects the mechanism of sensor
update, thus failing to yield sensor change patterns correctly.
Although Cloud-LSTM captures the pattern of sensor updates,
it lacks the context information, thus leading to fidelity loss. As
shown in Table II, it has been noted that domain knowledge
effectively transitions from HAR to sensor inference on the
cloud server by leveraging features extracted at the edge server,
as demonstrated by the performance of Edge-Cloud-Fusion.
This implies that the cloud server can infer the sensor changed
in a timestamp by utilizing the edge abstraction and M.p,.
The inference performance can be influenced by many factors,
such as activity complexity, the number of sensors involved,
and underfitting. We will prove that a robust and capable
generation model is crucial to the efficiency of DT construction
and the efficacy of Mqy.
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Fig. 5: The accuracy-sampling efficiency performance of
Mqp with DRL-based Sampling and Random Sampling
(RS) strategies in Aruba (left) and Milan (right) datasets and
different penalty settings with dp;q4en = 256.
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C. Performance in Model M sqyp

The DRL-based M, encodes the inferred sensor into a
cloud feature as the current state, represented by a vector
length of dpigden = 256. In training, =y is set as 0.99, learning
rate is set as 3e-4, and batch size B is 256. We simulate a
baseline strategy in which the cloud server randomly samples
the actual updated sensors from the edge server with a fixed
probability. In comparison, our proposed DRL-based method
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penalizes those sampling slots that generate a fault prediction
in the reward function and selects the slots to sample from
the edge according to the guidance of M,,,. We set the
penalty x in reward to multiple values. With a large penalty,
the policy tends to prevent fidelity loss, thus encouraging more
sampling. Also, we explore the impact of the edge feature
in the sampling process. The method that merely uses the
features of the cloud server is denoted as Cloud DRL while
the method that takes the fusion abstractions from Mg, as
inputs is denoted by Fusion DRL. Fig. 5 plots the performance
of Myqp with Cloud DRL and Fusion DRL Sampling and
Random Sampling (RS) strategies in Aruba (left) and Milan
(right) datasets obtained from M,,s with dpiggen = 256.
We can easily observe that the DRL methods outperform
the RS strategy as they gain insight into DT and associate
each state with their importance. This significantly reduces the
unnecessary data synchronization with the edge server. With
the same number of times in sampling data from the edge,
the accuracy of sensor inference with the DRL-based methods
is higher than the RS method. When comparing Fusion DRL
with Cloud DRL, it is evident that for different penalty values,
the scatter plots of Fusion DRL are positioned in the upper
left relative to those of Cloud DRL, which exhibits better
accuracy-sampling efficiency. This observation underscores the
significance of integrating physical and virtual elements. This
conclusion is further illustrated in Fig. 6, which plots the
obtained rewards from the testing dataset in different training
episodes based on Cloud DRL and Fusion DRL. As shown in
Fig. 6, we depict the training trajectories of Cloud DRL and
Fusion DRL under various penalty values using dashed and
solid lines, respectively. It is clear that all rewards initially
increase at the start of training and then converge after a certain
number of episodes, illustrating the effectiveness of the DRL
method. Furthermore, the rewards achieved with Fusion DRL
are higher than those from Cloud DRL under the same dataset
and penalty setting, demonstrating the effectiveness of edge-
cloud fusion in practice.

VI. CONCLUSION

In this article, we propose a low-cost and high-fidelity
digital twin (DT) implementation scheme with the mobile
edge computing (MEC) environment to aid the cloud service.
Taking the residential human activity recognition task as an
example, we first employ an abstraction model with the long
short-term memory (LSTM) to extract an abstract represen-
tation aligned with the point of interest of service. Next, we
exploit the feature extracted from the abstraction model and
train a data upload timing model with deep reinforcement
learning (DRL) to improve the DT fidelity while reducing
communication costs. With the aid of mobile edge servers,
the deployment can be customized for different consumer
scenarios. Extensive empirical studies with different residential
environments demonstrate the applicability of our proposed
deployment scheme. In the future, we will continue to optimize
the deployment of low-cost and high-fidelity DTs in extensive
emerging consumer electronics paradigms, such as blockchain
and metaverse.
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