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Abstract— We consider a class of multi-agent optimal cov-
erage problems in which the goal is to determine the optimal
placement of a group of agents in a given mission space so that
they maximize a coverage objective that represents a blend
of individual and collaborative event detection capabilities.
This class of problems is extremely challenging due to the
non-convex nature of the mission space and of the coverage
objective. With this motivation, greedy algorithms are often used
as means of getting feasible coverage solutions efficiently. Even
though such greedy solutions are suboptimal, the submodularity
(diminishing returns) property of the coverage objective can be
exploited to provide performance bound guarantees. Moreover,
we show that improved performance bound guarantees (beyond
the standard (1-1/e) performance bound) can be established
using various curvature measures of the coverage problem. In
particular, we provide a brief review of all existing popular
applicable curvature measures, including a recent curvature
measure that we proposed, and discuss their effectiveness and
computational complexity, in the context of optimal coverage
problems. We also propose novel computationally efficient
techniques to estimate some curvature measures. Finally, we
provide several numerical results to support our findings and
propose several potential future research directions.

I. INTRODUCTION

Our research focuses on multi-agent optimal coverage
problems, which often arise in critical applications such as
(but not limited to) surveillance, security, agriculture, and
search and rescue [2], [7]. In these problems, the overall
goal is to find an effective placement (decision variable)
for the agent team so that they can optimally “cover” (i.e.,
individually and/or collaboratively detect events of interest
randomly occurring in) the mission space.

Due to their wide applicability, several variants of multi-
agent optimal coverage problems have been extensively
studied in the literature [5], [11], [14]. Typically, these are
formulated as continuous optimization problems inspired by
real-world conditions. However, their corresponding solu-
tions are computationally expensive unless significant simpli-
fying assumptions are made regarding the particular coverage
problem setup. This is mainly due to the overall challenging
nature of coverage problems resulting from the often non-
linear, non-convex, and non-smooth coverage objectives and
non-convex mission spaces involved.

In this paper, we adopt an alternative approach that has
been adopted in the literature [8], [9], and formulate the
multi-agent optimal coverage problem as a combinatorial
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optimization problem by discretizing the associated mis-
sion/decision space. The coverage objective function, in this
setting, is proven to be a submodular set function. In other
words, the coverage objective function shows diminishing
returns when the deployed set of agents is expanded. While
this combinatorial formulation simplifies the coverage prob-
lem to a certain level, it now takes the form of a submodular
maximization problem that is known to be NP-hard [6].

Greedy algorithms are commonly used to solve submodu-
lar maximization problems due to their simplicity and com-
putational efficiency. Most importantly, the resulting greedy
solutions, even though suboptimal, entertain performance
bounds that characterize their proximity to the global optimal
solution. The seminal work in [6] has established a 1− (1−
1
N )

N performance bound, which becomes (1− 1
e ) ≃ 0.6321

as the solution set size (i.e., in the coverage problem, the
number of agents) N → ∞. Hence the greedy solution is not
worse than 63.21% of the global optimal solution. Recent
literature has focused on developing improved performance
bounds beyond this fundamental performance bound.

To this end, various curvature measures have been pro-
posed to further characterize any given submodular maxi-
mization problem [3], [4], [10], [13]. These curvature mea-
sures provide corresponding performance bounds, which may
or may not significantly improve upon the fundamental per-
formance bound - depending on the nature of the considered
problem/application. However, often these curvature mea-
sures are computationally expensive to evaluate. Moreover,
given the variety of curvature measures available and the
variations in their effectiveness with respect to problem
parameters, selecting a curvature measure that is likely to
provide significantly improved performance bounds for a
particular application is challenging.

Our previous work in [9] considered a widely studied
multi-agent optimal coverage problem [11], [14] and showed
that the total curvature [3] and elemental curvature [10] can
provide improved performance bounds. The subsequent work
in [8] considered a slightly different coverage problem with
a team selection element and showcased the effectiveness of
the greedy curvature [3] and partial curvature [4] in provid-
ing improved performance bounds. Our most recent work
in [13] considered the general submodular maximization
problem and proposed a new curvature measure called the
extended greedy curvature. Then, using the coverage problem
in [9], its effectiveness compared to said other curvature
measures was illustrated. In this paper, we consider a more
general coverage problem than before and investigate the
effectiveness and complexity of all these curvature measures
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through theoretical analysis and numerical experiments.
In particular, our contributions are as follows: (1) We

consider a more general coverage problem (compared to
those in [9], [13]); (2) Submodularity and several other key
properties of the considered coverage problem are estab-
lished (in Theorems 1 and 2, respectively); (3) We provide
a comparative review of five curvature measures that are
applicable to the considered coverage problem (to the best
of our knowledge, this review is exhaustive); (4) We exploit
the established properties to propose novel techniques for
numerical evaluation of some complex curvature measures
for the considered coverage problems (in Props. 1 and 2);
(5) We detail the effectiveness and complexity of different
curvature metrics with respect to various coverage problem
parameters; and (6) We implement the proposed coverage
problem setup in a simulation environment and evaluate
different curvature measures and their performance bounds
under different problem conditions.

Organization: We introduce the considered coverage
problem in Section II. Some notations, preliminary concepts,
and the proposed greedy solution are presented in Section III.
Different curvature measures found in the literature, along
with discussions on their effectiveness and complexity in
the context of optimal coverage problems, are provided in
Section IV. A summary and some future research directions
are given in Section V. Several numerical results are reported
in Section VI before concluding the paper in Section VII. All
proofs are omitted here but can be found in [12].

II. MULTI-AGENT OPTIMAL COVERAGE PROBLEM

The goal of the considered coverage problem is to de-
termine an optimal placement for a given team of agents
(e.g., sensors, cameras, guards, etc.) in a given mission space
that maximizes the probability of detecting events that occur
randomly over the mission space.

We model the mission space Ω as a convex polytope in Rn

that may also contain h polytopic (and possibly non-convex)
obstacles {Ψi : Ψi ⊂Ω, i∈Nh} (note that: Nn ≜ {1,2, . . . ,n}).
The obstacles (1) limit the agent placement to the feasible
space Φ ≜ Ω\∪i∈Nh Ψi, (2) constrain the sensing capabilities
of agents via obstructing their line of sight, and (3) occupy
areas where no events of interest occur.

To model the likelihood of random events occurring over
the mission space, an event density function R : Ω → R≥0 is
used, where R(x) = 0,∀x ̸∈ Φ and

∫
Ω

R(x)dx < ∞. If no prior
information on R(x) is known, one can use R(x) = 1,∀x ∈ Φ.

To detect these random events, N agents are to be placed
inside the feasible space Φ, where their placement (i.e., the
decision variable) is denoted by a matrix s ≜ [s1,s2, . . . ,sN ]∈
Rm×N or a set S≜ {si : i∈NN ,si ∈Rm}, where each si, i∈NN
represents an agent placement such that si ∈ Φ.

The ability of an agent to detect events is limited by its
sensing capabilities and visibility obstruction from obstacles.
In particular, for an agent at si ∈ Φ, its visibility region
is defined as V (si) ≜ {x : (qx+(1− q)si) ∈ Φ,∀q ∈ [0,1]}.
Moreover, agents are assumed to be homogeneous in their
sensing capabilities. In particular, each agent has a finite

sensing radius δ ∈R≥0 and sensing decay rate λ ∈R≥0 that
defines the probability of an agent at si ∈ Φ detecting an
event at x ∈ Φ via a sensing function of the form

p(x,si)≜ e−λ∥x−si∥ ·1{x∈V (si)}. (1)

Given agent team placement s (or, equivalently, S), their
ability to detect an event at x ∈ Φ is described by a detection
function P(x,s). For this, the joint detection function:

PJ(x,s)≜ 1− ∏
i∈NN

(1− p(x,si)), (2)

is a popular choice that represents the probability of detection
by at least one agent (assuming independently detecting
agents). Moreover, the max detection function given by

PM(x,s)≜ max
i∈NN

p(x,si), (3)

is also a widely used choice that represents the maximum
probability of detection by any agent. The following remark
summarizes the pros and cons of using (2) or (3) as P(x,s).

Remark 1: The joint detection function (2) offers a com-
plete but computationally intensive view of coverage by
combining all agent efforts. Thus it is suited for scenarios
where collaborative detection is needed. Conversely, the
max detection function (3) focuses on the top-performing
agent at each point, providing a simpler yet non-smooth
and potentially under-utilizing approach. Thus it is suited for
scenarios where individual yet maximum detection is needed.

Motivated by the contrasting nature of the joint and max
detection functions, we propose the detection function

P(x,s)≜ θPJ(x,s)+(1−θ)PM(x,s), (4)

where θ ∈ [0,1] is a predefined weight (e.g., see Fig. 1).
Using the defined event density and detection functions,

the considered optimal coverage problem can be stated as

s∗ = argmax
s:si∈Φ,i∈NN

H(s)≜
∫

Ω

R(x)P(x,s)dx, (5)

where H(s) (or equivalently, H(S)) is the coverage function.
Continuous Optimization Approach: The optimal cov-

erage problem (5) involves a non-convex feasible space and a
non-convex, non-linear, and non-smooth objective function.
Therefore, it is extremely difficult to solve without using:
(1) standard global optimization solvers that are computa-
tionally expensive, or (2) systematic gradient-based solvers
that require extensive domain knowledge.

Combinatorial Optimization Approach: Motivated by
the said challenges, here we take a combinatorial optimiza-
tion approach to solve (5). This requires reformulating (5)
as a set function maximization problem (in set variable S).

First, we discretize the feasible space Φ formulating a
ground set X = {xl : xl ∈ Φ, l ∈ NM}. Second, we replace
the matrix variable s with the set variable S ≜ {si : i ∈N} in
detection and coverage functions defined in (2)-(5), to obtain
their respective set detection and set coverage functions. To
limit the cardinality of S (denoted by |S|) to N, we introduce
the constraint S ∈ I N ≜ {Y : Y ⊆ X , |Y | ≤ N}. Finally, we
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restate the optimal coverage problem (5) as a set function
maximization problem:

S∗ = argmax
S∈I N

H(S)≜
∫

Ω

R(x)P(x,S)dx. (6)

Clearly, the size of the search space of (6) is combinatorial
as |I N | = ∑

N
r=0

(M
r

)
. Therefore, obtaining an optimal solu-

tion S∗ for it is impossible without significant simplifying
assumptions. Hence our goal here is to obtain a candidate
solution for (6) (say SG) in an efficient manner with some
guarantees on its coverage performance H(SG) with respect
to the optimal coverage performance H(S∗).

To efficiently obtain such a candidate solution, we use a
vanilla greedy algorithm as given in Alg. 1. Note that it uses
the notion of marginal coverage function defined as

∆H(y|Si−1)≜ H(Si−1 ∪{y})−H(Si−1), (7)

to iteratively determine optimal individual agent placements
until N such agent placements have been chosen.

Motivated by the linear relationship between the set cov-
erage function H(S) (6) and set detection function P(x,S)
(4), we define the notion of marginal detection function as

∆P(x,y|Si−1)≜ P(x,Si−1 ∪{y})−P(x,Si−1). (8)

Through (6), it is easy to see that a similar linear relationship
also exists between the marginal functions ∆H(y|S) (7)
and ∆P(x,y|S) (8). In the sequel, we exploit these linear
relationships to infer certain set function properties of H(S)
using those of P(x,S) and ∆P(x,y|S).

Finally, we point out that, the notations in (7) and (8) will
be used more liberally by replacing y and Si−1 respectively
with sets A and B, where A,B ⊆ X (e.g., see Th. 2). The
notation Si ≜ {s1,s2, . . . ,si} used to represent the greedy
solution after i greedy iterations in Alg. 1 will also be used
more liberally for any i ∈ N0

M ≜ NM ∪{0} (e.g., see (21)).

III. THE GREEDY SOLUTION WITH PERFORMANCE
BOUND GUARANTEES

In this section, we show that the greedy solution SG given
by Alg. 1 for the optimal coverage problem (6) not only
efficient but also entertains performance guarantees with
respect to the global optimal performance H(S∗). For this, we
first need to introduce some standard set function properties.

Definition 1: [13] Let F : 2Y → R be an arbitrary set
function defined over a finite ground set Y , and ∆F(y|A) ≜
F(A∪{y})−F(A) be the corresponding marginal gain func-
tion. This set function F is: (1) normalized if F( /0) = 0;
(2) monotone if ∆F(y|A) ≥ 0 for all y,A where A ⊂ Y and

Algorithm 1 The greedy algorithm to solve (6)

1: i = 0; Si = /0; ▷ Greedy iteration index and solution
2: for i = 1,2,3, . . . ,N do
3: si = argmax{y:Si−1∪{y}∈I N} ∆H(y|Si−1); ▷ New item
4: Si = Si−1 ∪{si}; ▷ Append the new item
5: end for
6: SG := SN ; Return SG;

y ∈ Y\A, or equivalently, if F(B)≤ F(A) for all B,A where
B ⊆ A ⊆ Y ; (3) submodular if ∆ f (y|A) ≤ ∆ f (y|B) for all
y,A,B where B ⊆ A ⊂ Y and y ∈ Y\A, or equivalently, if
F(A∪B)+F(A∩B) ≤ F(A)+F(B) for all A,B ⊆ Y ; (4) a
polymatroid set function if all the above properties hold [1].

The following lemma and theorem establish that the
coverage function H(S) in (6) is a polymatroid set function.

Lemma 1: With respect to a common ground set, any
positive linear combination of arbitrary polymatroid set func-
tions is also a polymatroid set function.

Theorem 1: The set coverage function H(S) in (6) is a
polymatroid set function.

This polymatroid nature of set coverage function H(S)
(6) enables establishing performance bounds (denoted by β )
for the greedy solution SG (given by Alg. 1). Formally, a
performance bound is defined as a theoretically established
lower bound for the ratio H(SG)

H(S∗) , i.e., β ≤ H(SG)
H(S∗) . Having a

performance bound β ≃ 1 implies that the performance of
the greedy solution SG is close to that of the global optimal
solution S∗. Thus, β is an indicator of the effectiveness of
the greedy approach to solving the coverage problem (6).

The seminal work [6] has established a performance bound
(henceforth called the fundamental performance bound, and
denoted by β f ) for polymatroid set function maximization
problems. This, in light of Th. 1, is applicable to the optimal
coverage problem (6) as:

β f ≜ 1−
(

1− 1
N

)N

≤ H(SG)

H(S∗)
. (9)

While β f decreases with the number of agents N, it is lower-
bounded by 1− 1

e ≃ 0.6321, because limN→∞ β f = (1− 1
e ).

This implies that the coverage performance of the greedy
solution will always be not worse than 63.21% of the
maximum achievable coverage performance.

As we will see in the next section, further improved
performance bounds beyond β f can be achieved by exploit-
ing certain characteristics called curvature measures of the
interested set function maximization problem.

Before moving on, we provide a theorem that establishes
the polymatroid nature of the marginal coverage function
∆H(B|A) with respect to both of its set arguments A and B.

Theorem 2: For a fixed set A ⊂ X , the marginal coverage
function GA(B)≜∆H(B|A) is a polymatroid set function over
B ⊆ X\A. Also, for a fixed set B ⊂ X , the affine negated
marginal coverage function ḠB(A)≜−∆H(B|A)+H(B) is a
polymatroid set function over A ⊆ X\B.

The above result further emphasizes the deep polymatroid
features of optimal coverage problems. Moreover, as we
will see in the sequel, it enables achieving computationally
efficient estimates for some (otherwise computationally in-
tractable) curvature measures discussed in the next section.

IV. IMPROVED PERFORMANCE BOUND GUARANTEES
USING CURVATURE MEASURES

In this section, we discuss several improved performance
bounds (i.e., closer to 1 compared to β f in (9)) applicable
for the greedy solution SG given by Alg. 1 for the optimal
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coverage problem in (6). This is important as such an
improved performance bound will accurately characterize the
proximity of SG to S∗ and thus enable making informed
decisions regarding spending extra resources (e.g., computa-
tional power, agents, and sensing capabilities) to seek further
improved coverage solutions beyond SG.

In particular, curvature measures are used to obtain such
improved performance bounds, and they are dependent
purely on the underlying objective function, the ground set,
and the feasible space, which, in the considered optimal
coverage problem, are H(S), X , and I N , respectively. Here,
we will review five established curvature measures and their
respective performance bounds, outlining their characteris-
tics, strengths, and weaknesses in the context of optimal
coverage problems (6).

a) Total Curvature [3]:By definition, the total curva-
ture of (6) is given by

αt ≜ max
y∈X

[
1− ∆H(y|X\{y})

∆H(y| /0)

]
. (10)

The corresponding performance bound βt is given by

βt ≜
1
αt

[
1−

(
1− αt

N

)N
]
≤ H(SG)

H(S∗)
. (11)

From (11) and (9), it is easy to see that: (1) when αt → 1,
βt → β f (i.e., no improvement); (2) when αt → 0, βt → 1
(i.e., a significant improvement); and (3) βt is monotonically
decreasing in αt . Using these three facts and (10), it is easy
to see that the improvement in the performance bound is
correlated with the magnitude of: γt ≜ miny∈X

[
∆H(y|X\{y})

∆H(y| /0)

]
.

Note that, the submodularity of H implies ∆H(y|X\{y})
∆H(y| /0) ≤

1,∀y∈X . Thus, γt is large only when ∆H(y|X\{y})
∆H(y| /0) ≃ 1,∀y∈X .

In other words, a significantly improved performance
bound from the total curvature measure can only be obtained
when H is just “weakly” submodular (i.e., when H is closer
to being modular rather than submodular). This is also clear
from simplifying the condition ∆H(y|X\{y})

∆H(y| /0) ≃ 1,∀y∈X , which
leads to the condition:

H(X)≃ H(y)+H(X\{y}), for all y ∈ X , (12)

which holds whenever H is modular.
As H is the set coverage function (6), (12) holds when an

agent deployed at any y ∈ X and all other agents deployed at
X\{y} contribute to the global coverage objective indepen-
dently in a modular fashion. This happens when the ground
set X is very sparse and/or when the agents have significantly
weak non-overlapping sensing capabilities (i.e., small range
δ and high decay λ in (1)).

However, (12) is easily violated if H(X) ≪ H(y) +
H(X\{y}) for some y ∈ X . To interpret this case using
(6), let us consider the analogous detection function (4)
requirement: P(x,X) ≪ P(x,{y}) + P(x,X\{y}) for some
y ∈ X , for a majority of x ∈ Φ. This requirement can be
simplified to: 0 ≪ θ(p(x,y)(1 − ∏si∈X\{y}(1 − p(x,si))) +
(1− θ)(min{maxsi∈X\{y} p(x,si), p(x,y)}). Since θ ∈ [0,1],
we need to consider both terms in the above requirement

separately. However, they both lead to a common require-
ment: 0 ≪ p(x,y) and 0 ≪ p(x,si), for some si ∈ X\{y}. In
all, the total curvature measure leads to poor performance
bounds when there exists some y ∈ X and si ∈ X\{y} so that
0 ≪ p(x,y)≃ p(x,si)≃ 1, for many feasible space locations
x ∈ Φ. Notably, this condition holds when the ground set
X is dense and the agents have significantly strong sensing
capabilities (i.e., large range δ and small decay λ in (1)).

One final remark on the total curvature αt (10) is that it
requires an evaluation of H(X) and M(≜ |X |) evaluations of
H(X\{y}) terms. In certain coverage applications, this might
be ill-defined [8] or computationally expensive as often H(S)
is of the complexity O(|S|M̄) (where M̄ is the size of the
discretization used to evaluate the coverage integral in (6)).

b) Greedy Curvature [3]:The greedy curvature of (6)
is given by

αg ≜ max
0≤i≤N−1

[
max
y∈X i

(
1− ∆H(y|Si)

∆H(y| /0)

)]
, (13)

where X i ≜ {y : y ∈ X\Si,(Si ∪ {y}) ∈ I N} (i.e., the set
of feasible options at the (i + 1)th greedy iteration). The
corresponding performance bound βg is given by

βg ≜ 1−αg

(
1− 1

N

)
≤ H(SG)

H(S∗)
. (14)

Note that βg monotonically decreases with αg, and αg ∈
[0,1] (as H is submodular). Therefore, as αg → 0, βg →
1, and as αg → 1, βg → 1

N < β f . Using these facts and
(13), it is easy to see that the improvement in the per-
formance bound is correlated with the magnitude of γg ≜

min0≤i≤N−1

[
miny∈X i

(
∆H(y|Si)
∆H(y| /0)

)]
. Similar to before, the sub-

modularity of H implies that γg is large only when ∆H(y|Si)
∆H(y| /0) ≃

1,∀y∈X i, i∈N0
N−1. In other words, similar to the total curva-

ture, the greedy curvature provides a significantly improved
performance bound when H is weakly submodular.

In fact, as observed in [8], when H is significantly weakly
submodular, it can provide better performance bounds even
compared to those provided by the total curvature, i.e.,
β f ≪ βt ≤ βg ≃ 1. This observation can be theoretically
justified using γt and γg as follows. Due to submodularity,
∆H(y|X\{y})≤ ∆H(y|Si) for any y and Si, and thus, γt ≤ γg.
This, with weak submodularity of H leads to αt ≥ αg ≃ 0.
Now, noticing that the growth of βg is faster as αg → 0
compared to that of βt as αt → 0, we get β f ≪ βt ≤ βg ≃ 1.

We can follow the same steps and arguments as before
to show that such improved performance bounds can only
be achieved when the ground set is sparse and/or when the
agents have weak sensing capabilities. On the other hand,
when the ground set is dense and when the agents have
strong sensing capabilities, greedy curvature provides poor
performance bounds (often, it may even be worse than β f ).

Nevertheless, compared to the total curvature, greedy
curvature has two key redeeming qualities: it is always fully
defined, and it can be computed efficiently using only the
evaluations of H executed in the greedy algorithm.
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c) Elemental Curvature [10]:The elemental curvature
of (6) is given by

αe ≜ max
(S,yi,y j):S⊂X ,

yi,y j∈X\S, yi ̸=y j .

[
∆H(yi|S∪{y j})

∆H(yi|S)

]
. (15)

The corresponding performance bound βe is given by

βe ≜ 1−
(

αe +α2
e + · · ·+αN−1

e

1+αe +α2
e + · · ·+α

N−1
e

)N

≤ H(SG)

H(S∗)
. (16)

It can be shown that βe monotonically decreases with αe,
and due to the submodularity of H, 0 ≤ αe ≤ 1. Therefore,
when αe → 0, βe → 1 and when αe → 1, βe → β f .

According to [6, Prop. 2.1], submodularity of H also
implies that ∆H(yi|S∪{y j})

∆H(yi|S) ≤ 1, for all feasible (S,yi,y j) con-
sidered in (15). Therefore, when there exists some feasible
(S,yi,y j) such that ∆H(yi|S∪{y j})

∆H(yi|S) ≃ 1, i.e. when H is weakly
submodular (closer to being modular) in that region, based on
(15), αe ≃ 1 - which implies βe ≃ β f (i.e., no improvement).

As explained earlier, H is weakly submodular (which now
implies β f ≃ βe ≪ 1) when the ground set X is sparse and/or
when agents have weak sensing capabilities. Therefore, ele-
mental curvature contrasts from total and greedy curvature -
where weakly submodular scenarios of H led to significantly
improved performance bounds β f ≪ βt ≤ βg ≃ 1.

On the other hand, the elemental curvature provides an
improved performance bound when ∆H(yi|S∪{y j})

∆H(yi|S) ≪ 1 over
all feasible (S,yi,y j) considered in (15). To further interpret
this condition, let us consider the corresponding marginal
detection function requirement:

∆P(x,yi|S∪{y j})≪ ∆P(x,yi|S), ∀(S,yi,y j) (17)

which should hold for a majority of x ∈ Φ.
Since each ∆P = θ∆PJ +(1−θ)∆PM where θ ∈ [0,1], we

first consider (17) with θ = 1. It can be shown that (omitting
a few steps that can be found in [12]): ∆PJ(x,yi|S∪{y j})≪
∆PJ(x,yi|S) ⇐⇒ 0≪ p(x,yi)p(x,y j)∏si∈S(1− p(x,si)). This
condition holds if for all feasible (S,yi,y j),

0 ≪ p(x,yi)≃ p(x,y j)≃ 1 with 0 ≃ p(x,si)≪ 1, (18)

for some si ∈ S over many feasible space locations x ∈ Φ.
Now, let us consider (17) with θ = 0. Using (3), it

can be shown that (again omitting a few steps that can
be found in [12]): ∆PM(x,yi|S∪{y j}) ≪ ∆PM(x,yi|S) ⇐⇒
maxsi∈S p(x,si) ≪ p(x,yi) ≃ p(x,y j). This condition also
holds under the same condition obtained in (18).

In all, the elemental curvature measure leads to signif-
icantly improved performance bounds, if for all feasible
(S,yi,y j), 0 ≃ p(x,si) ≪ p(x,yi) ≃ p(x,y j) ≃ 1 holds for
some si ∈ S, over a majority of x ∈ Φ. Clearly, this re-
quirement holds when the ground set X is dense and when
the agents have significantly strong overlapping sensing
capabilities (i.e., large range δ and small decay λ in (1)).

Finally, note that the evaluation of the elemental curvature
αe (15) is computationally expensive as it involves solving

a set function maximization problem. The following propo-
sition provides a computationally efficient upper bound for
αe, which can be used in (16) to obtain a lower bound for
βe which then can serve as a performance bound for (6).

Proposition 1: An upper-bound for the elemental
curvature αe in (15) is given by αe ≤ ᾱe ≜
1−minyi∈X ,y j∈X\{yi},x∈Φ,p(x,yi)̸=0 p(x,y j)1{θ=1}.

Remark 2: The proposed elemental curvature upper-
bound ᾱe in Prop. 1 becomes trivial (i.e., ᾱe = 1) under two
scenarios. The first is when two agents can be placed in the
ground set (i.e., find yi,y j ∈X) such that there is no complete
overlapping in their sensing regions (i.e., when ∃x ∈ Ω such
that p(x,yi) ̸= 0 but p(x,y j) = 0). The second scenario is
when the max detection function is used in the coverage
objective (i.e., when θ ̸= 1 in (4)). Note, however, that
ᾱe = 1 does not imply αe = 1. Therefore, ongoing research is
directed towards addressing these two challenging scenarios.

d) Partial Curvature [4]:The partial curvature of (6)
is given by

αp = max
(S,y):y∈S∈I N

[
1− ∆H(y|S\{y})

∆H(y| /0)

]
. (19)

The corresponding performance bound βp is given by

βp ≜
1

αp

[
1−

(
1−

αp

N

)N
]
≤ H(SG)

H(S∗)
. (20)

This partial curvature αp (19) provides an alternative to
the total curvature αt (10), particularly when the H(X) term
involved in αt is ill-defined. Basically, αp can be used when
the domain of H is constrained to be some I ⊆ I N ⊂ 2X .

Due to the similarities in the forms of αp and αt (and
βp and βt ), we can directly conclude that βp will provide
significantly improved performance bounds (i.e., βp ≃ 1)
when H is weakly submodular, i.e., when the ground set
is sparse and/or agent sensing capabilities are weak. On the
other hand, βp will provide poor performance bounds (i.e.,
βp ≃ β f ) when H is strongly submodular, i.e., when the
ground set is dense, and agent sensing capabilities are strong.

It should be noted that the above βp (20) is only valid
under a few additional technical conditions on H, X and
I N (which are omitted here, but can be found in [4]). The
work in [4] has also established that βp ≥ βt , i.e., βp, always
provide a better performance bound than βt .

Similar to αe (15), evaluating αp (19) is extremely com-
putationally expensive as it involves solving a set function
maximization problem. The following proposition provides
a computationally efficient upper bound for αp exploiting
special polymatroid properties of the considered optimal
coverage problem established in Th. 2. This upper-bound
for αp, when used in (20), provides a lower bound for βp,
which then can serve as a performance bound for (6).

Proposition 2: An upper-bound for the partial curvature
αp in (19) is given by αp ≤ ᾱp =

1
β f

maxy∈X (1−
∆H(y|AG

y )

H({y}) ),

where AG
y is the greedy solution for the polymatroid max-

imization problem: A∗
y = argmaxA (−∆H(y|A)+H({y})) ,

subject to constraints: A ⊆ X\{y} and |A|= N −1.
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e) Extended Greedy Curvature [13]:The extended
greedy curvature, as the name suggests, requires executing
some extra greedy iterations in the greedy algorithm (i.e.,
Alg. 1). This is not an issue as Alg. 1 can be executed beyond
N iterations until M ≜ |X | iterations - analogous to a scenario
where more than N agents are to be deployed to the mission
space in a greedy fashion.

Recall that we used Si and si to denote the greedy set and
greedy element at the ith greedy iteration, where i ∈N0

M . Let
m ≜ floor(M

N ), and for any n ∈N0
m−1, let SG

n ≜ S(n+1)N\SnN =

{snN+1,snN+2, . . . ,snN+N}, Xn ≜ X\SnN , and I N
n ≜ {S : S ⊆

Xn, |S| ≤ N}. The extended greedy curvature of (6) is

αu ≜ min
i∈Q

α
i
u, (21)

where Q⊆ Q̄≜ Q̄1∪Q̄2∪Q̄3, Q̄1 ≜ {i : i= nN+1,n∈N0
m−1},

Q̄2 ≜ {i : i = nN,n ∈ Nm}, and Q̄3 ≜ {M}, with

α
i
u ≜


H(Si−1)+ max

S∈I N
(i−1)/N

[
∑y∈S ∆H(y|Si−1)

]
, i ∈ Q̄1

H(Si−N)+ 1
β f

[
H(Si)−H(Si−N)

]
, i ∈ Q̄2

H(Si), i ∈ Q̄3

The corresponding performance bound βu is given by

βu ≜
H(SG)

αu
≤ H(SG)

H(S∗)
. (22)

Note that Q̄ is a fixed set of greedy iteration indexes, where
for each i ∈ Q̄, a corresponding α i

u value can be computed
using the byproducts of greedy iterations. Q is an arbitrary
subset of Q̄ selected based on the user preference.

To characterize the effectiveness of the performance bound
βu (22) in the context of optimal coverage problem (6), let
us first consider α1

u = H(S0)+maxS∈I N
0

[
∑y∈S ∆H(y|S0)

]
=

maxS∈I N
[
∑y∈S H(y)

]
. Note that, when H is weakly submod-

ular (closer to being modular), α1
u ≃ H(S∗). Through (21)

and (22), this implies that H(SG)
βu

= αu ≤ α1
u ≃ H(S∗) =⇒

βu ≃ 1. Therefore, when H is weakly submodular, i.e., when
the ground set is sparse and/or agent sensing capabilities
are weak, βu provides significantly improved performance
bounds (similar to βt ,βg, and βp).

Now consider α2N
u = H(SG)+ 1

β f

[
H(S2N)−H(SN)

]
. Note

that when H is strongly submodular (diminish in the returns
is severe), H(Si) should quickly saturate with the greedy iter-
ations i, and thus, α2N

u ≃H(SG) as 1
β f
(H(S2N)−H(SN))≃ 0.

Through (21) and (22), this implies that H(SG)
βu

= αu ≤ α1
u ≃

H(SG) =⇒ βu ≃ 1. Therefore, when H is strongly submod-
ular, i.e., when the ground set is dense, and agent sensing
capabilities are strong, βu provides significantly improved
performance bounds (similar to βe).

In all, the extended greedy curvature-based performance
bound βu is computationally efficient and provides signifi-
cantly improved performance bounds under both weak and
strong agent sensing capabilities. This versatile behavior of
βu contrasts with that of βt ,βg,βe and βp discussed before.

V. DISCUSSION

In this section, we summarize our findings on the effec-
tiveness and computational complexity of different curvature-
based performance bounds in optimal coverage problems
(extra details on complexity analysis can be found in [12]).
Our key findings have been summarized in Tab. I.

In terms of effectiveness, based on our analysis, total,
greedy, and partial curvature measures provide improved per-
formance bounds when agents have low sensing capabilities
(i.e., high decay λ and/or low range δ ). Conversely, the
elemental curvature measure provides improved performance
bounds when agents have strong sensing capabilities (i.e.,
low decay λ and/or high range δ ). Most importantly, the
extended greedy curvature distinguishes itself by being able
to provide improved performance bounds regardless of the
weak or strong nature of agent sensing capabilities.

In terms of computational complexity, the greedy curva-
ture measure is the most efficient as it can be computed
directly using the byproducts of the greedy algorithm (thus,
it has a complexity (O(N))). The total curvature exhibits a
complexity of O(M2M̄) mainly due to the involved H(X)
computation (M̄ denotes the number of discrete points in
Ω used for the evaluation of the coverage integral (6)).
The conservative upper-bound proposed for the elemental
curvature has the same complexity O(M2M̄). In contrast,
the original elemental and partial curvatures measures have
the highest computational complexities, O(M32MM̄) and
O(MNM̄), respectively. The proposed upper-bound estimate
of the partial curvature has a higher complexity O(N2M2M̄)
than that of the elemental curvature. The complexity of the
extended greedy curvature is lower compared to that of
elemental and partial curvature. However, it is of compa-
rable complexity with respect to that of total curvature and
conservative upper bound estimates of elemental and partial
curvature measures.

To summarize, this review has highlighted three main chal-
lenges in using curvature-based performance bounds for opti-
mal coverage problems: (1) the inherent dependence of their
effectiveness on the strong or weak nature of the submodu-
larity property of the considered optimal coverage problem,
(2) the computational complexity associated with computing
the curvature measures, and (3) the technical conditions
required for the successful application of curvature-based
performance bounds (e.g., see Remark 2). Towards address-
ing these challenges, the recently proposed extended greedy
curvature concept [13] has shown promising advances. This
curvature measure takes a data-driven approach and utilizes
only the information observed during a selected number of
extra greedy iterations - offering a computationally efficient
performance bound without inherent or technical limitations.

In light of these findings, we believe that future re-
search should be directed toward finding more data-driven
curvature measures (like αu) to directly address compu-
tational challenges faced by standard theoretical curvature
measures (like αe,αp). However, in such a pursuit, a cru-
cial challenge would be in establishing theoretical guar-
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TABLE I: Characteristics of different curvature-based perfor-
mance metrics in the context of optimal coverage problems

β

β f ≪ β ≃ 1 when:

Complexity
Remarks

H(S)∼ O(|S|M̄)
Alg. 1 ∼ O(N2MM̄)

Agent Sensing (1) Denseness of X
Low

δ ↓,λ ↑
High

δ ↑,λ ↓
Low
(M ↓)

High
(M ↑)

βt ✓ ✗ ✓ ✗ O(M2M̄)
βg ✓ ✗ ✓ ✗ O(N)

βe ✗ ✓ ✗ ✓ O(M32MM̄) Prop 1: O(M2M̄)
βp ✓ ✗ ✓ ✗ O(MNM̄) Prop 2: O(N2M2M̄)

βe ✓ ✓ ✓ ✓ O(n2N2MM̄)
(i.e., for nN extra iter.)
Worst Case: O(M3M̄)

antees/characterizations on their effectiveness/performance.
This challenge motivates exploring hybrid curvature mea-
sures that have elements rooted in both data-driven and
theoretical curvature measures (for more details, see [12]).

VI. CASE STUDIES

In our numerical experiments, we considered size 600×
600 square mission spaces with two obstacle arrangements
named “Blank” and “Maze,” as can be seen in Figs. 1-2
and 3, respectively. In such figures, obstacles are shown as
dark green-colored blocks, candidate agent locations (ground
set X with |X | = 100) are shown as small black dots, and
agent locations are shown as numbered pink-colored circles.
Light-colored areas indicate low coverage levels, while dark-
colored areas indicate the opposite. The event density func-
tion was assumed to be uniform: R(x) = 1,∀x ∈ Φ in (5).

The main attributes and functionalities of the considered
optimal coverage problem, the greedy algorithm (Alg. 1), and
the reviewed performance bounds β f (9), βt (11), βg (14),
βe (16), βp (20) and βu (22) were all implemented in an in-
teractive JavaScript simulator which is available at https:
//github.com/shiran27/P2-Submod_Coverage.

a) Impact of the weight parameter θ used in (4): First,
we show the impact of θ using the Blank mission space with
N = 4 agents. Each agent was assumed to have a sensing
range λ = 200 and a decay δ = 0.012 (see (1)). The observed
greedy solutions, coverage level patterns, and performance
bounds, when θ ∈ {0,0.5,1} are reported in Fig. 1.

As stated in Rm. 1, choosing θ = 1 motivates cooperation
while choosing θ = 0 motivates individualism in sensing.
This behavior is confirmed by the observations reported in
Fig. 1. In particular, notice that when θ ≃ 0 (Fig. 1(a)), agents
are spread out in the mission space - leaving a blind region in
the middle but covering a broad area in the mission space. In
contrast, when θ = 1 (Fig. 1(c)), agents are flocked together
without leaving a blind region in the middle but failing to
cover some outer regions of the mission space. Note also
that θ affects the performance bounds (in this case, βu -
which were the tightest). This implies that, with respect to the
greedy approach, the optimal coverage problem defined with
a max detection function (3) is harder to solve than that with
a joint detection function (2). This conclusion is intuitive
as max detection functions significantly increase the non-
smooth nature of the optimal coverage problems. Note that,
in the sequel, we have used θ = 0.5 unless stated otherwise.

(a) θ = 0,βu = 0.84 (b) θ = 0.5,βu = 0.87 (c) θ = 1,βu = 0.92

Fig. 1: Greedy solutions, coverage level patterns, and the
tightest performance bounds observed under different weight
parameters θ ∈ [0,1] in the Blank mission space with N = 4
agents with sensing range δ = 200 and decay λ = 0.012.

TABLE II: Performance bounds observed under different
sensing decay λ values in the Blank mission space with
N = 10 agents with sensing range δ = 800.

Perf. bounds with respect to θ at λ = 0.05
θ β f βt βg βe βp βu

0 0.651 0.745 0.595 0.651 0.676 0.943
0.5 0.651 0.790 0.753 0.651 0.753 0.965

1 0.651 0.840 0.872 0.651 0.829 0.992
Perf. bounds with respect to λ at θ = 0.5

λ β f βt βg βe βp βu
0.05 0.651 0.790 0.753 0.651 0.753 0.965

0.045 0.651 0.765 0.714 0.651 0.720 0.951
0.035 0.651 0.713 0.617 0.651 0.651 0.901
0.025 0.651 0.670 0.493 0.651 0.651 0.795
0.015 0.651 0.655 0.324 0.651 0.651 0.656
0.005 0.651 0.652 0.118 0.651 0.651 0.912
0.001 0.651 0.651 0.100 0.651 0.651 0.986

Perf. bounds with respect to θ at λ = 0.001
θ β f βt βg βe βp βu

0 0.651 0.651 0.101 0.651 0.651 0.967
0.5 0.651 0.651 0.100 0.651 0.651 0.986

1 0.651 0.651 0.100 0.998 0.651 1.000

(d) λ = 0.05 (e) λ = 0.025 (f) λ = 0.001

Fig. 2: Greedy solutions and coverage level patterns observed
under different sensing decay λ values considered in Tab. II.

b) Impact of the agent sensing capabilities λ ,δ : We
next show the impact of agent sensing capabilities (charac-
terized by their sensing decay λ and range δ ) on different
curvature-based performance bounds. For this purpose, in
one experiment, we used the Blank mission space with
N = 10 agents, where we kept δ = 800 (fixed) and varied
λ from λ = 0.05 to λ = 0.001. The observed performance
bounds and a few selected greedy solutions are reported in
Tab. II and the accompanying Fig. 2, respectively. In the
second experiment, we used the Maze mission space with
N = 10 agents, where we kept λ = 0.012 (fixed) and varied
δ from δ = 50 to δ = 800. The observed performance bounds
and a few selected greedy solutions are reported in Tab. III
and the accompanying Fig. 3, respectively.

In Tabs. II and III, we have further explored the impact
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TABLE III: Performance bounds observed under different
sensing range δ values in the Maze mission space with N =
10 agents with sensing decay λ = 0.012.

Perf. bounds with respect to θ at δ = 50
θ β f βt βg βe βp βu

0 0.651 0.694 0.682 0.651 0.651 0.992
0.5 0.651 0.718 0.729 0.651 0.651 0.992

1 0.651 0.742 0.775 0.651 0.672 0.992
Perf. bounds with respect to δ at θ = 0.5

δ β f βt βg βe βp βu
50 0.651 0.718 0.729 0.651 0.651 0.992

100 0.651 0.660 0.401 0.651 0.651 0.976
200 0.651 0.657 0.342 0.651 0.651 0.892
350 0.651 0.656 0.329 0.651 0.651 0.841
400 0.651 0.656 0.329 0.651 0.651 0.837
600 0.651 0.656 0.328 0.651 0.651 0.828
800 0.651 0.656 0.329 0.651 0.651 0.834

Perf. bounds with respect to θ at δ = 800
θ β f βt βg βe βp βu

0 0.651 0.660 0.191 0.651 0.651 0.789
0.5 0.651 0.656 0.329 0.651 0.651 0.834

1 0.651 0.652 0.460 0.651 0.651 0.898

(a) δ = 50 (b) δ = 350 (c) δ = 800

Fig. 3: Greedy solutions and coverage level patterns observed
under different sensing range δ values considered in Tab. III.

of θ on performance bounds at extreme cases of agent
sensing capabilities, i.e., when λ ∈ {0.05,0.001} and δ ∈
{50,800}, respectively (otherwise, by default, θ = 0.5). The
observations in each case are given in smaller sub-tables
located above and below the main table. In each table (and
sub-table), the highest performance bound values observed
in each row and column have been highlighted. Also, the
tables have been arranged so that when going from top to
bottom, the sensing capabilities of the agents increase.

Recall that, based on our analysis, the performance bounds
βt , βg, βp, and βu should provide significant improvements
beyond β f when agent sensing capabilities are low (i.e.,
when λ is high and δ is low). The results in Tabs. II and III
validate this conclusion (e.g., see the respective results for
λ = 0.05 and δ = 50). On the other hand, the performance
bounds βe and βu should provide significant improvements
beyond β f when agent sensing capabilities are high (i.e.,
when λ is low and δ is high). In this case, with regard to
βe, as pointed out in Rm. 2, we also need the mission space
to be obstacle-free and θ = 1. Again, the results in Tabs.
II and III validate this conclusion (e.g., see the respective
results for λ = 0.001 and δ = 800, particularly with θ = 1).
Moreover, as expected from our analysis, the observations in
Tabs. II and III also confirm that the performance bound βu
provides significant improvements beyond β f regardless of
the agent sensing capabilities.

VII. CONCLUSION

In this paper, we considered a generalized class of multi-
agent optimal coverage problems and established its several
polymatroid features. These properties enabled efficient solv-
ing of the considered optimal coverage problem via greedy
algorithms with performance-bound guarantees. To obtain
further improved performance bounds, we reviewed five
curvature measures found in the literature. In particular, we
identified their effectiveness and computational complexity
features and proposed novel techniques to efficiently estimate
candidates for some of such curvature measures. We also
implemented the proposed coverage problem setup, its solu-
tion, and performance bounds in an interactive simulator. The
obtained numerical results validated our findings. Ongoing
research activities explore meaningful ways to combine the
strengths of data-driven and theoretical curvature measures.
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