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ARTICLE INFO ABSTRACT

MSC: In this paper we characterized isotropic random tangential vector fields on d-spheres for d > 1
60G60 by the cross-covariance, and derived their Karhunen-Loéve expansion. The tangential vector
Keywords: field can be decomposed into a curl-free part and a divergence-free part by the Helmholtz—
Isotropic random vector field Hodge decomposition. We proved that the two parts can be correlated on a 2-sphere, while
Karhunen-Loéve expansion they must be uncorrelated on a d-sphere for d > 3. On a 3-sphere, the divergence-free part can
Helmholtz-Hodge decomposition be further decomposed into two isotropic flows.

1. Introduction

Random tangential vector fields on a sphere have applications in terrestrial physics such as oceanic and wind currents (Fan
et al., 2018; Hutchinson et al., 2021). Isotropic random currents in R? have been characterized in Ref. Ito (1951, 1956) and Wong
and Zakai (1989). In this paper, we will study random tangential vector fields, a.k.a random 1-currents or random flows. Fan et al.
(2018) constructed a family of isotropic random tangential vector fields on S?. We will characterize isotropic random flows on S¢
for d > 1.

In this paper, a random vector field V on S¢ = {x € R%*! ||x| = 1} is isotropic if

EV(0x) =EV(x), EV(Ox)VT(Qy) =EVvx)V(y), 1.1

for any x € S¢, y € S and Q € SO(d + 1). It is analogous to the definition of two-weakly isotropic random fields on a
sphere (Marinucci and Peccati, 2011). Ref. Lang and Schwab (2015) studied isotropic Gaussian random fields on the sphere, and
Ref. Ma and Malyarenko (2020) studied isotropic random vector fields on compact two-point homogeneous spaces. A tangential
vector field, a.k.a flow, on S¢ is a vector field J(x) : S¢ — R?*! such that x - J(x) = 0 for any x € S¢. A random flow J on S is
isotropic if

EJ(0x) = EQJ(x), EJ(0x)J7(Qy) = EQIx)J" (y)0, 1.2)

for any x € S¢, y € S¢, and Q € SO(d + 1). If Eq. (1.2) holds for any Q € O(d+1), J is called reflexive. By Eq. (1.2), J is mean-zero
except on S'. A matrix kernel C on S¢ is called isotropic if C(Qx, Qy) = QC(x,y)Q" for any Q € SO(d + 1). An isotropic random flow
on S! has the same covariance and the Karhunen-Loéve (KL) expansion as an isotropic field. The KL expansion can be decomposed
into the gradient flow (/ > 0 modes) and the curl flow (/ = 0 mode).

In Section 2, we investigate reflexive isotropic random flows on S? for d > 2. In Section 3, we derive the general form of
isotropic random flows on S2. In Section 4, we characterize isotropic random flows on S°. In Section 5, we provide the proofs. In
Section 6, we draw conclusions.
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2. Isotropic random flows on S? for d > 2

We use wedge products to construct cross-covariances of random flows on S¢. The inner product of two wedge products satisfies
() A Aug) - (U A= Ayy) = det@l v)). Let

dim H, —

Z(x) = m;l NinSi() dide, : @1
where S, are real spherical harmonics on S¢, N,,, are iid standard normal random variables,

vy = ush =215 r(EE, 2.2
and H, is the eigenspace of the Laplacian on S corresponding to A, = I(l +d — 1),

dim H, = Ql+d-Dri+d-1) 2.3)

rdri+1)

Then EZ;(x)Z,(y) = p,,(x"y), where p, ,(z) is the normalized Jacobi polynomial, P[(""’)(z) / P,(""')(l), with @ = d/2 - 1. For [ > 1, let
A, be the matrix kernel on S¢ defined by

Ax.y) =E(VZ, )V Z,), 2.4
where V is the gradient along S¢, and B, is the matrix kernel on S¢ such that for any x; and y,; in R¥*!,

xlTB,(x, VY =EXAX AVZ(X) - (YAY; AVZ)(Y)). (2.5)
On §?, it is equivalent to

B,(x,y) = Ex X VZ,())(y X VZ;(y). (2.6)
Since Z, is isotropic, A; and B, are isotropic. To express A,(x,y) and B,(x,y) explicitly, let

— T Ty) —
JYTXXY) YW oX Ly 2.7)

X ’ y >

V1-Tyy? V1-xTy)?
The vectors n, and n, are the unit vectors at x and y, respectively, along the shorter geodesic from x to y on S Forx =y (x = -y),
n, is an arbitrary unit vector in R*! that is orthogonal to x, and n, = n, (n, = —n,). Notice that xAn, = yAn,. We also introduce the
vectors {m,-},.d:‘1 such that (x,ny,my, ..., m,_;) is a positively oriented orthonormal basis of R?*!. The next lemma gives the matrix
form of A; and B,.

n

x>

Lemma 2.1. For the matrix kernels A, and B, on S¢ defined by Egs. (2.4) and (2.5), with z = xTy,

d-1

AV = [l (2) = @ = Dzpl )] myn] + ), () Y mym?, 2.8)
i=1
d-1

B,(x,y) = (d — )p], ,(z)nyn] + [A,pa.,(z) - zpf,,,<z>] > mm/. 2.9

i=1

For two isotropic kernels C; and C, on S¢, let their inner product be
1
(€. C) = —tr/ C(x,)Cy(y, x)dy. (2.10)
[OF] sd

The inner product is independent of x due to the isotropy. The following lemma shows that {A;, B,}7?, is an orthogonal set of kernels
on S¢ and represents the Helmholtz-Hodge decomposition.

Lemma 2.2. For the matrix kernels A, and B, defined by Egs. (2.4) and (2.5), the image space of A, and B, are curl-free and
divergence-free, respectively, and
i

(A1,A1/) = m (B17B1') =

d-DU+DU+d-2)4
H, i

dim H,
Since A, and B, are positive semidefinite, their image spaces are orthogonal. The following theorems characterize reflexive
isotropic flows on S¢ and their cross-covariances.

s (A;By)=0. (2.11)

Theorem 2.3. A mean-square continuous reflexive isotropic random flow on S¢ for d > 2 has the cross-covariance,

C(x.y) = D (@A(x,y) + bBi(x,y)), (2.12)
=1

where A; and B, are given by Egs. (2.4) and (2.5), a; 2 0, b, > 0, 3,2, a)/* and ¥, b,I? converge. The series in Eq. (2.12) converge
uniformly.
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Theorem 2.4. The Funk-Hecke formula for a reflexive isotropic matrix kernel C on S¢ for d > 2 is

i/ Cox VS Wdy = v, ) i/ CoxuyF,,(dy = L= D0 g (2.13)
wg Jsa >y m\yay = dlrnH, Im ’ wy Jsa > Y¥ i y)ay = dll’l’lKl Im ’ .
where a; and b, are given in Eq. (2.12), K, is the image space of B,,

dimKl=(21+d_])(l+d_])r([+d_2), (2.14)

(I+Drd-nra

and {F,,,} is an orthogonal basis of K, normalized by [, IF,,,()||>dx = 4,. A mean-square continuous reflexive isotropic random flow J(x)
on S¢ with C(x,y) given by Eq. (2.12) has the KL expansion,

co dim H; oo dimK;
JO=Y 3 @, VS,®+ Y, Y by Fx), (2.15)
=1 m=1 =1 m=1
where
1 T 1 T
U = / JTx)VS,,(x)dx, b, = - / J' ®F,,(x)dx. (2.16)
1 Jsd 1 Jsd

The covariances of the coefficients are cov(ay,,, by,s) =0, and
(d - Dby,

2.17
dim K, ( )

Cov(a,m,a,rm/) = 5[1’5mm’ COV(b[m, b[/m/) = 51/’5mm’

a,wy
dim H,’
Theorem 2.4 holds for isotropic random flows on S¢ for d > 4 because they are always reflexive. The isotropic random flows on

S? and S* have richer structures as shown in the following sections.

3. Isotropic random flows on S?

Theorem 3.1. A mean-square continuous isotropic random flow on S* has the cross-covariance,

[

Cx.y) = (44X, ¥) + bBy(x,¥) + ¢, C (X, y), (3.1)
I=1

where a; > 0, b; 20, |¢;| < \/a;b;, T2, a1 and 32, b,I* converge, and
Aj(x,y) = sj(nen] +1(zmm’,  By(x,y) = 1;(2)nyn] +s,(z)mm’, 3.2
Ci(x,y) = (5;(2) = 1;,(2))(ym” +mn]),

in which z=x"y, m = xxny, 5,(z) =I(l + 1)P,(z) — zP/(z), t)(z) = P[’(z), where P,(z) is the Legendre polynomial of degree I. The series in

Eq. (3.1) converge uniformly.

Theorem 3.2. A mean-square continuous isotropic random flow on S* has the spectral expansion,

[
Jx) = Z Z (a1, VS)y(X) + by, X X V.S, (X)), (3.3)
I=1 m=—1
with
1 1
= — - VS d b= ——— . \AY dx. .
Aim +0 éz Jx) im(X)dX, by, I+ éz J(X) - (x X V.S, (x)dx B4
If the cross-covariance of J is given by Eq. (3.1), the covariance of the coefficients are
4r 4r
Cov(a,m,a,/m/) = 21—_'_1015”/5”""/, COV(bIm, b[/m/) = mb,&,p 5mm”
P (3.5)
COV((ZIW,7 bl’m’) = mcléll’émm”

We can rewrite Eq. (3.3) as J(x) = VX (x) + x X VY (x), where

o o0 !
X0 =Y Y @S0, Y= D byySju(X). (3.6)
i

I=1 m=—1 =1 m=—I

The cross-covariance of the random vector field V = (X,Y)7 is

cov(V(®), V() = Y (‘;’ C’) P(2). 3.7

=1 by

Since X2, ¢;/? and Y2, b;/* converge, V is mean-square differentiable, hence the following corollary.

3
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Corollary 3.2.1. A mean-square continuous isotropic random flow on S? can be written as

Jx) = VXX +x X VY(x), (3.8)
in which V = (X,Y)T is a mean-square differentiable isotropic random vector field on S?.

An example called Tangential Matérn Model was given by Fan et al. (2018).
4. Isotropic random flows on S?
We will use the following lemma in the construction of isotropic cross-covariances on S°.

Lemma 4.1. Forx andy on % x; and y, in R,
dim H;

@y

/d P " D)p, @YX AX AZ) - (Y AV AD)dZ = X[ By(X, )Y, 4.1)
s

Theorem 4.2. A mean-square continuous isotropic random flow on S® has the cross-covariance,

o
Cx.y) = ) (@A (x.¥) +bB(x.y) + ¢, Cy(x,y)), (4.2)
=1
with a; >0, b, >0, |¢;| < b, X2, a1 and Y2, b,1* converge, A, and B, given in Egs. (2.4) and (2.5),
C(x,y) =+ Dpl, ,(z)V1 - 22(mm] —m;m)), (4.3)

where z = x!'y. The series in Eq. (4.2) converges uniformly.

On S%, dim H, = (I + 1)%, dim K; = 2/(/ +2). By Theorem 4.2, B[i = (B, = C))/2 is positive semidefinite, and {A,,B;&B;};’il is an
orthogonal basis of the isotropic matrix kernels on S?. We obtain the KL expansion for isotropic random flows on S? by rewriting
Eq. (4.2) as

Cx,y) = Z(aIA;(X, ¥) + (b + B (X, ¥) + (b — ¢))B} (X, ¥)). 4.4
=1

Theorem 4.3. A mean-square continuous isotropic random flow on S* has the KL expansion,

oo [(+1)? 1(142)
JI0=Y| a,5,&+ Y b} F x)+ b Fr ©]], (4.5)
=1\ m=1 m=1
with F3: being orthogonal kernels in the image space of BY with [ ||F (x)||?dx = I(I +2), and
__ 1 T v _ 1 T (ot
ay,, = [+ /S3 J (VS xdx, by = ) /S3 J' OF;, (x)dx. (4.6)

i i i EN F opE )=
The covariance of the coefficients is cov(a,,, by; ) =0, cov(b; ,bF ) =0, and

=86 ! bE b V=85 27°(b £ ¢)) i

cov(a,m,a,/m/) = o mmrm, COV( im? 1’m’) = 01 Oyt W, ( . )
for the cross-covariance given in Eq. (4.2).
5. Proofs
Proof of Lemma 2.1. For x"x; =0 and y”y, =0,

x| A% Y)y; = Ex] VZ,0(VZ,) "y = o, Ty + o, e ). 6.1
Asaresult,for 1 <i<d-land1<j<d-1,

0l A, y)ny = zp), ,(2) = (1 = 2)p)) (2), m] Aj(x,y)m; = pl, (2)5;, m] Aj(x,y)ny =0. (5.2)
Eq. (2.8) follows from the differential equation with a =d/2 -1,

1- ZZ)P;',,(Z) = 2(a + Dzpl, [(2) + 4Py (2) = 0. (5.3)

d—1d-1
n!B(x,y)n, = Z 2 m/ VZxm! VZ(y)x AngAm) - (y Any Am)) = (d - Dp),(2). (5.4)

i=1 j=1
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d-1
m[TB,(x, ym; = 2 ijVZ(x)ijVZ(y)(x Am; A mj) -(y Am; Amy)
j=1

J (5.5)
+ anZ(x)n?VZ(y)(x Am; Any) - (y Am; Any)

=(d = 1)zp], ;(2) = (1 = 2} (2) = 41Pes(2) = 2Pl ,(2).

Also, m!B,(x,y)m; =0 for i # j, and m! B;(x,y)ny, = n!B,(x,y)m; =0. []

Proof of Lemma 2.2. The image space of A, is spanned by the curl-free flows V.S,,,(x) with 1 < m < dim H;, because

dim H;

Y VS VS, ). (5.6)
m=1

@y
dim H,

Ax,y) =

The image space of B, is divergence-free, because for any y, € R¥+!,

d d
Vi Bixy)y; = ) D EK VK VIZ KX AX AX) - (Y Ay AVZ(y) =0, (5.7)
i=1 j=1
in which (x,x;, ..., x,) is a positively oriented orthonormal basis of R¢*!. The image space of B, is orthogonal to the space of curl-free
flows, because for any field ¢(-) on S¢,
/sd Vo(x) - B(x,y)dx = /sd[vx (PX)B(X,y)) — p(x)Vy - B;(x,y)]ldx = 0. (5.8)
So (A;,B;) =0 for any / and /’. By
/d(VS,m(y))TVS[/m/ (y)dy = — /d S/m(Y)stz/m/ WAy = 4161 Sy » (5.9)
s s
we get
oy dim H; , A/zéll’
oA = how s 2 (VS VS0 = g5 T (5.10)
By Eq. (2.9), we can write
d-1
B,(x,y) = fi(z)nn! +g(2) Y, mm], (5.11)
i=1
where f,(z) = (d — Dpl, (2), &(2) = 4P, (2) — zP!, (2), z=x"y. It gives
1
Wy
(B, By) = —= / (1D fp(2) +(d = Dgi(D)gp ()1 - 2)*dz. (5.12)
d J-1
Since p(’“(l) = A/d, f(1) = g/(1). By the parity of p,,, f;(—1) = —g(-1). Therefore, for / > 1,
i) =a +bz+(1-2)f(2), gz =b+az+-22)§2), (5.13)

for numbers q; and b;, and polynomials f,(z) and $,(z) of order up to / — 2. By the identity (Abramowitz and Stegun, 1965),
dp! (2) = ipgy1-1(2), we have that for 1 <1/ </,

1 1
/ f1fu(z)(1 =22 dz =0, / g(@)gp(2)(1 = 22)**dz =0, (5.14)
-1 -1
1 1
/ (f1(2) +(d = Dg(2)2)(1 = 2)dz = (d - 1) / (MPay(D)2(1 = 2 + pl, ,(2)(1 = 2T dz = 0, (5.15)
-1 -1
1 1
/ (f1(2)z + (d = Dgy(2))(1 = 22)*dz = (d - 1)/ M (D(1 = 22)%dz = 0. (5.16)
-1 -1
Hence (B;,B;) =0 for 1 </’ <. Eq. (2.11) follows from the identities (Abramowitz and Stegun, 1965),
w4y [! 1 w4y [! A+d—1 4
d_I/ (Pag (@21 = )z = L 2l / @ (@1 = dz = ==
w; J_1 dim H, w; Jo® d dim H,
! i ! 2A-1 4 G17)
Wy_1 / _ 2\ — Wy / 201 _ 2\ — - 1
o, /_] zp, (2)pg(2)(1 — 27)*dz amH, o, /_I(ZP[,J(Z)) (1-z7)"dz T4 dmH,

Proof of Theorem 2.3. For givenx and y, let Q; =1 —2m,.ml.T for 1 <i <d-1. Since Q; € O(d+1), and C is isotropic and reflexive,

n! C(x,y)m; = (Q;n,)" C(Q;x, 0;y)0;m; = —n! C(x, y)m; = 0. (5.18)
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Similarly, m! C(x,y)n, = 0 and m/ C(x,y)m; = 0 for i # j. Therefore, C(x,y) can be written as

d-1
Cx,y) = f(xTy)nxnyT +gxTy) Z m[miT. (5.19)

i=1

So {A.,B, };"’ . is an orthogonal basis of the set of reflexive isotropic matrix kernels on S¢, and the series in Eq. (2.12) converges in

L, norm to C(x,y). Since A, and B, are positive semidefinite, and
trA;(x,x) = 4;, trB;(x,x)=(d - 1)4,;, (5.20)
a > 0,b >0, and 32, /% Y2, bI* converge. The series in Eq. (2.12) is absolutely summable, thus uniformly converges to
Cx,y). O
Proof of Theorem 2.4. Eq. (2.13) follows from Egs. (5.6) and (5.9). We have
L/ B;(x,2)B,(z,y)dz = CB/(x,y), (5.21)
a)d sd

for a constant C, because the left-hand-side is a reflexive isotropic matrix kernel whose image space is in K;, which must be a
multiple of B; by Theorem 2.3. Therefore, K; is the eigenspace of B;, and

L/ B,(x,y)F,, (y)d _MF (x)—MF (x) (5.22)
wg Joa YRV = TG0k, Y T Taimk, Y :
By Egs. (2.11) and (2.3),

_(Bx,x))?  Ql+d-1D)(I+d—- DI +d—2)

WmK= g By (+ DI - DI (523
The KL expansion is a consequence of the Funk-Hecke formula. []
Proof of Theorem 3.1. The cross-covariance C(x,y) on S? can be written as

C(x,y) = Cpy(x,y)nygn] + Cpy(x, y)ngm” + Cy; (x, y)mn] + Cyp(x, y)mm” . (5.24)
By the isotropy, nl C(x,y)m = n;C(y, x)m, 50 Cp»(X,y) = Cy;(X,y). Therefore,

Cx,y) = f(z)nxn§ + g(zymm” + h(z)m,m? + mn;), (5.25)
where z = x"y. By the identities (Abramowitz and Stegun, 1965),

(sis8) + (@5 15) = 6,~j2i2(i+ 1)2/(2i+ D, Gptp)+@,s)=0, ix1,j21, (5.26)
where (f,g) = /| f(2)g(z)dz, we have

(CC)) = (s = ti.5; = 1)) = (5,,5)) + (11.1)) = 2(A; A ). (5.27)

By Lemma 2.2 and the orthogonality between {A;,B,};2 and {C;}}2,, {A;,B;,C;}}2, is an orthogonal basis of the set of isotropic

matrix kernels on S2. By Theorem 2.3, 4, >0, b, >0, 3°, a1 and Y2 b,I*> converge. For a > 0 and b > 0, let

UZ,(x) = VaV Z,(x) £ Vbx x VZ,(x). (5.28)
The cross-covariance of UZ, is

D*,(x.y) = aA,(x.y) + bB,(x.y) + VabC,(x. ). (5.29)
which is positive semidefinite. If C is positive semidefinite,

(C.DF ) =2ab = ¢ V/ab)A A 20, (5.30)

which implies that |¢;| < 4/a;b;. On the other hand, if |¢;| < 4/a,b;, the series in Eq. (3.1) is positive semidefinite and absolutely
summable, thus converges uniformly to C(x,y). [J

Proof of Theorem 3.2. The covariances cov(a,,,, a;,y) and cov(b,,,, by,,) follow Theorem 2.4.

C(x,y) = E(VZ,x)(y X VZ,(y)T +xX VZ,x)(VZ,()7)

]
A (5.31)
T2+ m;[[vs,m(x)(y X VST + (& X VS, NV S ().
Therefore,
Az
/sd C,(x, YVS;,,(y)dy = TR V.S),(%), (5.32)

which gives the covariance cov(a,,, ay,s) in Eq. (3.5).
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Proof of Lemma 4.1. Applying (x AX; A Vy) - (y Ay; A V,) to the identity (Abramowitz and Stegun, 1965),

dim H,
! / Pas X" 2)p, (2" Y)dz = py y(x"y), (5.33)
@y sd
we get
dim H, / o, l(xTz)p; I(ZTy)(x AX; AZ)-(YAY, Az)dZ
(] sd ’ (5.34)

= (XAX AV - (YAY A V)P (xXTy) =x] B(x.y)y,. [

Proof of Theorem 4.2. For an isotropic random flow on §*, n! C(x,y)m; = m! C(x,y)n, = 0 for i = 1,2. Let Q = xx” + n.n! +
mlm; - mzmT. Since Q € SO(4),

mlTC(X, y)m, = (Qm,)" C(Ox, Qy)(Om,) = —mgC(X, y)m,;. (5.35)
The cross-covariance can be written as
Cx,y) = f(z)nxn§ +g(2)mm] +m,m)) + h(z)(mym! — mm?), (5.36)

where z = x"y. Since p;’[(z) = (4/d)Pgs1,-1(2), by Eq. (5.17) we have (C;, Cy) = 2/(I+2)6;y. Since {C,}72 is orthogonal to {A;,B,}° ,

combined with Lemma 2.2, we see that {A;,B;,C;}}?, is an orthogonal basis of the set of isotropic matrix kernels on S*. Notice that
for any vectors x; and y, in R*,

X[ C (%, y)y; = (1 + Dp, (X" YEAX AY Ay, (5.37)
where the Hodge star is a linear mapping such that (x An, Am; Am,)* = 1. By Lemma 4.1,

/S3 x| C;(x,2)C,(z.y)y, dz

(5.38)
=(+1) /S Py DR X AX AD) @AY AYDAZ = 0] B Y)Y
Since C,; is symmetric, its image space is the same as that of B,. By Eq. (2.13),
/ \ B,(x,2)B,(z,y)dz = 0,B,(X,y), / \ B,(x,2)C,(z,y)dz = 0,C/(X,y). (5.39)
S3 S3
Let B = (B, + C))/2, then
/ B/ (x,2)B (z,y)dz = w,B(x,y), / B (x,2)B] (z,y)dz = 0. (5.40)
3 3

Therefore, {A,, B;r, BI‘ }721 is a positive semidefinite orthogonal basis of the set of isotropic matrix kernels on S3. The series in Eq. (4.2)
is positive semidefinite if and only if |¢;| < b,. Given that |¢,| < b;, by the positive semidefiniteness of B}, the series is absolutely

summable, thus converges uniformly. []
6. Conclusion

In this paper, we derived the cross-covariance of isotropic random flows on the sphere S¢ for d > 1. We also derived the KL
expansion of the isotropic random flows. On S? with d > 4, the curl-free part of the flow is uncorrelated with the divergence-free
part of the Helmholtz-Hodge decomposition. On S?, the two parts can be correlated. On S, the divergence-free part can be further
decomposed into two isotropic flows. In subsequent works, we will study random flows on other symmetric spaces.
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