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Abstract—Multimodal sentiment analysis plays a critical role
in numerous IoT-driven applications, such as personalized
smart assistants, healthcare monitoring systems, and intelligent
transportation networks, where accurate interpretation of user
emotions is vital for enhancing service quality. However, a
severe threat of privacy leakage in the multimodal sentiment
analysis has been overlooked by previous works. To fill this
gap, we propose a differentially private correlated represen-
tation learning (DPCRL) model to achieve privacy-preserving
multimodal sentiment analysis by combining a correlated repre-
sentation learning scheme with a differential privacy protection
scheme. Our correlated representation learning scheme aims
to achieve heterogeneous multimodal data transformation to
meet the requirements of privacy-preserving multimodal sen-
timent analysis by learning the correlated and uncorrelated
representations, where especially, a predetermined correlation
factor is employed to flexibly adjust the expected correlation
among the correlated representations. The differential privacy
protection scheme is used to obtain the disturbed correlated
and uncorrelated representations by adding Laplace noise for
e-differential privacy. In particular, the correlation factor can
help alleviate the side-effect of the added Laplace noise on the
sentiment prediction performance. Finally, via conducting a series
of real-data experiments, we validate that our proposed DPCRL
model is superior to the state-of-the-art for privacy-preserving
multimodal sentiment analysis.

Index Terms—Differential privacy, multimodal systems, repre-
sentation learning, sentiment analysis.

I. INTRODUCTION

ITH the proliferation of smart infrastructures in

IoT applications, multimodal sentiment analysis has
become increasingly important for enhancing user interactions
in various scenarios, such as smart homes [1], healthcare
systems [2], and intelligent transportation [3]. Driven by
advancements in deep learning, learning-based prediction
has emerged as a promising and effective approach for
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Fig. 1. Privacy leakage in multimodal sentiment analysis in IOT-driven smart
infrastructures.

Privacy Leakage:
User identity, Behavioral
patterns, and Location

realizing multimodal sentiment analysis through the integra-
tion of multimodal data representations extracted from raw
multimedia inputs [4], [5], [6]. However, in IoT contexts
where devices continuously generate sensitive user data, these
extracted representations can be exploited by malicious attack-
ers to infer private information (e.g., user identity, behavioral
patterns, and location), leading to significant privacy risks and
potential economic losses [7], [8], [9], [10], shown in Fig. 1.
This underscores the critical need for privacy-preserving
mechanisms specifically tailored for multimodal sentiment
analysis in IoT scenarios, where ensuring data security while
maintaining system efficiency is paramount. To address this,
our work focuses on designing robust privacy-preserving mod-
els that are applicable to real-world IoT deployments, offering
a secure foundation for multimodal sentiment analysis.

In order to prevent privacy leakage from learning-
based multimodal sentiment analysis methods, a number
of privacy-preserving learning algorithms have been
proposed [11], [12], [13]. One vein of research is based
on adversarial training to generate adversarial samples
that is used as the data disturbed by noise to defend
inference attacks not only on unimodal data [14], [15] but
also on multimodal data [16], [17], [18]. Although these
adversarial training-based models are widely applied to
privacy-preserving learning schemes, they fail to provide any
performance guarantee of data privacy protection. Differential
privacy-based models [19], [20] have been developed to
guarantee data privacy protection by disturbing the data
via the addition of Laplace noise based on differential
privacy mechanisms [21], [22], [23], [24], [25]. However,
it is worth mentioning that the data correlation can be
treated as side-channel information, thus reducing the
effectiveness of differential privacy protection. As a result,
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for correlated data, the additional Laplace noise used in
differential privacy mechanisms should be enlarged with
the increase of data correlation to maintain the same
differential privacy protection degree, inevitably sacrificing
the learning performance (e.g., accuracy) [26], [27], [28].
Furthermore, to mitigate the impact of data correlation on
performance loss, the existing differentially private transform-
based approaches transform the correlated homogeneous data
into the corresponding uncorrelated data domain and then
implement differential privacy mechanisms to achieve data
privacy guarantee [29], [30], [31], [32], [33]. Nevertheless,
these existing transform-based approaches can only perform
the transformation on homogeneous data with intracorrelation
(that means data correlation within a data instance, such as
temporal correlation in a video and location correlation in a
trajectory) but are not applicable to heterogeneous data with
intercorrelation [34], [35], [36] (that means correlation among
different data instances, such as data correlation between two
texts and data correlation between a video and an audio).
This is because the transformation schemes in the previous
works, including discrete Fourier transform (DFT), wavelet
transform (WT), and principle component analysis (PCA),
can only process the correlated homogeneous data to generate
uncorrelated representations. Therefore, it is still a challenging
task to generate privacy-preserving representations of the
correlated heterogeneous multimodal data while maintaining
the performance of multimodal sentiment analysis.

Motivated by the above analysis, in this article, we devise

a novel model, named differentially private correlated repre-
sentation learning (DPCRL), to generate privacy-preserving
multimodal representations for multimodal sentiment analysis
by integrating a correlated representation learning scheme
and a differential privacy protection scheme. The correlated
representation learning scheme is designed as a heterogeneous
multimodal data transformation strategy to learn the corre-
lated and uncorrelated multimodal representations, in which
a correlated factor can be predetermined to flexibly adjust
the expected correlation among the correlated multimodal
representations. The differential privacy protection scheme
is further applied to generating the disturbed correlated and
uncorrelated representations by adding Laplace noise for
satisfying e-differential privacy. More specifically, a proper
correlation factor can be set in our DPCRL model to extract the
correlated representations with a relatively lower correlation,
thus mitigating the side-effect of the additional Laplace noise
on sentiment prediction performance. Finally, we evaluate the
effectiveness of our DPCRL model on real-world datasets
by conducting comprehensive experiments. Our multifold
contributions are addressed as follows.

1) To the best of our knowledge, this is the first work to
design privacy-preserving multimodal sentiment analysis
model.

2) Our proposed DPCRL model seamlessly combines
a correlated representation learning scheme with a
differential privacy protection scheme, aiming at simul-
taneously ensuring e-differential privacy and retaining
the performance of multimodal sentiment analysis.

3) In our correlated representation learning scheme, the
heterogeneous multimodal data transformation can be
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accomplished by learning the correlated and uncorre-
lated multimodal representations from multimodal data
for sentiment prediction, and the expected correlation
of correlated representations can be flexibly set via a
correlation factor.

4) Comprehensive experiments are well conducted to val-
idate the advantages of our DPCRL model over the
state-of-the-art for privacy-preserving multimodal senti-
ment analysis.

The remainder of this article is organized as follows.
The related works are briefly summarized in Section II. We
elaborate the details of our model in Section III, and then
conduct real-data experiments and analyze all the results in
Section IV. Finally, we end up with a conclusion in Section V.

II. RELATED WORKS

In this section, we summarize the related works on
multimodal sentiment analysis and review the current main-
stream privacy-preserving learning approaches.

A. Multimodal Sentiment Analysis

The current landscape of multimodal sentiment analysis
research reflects a growing interest and significant progress
in the field [37]. Researchers have increasingly recognized
the value of leveraging multiple modalities [38], [39], [40],
[41], [42], [43], such as text, audio, and video, to cap-
ture rich and nuanced expressions of sentiment [44], [45].
A variety of approaches have been explored, ranging from
traditional machine learning techniques [46], [47] to deep
learning architectures [48], [49], each with its strengths
and limitations. Recent studies have focused on develop-
ing more sophisticated multimodal fusion methods [50]
to effectively integrate information from diverse modali-
ties [51]. Despite these advancements, challenges, such as
multimodal alignment [52] and data heterogeneity [53] persist,
motivating ongoing research into novel methodologies and
solutions. These approaches can be categorized into modal-
ity interaction-based, modality transformation-based, and
modality similarity-based methods. Interaction-based methods
explore dynamic interplays between modalities to utilize
complementary information [52], while transformation-based
approaches [54], [55] transform modalities into a common
feature space for unified analysis. Additionally, similarity-
based schemes [56] focus on modality correlations to enhance
sentiment analysis. These foundational methodologies inform
our work, where we introduce a correlation factor within
a differential privacy framework, a novel integration that
strategically manipulates modality correlations to balance data
utility and privacy in MSA, filling a specific gap not directly
addressed by existing studies.

B. Privacy-Preserving Learning Approaches

Currently, adversarial training-based models, differential
privacy-based approaches, and differentially private transform-
based methods are the mainly popular techniques used in
machine learning for data privacy protection.

1) Adversarial training-based models are exploited to gen-

erate adversarial samples that are taken as the data
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disturbed by noise to defend learning-based inference
attacks not only for unimodal data [14], [15], [57] but
also for multimodal data [17], [18]. Although the adver-
sarial training is relatively attractive to be employed
in privacy-preserving learning schemes owing to its
convenience and efficiency, it cannot ensure a privacy
protection guarantee.

2) Differential privacy-based approaches are proposed to
provide a theoretical guarantee of data privacy pro-
tection by adding Laplace noise based on differential
privacy mechanisms [22], [58], [59], [60], [61], [62].
In particular, for the correlated data, the added Laplace
noise should be increased with the growth of data
correlation so as to ensure the theoretical guarantee of
data privacy protection [28], which however, sacrifices
the performance (e.g., accuracy) of learning models.

3) Differentially private transform-based methods trans-
form the correlated data into the corresponding
uncorrelated data domain and then apply differential
privacy mechanisms to preserve data privacy [29], [32],
where the side-effect of the larger Laplace noise on
learning performance can be eliminated due to the dis-
appearance of data correlation after data transformation.

Unfortunately, these existing transform-based methods can
only be used to transform the homogeneous data with intra-
correlation into independent (uncorrelated) data domain but
cannot be applied to the heterogeneous multimodal data with
intercorrelation.

In this article, a novel DPCRL model is proposed to ensure
differential privacy while maintaining the performance of
multimodal sentiment analysis. In DPCRL, the heterogeneous
multimodal data transformation can be achieved by learning
the correlated and uncorrelated multimodal representations,
where especially, a predetermined correlation factor can be
used to adjust the expected correlation of the correlated
representations. More importantly, a proper correlation factor
can help mitigate the side-effect of the added Laplace noise
on sentiment prediction performance.

III. METHODOLOGY

In this section, we elaborate on the details of our proposed
DPCRL model. As shown in Fig. 2, the DPCRL model is
made up of five components, including a feature extraction
module, an encoding module, a decoding module, a differential
privacy protection module, and a privacy-preserving senti-
ment prediction module. First, a feature extraction scheme is
designed to extract features from video, audio, and language
modalities. Second, in the encoding module, we use the cor-
related and uncorrelated multimodal representation encoders
to learn the correlated and uncorrelated multimodal represen-
tations from the extracted features, where a correlation factor
is used in the correlated multimodal representation encoders
to obtain the correlated multimodal representations. Third,
the decoding module is devised to reconstruct the extracted
features by decoding the correlated and uncorrelated represen-
tations in each modality, which helps the encoding module
avoid encoding the unrepresentative vector in each modality.
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This autoencoding architecture of the correlated representation
learning actually works as a heterogeneous multimodal data
transform scheme in DPCRL. Fourth, a differential privacy
protection scheme is leveraged to obtain privacy-preserving
representations by adding Laplace noise to the correlated and
uncorrelated representations learned from the previous autoen-
coding architecture. Finally, these perturbed representations
are put into the privacy-preserving sentiment prediction mod-
ule to accomplish the privacy-preserving multimodal sentiment
analysis task.

For real-world implementation, the first four components
in DPCRL should be deployed on the users’ device side,
and the final one should be implemented on the server side.
When running DPCRL, the first four components are executed
on the users’ device side to generate the privacy-preserving
representations, which will be transmitted to the server side
for the final prediction using the final component. DPCRL can
help users avoid privacy leakage caused by attackers who can
leverage the eavesdropped representations during transmission
to infer the raw users’ sensitive data via some effective deep
learning attack models, such as the membership inference
attack and the inversion attack. In the following, we introduce
these five modules in DPCRL one by one.

A. Feature Extraction

Each video is segmented into utterances, each of which is a
unit of speech bounded by breaths or pauses [63]. An utterance
comprises a sequence of visual modality data denoted as
U, € RTv*4  a sequence of acoustic modality data denoted
as U, € RTe*% and a sequence of language modality data
denoted U; € RT*4 where T, (m € {v,a,l}) represents
the length of an utterance, and d,, represents the number
of dimensions of the modality data. For feature extraction,
the stacked bidirectional long short-term memory scheme
(sLSTM) [64] is exploited to map U,, € RIm*dm into a feature
vector f,, € R% (m € {v, a, I}) with dj, being the size of hidden
states set in the sSLTSM model

f,, = SLSTM(U,,,; 55™) (1)
where 9515““ represents the parameters of SLSTM.
B. Encoding

In the encoding process, the visual/acoustic/language
modality data is processed by taking into account the following
three requirements.

1) For each feature vector f,, (m € {v, a, [}), its correlated
and uncorrelated representations should capture two
distinctive aspects of the same modality data.

2) Any two of the uncorrelated representations of f,, f,,
and f; should be distinctive without redundancy.

3) The correlation between any two of the correlated
representations of f,, f;, and f; should be close to the
correlation factor ¢ as much as possible.

First, as shown by domain separation networks [65], each
feature vector f,, can be projected to two distinct types
of representations. Thus, given f,, we use the correlated
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Fig. 2. Data flow of our DPCRL model.

multimodal representation encoder Ef, to extract the corre-
sponding correlated representation f}, € R% and employ the
uncorrelated multimodal representation encoder EY;, to capture
the corresponding uncorrelated representation f};, € R4

£, = E5,(6: 6. ©)
£, = E(F: 0)

2
3)

where 6, represents the parameters of the encoder Ef,,, 6% rep-
resents the parameters of the encoder EY, and c represents an
expected correlation factor that is set to obtain the correlated
representations with the expected correlation.

The orthogonality constraint can be used to achieve nonre-
dundancy between two representations. Therefore, to satisfy
the first and the second requirements of encoding, we formu-
late the data orthogonality loss, Lenc,

»Cenclz Z ||i;anrun||l%‘+

me{v,a,l}

Teu |12
[} i 1

2

m#m' €{v,a,l}

“)

where || - ||% is the squared Frobenius norm.

Then, inspired by the idea of [66], we use the cosine
distance to quantify the correlation between two correlated
representations. Considering the third requirement of encod-
ing, we define the data correlation loss, Lenc,

2

m#m' €{v,a,l}

1,7, — el||% (5)

Eencz =

where ¢ € [0, 1] is a correlation factor that indicates the
cosine distance between two representations, and / denotes the
identity matrix. To sum up, the entire encoding loss function
Lenc 1s the summation of Lep, in (4) and Lepe, in (5), shown

m

£enc = £enc1 + Lencz~ (6)

C. Decoding

Since an encoder function may output an unrepresentative
vector that cannot be recovered, we design a decoder D to
reconstruct the original feature vector by using the extracted
correlated and uncorrelated representations (i.e., f;, and f};) in
each modality. The decoder D is defined in (7) to ensure that
the encoded representations indeed represent the details of the
corresponding modality data [4], [49]

£ = D(E, + £4: 04) @)

where f'm is the reconstructed feature vector for m € {v, a, [},
and 6; represents the parameters of the decoder D. In the
decoding process, the reconstruction loss, Lgec, is measured
by mean-squared error as below

I — £l 13
L= D, ———2 ®)
h
me{v,a,l}
where || - ||% denotes the squared L2-norm.

Finally, the correlated representation learning can be
achieved through the autoencoding architecture that is
the combination of the encoders and the decoders.
Correspondingly, the loss function of the correlated representa-
tion learning process, Lcgr, is the summation of the encoding
loss Lepc in (6), and the decoding loss Lgec in (8), i.e.,

Lcrr = aLenc + ,Bﬁdec 9)

where « € (0,1] and B € (0,1] are the weights of
loss functions. We minimize Lcgy to obtain the correlated
and uncorrelated multimodal representations for multimodal
sentiment analysis.

D. Differential Privacy Protection Scheme

After obtaining the correlated and uncorrelated representa-
tions through our proposed correlated representation learning,
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we implement the differential privacy mechanisms to generate
privacy-preserving representations for multimodal sentiment
analysis. To be specific, in our differential privacy protec-
tion scheme, the representations captured by our proposed
correlated representation learning and the privacy-preserving
representations are considered as the neighboring databases
in the differential privacy theory. In the following, we apply
different differential privacy mechanisms to the correlated and
uncorrelated representations.

First, according to basic differential privacy mecha-
nism [67], we  can calculate the perturbed uncorrelated
representation f“ = f,, + Lap(0, Sg: /€) by using an additional
Laplace noise to satisfy e-differential privacy, where Sg. rep-
resents the global sensitivity of the uncorrelated representation
vector f}; and is equal to the difference between the maximal
and the minimal items in f;,.

Theorem 1: Given the Laplace noise Lap(0, Sg. /€) added
into the uncorrelated representation vector f4, the disturbed
uncorrelated representation vector f'fn satisfies e-differential
privacy.

Proof: Let Pr[ -] be a commonly designed Laplace
distribution [68]. Accordingly, we have

oS
P S m
n r [ ]_lnﬁ"—elg”
Pr[ 1 2§ o S
€ A
= S—(If'fnl —|fD) <€ (10)

Equation (10) shows that the disturbed uncorrelated repre-
sentation vector f'% satisfies e-differential privacy. |

Second, we use correlated differential privacy mech-
anism [69] to achieve the correlated representations’
e-differential privacy by adding Laplace noise. In this article,
we use the non-negative cosine distance Cos(-,-) € [0, 1] to
measure the correlation among representations, where a higher
cosine distance value means a larger correlation, and a lower
cosine distance value indicates a smaller correlation. "l:hen, we
can compute the perturbed correlated representation ff, as

A

fo, =f,+Lap| 0. > Cos(f;.f,)Sk /e

m' e{v,a,l}

(1)

where Sge is the global sensitivity of the uncorrelated repre-
sentation vector f;, and is equal to the difference between the
maximal and the minimal items in £}, and Cos(f},, f ) is used
as the correlation coefficient between f, and £ .

Theorem 2: By adding the Laplace noise Lap(O >
Cos(f,
the output perturbed correlated representation vector f’fn meets
e-differential privacy.

Proof: In accordance with [69], we define OSge =
> wev.an Cosy,, £,)St as the correlated global sensitivity
of the correlated representation vector f. Similar to the
proof of Theorem 1, let Pr[ - ] be the Laplace distribution.

m?

m'e{v,a,l}
m,)ngn /€) into the correlated representation vector fC
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Accordingly, there is
€ e_ QSEpm £
P £ ] 205
=In —
Pr[f‘] e ~osg Il
205,
=—(| ml — 1B, < e 12)
OSt;
Equation (12) indicates that the perturbed correlated repre-
sentation vector f7, meets e-differential privacy. |

Notably, for t‘ the added Laplace noise can be lower if
the value of Cos( b m,) is decreased, which can mitigate the
side-effect of the Laplace noise on the sentiment prediction
performance. On the other hand, as shown in Ley,, the
correlation between f}, and f, can be adjusted by changing
the value of ¢ in our correlated representation learning process,
which makes the generation of privacy-preserving representa-
tions more flexible.

E. Privacy-Preserving Sentiment Prediction

Following the fusion idea of [49], the outputs of the afore-
mentioned differential privacy protection scheme, 1nclud1ng f‘,
fC fC f“ f" and f[“, are fused into a joint vector fout € Rd"u‘
through 51mple concatenation. Then, the prediction function G
is applied to the privacy-preserving prediction task with fo
as the input

§ = G(fout; Bour)

where ¥ is the predicted label vector corresponding to f'om, and
Oour denotes the parameters of the prediction function.

We use cross-entropy loss to calculate the loss of the
privacy-preserving sentiment prediction task in

(13)

1 < .
Liask = - 2(;)’1' -log(y:)
=

(14)

in which L is the prediction loss, n represents the number
of utterances in a training batch, y; is the ith ground-truth
label, and y; is the ith predicted label.

Consequently, to learn the privacy-preserving correlated
and uncorrelated multimodal representations for the privacy-
preserving multimodal sentiment analysis, the overall loss
function of DPCRL, Lppcrr, should consist of the encoding
loss Lenc in (6), the decoding loss Lgec in (7), and the privacy-
preserving prediction loss Lk in (14) as formulated by

LppcrL = @ Lenc + BLdec + ¥ Lrask (15)

where «, 8,y € (0, 1] are the weights of the loss functions.
Our DPCRL model can be learnt by minimizing Lppcrr.- The
specific network architectures of the encoders, E, and E};, the
decoder D, and the prediction function G used in the DPCRL
model are described in Section IV-A4.

IV. EXPERIMENTS

In this section, we first introduce our experiment settings
and then present comprehensive experimental results to
validate the superiority of our proposed DPCRL model
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Fig. 4. Comparison results of DPCRL with different ¢ on MOSEI dataset (versus baselines). (a) Evaluation results of Acc-2 (Neg/Non-neg) on MOSEI
dataset (DPCRL with different ¢ and € and baselines). (b) Evaluation results of Acc-2 (Neg/Pos) on MOSEI dataset (DPCRL with different ¢ and € and
baselines). (c¢) Evaluation results of Acc-7 on MOSEI dataset (DPCRL with different ¢ and € and baselines).

over the state-of-the-art for privacy-preserving multimodal 1) Datasets: We use two benchmark datasets in our experi-
sentiment analysis. The codes of our model and all experi- ments for multimodal sentiment analysis. CMU-MOSI (MOSI)
mental results in this article can be found at https://github. dataset [70] is a collection of YouTube monologues consist-

com/ahahnut/DPCRL-for-Privacy-Preserving-Multimodel- ing of 2198 subjective video segments (utterances), where
Sentiment- Analysis. speakers express their opinions on topics, such as movies.

Each utterance is manually annotated with an integer opinion
A. Experimental Settings score in [—3,3], where —3 and 3 represent the strongest

The datasets, baselines, performance metrics, network archi- negative and the strongest positive sentiments, respectively.
tectures, and hyperparameter settings are described below. CMU-MOSEI (MOSEI) dataset [50] contains 23 453 annotated
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video segments and is an improvement of MOSI with a
larger number of utterances and a greater variety in samples,
speakers, and topics.

2) Baseline: MISA [49], Self-MM [71], and MMIM [72]
are the currently pioneering models on both MOSI and MOSEI
datasets for multimodal sentiment analysis. MISA with dif-
ferential privacy (MISA-DP) is a simple combination of the
differential privacy mechanism and MISA to obtain differen-
tially private representations for sentiment prediction while
guaranteeing privacy protection. MISA, Self-MM, MMIM,
and MISA-DP are adopted as baseline mechanisms for
performance comparison.

3) Performance Metrics: The task of sentiment prediction
on MOSI and MOSEI can be treated as a classification process
and evaluated via integer classification scores in [—3, 3]
that are so-called seven-class accuracy (Acc-7) [70]. Besides,
two approaches of computing binary accuracy (Acc-2) can
be also adopted to measure the performance of sentiment
prediction. The first one is negative/non-negative (Neg/Non-
neg) classification, where the non-negative labels are indicated
by non-negative classification scores [53]. The second one is
calculated based on negative/positive (Neg/Pos) classes, where
the negative and the positive classes are indicated by the
negative and the positive scores, respectively [73]. To sum up,
Acc-2 (Neg/Non-neg), F1 (Neg/Non-neg), Acc-2 (Neg/Pos),
F1 (Neg/Pos), and Acc-7 are used as performance metrics in
our experiments.

4) Neural Network Architectures: In our proposed DPCRL
model, the neural network architectures of the feature extrac-
tion, encoding, decoding, and sentiment prediction modules
are described below.

1) Feature Extraction: Facial action coding system
(FACS) [74] is applied to extract facial expression
features that include facial action units and face pose.
An acoustic analysis framework (COVAREP) [75]
is employed to extract the acoustic features that
contain 12 Mel-frequency cepstral coefficients, pitch,
voiced/unvoiced segmenting features, glottal source
parameters, and other features related to emotions and
the tone of speech. The pretrained BERT [76] is
utilized as the feature extractor for textual utterance.
Accordingly, the visual feature dimension is d, = 47,
the acoustic feature dimension is d, = 74, and the
textual feature dimension is d; = 784. Furthermore, in
order to align the multimodal features for our encoding
process, we exploit one fully connected layer with
ReLU activation function and one normalization layer
to embed these features into a space with the same
dimension.

2) Encoding: The correlated multimodal representation
encoder Ej is built by using one fully connected
layer with sigmoid activation function to extract the
correlated representations. The uncorrelated multimodal
representation encoder E}, is designed through one fully
connected layer with sigmoid activation function to
extract the uncorrelated representations. To be specific,
there are three encoders to learn the correlated repre-
sentations and three encoders to learn the uncorrelated
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representations. Although these encoders have the same
structure, their parameters are updated differently during
training process to learn correlated and uncorrelated
representations.

3) Decoding: The decoder D is established as one fully
connected layer for reconstruction to avoid learning
unrepresentative vector of data in the encoding process.

4) Sentiment Prediction: In the prediction function G, one
Transformer encoder layer is used for transformation,
one fully connected layer with a dropout layer plus a
ReLU activation function is used for fusion, and one
fully connected layer is used to map all representations
into one dimension for final prediction.

5) Hyperparameter Settings: Our experiments are con-
ducted on Ubuntu OS with a Nvidia Tesla V100 GPU and
16 GB RAM. The batch size of samples for training MOSI
and MOSEI datasets are 64 and 16, respectively. The learning
rate of training is set as 10™*. The probabilities of dropout in
the dropout layer for training MOSI and MOSEI datasets are
0.5 and 0.1, respectively. Via comprehensive ablation study,
the weights of loss functions are set as « = 0.45, § = 0.1, and
y = 0.45 for training the MOSI dataset with 500 epochs, and
the weights of loss functions are set to be @ = 0.35, 8 = 0.3,
and y = 0.35 for training the MOSEI dataset with 500 epochs.
Besides, we vary the correlation factor ¢ from 0 to 1 with
the step of 0.1 to illustrate the effectiveness of our correlated
representation learning model and set the privacy budget € €
{1.0, 1.5, 2.0, 2.5, 3.0} to evaluate our DPCRL model.

B. Evaluation on Our DPCRL Model

In our proposed DPCRL model, there are two system
parameters, € and c. The value of €, which is so-called “privacy
budget,” indicates the degree of privacy protection. A smaller
€ implies a higher degree of data privacy protection. We
implement our DPCRL model with ¢ = 1.0, 1.5, 2.0, 2.5, 3.0
on datasets, which is reasonable and applicable in real appli-
cations for privacy protection based on the differential privacy
mechanisms. The value of ¢ represents the expected correlation
among the learned correlated representations. A larger ¢
implies a closer correlation among the correlated representa-
tions. In our experiments, we set ¢ = 0.1,0.2,0.3,0.4, 0.5
with the following considerations.

1) From Tables II and III, the prediction performance
of our correlated representation learning scheme with
¢ = 0.0 is worse than that of the state-of-the-art (MISA).
Therefore, it may not be suitable to set ¢ = 0.0 when
we aim to maintain prediction performance as much as
possible while ensuring differential privacy protection.

2) We attempt to learn the correlated representations with
a relatively lower value of ¢ so as to decrease the
side-effect of the additional Laplace noise on prediction
performance.

In Fig. 3, we compare the Acc-2 (Neg/Non-neg) results of our
DPCRL model and the baseline models on the MOSI dataset.
We take Acc-2 (Neg/Non-neg) of DPCRL with ¢ = 0.1 as an
example to illustrate the effectiveness of our proposed DPCRL
model as follows.
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1) By comparing the Acc-2 (Neg/Non-neg) values, it can
be found that the performance of DPCRL is comparable
to that of baselines (including MISA, Self-MM, and
MMIM), which indicates that our DPCRL model can
maintain the performance of sentiment analysis while
satisfying differential privacy guarantee.

2) By comparing Acc-2 (Neg/Non-neg) values of MISA-
DP and DPCRL with a same value of €, we can see
that the Acc-2 (Neg/Non-neg) values of our proposed
DPCRL model are much higher than those of the
baseline model MISA-DP which uses the invariant data
representations with the correlation ¢ = 1.0.

That is, with the same privacy budget ¢, our DPCRL model
outperforms MISA-DP from the aspect of maintaining the
sentiment prediction performance. The main reason is that
our correlated representation learning scheme used in DPCRL
can be leveraged to learn the correlated representations with
a relatively lower correlation factor, mitigating the side-effect
of the additional Laplace noise on the sentiment analysis.

For a comprehensive demonstration, we present Acc-2

(Neg/Pos), F1 (Neg/Non-neg, Neg/Pos), and Acc-7 of our
DPCRL model and the baselines on the MOSI dataset in
Fig. 3. Additionally, for the MOSEI dataset, the values of
Acc-2 (Neg/Non-neg, Neg/Pos), F1 (Neg/Non-neg, Neg/Pos),
and Acc-7 of our DPCRL model and baselines are presented
in Fig. 4.

Based on the above analysis, we obtain the following critical

conclusions.

1) Our proposed DPCRL model is effective to accomplish
privacy-preserving multimodal sentiment analysis with
providing e-differential privacy guarantee.

2) By setting a correlation factor as input, our DPCRL
model can realize heterogeneous multimodal data trans-
formation that satisfies our learning expectation.

3) A smaller value of the correlation factor can help reduce
Laplace noise added in e-differential privacy mecha-
nisms, mitigating the loss of prediction performance.

4) Compared with the state-of-the-art, our DPCRL
model can effectively maintain and even enhance the
performance of sentiment prediction while ensuring
e-differential privacy.

Furthermore, more experiments are conducted using an
NVIDIA V100-16GB GPU and an AMD 64-Core CPU. This
hardware configuration ensures that both our DPCRL model
and the baselines are operated under the same conditions for
a fair comparative analysis. We evaluate the computational
cost based on running time in each training epoch, memory
usage, and CPU/GPU utilization. These metrics are critical
for assessing the impact of differential privacy mechanisms on
model efficiency and resource consumption. The results are
summarized in Table I, which indicates that our DPCRL incurs
a 16.7% increase in running time compared to the fastest
baseline (MMIM), demonstrating the additional time required
for processing privacy-preserving mechanisms. The memory
usage in our proposed DPCRL is 8.3% higher than the least
memory-intensive baseline (MISA), which reflects the extra
memory is required for handling DP operations. Compared to
the baseline with the lowest CPU/GPU utilization (MISA), the
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TABLE I
COMPUTATIONAL COST COMPARISON AMONG DPCRL AND BASELINES

DPCRL % Increase over Best Baseline

16.7% (vs MMIM)
8.3% (vs MISA)

11.4% (vs MISA)
12.5% (vs MISA)

Metric MISA (Non-DP) ~ Self-MM (Non-DP) ~ MMIM (Non-DP)

Running Time (s) 95s 100 s 90 s 105 s
Memory Usage (GB) 9.6 GB 10.2 GB 10 GB 104 GB
CPU Utilization (%) 70% 76% 75% T8%
GPU Utilization (%) 64% 70% 68% 72%

T

Correl

e (Trained Data Correlation)
e (Trained Data

01 02 03 04 05 08 07 08 08 o7 0z o3 07 05 06 o7 08 09
 (Expected Data Correlation) ¢ (Expected Data Correlation)

(a) (b)

Fig. 5. Impact of expected data correlation ¢ on trained data correlation e.
(a) Trained data correlation in MOSI dataset. (b) Trained data correlation in
MOSEI dataset.
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Fig. 6. Impact of expected data correlation ¢ on prediction results of CRL.
(a) Prediction results of CRL on MOSI dataset. (b) Prediction results of CRL
on MOSETI dataset.

increase in CPU utilization is 11.4% and the increase in GPU
utilization is 12.5%.

C. Ablation Study

We first train our scheme by changing the correlation factor
c from O to 1 with the step of 0.1 to validate that ¢ can
help achieve effective heterogeneous multimodal data transfor-
mation satisfying the requirements for multimodal sentiment
analysis. When the training process terminates, the correlation
coefficient among the trained correlated representations is
denoted by e. Since c,e € [0, 1] are the cosine values, we
can calculate the angle degree, d., corresponding to ¢ and
the angle degree, d,, corresponding to e. That is, ¢ and d,
imply our expected data correlation, and e and d, are our
trained data correlation. The difference between our expected
and trained data correlation can reflect the effectiveness of
our proposed correlated representation learning scheme. To
clearly investigate the impact of ¢ on the performance of
sentiment prediction, we compute Acc-2 (Neg/Non-neg), F1
(Neg/Non-neg), Acc-2 (Neg/Pos), F1 (Neg/Pos), and Acc-7 on
the learned correlated and uncorrelated representations.

Table II presents the values of ¢, d., e, and d, when the
correlated representation learning scheme is implemented on

Authorized licensed use limited to: Georgia State University. Downloaded on May 26,2025 at 19:50:02 UTC from IEEE Xplore. Restrictions apply.



XU et al.: PRIVACY-PRESERVING MULTIMODAL SENTIMENT ANALYSIS 15475
TABLE 11
EVALUATION RESULTS OF CORRELATED REPRESENTATION LEARNING SCHEME ON MOSI DATASET
Model Expected Data Correlation Trained Data Correlation Acc-2 (Neg/Non-neg, Neg/Pos)  F1 (Neg/Non-neg, Neg/Pos)  Acc-7
MISA [49] / / 0.7857/0.7972 0.7847/0.8092 0.4154
Self-MM [71] / / 0.783/0.8079 0.7834/0.8066 0.4244
MMIM [72] / / 0.799/0.8208 0.7984/0.8173 0.433
CRL ¢ = 0.0, d. = 90.00° e = 0.0003, de = 89.82° 0.7653/0.7759 0.7643/0.7749 0.3965
CRL c=0.1, d. = 84.26° e =0.1183, d. = 83.21° 0.7896/0.8003 0.7887/0.7994 0.4154
CRL c¢=0.2, d. = 78.46° e = 0.2093, de = 77.92° 0.79/0.8004 0.7893/0.7997 0.4256
CRL c¢=0.3, d. = 72.54° e = 0.3069, de = 72.13° 0.7915/0.8024 0.791/0.8019 0.4271
CRL c=04, d. = 66.42° e = 0.4050, de = 66.11° 0.8075/0.8064 0.8072/0.8061 0.4358
CRL ¢ = 0.5, d. = 60.00° e = 0.5036, de = 59.76° 0.8163/0.8277 0.8162/0.8276 0.446
CRL c¢=0.6, d. = 53.13° e = 0.6035, de = 52.88° 0.7944/0.8 0.7941/0.8003 0.4281
CRL c¢=0.7, d. = 45.57° e =0.7029, d. = 45.34° 0.794/0.7994 0.7935/0.7989 0.425
CRL c¢=0.8, d. = 36.87° e = 0.8029, de = 36.59° 0.788/0.7982 0.7873/0.7979 0.422
CRL c¢=0.9, d. = 25.84° e = 0.9023, de = 25.54° 0.7862/0.7979 0.7853/0.7974 0.4165
CRL c=1.0, d. = 0.00° e =0.9997, de = 1.40° 0.7857/0.7972 0.7847/0.7962 0.4154
TABLE III
EVALUATION RESULTS OF CORRELATED REPRESENTATION LEARNING SCHEME ON MOSEI DATASET

Model Expected Data Correlation Trained Data Correlation Acc-2 (Neg/Non-neg, Neg/Pos)  F1 (Neg/Non-neg, Neg/Pos)  Acc-7
MISA [49] / / 0.8173/0.844 0.8193/0.841 0.5249
Self-MM [71] / / 0.7944/0.8122 0.7995/0.825 0.5159
MMIM [72] / / 0.79/0.8223 0.7966/0.8351 0.5237
CRL ¢ = 0.0, d. = 90.00° e = 0.0007, de = 89.60° 0.792/0.8432 0.791/0.8422 0.5242
CRL c¢=0.1, d. = 84.26° e =0.1034, d. = 84.07° 0.8175/0.8454 0.8166/0.8445 0.5257
CRL c=0.2, d. = 78.46° e =0.2017, de = 78.36° 0.8214/0.8459 0.8207/0.8452 0.5266
CRL c¢=0.3, d. = 72.54° e = 0.3066, de = 72.15° 0.8321/0.8503 0.8321/0.8498 0.527
CRL c=0.4, d. = 66.42° e = 0.4052, d. = 66.10° 0.8327/0.8542 0.8324/0.8539 0.531
CRL c¢= 0.5, d. = 60.00° e = 0.5040, de = 59.74° 0.8407/0.8547 0.8406/0.8546 0.539
CRL ¢=0.6, d. = 53.13° e = 0.6034, d. = 52.89° 0.8227/0.8498 0.8224/0.8495 0.528
CRL c=0.7, d. = 45.57° e = 0.7005, de = 45.53° 0.8221/0.8484 0.8216/0.8479 0.526
CRL c¢=0.8, d. = 36.87° e = 0.8004, de = 36.83° 0.819/0.8474 0.8183/0.8467 0.5257
CRL c¢=0.9, d. = 25.84° e = 0.9022, de = 25.55° 0.8175/0.847 0.8166/0.8461 0.5255
CRL c¢=1.0, d. = 0.00° e = 0.9996, de = 1.62° 0.8173/0.844 0.8163/0.843 0.5249

the MOSI dataset. By comparing these values, one can see that
the expected data correlation is very close to the corresponding
trained data correlation. For examples, e = 0.1183 when
¢=0.1, and e = 0.2093 when ¢ = 0.2. For a more explicit
comparison, we plot Fig. 5(a), to examine the impact of ¢ on e,
from which we can also observe that e is nearly equal to c. The
results of Table II and Fig. 5(a), confirm that in our correlated
representation learning scheme, the utilization of c is effective
to accomplish our expected heterogeneous multimodal data
transformation. When implementing our correlated represen-
tation learning scheme on the MOSEI dataset, we can obtain
the same conclusion through Table III and Fig. 5(b).
Additionally, the multimodal representations learned from
our correlated representation learning scheme are exploited to
evaluate the performance of sentiment analysis in terms of
Acc-2 (Neg/Non-neg), F1 (Neg/Non-neg), Acc-2 (Neg/Pos),
F1 (Neg/Pos), and Acc-7. These experimental results on MOSI
dataset are presented in Table II. Take the values of Acc-2
(Neg/Non-neg) as an example for analysis as follows.

1) The values of Acc-2 (Neg/Non-neg) obtained via MISA,
Self-MM, and MMIM are 0.7857, 0.783, and 0.799,
respectively. While, the value of Acc-2 (Neg/Non-
neg) obtained in our correlated representation learning
scheme falls in [0.7653,0.8163] when the value of ¢
varies from 0 to 1 with the step of 0.1. Especially,
when ¢ = 0.5 (i.e., the angle degree is d, = 60°), the

value of Acc-2 (Neg/Non-neg) reaches 0.8163. Thus, we
can conclude that our correlated representation learning
scheme and the baselines (including MISA, Self-MM,
and MMIM) have comparable performance in terms of
Acc-2 (Neg/Non-neg).

2) For our correlated representation learning scheme, the
value of Acc-2 (Neg/Non-neg) increases with the growth
of ¢ when ¢ € [0.0,0.5], which indicates that the
increased similarity among representations is helpful to
improve the performance of sentiment prediction.

3) In our correlated representation learning scheme, the
value of Acc-2 (Neg/Non-neg) gradually decreases
with the growth of ¢ when ¢ € [0.6,1.0], which
implies that the decreased diversity among representa-
tions degrades the performance of sentiment prediction.

4) The correlation factor ¢ can be used to balance the trade-
off between representation similarity and representation
diversity for improving multimodal sentiment analysis
performance.

Similarly, by analyzing the results of F1 (Neg/Non-neg), Acc-
2 (Neg/Pos), F1 (Neg/Pos), and Acc-7 on the MOSI dataset
in Table II, we can draw the same conclusions. In order to
explicitly show the impact of ¢ on sentiment prediction, we
present the results of Acc-2 (Neg/Non-neg), F1 (Neg/Non-
neg), Acc-2 (Neg/Pos), F1 (Neg/Pos), and Acc-7 on the MOSI
dataset in Fig. 6(a), for comparison. Moreover, as shown in
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TABLE IV

ABLATION STUDY OF CORRELATED REPRESENTATION LEARNING

SCHEME ON MOSI DATASET

[ Correlated Acc-2 (Neg/N . Neg/Pos) ~ FI (Neg/Non-neg, Neg/Pos) ~ Acc-7
v X 0.6407/0.6461 0.6547/0.6527 03145
X v 0.7084/0.7008 0.7027/0.7034 0.3474
v 4 0.8163/0.8277 0.8162/0.8276 0.446

TABLE V
ABLATION STUDY OF CORRELATED REPRESENTATION LEARNING
SCHEME ON MOSEI DATASET

U Correlated Acc-7

Acc-2 (Neg/Non-neg, Neg/Pos)  F1 (Neg/Ni . Neg/Pos)

X 0.7053/0.7684 0.7148/0.6827 0.4056

XIS
AN

0.7832/0.8045 0.7796/0.7608 0.4362

v 4 0.8407/0.8547 0.8406/0.8546 0.539

Table III and Fig. 6(b), the experimental results on the MOSEI
dataset can also confirm our aforementioned analysis.

Then, we present more ablation study of our correlated
representation learning model trained with the correlation
factor ¢ = 0.5 and the default hyperparameter settings. In
Tables IV and V, we show the results of ablation study on
the MOSI dataset and the MOSEI dataset, respectively. By
comparing these results, it is clear that the incorporation of
the correlated and uncorrelated multimodal representations
can obtain the best performance of the multimodal sentiment
analysis, which verifies the effectiveness of our model design.

V. CONCLUSION

In this article, we proposed a DPCRL model designed to
address privacy-preserving challenges in multimodal senti-
ment analysis, particularly within IoT scenarios. The DPCRL
model integrates a novel correlated representation learning
scheme with a differential privacy protection scheme, making
it suitable for IoT-driven applications, such as smart assistants,
healthcare monitoring, and intelligent transportation systems.
Our DPCRL model consists of a novel correlated represen-
tation learning scheme and a differential privacy protection
scheme. The correlated representation learning scheme can
achieve heterogeneous multimodal data transformation to learn
correlated and uncorrelated representations for multimodal
sentiment prediction while reducing privacy leakage. The
differential privacy protection scheme can produce the per-
turbed correlated and uncorrelated representations through
inserting Laplace noise for e-differential privacy. In our
DPCRL model, a correlation factor is employed to learn
the correlated representations for mitigating the side-effect
of the additional Laplace noise on the sentiment prediction
performance. Finally, the experiment results can confirm that
our proposed DPCRL model outperforms the state-of-the-art
in the performance of multimodal sentiment prediction and
data privacy protection.

REFERENCES

[11 G. Sprint, D. J. Cook, M. Schmitter-Edgecombe, and L. B. Holder,
“Multimodal fusion of smart home and text-based behavior markers for
clinical assessment prediction,” ACM Trans. Comput. Healthcare, vol. 3,
no. 4, pp. 1-25, 2022.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 11, 1 JUNE 2025

Y. Subbarayudu and A. Sureshbabu, “Distributed multimodal aspective
on topic model using sentiment analysis for recognition of public health
surveillance,” in Expert Clouds Applications. Singapore: Springer, 2022,
pp. 459-476.

X. Chen, Z. Wang, and X. Di, “Sentiment analysis on multimodal trans-
portation during the COVID-19 using social media data,” Information,
vol. 14, no. 2, p. 113, 2023.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798-1828, Aug. 2013.

S. Khorram, M. Jaiswal, J. Gideon, M. G. Mclnnis, and E. M. Provost,
“The PRIORI emotion dataset: Linking mood to emotion detected in-
the-wild,” 2018, arXiv:1806.10658.

K. W. Piersol and G. Beddingfield, “Prewakeword speech processing,”
U.S. Patent 10192546, 2019.

S. Hajian and J. Domingo-Ferrer, “A study on the impact of data
anonymization on anti-discrimination,” in Proc. IEEE 12th Int. Conf.
Data Min. Workshops, 2012, pp. 352-359.

Y. Qu et al., “Toward privacy-aware and trustworthy data sharing using
blockchain for edge intelligence,” Big Data Min. Anal., vol. 6, no. 4,
pp. 443-464, 2023.

A. Alzu’bi, A. Alomar, S. Alkhaza’leh, A. Abuarqoub, and
M. Hammoudeh, “A review of privacy and security of edge computing
in smart healthcare systems: Issues, challenges, and research directions,”
Tsinghua Sci. Technol., vol. 29, no. 4, pp. 1152-1180, Aug. 2024.

C. Hazman, A. Guezzaz, S. Benkirane, and M. Azrour, “Enhanced IDS
with deep learning for IoT-based smart cities security,” Tsinghua Sci.
Technol., vol. 29, no. 4, pp. 929-947, Aug. 2024.

Y. Yang, P. Hu, J. Shen, H. Cheng, Z. An, and X. Liu, “Privacy-
preserving human activity sensing: A survey,” High-Confidence
Comput., vol. 4, Mar. 2024, Art. no. 100204.

L. P. Rachakonda, M. Siddula, and V. Sathya, “A comprehensive study
on [oT privacy and security challenges with focus on spectrum sharing in
next-generation networks (5G/6G/beyond),” High-Confidence Comput.,
vol. 4, no. 2, 2024, Art. no. 100220.

Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on large
language model (LLM) security and privacy: The good, the bad, and the
ugly,” High-Confidence Comput., vol. 4, no. 2, 2024, Art. no. 100211.
K. Li, G. Luo, Y. Ye, W. Li, S. Ji, and Z. Cai, “Adversarial privacy-
preserving graph embedding against inference attack,” IEEE Internet
Things J., vol. 8, no. 8, pp. 6904-6915, Apr. 2021.

X. Ding, H. Fang, Z. Zhang, K.-K. R. Choo, and H. Jin, “Privacy-
preserving feature extraction via adversarial training,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 4, pp. 1967-1979, Apr. 2022.

M. Jaiswal and E. M. Provost, “Privacy enhanced multimodal neural
representations for emotion recognition,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 7985-7993.

Z. Xiong, H. Xu, W. Li, and Z. Cai, “Multisource adversarial sample
attack on autonomous vehicles,” IEEE Trans. Veh. Technol., vol. 70,
no. 3, pp. 2822-2835, Mar. 2021.

H. Xu, Z. Cai, D. Takabi, and W. Li, “Audio-visual autoencoding for
privacy-preserving video streaming,” [EEE Internet Things J., vol. 9,
no. 3, pp. 1749-1761, Feb. 2022.

X. Wang, L. Mo, X. Zheng, and Z. Dang, “Streaming histogram
publication over weighted sliding windows under differential privacy,”
Tsinghua Sci. Technol., vol. 29, no. 6, pp. 1674-1693, Dec. 2024.

K. Zhang et al., “Toward privacy in decentralized IoT: A blockchain-
based dual response DP mechanism,” Big Data Min. Anal., vol. 7, no. 3,
pp. 699-717, Sep. 2024.

R. Yan, Y. Zheng, N. Yu, and C. Liang, “Multismart meter data
encryption scheme based on distributed differential privacy,” Big Data
Min. Anal., vol. 7, no. 1, pp. 131-141, Mar. 2024.

Y. Wang, X. Wu, and D. Hu, “Using randomized response for differential
privacy preserving data collection,” in Proc. EDBT/ICDT Workshops,
2016, pp. 90-6778.

Y. Wang, X. Wu, and L. Wu, “Differential privacy preserving spectral
graph analysis,” in Proc. Pac.-Asia Conf. Knowl. Discovery Data Min.,
2013, pp. 329-340.

H. Jiang, S. Sarwar, H. Yu, and S. A. Islam, “Differentially private
data publication with multilevel data utility,” High-Confidence Comput.,
vol. 2, no. 2, 2022, Art. no. 100049.

W. Zhang, G. Yin, Y. Dong, F. Chen, and Q. Zia, “DPTP-LICD: A
differential privacy trajectory protection method based on latent interest
community detection,” High-Confidence Comput., vol. 3, no. 2, 2023,
Art. no. 100134.

Authorized licensed use limited to: Georgia State University. Downloaded on May 26,2025 at 19:50:02 UTC from IEEE Xplore. Restrictions apply.



XU et al.: PRIVACY-PRESERVING MULTIMODAL SENTIMENT ANALYSIS

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Z. Hu and J. Yang, “Differential privacy protection method based on
published trajectory cross-correlation constraint,” Plos One, vol. 15,
no. 8, 2020, Art. no. e0237158.

L. Ou, Z. Qin, Y. Liu, H. Yin, Y. Hu, and H. Chen, “Multiuser location
correlation protection with differential privacy,” in Proc. IEEE 22nd Int.
Conf. Parallel Distrib. Syst., 2016, pp. 422-429.

T. Zhang, T. Zhu, P. Xiong, H. Huo, Z. Tari, and W. Zhou, “Correlated
differential privacy: Feature selection in machine learning,” IEEE Trans.
Ind. Informat., vol. 16, no. 3, pp. 2115-2124, Mar. 2020.

H. Wang, Z. Xu, S. Jia, Y. Xia, and X. Zhang, “Why current differential
privacy schemes are inapplicable for correlated data publishing?” World
Wide Web, vol. 24, pp. 1-23, Jan. 2021.

V. Rastogi and S. Nath, “Differentially private aggregation of distributed
time-series with transformation and encryption,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2010, pp. 735-746.

X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet trans-
forms,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 8, pp. 1200-1214,
Aug. 2011.

W. Jiang, C. Xie, and Z. Zhang, “Wishart mechanism for differentially
private principal components analysis,” in Proc. AAAI Conf. Artif. Intell.,
2016, pp. 1730-1736.

Z. Cai, X. Zheng, J. Wang, and Z. He, “Private data trading toward range
counting queries in Internet of Things,” IEEE Trans. Mobile Comput.,
vol. 22, no. 8, pp. 4881-4897, Aug. 2023.

P. Chen, W. He, W. Ma, X. Huang, and C. Wang, “IoTDQ: An industrial
IoT data analysis library for Apache 10TDB,” Big Data Min. Anal.,
vol. 7, no. 1, pp. 2941, Mar. 2024.

Y. Zhao, J. Zhao, and E. Y. Lam, “House price prediction: A multisource
data fusion perspective,” Big Data Min. Anal., vol. 7, no. 3, pp. 603-620,
Sep. 2024.

B. Zhou, J. Liu, S. Cui, and Y. Zhao, “A large-scale spatio-temporal
multimodal fusion framework for traffic prediction,” Big Data Min.
Anal., vol. 7, no. 3, pp. 621-636, Sep. 2024.

A. Gandhi, K. Adhvaryu, S. Poria, E. Cambria, and A. Hussain,
“Multimodal sentiment analysis: A systematic review of history,
datasets, multimodal fusion methods, applications, challenges and future
directions,” Inf. Fusion, vol. 91, pp. 424-444, Mar. 2023.

M. Chen, S. Wang, P. P. Liang, T. Baltrusaitis, A. Zadeh, and
L.-P. Morency, “Multimodal sentiment analysis with word-level fusion
and reinforcement learning,” in Proc. 19th ACM Int. Conf. Multimodal
Interact., 2017, pp. 163-171.

Y. Wang, Y. Shen, Z. Liu, P. P. Liang, A. Zadeh, and L.-P. Morency,
“Words can shift: Dynamically adjusting word representations using
nonverbal behaviors,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 7216-7223.

W. Chen and Z. Li, “Octopus v3: Technical report for on-device sub-
billion multimodal Al agent,” 2024, arXiv:2404.11459.

W. Chen, Z. Li, and S. Xin, “OmniVLM: A token-compressed,
sub-billion-parameter vision-language model for efficient on-device
inference,” 2024, arXiv:2412.11475.

J. Xu et al.,, “On-device language models: A comprehensive review,”
2024, arXiv:2409.00088.

W. Chen, Z. Li, S. Xin, and Y. Wang, “Dolphin: Long context as a
new modality for energy-efficient on-device language models,” 2024,
arXiv:2408.15518v1.

M. S. Akhtar, D. S. Chauhan, D. Ghosal, S. Poria, A. Ekbal, and
P. Bhattacharyya, “Multitask learning for multimodal emotion recogni-
tion and sentiment analysis,” 2019, arXiv:1905.05812.

D. Ghosal, M. S. Akhtar, D. Chauhan, S. Poria, A. Ekbal, and
P. Bhattacharyya, “Contextual intermodal attention for multimodal sen-
timent analysis,” in Proc. Conf. Empir. Methods Natural Lang. Process.,
2018, pp. 3454-3466.

S. Poria, E. Cambria, and A. Gelbukh, “Deep convolutional neural
network textual features and multiple kernel learning for utterance-level
multimodal sentiment analysis,” in Proc. Conf. Empir. Methods Natural
Lang. Process., 2015, pp. 2539-2544.

S. Poria, E. Cambria, N. Howard, G.-B. Huang, and A. Hussain, “Fusing
audio, visual and textual clues for sentiment analysis from multimodal
content,” Neurocomputing, vol. 174, pp. 50-59, Jan. 2016.

A. Zadeh, M. Chen, S. Poria, E. Cambria, and L. Morency,
“Tensor fusion network for multimodal sentiment analysis,” 2017,
arXiv:1707.07250.

D. Hazarika, R. Zimmermann, and S. Poria, “MISA: Modality-invariant
and-specific representations for multimodal sentiment analysis,” in Proc.
28th ACM Int. Conf. Multimedia, 2020, pp. 1122-1131.

[50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

15477

A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency,
“Multimodal language analysis in the wild: CMU-MOSEI dataset and
interpretable dynamic fusion graph,” in Proc. 56th Annu. Meeting Assoc.
Comput. Linguist., 2018, pp. 2236-2246.

D. S. Chauhan, M. S. Akhtar, A. Ekbal, and P. Bhattacharyya, “Context-
aware interactive attention for multimodal sentiment and emotion
analysis,” in Proc. Conf. Empir. Methods Natural Lang. Process. 9th Int.
Joint Conf. Natural Lang. Process., 2019, pp. 5651-5661.

N. Majumder, D. Hazarika, A. Gelbukh, E. Cambria, and S. Poria,
“Multimodal sentiment analysis using hierarchical fusion with context
modeling,” Knowl. Based Syst., vol. 161, pp. 124-133, Dec. 2018.

A. Zadeh, P. P. Liang, S. Poria, P. Vij, E. Cambria, and L.-P. Morency,
“Multiattention recurrent network for human communication compre-
hension,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 5642-5649.

H. Akbari, S. Karaman, S. Bhargava, B. Chen, C. Vondrick, and
S.-F. Chang, “Multilevel multimodal common semantic space for image-
phrase grounding,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 12476-12486.

B. Zhang, H. Hu, and F. Sha, “Cross-modal and hierarchical modeling
of video and text,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp- 374-390.

S. Mai, Y. Sun, and H. Hu, “Curriculum learning meets weakly
supervised multimodal correlation learning,” in Proc. Conf. Empir.
Methods Natural Lang. Process., 2022, pp. 3191-3203.

Z. Cai and X. Zheng, “A private and efficient mechanism for data
uploading in smart cyber-physical systems,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 2, pp. 766775, Apr.—Jun. 2018.

Z. He, L. Wang, and Z. Cai, “Clustered federated learning with adaptive
local differential privacy on heterogeneous IoT data,” IEEE Internet
Things J., vol. 11, no. 1, pp. 137-146, Jan. 2024.

H. Xu, Z. Cai, and W. Li, “Privacy-preserving mechanisms for multilabel
image recognition,” ACM Trans. Knowl. Disc. Data, vol. 16, no. 4,
pp- 1-21, 2022.

X. Zheng, L. Zhang, K. Li, and X. Zeng, “Efficient publication
of distributed and overlapping graph data under differential privacy,”
Tsinghua Sci. Technol., vol. 27, no. 2, pp. 235-243, Apr. 2022.

W. Zhang, Z. Xie, A. M. V. V. Sai, Q. Zia, Z. He, and G. Yin, “A local
differential privacy trajectory protection method based on temporal and
spatial restrictions for staying detection,” Tsinghua Sci. Technol., vol. 29,
no. 2, pp. 617-633, Apr. 2024.

X. Zheng and Z. Cai, “Privacy-preserved data sharing toward multiple
parties in industrial I0Ts,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 968-979, May 2020.

D. Olson, “From utterance to text: The bias of language in speech and
writing,” Harvard Educ. Rev., vol. 47, no. 3, pp. 257-281, 1977.

A. Hyvirinen and E. Oja, “A fast fixed-point algorithm for independent
component analysis,” Neural Comput., vol. 9, no. 7, pp. 1483-1492,
Jul. 1997.

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain separation networks,” 2016, arXiv:1608.06019.

B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain
adaptation,” in Proc. AAAI Conf. Artif. Intell., 2016, pp. 2058-2065.
C. Dwork, K. Kenthapadi, F. McSherry, 1. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in Proc. Annu.
Int. Conf. Theory Appl. Cryptogr. Techn., 2006, pp. 486-503.

T. Eltoft, T. Kim, and T.-W. Lee, “On the multivariate laplace distribu-
tion,” IEEE Signal Process. Lett., vol. 13, no. 5, pp. 300-303, May 2006.
C. Liu, S. Chakraborty, and P. Mittal, “Dependence makes you vulnber-
able: Differential privacy under dependent tuples,” in Proc. NDSS, 2016,
pp. 21-24.

A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency, “Multimodal senti-
ment intensity analysis in videos: Facial gestures and verbal messages,”
IEEE Intell. Syst., vol. 31, no. 6, pp. 82-88, Nov./Dec. 2016.

W. Yu, H. Xu, Z. Yuan, and J. Wu, “Learning modality-specific represen-
tations with self-supervised multitask learning for multimodal sentiment
analysis,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 10790-10797.
W. Han, H. Chen, and S. Poria, “Improving multimodal fusion with
hierarchical mutual information maximization for multimodal sentiment
analysis,” 2021, arXiv:2109.00412.

Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal
language sequences,” in Proc. Conf. Assoc. Comput. Linguistics.
Meeting, 2019, pp. 6558-6569.

E. L. Rosenberg and P. Ekman, What the Face Reveals: Basic and
Applied Studies of Spontaneous Expression Using the Facial Action
Coding System (FACS). Oxford, U.K.: Oxford Univ. Press, 2020.

Authorized licensed use limited to: Georgia State University. Downloaded on May 26,2025 at 19:50:02 UTC from IEEE Xplore. Restrictions apply.



15478

[75] G. Degottex, J. Kane, T. Drugman, T. Raitio, and S. Scherer,
“COVAREP-a collaborative voice analysis repository for speech tech-
nologies,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2014, pp. 960-964.

[76] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pretraining
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

Honghui Xu (Member, IEEE) received the bach-
elor’s degree from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2019, and the Ph.D. degree in computer science
from Georgia State University, Atlanta, GA, USA,
in 2023.

He is currently an Assistant Professor of
Information Technology with Kennesaw State
University, Kennesaw, GA, USA. His research
focuses on trustworthy AI, communication-efficient
Al and Internet of Things.

Dr. Xu was a recipient of the Best Paper Award of the IEEE SmartData
2022 and the Outstanding Research Award from Georgia State University.

Wei Li (Member, IEEE) received the Ph.D. degree
in computer science from George Washington
University, Washington, DC, USA, in 2016, and
the M.S. degree in computer science from Beijing
University of Posts and Telecommunications,
Beijing, China, in 2011.

She is currently an Associate Professor with the
Department of Computer Science, Georgia State
University, Atlanta, GA, USA. Her current research
spans the areas of blockchain technology, security
and privacy for Internet of Things and cyber—
physical systems, secure and privacy-aware computing, big data, game theory,
and algorithm design and analysis.

Dr. Li won the Best Paper Awards in ACM MobiCom Workshop CRAB
2013 and International Conference WASA 2011. She is a member of ACM.

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 11, 1 JUNE 2025

Daniel Takabi (Member, IEEE) received the B.S.
degree in computer engineering from the Amirkabir
University of Technology, in 2004, the M.S. degree
in information technology from the Sharif University
of Technology in 2007, and the Ph.D. degree
in information science and technology from the
University of Pittsburgh in 2013.

He was an Associate Professor of Computer
Science and the Next Generation Scholar with
Georgia State University, Atlanta, GA, USA, and
was also a Founding Director of the Information
Security and Privacy: Interdisciplinary Research and Education Center which
is designated as the National Center of Academic Excellence in Cyber Defense
Research. He is currently a Professor and the Batten Endowed Chair with
the School of Cybersecurity, Old Dominion University, Norfolk, VA, USA.
His research interests include various aspects of cybersecurity and privacy,
including trustworthy Al, Information security and privacy, and usable security
and privacy.

Prof. Takabi is a member of ACM.

Daehee Seo (Member, IEEE) received the B.S.
degree in electronic and electrical engineering
from Dongshin University, Naju, South Korea, in
February 2001, and the M.S. degree in computer
science and engineering and the Ph.D. degree in
computer science from Soonchunhyang University,
Asan, South Korea, in February 2003 and February
2006, respectively.

He currently serves as an Associate Professor
with the Faculty of College of Intelligence
Information Engineering, Sangmyung University,
Seoul, South Korea. His research interests focus on cryptography, Al, bigdata,
and blockchain.

Zhipeng Cai (Fellow, IEEE) received B.S. degree
from Beijing Institute of Technology, Beijing, China,
in 2001, and the M.S. and Ph.D. degrees from the
Department of Computing Science, University of
Alberta, Edmonton, AB, Canada, in 2004 and 2008,
respectively.

He is currently a Professor with the Department of
Computer Science, Georgia State University (GSU),
Atlanta, GA, USA. Prior to joining GSU, he was
a Research Faculty with the School of Electrical
and Computer Engineering, Georgia Institute of
Technology, Atlanta. His research areas focus on Internet of Things, machine
learning, cyber-security, privacy, networking and big data.

Dr. Cai is the recipient of an NSF CAREER Award. He served as a
Steering Committee Co-Chair and a Steering Committee Member for WASA
and IPCCC. He also served as a Technical Program Committee Member
for more than 20 conferences, including INFOCOM, ICDE, and ICDCS.
He has been serving as an Associate Editor-in-Chief for High-Confidence
Computing Journal (Elsevier) and an Associate Editor for more than ten
international journals, including IEEE INTERNET OF THINGS JOURNAL,
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, and
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Authorized licensed use limited to: Georgia State University. Downloaded on May 26,2025 at 19:50:02 UTC from IEEE Xplore. Restrictions apply.



