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Abstract—Multimodal sentiment analysis plays a critical role
in numerous IoT-driven applications, such as personalized
smart assistants, healthcare monitoring systems, and intelligent
transportation networks, where accurate interpretation of user
emotions is vital for enhancing service quality. However, a
severe threat of privacy leakage in the multimodal sentiment
analysis has been overlooked by previous works. To fill this
gap, we propose a differentially private correlated represen-
tation learning (DPCRL) model to achieve privacy-preserving
multimodal sentiment analysis by combining a correlated repre-
sentation learning scheme with a differential privacy protection
scheme. Our correlated representation learning scheme aims
to achieve heterogeneous multimodal data transformation to
meet the requirements of privacy-preserving multimodal sen-
timent analysis by learning the correlated and uncorrelated
representations, where especially, a predetermined correlation
factor is employed to flexibly adjust the expected correlation
among the correlated representations. The differential privacy
protection scheme is used to obtain the disturbed correlated
and uncorrelated representations by adding Laplace noise for
ε-differential privacy. In particular, the correlation factor can
help alleviate the side-effect of the added Laplace noise on the
sentiment prediction performance. Finally, via conducting a series
of real-data experiments, we validate that our proposed DPCRL
model is superior to the state-of-the-art for privacy-preserving
multimodal sentiment analysis.

Index Terms—Differential privacy, multimodal systems, repre-
sentation learning, sentiment analysis.

I. INTRODUCTION

W
ITH the proliferation of smart infrastructures in

IoT applications, multimodal sentiment analysis has

become increasingly important for enhancing user interactions

in various scenarios, such as smart homes [1], healthcare

systems [2], and intelligent transportation [3]. Driven by

advancements in deep learning, learning-based prediction

has emerged as a promising and effective approach for
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Fig. 1. Privacy leakage in multimodal sentiment analysis in IOT-driven smart
infrastructures.

realizing multimodal sentiment analysis through the integra-

tion of multimodal data representations extracted from raw

multimedia inputs [4], [5], [6]. However, in IoT contexts

where devices continuously generate sensitive user data, these

extracted representations can be exploited by malicious attack-

ers to infer private information (e.g., user identity, behavioral

patterns, and location), leading to significant privacy risks and

potential economic losses [7], [8], [9], [10], shown in Fig. 1.

This underscores the critical need for privacy-preserving

mechanisms specifically tailored for multimodal sentiment

analysis in IoT scenarios, where ensuring data security while

maintaining system efficiency is paramount. To address this,

our work focuses on designing robust privacy-preserving mod-

els that are applicable to real-world IoT deployments, offering

a secure foundation for multimodal sentiment analysis.

In order to prevent privacy leakage from learning-

based multimodal sentiment analysis methods, a number

of privacy-preserving learning algorithms have been

proposed [11], [12], [13]. One vein of research is based

on adversarial training to generate adversarial samples

that is used as the data disturbed by noise to defend

inference attacks not only on unimodal data [14], [15] but

also on multimodal data [16], [17], [18]. Although these

adversarial training-based models are widely applied to

privacy-preserving learning schemes, they fail to provide any

performance guarantee of data privacy protection. Differential

privacy-based models [19], [20] have been developed to

guarantee data privacy protection by disturbing the data

via the addition of Laplace noise based on differential

privacy mechanisms [21], [22], [23], [24], [25]. However,

it is worth mentioning that the data correlation can be

treated as side-channel information, thus reducing the

effectiveness of differential privacy protection. As a result,
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for correlated data, the additional Laplace noise used in

differential privacy mechanisms should be enlarged with

the increase of data correlation to maintain the same

differential privacy protection degree, inevitably sacrificing

the learning performance (e.g., accuracy) [26], [27], [28].

Furthermore, to mitigate the impact of data correlation on

performance loss, the existing differentially private transform-

based approaches transform the correlated homogeneous data

into the corresponding uncorrelated data domain and then

implement differential privacy mechanisms to achieve data

privacy guarantee [29], [30], [31], [32], [33]. Nevertheless,

these existing transform-based approaches can only perform

the transformation on homogeneous data with intracorrelation

(that means data correlation within a data instance, such as

temporal correlation in a video and location correlation in a

trajectory) but are not applicable to heterogeneous data with

intercorrelation [34], [35], [36] (that means correlation among

different data instances, such as data correlation between two

texts and data correlation between a video and an audio).

This is because the transformation schemes in the previous

works, including discrete Fourier transform (DFT), wavelet

transform (WT), and principle component analysis (PCA),

can only process the correlated homogeneous data to generate

uncorrelated representations. Therefore, it is still a challenging

task to generate privacy-preserving representations of the

correlated heterogeneous multimodal data while maintaining

the performance of multimodal sentiment analysis.

Motivated by the above analysis, in this article, we devise

a novel model, named differentially private correlated repre-

sentation learning (DPCRL), to generate privacy-preserving

multimodal representations for multimodal sentiment analysis

by integrating a correlated representation learning scheme

and a differential privacy protection scheme. The correlated

representation learning scheme is designed as a heterogeneous

multimodal data transformation strategy to learn the corre-

lated and uncorrelated multimodal representations, in which

a correlated factor can be predetermined to flexibly adjust

the expected correlation among the correlated multimodal

representations. The differential privacy protection scheme

is further applied to generating the disturbed correlated and

uncorrelated representations by adding Laplace noise for

satisfying ε-differential privacy. More specifically, a proper

correlation factor can be set in our DPCRL model to extract the

correlated representations with a relatively lower correlation,

thus mitigating the side-effect of the additional Laplace noise

on sentiment prediction performance. Finally, we evaluate the

effectiveness of our DPCRL model on real-world datasets

by conducting comprehensive experiments. Our multifold

contributions are addressed as follows.

1) To the best of our knowledge, this is the first work to

design privacy-preserving multimodal sentiment analysis

model.

2) Our proposed DPCRL model seamlessly combines

a correlated representation learning scheme with a

differential privacy protection scheme, aiming at simul-

taneously ensuring ε-differential privacy and retaining

the performance of multimodal sentiment analysis.

3) In our correlated representation learning scheme, the

heterogeneous multimodal data transformation can be

accomplished by learning the correlated and uncorre-

lated multimodal representations from multimodal data

for sentiment prediction, and the expected correlation

of correlated representations can be flexibly set via a

correlation factor.

4) Comprehensive experiments are well conducted to val-

idate the advantages of our DPCRL model over the

state-of-the-art for privacy-preserving multimodal senti-

ment analysis.

The remainder of this article is organized as follows.

The related works are briefly summarized in Section II. We

elaborate the details of our model in Section III, and then

conduct real-data experiments and analyze all the results in

Section IV. Finally, we end up with a conclusion in Section V.

II. RELATED WORKS

In this section, we summarize the related works on

multimodal sentiment analysis and review the current main-

stream privacy-preserving learning approaches.

A. Multimodal Sentiment Analysis

The current landscape of multimodal sentiment analysis

research reflects a growing interest and significant progress

in the field [37]. Researchers have increasingly recognized

the value of leveraging multiple modalities [38], [39], [40],

[41], [42], [43], such as text, audio, and video, to cap-

ture rich and nuanced expressions of sentiment [44], [45].

A variety of approaches have been explored, ranging from

traditional machine learning techniques [46], [47] to deep

learning architectures [48], [49], each with its strengths

and limitations. Recent studies have focused on develop-

ing more sophisticated multimodal fusion methods [50]

to effectively integrate information from diverse modali-

ties [51]. Despite these advancements, challenges, such as

multimodal alignment [52] and data heterogeneity [53] persist,

motivating ongoing research into novel methodologies and

solutions. These approaches can be categorized into modal-

ity interaction-based, modality transformation-based, and

modality similarity-based methods. Interaction-based methods

explore dynamic interplays between modalities to utilize

complementary information [52], while transformation-based

approaches [54], [55] transform modalities into a common

feature space for unified analysis. Additionally, similarity-

based schemes [56] focus on modality correlations to enhance

sentiment analysis. These foundational methodologies inform

our work, where we introduce a correlation factor within

a differential privacy framework, a novel integration that

strategically manipulates modality correlations to balance data

utility and privacy in MSA, filling a specific gap not directly

addressed by existing studies.

B. Privacy-Preserving Learning Approaches

Currently, adversarial training-based models, differential

privacy-based approaches, and differentially private transform-

based methods are the mainly popular techniques used in

machine learning for data privacy protection.

1) Adversarial training-based models are exploited to gen-

erate adversarial samples that are taken as the data

Authorized licensed use limited to: Georgia State University. Downloaded on May 26,2025 at 19:50:02 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: PRIVACY-PRESERVING MULTIMODAL SENTIMENT ANALYSIS 15469

disturbed by noise to defend learning-based inference

attacks not only for unimodal data [14], [15], [57] but

also for multimodal data [17], [18]. Although the adver-

sarial training is relatively attractive to be employed

in privacy-preserving learning schemes owing to its

convenience and efficiency, it cannot ensure a privacy

protection guarantee.

2) Differential privacy-based approaches are proposed to

provide a theoretical guarantee of data privacy pro-

tection by adding Laplace noise based on differential

privacy mechanisms [22], [58], [59], [60], [61], [62].

In particular, for the correlated data, the added Laplace

noise should be increased with the growth of data

correlation so as to ensure the theoretical guarantee of

data privacy protection [28], which however, sacrifices

the performance (e.g., accuracy) of learning models.

3) Differentially private transform-based methods trans-

form the correlated data into the corresponding

uncorrelated data domain and then apply differential

privacy mechanisms to preserve data privacy [29], [32],

where the side-effect of the larger Laplace noise on

learning performance can be eliminated due to the dis-

appearance of data correlation after data transformation.

Unfortunately, these existing transform-based methods can

only be used to transform the homogeneous data with intra-

correlation into independent (uncorrelated) data domain but

cannot be applied to the heterogeneous multimodal data with

intercorrelation.

In this article, a novel DPCRL model is proposed to ensure

differential privacy while maintaining the performance of

multimodal sentiment analysis. In DPCRL, the heterogeneous

multimodal data transformation can be achieved by learning

the correlated and uncorrelated multimodal representations,

where especially, a predetermined correlation factor can be

used to adjust the expected correlation of the correlated

representations. More importantly, a proper correlation factor

can help mitigate the side-effect of the added Laplace noise

on sentiment prediction performance.

III. METHODOLOGY

In this section, we elaborate on the details of our proposed

DPCRL model. As shown in Fig. 2, the DPCRL model is

made up of five components, including a feature extraction

module, an encoding module, a decoding module, a differential

privacy protection module, and a privacy-preserving senti-

ment prediction module. First, a feature extraction scheme is

designed to extract features from video, audio, and language

modalities. Second, in the encoding module, we use the cor-

related and uncorrelated multimodal representation encoders

to learn the correlated and uncorrelated multimodal represen-

tations from the extracted features, where a correlation factor

is used in the correlated multimodal representation encoders

to obtain the correlated multimodal representations. Third,

the decoding module is devised to reconstruct the extracted

features by decoding the correlated and uncorrelated represen-

tations in each modality, which helps the encoding module

avoid encoding the unrepresentative vector in each modality.

This autoencoding architecture of the correlated representation

learning actually works as a heterogeneous multimodal data

transform scheme in DPCRL. Fourth, a differential privacy

protection scheme is leveraged to obtain privacy-preserving

representations by adding Laplace noise to the correlated and

uncorrelated representations learned from the previous autoen-

coding architecture. Finally, these perturbed representations

are put into the privacy-preserving sentiment prediction mod-

ule to accomplish the privacy-preserving multimodal sentiment

analysis task.

For real-world implementation, the first four components

in DPCRL should be deployed on the users’ device side,

and the final one should be implemented on the server side.

When running DPCRL, the first four components are executed

on the users’ device side to generate the privacy-preserving

representations, which will be transmitted to the server side

for the final prediction using the final component. DPCRL can

help users avoid privacy leakage caused by attackers who can

leverage the eavesdropped representations during transmission

to infer the raw users’ sensitive data via some effective deep

learning attack models, such as the membership inference

attack and the inversion attack. In the following, we introduce

these five modules in DPCRL one by one.

A. Feature Extraction

Each video is segmented into utterances, each of which is a

unit of speech bounded by breaths or pauses [63]. An utterance

comprises a sequence of visual modality data denoted as

Uv ∈ R
Tv×dv , a sequence of acoustic modality data denoted

as Ua ∈ R
Ta×da , and a sequence of language modality data

denoted Ul ∈ R
Tl×dl , where Tm (m ∈ {v, a, l}) represents

the length of an utterance, and dm represents the number

of dimensions of the modality data. For feature extraction,

the stacked bidirectional long short-term memory scheme

(sLSTM) [64] is exploited to map Um ∈ R
Tm×dm into a feature

vector fm ∈ R
dh (m ∈ {v, a, l}) with dh being the size of hidden

states set in the sLTSM model

fm = sLSTM(Um; θ slstm
m ) (1)

where θ lstm
m represents the parameters of sLSTM.

B. Encoding

In the encoding process, the visual/acoustic/language

modality data is processed by taking into account the following

three requirements.

1) For each feature vector fm (m ∈ {v, a, l}), its correlated

and uncorrelated representations should capture two

distinctive aspects of the same modality data.

2) Any two of the uncorrelated representations of fv, fa,

and fl should be distinctive without redundancy.

3) The correlation between any two of the correlated

representations of fv, fa, and fl should be close to the

correlation factor c as much as possible.

First, as shown by domain separation networks [65], each

feature vector fm can be projected to two distinct types

of representations. Thus, given fm, we use the correlated
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Fig. 2. Data flow of our DPCRL model.

multimodal representation encoder Ec
m to extract the corre-

sponding correlated representation fc
m ∈ R

dh and employ the

uncorrelated multimodal representation encoder Eu
m to capture

the corresponding uncorrelated representation fu
m ∈ R

dh

fc
m = Ec

m(fm; θc
m, c) (2)

fu
m = Eu

m(fm; θu
m) (3)

where θc
m represents the parameters of the encoder Ec

m, θu
m rep-

resents the parameters of the encoder Eu
m, and c represents an

expected correlation factor that is set to obtain the correlated

representations with the expected correlation.

The orthogonality constraint can be used to achieve nonre-

dundancy between two representations. Therefore, to satisfy

the first and the second requirements of encoding, we formu-

late the data orthogonality loss, Lenc1

Lenc1
=

∑

m∈{v,a,l}

||fc
m

T fu
m||2F +

∑

m�=m′∈{v,a,l}

||fu
m

T fu
m′ ||

2
F (4)

where || · ||2F is the squared Frobenius norm.

Then, inspired by the idea of [66], we use the cosine

distance to quantify the correlation between two correlated

representations. Considering the third requirement of encod-

ing, we define the data correlation loss, Lenc2

Lenc2
=

∑

m�=m′∈{v,a,l}

||fc
m

T fc
m′ − cI||2F (5)

where c ∈ [0, 1] is a correlation factor that indicates the

cosine distance between two representations, and I denotes the

identity matrix. To sum up, the entire encoding loss function

Lenc is the summation of Lenc1
in (4) and Lenc2

in (5), shown

in

Lenc = Lenc1
+ Lenc2

. (6)

C. Decoding

Since an encoder function may output an unrepresentative

vector that cannot be recovered, we design a decoder D to

reconstruct the original feature vector by using the extracted

correlated and uncorrelated representations (i.e., fc
m and fu

m) in

each modality. The decoder D is defined in (7) to ensure that

the encoded representations indeed represent the details of the

corresponding modality data [4], [49]

fm = D(fc
m + fu

m; θd) (7)

where fm is the reconstructed feature vector for m ∈ {v, a, l},

and θd represents the parameters of the decoder D. In the

decoding process, the reconstruction loss, Ldec, is measured

by mean-squared error as below

Ldec =
∑

m∈{v,a,l}

||fm − fm||22
dh

(8)

where || · ||22 denotes the squared L2-norm.

Finally, the correlated representation learning can be

achieved through the autoencoding architecture that is

the combination of the encoders and the decoders.

Correspondingly, the loss function of the correlated representa-

tion learning process, LCRL, is the summation of the encoding

loss Lenc in (6), and the decoding loss Ldec in (8), i.e.,

LCRL = ³Lenc + ´Ldec (9)

where ³ ∈ (0, 1] and ´ ∈ (0, 1] are the weights of

loss functions. We minimize LCRL to obtain the correlated

and uncorrelated multimodal representations for multimodal

sentiment analysis.

D. Differential Privacy Protection Scheme

After obtaining the correlated and uncorrelated representa-

tions through our proposed correlated representation learning,
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we implement the differential privacy mechanisms to generate

privacy-preserving representations for multimodal sentiment

analysis. To be specific, in our differential privacy protec-

tion scheme, the representations captured by our proposed

correlated representation learning and the privacy-preserving

representations are considered as the neighboring databases

in the differential privacy theory. In the following, we apply

different differential privacy mechanisms to the correlated and

uncorrelated representations.

First, according to basic differential privacy mecha-

nism [67], we can calculate the perturbed uncorrelated

representation f̂u
m = fu

m + Lap(0, Sfu
m
/ε) by using an additional

Laplace noise to satisfy ε-differential privacy, where Sfu
m

rep-

resents the global sensitivity of the uncorrelated representation

vector fu
m and is equal to the difference between the maximal

and the minimal items in fu
m.

Theorem 1: Given the Laplace noise Lap(0, Sfu
m
/ε) added

into the uncorrelated representation vector fu
m, the disturbed

uncorrelated representation vector f̂u
m satisfies ε-differential

privacy.

Proof: Let Pr [ · ] be a commonly designed Laplace

distribution [68]. Accordingly, we have

ln
Pr [fu

m]

Pr [f̂u
m]

= ln

ε
2Sfum

e
− ε

Sfum

|fu
m|

ε
2Sfum

e
− ε

Sfum

|f̂u
m|

=
ε

Sfu
m

(|f̂u
m| − |fu

m|) ≤ ε. (10)

Equation (10) shows that the disturbed uncorrelated repre-

sentation vector f̂u
m satisfies ε-differential privacy.

Second, we use correlated differential privacy mech-

anism [69] to achieve the correlated representations’

ε-differential privacy by adding Laplace noise. In this article,

we use the non-negative cosine distance Cos(·, ·) ∈ [0, 1] to

measure the correlation among representations, where a higher

cosine distance value means a larger correlation, and a lower

cosine distance value indicates a smaller correlation. Then, we

can compute the perturbed correlated representation f̂c
m as

f̂c
m = fc

m + Lap

⎛

¿0,
∑

m′∈{v,a,l}

Cos(fc
m, fc

m′)Sfc
m
/ε

À

⎠ (11)

where Sfc
m

is the global sensitivity of the uncorrelated repre-

sentation vector fc
m and is equal to the difference between the

maximal and the minimal items in fc
m, and Cos(fc

m, fc
m′) is used

as the correlation coefficient between fc
m and fc

m′ .

Theorem 2: By adding the Laplace noise Lap(0,
∑

m′∈{v,a,l}

Cos(fc
m, fc

m′)Sfc
m
/ε) into the correlated representation vector fc

m,

the output perturbed correlated representation vector f̂c
m meets

ε-differential privacy.

Proof: In accordance with [69], we define QSfc
m

=
∑

m′∈{v,a,l} Cos(fc
m, fc

m′)Sfc
m

as the correlated global sensitivity

of the correlated representation vector fc
m. Similar to the

proof of Theorem 1, let Pr [ · ] be the Laplace distribution.

Accordingly, there is

ln
Pr [fc

m]

Pr [f̂c
m]

= ln

ε
2QSfcm

e
− ε

QSfcm

|fc
m|

ε
2QSfcm

e
− ε

QSfcm

|f̂c
m|

=
ε

QSfc
m

(|f̂c
m| − |fc

m|) ≤ ε. (12)

Equation (12) indicates that the perturbed correlated repre-

sentation vector f̂c
m meets ε-differential privacy.

Notably, for f̂c
m, the added Laplace noise can be lower if

the value of Cos(fc
m, fc

m′) is decreased, which can mitigate the

side-effect of the Laplace noise on the sentiment prediction

performance. On the other hand, as shown in Lenc2
, the

correlation between fc
m and fc

m′ can be adjusted by changing

the value of c in our correlated representation learning process,

which makes the generation of privacy-preserving representa-

tions more flexible.

E. Privacy-Preserving Sentiment Prediction

Following the fusion idea of [49], the outputs of the afore-

mentioned differential privacy protection scheme, including f̂c
v,

f̂c
a, f̂c

l , f̂u
v , f̂u

a, and f̂u
l , are fused into a joint vector f̂out ∈ R

dout

through simple concatenation. Then, the prediction function G

is applied to the privacy-preserving prediction task with f̂out

as the input

ŷ = G(f̂out; θout) (13)

where ŷ is the predicted label vector corresponding to f̂out, and

θout denotes the parameters of the prediction function.

We use cross-entropy loss to calculate the loss of the

privacy-preserving sentiment prediction task in

Ltask = −
1

n

n
∑

i=0

yi · log(ŷi) (14)

in which Ltask is the prediction loss, n represents the number

of utterances in a training batch, yi is the ith ground-truth

label, and ŷi is the ith predicted label.

Consequently, to learn the privacy-preserving correlated

and uncorrelated multimodal representations for the privacy-

preserving multimodal sentiment analysis, the overall loss

function of DPCRL, LDPCRL, should consist of the encoding

loss Lenc in (6), the decoding loss Ldec in (7), and the privacy-

preserving prediction loss Ltask in (14) as formulated by

LDPCRL = ³Lenc + ´Ldec + µLtask (15)

where ³, ´, µ ∈ (0, 1] are the weights of the loss functions.

Our DPCRL model can be learnt by minimizing LDPCRL. The

specific network architectures of the encoders, Ec
m and Eu

m, the

decoder D, and the prediction function G used in the DPCRL

model are described in Section IV-A4.

IV. EXPERIMENTS

In this section, we first introduce our experiment settings

and then present comprehensive experimental results to

validate the superiority of our proposed DPCRL model
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(a)

(b)

(c)

Fig. 3. Comparison results of DPCRL with different c on MOSI dataset (versus baselines). (a) Evaluation results of Acc-2 (Neg/Non-neg) on MOSI dataset
(DPCRL with different c and ε and baselines). (b) Evaluation results of Acc-2 (Neg/Pos) on MOSI dataset (DPCRL with different c and ε and baselines).
(c) Evaluation results of Acc-7 on MOSI dataset (DPCRL with different c and ε and baselines).

(a)

(b)

(c)

Fig. 4. Comparison results of DPCRL with different c on MOSEI dataset (versus baselines). (a) Evaluation results of Acc-2 (Neg/Non-neg) on MOSEI
dataset (DPCRL with different c and ε and baselines). (b) Evaluation results of Acc-2 (Neg/Pos) on MOSEI dataset (DPCRL with different c and ε and
baselines). (c) Evaluation results of Acc-7 on MOSEI dataset (DPCRL with different c and ε and baselines).

over the state-of-the-art for privacy-preserving multimodal

sentiment analysis. The codes of our model and all experi-

mental results in this article can be found at https://github.

com/ahahnut/DPCRL-for-Privacy-Preserving-Multimodel-

Sentiment-Analysis.

A. Experimental Settings

The datasets, baselines, performance metrics, network archi-

tectures, and hyperparameter settings are described below.

1) Datasets: We use two benchmark datasets in our experi-

ments for multimodal sentiment analysis. CMU-MOSI (MOSI)

dataset [70] is a collection of YouTube monologues consist-

ing of 2198 subjective video segments (utterances), where

speakers express their opinions on topics, such as movies.

Each utterance is manually annotated with an integer opinion

score in [−3, 3], where −3 and 3 represent the strongest

negative and the strongest positive sentiments, respectively.

CMU-MOSEI (MOSEI) dataset [50] contains 23 453 annotated
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video segments and is an improvement of MOSI with a

larger number of utterances and a greater variety in samples,

speakers, and topics.

2) Baseline: MISA [49], Self-MM [71], and MMIM [72]

are the currently pioneering models on both MOSI and MOSEI

datasets for multimodal sentiment analysis. MISA with dif-

ferential privacy (MISA-DP) is a simple combination of the

differential privacy mechanism and MISA to obtain differen-

tially private representations for sentiment prediction while

guaranteeing privacy protection. MISA, Self-MM, MMIM,

and MISA-DP are adopted as baseline mechanisms for

performance comparison.

3) Performance Metrics: The task of sentiment prediction

on MOSI and MOSEI can be treated as a classification process

and evaluated via integer classification scores in [−3, 3]

that are so-called seven-class accuracy (Acc-7) [70]. Besides,

two approaches of computing binary accuracy (Acc-2) can

be also adopted to measure the performance of sentiment

prediction. The first one is negative/non-negative (Neg/Non-

neg) classification, where the non-negative labels are indicated

by non-negative classification scores [53]. The second one is

calculated based on negative/positive (Neg/Pos) classes, where

the negative and the positive classes are indicated by the

negative and the positive scores, respectively [73]. To sum up,

Acc-2 (Neg/Non-neg), F1 (Neg/Non-neg), Acc-2 (Neg/Pos),

F1 (Neg/Pos), and Acc-7 are used as performance metrics in

our experiments.

4) Neural Network Architectures: In our proposed DPCRL

model, the neural network architectures of the feature extrac-

tion, encoding, decoding, and sentiment prediction modules

are described below.

1) Feature Extraction: Facial action coding system

(FACS) [74] is applied to extract facial expression

features that include facial action units and face pose.

An acoustic analysis framework (COVAREP) [75]

is employed to extract the acoustic features that

contain 12 Mel-frequency cepstral coefficients, pitch,

voiced/unvoiced segmenting features, glottal source

parameters, and other features related to emotions and

the tone of speech. The pretrained BERT [76] is

utilized as the feature extractor for textual utterance.

Accordingly, the visual feature dimension is dv = 47,

the acoustic feature dimension is da = 74, and the

textual feature dimension is dl = 784. Furthermore, in

order to align the multimodal features for our encoding

process, we exploit one fully connected layer with

ReLU activation function and one normalization layer

to embed these features into a space with the same

dimension.

2) Encoding: The correlated multimodal representation

encoder Ec
m is built by using one fully connected

layer with sigmoid activation function to extract the

correlated representations. The uncorrelated multimodal

representation encoder Eu
m is designed through one fully

connected layer with sigmoid activation function to

extract the uncorrelated representations. To be specific,

there are three encoders to learn the correlated repre-

sentations and three encoders to learn the uncorrelated

representations. Although these encoders have the same

structure, their parameters are updated differently during

training process to learn correlated and uncorrelated

representations.

3) Decoding: The decoder D is established as one fully

connected layer for reconstruction to avoid learning

unrepresentative vector of data in the encoding process.

4) Sentiment Prediction: In the prediction function G, one

Transformer encoder layer is used for transformation,

one fully connected layer with a dropout layer plus a

ReLU activation function is used for fusion, and one

fully connected layer is used to map all representations

into one dimension for final prediction.

5) Hyperparameter Settings: Our experiments are con-

ducted on Ubuntu OS with a Nvidia Tesla V100 GPU and

16 GB RAM. The batch size of samples for training MOSI

and MOSEI datasets are 64 and 16, respectively. The learning

rate of training is set as 10−4. The probabilities of dropout in

the dropout layer for training MOSI and MOSEI datasets are

0.5 and 0.1, respectively. Via comprehensive ablation study,

the weights of loss functions are set as ³ = 0.45, ´ = 0.1, and

µ = 0.45 for training the MOSI dataset with 500 epochs, and

the weights of loss functions are set to be ³ = 0.35, ´ = 0.3,

and µ = 0.35 for training the MOSEI dataset with 500 epochs.

Besides, we vary the correlation factor c from 0 to 1 with

the step of 0.1 to illustrate the effectiveness of our correlated

representation learning model and set the privacy budget ε ∈

{1.0, 1.5, 2.0, 2.5, 3.0} to evaluate our DPCRL model.

B. Evaluation on Our DPCRL Model

In our proposed DPCRL model, there are two system

parameters, ε and c. The value of ε, which is so-called “privacy

budget,” indicates the degree of privacy protection. A smaller

ε implies a higher degree of data privacy protection. We

implement our DPCRL model with ε = 1.0, 1.5, 2.0, 2.5, 3.0

on datasets, which is reasonable and applicable in real appli-

cations for privacy protection based on the differential privacy

mechanisms. The value of c represents the expected correlation

among the learned correlated representations. A larger c

implies a closer correlation among the correlated representa-

tions. In our experiments, we set c = 0.1, 0.2, 0.3, 0.4, 0.5

with the following considerations.

1) From Tables II and III, the prediction performance

of our correlated representation learning scheme with

c = 0.0 is worse than that of the state-of-the-art (MISA).

Therefore, it may not be suitable to set c = 0.0 when

we aim to maintain prediction performance as much as

possible while ensuring differential privacy protection.

2) We attempt to learn the correlated representations with

a relatively lower value of c so as to decrease the

side-effect of the additional Laplace noise on prediction

performance.

In Fig. 3, we compare the Acc-2 (Neg/Non-neg) results of our

DPCRL model and the baseline models on the MOSI dataset.

We take Acc-2 (Neg/Non-neg) of DPCRL with c = 0.1 as an

example to illustrate the effectiveness of our proposed DPCRL

model as follows.
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1) By comparing the Acc-2 (Neg/Non-neg) values, it can

be found that the performance of DPCRL is comparable

to that of baselines (including MISA, Self-MM, and

MMIM), which indicates that our DPCRL model can

maintain the performance of sentiment analysis while

satisfying differential privacy guarantee.

2) By comparing Acc-2 (Neg/Non-neg) values of MISA-

DP and DPCRL with a same value of ε, we can see

that the Acc-2 (Neg/Non-neg) values of our proposed

DPCRL model are much higher than those of the

baseline model MISA-DP which uses the invariant data

representations with the correlation c = 1.0.

That is, with the same privacy budget ε, our DPCRL model

outperforms MISA-DP from the aspect of maintaining the

sentiment prediction performance. The main reason is that

our correlated representation learning scheme used in DPCRL

can be leveraged to learn the correlated representations with

a relatively lower correlation factor, mitigating the side-effect

of the additional Laplace noise on the sentiment analysis.

For a comprehensive demonstration, we present Acc-2

(Neg/Pos), F1 (Neg/Non-neg, Neg/Pos), and Acc-7 of our

DPCRL model and the baselines on the MOSI dataset in

Fig. 3. Additionally, for the MOSEI dataset, the values of

Acc-2 (Neg/Non-neg, Neg/Pos), F1 (Neg/Non-neg, Neg/Pos),

and Acc-7 of our DPCRL model and baselines are presented

in Fig. 4.

Based on the above analysis, we obtain the following critical

conclusions.

1) Our proposed DPCRL model is effective to accomplish

privacy-preserving multimodal sentiment analysis with

providing ε-differential privacy guarantee.

2) By setting a correlation factor as input, our DPCRL

model can realize heterogeneous multimodal data trans-

formation that satisfies our learning expectation.

3) A smaller value of the correlation factor can help reduce

Laplace noise added in ε-differential privacy mecha-

nisms, mitigating the loss of prediction performance.

4) Compared with the state-of-the-art, our DPCRL

model can effectively maintain and even enhance the

performance of sentiment prediction while ensuring

ε-differential privacy.

Furthermore, more experiments are conducted using an

NVIDIA V100-16GB GPU and an AMD 64-Core CPU. This

hardware configuration ensures that both our DPCRL model

and the baselines are operated under the same conditions for

a fair comparative analysis. We evaluate the computational

cost based on running time in each training epoch, memory

usage, and CPU/GPU utilization. These metrics are critical

for assessing the impact of differential privacy mechanisms on

model efficiency and resource consumption. The results are

summarized in Table I, which indicates that our DPCRL incurs

a 16.7% increase in running time compared to the fastest

baseline (MMIM), demonstrating the additional time required

for processing privacy-preserving mechanisms. The memory

usage in our proposed DPCRL is 8.3% higher than the least

memory-intensive baseline (MISA), which reflects the extra

memory is required for handling DP operations. Compared to

the baseline with the lowest CPU/GPU utilization (MISA), the

TABLE I
COMPUTATIONAL COST COMPARISON AMONG DPCRL AND BASELINES

(a) (b)

Fig. 5. Impact of expected data correlation c on trained data correlation e.
(a) Trained data correlation in MOSI dataset. (b) Trained data correlation in
MOSEI dataset.

(a)

(b)

Fig. 6. Impact of expected data correlation c on prediction results of CRL.
(a) Prediction results of CRL on MOSI dataset. (b) Prediction results of CRL
on MOSEI dataset.

increase in CPU utilization is 11.4% and the increase in GPU

utilization is 12.5%.

C. Ablation Study

We first train our scheme by changing the correlation factor

c from 0 to 1 with the step of 0.1 to validate that c can

help achieve effective heterogeneous multimodal data transfor-

mation satisfying the requirements for multimodal sentiment

analysis. When the training process terminates, the correlation

coefficient among the trained correlated representations is

denoted by e. Since c, e ∈ [0, 1] are the cosine values, we

can calculate the angle degree, dc, corresponding to c and

the angle degree, de, corresponding to e. That is, c and dc

imply our expected data correlation, and e and de are our

trained data correlation. The difference between our expected

and trained data correlation can reflect the effectiveness of

our proposed correlated representation learning scheme. To

clearly investigate the impact of c on the performance of

sentiment prediction, we compute Acc-2 (Neg/Non-neg), F1

(Neg/Non-neg), Acc-2 (Neg/Pos), F1 (Neg/Pos), and Acc-7 on

the learned correlated and uncorrelated representations.

Table II presents the values of c, dc, e, and de when the

correlated representation learning scheme is implemented on
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TABLE II
EVALUATION RESULTS OF CORRELATED REPRESENTATION LEARNING SCHEME ON MOSI DATASET

TABLE III
EVALUATION RESULTS OF CORRELATED REPRESENTATION LEARNING SCHEME ON MOSEI DATASET

the MOSI dataset. By comparing these values, one can see that

the expected data correlation is very close to the corresponding

trained data correlation. For examples, e = 0.1183 when

c = 0.1, and e = 0.2093 when c = 0.2. For a more explicit

comparison, we plot Fig. 5(a), to examine the impact of c on e,

from which we can also observe that e is nearly equal to c. The

results of Table II and Fig. 5(a), confirm that in our correlated

representation learning scheme, the utilization of c is effective

to accomplish our expected heterogeneous multimodal data

transformation. When implementing our correlated represen-

tation learning scheme on the MOSEI dataset, we can obtain

the same conclusion through Table III and Fig. 5(b).

Additionally, the multimodal representations learned from

our correlated representation learning scheme are exploited to

evaluate the performance of sentiment analysis in terms of

Acc-2 (Neg/Non-neg), F1 (Neg/Non-neg), Acc-2 (Neg/Pos),

F1 (Neg/Pos), and Acc-7. These experimental results on MOSI

dataset are presented in Table II. Take the values of Acc-2

(Neg/Non-neg) as an example for analysis as follows.

1) The values of Acc-2 (Neg/Non-neg) obtained via MISA,

Self-MM, and MMIM are 0.7857, 0.783, and 0.799,

respectively. While, the value of Acc-2 (Neg/Non-

neg) obtained in our correlated representation learning

scheme falls in [0.7653, 0.8163] when the value of c

varies from 0 to 1 with the step of 0.1. Especially,

when c = 0.5 (i.e., the angle degree is dc = 60◦), the

value of Acc-2 (Neg/Non-neg) reaches 0.8163. Thus, we

can conclude that our correlated representation learning

scheme and the baselines (including MISA, Self-MM,

and MMIM) have comparable performance in terms of

Acc-2 (Neg/Non-neg).

2) For our correlated representation learning scheme, the

value of Acc-2 (Neg/Non-neg) increases with the growth

of c when c ∈ [0.0, 0.5], which indicates that the

increased similarity among representations is helpful to

improve the performance of sentiment prediction.

3) In our correlated representation learning scheme, the

value of Acc-2 (Neg/Non-neg) gradually decreases

with the growth of c when c ∈ [0.6, 1.0], which

implies that the decreased diversity among representa-

tions degrades the performance of sentiment prediction.

4) The correlation factor c can be used to balance the trade-

off between representation similarity and representation

diversity for improving multimodal sentiment analysis

performance.

Similarly, by analyzing the results of F1 (Neg/Non-neg), Acc-

2 (Neg/Pos), F1 (Neg/Pos), and Acc-7 on the MOSI dataset

in Table II, we can draw the same conclusions. In order to

explicitly show the impact of c on sentiment prediction, we

present the results of Acc-2 (Neg/Non-neg), F1 (Neg/Non-

neg), Acc-2 (Neg/Pos), F1 (Neg/Pos), and Acc-7 on the MOSI

dataset in Fig. 6(a), for comparison. Moreover, as shown in
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TABLE IV
ABLATION STUDY OF CORRELATED REPRESENTATION LEARNING

SCHEME ON MOSI DATASET

TABLE V
ABLATION STUDY OF CORRELATED REPRESENTATION LEARNING

SCHEME ON MOSEI DATASET

Table III and Fig. 6(b), the experimental results on the MOSEI

dataset can also confirm our aforementioned analysis.

Then, we present more ablation study of our correlated

representation learning model trained with the correlation

factor c = 0.5 and the default hyperparameter settings. In

Tables IV and V, we show the results of ablation study on

the MOSI dataset and the MOSEI dataset, respectively. By

comparing these results, it is clear that the incorporation of

the correlated and uncorrelated multimodal representations

can obtain the best performance of the multimodal sentiment

analysis, which verifies the effectiveness of our model design.

V. CONCLUSION

In this article, we proposed a DPCRL model designed to

address privacy-preserving challenges in multimodal senti-

ment analysis, particularly within IoT scenarios. The DPCRL

model integrates a novel correlated representation learning

scheme with a differential privacy protection scheme, making

it suitable for IoT-driven applications, such as smart assistants,

healthcare monitoring, and intelligent transportation systems.

Our DPCRL model consists of a novel correlated represen-

tation learning scheme and a differential privacy protection

scheme. The correlated representation learning scheme can

achieve heterogeneous multimodal data transformation to learn

correlated and uncorrelated representations for multimodal

sentiment prediction while reducing privacy leakage. The

differential privacy protection scheme can produce the per-

turbed correlated and uncorrelated representations through

inserting Laplace noise for ε-differential privacy. In our

DPCRL model, a correlation factor is employed to learn

the correlated representations for mitigating the side-effect

of the additional Laplace noise on the sentiment prediction

performance. Finally, the experiment results can confirm that

our proposed DPCRL model outperforms the state-of-the-art

in the performance of multimodal sentiment prediction and

data privacy protection.
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