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Abstract

Current recommendation systems recommend goods by consider-
ing users’ historical behaviors, social relations, ratings, and other
multi-modals. Although outdated user information presents the
trends of a user’s interests, no recommendation system can know
the users’ real-time thoughts indeed. With the development of
brain-computer interfaces, it is time to explore next-generation
recommenders that show users’ real-time thoughts without delay.
Electroencephalography (EEG) is a promising method of collecting
brain signals because of its convenience and mobility. Currently,
there is only few research on EEG-based recommendations due to
the complexity of learning human brain activity. To explore the
utility of EEG-based recommendation, we propose a novel neural
network model, QUARK, combining Quantum Cognition Theory
and Graph Convolutional Networks for accurate item recommenda-
tions. Compared with the state-of-the-art recommendation models,
the superiority of QUARK is confirmed via extensive experiments.
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1 Introduction

Brain-computer interface (BCI) is an emerging field attracting re-
search institutions and industries in the areas of motor imagery
classification [34], emotion recognition [29], disease diagnosis and
detection [33], music imagery [32, 38], and other tasks [3]. As one of
the BCIs, non-invasive electroencephalography (EEG) has become
popular and is commonly used own to its convenience and mobility.
EEG measures electrical activities in human brains and reflects peo-
ple’s real-time thoughts and feelings about something. Although
thought is a very vague concept, EEG digitizes thoughts by captur-
ing the information indicating individuals’ reflections about what
they see, think, feel, hear, etc. Such learnt “thoughts" about items
then can be treated as inputs to predict what to recommend as
shown in Figure 1. In this paper, we focus on the utilization of EEG
signals for item recommendation, which has not been addressed in
literature.

Over the past decades, recommendation systems have become
society’s critical infrastructures in retail, online shopping, enter-
tainment, advertising, finance, etc. against the era of information
explosion [11, 26], in which historical information (such as user
behaviors, attributes of the items, social relationships, and multi-
modals [9, 18]) is commonly exploited to predict user preference.
Although historical information depicts the trends of a user’s behav-
ior, a user may change the mind from time to time. Therefore, it is
in the desired need of a real-time thinking-based recommendation
method for the next-generation recommendation — EEG-based rec-
ommendation will be able to fill the research blank as well as bring
a brand new enhanced user experience to advance personalized ser-
vice provision. For examples, (i) personalized product/Ad placement
based on user thoughts in VR games [5, 43] when a user is looking
at some products; (ii) friends or instructions recommendation in
augmented reality [28] when a person has thoughts on physical
items; (iii) online shopping to skip search [15] as the experience
of “freshness" is always the primary consumption force; and (iv)
music/movie recommendation [17] using the truest feelings.

Moreover, different from traditional data, EEG signals contain
mixed brain reflections that are hard to be split from the signals,
where past thoughts unavoidably influence future thoughts. It is
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Figure 1: Understand the thoughts or needs, and recommend
related items.

essentially important and difficult to learn what composes the mix-
ture of brain reflections and how past thoughts influence future
thoughts. Unfortunately, the state-of-the-art works process EEG
data the same as traditional data [1, 22, 33] without considering the
features of mixed brain reflections. To deal with these challenges,
we employ Quantum Cognition Theory (QCT) [7] to pre-process
EEG signal before inputting it into the recommendation scheme.
In particular, QCT can decompose “thoughts” into latent factors if
a quantum space is given, and quantum interference can find the
relationship between past thoughts and future thoughts.

As a pioneer in exploring the feasibility of “recommend what
you think", in this paper we propose a model, QUantum Cognition-
Inspired EEG-based Recommendation by Using grAph NeuRal
NetworK (QUARK), which integrate Quantum Cognition Theory
and Graph Convolutional Networks (GCN) to recommend items
based on EEG signals. Our QUARK model has multi-fold technical
innovations: (i) EEG data collected within a period contains changes
of thoughts, so a sliding window method is designed to segment
EEG data to characterize the sequential property of thoughts in
the temporal domain; (ii) as each thought is a mixture of thinking,
QCT is utilized to decompose the thought via applying quantum
theory to model cognitive phenomena; and (iii) GCN aggregates
the generated EEG information to a final representation for rec-
ommendations by using continuity and interference graphs that
demonstrate how past thoughts influence future thoughts. In sum-
mary, the major contributions of this paper are addressed below:
1) To the best of our knowledge, this is the first framework that
discloses a detailed EEG-based item recommendation with neural
network, Quantum Cognition Theory, and Graph Convolutional
Networks. 2) QUARK is proposed to recommend items, taking into
account the change of thoughts, decision-making from thoughts,
continuity and interference between thoughts. 3) Extensive exper-
iments are well set up on real data, and the results validate that
QUARK outperforms the classic recommendation models not only
in top k recommendation but also in feeling and style detection.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work. Section 3 introduces some preliminaries.
QUARK is proposed in Section 4. After evaluating QUARK in Sec-
tion 5, we conclude this paper in Section 6. In addition, We provide
supplemental materials 1.

!https://github.com/KK429312/CIKM2024Appendix/blob/main/QuantumEEG_
240805_JKH_CIKM_Appendix.pdf
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Table 1: Notations (# denotes the number).

Variables Description Variables Description
X Set of EEG data Y Set of item data
M # of electrodes N Length of any EEG signal
U # of segments of a signal [ Set of EEG segments
A Width of sliding windows A Length of sliding steps
© Set of events B Set of basis vectors
o Set of Quantum operators c # of selected basis vectors
€ Index set of selected basis vector P Set of probabilities
A Continuity matrix A Interference matrix
H Linear layer S Mask matrix
D Total depth of GCN r List of learnable parameters
K # of sampled items k # of recommended items

2 Related Work

Traditionally, items are recommended using matrix factorization
methods, where user-item ratings are computed according to the
user and item matrices [27]. Rendle et al. developed a personalized
recommendation optimization method based on Bayesian theory
in 2009 [39]. With the development of neural networks and deep
learning, Guo et al. proposed DeepFM that takes advantage of hid-
den layers to extract latent features for the recommendation [16].
He et al. used neural networks and designed a neural collabora-
tive filtering framework to learn user-item interaction in 2017 [19].
Later, the personalized recommendation is considered. Naumov et
al. from Facebook [35] proposed DLRM to explore personalized rec-
ommendation and allow data parallelism to scale-out computation.

The brain-computer interface has been used to collect EEG sig-
nals in many emerging applications. To understand the contents
of brain signals when processing them, quantum neurobiology
has been proposed by Swan et al. [44] to study brain contents via
quantum theory. Busemeyer et al. reveal that quantum cognition
theory can help understand the sequential context of how previ-
ous thoughts influence the next [8]. Bruza et al. proved quantum
cognition-based human reasoning is more effective than traditional
probabilistic models. Moreover, quantum theory combined with
deep learning brings a new perspective on learning representation.
In [45], Taha et al. proposed QRNN-AR that possesses high classifi-
cation capabilities thanks to quantum recurrent neural networks.
Quantum machine learning designed by Li et al. is used to extract
EEG features and perform the classification [31].

Currently, no EEG-based framework has taken the advantage of
integrating QCT and EEG on marketing, although neuromarketing
is crucial for the advertising and promotion market of approximate
400 billion dollars [23]. Therefore, to fill this blank, we propose a
novel model, QUARK, to capture people’s instant thoughts through
EEG data based on QCT for item recommendation.

3 Preliminaries

Hilbert space is a vector space with inner product operations and
is composed of a set of abstract points.

Property 1. The dot product in Hilbert space satisfies: (01+02)03 =
0103 + 0203 for any vector 01, 02, and 03.

Following Busemeyer’s [7] definition, each point in Hilbert space
is called a vector denoted as |x) or |b) by a ket notation |-), which are
the state and basis vector in this paper, respectively. A bra notation
is defined as (-| representing the transpose of ket. QCT postulates
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Figure 2: The framework of QUARK.

a unit-length state vector |x) as the state vector in Hilbert space,
where (x|x) = 1 with inner product (:|-). This state vector describes
a person’s thought in limited time steps.

Definition 1. As an EEG vector has finite dimensions and no
complex numbers, an EEG vector in Hilbert space with the bra-ket
notation can be transformed into the Euclidean space [10] with the
same value only by removing the bra-ket notation. In contrast, unit
length must be guaranteed from Euclidean space to Hilbert space.

A segment of EEG data with fixed size is named an event. Each
event in QCT has a finite dimension |B,y,;|, where By, ; C B is a set
of basis vectors with index m and i. Each element of By, ; represents
a kind of choice. Hence, a set of basis vectors (a set of choices),
where By, i = {|bj),j = 1,2,...,|Bm,l}, spans the quantum space
(the event). Furthermore, QCT provides a way to measure decision

making if a person is in a state |x), which is p = ||(bj|x)||2 named
collapse, where p is the probability (a scalar) calculated from a basis
vector and b; € By ;. The result p reveals how possible it is to make
a decision on choice bj, while an extended measurement can be
utilized if a new state is required, that is, an operator o;, which
projects the old state to a new state. To obtain a new state, QCT
applies |Xpew) = 0j|x), where 0 = |b;)(bj| is the operator of basis
vector bj with the outer product |-){-|. To deeply mine a person’s
thought, pure state and mixed state are defined in Definition 2.

Definition 2. The new state collapsing along one basis vector
(Ixnew) = 0il|x)) is called pure state, while collapsing along two or
more than two basis vectors is named mixed state, formally named
a superposition state in QCT, with |Xpew) = 2, 0j|x) and selected
projectors {oj|selected j}.

If the past event ©p, 1 influences the future event Oy, 2, then
QCT does not obey the distribution law used in classic probability
theory (CPT) [21] (i.e. p(Om2) = P(Om2) (p(Om1) + p(Orm1)) =
P(0m2)p(Om1) + p(Om2)p(Om,1) with O, 1 representing the
event O, 1 not occurring), because CPT works only if two events
are independent, while QCT has the superiority of mathematically
measuring the interference between two events that are not inde-
pendent. Theorem. 3.1 defines the interference value ne,,, -0,,,
when event @y, interferes with event @, 2 with the state |x) in
©m,2 (See Supplement [1] Section 1 for proof). In this paper, each
event can be regarded as a segment of EEG data that semantically
equals a mixed thought.

THEOREM 3.1. If past event ©p, 1 influences the future event 2,
the operator interpreting the event ©p,1 occurring is defined as
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00,,; = 2. |bj){bj| with selected basis vectors {bj|selected j}, while
the operator of ©m,1 not occurring is defined as 08, = > |bj)(bj<|
with selected basis vectors {bj|selected J}. The operator interpret-
ing the event O, 2 occurring is defined as og,,,, = X, |bx)(bx| with
selected basis vectors {by|selected x}, where j, j, and k are the
indexes of basis vectors. Then, the interference value is defined as:
NOm1—Omz = 2 X (X[0g,, 00,,,00,,,00 ., 1%)

4 Methodology

In this paper, the frequently used notations are described in Table 1.
In this section, we proposed a novel model, QUARK, for item rec-
ommendation by utilizing EEG signals, GCN, and QCT. As shown
in Figure 2, QUARK contains 4 major components, including (i)
Data Pre-processing & Sliding Windows, (ii) Quantum Spaces &
New States, (iii) Matrices & Graph Convolutional Networks, and
(iv) Model Training & Prediction.

The main idea of QUARK is briefly introduced below. Given any
EEG instance x € X with M electrodes on an EEG device and N time
steps, the pre-processed instance x’ is produced correspondingly.
To build graphs capturing the relationships between thoughts, x”
is processed based on rows and sliding window. QUARK divides
x’ according to the width of the sliding window A € {1,2,---, N},
indicating how much data is included in a single segment, and the
sliding size A € {1,2,-- -, N}, representing how much the window
moves forward on the EEG signal, to obtain a set of segments
®. Then, the segmented EEG data x;‘n’i € & is the i-th segment
of m-th row of x’ (1 < m < M) and fed into a quantum space
to learn a new EEG signal x}, ; that is a mixed state in quantum

space. Meanwhile, the continuity adjacency A and the interference
adjacency A are generated by considering the continuity of EEG
signals and quantum interference. Both A and A are used by GCN to
aggregate x;’n,i to form two aggregated representations x™ and x™,
respectively. Finally, ™ and x™ are concatenated and fed into linear
layers to obtain the final representation x. QUARK samples K items
{y1,y2,...,yx} to compute similarity scores {xy1,Xyz, - - ,Xyx}
and then recommends top-k items with k-highest scores.

4.1 Data Pre-processing & Sliding Windows

Data scaling technique is used to speed up the training process
and avoid gradient explosion in deep learning [42], especially for
EEG data that does not have the same range of values. In Eq. (1),
mean normalization is considered because it scales the EEG data to
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Algorithm 1: Sliding Window
Input: data x’, windows size A, sliding size A
Output: the set of segments ®
10={},m=1,i=1;
2 form < M do
3 fori < U do

g x =X ml[- 1) XA+1: (i-1) XA+ A+1];
5 P.add(x,, ;);
6 end
7 end
Result:

a suitable range (-1, 1) and keeps the raw data pattern.

, x — mean(x)

X =~ TeamY) 1)

max(x) — min(x)

Typically, EEG data contains thinking factors, such as imagina-
tion, association, decision-making, inference, judgment, reasoning,
and feeling, etc. They happen sometimes simultaneously and some-
times sequentially and are significant in identifying a person’s
thoughts. As a state that contains the factor(s) generally lasts for a
short time, a sliding window-based method is designed in QUARK
to segment human states in Algorithm 1, where the total number
of segments is |®| = |_N _A\"'AJ the number of segments of the

m-th electrode is U = |_N A+AJ In line 4 of Algorithm 1, the m-th
row of x” and the elements between columns (i — 1) X A + 1 and
(i—1) X A+A+1 are selected to generate x;‘n’i representing a super-
short-term thinking that contains multiple thinking factors. These
factors are helpful to learn the user’s current needs and trends and
can be exploited to make an accurate recommendation.

4.2 Quantum Spaces & New States

To learn the EEG representation from mixed states and uncertain
states, quantum spaces are utilized to simulate the human decision-
making process. QCT is an effective method of decomposing states
onto basis vectors to find the decisions of the thoughts in quantum
space. A basis vector represents a latent thinking factor that might
be one of imagination, association, decision-making, inference, or
other unknown factors influencing human thoughts. The number
of thinking factors can be more than four, so this paper does not use
traditional |00),|01),|10), and |11) as basis vectors. Instead, learnable
vectors b; are used. The meaning of thinking factors does not affect
the learning process and recommendation results, so there is no
need to know their exact meanings in our model. Also, explaining
the thinking factors is out of the scope of this paper, which could
be further studied in our future work. From the previous step, |®|
quantum spaces are generated, each of which is regarded as one
latent event ©,, ; containing |B, ;| latent thinking factors as basis
vectors, where By, ; € RIBmilXA s o randomly generated matrix
and B = {bj|bj € Biy,;,1 <m <M, 1 <i < U}

For every segmented xm ;» the unit length revise function in
Eq. (2) is applied to obtain a quantum space vector |x;‘n’ ;» and Eq. (3)
is used to form the set of the probabilities of latent thinking factors,

2
bjlx, l)” is the probability that |x, ;) collapses along basis

where
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vector b;. This probability represents how possible the state (i.e.,
thought) |x;,, ;) is composed by the thinking factor b;. Then, the
indices of the c-highest probabilities in Py, ; are picked up to form
an index set em’i for further computing.

Ik )= ——l @)
S (g, )?

2

P = A1 || 185 € B,
i, is the j-th element of vector x7,,
of probablhtles QUARK can be treated as a variant of ensemble
learning [12, 41] and dropout [4]. Ensemble learning uses some
different models to predict the data, gets corresponding predictions,
and then votes based on all predictions to make a final prediction,
which usually outperforms the learning of a single model but takes
time to design the models manually. Dropout is developed to avoid
the manually designed models by randomly dropping some neurons
in neural networks, so the prediction may be dependent on random
seeds. QUARK combines the advantages of ensemble learning and
dropout naturally, since it provides any EEG data instance with

|Bm,i| 12!
c

®)

where x . Due to the selection

path options utilized as models just as in ensemble

learning, is self-adaptive to select the most suitable one without
voting, and does not randomly drop the paths. The index set €,

reveals that a person’s state |x],
vectors; that is, the current thought makes some decisions to form
the next thought. Note that a person is hardly in a pure state due to
the various emotions and environments, any newly generated state,
x;’n,i), is usually a mixed state and can be expressed by Eq. (4).

Xy = D ojlxm )= > 1bi)bjlx, ),

e i€
jeem,i Jeem,i

;) collapses towards a few ba51s

©)

where o; is the operator computed by outer product |bj)(b;|. Be-
cause of Property 1, Eq. (4) can be accelerated by reducing the
matrix multiplication through Eq. (5), especially when the number
of selected basis vector, c, is large. The matrix x° € RMXUXA o
obtained to represent the learned EEG data.

) = 01402+ +0jee D)= ( 3 [bj)biDIxs ). ()

3 c
]eem,i

4.3 Matrices & Graph Convolutional Networks

In this part, the continuity adjacency matrix Als computed to form
new continuous thoughts, and the interference adjacency matrix
A is constructed to simulate the influence process from previous
thoughts to future thoughts. With Aand A, a GCN aggregator [25,
50] is utilized to learn graph representations.

4.3.1 Continuity Adjacency Matrix . The dot similarity in Euclidean
space is computed as the weights of continuity adjacency matrix
A e RI®IXI?l in Eq. (6).

A=W, (10, M) (x°, (A [®])), (6)

where (-, -) reshapes x° into a new shape (-, -) [37]. InA, a positive
weight means two thoughts are similar, a negative weight implies
that two thoughts are dissimilar, and a zero weight means there
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is no similar or dissimilar relation between two thoughts. Similar
thoughts can help extract a user’s preference for recommendations,
dissimilar thoughts disturb the capability of learning qualified pref-
erence representation, and non-related thoughts do not influence
the preference extraction in GCN method. Thus, ReLU activation
function [30] is applied to drop negative weights, A = ReLU(X).
To deeply investigate the influence of A, a filter ratio a € [0,1] is
introduced to indicate how many weights are kept. When « = 0, all
values in A’ are maintained; when « > 0, the values smaller than a
threshold are filtered out, which implies that the influence of the
filtered values on preference extraction are not significant enough
for consideration. Moreover, with a larger «, more values can be
filtered out, indicating a higher filter ratio. Then, the final conti-
nuity adjacency matrix A° is obtained in Eq. (7), where Zi;’.’ k€ A°
(j=(m-1)U+iandk = (v — 1)U + w) represents the similarity
between the past event 0, and future event ©,, ;.
a}’k, ifi > wand
= Zf;.’k > a(max(A") — min(A’)) + min(A’),

0, else,

™

where &\}’k c A ,and i > w is required to avoid the influence of
future events on past events since a user thinks over time. The
continuity adjacency matrix reveals a person’s thoughts in two as-
pects: (i) it is a similarity matrix to simulate the regrouped thoughts;
and (ii) higher weights are calculated when a person repeats the
same thought as the past, i.e., the repeatability of thoughts. Partic-
ularly, the continuity adjacency matrix only measures continuity
and repeatability between x;’n’ ; and x;m 4+ Without the calculation

;‘n,i 4+1 Stated in continuity loss in Section 4.4. The
continuity loss means that the learned EEG data x:’n,i is limited to
be similar to pre-processed EEG x’:n’l., while continuity adjacency
matrix shows that all learned EEG data also keep certain continuity.

(o]
between X i and x

4.3.2 Interference Adjacency Matrix. Formally, ©,, ; means event
Opn,,; occurs, while ©,, ; means event ©,, ; does not occur. To reduce
computation complexity in QUARK, @, ; is not computed as the
complement of Oy, ;; instead, the set of c-lowest index efmi is found
from Pp,; in Eq. (3) to approximate Oy, ;, where 2c < |Bp,i| to
ensure @y, ; and O, ; are disjoint. Each interference weight 'avj, k€ A
(j=(m-1)UV+iand k = (v — 1)U + w) is computed by Eq. (8)
based on Theorem 3.1 with A € RI®/XI?I,

j = 2% (xp, 1106, 00,500,004, 1 X7 1)- ®)
Specifically, a;; = 0 if two events are independent, a;; < 0 if
the previous event prevents future events from happening, and
aj > 0 if the previous event promotes future events. Therefore,
in A, only the positive values help describe a user’s preference.
Accordingly, to remove the negative in A, the ReLU function is
applied to get A’ = ReLU(A). Also, a filter ratio B € [0,1] is set for
the interference adjacency matrix. In Eq. (9), the final interference
adjacency matrix A® is calculated, where i > w is used to avoid that

future thoughts influence the past, and E} k€ A’. The interference
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adjacency matrix A° reveals how past events promote future events.

7

a. if i > wand

Jjk’ = _ _
aj’k = E;. g 2 B(max(A") — min(A")) + min(A”),  (9)
0, else

4.3.3  Graph Convolutional Networks. To mine the representation
of the learned EEG data x° aggregated by A° and A°, the approxi-
mate GCN [25, 50] is applied to learn two representations x™ and
X™ and then concatenate them to form the final EEG representation
x. In the optimization part (see Eq. (14)), the Sigmoid(-) function
requires a suitable range of inputs to avoid the gradient exploding is-
sue [20], while the values in A° have a large variance compared with
the values in A° due to the continuous multiplication in Eq. (8). To
prevent the gradient disaster, weights normalization is performed:

o

Al = —L— with1<i< |0,
sum(Al.)

(10)
where Alf is the i-th row of A® that is any one of {g', A"}, A}’ is the
i-th row of the corresponding one of {A‘o’ A°}, and sum(A7) is the
sum of the elements of the i-th row of A°. Then, the approximate
GCN aggregates the learned EEG data x° via Eq. (11) with the initial
x*? = x>@ and d < D being the depth of GCN.

x4 = W (e, (104,4) + (1= (A, (jo], ) | 1Y,

(11)
where x*%*! being any one of {X* is the EEG represen-
tation in depth d + 1, A® is the corresponding one of {A®, A*}, HY
being the corresponding one of {H? H? is a linear layer at depth
d, and & controls the ratio of x°. If there is a future event O, ;, then
all events @, ,, with corresponding weights can influence the event
O i, but the negative influence and the meaningless influence are
filtered by ReLU operations. That is, with Eq. (11), GCN aggregates
the EEG data by utilizing the meaningful matrices to find the high-
order influence. Next, the output of each layer is concatenated to
represent the learned representation from two matrices in Eq. (12).

(12)

where x® is any of {x™,x™}, and & is the concatenation opera-
tion. Eventually, X™ and Xx™ are concatenated to obtain the final
representation x in Eq. (13).

,d+l) ;-,d+1}

xl — xo,l ® x-,Z ® @ xo,d+1,

X = Seq3(5eq1(§') @Squ(f')), (13)

where Seq1(-) = (ReLU(-Hj))Ha, Seqz2(-) = (ReLU(-Hs3))Hy, and
Seqs(-) = (ReLU(-Hs))Hg are sequence templates composed of
linear layers. In QUARK, we complete the learning process from
the raw data x to the EEG representation x.

4.4 Model Training & Prediction

In optimization, the objective function has three parts, including the
main loss of Bayesian personalized ranking (BPR) [39], L1; quantum
loss of orthogonality, Ly; and continuity loss of EEG data, Ls.

To apply the BPR algorithm, a sampled item y. with the same
label as the predicted EEG data is marked as “liked”, while y» with
another different label is marked as “disliked”. Hence, the loss of
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BPR algorithm can be defined in Eq. (14).

Ly = % Z Z Z —log(Sigmoid (xy« — Xy»)), (14)

x€X y-.€Ys Y €Y.

where Y, and Y, are the sets of liked and disliked items, respec-
tively, and can be trained by any of the existing item representation
learning models if the items needs to be pre-processed (e.g., images,
music, and micro-video). QUARK is optimized by maximizing the
gap between the scores xy4 and xy, of the liked and disliked items.

For the orthogonality of quantum theory, the matrix property
(ie., Bm,iBa ; = I)is considered in Eq. (15), where T is the transpose,
I is the iderftity matrix, and ||-|| is the Frobenius norm.

Ly = HBm,iB,TM - IHF ) (15)

Since the event Oy, ;+1 occurs based on the previous event Gy, ;,
the loss limits that the learned data should be similar to the next
event in Eq. (16), where x| ; is the learned data that is estimated as

%

m,i+1

Ly = Z Z —log(Sigmoid(x;l’ixfn’iH)).

m<M i<U

represents the actual state in @, ;41

(16)

the state in O j4+1, and x

Finally, the total loss L is computed via Eq. (17), where p is the
regularization weight [6], and T contains all the learnable parame-
ters, including all basis vectors in B, I—~Id|d =1,2,---,D}, {ﬁd|d =
1,2,---, DY, {Hj|j=1,2,...,6}.

L=Li+Ly+Ls+p|T|F. (17)

5 Performance Evaluation

Dataset. Due to the scarcity of datasets, we apply a visual-EEG-
activated dataset to evaluate the performance of our model. “Mind-
BigData Insight” (MBD) is an open EEG signal database that con-
tains 569 classes with 14,012 EEG instances [47] captured in the
real world with the stimulus of seeing random images from IM-
AGENET [40] training dataset and thinking about it. MBD data
records EEG signals when users watch images and contain the users’
reflections on different images. Accordingly, the learned EEG repre-
sentation can be used to represent what a user watches and thinks,
and the images with the category the same as the user’s EEG can
reflect what the user may want (e.g., based on EEG representation
of watching a computer, computers are recommended).

To comprehensively test the performance of our recommenda-
tion mechanisms on various granularities of image categories, we
adopt the following methods to merge the image categories [51].
MBD contains two parent categories: the biological categories and
the nonbiological categories. The child categories in biological cat-
egories can be merged if they have the same parent category in
biological taxonomic rank [49], and the child categories in nonbi-
ological categories can be merged if Amazon search returns the
same parent category when we search for them on Amazon [2], i.e.,
the parent category indicates a coarse-grained category, while the
child category a fine-grained category. Data distribution is another
important factor that influences the performance. Two kinds of
distributions are considered here: (i) the long tail distribution simu-
lates that some users have similar backgrounds or professions and
frequently view the same things; and (ii) the normal distribution is
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used to simulate that users have different backgrounds or profes-
sions, so they view different things in different scenarios. The data
in MBD follows the long-tail distribution because the dataset pub-
lisher collected more EEG instances of viewing animals compared
to the other classes. For the normal distribution, we tune the num-
ber of the data instances until the number of instances in all classes
(approximately) follows the standard normal distribution [48]. The
statistics are summarized in Table 3.

Baseline Models. Since there is no graph relation/information
(e.g., social, item-item relation, etc.) in MBD, the state-of-the-art
graph-based recommendation model can not be applied on MDB.
Since there is no public framework for EEG-based recommendation,
we adopt the following classic but general recommendation models
as baseline models. EEG data is processed in the same way. (i)
MF [27]: MF is a classic user-item recommendation framework
based on matrix factorization. (ii) DeepFM [16]: DeepFM adds
extra neural networks based on MF and recommends items by
considering the combination of the scores of neural networks and
MF. (iii) DLRM [35]: It is an effective model proposed by Facebook
to recommend items via prediction scores. (iv) NCF [19]: NCF is a
generic recommendation model based on collaborative filtering and
neural networks with users and items as input. (v) BPR [39]: BPR
is a personalized algorithm that recommends items by maximizing
the gap of recommendation scores between liked items and disliked
items. (vi) Random Guess: It randomly recommends images to
investigate whether the learning-based models can perform better.

Experiment Settings. All images in MBD are trained by the
state-of-the-art model, ViTAE2 [52], to obtain the image representa-
tion for QUARK and baselines. The training rate for all experiments
is 0.85, where 85% of MBD data is used for training and the remain-
ing 15% is used for testing. According to MBD, the number of elec-
trodes is set as M = 5, and the length of time step is set as N = 360.
To better train QUARK, the learnable parameters in T (see Eq. (17))
are initialized through Xavier distribution [14] and optimized by
mini-batch Adaptive Moment Estimation (Adam) [24]. We have
conducted intensive experiments with different hyperparameter
settings to find the appropriate parameter values. Specifically, the
learning rate is set as 1e-4, mini-batch size is set as 16, the regulariza-
tion weight in Eq. (17) is set as p = le—4, the set of hyperparameters
{A=15A=25|Bpni| =15c=2a=08=04d=5¢&=03}
is used for the normal distribution, and the set of hyperparameters
{A=10,A=20,Bpmi| =10,c =2, =09, =0.7,d =5¢=0.3}
is applied for the long tail distribution (please see supplement mate-
rials [1] Section 2 for more hyperparameter analysis). We follow the
recommendation settings in [18] to randomly sample 100 images as
candidates, including 15 images with the same class of the trained
EEG and 85 images with random classes except the class of the
trained EEG. The recommendation performance is measured by the
averaged Precision@k score that demonstrates the precision of the
recommendation [13], the averaged Recall@k score that indicates
how many correct images are recommended from the sampled cor-
rect images [13], and the averaged F1@k score that is the mixture
of P@k and R@k and provides guidance if the performance cannot
be distinguished only from Precision@k and Recall@k [13]. In our
experiments, the number of recommended images is k = 10.

QUARK v.s. Baselines. The comparison results are summarized
in Table 2, where the improvement is the performance increase
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Table 2: Comparison between baselines and QUARK.

. (@) (b) (© (d) (e) () (® Improvement (%)
Dataset Metrics  pandom Guess MF DeepFM  DLRM NCF BPR QUARK (@) vs. ()
P@10 0.1530 0.1401 0.1453 0.1472 0.1576 0.2416 0.3011 24.63
111_Normal R@10 0.1020 0.0930 0.0968 0.0981 0.1051 0.1611 0.2007 24.58
F1@10 0.1224 0.1120 0.1162 0.1178 0.1261 0.1933 0.2409 24.62
P@10 0.1498 0.1427 0.1515 0.1529 0.1541 0.2247 0.3070 36.63
50_Normal R@10 0.0990 0.0950 0.1011 0.1019 0.1027 0.1498 0.2047 36.65
F1@10 0.1198 0.1141 0.1213 0.1223 0.1232 0.1797 0.2456 36.67
P@10 0.1482 0.1404 0.1416 0.1546 0.1505 0.2566 0.3945 53.74
25_Normal R@10 0.0980 0.0936 0.0944 0.1031 0.1003 0.1710 0.2630 53.80
F1@10 0.1186 0.1123 0.1133 0.1237 0.1203 0.2052 0.3156 53.80
P@10 0.1541 0.1847 0.3276 0.2651 0.2459 0.5105 0.6807 33.34
8_Normal R@10 0.1027 0.1231 0.2184 0.1767 0.1639 03403 0.4538 33.35
F1@10 0.1233 0.1478 0.2321 0.2121 0.1967 0.4084 0.5445 33.33
P@10 0.1489 0.1378 0.1453 0.1456 0.1488 0.1581 0.2034 28.65
111_LongTail R@10 0.0990 0.0910 0.0969 0.0971 0.0990 0.1054 0.1356 28.65
F1@10 0.1191 0.1102 0.1163 0.1165 0.1190 0.1265 0.1627 28.62
P@10 0.1521 0.1405 0.1411 0.1519 0.1423 0.1597 0.2261 41.58
50_LongTail R@10 0.1014 0.0936 0.0941 0.1012 0.0940 0.1064 0.1507 41.64
F1@10 0.1217 0.1124 0.1129 0.1215 0.1139 0.1277 0.1809 41.66
P@10 0.1454 0.1417 0.1457 0.1492 0.1494 0.1690 0.2601 53.91
25_LongTail R@10 0.0969 0.0945 0.0971 0.0990 0.0996 0.1126 0.1734 54.00
F1@10 0.1163 0.1134 0.1165 0.1194 0.1195 0.1352 0.2081 53.97
P@10 0.1495 0.1645 0.1702 0.1597 0.1499 0.2029 0.3971 95.71
8 LongTail R@10 0.0990 0.1097 0.1134 0.1064 0.0990 0.1353 0.2647 95.64
F1@10 0.1196 0.1316 0.1361 0.1277 0.1199 0.1623 0.3177 95.75
Table 3: Datasets. to perform recommendations with images following long tail distri-
bution. This is because the models are trained on a large number of
Dataset #of EEG #ofimages #ofclasses Distribution data from a few classes, which makes the model parameters trend to
111 Normal  7.048 13.998 111 Normal recommend the images of those few classes for any incoming EEG
50_Normal 7,048 13,998 50 Normal data. Through the comparison, higher performance improvements
25_Normal 7,048 13,998 25 Normal under long tail distribution are shown by comparing QUARK with
8 Normal 7,048 13,998 8 Normal BPR, implying that the novel design of QUARK ensures it works
lllfLongTj‘ul 14,012 13,998 11 Long ta%l well on difficult recommendation tasks.
50_LongTail 14,012 13,998 50 Long tail Data & R tati In Fi 3 h value is the dot simi
25 LongTail 14,012 13,998 25 Long tail Pata & Representation. in Flgure 5, each value 1s the dot sumi-
8_LongTail 14,012 13,998 8 Long tail larity between two data instances in MBD. The similarity is expected

in QUARK compared with the baseline. From Table 2, three main
results are concluded. Firstly, QUARK outperforms all baselines un-
der all experiment scenarios, due to the following reasons: (1) the
sliding window-based segmented EEG data can represent different
thoughts as the bionic in the temporal domain; (2) quantum space is
employed to extract the various thinking factors; (3) two graph ad-
jacency matrices simulate the way that a person thinks; and (4) the
GCN aggregates the multi-depth information as a user’s preference.
Secondly, with the number of classes increasing, the performance
of all models is decreased because the EEG-based recommendation
task becomes more difficult. When the number of classes is larger
than 8, the classic recommendation models (b)-(e) perform equally
to the random guess model (a). BPR outperforms random guess
model because it can build a gap to distinguish liked and disliked
images as QUARK does, but its performance is still worse than that
of QUARK. Thirdly, compared with normal distribution, it is harder
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to be a higher value (dark blue color) if two data instances are from
the same class, and the data from the same class form a cluster (i.e.,
in Figure 3(e), blue cluster represents the same class, while yellow
means different classes). Figure 3(d) shows the similarities of raw
image information, and Figure 3(e) shows the similarities of learned
image information using the image recognition model, ViTAE2.
The representations learned by the best baseline model, BPR, in
Figure 3(c) are similar to the raw EEG in Figure 3(a), which means
the baselines hardly learn good representations and clear clus-
ters. While, the representations learned by QUARK in Figure 3(b)
show relatively clear clusters, which illustrates QUARK can learn
high-quality representations visualized in Figure 3(b) and thus can
present excellent performance improvement in Table 2. It explains
why the baseline models perform closely to the random guess.
Ablation Study. In the ablation study, the variants of QUARK
are compared to understand the contributions of each component
developed in QUARK, and the results of P@10, R@10, and F1@10
are presented in Table 4 by testing 111_Normal and 111_LongTail.
These variants include: (a) “GCN, where GCNs are removed, and
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Table 4: Ablation studies of QUARK.

Dataset Metrics (@ (b) (©) @ © o (® (h)

-GCN -QM —Interference —Continuity = (i>w) —Continuity loss -QM loss QUARK

P@10 0.2734 0.2789 0.2820 0.2836 0.2859 0.2933 0.2970 0.3011

111_Normal R@10 0.1823 0.1859 0.1880 0.1891 0.1906 0.1955 0.1980 0.2007
Fi@10 0.2187 0.2231 0.2256 0.2269 0.2287 0.2347 0.2376 0.2409

P@10 0.1705 0.1844 0.1862 0.1931 0.1989 0.2021 0.2024 0.2034

111_LongTail R@10 0.1137 0.1229 0.1241 0.1287 0.1326 0.1347 0.1349 0.1356
Fl@10 0.1364 0.1475 0.1490 0.1545 0.1591 0.1617 0.1619 0.1627

(e

(d)

Figure 3: Representation visualization. (a) Similarity of raw EEG
signals, (b) Similarity of representation learned by QUARK, (c) Simi-
larity of representation learned by BPR, (d) Similarity of raw image
data, and (e) Similarity of learned image representation.

the adjacency matrices are fed into linear layers instead; (b) ~QM,
where quantum space is removed, and two random adjacency matri-
ces are used; (c) —Interference, where the interference adjacency
matrix is removed; (d) ~Continuity, where the continuity adja-
cency matrix is removed; (e) —=(i > w), where the requirement of
i > win Eq. (7) and Eq. (9) is removed; (f) ~Continuity loss, where
the continuity loss L3 is removed from the objective function; (g)
—QM loss, where the orthogonal loss L is removed from the ob-
jective function. The results in Table 4 show that all the developed
components have significant contributions to the recommendation
performance. Especially, GCN is the most important component,
because it generates aggregated information that contains the simi-
larity and interference among different thoughts, which is crucial to
identify a person’s thoughts. Quantum space is secondly important,
as it contributes not only to the generation of interference and
continuity matrices but also to the decomposition of EEG signal via
collapse. Besides, the importance of the interference matrix is more
significant than that of the continuity matrix because the interfer-
ence matrix reveals how past thoughts influence future thoughts,
which is a bionic process. Moreover, the requirement of i > w
provides contributions by avoiding the influence of future events
on past events. Last but not least, multiple optimization goals in
the objective function can help QUARK better recommend items.
Feeling & Style Detection. EEG signals can reflect users’ feel-
ings and personal tastes, which are the crucial factors of the rec-
ommendation tasks. We design the feeling and style detection to
validate whether our model can recognize the user’s tastes and fo-
cus. Typically, a person’s thoughts can be reflected via the feelings
and perceived styles of what the person is viewing, which can be
detected from different aspects (please see supplement materials [1]
Section 3 for following metrics.): (1) content similarity that is the
dot similarity of two learned image representations, (2) color simi-
larity that is the difference of the color histogram distribution of
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two images [36], and (3) structural similarity that is the ratio of the
overlapped area of two edge-detected images to the area of one im-
age [46]. The synthesis score is the multiplication of content, color,
and structure similarity, and the mixed score is the multiplication
of the synthesis score and Precision@10. In our experiments, the
content score is used to check feeling, and the color and structural
scores are used to study style. Figure 4(a) to Figure 4(e) presents
the percentage of images counted from 10 recommended images,
where a recommended image is counted if the metric score of the
recommended image is greater than the corresponding threshold.
Our QUARK is better at recommending images with similar feel-
ings and similar perceived styles, compared with baselines. The
superiority of QUARK comes from quantum space that decomposes
EEG signals based on the number of selected basis vectors, each of
which is a pure state of a thinking factor containing the feeling or
the perceived style, such as the mentioned association, imagination,
and etc. As a result, QUARK is not only a good recommendation
model with high recommendation precision but also a good feeling
and style detector for EEG, which is extremely important for smart
personalized recommendations. On the other hand, recommending
the pictures of the same class is regarded as a correct recommenda-
tion. However, pictures have differences even in the same class. The
feeling and style detection can explain that QUARK knows what
users see and recommends similar items of the same class.

Case Study. In this part, some cases are presented in Figure 5
to visualize the recommendation performance of QUARK, where
the numbers in the yellow squares represent the classes of images,
and the numbers above the images represent the IDs of the rec-
ommendations. (1) Color analysis: a user is looking at the image
that a person stands at front of a mirror with the black filter in
Figure 5 group (a). Most of the images (i.e. images 1,2,5,7,8, and 10)
recommended by QUARK are with a black filter. Another exam-
ple is that a user is thinking about the original image in Figure 5
group (b), and some of the recommended images are with the blue
filter, such as images 2, 4, and 10. These cases demonstrate that
QUARK can extract the feelings and styles of the color that the
original conveys. (2) Structural analysis: QUARK can understand
the structural information of an image from a person’s thoughts,
as shown in Figure 5 group (b), where image 2 with nearly the
same structural information as the original image is recommended.
Moreover, from the viewpoint of the edge detection algorithm, we
can claim that most of the recommended dogs are in a “corner”,
such as images 1, 2, 4, 5, 6. Another example is Figure 5 group (c),
where the original image contains the structural information of
three parts, i.e., “dog-person-dog”. For the recommendation, image 1
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Figure 4: The feeling and style of the recommended images compared with the original EEG images. (a) Content similarity. (b) Color similarity.
(c) Structural similarity. (d) Synthesis score. (¢) Synthesis score with precision@10.

Original Image

Figure 5:

shows “device-person-device”, image 3 presents “window-window-
bed”, image 4 displays “person-person-person”, and image 9 looks
like “sofa-sofa-sofa”. (3) Wrong recommendation analysis: in
Figure 5 group (d), the precision@10 score is 0.1 as there is one
recommended image with the correct label. The recommendation
seems not good, but actually, the content, color, and structural in-
formation of EEG can still be understood. In Figure 5 group (d), the
original image shows that a boy is cutting a stick with an ax, which
is only labeled as class 38 which is the class of ax. Some images
about humans are recommended, but these images are not counted
as correct recommendations. This incorrect recommendation is
due to the single label of the dataset. Therefore, QUARK can be
improved if a multi-label dataset is used.

6 Discussion & Conclusion

To explore the next-generation recommendation, this paper pro-
poses a novel Quantum Cognition-Inspired EEG-based Recommen-
dation by using Graph Neural Network (QUARK). Our QUARK
model has tightly coupled components, including sliding windows
to segment thoughts, quantum space to mine latent representations,
quantum space to generate continuity and interference adjacency
matrices, and graph convolutional networks to aggregate learned la-
tent EEG information. The experiments can confirm the advantages
of our QUARK compared with the classic recommendation models
on a real-world dataset with extensive settings. In the adopted EEG

Case studies.

dataset, MBD, each EEG instance and its corresponding image have
one label. In fact, the images contain multiple objects, so the viewer
might be distracted by unlabeled object(s), which may reduce the
accuracy of preference prediction and the precision of image rec-
ommendation. We believe that QUARK can be better if a multi-label
dataset is used. On the other hand, since a user’s preference can be
affected by complicated factors, the recommendation performance
can be further enhanced if multi-source data are available for use,
such as EEG, user historical interests, and recent hot spots.

For the generality of QUARK, the experiments validate QUARK
performance well when the EEG signal and items are in the same
domain (i.e. see images and recommend images in our experiments).
While, we believe QUARK can efficiently work in cross-domain.
For example, QUARK learns the thoughts when a user watches a
romance movie and recommends sweet music or micro-videos. As
we do not have such a dataset, this task is left as our future work.

Through this paper, one can see that EEG-based recommendation
has great potential in high-tech fields. This is the first detailed EEG-
based recommendation model to conduct a study in such an area,
and more efforts will be devoted to our future research.
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