SMOOTH AND ANALYTIC ACTIONS OF SL(n,R) AND
SL(n,Z) ON CLOSED n-DIMENSIONAL MANIFOLDS

DAVID FISHER AND KARIN MELNICK

ABSTRACT. The main theorem is a classification of smooth actions of
SL(n,R), n > 3, or connected groups locally isomorphic to it, on closed
n-manifolds, extending a theorem of Uchida [33]. We also construct
new exotic actions of SL(n,Z) on the n-torus and connected sums of
n-tori, and we formulate a conjectural classification of actions of lattices
in SL(n, R) on closed n-manifolds. We prove some related results about
invariant rigid geometric structures for SL(n, R)-actions.

In memory of Fuichi Uchida (1938-2021)

1. INTRODUCTION

1.1. Classification of SL(n, R)-actions. Any smooth—even continuous,—
faithful action of SL(n,R) on an (n — 1)-dimensional manifold is the tran-
sitive action on S"~!, and the only other nontrivial action is the quotient
action of PSL(n,R) on RP™!. In 1979 F. Uchida constructed an infinite
family of real-analytic actions of SL(n, R) on S™ and proved his construction
yields all of them [33]. Previously, C.R. Schneider classified all C* actions
of SL(2,R) on closed surfaces and R? [29], see also [31]. A key role is
played in both proofs by the linearizability theorem for real-analytic actions
of semisimple Lie groups on (R",0) due to Guillemin—Sternberg [16] and
Kushnirenko [21]. This theorem was partially improved to C* linearizabil-
ity of C* actions of SL(n,R) on (R"™,0) for k > 1 and n > 2 by Cairns-Ghys
[6]. Relying partly on this result, we classify smooth actions of G on closed
n-manifolds, where G is connected and locally isomorphic to SL(n,R) and
n > 3.

The actions are of two types—aside from a few exceptional transitive ac-
tions in dimensions 3 and 4—, depending on the existence of G-fixed points.
Let @ < SL(n,R) be the stablizer of a line in the standard representation
on R™. The actions without fixed points are induced from Q or Q°-actions
on S, yielding circle bundles over RP™~! or 8”71, These are analogous to
Schneider’s actions on T? or K? for n = 2. The actions with G-fixed points
are actions on 8™ or RP", all arising from the smooth version of Uchida’s
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construction. See constructions I and IT in Section 3.1 and the classification
theorems 4.2 and 4.3 below. Although the smooth linearization theorem of
Cairns—Ghys may permit a classification of smooth SL(2, R)-actions on sur-
faces, our classification will not be valid as there is another family of actions
in the case n = 2.

A consequence of Theorems 4.2 and 4.3 is that non-transitive real-analytic
actions can be parametrized with real-analytic vector fields on S', which
in turn are given by finitely-many real and discrete parameters thanks to
[17], along with some finite additional data; see Corollary 5.2 below. This
constitutes a smooth classification, in the set-theoretic sense (see [28]), of
analytic SL(n, R)-actions on closed n-manifolds, up to analytic conjugacy.

1.2. Motivation from the Zimmer Program. An important motiva-
tion for our classification are Zimmer’s conjectures on actions by semisimple
Lie groups G, with no R-rank-one local factors, and their lattices on low-
dimensional closed manifolds. See for example [40, 11, 12]. The lowest
possible dimension for a nontrivial action of such a lattice should be the
minimal dimension a(G) of G/Q where @) is a maximal parabolic. For non-
isometric, volume-preserving actions, the conjectured minimal dimension is
the minimal dimension p(G) of a locally faithful linear representation of
G. In general, the bound a(G) < p(G) — 1 can have a significant gap; for
G = SL(n,R), they are equal—that is a(G) = n — 1 while p(G) = n. For
lattices in SL(n,R), n > 3, in joint work with A. Brown and S. Hurtado,
the first author proved both conjectured bounds [3, 4, 5]. They moreover
proved dimension bounds for actions of lattices in many other higher-rank
simple Lie groups; their results are sharp for lattices in SL(n,R), n > 3,
and Sp(2n,R), n > 2. These results resolved a major portion of Zimmer’s
most famous conjecture.

Zimmer’s Program asks more generally to what extent actions of higher-
rank semisimple Lie groups and their lattices on closed manifolds arise from
algebraic constructions. The basic building blocks of such constructions are
actions on G/H where H is a closed, cocompact subgroup, or actions of
a lattice I' on N/A, where G acts by automorphisms of a nilpotent group
N and I' normalizes a cocompact lattice A. Brown—Rodriguez-Hertz—Wang
have announced a proof that any infinite action of a lattice I' < SL(n,R)
on a closed (n — 1)-manifold, where n > 3, extends to the standard action
of SL(n,R) on S" ! or RP"L,

We propose to consider the above question for actions of SL(n,R) and
its lattices on closed n-manifolds, for n > 3. That this case is central to
further progress is already emphasized in [12]. Theorems 4.2 and 4.3 fully
describe the I'-actions that extend to SL(n, R). The well-known action of the
second type above, which does not extend to SL(n, R), is that of SL(n,Z) on
T" = R"/Z". In 1996 Katok-Lewis famously constructed exotic SL(n, Z)-
actions on T" in which the fixed point corresponding to 0 is blown up. They
also show that the weight determining the action on the normal bundle of the
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blow-up can be freely chosen and that one choice gives a volume-preserving
exotic action [18].

We construct new exotic actions of SL(n,Z), and its finite-index sub-
groups, by gluing in “exotic disks” to T™ at 0 or along periodic orbits,
and by forming connected sums of n-tori along “exotic tubes.” We conjec-
ture the following classification of actions of lattices in SL(n,R) on closed
n-manifolds, for n > 3. See Section 3.2.2 below for the relevant definitions.

Conjecture 3.6 LetI' < SL(n,R) be a lattice and M a compact manifold
of dimension n. Then any action p : T' — Diff (M) either

(1) extends to an action of SL(n,R) or SL(n,R),

(2) factors through a finite quotient of ', or

(3) is an action built from tori, G-tubes, G-disks, blow-ups, and two-
sided blow-ups, with T' a finite-index subgroup of SL(n,Z).

None of the actions in (1) and few of the actions in (3) are volume-
preserving (Proposition 3.7). Conjecture 3.8 below asserts that volume-
preserving actions of I' as above are finite or are actions of finite-index
subgroups of SL(n,Z) built from tori, blow-ups, and two-sided blow-ups
with weight n on the normal bundle, as in [18].

1.3. Invariant rigid geometric structures. Largely inspired by Zim-
mer’s results and conjectures, Gromov, together with D’Ambra, proposed
a program to investigate to what extent actions of “large”—for example,
noncompact—ILie groups on closed manifolds preserving a rigid geometric
structure arise from algebraic constructions (see [15, 8]). Benveniste—Fisher
proved that Katok—Lewis’ actions do not preserve any rigid geometric struc-
ture of algebraic type in the sense of Gromov [2]. We prove:

Theorem 6.7. Let G be locally isomorphic to SL(n,R), acting smoothly
on a compact n-manifold M, preserving a projective structure [V]. Then
(M, [V]) is equivalent to

e S™ or RP"™ with the standard projective structure; or
e o Hopf manifold, diffeomorphic to a flat circle bundle over RP™~!
with either trivial or Zs monodromy.

On the other hand, we show in Proposition 6.1 that all SL(n, R)-actions
on closed n-manifolds are 2-rigid in the sense of Gromov.

Pecastaing proved in [26] that if a uniform lattice in a simple Lie group
G of R-rank > n admits an infinite action by projective transformations
of a closed (n — 1)-manifold, then G is locally isomorphic to SL(n,R), and
I' acts by the restriction of the standard action on 8"~! or RP™ 1. Two
interesting questions that remain are:

Question 1.1. Are the projective actions identified in Theorem 6.7 the only
smooth actions of SL(n,R) on a closed n-manifold preserving a rigid geo-
metric structure of algebraic type?
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Question 1.2. Given a non-affine, projective action of SL(n,Z) on a closed
n-manifold, does it always extend to SL(n,R)?

1.4. Other simple Lie groups. This work might be considered a special
case of a more general problem:

Problem 1.3. For G a simple Lie group of noncompact type, classify the
smooth G-actions on compact manifolds of dimension a(G)~+1 up to smooth
conjugacy.

As above, a(G) is the minimal codimension of a maximal parabolic sub-
group of G. This article concerns only groups locally isomorphic SL(n,R),
n > 3, because this family is central in current research on the Zimmer
Program, and because the complexity of actions in Problem 1.3 depends on
the local isomorphism type of G.

The only complete classification not mentioned so far is due to Uchida
for G = SL(n,C) [35]. In that case, there are no faithful G-representations
in dimension 2n — 1 = a(G) + 1. The actions in Uchida’s classification
correspondingly have no global fixed points and are as in our Construction
I below; these are induced from actions of the maximal parabolic Q or Q°
on St

We do not yet have a general conjectural picture for all G. Uchida has
numerous results for other simple groups [34, 36, 37, 38], though none of
these papers contains a complete classification. The only case in which we
expect the classification to be more or less analogous to the one presented
here is for G = Sp(2n,R), n > 2. An interesting case is G = SO(p, q),
which has a faithful representation in dimension p + ¢ = «(G) 4 2. In the
projectivization, the stabilizers in open orbits are reductive, in contrast to
what occurs in our case (see Theorem 2.1). The other family of actions
obtained by Schneider [29] referred to in Subsection 1.1 arises from the
isomorphism PSL(2, R) = S0°(1,2).

2. LINEARIZATION AND CLASSIFICATION OF ORBIT TYPES

A celebrated result of Guillemin-Sternberg [16] and Kushnirenko [21]
states that a real-analytic action of a semisimple Lie group G on a real-
analytic manifold M is linearizable near any fixed point p € M. Lineariza-
tion means that there is a diffeomorphism @ from a neighborhood U of p
to a neighborhood V' of 0 € T, M such that for all g € G, the germ of g at
p equals the germ of ®~1 o D,g o ®. Alternatively, for all vector fields X
arising from the G-action, ®,.X is the linear vector field D, X on V C T,,M.

Uchida’s classification of analytic SL(n, R)-actions on S™ for n > 3 relies
on this analytic linearization result. Our improvement to smooth actions is
enabled by the smooth linearization result of Cairns-Ghys [6] for SL(n, R)-
actions on R” fixing 0. Also very useful for our arguments is a classification
of orbit types up to dimension n. We recall their results in this section,
together with selected proofs.
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2.1. Classification of orbit types. The following smooth orbit classifica-
tion of [6] will play a key role in the sequel.

Theorem 2.1 (Cairns—Ghys [6] Thm 3.5). Let G be connected and locally
isomorphic to SL(n,R) with n > 3, and assume G acts continuously on a
topological manifold M. For any x € M, any orbit G.x of dimension < n is
equivariantly homeomorphic to one of the following:
(1) a point;
(2) 8™ or RP™! with the projective action;
(3) R™\{0} with the restricted linear action or (R™\{0})/A, for A a
discrete subgroup of the group of scalars R*;
(4) one of the following closed, exceptional orbits, or a finite cover:
e Forn =3, ‘7:%,2’ the variety of complete flags in R3
e Forn =4, Gr(2,4) = Fy, the Grassmannian of 2-planes in R*

Remark 2.2. Some details:
e The actions in (2) are faithful for SL(n,R) and PSL(n,R), re-

spectively, while SL(n,R) does not act faithfully on any (n — 1)-
dimensional manifold.
e Similarly, the actions in (3) are faithful for SL(n, R) and PSL(n,R),

respectively, while SL(n,R) does not have a faithful n-dimensional
representation.
e The fundamental group of .7-?72 is the quaternion group QJs. The

—_——

universal cover is 8, on which SL(3,R) acts faithfully.

e The fundamental group of Gr(2,4) is Z2 (see, e.g., [22]). The uni-
versal cover is S2 x S2, which can be identified with the space of
oriented 2-planes in R*, on which SL(4, R) acts faithfully.

To correct some oversights and provide additional details, we present the
proof here, more or less following the arguments of [6].

Proof. An orbit O, = G.x is a homogeneous space of GG, identified with
G/G,, for G, < G closed; thus the orbit is smooth with smooth G-action.
A maximal compact subgroup K is locally isomorphic to SO(n), with di-
mension n(n — 1)/2, and preserves a Riemannian metric on O,. By [20,
Thm I1.3.1], the isometry group of an m-dimensional Riemannian manifold
has dimension at most m(m + 1)/2, with equality if and only if it is S™ or
RP"™ with the standard SO(m+1)- or PO(m+ 1)-action, respectively. Thus
any orbit of dimension less than n is as in parts (1) and (2) of the theorem;
in particular, all such orbits are closed.

Now assume that O, is n-dimensional and consider g, ® C. There is no
reductive subalgebra of go = sl(n, C) of complex codimension less than or
equal n. Indeed, a suitable Cartan decomposition €, + p, of the reductive
subalgebra would align with that of g, so the compact form &, +ip, would be
contained in that of g. By the same dimension arguments as in the previous
paragraph, there is no closed subgroup of SU(n) of codimension less than or
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equal n, assuming n > 2. Thus there is no compact subalgebra of su(n) of
codimension less than or equal n for n > 2—a contradiction.

Assuming now that g, ® C is not reductive, the isotropy representa-
tion on V' = (g/gz)c will be reducible. Assume there is an invariant p-
dimensional complex subspace, for 0 < p < n. The stabilizer in sl(n, C) of
a p-dimensional subspace has codimension p(n — p), so n > p(n — p). Then
p=1orn—1and g, ® C has codimension 1 in the subspace stabilizer, or
n=4and p=2.

In the case n = 4 and p = 2, our dimension assumptions imply that g, ®C
equals the full stabilizer in sl(n,C) of a 2-dimensional complex subspace
W C V = C* Because g, ® C does not preserve any proper subspace of
W, the intersection Wy = W NW is real-even-dimensional and g,-invariant.
Since W is assumed to be a proper subspace, Wy # V4.

If dim Wy = 2, then g, is contained in the stabilizer of a 2-dimensional
subspace of R%. As this stabilizer has real codimension 4, it is equal to g,.
The orbit O is the real Grassmannian Gr(2,4) or a finite covering space.

The remaining possibility is that Wy = 0. This means V = W @& W.
Given vy € Vj, there is a unique w € W such that

vy = 1(w + W)
2
Then

T(oo) = 5(0 )

defines a g,-equivariant automorphism of Vy with J? = —Id. Now g, is con-
tained in a subalgebra isomorphic to sl(2,C). The codimension of sl(2, C)
in s[(4,R) is 9, so this case does not arise under our assumptions.

Next consider p = 1 and n > 3. For the invariant complex line W, if
WNW =0, then g, ® C preserves a flag W c U = W ® W C C". The
stabilizer of such a flag has codimension 2n — 3, which is less than or equal
n only for n = 3. In the case n = 3, this flag is a full flag, and the stabilizer
has codimension 3, so it equals g, ® C. The intersection Uy = U N U
is real-two-dimensional and g,-invariant. As in the previous paragraph, the
g, ® C-invariant decomposition U = W @ W defines an g -invariant complex
structure on Uy. Now g, is contained in the stabilizer of a 2-plane Uy in R?
together with a complex structure on Uy. The codimension of this stabilizer
in s[(3,R) is 4. Thus this case does not arise under our assumptions.

Now we can assume Wy = W N W is a real line, and g, has codimension
1 in its stabilizer. As in the previous paragraph, g, must be irreducible on
Vo/Wo unless n = 3, in which case, if g, is reducible on this quotient, it is
the Borel subalgebra of sl(3,R). This case corresponds to O, = .7-"%2 or a
finite cover.

Now we assume g, is irreducible on Vy/Wy, and it is a codimension-
one subalgebra of the stabilizer q of a line in R™. The image of @ on
Vo/Wo is GL(n — 1,R), and Q = GL(n — 1,R) x R"!. If the intersection
G.NR" ! were a proper subspace, then G, would project onto GL(n—1, R)
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by dimension considerations. But this would not be consistent with G, being
a subgroup, because GL(n — 1, R) is irreducible on R"~!. Therefore, G, has
full intersection with this kernel and projects onto a closed, codimension-
one, irreducible subgroup of GL(n —1,R). Our earlier arguments show that
SL(n — 1,R) has no closed, codimension-one subgroup for n > 4, while
for n = 3, the unique such subgroup is reducible. Finally, we conclude
that the projection of g, to gl(n — 1,R) equals sl(n — 1,R), and g, =
sl(n — 1,R) x R"! < q. Let E” be the connected, normal subgroup of
Q isomorphic to SL(n — 1,R) x R"™!, and E; < Q the inverse image of
A < Q/EY = R*. The possibilities in (3) correspond to G, = E° or Ej,
respectively, for A a nontrivial discrete subroup of R*.

In the cases with p = n—1 and n > 3 the outer automorphism g — (g
gives an equivariant diffeomorphism from O, to one of the orbits in (3) or

(4). O

—l)t

2.2. Fixed Points and linearization. Let K < G be a maximal compact
subgroup. There is a K-invariant Riemannian metric on M—it can be
obtained by averaging any Riemannian metric on M over K with respect
to the Haar measure. We will denote this metric k. The K-action near a
K-fixed point is linearizable, via the exponential map of k.

Proposition 2.3. Let G be connected and locally isomorphic to SL(n,R).
For a nontrivial smooth action of G on a connected manifold M of dimension
n, the fized set Fix(G) is discrete. In particular, if M is compact, then
Fiz(Q) is finite.

Proof. Let x € M be a G-fixed point. First suppose the isotropy represen-
tation of G at x is trivial. Then via the exponential map of k, we deduce
that the K-action is trivial in a neighborhood of . Then K is trivial on all
of M, and so is G.

Now assume the isotropy representation of G at x is nontrivial; then it is
irreducible and factors through SL(n,R). The isotropy of K, which is iso-
geneous to SO(n), is also locally faithful and thus irreducible; in particular,
there are no nontrivial fixed vectors. Now by linearization of the K-action
on a neighborhood, say, U, of x, there are no K-fixed points other than z
in U. In particular, there are no G-fixed points other than x in U. O

We recall here the smooth linearization theorem for SL(n,R) of [6], ex-
actly as stated there.

Theorem 2.4 (Cairns—Ghys [6] Thm 1.1). For all n > 1 and for all k =
1,...,00, every C*-action of SL(n,R) on (R",0) is C*-linearizable.

There are two nontrivial SL(n, R)-representations on R", the standard
one, which we will denote p, and p*(g) = p((¢~1)?). Under p, there is a Q-
invariant line, pointwise fixed by E°, where @ and E° are the subgroups in-
troduced in the proof of Theorem 2.1. Under p*, there is no Q-invariant line
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when n > 3; rather, @ acts irreducibly on an invariant (n — 1)-dimensional
subspace.

3. CONSTRUCTIONS OF SMOOTH ACTIONS

In this section we construct all smooth, non-transitive, nontrivial SL(n, R)-
actions on n-dimensional compact manifolds for n > 3. The proof that the
list is complete will be given in the next section. We will also give a conjec-
turally complete description of smooth actions of lattices I' < SL(n,R) on
compact n-dimensional manifolds.

Throughout this section, G = SL(n,R) and n > 3. The actions will be
faithful or will factor through faithful actions of PSL(n,R). Recall that a
maximal parabolic subgroup Q < G is isomorphic to GL(n — 1, R) x R?71,
Let L = GL(n—1,R) be a Levi subgroup of @ and 7 : Q — L the projection.
Let {a'} be the one-parameter subgroup generating the identity component
of the center of L. Let C = O(n — 1) be a maximal compact subgroup
of L. Let o € C project to —1 in R* = L/[L,L]. Let Q° and L° be the
identity components of @ and L, respectively; note that 7(Q®) = L°. Define
homomorphisms

:Q" >R q — In(det(7(q))
v:Q >R 2Zy xR q = (sgn(det(m(g)), In|det(7(q))|)

The kernel of v is Ey with A = {1}, which will henceforth be denoted
E: its identity component E° is the kernel of 1.

3.1. Constructions of G-actions on closed n-manifolds. There are two
families of non-transitive actions of SL(n,R) on compact n-manifolds. The
first family have no G-fixed points and are circle bundles over RP"! or
S”~1. Actions in the second family have two or one G-fixed points and are
diffeomorphic to S™ or RP", respectively.

3.1.1. Construction I: without global fized points. Let X° be a smooth circle.

Lemma 3.1. If 7 is a nontrivial smooth involution of X°, then it has 0 or
2 fized points.

Proof. This is a fact of topology, but since our action is smooth, we will
use the existence of a 7-invariant metric. The fixed set of 7 is closed and
equals X0 or is finite. Assuming 7 is not trivial, the differential at these fixed
points is —Id;. Then if Fix(7) is nonempty, the complement has exactly two
connected components, and Fix(7) comprises two points. U

Let {14} be a smooth flow on XY, generated by a vector field X. Let
7 be a smooth involution on ¥° commuting with X, or the involution of
0 x {1, -1} exchanging the two components. Let ¥ = X0 in the first case,
and X% x {—1,1} in the second. In the second case, extend X to ¥ by
pushing forward via 7 to the other component.



SL(n, R)-ACTIONS ON CLOSED n-MANIFOLDS 9

Define an action of R* on X by
fis wl}l{l‘ﬂ o 7(1=S8n(t))/2

Via v : Q — R*, this lifts to an action of () on X, which we will denote
px,r. Then

M=G XQ hM
is a closed manifold with smooth G-action.

Construction I with ¥ = X% X = 0, and 7 = Id, gives the standard
action on RP™" ™! product the trivial action on S', while ¥ = %0 x {—1,1},
X =0, and 7|xo = Id gives the standard action on S"~! product with the
trivial action on S'. If 7|x0 = Id and X is a constant nonvanishing vector
field, then M is homogeneous and equivalent to Ej as in Theorem 2.1 (3),
for A a lattice in R*. These are called Hopf manifolds and will be significant
in Theorem 6.7 below.

3.1.2. Construction II: with global fized points. Next we construct SL(n, R)-
actions on S™. These are the same as those constructed by Uchida in [33,
Sec 2], except they are allowed to be only smooth.

Let ¥4 = [—1,1]. Let X be a smooth vector field on ¥ vanishing at —1
and 1, such that D_; X =1 = D;X. Notice that X is nonvanishing on a
nonempty open interval with —1 as endpoint, and similarly for 1; moreover,
X has at least one zero in (—1, 1). Concretely, there is z_ > —1 the minimum
of the zero set of X in (—1,1) and z; < 1 the maximum of the zero set of
X in (—1,1). It could be that z_ = z,.

Define a Q%-action on (—1,1) by letting {a’} act by the flow {4} and
then pulling back via the epimorphism vy : Q¥ — R%,. Let M' =G X Qo
(—1,1), a bundle over S"~! with interval fibers.

In (R™,0) with the standard action of SL(n,R), let £y be one of the two
Q"-invariant rays from the origin, pointwise fixed by E?. The restriction
of {a'} to £y is smoothly equivalent to {¢%} on (—1,z_). Identifying £
with (—1,2z_) by this equivalence and extending G-equivariantly gives a
smooth gluing of (R™,0) to M’, resulting in a manifold again diffeomorphic
to R™. Similarly gluing another copy of (R",0) along ¢y to (z4,1) in a Q°-
equivariant way yields a closed manifold M, diffeomorphic to S™, on which
SL(n,R) acts with two global fixed points.

Last, we construct actions of SL(n,R) on RP". Let ¥4 = [—1,0] and let
X be a smooth vector field vanishing at —1 and 0, such that D_1 X = 1.
As above, define a Qp-action on X1 by composing the flow % with 1. Let
M' =G xgo (—1,0]. As above, glue R" to M’ by gluing £y to (-1, 2_), for
z_ < 0 the minimum of the zeros of X on (—1,0]. The result is a manifold
with boundary, diffeomorphic to D™. The antipodal map corresponds to
[(g,2)] — [(go, x)], which is well-defined because o € @ and vy is invariant
under conjugation by . The Q%-action on the X -fibers is equivariant with
respect to this involution. Now quotient by the antipodal map restricted to
the boundary of the disk, mapping the boundary onto RP"~!. The resulting
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space is diffeomorphic to RP", with smooth, faithful SL(n, R)-action. Note
that these actions on RP" can be obtained as two-fold quotients from actions
on S™ when X is invariant under —Id; on ¥;. The standard SL(n,R)-
representation p on R™ product with a one-dimensional trivial representation
yields, after projectivization, the “standard action” on RP", obtained from
a standard embedding of SL(n, R) in SL(n + 1,R). This action is obtained
from X vanishing only at —1 and 0, with derivative —1 at 0. The standard
action on S" is the double cover, which arises from X vanishing at —1,0,
and 1 only, with derivative —1 at 0.

3.2. New examples of lattice actions in supraminimal dimension.
The goal of this section is to develop new examples of actions of SL(n,Z)
and its finite-index subgroups on manifolds of dimension 7, including new
actions on the n-dimensional torus T". A sample result is

Theorem 3.2. Let ' < SL(n,Z) be a finite-index subgroup. Then forr > 2
and r = w there exist uncountably many C" actions of I' on T", none of
which is C1-conjugate to another.

3.2.1. Preliminaries: G-actions on blow-ups, disks and tubes. From the con-
structions in the previous section, we will obtain exotic G-actions on D™ and
on 8" x I, for I a closed interval, which we will call G-disks and G-tubes,
respectively (Defs 3.3, 3.4). These will be patched into the standard action
on the torus to build more general actions than previously constructed.

The blow-up of R™ at the origin is constructed as the following algebraic
subvariety of R® x RP"~!:

B = {(z,[v]) e R" x RP"™! : x = cv for some ¢ € R}

The G-action on R” x RP" ! preserves B. The projection onto the second
coordinate exhibits B as the tautological line bundle over RP™~!. In partic-
ular, B is a manifold with an analytic G-action. The points of B projecting
to 0 in the first factor form a subvariety E =2 RP™ !, called the exceptional
divisor.

Let BS be the universal cover of B. The 2-to-1 covering BS — B is
G-equivariant. Note that although BS is diffeomorphic to R™"\{0}, the G-
action is not the restriction of the linear action from R™. A construction of
BS analogous with that of B is as follows: view S"~! as R"\{0}/R%, and
define

BS = {(z,[v]) e R" x 8”1 : 2 = cv for some ¢ € R}

As for B, the projection on the second factor exhibits B.S as a line bundle
over S"~1. Tt is the tautological line bundle and is trivial. The covering
BS — B corresponds to taking the quotient by the diagonal action of —1.
The subset of BS projecting to 0 in the first factor will also be denoted F.
We define

BST = {(x,[v]) € BS : x = cv for some c € R%}
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and similarly for BS™.

Denote by ¢ C B the fiber over the unique Q-fixed point in RP™ !, The
@-action on ¢p factors through the homomorphism v : Q — R* =2 Zs x R
and includes a flow, generated by a vector field Xp. For {a'} < Q the
connected component of the center of L, the flow along X g is the {a’}-action
on £p. For the linear G-action via p on R”, let ¢ be the unique Q-invariant
line, on which @ acts via v. The action of 19(Q°) on / is generated by a vector
field X vanishing at 0, which can be normalized so that DX = 1. Under
the projection B — R", the line /5 is mapped to ¢. Up to normalization,
we can assume that Do Xp = 1.

The G-action on B is equivalent to the induced action on G x¢g £5. Sim-
ilarly, on BS there is a unique Q°-invariant line ¢pg, and the G-action is
the induced action on G' X o £gs. Moreover, {pg is Q-invariant. The deck
transformations of the covering BS — B can be realized as a Q/Q%action
commuting with the G-action (as in the construction in the previous section
of the action on RP" as a quotient of an action on D").

Modifying the vector field X yields different G-actions on B and BS.
Given any X on ¢p invariant under the Zs-action and vanishing only at 0,
the resulting G-space G' X {p will be denoted Bx. The order of vanishing
and derivatives of X at 0 can be arbitrary. Similarly, any vector field X on
{ps vanishing only at 0 yields a G-space diffeomorphic to B.S, which we will
denote BSx. If X is moreover invariant under the Zs-action on /gg, there
is again a G-equivariant covering BSxy — Bx.

The G-space BSyx, or in some cases just BS}, will serve as a patch
between the standard torus action and the building blocks for our exotic
actions. The blow-ups in Katok-Lewis’ construction in [18] are obtained
by gluing a space By into T™\{0}. They present Bx and the gluing in
coordinates. We will provide a coordinate-free construction of their actions
below. Here are the building blocks for our exotic actions.

Definition 3.3. Let X be a vector field on I = [-1,1] with X(—-1) =
X(1) = 0. Let Q° act on I via 1 followed by the flow along X. The
induced G-space G' X o I is called a G-tube.

Now let X be a vector field on [—1, 1] invariant by —Id;, with Do X = 1.
Let D = G xgo (0,1]. As in subsection 3.1.2, the linear G-action on R" can
be glued equivariantly onto an open subset of D, yielding a G-action on D".

Definition 3.4. These G-actions on D" are called G-disks.

3.2.2. Lattice actions on compact manifolds. By gluing G-disks in place of
fixed points in T, we will construct the examples of Theorem 3.2 and prove
the claim that they are C'-distinct. We will provide a common context for
the famous examples of Katok-Lewis [18] and our new examples, as well as
an additional construction using G-tubes to glue together tori. The section
finishes with a conjecture on the classification of I'-actions on closed n-
manifolds, for I' < SL(n,R) a lattice.
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For the standard action of I' = SL(n,Z) on T", local modifications near
the fixed point 0 can be achieved by modifying the SL(n,Z)-action on R™
near 0. Given a fundamental domain F' C R"™ containing the set U =
(—%,%)”, let, for each v € T, V5 equal v"1(U)NU C R" On V, the
covering map 7 : R — T" is a diffeomorphism such that 7(y(x)) = y(7(z)).
Changing the I'-action on R’ on a neighborhood of 0 contained in U yields
a well-defined action on T". The same procedure is valid at any fixed point
p for ' or a finite-index subgroup. By such local modification a G-disk D
as in Definition 3.4 can be glued into the standard action T™\{0}, using a
suitable BSx as the patch between them.

To begin with, assume the vector field X on [—1,1] determining D van-
ishes at 1 with derivative 1 there. Identify a collar neighborhood of E in
BS* radially with a neighborhood of the puncture in U = w(U\{0}) in T",
thus gluing BS to the punctured torus. The resulting space inherits a well-
defined, smooth I'-action. Next, identify a collar neighborhood of dD in D
radially with a collar neighborhood of E' in BS™, thus gluing D to BS, while
retaining a smooth I'-action. The result of performing both gluings on one
copy of BS is a closed manifold M diffeomorphic to T™ with a well-defined
T'-action. There is an invariant hypersphere corresponding to E, such that
the I'-action in a neighborhood of this hypersphere in M is equivalent to the
I'-action near E in BS. The I'-action is thus smooth in this neighborhood,
and on all of M. In fact, if the G-action on D is real-analytic, then this
gluing yields a C*¥ action of ' on M =2 T".

A general G-disk can be glued in to a punctured torus by the following
procedure. Let h be a diffecomorphism of T™\{7(0)} that is the identity
outside U and is radial on its support. Conjugate the SL(n, Z)-action on
T"\{7(0)} by h. Near the puncture, this action coincides with a modified
SL(n,Z)-action p on R™\{0}. Note that by Theorem 2.4, the local lin-
earization theorem, this action will not in most cases extend to R”. It does,
however, extend over a suitable Bx or BSx patched into the puncture. In-
deed, the restriction of Q° to £y\{0} corresponds to a vector field X that
extends to a vector field on ¢y vanishing at the origin, which we will also
denote by Xg. Identifying ¢y smoothly with ¢p pushes Xg forward to a vec-
tor field X p vanishing at 0. Then inducing over g defines the G-action on
BSx. The restriction to BS’;E is equivalent to p near 0, because h is radial.
Gluing BSx\BSy into R™\{0} along BSY gives a smooth G-action on R"
with an open ball removed, which is equivalent to p on the complement of
the boundary. Making the local identification with the torus, this gives a
modified SL(n, Z)-action on the torus minus an open ball, equivalent to the
originally modified action on the complement of the boundary. Now gluing
a collar neighborhood of 9D into BS'y exactly as before yields an action on
T", such that the I'-action on M\D is equivalent to the original action on

T"\{0}.
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Proposition 3.5. Two actions of I' = SL(n,Z) on T™ obtained by gluing a
G-disk in place of w(0) as above are conjugate if and only if the vector fields
on [—1,1] determining the G-disks are conjugate.

Proof. Consider a G-disk D determined by 1y : Q° — R. For a conjugate
QO < @G, there is a unique Qg—invariant interval I C D on which the QO—
action is given by 7y : QO — R. The given G-action on D is the same as
that induced from Qo by 79. We will choose QO so that I'N QO has dense
image in R under 7. This implies that the I'-action determines the vector
field X on I for some, and hence any, choice of conjugate QO, which suffices
to prove the proposition.

By [27, Thm 1] of Prasad-Rapinchuk, there is a Q-irreducible Cartan
subgroup—often referred to as a Q-irreducible torus—in I'. Denote it by T.
Irreducibility here means that 7' contains no nontrivial, proper, algebraic
subtorus. There is a conjugate QO of Q¥ in G containing 7. It suffices to
show that 7y is faithful on Tt = T'N T, since then the image will necessarily
be dense in R. If ker(¢y) N Tt is nontrivial, let 79 be its Zariski closure. It
is the kernel of the rational map g restricted to T'. Since I', and therefore
ker (%) N Tt, consists of Z-points in G, T is defined over Q. It is thus an
algebraic subgroup of GG, contained in T, contradicting Q-irreducibility.

O

Here are additional constructions of I'-actions, for I' = SL(n, Z) or a finite
subgroup, on closed n-manifolds.

Blow-up and two-sided blow-up. For a vector field X on fgg in-
variant under the deck group of the cover BSx — Bx, patching BSx into
T"\{m(0)} and dividing by the deck group yields an SL(n, Z)-action on T"
with 7(0) blown up. Katok-Lewis’ blow-up examples correspond to X van-
ishing to first order at 0 € fpg. They computed that choosing X with
derivative n at 0 yields a volume-preserving action [18].

A related construction is what we will call a two-sided blow-up. (It is
discussed briefly in [18] and in more detail in [2, 13].) Start with two tori
with 7(0) removed, T’}; and T". Patch them together with BSx by gluing
BS;E into the punctured neighborhood U+ and BSY into U_. The resulting
space is the connected sum of two tori with a smooth SL(n,Z)-action. A
second variant involves a single torus punctured at two points which are
fixed by a finite-index subgroup I' < SL(n,Z). Patching neighborhoods of
the two punctures together with BSx yields another smooth I'-space. Some,
but not all, of these examples are equivariant covers of blow-up actions as
constructed above, in which case the full SL(n,Z) acts on the cover. As for
the blow-ups, these actions are volume-preserving if X has derviative n at
0.

Connected sum along G-tube. Let T be a G-tube with defining
vector field X. Let BS% and BS’)’( be two copies of BSx with exceptional
divisors E, and Ej, respectively. For each of the two boundary components
of T', identify a collar neighborhood radially with a collar neighborhood of E;
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in (BS%)~, fori = a, b, to glue BS% and BS% to T, one on each end. Let T%
and T} be two tori with 7(0) removed. Then identify collar neighborhoods
of E; in (BS%)T radially with neighborhoods of the punctures in T?, for
1 = a,b, respectively. The result is two punctured tori connected along the
G-tube T, with smooth (or even real-analytic) I'-action.

Multiple G-disks along a finite orbit. Given a finite SL(n, Z)-orbit
O, a finite-index subgroup I' fixes each point of O. Gluing G-disks into
some or all of these I'-fixed points by the procedure explicated above yields
additional I'-actions on T". One can also perform conjugate gluings along
the periodic orbit to obtain an SL(n, Z)-action with multiple G-disks which
are permuted by the action.

Connecting points of a finite orbit by a G-tube. Given a finite
orbit O as above, pointwise fixed by a finite-index subgroup I" < SL(n, Z),
gluing G-tubes between some pairs of distinct points of O by the procedure
above yields further I'-actions.

Combinations. Given a finite collection of tori T1,...,T}, each with
finite orbits O;, for i = 1,...,k, let ' < SL(n,Z) be a finite-index subgroup
pointwise fixing O = U;0;. Combinations of G-tubes and two-sided blow-
ups between distinct points of O and G-disks or blow-ups at points of O
yield closed, connected n-manifolds with smooth I'-action.

Equivariant gluings along periodic orbits. Up to restriction to a sub-
group of finite index, we believe the constructions described so far are a com-
plete list. But our constructions admit equivariant extensions to SL(n,Z)
along periodic orbits. The simplest version of this was already noted by
Katok and Lewis: instead of blowing up a fixed point, one can blow up all
the points in a periodic orbit and still obtain an action of the full SL(n, Z).
A more complicated construction is illustrated by Farb and Shalen in [9,
Sec 3] where multiple tori are glued over two-sided blow ups along any finite
SL(n, Z)-invariant set in an initial torus. (Their construction is for n = 3
but generalizes to arbitrary n > 3.) One can also insert G-disks and G-tubes
equivariantly along finite orbits, or finite invariant sets. These constructions
that modify the manifold equivariantly along a finite invariant set restrict
on a finite-index subgroup to examples we have already discussed above.
Farb and Shalen also continuously glue certain G-disks into tori, attributing
that construction to S. Weinberger, [9, Section 3.1]. They thus obtain an
exotic action by homeomorphisms. They ask whether their construction can
yield analytic and volume-preserving actions, a question which is positively
answered by our constructions here.

We refer to any action of a finite-index subgroup of SL(n,Z) constructed
by finite iteration of the operations described above as an action built from
tori, G-disks, G-tubes, blow-ups and two-sided blow-ups. Finite iterations of
a subset of these operations yields a subset of these actions; for example,
the actions in Theorem 3.2 are actions built from tori and G-disks.
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Conjecture 3.6. Let I' < SL(n,R) be a lattice and M a compact manifold
of dimension n. Then any action p : T' — Diff (M) either

(1) extends to an action of SL(n,R) or SL(n,R);

(2) factors through a finite quotient of T'; or

(3) is an action built from tori, G-tubes, G-disks, blow-ups and two-sided
blow-ups, with T' a finite-index subgroup of SL(n,Z)

Actions as in item (1) are classified by Theorems 4.2 and 4.3 below, so
this conjecture amounts to a full description of I'-actions in dimension n.

We can formulate a much more restrictive conjecture for I'-actions pre-
serving a finite volume, thanks to the following proposition.

Proposition 3.7. Let I' < SL(n,Z) be a finite-index subgroup acting on
a closed manifold M™ preserving a finite volume. Then the I'-action does
not extend to SL(n,R) or SL(n,R). If it is built from tori, G-disks, G-
tubes, blow-ups, and two-sided blow-ups, then it is in fact built only from
volume-preserving blow-ups and two-sided blow-ups.

Recall that the volume-preserving blow-ups and two-sided blow-ups are
those with definiing vector field X having derivative n at 0.

Proof. Let G = SL(n,R). For any lattice I' < G, the I'-action on R™\{0}
is ergodic by the Howe-Moore theorem (see [39, Thm 2.2.6]). Any volume
form on R"\{0} is fA, for A\ the G-invariant Lebesgue measure and f a
smooth function. Thus the only I'-invariant volume forms on R™\{0} are
constant multiples of A, all having infinite total volume.

Now let I act on M as in the statement of the proposition. If the action is
volume-preserving, there are no open sets on which the I'-action is conjugate
to the standard action on R™\{0}. Any action extending to a non-transitive

action of SL(n,R) or SL(n,R), or any action containing G-tubes or G-
disks, always contain such open sets. The exceptional homogeneous spaces
of Theorem 2.1 (4) do not have any I'-invariant finite volume, also by the
Howe-Moore Theorem. O

Here is the resulting conjecture for volume-preserving I'-actions on closed
n-manifolds:

Conjecture 3.8. Let I' < SL(n,R) be a lattice and M a compact manifold
of dimension n. Then any action p : I' — Diff (M) either

(1) factors through a finite quotient of T'; or

(2) T < SL(n,Z) is a finite-index subgroup, and the action is built from
tori and volume-preserving blow-ups and two-sided blow ups—that
18, for which all vector fields in the construction have derivative n at
0.

While this version of the conjecture does not appear anywhere in the litera-
ture, it seems to be widely believed by experts. The more general Conjecture
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3.6 is less established, mainly because the examples involving G-tubes and
G-disks were previously unkown.

4. CLASSIFICATION OF SMOOTH (G-ACTIONS

Let G be connected and locally isomorphic to SL(n,R). In this section
we prove that, aside from the exceptional homogeneous spaces listed in The-
orem 2.1, all nontrivial G-actions on closed n-manifolds are obtained from
constructions I or IT from Section 3.1.

It follows from Theorem 2.1 that a nontrivial non-transitive action of G
is a faithful action of SL(n,R) or PSL(n,R). We set G = SL(n,R) for the
remainder of this section and assume it acts nontrivially and non-transitively
on a compact manifold M.

4.1. Compact subgroups and fixed circle. Let the subgroups @, L, and
C be as in previous sections, and let CY = SO(n — 1). As above, let K be a
maximal compact subgroup of G, containing C, and k a K-invariant metric
on M.

Proposition 4.1. Assume the G-action on M is not transitive. Let ¥ C M
comprise the CV-fized points. It is a nonempty, finite union of circles.

Proof. The G-orbits in Theorem 2.1 except those in (4) contain C%-fixed
points, and those in (4) are ruled out by our hypotheses. Thus 3 # ().

By classical results, ¥ is a closed, totally geodesic submanifold for k.
It remains to verify that each connected component has dimension 1. Let
x € Y and refer to Theorem 2.1. If x is a G-fixed point, then the K-action is
linearizable near x. The isotropy representation of K extends to G; it is the
standard representation of K on R", in which the C?-fixed set has dimension
1. If O, has dimension n — 1, then C0 is irreducible on 7,0, and trivial
on the k-orthogonal. Then > coincides with the x-geodesic orthogonal to
O, in a neighborhood of z. In the case O, has dimension n, then by (3) of
Theorem 2.1, the fixed set of C? in O, is, as in the linear action on R™\{0},
of dimension one. O

4.2. Classification in the absence of G-fixed points.

Theorem 4.2. Let G = SL(n, R), acting non-trivially on a closed n-manifold
M. Assume that the G-action is not transitive and has no global fixed points.
Then the G-action on M is as in Construction I—that is,

M=G XQ b
where Q) acts via ji(x r, yielding one of the following:
(1) M is diffeomorphic to S"~ x S', with faithful, fiber-preserving G-
action.

(2) M is diffeomorphic to RP™ 1 x S, with fiber-preserving action fac-
toring through PSL(n,R).
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(3) M is a flat circle bundle with Zy monodromy over RP™ !, with
faithful G-action.

(4) M is diffeomorphic to the blow-up of RP™ at a point. The G-action
1s faithful, leaves invariant the exceptional divisor and another hy-
persurface diffeomorphic to RP" !, and preserves an 8"~ !-fibration
on the complement of these two.

Proof. Our assumptions, together with Theorem 2.1, imply that all point
stabilizers are conjugate in G into Q.

Let ¥ be the fixed set of CY, as in Proposition 4.1. For z € X, the
stabilizer of & contains C?; denote this stabilizer by G,. Let h € G be such
that hG,h~! < Q; in particular, hC°h~! < @Q. The following homogeneous
spaces are K-equivariantly diffeomorphic:

G/Q=RP" ~ K/C

Now
0V < Stabg(hQ) N K = Stabg (h'C)

for some h' € K, where here the stabilizers are for the action by translation
on left-coset spaces. Then b’ € Nk (C?) = C. Tt follows that K'C = C and
thus h@ = Q). We conclude that G, < @ for all x € X.

As the subgroups EY, E, and Q° are each normal in @, the stabilizer
G, € {E°, E,Q° Q} for all x € ¥, using Theorem 2.1. These stabilizers all
contain CV. It follows that Q.X = . The normal subgroup E is trivial in
restriction to 3. Thus, the Q-action on Y factors through the epimorphism
v:Q — R".

Let X° be a connected component of ¥.. Now RY preserves ¥0; this
action is a smooth flow {4 }, the restriction of {a’}. Let o be an involution
in C' mapping under v to —1; it leaves ¥ invariant. Let 7 = oly,. Depending
on 7, let ¥ = X0 x {~1,1} or ¥ = X9 Let H(x,r) be the corresponding
QQ-action on X.

For this Q-action on X, define the G-equivariant map

P:GxgX—-M [(g,z)] — g.x

The image of ® is closed because the fiber product is compact. Let g.z be
in the image of ®, with ¢ € G and x € 3. If the orbit G.z is n-dimensional,
it is open; by dimension comparison, the differential of ® at [(g,z)] is an
isomorphism. If G.z is (n — 1)-dimensional, corresponding to G, = Q" or
Q, then G.z is equivariantly diffeomorphic to RP™ ! or 8”!, and the C°-
fixed set in G.x is O-dimensional. Thus G.z is transverse to X at x, and the
differential of ® at [(e, x)] is onto T,,M. By equivariance of ®, the differential
at [(g, )] is also onto Ty, M. We conclude that ® is open, so it is a surjective
local diffeomorphism—in this case, a covering map.

The Iwasawa Decomposition is a diffeomorphism

K x Ax N — SL(n,R)
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where K = SO(n), as above, A is the identity component of the diagonal
subgroup, and N is the group of unipotent upper-triangular matrices (see
[19, Thm VI.6.46]). As N < E° and A/(A N E°) = {a'}, the Iwasawa
Decomposition gives a normal form for elements of G xg ¥: for any g =
ka'n € G and x € X,

(g,2) ~ (k,a'.x) ~ (ko,Ta' )

where o/ = ata” with a" € AN E°. Every [(g,2)] € G xq ¥ is represented
by (k,z) with k € K and z € X°.

If ®([(k,z)] = ®([(K',2")]) with k, k' € K and x,2' € X°, then k' = kq
and 2’ = ¢~ 'z for ¢ = k~'k’ in the normalizer of C°, which intersects K
in C. Thus [(k,z)] = [(K,2')]. We conclude that ® is injective, hence a
diffeomorphism.

Now suppose ¥ = ¥ x {1,—1}. Represent a point p € M by [(k,x)]
with £ € K and z € X°. The assignment p — (kCY x) € K/C® x ¥ is
well-defined, because the stabilizer of X0 intersect K equals C? in this case.
It is easy to verify that this map is a diffeomorphism M — S™7 1 x S!,
corresponding to case (1).

If 7 is trivial, then M has a well-defined diffeomorphism to K/C x %0 =
RP"! x 8!, corresponding to case (2).

Next assume ¥ = X0 and 7 acts freely. In this case, the stabilizer in K
of X0 is C; note also that C = (¢, C") and o normalizes C°. Given p € M
corresponding to [(k,z)] with & € K and 2 € X9, there is a well-defined map
to the orbit {(kC?, ), (kaC® 7.2)} € (K/C° x ¥9)/{s). This is case (3).

In the last case, when 7 has two fixed points, say 2o and x, on X°, then
7 permutes the two components of ¥°\{x¢,z1}. Let Iy be one component.
There is a well-defined map on M\ (G.xoUG.z1) sending [(k, )] to (kC°, x)
with = € Iy. The image is diffeomorphic to S?~! x Iy. The orbits G.z; are
RP"!. The manifold M can be obtained from S*~! x ({zo}UI,U{z1}) by
gluing "1 x {z;} to RP""! x {x;} by the standard covering, for i = 0, 1.
This is case (4). O

4.3. Classification of actions with G-fixed points.

Theorem 4.3. Let G = SL(n, R), acting non-trivially on a closed n-manifold
M. Assume that the G-action is not transitive and has at least one global
fized point. Then the G-action on M is as in Construction II and has one
or two fixed points.

(1) In the case of two fized points, it is obtained from an induced action
on G Xgo (—1,1) by attaching two copies of R" and is diffeomorphic
to S™.

(2) In the case of one fized point, it is a two-fold quotient of an action
as in (1), diffeomorphic to RP™.

In either case, the G-action is faithful.
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Proof. Suppose that xo € M is G-fixed, and let X9 be the connected com-
ponent of 3 containing xg. This is a Q-invariant curve through xg, so there
is a Q-invariant line ¢y tangent to £0 in the isotropy representation of G
at xg. The isotropy is thus the standard representation p. Note also that
G = SL(n,R). Let {a'}, as above, be the one-parameter subgroup in the
center of L 2 GL(n —1,R) < Q. In a suitable parametrization p(a) has
eigenvalue e on £y. Thus there is a neighborhood of zg in £° in which zg is
the only Q-fixed point. Let o € C be as above, so that p(o) acts as —Id; on
fo. Both {a'} and ¢ have no fixed points on ¥°\{x} in a neighborhood of
xo. Thus in this neighborhood, points of X%\{z¢} have stabilizer contained
in E°, which means, thanks to Theorem 2.1, that these stabilizers are E°
and the corresponding orbits are R™\{0}. Then an n-dimensional G-orbit
fills a punctured neighborhood of zy. Finally, a neighborhood Uy of z¢ is
G-equivariantly homeomorphic to (R",0).

Now [6, Thm 1.1], stated here as Theorem 2.4, applies to give that the G-
action on Uy is smoothly equivalent to the representation p. Let Iy = %°NUj,
the open interval corresponding in these coordinates to the line £y through
the origin pointwise fixed by EY and invariant by Q.

Let 7 = ols0. The involution 7 has exactly one other fixed point, call it
x1, in X°, by Lemma 3.1.

Proposition 4.4. The standard SL(n, R)-representation p on R™ does not
extend to a smooth action on any smooth one-point compactification.

Proof. Assume n > 3. Let {a'} be the one-parameter subgroup as above,
oriented such that ||Ad a?|| > 1 on u™, the unipotent radical of q, for ¢ > 0.
This implies that a is expanding on the Q-invariant line ¢y for t > 0.

Suppose that for a smooth structure on the one-point compactification
R"™ U {x;} the SL(n,R)-action extends smoothly. In the linearization at x;
given by Theorem 2.4, the image of Iy U {z1} contains a Q-invariant line
¢1. Then the representation in this linearization is p. That means a’ is
expanding on ¢; for ¢ > 0. Then the union of the curves corresponding to
ly and ¢y is a circle containing exactly two {a'}-fixed points, both of which
are expanding, a contradiction.

Though we do not need it here, we note the proof requires modification
when n = 2. In that case, direct computation shows that in p*, the action of
a’ on the Q-invariant line also moves points away from the origin. So when

n = 2, the contradiction is similar. O

As {a'} normalizes C' and commutes with C?, it leaves Fix(7) = {zq, 71}
invariant. Thus z; is also {a’}-fixed.

Corollary 4.5. At the T-fived point x1, the {a'}-action is expanding on X°.
The point x1 does not lie on the boundary of Iy.

As in the proof above, the existence of a Q-invariant 1-manifold through
x1 forces the linearization at z; to be p, so {a'} is expanding. Since {a'} is
also expanding on X0 at xg, this precludes z; € 91p.
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We now proceed with the identification of the action on M. Let X% be
the two connected components of ¥0\{z¢,z1}. The stabilizers of all points
of Z?r are conjugate in G to Q,Q", E, or E°. By the same argument as in
Section 4.2, the stabilizers are in fact equal to one of these subgroups. One
consequence is that Z(J)r is Q-invariant. As T.Eg = % the union Zg ux®
is Q-invariant, and stabilizers of points in Eﬂ)r are in fact one of Q¥ or E°.

Now we can define

@:GxQoEi%M ®:[(g,x)] = gx

As in the proof of Theorem 4.2, ® is a local diffeomorphism; as such, it has
open image in M.

Recall that G/Q" = K/C. There is in fact a natural K-equivariant
diffeomorphism

K xco 29 = G xgo 29

mapping the C%-orbit of (k,z) € K x E& to the corresponding Q°-orbit
in G x E&. This map is well-defined and injective because C° = K N Q°.
It is easy to see the map is open. Surjectivity follows from the Iwasawa
Decomposition: write any g € G as a product ka'n, with k € K, d =
ald’ € A, d" € ANE® and n € N < EY; then, given any z € 2, we
have [(g,z)] = [(k,at.z)]. The composition of this diffeomorphism with @ is
[(k,z)] — k.z, which is injective because the stabilizer in K of any x € ¥9
equals CY. We conclude that ® is a diffeomorphism onto its image, which is
in turn diffeomorphic to 8"~ ! x 23_.

Let (Io)+ = Uy N'XY, so (In)+ U (Ip)- = Ip\{zo}. The restriction of ®
to G xgo (Ip)+ is a G-equivariant diffeomorphism to Up\{zo}. Under the
K-equivariant identification with S"~! x (Iy)4, the fibers {p} x (Iy); are
K-equivariantly identified with the rays from the origin in Uy = R™. Thus
Up UIm & is K-equivariantly diffeomorphic to R".

Suppose 1 is a G-fixed point, and let U; be an open neighborhood of
x1 in M on which the G-action is equivalent to the linear action by p. Let
(I1)+ =U ﬂZS’r. As in the previous paragraph, ® restricted to G'x o (I1)4 =
S"~1x (1) identifies fibers {p} x (I1)+ with rays from the origin in Uy \{z1}
in a K-equivariant manner. The fibers {p} x (I1)4 are in turn identified K-
equivariantly with infinite segments of rays from the origin in R™ under
its identification with Uy U Im ®. Thus U; U Im® U Uy is K-equivariantly
diffeomorphic to S™. It is moreover open and closed in M, so it equals M.
We conclude that M is G-equivariantly diffeomorphic to the G-action on S™
in Construction IT with {1} } equal {a'} restricted to X9.

Now suppose z; is not G-fixed. The stabilizer of z1 contains C°, o, and
{a’}. Thus it equals @, and the orbit of 2 is G/Q = K/C = RP"!. The
K-invariant metric k determines a normal bundle to G.z1, and an identi-
fication of a neighborhood of the zero section with a normal neighborhood
Up =2 K/C x (—¢,€) of the orbit. The fiber over x;, call it I}, comprises
CY-fixed points and is contained in X0, Thus I;\{z1} intersects Uy UIm &
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in two components, (I1)+ and (I1)_, contained in E?r and X0, respectively.
The saturation K.(I1)4 equals U;\G.z1, and each distinct translate k.(I7)
is identified with an infinite segment of a unique ray from the origin in
UpUIm & = R". The resulting K-equivariant gluing of the normal bun-
dle of G.x1 to Uy U Im @ is equivalent to the gluing of the normal bundle
of RP"™ ! to R™ yielding RP". We obtain that M = Uy UIm ® U U, is
diffeomorphic to RP", with the G-action on RP™ in Construction II corre-
sponding to {¢% } equal {a'} restricted to 9 U {z1}. O

5. ANALYTIC CLASSIFICATION

In construction I of section 3.1, the actions are determined by the vector
field X on X° 22 S! and the involution 7 of ¥ commuting with X. There
are four possibities for 7, corresponding to the four possible diffeomorphism
types in Theorem 4.2. In construction II, the action is determined by the
vector field X on the interval ¥4 = [—1,1]; the actions on RP" corre-
spond to X being invariant by * — —z. By doubling ¥, and gluing at
the endpoints —1 and 1, the vector field in this case determines a vector
field on S! invariant by a reflection (invariant by two reflections in the case
corresponding to an action on RP™).

Thus, aside from the aforementioned finite data, G-actions on closed n-
manifolds are determined by a smooth vector field on a circle, with some
additional symmetries according to the type and subtype.

Proposition 5.1. The vector field X and the involution T are real-analytic,
rather than just smooth, if and only if the resulting n-manifold and SL(n, R)-
action are real analytic.

Proof. Let G = SL(n,R). First assume M = G X ¥ as in Construction I.
If the vector field X and involution 7 are C*, then the resulting R*-action
on XVis C*. Asv: @Q — R* is a C* homomorphism, the lifted Q-action on
¥0is C*. Next, Q < G is an analytic—in fact, algebraic—subgroup, so the
diagonal Q-action on G x X% is C*. We conclude that M, the quotient by
this action, is C¥.

If M is built from a C¥ vector field X on ¥4 = [—1, 1], then the resulting
Q%-action is C¥ on (—1,1), so M" = G xgo (—1,1) is C¥. The diffeomor-
phisms from ¢y to (—1,2z_) and (z4,1) conjugating {a'} to the respective
restrictions of {¢%} are then C¥, as are their G-equivariant extensions.
The gluings are then C“ quotient maps, so the resulting action on S™, or
the two-fold quotient, RP", is C*. (The analyticity in this paragraph was
previously proved by Uchida [33, Sec 2].)

Now suppose M" is C* with real-analytic G-action. We are assuming the
G-action is not transitive. The compact subgroup C° < G is analytic, so
the fixed set 3 is, too. As shown in the proofs of Theorems 4.2 and 4.3, X
is Q-invariant. The restriction of the one-parameter subgroup {a’} to any
component of ¥ is C*. Similarly, the restriction of the involution ¢ € C to
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any component is C¥. These yield the vector field X and the involution T,
respectively, so this data is real-analytic. O

N. Hitchin gave a complete set of invariants for C¥ vector fields on S* in
[17, Thm 3.1]. They are as follows, for X € X“(S!):
e A nonnegative integer number k € N of zeros of X.
Given a choice of cyclic ordering of the zeros,
e An orientation o € {£1}.

e A list my,...,my of positive integers, the orders of vanishing of X
at each zero
e A list r1,...,r, of real numbers, the residues of X at each zero.

When X vanishes to order 1 at x;, the residue r; is the reciprocal of
the derivative of X at x;. The residues are defined analytically in
general, see [17, Sec 1].
e A global invariant © € R. For X = f060 nonvanishing, this is the
integral around S! of df/f. For general f it is analytically defined,
see [17, Sec 2].
Different choices of orientation and cyclic ordering of the zeros correspond
to the dihedral group Djy. More precisely,

({il} x R x D(Nk X Rk)> / |j Dy,
k=0 k=0

is a Borel subset of a Polish space, providing a smooth classification of ana-
lytic vector fields on S! up to analytic conjugacy (see [28, 14] for background
on this set-theoretic notion).

Corollary 5.2. Real-analytic actions of SL(n,R) on closed, analytic n-
manifolds are classified up to equivariant, real-analytic diffeomorphism by
the following set of invariants:

(1) A type, I or II, or one of the finitely-many transitive actions in
Theorem 2.1.

(2) For type I, one of four possible conjugacy classes for the analytic
inwvolution T, and Hitchin’s set of invariants for the analytic vector
field X, commuting with T.

(3) For type II, one of two homotopy types of M and Hitchin’s set of
invariants for the analytic vector field X on S*, having at least two
zeros of order one with identical positive residues, invariant by reflec-
tion in this pair of zeros, and additionally invariant by the antipodal
map n the case M is not simply connected.

The assignment of types and conjugacy classes of suitable vector fields
on S! to SL(n,R)-actions on closed n-manifolds, up to equivariant dif-
feomorphism (in the smooth or C* category), is a Borel reduction (again,
see [28, 14]); recall, this assignment is by the restriction of a certain one-
parameter subgroup {a’} < SL(n, R) to a component X0 of the fixed set of
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C® =2 SO(n —1). The reverse assignment, starting from a type and a conju-
gacy class of compatible vector fields and constructing a closed n-manifold
with SL(n,R)-action, up to equivariant diffeomorphism, is also a Borel re-
duction. Our construction and classification result give a Borel bireduction
between these two equivalence relations, whether in the smooth or analytic
category. Thanks to Hitchin’s result we obtain in the analytic case a smooth
classification (in the set-theoretic sense above) of analytic SL(n, R)-actions
on closed manifolds of dimension n up to analytic conjugacy. The subject
of smooth classification in dynamical systems has recently received consid-
erable attention.

Smooth vector fields, in contrast to analytic ones, do not admit a smooth
classification: Fjy, a particular Borel equivalence relation on a standard Borel
space known not to admit a smooth classification, can be Borel reduced to
it. It follows that SL(n,R)-actions on closed n-manifolds in the smooth
category do not admit a smooth classification (again, see [28, 14] for these
notions and the definition of Ey). We thank Christian Rosendal for very
helpful conversations on this topic.

6. INVARIANT GEOMETRIC STRUCTURES

The linear action of SL(n,R) on R"™ preserves the standard, flat affine
structure, while the transitive action on S™! preserves the standard, flat
projective structure.

A projective structure is an equivalence class of torsion-free connections,
where V ~ V' means there is a 1-form w on M such that

VY =VxY +w(X)Y +w(Y)X

for all X, Y € X(M). Equivalent connections determine the same geodesic
curves, up to reparametrization. See [30, Ch 8] or [20, Ch IV].

All actions of SL(n,R) on closed n-manifolds are built from projective
actions on R"™, R™\{0}, and S"!, but only a few well-known examples
preserve a projective structure. We will prove this in Section 6.2 below.
These actions all do, however, preserve a rigid geometric structure of order
two, a much more flexible notion due to Gromov.

6.1. Invariant 2-rigid geometric structure. For k > 0, denote by F*) M/
the bundle of k-frames on M of order k, with FOM = M. A k-frame at
x € M is the k-jet at 0 of a coordinate chart (R",0) — (M, z). These form
a principal GL®*) (n, R)-bundle, where this is the group of k-jets at 0 of local
diffeomorphisms of R” fixing 0.

Proposition 6.1. Given any nontrivial, smooth action of SL(n,R) on a
compact, n-dimensional manifold M, the action of SL(n,R) on FOM is
free and proper. In particular, the action preserves a 2-rigid geometric struc-
ture in the sense of Gromou.
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For the definition of rigid geometric structure of order k we refer to [15,
0.3], [1, Def 3.7], or [10, Sec 4]. For the equivalence for a smooth Lie group
action between preserving a k-rigid geometric structure and acting freely
and properly on F®¥) M see [15, 0.4] or [1, Thm 3.22]

Remark 6.2. Gromov asserts in [15, 0.4.C3] that any real-analytic action
of a semisimple Lie group with finite center is 3-rigid. Benveniste-Fisher
assert the 2-rigidity of a specific SL(n, R)-action on a manifold of type (4)
in Theorem 4.2, obtained by blowing up the origin in the standard SL(n, R)-
action on RP™ [2, Sec 3.

Lemma 6.3. Let w: M’ — N be a smooth submersion and k > 0. Suppose
T 18 equivariant with respect to smooth actions of a group G on M’ and N.
If G acts freely and properly on F®IN | then it acts freely and properly on
FE M.

Proof. Let m = dim M’ and n = dim N. Let S ¢ F® M’ comprise the k-
jets of coordinate charts ¢ : (R™,0) — (M’, z) for which (mop)(0 x R™™™)
is constant to order k at 0, for all z € M’; in other words, (0 x R™™")
is tangent to the w-fiber of x to order k. The set S is G-invariant and
closed—in fact, it is a subbundle of F*) Af’.

Each k-frame in S, gives a k-frame to N at w(x), for all x € M’, by
restricting a representative coordinate chart to R™ x 0 and composing with
7. This association is in fact a G-equivariant map S — F*IN. By the
elementary fact that freeness and properness of an action pulls back by
equivariant maps, we see that G acts freely and properly on S.

Recall that S is a closed subbundle of F*) M. The group GL(k)(m, R)
acts transitively on fibers of F*) M’ commuting with the G-action. The
stabilizer in G of € € FH® M’ is thus equal the stabilizer of £&.h for any
h € GL® (m,R). Since G acts freely on S, it acts freely on all of F*) /.

Let K ¢ F® M’ be a compact subset and consider G, comprising all
g € G with ¢.K N K # (. Let K be the projection of K to M’ and cover
K with finitely-many compact sets U; over which the bundle F®) M’ is
trivializable. Let U; C S be sections over U;. There are compact subsets
H; ¢ GL®™ (m,R) such that K C U;U;. H;. Now

Gk C U Gu,.H,,U;.H;
2%
where G4 p comprises the elements g with g.A N B # (. These subsets in
turn can be expressed

Gu,.B,U;.H; = GUZ,UJ-.(HJ-H;l) = Gu,v

where V = U;.(H;H; ') NS, because U; C S and S is G-invariant. Now
because S is closed, and by properness of the G-action on S, the set Gy, v
is compact. We conclude that G is compact, so G acts properly on all of
FRM, 0
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Lemma 6.4. Let U C M equal the closure of its interior ﬁ, and assume
that OU = D is a smooth hypersurface, not necessarily connected. Let G
act smoothly on M leaving U invariant. For any k > 0, if G acts freely
and properly on F®OU and on FED, then G acts freely and properly on
FEM,.

Proof. Let n = dim M. Let S comprise the k-frames in f(k)M|D atx € D
arising from coordinate charts ¢ such that (R™! x 0) is tangent at z to
D up to order k—in other words, if F' is a defining function for D in a
neighborhood of  in M, then F o ¢ restricted to R”~! x 0 vanishes to order
k at 0. Now S is a closed, G-invariant subbundle of F*) \f ’ p- Each k-frame
in § determines a k-frame of D, and this correspondence is a G-equivariant
map from S to F® D. As in the previous proof, we conclude that G acts
freely and properly on S and then, using the GL®) (n,R)-action, that G
acts freely and properly on the entire F*) M } e

Note that F® U = ]:(k)M‘[»]. Thus G acts freely on ]:(k)M‘U = .F(k)M}f]U
FRM| .

Given a compact subset K of F*) M ‘U’ suppose first that the projection
of K to U lies in U. Then Gg is compact by our assumption on F ®.

Otherwise, the projection of K has nontrivial intersection with D. Let
K' = Kﬂ(}"(k)M‘D). Since the latter set is closed, K’ is also compact. Then

Gk C Gk, which is compact by properness of the G-action on F®) M1 } -
This completes the proof.

Lemma 6.5. Let M = UUV be a smooth manifold, and U and V closed sub-
sets. Let G act smoothly on M, leaving U and V invariant. If G acts freely
and properly on f(k)M‘U and .F(k)M‘V, then G acts freely and properly on

FEIM, for any k > 0.

Proof. This proof proceeds easily from the decomposition of F*) M into
closed sets ]:(k)M‘U and ]:(k)M|V. (]

Here is the proof of Proposition 6.1.

Proof. Projective structures are 2-rigid geometric structures in the sense of
Gromov (see [20, Ch 4]). Thus G acts freely and properly on FGN for
N = S" ! or RP"!. The actions in construction I have G-equivariant
maps to G/Q = RP™ L. They satisfy the conclusion of the proposition by
Lemma 6.3. )

Now assume M arises from construction II. The subset V = G'x o (2, 21)
is open and G-invariant, where z_ and zy are the first and last zeroes of
the vector field X inside (—1,1); if z_ = 24, then take V = (. First assume
1% # (. There is a G-equivariant submersion Vo= G/QY = 8" so G
acts freely and properly on F @y by Lemma 6.3. Let V be the closure,
with boundary a union of two hyperspheres. As G preserves a projective
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structure on AV, it is free and proper on FPJV. Lemma 6.4 gives that G
is free and proper on F(Q)M‘V.

Let U_ be the closure in M of the copy of R™ glued along ¢y to (—1,2_).
This is a closed disk, with the standard linear G-action on the interior [j'_,
the standard action on the boundary S™~!-fiber over z_, and the normal
action to this boundary determined by the germ of X at z_. Regardless
of this germ, G is free and proper on }'(Q)M‘U . Indeed, the G-action on

U_ is affine, so it is free and proper on FOU_ and thus also on FAU_.
Then Lemma 6.4 applies to give the desired conclusion. Similarly for U,
the closure in M of the copy of R™ glued along ¢y to (z4, 1), the G-action
on FAM |U+ is free and proper. Still assuming 1% # (), two applications of
Lemma 6.5 on M = U_ UV UUy,, lead to the conclusion that G acts freely
and properly on F@ M.

IfV = (), then Lemma 6.5 applies to M = U_ U Uy to yield the same
conclusion. We have proved 2-rigidity of the sphere actions in construction
II. The RP™-actions are double-covered by sphere actions, so the conclusion
applies to them, as well. O

Recall from Section 1.3 of the introduction that Benveniste—Fisher proved
in [2] nonexistence of an invariant rigid geometric structure of algebraic type
for certain exotic SL(n,Z)-actions on T" constructed by Katok-Lewis in
[18]. That proof relied on the affine local action of R™ on T™\{0}, which is
not available for the SL(n, R)-actions of Theorems 4.2 and 4.3. We formulate
here a variant of Question 1.1:

Question 6.6. Which smooth SL(n,R)-actions on closed n-manifolds pre-
serve a rigid geometric structure of algebraic type?

We identify some in the next section, and we expect that these are the
only ones.

6.2. No invariant projective structure for nonstandard actions. A
projective structure on a manifold M"™ determines a canonical Cartan geom-
etry modeled on RP", comprising a principal @,1-bundle over M equipped
with an sl(n+1, R)-valued 1-form satisfying three axioms (see [30, Thm 3.8]
or [20, Thm 4.2]). Here Q,+1 < SL(n+ 1,R) is the maximal parabolic sub-
group stabilizing a line of R*! in the standard representation, as usual. A
consequence is that the isotropy in the group of projective transformations
at any point of M admits an injective homomorphism to Q1.

If the projective Weyl curvature of a projective structure on M"™ vanishes,
then M is projectively flat and has a (PSL(n + 1, R), RP")-structure. Such
a structure corresponds to a projective map ¢ : M — S™ called the devel-
oping map, a local diffeomorphism, equivariant with respect to a holonomy
homomorphism p : (M) — SL(n+1,R). See [32, 25] for more about these
structures.
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An n-dimensional Hopf manifold is a compact quotient (R™\{0})/A for
A a lattice in the group of scalars R*, such as A = {2¥ . 1d,, : k € Z}.
The transitive SL(n, R)-action preserves the flat connection on these spaces
inherited from R™. Note that the connection on the quotient is not the
Levi-Civita connection of any metric, because it is not unimodular. These
actions are projective. Hopf manifolds arise from Construction I with X a
nonvanishing vector field on X° = S1.

The standard action of SL(n, R) on S™ preserves the standard projective
structure, which can be viewed as a projective compactification of two copies
of R™ by S”~!. It arises from Construction II from a vector field X with a
single zero in (—1,1) of order one and derivative —1.

Theorem 6.7. Let G be locally isomorphic to SL(n,R), acting smoothly
on a compact n-manifold M, preserving a projective structure [V]. Then
(M, [V]) is equivalent to

e S™ or RP"™ with the standard projective structure
e o Hopf manifold, diffeomorphic to a flat circle bundle over RP"~!
or 8"~ 1 with trivial or Zo monodromy.

Proof. If the G-action is transitive and n > 4, then it is type I and M is a
quotient of R™\{0} by a cocompact, discrete group of scalar matrices, by
Theorem 2.1—a Hopf manifold. For n = 4, if M is not a Hopf manifold
then it equals the Grassmannian Fy, up to finite covers. Similarly, if n = 3
and M is not a Hopf manifold, then it equals the flag variety ]-'1372, up to
finite covers. We will show that these homogeneous spaces do not have an
invariant projective structure.

The stabilizer P§ < SL(4,R) of a point of Fy is a semidirect product
S(GL(2,R) x GL(2,R)) x U, where U is isomorphic to the abelian group
of linear endomorphisms of R2. The fact that Ad U is trivial on s[(4, R)/p3
corresponds to the differentials of all elements of U being trivial at the Pj-
fixed point in 7. The stabilizer Pﬁ o of a point of .7-"%2 is a semidirect product
(R*)? x N with N isomorphic to the 3-dimensional Heisenberg group. The
center Z(N) acts trivially via Ad on sl(3, R)/piZ, which corresponds to its
differential being trivial on }-?,2 at the PEQ—ﬁxed point. These projective
transformations with trivial differential are called strongly essential (see [7],
23)).

Nagano—Ochiai proved that if there is a strongly essential 1-parameter
subgroup of the stabilizer of a point p € M in the projective group, then
a neighborhood of p in M is projecively flat [24, Lem 5.6]. This gives a
projective local diffeomorphism from a neighborhood of any point of Fj
or ]-"iz to an open subset of S* or S3, respectively. All local projective
transformations of S™ are restrictions of elements of SL(n + 1,R) (see [30,
Thm 5.5.2]). By transitivity of the projective G-actions, the developing map
would be a G-equivariant projective embedding of Fj or ff,Q—or a finite
cover—into S* or S3, respectively, for some monomorphism G — SL(n +
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1,R). There is no closed, n-dimensional orbit of SL(n,R) in the projective
action on S™, so this is a contradiction.

Next assume the G-action on M is not transitive. By Theorems 4.2 and
4.3, the action arises from Construction I or II. In either case there is a closed
(n — 1)-dimensional orbit O, equivalent to S*~' or RP"~! by Theorem 2.1.

There is a 1-parameter group of strongly essential projective transforma-
tions in this case, too. Let pg be a Q°-fixed point in O. The unipotent
radical U of QU is in the kernel of the differential along O at py. The Q°-
invariant curve of C°-fixed points runs through pg transversal to O; denote
it ¥. The Q°-action on ¥ factors through v?, so it is pointwise fixed by U.
Thus U is in the kernel of the full differential at py.

Now [24, Lem 5.6] again says that the projective structure on M is flat
in a neighborhood of pg. By G-invariance of the projective structure, it
is projectively flat in a neighborhood V of O. The developing map ¢ :
V — S™is a local diffeomorphism. Here V can be assumed diffeomorphic to
S"~1x(—e¢, €). The vector fields generating the G-action on V are conjugated
by § to projective vector fields on S™, forming a subalgebra of sl(n + 1,R)
isomorphic to sl(n,R). Let G’ be the corresponding subgroup of SL(n +
1,R). The developing image of O is an (n — 1)-dimensional orbit O’ of
G' = SL(n,R). Up to a projective transformation of S™, it must be the
hypersphere S"~1 © S". Now § restricts to an equivariant diffeomorphism
O0—0. B

Next, V' = §(V) is diffeomorphic to S"~! x (—¢,€); moreover § is a
diffeomorphism V — V’. The saturation G.V is projectively flat, and its
developing image is the saturation G’.V’. The latter set is the complement
of the two SL(n, R)-fixed points in S™.

Replace V with G.V and V' with G’.V’, and consider a point p on the
boundary of V. The orbit N = G.p is necessarily closed. If it is sn—l
or RP" !, then the argument above implies that N develops onto a hy-
persphere in S™. Because § is a local diffeomorphism and maps V to V'
diffeomorphically, the image §(N) must be on the boundary of V', which
comprises only points. We conclude that the boundary of V' comprises G-
fixed points. In Construction II there are at most two G-fixed points. If M
has one, then it is equivalent to RP™ with the standard action, and if M
has two, then it is equivalent to S™ with the standard action. O
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