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Abstract—Deepfakes have become a major public concern
on the Internet as fake images and videos could be used to
spread misleading information about a person or an organization.
In this paper, we explore if deepfakes can be generated for
histopathology images using advances in deep learning. This is
because the field of digital pathology is gaining a lot of momentum
since the Food and Drug Administration (FDA) approved a few
digital pathology systems for primary diagnosis and consultation
in the United States. Specifically, we investigate if state-of-the-
art generative adversarial networks (GANs) can produce fake
histopathology images that can trick an expert pathologist. For
our investigation, we used whole slide images (WSIs) hosted
by The Cancer Genome Atlas (TCGA). We selected 3 WSIs of
colon cancer patients and produced 100,000 patches of 256×256
pixels in size. We trained three popular GANs to generate fake
patches of the same size. We then constructed a set of images
containing 30 real and 30 fake patches. An expert pathologist
reviewed these images and marked them as either real or fake.
We observed that the pathologist marked 10 fake patches as real
and correctly identified 34 patches (as fake or real). Thirteen
patches were incorrectly identified as fake. The pathologist was
unsure of 3 fake patches. Interestingly, the fake patches that were
correctly identified by the pathologist, had missing morphological
features, abrupt background change, pleomorphism, and other
incorrect artifacts. Our investigation shows that while certain
parts of a histopathology image can be mimicked by existing
GANs, the intricacies of the stained tissue and cells cannot be
fully captured by them. Unlike radiology, where it is relatively
easier to manipulate an image using a GAN, we argue that it
is a harder challenge in digital pathology to generate an entire
WSI that is fake.

Index Terms—Deepfakes, generative adversarial networks,
histopathology images, whole slide imaging, deep learning

I. INTRODUCTION

Deepfakes are manipulated/fake images and videos gen-

erated with the help of deep learning techniques. Recently,

deepfakes have become a significant public concern as the

generated images or videos are hard to detect and could

be used to spread misleading information about a person or

an organization. The backbone of deepfake is a deep neural

network and with proper post-processing, can generate content

with a high level of realism. GANs [1] are the key drivers

of deepfakes and use deep learning-based generative models

containing an encoder and decoder neural networks.

In 2017, the FDA approved a whole slide imaging sys-

tem of Philips for primary diagnosis [2]. Later in 2019,

Leica Biosystems received FDA clearance for its digital

pathology system [3]. These are remarkable advances for

digital pathology to become mainstream in the US. Whole

slide imaging is touted as a disruptive technology in digital

pathology. WSIs are gigapixel images of glass slides scanned

using digital scanners at near-optical resolution. WSIs enables

pathologists to use computing devices to view and analyze

histopathology slides. They can also enable pathologists to

collaborate with others for consultation purposes as well as for

teaching activities. Furthermore, deep learning techniques can

be employed for automatic detection and analysis of cellular

and morphological features in WSIs. This can enable improved

and accurate diagnosis by pathologists for diseases such as

cancer.

There has been growing interest in using GANs for real-

world applications and medical imaging. GANs have shown

their usefulness in synthetic image generation, denoising,

reconstruction, and translation. While the benefits of GANs

in medical imaging are many, one may wonder if they can be

misused to generate fake images that can alter a pathologist’s

diagnosis. Recently, Mirsky et al. [4] developed a GAN archi-

tecture to tamper medical images in radiology. They showed

that how an attacker could use deep learning techniques to

add/remove evidence of medical conditions from 3D medical

scans (e.g., MRI, CT scans). While a large body of work in

digital pathology have focused on WSI image analysis [5], [6],

storage techniques [7], [8], and use of GANs for synthetic

histopathology images [9], none has explored if adversarial

attacks (via deepfakes) can be injected in a pathologist’s

workflow when performing clinical diagnosis solely using

WSIs.

Therefore, in this paper, we investigate if deepfakes of

histopathology images can be generated using popular GANs

that can trick an expert pathologist. The key contributions of

our work are as follows:978-1-7281-8243-8/20/$31.00 c©2020 IEEE
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• For our investigation, we used 3 WSIs of colon cancer

patients obtained from TCGA [10]. We produced 100,000

patches of 256×256 pixels in size. We trained Style-

GAN [11], StyleGAN2 [12], and PathologyGAN [13]

to generate fake patches of the same size. We then

constructed a set of images (containing 30 real and 30

fake patches) for evaluation by an expert pathologist.

• We observed that the pathologist marked 10 fake patches

as real and correctly identified 34 patches (as fake or

real). Thirteen patches were incorrectly identified as

fake. Interestingly, the fake patches that were correctly

identified by the pathologist, had missing morphological

features, abrupt background change, pleomorphism, and

other incorrect artifacts.

• Our investigation shows that while certain parts of

a histopathology image can be mimicked by existing

GANs, the intricacies of the stained tissue and cells can-

not be fully captured by them. Therefore, more research

is needed in better understanding how adversarial attacks

can be accomplished by GANs in digital pathology.

The rest of the paper is organized as follows: Section II

gives a background on GANs and provides motivation for

our work. Section III presents our methodology including the

dataset used and the types of GANs that were explored. Sec-

tion IV discusses our findings based on an expert pathologist’s

evaluation of real and fake histopathology images. Finally, we

conclude in Section V.

II. BACKGROUND & MOTIVATION

In this section, we provide a brief background on GANs

and the motivation behind our work.

A. GANs

In 2014, Goodfellow et al. proposed GANs [1], which

are deep learning-based generative models. A GAN uses

two neural networks: a generator and a discriminator. The

generator generates new data instances by learning from the

training data while the discriminator decides if each of those

instances is authentic or fake, and identifies if the generated

images are real. These two neural networks contest against

each other to produce new, synthetic instances of data that are

very close to real images. Since the inception of GANs, various

new GAN designs have been proposed to overcome their

limitations and improve the quality of the images generated in

different domains.

Radford et al. proposed deep convolutional generative ad-

versarial networks (DCGANs) [14] by extending traditional

GANs using deep convolutional neural networks for the gener-

ator and discriminator networks. The fully connected layers on

top of convolutional features were eliminated, which enabled

this network to scale to larger datasets. Batch normalization

was used in both the generator and the discriminator. The

model used the ReLU activation function in all the gener-

ator network layers, with an exception of the output layer,

which used the tanh activation function. For the discriminator

network layers, the model used the LeakyReLU activation

function.

Brock et al. proposed BigGANs [15], which were intro-

duced to bridge the fidelity and variety gap between the

generated images and real-world images. The architectural

changes done to the original GANs allowed BigGANs to scale.

A truncation trick, which involved using different distributions

for the generator’s latent space while training and inferencing,

allowed for an optimal trade-off between image quality (or

fidelity) and image variety.

Karras et al. proposed StyleGAN [12] by extending the

traditional GAN architecture by incorporating changes to the

generator model including the use of a non-linear mapping

network that mapped points in latent space to an intermediate

latent space. Stochastic variation was introduced through noise

added at each point in the generator model that enabled

finer interpretation of the style of the generated image. Later,

they proposed StyleGAN2 [11] to improve the quality of

images generated by StyleGAN, by addressing erratic artifacts

in the generated images. The root cause for these artifacts

were attributed to the adaptive instance normalization. Hence,

the generator normalization technique was redesigned and

replaced with weight demodulation applied to the weights of

each convolutional layers.

Recently, Quiros et al. proposed PathologyGAN [13] for

generating synthetic histopathology image patches from breast

cancer WSIs. PathologyGAN used BigGAN as its baseline

architecture to build a latent space of key tissue features. In

addition to it, it also incorporated advances from StyleGAN

to optimize this latent space in order to identify features of

cancerous tissues. The model also replaced hinge loss with

Relativistic Average Discriminator as the GAN’s objective was

to enable faster convergence and help capture morphological

structure of tissues accurately.

B. Motivation

Recent advances in GANs have shown their usefulness

in real-world applications and medical imaging for synthetic

image generation, denoising, reconstruction, and translation.

Sorin et al. [16] surveyed numerous applications of GANs

in the field of radiology. A more recent work by Tschuchnig

et al. [9] surveyed the potential of GANs in pathology. They

looked at how GANs could be used to augment the various

tasks in digital pathology. While there are many benefits to

using GANs, one may wonder if deepfakes are a myth or

reality in fields like radiology and digital pathology. Recently,

Mirsky et al. proposed CT-GAN [4] and showed how an

adversary can use a GAN to tamper a CT scan by adding

or removing medical conditions. This opens up the possibility

of malicious attacks in medical imaging systems and can lead

to devastating consequences. We ask the following question:

can histopathology images be tampered by an adversary using

GANs? To the best of our knowledge, none of the prior work

has attempted to answer the aforementioned question. As such

attacks can seriously threaten the lives of patients, in this

work, we explore if GANs could be used in an adversarial
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Fig. 1. Overall steps involved in constructing the dataset and generating fake histopathology patches

setting to produce fake histopathology images that could trick

a pathologist. This will enable us to eventually develop robust

schemes to detect tampering of WSIs once digital pathology

becomes prevalent in US hospitals.

III. METHODOLOGY

In this section, we present the details of our methodology.

We begin by describing the dataset used for the study. We then

describe the implementation and experimental setup.

A. Dataset

One of the goals of our study was to use real datasets to train

GANs so that the corresponding deepfakes may indeed look

real. Therefore, we decided to use WSIs from TCGA, which

is the result of a joint effort by the National Cancer Institute

(NCI) and the National Human Genome Research Institute.

We illustrate our methodology in Figure 1. We prepared a

dataset comprising of 100,000 patches by extracting image

patches from 3 WSIs available via TCGA. As our expert

pathologist had training in gastrointestinal pathology, we

obtained the WSIs from The Cancer Genome Atlas Colon

Adenocarcinoma (TCGA-COAD) collection [17]. The files

were in .svs format, which is a popular format used by

WSI scanners such as Aperio. An SVS file contains a pyramid

of image tiles. It contains multiple levels at different image

resolutions based on the magnification used during scanning

(e.g., 40X).

We used py-wsi [18], an open source Python package

that uses OpenSlide [19], to enable easy and intuitive patch

sampling. We extracted patches of size 256 × 256 pixels at

level 17. Higher the level, higher is the image resolution. (All

3 WSIs had level 17.) We also provided an overlap value of

50 to py-wsi. This value indicates the number of pixels to be

added to each side of a tile during extraction. We filtered out

those patches that had a lot of white space; all the selected

patches were of at least 100KB in size. A few examples of the

extracted patches for training GANs are shown in Figure 2.

We trained three GANs using these patches. The real and fake

patches were then put into a test set, which was then evaluated

by an expert pathologist.

Fig. 2. Examples of patches used to train GANs

B. Experimental Setup

We conducted all our experiments on CloudLab [20], an

experimental tested for cloud computing. We chose machines

in the Wisconsin data center. Each machine had 2 Intel Xeon

Silver 4114 10-core CPUs (2.20 GHz), 192 GB of RAM, 480

GB SSD storage, 1 TB disk drive, and ran Ubuntu 18.04. It

also had an NVIDIA PCI P100 GPU with 12 GB of GPU

memory. The source code for StyleGAN, StyleGAN2 and

PathologyGAN were obtained from the GitHub sites published
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by the authors of these GANs. We used a single machine

to train each GAN on 100,000 patches using the default

parameters specified by the authors. For StyleGAN, the default

minibatch size was 4 and the initial resolution at the beginning

of the training was set to 8. For StyleGAN2, the default

minibatch size was 32 and the initial resolution was set to

8. The output image patch size for StyleGAN and StyleGAN2

was 256 × 256. For PathologyGAN the default number of

epochs and default batch size were 45 and 64, respectively.

The output patch size was 224× 224.

C. Evaluation Strategy

To conduct a fair evaluation, we prepared a test set of 60

patches, wherein 30 were real and the remaining 30 were fake.

We did inform our expert pathologist that half of the images in

the test set were real. This way our expert pathologist would

not have a biased assessment. We asked the pathologist to

mark each patch in the test set as "real", "fake", or "unsure".

We also requested our pathologist to provide a morphological

reason when she flagged a patch as fake. To prepare the test

set, we first chose a real patch. Then we picked a fake patch

that appeared to be similar to the real one as a non-expert.

Note that among the 30 fake patches, we selected 10 fake

patches from StyleGAN, 10 from StyleGAN2, and 10 from

PathologyGAN. We randomly ordered the 60 patches in the

test set. Figure 3 show samples of fake and real patches used

in the test set.

IV. RESULTS

In this section, we present the results of the evaluation on

the test set by the expert pathologist.

TABLE I
SUMMARY OF THE PATHOLOGIST’S EVALUATION

Pathologist’s evaluation

Real Fake Unsure

G
ro

u
n

d
tr

u
th

R
ea

l

17 13 -

F
ak

e

10 17 3

Table I shows the summary of the pathologist’s evaluation

for the test set containing both real and fake patches. As

observed, out of 60 patches in the test set, 10 fake patches

were marked as real by the pathologist and indeed tricked an

expert’s eye. Some examples of these fake patches are shown

in Figure 4. However, the pathologist correctly identified 34

out of 60 patches (as fake or real). Note that three fake patches

were marked as unsure by the pathologist.

We also asked the pathologist to provide morphological

reasons as to why a particular patch was marked as fake. This

would give us useful insights from a clinical perspective and

(a) Real Patches

(b) Fake patches generated by StyleGAN

(c) Fake patches generated by StyleGAN2

(d) Fake patches generated by PathologyGAN

Fig. 3. Samples of real patches and fake patches (generated by GANs) used
in the test set

provide a better understanding of possible adversarial attacks

on histopathology images.

Figure 5 illustrates the scenario where there were size

variation of cells in fake patches produced by PathologyGAN.

(These are shown as red ovals in the figure.) This means that

GANs must ensure that the variation of the cell sizes are not

very obvious in a generated patch to avoid being detected as

fake.

Figure 6 illustrates the scenario where there were unusual
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(a) Fake patches of StyleGAN

(b) Fake patches of StyleGAN2

Fig. 4. Examples of fake patches that were identified as real by the pathologist

nuclear lobulations in the fake patch generated by Pathology-

GAN. Furthermore, the nuclear shapes were unusual in the

fake patch generated by StyleGAN. (These are shown as red

ovals in the figure.) Thus, a GAN must consider the nuclear

shapes and lobulations in its architecture to generate fake

patches that can evade a pathologist’s keen eye.

Figure 7 illustrates the scenario where the presence of

naked nuclei within the extracellular mucinous matrix in the

fake patches was obvious to the pathologist. These patches

were generated by PathologyGAN and StyleGAN2. (These are

shown as red ovals in the figure.) Therfore, GANs must avoid

(a) PathologyGAN (b) PathologyGAN

Fig. 5. Size variation of cells in fake patches

(a) PathologyGAN (b) StyleGAN

Fig. 6. Unusual nuclear lobulation and unusual nuclear shapes in fake patches

generating naked nuclei within the extracellular mucinous

matrix to generate fake patches that look real.

Figure 8 illustrates the scenario where unusual red blood

cell (RBC) shapes were detected in the fake patches by the

pathologist. (These are shown as red ovals in the figure.)

This observation was made for patches generated by both

PathologyGAN and StyleGAN2. We believe detailed bounding

boxes marking RBC boundaries would facilitate GANs to

more accurately learn the RBC shapes.

In another scenario, the patch generated by PathologyGAN

shown in Figure 9 was identified as fake due to irregular

or poorly delineated extracellular space. This limitation of

PathologyGAN could be resolved by training over a larger

labeled dataset.

Figure 10 illustrates the scenario where there were am-

(a) PathologyGAN (b) StyleGAN2

Fig. 7. Naked nuclei within the extracellular mucinous matrix
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(a) PathologyGAN (b) StyleGAN2

Fig. 8. Unusual RBC shape

Fig. 9. Poor delineation of extracellular space in the patch generated by
PathologyGAN

Fig. 10. The separation between the nuclei was not well defined in the patch
generated by StyleGAN

biguous separation between the nuclei. (These are shown as

red ovals in the figure.) A GAN should consider the nuclei

morphological features to generate fake patches that contain

well-defined separation among nuclei in order to evade a

pathologist.

TABLE II
COMPARISON BETWEEN GANS

Identified as

Model Real Fake Unsure

StyleGAN 4 6 -

StyleGAN2 6 3 1

PathologyGAN 0 8 2

Table II breaks down the pathologist’s evaluation based on

the GAN model that generated the corresponding patches.

Of the three models, StyleGAN2 showcased the best results,

tricking the pathologist 6 out of 10 times, followed by Style-

GAN, with 4 of the patches being incorrectly identified as real.

While none of the patches generated by PathologyGAN were

identified as real, 2 of them were marked as unsure by the

pathologist.

V. CONCLUSION

In this paper, we investigated if a GAN could be used

to generate deepfakes for histopathology images. We used 3

GANs namely, StyleGAN, StyleGAN2 and PathologyGAN,

to generate fake patches by training them over 100,000 real

patches from 3 WSIs of colon cancer patients. An expert

pathologist then evaluated these generated patches. While

certain parts of a histopathology image can be mimicked by

a GAN and trick the pathologist, the intricacies of the stained

tissue and cells cannot be fully captured by existing GANs.

Thus, it was easy for the pathologist to observe numerous

incorrect artifacts related to morphological features of cells in

the fake patches. Hence, through our study we conclude that it

is more challenging to generate deepfakes in digital pathology

than in radiology. While GANs in their current state cannot

completely trick a pathologist, we believe that with a much

larger labeled dataset and careful feature engineering, it could

be possible to accurately capture the morphological features

in a histopathology specimen. Only time will tell when an

adversarial attack on histopathology images will become a

reality. The instructions for training StyleGAN, StyleGAN2,

and PathologyGAN and the datasets used are available on

GitHub [21].
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