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SUMMARY

In many observational studies, the treatment assignment mechanism is not individualistic, as it

allows the probability of treatment of a unit to depend on quantities beyond the unit’s covariates.

In such settings, unit treatments may be entangled in complex ways. In this article, we consider a

particular instance of this problem where the treatments are entangled by a social network among

units. For instance, when studying the effects of peer interaction on a social media platform, the

treatment on a unit depends on the change of the interactions network over time. A similar situation

is encountered in many economic studies, such as those examining the effects of bilateral trade part-

nerships on countries’ economic growth. The challenge in these settings is that individual treatments

depend on a global network that may change in a way that is endogenous and cannot be manip-

ulated experimentally. In this paper, we show that classical propensity score methods that ignore

entanglement may lead to large bias and wrong inference of causal effects. We then propose a solu-

tion that involves calculating propensity scores by marginalizing over the network change. Under

an appropriate ignorability assumption, this leads to unbiased estimates of the treatment effect of

interest. We also develop a randomization-based inference procedure that takes entanglement into

account. Under general conditions on network change, this procedure can deliver valid inference

without explicitly modelling the network. We establish theoretical results for the proposed methods

and illustrate their behaviour via simulation studies based on real-world network data.We also revisit

a large-scale observational dataset on contagion of online user behaviour, showing that ignoring

entanglement may in!ate estimates of peer in!uence.

Some key words: Causal inference; Misspeci"cation; Network; Non-individualistic assignment; Observational

study; Peer in!uence; Propensity score; Randomization inference.
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2 P. Toulis, A. Volfovsky and E. M. Airoldi

1. Introduction

In causal inference, the goal is usually to evaluate the effects of treatments applied indi-

vidually to units (Imbens & Rubin, 2015, Ch. 3). However, when units form networks, the

treatment is typically applied to pairs or groups of connected units and is therefore not

individualistic.

Settings with such non-individualistic entangled treatments are common in many "elds.

For example, professional connections affect labour market outcomes (Montgomery, 1991,

1992; Podolny & Baron, 1997; Calvo-Armengol & Jackson, 2004) or knowledge diffusion

and innovation (Topa, 2001; Granovetter, 2005; Kim & Marschke, 2005; Agrawal et al.,

2006 and the 2003 Phd thesis from Aalborg University byM. S. Dahl); centrality in political

networks affects coalition development (Keller, 2014); and online friendships have value in

marketing (Ellison et al., 2007; Manchanda et al., 2015; Hobbs et al., 2016; Hanna et al.,

2017) and affect how peer in!uence propagates (Aral et al., 2009).

In these settings, treatment entanglement poses new methodological challenges that have

not been addressed in the literature despite increased interest in evaluating treatment effects

on networks. Traditionally, the concern about treatments on networks is interference (Cox,

1958; Rubin, 1974), where a unit’s outcome can depend on other units’ treatments. In

recent years, a rich literature has emerged to deal with interference in statistics (Rosenbaum,

2007; Hudgens & Halloran, 2008; Bowers et al., 2013; Toulis & Kao, 2013; Ogburn et al.,

2014; Aronow & Samii, 2017; Choi, 2017; Eckles et al., 2017; Sussman & Airoldi, 2017;

Basse & Airoldi, 2018; Karwa & Airoldi, 2018; Basse et al., 2019; Jagadeesan et al., 2020;

Puelz et al., 2022; Mathews & Volfovsky, 2023) and econometrics (Manski, 1993; Graham,

2008; Bramoullé et al., 2009; Manski, 2013; Angrist, 2014; Belloni et al., 2022; Vazquez-

Bare, 2023), with a split focus on design and identi"cation, respectively. However, treatment

entanglement may still exist under no interference, and so the two problems are separate.

To illustrate the problem of entanglement, Fig. 1 depicts six users in a hypothetical pro-

fessional network. The units form an empty networkG2 at time t2, and the network evolves

endogenously to G+ at time t+. Suppose that the individual treatment on unit i, denoted by

Zi, is the number of new professional connections i makes from t2 to t+ and is thus a func-

tion of G2 and G+. Short-term outcomes Yi * R are measured for each i at t+ and may

represent, say, whether i moved to a higher-income job. Suppose that we want to estimate

the causal effect of Z onY , i.e., the effect of professional networking on jobmobility. Owing

to endogeneity, estimation of this causal effect may be confounded with units’ covariates.

For example, in Fig. 1 it would be tempting to associate improved wages with making new

professional connections, but being more sociable confounds making more new connections

and having better job outcomes.

One classical approach to mitigating such endogeneity bias relies on the propensity score

methodology (Rosenbaum & Rubin, 1983, 1984, 2023; Heckman, 1990). When treatment

is binary, the idea is to model the propensity score function, pr(Zi = 1 | Xi), and then

compare outcomes of units with similar propensities. However, the classical methodology

tacitly assumes that the treatment is applied individually to each unit i. This approach may

be biased under entanglement because in that setting the individual treatments depend on

the change in the network from G2 to G+, which is a population quantity.

In this article, we extend the classical propensity score methodology to settings with

treatment entanglement. The idea is to model the propensity score of unit i by tak-

ing into account information from every other unit j that could connect to i during the
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Estimating causal effects under network entanglement 3
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Fig. 1. (a) The networks before (G2) and after (G+) the presumed intervention. (b) Observed data: Xi is the
covariate value for worker i; Zi is the treatment on i, i.e., the number of new connections that unit i made in
G+; Yi denotes the outcome of unit i, where Yi = 1 if unit i’s income increased after the treatment period and

Yi = 0 otherwise.

evolution from G2 toG+. We also develop a nonparametric approach based on randomiza-

tion methodology that, within a class of graphon-like network models (Borgs & Chayes,

2017), delivers valid inference without explicitly modelling the network. We show that

this approach recti"es the classical propensity score method under a certain condition of

network ignorability, and we illustrate its application through examples.

2. Preliminaries

2.1. De!nitions and assumptions

Before specializing to networks, we present the general de"nition of treatment

entanglement.

DEFINITION 1 (Entangled treatments). Treatments are said to be entangled if the

assignment mechanism is not individualistic so that the probability of treatment assignment

of a unit may depend on the treatment assignments of other units.

Intuitively, De"nition 1 describes entanglement as a form of interference between treat-

ments. This de"nition is broad and encompasses large classes of study designs. For example,

it includes completely randomized designs where the proportion of treated individuals is

"xed a priori. The analysis of completely randomized designs generally accounts for this

dependence (Imbens & Rubin, 2015).

We now specialize the de"nition to network settings. There areN units indexed by i. The

units form a pre-treatment network G2 that evolves to the post-treatment network G+. Let

Ni(G) denote the neighbourhood of unit i in G * {G2,G+} and di(G) = |Ni(G)| the unit’s

degree, i.e., the number of immediate connections unit i has in G.

DEFINITION 2 (Network-entangled treatments). Treatments are said to be network-

entangled if for each unit i its treatment Zi is a function of G
2 and G+, i.e., Zi = fi(G

2,G+) *

Z for a known function fi.

This de"nition aims to cover settings where the treatment is a function of the change in

a network of units. The following are particular examples of fi:

(i) fi(G
2,G+) = di(G

+) 2 di(G
2), the change in the neighbourhood size of unit i;

(ii) fi(G
2,G+) = I{di(G

+) > di(G
2)}, whether the neighbourhood of i grew;
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4 P. Toulis, A. Volfovsky and E. M. Airoldi

(iii) fi(G
2,G+) =

{
∑

j*V(G+) dist(i, j)
}21

2
{
∑

j*V(G2) dist(i, j)
}21

where V(G) denotes

the node set of graph G and dist(i, j) is a measure of distance between nodes i and j in

the network, a measure that captures, say, a change in individual closeness centrality.

To highlight the issue of entanglement, speci"cation (i) de"nes treatment as

Zi = fi(G
2,G+) = di(G

+) 2 di(G
2). (1)

This is representative of several real-world applications; see § 2.2. In this speci"cation, there

is treatment entanglement because individual degrees are codependent; for instance, the sum

of degrees of all units in a network needs to be even, and this constraint entangles the units’

treatments. In § 5.2 and § 6 we consider amore general form of entanglement that is common

in network seeding experiments. In such settings,Zi is, not only a function of a change in the

degree of individual units, but also a function of additional characteristics of individuals,

such as whether they were given early access to a particular application. We provide details

of this type of entanglement in those sections.

Throughout, Z = (Zi : i = 1,…,N) * Z
N denotes the population treatment assignment

vector. The potential outcome for unit i under treatment Z is denoted by Yi(Z) * R. Each

unit i has covariate Xi * X , where X ¦ R
p and p is "xed.

The above de"nitions of treatment, such as the change in degree described in (1), gen-

erally lead to a multilevel treatment. We therefore need to extend the stable unit treatment

value assumption, SUTVA (Rubin, 1980), also known as effective treatment in econometrics

(Manski, 2013). Speci"cally, we assume that the value of Zi affects only the outcome of i

and that there are no hidden versions of the treatment.

Assumption 1 (Multilevel treatment SUTVA). For any population assignment vectors Z

and Z2, we have Yi(Z) = Yi(Z
2) if Zi = Z2

i for every unit i.

With a slight abuse of notation, Assumption 1 allows us to write Yi(Z) as Yi(Zi). Since

Zi takes only integer values by the de"nition in (1), let Yi = {Yi(2N),…,Yi(N)} denote all

possible potential outcomes for unit i. The observed outcome for i is denoted by Yi * Yi.

Regarding causal estimands, we consider the following type of average treatment effect:

Çm = E
{

Yi(m) 2 Yi(m2 1)
}

.

Here, the expectation may be either over the sample or over an in"nite population. Under

entanglement, this estimand captures the incremental causal effect from adding, or losing,m

new connections in the treatment period over adding, or removing, m2 1 new connections.

With only two levels of treatment, the estimand is the classical average treatment effect.

2.2. Examples

We discuss some examples from the literature that exhibit treatment entanglement. These

examples are used to illustrate our set-up and also to motivate the technical challenges.

Example 1 (Aral et al., 2009). Prior to the treatment of interest, a fraction of individuals

in the population are provided with early access to a product, labelledDi = 1. The treatment

for unit i measures whether that unit is exposed to zero, one or more early adopters of

the product. Thus, G2 and G+ are graphs that represent exposures to product adoptions.

Assuming for simplicity that G2 is empty, the treatment can be de"ned as
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Estimating causal effects under network entanglement 5

Zi = I{di(G
+ ç ÷1DT) > 0} + I{di(G

+ ç ÷1DT) > 1}, (2)

where ÷1 is the length-N vector of ones and ç denotes elementwise multiplication. Individual

treatments are therefore entangled. For instance, two units that share a common neighbour

that adopts the product are both exposed to the treatment together. We revisit this example

in § 6.

Example 2 (Banerjee et al., 2013). Amicro"nance programme is introduced in some parts

of a networked population, and then the information about this opportunity is diffused

through the network. The goal is to understand peer effects on information diffusion. In this

context, unit i is treated if i is informed about the programme by a friend. In this case, G2

andG+ represent the directed interactions between units. This interaction network overlaps

with the social network, but the two networks need not be identical. The de"nition of the

treatment Zi is the same as in (2), given the new de"nitions of G2 and G+ as interaction

networks.

Example 3 (Keller, 2014, 2015). These two papers study how different notions of net-

work centrality, such as betweenness and closeness centrality, affect coalition formation.

Considering individual centrality as a treatment leads to a form of probabilistic entan-

glement because the centralities of nearby units are correlated. While these studies do

not include a formal causal analysis, their goal remains the same as in the other two

examples, that is, to understand the effect of an entangled network treatment on individual-

level outcomes.

3. Challenges under treatment entanglement

In our multilevel treatment setting with integer-valued treatments, the propensity score

de"nition can be generalized to

e(l,Xi) = pr(Zi = l | Xi,G
2) (l = 2N,…,N). (3)

In standard methodology, conditional on similar propensity scores the treatment is as if

randomly assigned under an appropriate ignorability assumption. This allows valid causal

inference conditional on the propensity score (Rosenbaum & Rubin, 1983).

However, this standard approach ignores treatment entanglement. The subtle issue is that

the probability in (3) implicitly conditions on G+, since Zi is a function of both G2 and G+

by (1). Hence, the classical propensity score methodology is actually modelling pr(Zi = l |

Xi,G
+,G2), not pr(Zi = l | Xi,G

2) as claimed above. Conditioning on the post-treatment

network and then estimating the propensity scores is incorrect because in the presence of

entanglement the treatment is a function of the network.

One appropriate way to compute the propensity scores in (3) is to marginalize over the

post-treatment network, accounting for uncertainty in G+. This relies on a statement about

the ignorability of treatment, which we formalize as follows.

Assumption 2 (Ignorability under entanglement). Let Y = (Y1,…,YN), where Yi is the

set of all possible potential outcomes of unit i. Then G+ is conditionally independent of Y

given pre-treatment information X = (X1,…,XN) * X
N and G2; that is,

G+ §§ Y | X ,G2.
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6 P. Toulis, A. Volfovsky and E. M. Airoldi

This assumption is an extension of the standard ignorability assumption of treatment

in settings with no entanglement (Rosenbaum & Rubin, 1983, §1.3). With this assumption

in place, we can correctly calculate the propensity scores and get unbiased estimates of Çm,

according to the following theorem.

THEOREM 1. Suppose that Assumption 2 holds. De!ne the generalized propensity score as

e(l, i;X) = pr(Zi = l | X ,G2) =

∫

fi(G2,G+)=l

pr(G+ | G2,X)dµ(G+), (4)

where µ is a Lebesgue measure on G+ and pr(G+ | G2,X) is the network evolution model.

Let Sm(i;X) = {e(m2 1, i;X), e(m, i;X)}. If the network model is correctly speci!ed and

0 < e(m2 1, i;X), e(m, i;X) < 1

for all m * {2N + 1,…,N}, units i and covariates X, then

E{Yi | Zi = m,Sm(i;X)} 2 E{Yi | Zi = m2 1,Sm(i;X)}

= E{Yi(m) 2 Yi(m2 1) | Sm(i;X)}.

The proof of Theorem 1 is provided in the Supplementary Material. Intuitively, the key

result is that we can use the standard propensity score methodology as usual provided

that we have computed the correct propensity scores in (4). In the literature, such propen-

sity scores can be used in a variety of methods, including matching, subclassi"cation and

inverse weighting (Rosenbaum, 2002; Imbens & Rubin, 2015). Although here we suggest

particular methods, the choice of the appropriate method is separate from the problem of

entanglement.

Remark 1. Standard propensity score-based methods need to be adjusted to accommo-

date the fact that treatment is generally multilevel under entanglement. These problems,

including inverse propensity score weighting approaches, have been partially addressed by

Imbens (2000), Hirano & Imbens (2004), Cattaneo (2010), Lopez et al. (2017) and Lee

(2018). Theorem 1 contributes to this literature, showing that to estimate Çm one can use

the classical methodology through the two-dimensional propensity score, Sm(i;X).

Remark 2. The choice of network model, namely pr(G+ | X ,G2), is crucial but,

ultimately, application-speci"c. Possible choices include simple rewiring models (Dietz &

Hadeler, 1988), temporal exponential random graph models, which are a generalization of

the ERGM framework of Hanneke & Xing (2007) and Hanneke et al. (2010), and dynamic

latent space models (Sarkar & Moore, 2006; Durante & Dunson, 2014; Sewell & Chen,

2015). When it is reasonable to assume thatG2 andG+ \G2 are conditionally independent,

one can appeal to the generalizability of latent space models (Hoff et al., 2002); that is, one

canmodelG2 conditional on unit and dyadic covariates and use the "ttedmodel to compute

the probability of edges in G+ \ G2. In the next section, we develop a randomization-

based procedure that under certain conditions can deliver valid inference without explicitly

modelling the network.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
1
2
/1

/a
s
a
e
0
4
1
/7

7
3
7
4
7
1
 b

y
 IN

A
C

T
IV

E
 u

s
e
r o

n
 2

7
 M

a
y
 2

0
2
5



Estimating causal effects under network entanglement 7

4. Concrete methodology

4.1. Estimation

Theorem 1 implies that modelling the change in the network and then marginalizing

over the treatment de"nition should allow proper causal estimation when treatments are

entangled. Given a statistical model pr(·) of network evolution, this estimation can be

accomplished via a simple Monte Carlo procedure as follows:

Step 1. Calculate the treatment assignments, Zi = fi(G
2,G+).

Step 2. Let G+ | G2,X be modelled via pr(· | » ,G2,X). Obtain an estimate »̂ of the

model parameters.

Step 3. Use »̂ to sample G+
(b)

for b = 1, . . . ,B, conditional on the observed G2.

Step 4. Use the samples from Step 3 to compute ê(l, i;X) using the empirical frequencies:

êi,l = ê(l, i;X) =
1

B

B
∑

b=1

I{fi(G
2,G+

(b)
) = l}. (5)

Although this procedure relies on a parametric network model, it is also possible to use

nonparametric networkmodels (Airoldi et al., 2013;Wolfe &Olhede, 2013; Borgs&Chayes,

2017) or models based on econometric or game-theoretic considerations (Galeotti et al.,

2006; Jackson, 2010; Chandrasekhar & Lewis, 2011; Graham, 2015).

Given the estimates of propensity scores in (5), point estimation is possible via standard

techniques. One approach would be to use the inverse-propensity weighted estimator,

Ç̂
ipw
m (Z,Y ) =

N
∑

i=1

I(Zi = m)Yi

êi,m
2

N
∑

i=1

I(Zi = m2 1)Yi

êi,m21
.

This estimator can be unbiased for Çm as long as the propensity scores are consistently esti-

mated. Another option is to use the standard subclassi"cation estimator, which proceeds as

follows:

Step 1. Subclassify units into K classes according to pairs (êi,m21, êi,m); that is, units

should be grouped together if the pair of propensity score values are similar. LetNk denote

the set of units in class k.

Step 2. Obtain estimates of Çm within classes,

Ç̂m,k =
1

∑

i*Nk
I(Zi = m)

∑

i*Nk

I(Zi = m)Yi 2
1

∑

i*Nk
I(Zi = m2 1)

∑

i*Nk

I(Zi = m2 1)Yi,

and combine estimates across classes into the estimator

Ç̂ class
m (Z,Y ) =

K
∑

k=1

|Nk|

N
Ç̂m,k. (6)
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8 P. Toulis, A. Volfovsky and E. M. Airoldi

A subclassi"cation estimator such as (6) is generally more robust than the inverse-

propensity weighted estimator (Imbens & Rubin, 2015, Ch. 17), but it also requires the

speci"cation of a clustering technique in Step 1. In § 5 we employ k-means clustering,

but other options are available (Friedman et al., 2001). A comparative study of different

clustering techniques in terms of bias/variance would be interesting, but we leave this for

future work.

While point estimation is straightforward with these standard techniques, statistical infer-

ence is challenging under treatment entanglement. The key technical issue is that treatment

assignment is not individualistic under entanglement. Variance estimation based on match-

ing (Abadie & Imbens, 2006, 2016) or design-based sampling variation (Imbens & Rubin,

2015) cannot be applied because treatments are not independent across units. To overcome

this challenge, we propose to use randomization inference, which we describe next.

4.2. Randomization inference

The key idea in randomization inference is to randomize treatment conditional on covari-

ates and a particular null hypothesis. This approach is justi"ed on the basis that treatment is

as if randomized conditional on covariates in line with Assumption 2. The added bene"t is

that inference can be "nite-sample valid for certain null hypotheses whenever exact match-

ing on covariates is possible. This corresponds to settings where the propensity score model

is well speci"ed and relatively low-dimensional.

In particular, suppose that we want to test the global null hypothesis of no treatment

effect,

H0 : Yi(Z) = Yi(Z
2) for all i,Z,Z2. (7)

This hypothesis is, of course, restrictive as it immediately implies that Çm = 0 for all m ! 0.

However, it is useful as a building block for testing local null hypotheses related to Çm for

"xed m, which can be used to construct randomization-based con"dence intervals for Çm.

To test the global null hypothesis, we can apply the classical Fisherian randomization test:

Step 1. Calculate the observed test statistic, Tobs = T(Z,Y ).

Step 2. Sample G+
(r) > pr(· | » ,G2,X) according to the network model for r = 1,…,R.

Step 3. Recalculate the treatment vector Z(r) where Z
(r)
i = fi(G

2,G+
(r)).

Step 4. Calculate the randomization p-value

pval =
1

1 + R

[

1 +

R
∑

r=1

I
{

T(Z(r),Y ) > Tobs
}

]

.

This baseline procedure is valid in "nite samples for the global null hypothesis H0 in (7)

and is feasible if the true model parameters » are known. While this setting is limiting,

the procedure can be extended to more general settings where knowing, or estimating, »

is not necessary, and also to more specialized null hypotheses. We consider both of these

extensions next.

As the "rst extension, let G2 be empty without loss of generality, and suppose that the

network model forG+ follows a graphon speci"cation (Borgs &Chayes, 2017); that is, edges

are sampled independently and for every pair of nodes (i, j),
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Estimating causal effects under network entanglement 9

pr(g+
ij = 1 | X) = w(Xi,Xj), (8)

where w(· , ·) is a "xed, but unknown function. If, in addition, the covariate dimension p is

relatively small, we may apply a simpler version of the above Fisherian randomization test

to test the global null hypothesis via permutations of treatment levels within units having

identical X values. Notably, this procedure is valid without requiring knowledge of w(· , ·),

as long as all relevant covariates are observed.

More formally, let SN denote the symmetric group. For any Ã * SN , let Ãx denote the

permutation of vector x * R
p according to Ã ;ÃX denotes the covariatematrix after permut-

ing the rows of X according to Ã ; and ÃG denotes the graph obtained from G by shuf!ing

the nodes according to Ã . De"ne $(X) as the stabilizer group of permutations of units that

leave X unchanged; that is, $(X) = {Ã * SN : ÃX = X}. Then the proposed permutation

test replaces Steps 2 and 3 of the above Fisherian randomization test procedure with the

following:

Step 22. Resample the treatment asZ(r) = Ã rZ, where Ã r is a random sample from $(X).

This results in a conditional Fisherian randomization test, since the randomization test

described by Step 22 resamples in the restricted space of treatment assignments de"ned by

$(X). Similar conditional Fisherian randomization tests have been derived to study a dif-

ferent problem in network causal inference relating to outcome interference (Athey et al.,

2018; Basse et al., 2019).

THEOREM 2. Under the network model described by (8), suppose that the population

treatment vector, Z = f (G+) = (fi(G
+) : i = 1,…,N) * Z

N , is equivariant such that

f (ÃG+) = Ã f (G+) for all Ã * $(X),G+.

Then, the permutation test described by Step 22 is !nite-sample valid for H0 in (7).

The key result in Theorem 2 is that permutation of the treatment levels of units that have

identical X values is valid for testing the global null hypothesis. Notably, validity holds in

"nite samples and does not require estimation of the unknown graphon function w(· , ·)

of the network model. Moreover, the permutation procedure is simple and can easily be

scaled up to massive datasets, which we put to use in the application of § 6. The key con-

dition identi"ed by Theorem 2 is that the entanglement function needs to be equivariant.

The importance of equivariance for permutation tests was highlighted recently by Basse

et al. (2024), and our result can be considered an extension of theirs to the entanglement

setting. Importantly, equivariance is a simple condition to check; in fact, all de"nitions of

fi in § 2 satisfy equivariance. To see this, observe that (di(ÃG) : i = 1,…,N) = Ã(G÷1) =

Ã{di(G) : i = 1,…N}. Consequently, any entanglement function that depends on degrees is

equivariant. We give another example of treatment equivariance by revisiting Example 1.

Example 1 (continued). The treatment in this setting is de"ned in terms of the degree in

a modi"cation of the observed graph. First, notice that

d(G+ ç ÷1DT) = (di(G
+ ç ÷1DT) : i = 1,…,N) = (G+ ç ÷1DT)÷1 = diag(G+D÷1T) = G+D,

where diag : Rn×n ³ R
n retrieves the diagonal of its square matrix argument. Then, for any

permutation Ã * SN we have that d(ÃG+ ç 1DT) = (ÃG+)D = Ã(G+D) = Ãd(G+ ç 1DT),

and so equivariance holds. From Theorem 2 we can test treatment effects between various

levels through permutation tests conditional on covariates as described in Step 22 above.
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10 P. Toulis, A. Volfovsky and E. M. Airoldi

As a second extension, suppose that we are interested in testing a local sharp null

hypothesis between two speci"c treatment levels,

H0 : Yi(m2 1) = Yi(m). (9)

We encounter such local null hypotheses in the mobile app data example of § 6. In this

setting, we wish to compare, for instance, the effects of communications between peers. The

local null, as expressed in (9), immediately implies that Çm = 0, but is not as stringent as the

global null hypothesis in (7). To test the local null hypothesis, we can simply replace Step 1

of the above Fisherian randomization test with the following:

Step 12. Filter the data to include only units observed at treatment levelsm2 1 or m, i.e.,

the set {i : Zi = m2 1,m}. Calculate the test statistic using data from only those units.

Then we employ the permutation test described in Step 22 above. The validity of this

testing procedure is proved in the Supplementary Material.

Remark 3 (Inference). To perform inference on the local treatment effect Çm, we could

apply the method of test inversion (Rosenbaum, 2002, Ch. 10) to the randomization pro-

cedures developed in this section. Speci"cally, if we let pval(u) denote the p-value from the

randomization test on Çm described by Step 12, we can derive {u : pval(u) ! ³} as the

(12 ³)-level randomization-based con"dence interval for a constant local treatment effect.

Remark 4 (Weak null hypotheses). One additional important extension of the main Fish-

erian randomization test procedure is to test the ‘weak local null’ hypothesis H0 : Çm = 0.

This tests the equality in means between potential outcomes Y (m 2 1) and Y (m) rather

than their equality in distribution. To test the weak null we could follow standard techniques

(Chung & Romano, 2013; DiCiccio & Romano, 2017;Wu &Ding, 2021) and apply the per-

mutation test described in Step 12 with a test statistic that is normalized by a conservative

estimate of its standard error. Such estimates are available for the subclassi"cation estimator

(Imbens & Rubin, 2015, § 17.6), though an adjustment would be needed to accommodate

non-individualistic treatments.

Remark 5 (Approximate Fisherian randomization test). A second important extension of

the main Fisherian randomization test deals with settings where a parametric form of the

network model, pr(·), is available, but does not necessarily adhere to the graphon structure

de"ned in (8). A general approach would then be to use an estimator of » in Step 2, resulting

in a procedure known as the approximate Fisherian randomization test. If this estimator

of » is consistent, then the resulting approximate Fisherian randomization test can have

the correct level asymptotically, which has been proven for various individualistic treatment

settings (Toulis, 2019; Berrett et al., 2020; Shaikh &Toulis, 2021; Pimentel, 2023). As before,

proving this result under entanglement would need to account for the non-individualistic

nature of treatment assignment. We provide empirical validation of this approach in § 5.2,

reserving theoretical validation for future work.

5. Numerical examples

5.1. Small multiplicative covariates simulation

Consider again the example in Fig. 1. There are "ve units, each having a one-dimensional

covariate Xi * R. The pre-treatment network G2 has no edges, as might be expected in
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Estimating causal effects under network entanglement 11

Table 1. Propensity scores from two different models: the left panel is based the method-

ology described in § 4 using the true model (10), while the right panel is based on the

misspeci!ed Poisson regression in (11). Units enclosed by dashed lines are subclassi!ed

together as having similar propensities to receive Zi = 1 and Zi = 2; the misspeci!ed

model leads to incorrect subclassi!cation and, consequently, bias in causal inference.

Propensity score for Zi = · · ·

Unit (i) 0 1 2 3 4 …
1 0.00 0.27 0.73 0.00 0.00 …
2 0.00 0.24 0.67 0.09 0.00 …
3 0.01 0.06 0.23 0.42 0.28 …
4 0.00 0.24 0.68 0.09 0.00 …
5 0.00 0.27 0.73 0.00 0.00 …

Propensity score for Zi = · · ·

Unit (i) 0 1 2 3 4 …
1 0.37 0.37 0.18 0.06 0.02 …
2 0.24 0.34 0.25 0.12 0.04 …
3 0.21 0.33 0.26 0.13 0.05 …
4 0.13 0.26 0.27 0.19 0.10 …
5 0.02 0.08 0.15 0.20 0.20 …

a product adoption study, and the post-treatment network G+ = (g+
ij ) has a probability

distribution such that the connection g+
ij between two units i and j is independent Bernoulli:

pr(g+
ij = 1 | G2,X) ? exp(XiXj + 1.0). (10)

Our goal is to use the data shown in Fig. 1 to estimate Ç2 = E{Yi(2)2Yi(1)}, i.e., the causal

effect of making two new connections relative to making just one.

The proposed method in § 4 requires conditioning on the propensity scores for making

one or two connections. We compare twomodels for the propensity scores. The "rst relies on

the true model in (10). The second method follows the classical propensity score approach,

which ignores the network structure and instead "ts a Poisson regression model. Based on

the data in Fig. 1, the "tted model is

pr(Zi = l | Xi) = »li exp(2»i)/l! (l = 0, 1,…), (11)

where log »i = 0.45 + 0.09Xi. The parameter estimates are rounded to two decimal places.

Table 1 displays the estimated propensity scores from the two aforementioned models and

outlines the resulting subclassi"cation based on these estimates. The scores based on (10) are

obtained by explicitly marginalizing over G+, assuming that the underlying network model

is known. Unsurprisingly, the subclassi"cations lead to different estimates of the causal

effect: Ç̂2 = 0.5 using the true model (10), and Ç̂2 = 0 using the classical model (11). In

absolute value the bias is 0.5, which is substantial because the range of estimands is [21, 1]

as outcomes are binary.

The explanation for this bias is straightforward. The graph G+ in the data of Fig. 1 is an

unlikely sample from its true distribution implied by (10). Speci"cally, unit 3 has only one

connection inG+. However, from the left panel of Table 1we getE(Z3) j 2.9.Asmentioned

earlier, the classical methodology conditions on G+ and thus underestimates the propensity

scores for unit 3. Additionally, the unlikely large number of new connections for unit 5,

Z5 = 4, in!uences the Poisson model substantially, leading to the association of higher

covariate X values with a higher number of connections. This contributes to underestimat-

ing the propensity scores of unit 3 and leads to wrong subclassi"cation and biased estimates

of the causal effect.
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12 P. Toulis, A. Volfovsky and E. M. Airoldi

The example of this section highlights an important issue with the nonentangled

approach. The Poisson-based propensity model does not incorporate the constraints

imposed by the network topology, e.g., that the maximum degree of any unit is four. With-

out this, we may mischaracterize the space of possible treatments and underestimate the

true propensities of individuals to select into treatment. Such constraints can potentially be

included in the naive approach, but they clearly complicate computation and do not resolve

the bigger-picture failure tomodel the entangled dependence between individual treatments.

5.2. Large simulation study

In this simulation study, we demonstrate that standard propensity score models can lead

to severely biased causal inference whenever treatment assignment is not individualistic

due to network entanglement. In contrast, methods that take entanglement into account

perform better, even when they employ a misspeci"ed treatment model.

Our simulation is designed to resemble the real-world application of the following section

and is motivated by network seeding experiments (Kim et al., 2015; Chin et al., 2022).

There are N = 300 units each with covariate Xi independent and identically distributed as

Un[0, 1], indicating a latent social attribute. The units communicate with each other, form-

ing a network G+ where each edge is sampled in an independent and identically distributed

manner as

pr(g+
ij = 1 | X) = expit

{

2µ 2 a(XiXj)
1/2 2 ³mis|Xi 2 Xj|

}

,

where µ, a,³mis > 0. As before, G2 has no edges and G+ is made to be symmetric. We set

µ = 2 and a = 4. With this de"nition, edges form mainly between units with smaller X

values. The parameter ³mis controls the level of misspeci"cation when "tting the treatment

model, which wemake precise later. Approximately 30% of the units are designated as seeds,

via a label Di = 1, and treatment describes whether someone was a seed and whether com-

munication between seeds and non-seeds happened along G+. The treatment can take three

different levels and is de"ned as

Zi = 2Di + (1 2Di) I{Ui < (G+D)i 2 3}, (12)

where the Ui are independent and identically distributed logistic random variables repre-

senting latent individual characteristics. This is a similar entanglement structure to that of

Example 1 and the application of § 6. The entangled treatment has the following intuitive

interpretation:

Zi =

§

«

«

«

¬

2 if unit i was a seed;

1 if unit i was not a seed, but communicated with many seeds;

0 if unit i was not a seed and did not communicate with many seeds.

We simulate outcome data based on pre-treatment covariate information:

Yi(0) = 2³con exp{2³con(XiXj)
1/2} + ÷i, Yi(1) = Yi(0) + 10, Yi(2) = Yi(1) + ¿i,

where Yi =

2
∑

z=0

I(Zi = z)Yi(z) is the outcome and ÷i, ¿i
iid
> N(0, 1) are unobserved noise.
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Estimating causal effects under network entanglement 13

Table 2. Simulation study of § 5.2: N = 300 units are treated according to the entangled

treatment model in (12); each row is calculated as the average over 15 000 samples with !xed

covariates X and G+, but with varying D. The three panels show (a) percentage coverage

of the true parameter (Ç1 = 10) achieved by the subclassi!cation estimator based on the

propensity scores estimated by each method; (b) bias of each method; (c) root mean square

error of each method.

(a) % Coverage

³con ³mis Naive Ent Oracle

0.00 0.00 94.09 94.73 95.01

0.00 0.10 93.85 94.59 94.92

1.00 0.00 76.89 92.83 94.95

1.00 0.10 75.18 92.47 94.88

3.00 0.00 71.73 91.77 95.10

3.00 0.10 70.50 92.05 95.22

(b) Bias

Naive Ent Oracle

0.00 0.00 0.00

20.00 20.00 0.00

20.54 20.25 20.06

20.55 20.24 20.05

23.72 21.32 20.18

23.87 21.32 20.18

(c) Root mean square error

Naive Ent Oracle

0.08 0.08 0.00

0.08 0.08 0.00

0.73 0.38 0.07

0.75 0.36 0.08

4.89 2.10 0.35

5.04 2.09 0.35

Ent, the entanglement-aware method.

The parameter ³con controls the level of confounding between potential outcomes and

treatment. Our goal is to perform inference on Ç1 = E{Yi(1) 2 Yi(0)} = 10.

We employ three different methods of estimating propensity scores, and use those propen-

sity scores as plug-ins for the 10-class subclassi"cation estimator of (6) and for inference on

Ç1. For inference, we use the classical Fisherian randomization test outlined in § 4.2, adjusted

to resample treatments according to the estimated propensity scores. To calculate these

propensity scores for the entanglement-aware method de"ned below requires marginalizing

over G+ as prescribed by our main procedure in § 4.2. The model structure in (12) implies

that theZi are conditionally independent given the seed statusDi, and so the randomization

test resampling treatment based on the propensity scores is valid.

We report the bias, root mean square error and coverage results for the following propen-

sity score methods.

(i) Naivemethod: this "ts a multinomial modelZ > X+D using the multinom package

in R (R Development Core Team, 2024). As an aside, the results in this section remain

unchanged if the naive model omits D.

(ii) Entanglement-aware method: this method follows the Monte Carlo approach of § 4.2

by "tting the treatment model

pr(g+
ij = 1 | X) = expit{2µ 2 a(XiXj)

1/2}.

Whenever ³mis = 0, this corresponds to a correctly speci"ed model. However, the

model is misspeci"ed when ³mis |= 0. This allows us to check the robustness of our

entanglement-aware methodology.

(iii) Oracle method: this uses the true de"nition of the treatment vector in (12) and

calculates propensity scores assuming that G+ and D are known.

The naive and entanglement-aware methods are "t conditionally on all observable quanti-

ties, captured by X and D. Importantly, neither method has access to the full network G+.

The results are shown inTable 2. First, we see that allmethods, including the naivemethod

that assumes individualistic treatment, achieve the nominal coverage level when there is
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14 P. Toulis, A. Volfovsky and E. M. Airoldi

no confounding, i.e., ³con = 0. This is true even when the treatment model "tted by the

entanglement method is misspeci"ed, i.e., ³mis |= 0. However, the naive method can under-

cover severely when there is confounding, ³con |= 0. For example, when ³con = 3, the naive

method has a coverage rate of the true parameter that can be as low as 71%. Moreover,

model misspeci"cation, i.e., ³mis |= 0, appears to introduce more confounding, resulting in

additional deterioration of the performance of the naive method. On the other hand, the

entanglement-aware method performs better, with a coverage rate that generally exceeds

92% across all settings. Notably, this method does not deteriorate under model misspeci"-

cation, ³mis |= 0. Predictably, the oracle method that uses the true propensity scores covers

at the nominal level throughout all settings.

The bias and root mean square error results shown in Table 2(b) and (c) are analogous

to the coverage results. We point out that the bias for the oracle method, e.g., 20.18 for

³con = 3 and ³mis = 0.1, is due to "nite samples. Despite this bias, the oracle method

achieves nominal coverage because it uses the correct randomization distribution of the

estimator based on the true propensity scores.

6. Application

6.1. Introduction

In this section we revisit Example 1 and analyse data from Aral et al. (2009). These data

describe use of the Yahoo!Gomobile service in a social network of users over time. The key

"nding of Aral et al. (2009) is that adjusting for the individual propensity score to adopt the

mobile service can help to distinguish between peer effect and homophily. Our goal here is

different as we focus on estimation of causal effects, and in particular we aim to illustrate

the differences between using a standard propensity score model that ignores the presence

of entanglement and using a model that takes entanglement into account.

6.2. Data and de!nitions

The dataset consists of a universe of 13.02 million Yahoo! users in the U.S.A. tracked

over the month of October 2007. Up to this point the vast majority of users, 98.3%, had

not used the Go service that had been launched the year before. About 60% of the users

were male with an age range of 18–70 years and an average age of 30. In week 1 of the

month, 115.6 thousand users adopted the Go service, and we refer to these users as seeds, in

the network seeding sense discussed in § 5.2. The units of our analysis are users who are not

seeds and who communicated with someone else, seed or non-seed, during week 2 through

Yahoo! Messenger. There are roughly 3.54 million units in the dataset. For each unit we

have covariates X including the following: age; sex, recorded as binary; country location;

full communication history; and Go activity, i.e., summary page view counts, if they were

Go users.

These communications are recorded as messages between pairs of units. During week 2,

a total of 178 million messages were exchanged over 10.5 million distinct conversations.

The distribution of communications per user is severely right-skewed, with a median of

54 messages and a mean of 234 messages. There is also a user with more than 125 000

recorded messages. Additional descriptive statistics and visualization are included in the

Supplementary Material.

The treatment of a unit has three levels, which indicate whether the unit communicated

with 0, 1 ormore seeds during week 2.With a slight adjustment to our notation, letG+ be the
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Estimating causal effects under network entanglement 15
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6

Week 1 Week 2 Weeks 3-4 Summary statistics

Users 13.02m

Average age 29.9

% male 60.2%

Seeds 115.6k

Units 3.54m

Messages 178m

Adopters 9.6k

Fig. 2. Yahoo!Go example. Week 1: users have potential communication channels marked with dashed edges;
some users, i.e., 2 and 6, adopt the Go mobile app and form the seeds (marked with dots), while the rest of the
users form the units. Week 2: users exchange messages with each other (solid edges); the treatmentZ denotes the
number of seeds a unit communicated with, e.g., Z1 = 2 and Z4 = 1. Weeks 3 and 4: outcomes Y are measured

on the units and capture whether they adopt Go, e.g., Y4 = 1 (unit 4 adopted Go) whereas Y1 = 0.

communication network in week 2, i.e., g+
ij = 1 means that user i exchanged messages with

user j. As discussed above, this communication network is vast and contains 10.5 million

edges across 3.55 million nodes. Then, for every unit i we de"ne

Zi = I

(

∑

j*seeds

g+
ij > 0

)

+ I

(

∑

j*seeds

g+
ij > 1

)

.

The outcome is binary and indicates whether a unit adopted the Go service in weeks 3

and 4 of October 2007. A total of 9581 units adopted the Go service in weeks 3 and 4,

which we refer to as adopters. We visualize our applied example, along with key summary

statistics, in Fig. 2.

Remark 6. A seed may communicate with units on the basis of similar age or gender, or

other characteristics related to the user browsing interests. Our goal is to estimate the effect

of communication with a peer who adopted Go in week 1, and so entanglement is likely

owing to an underlying social network that can exhibit homophilous patterns of commu-

nication between peers and motifs such as triadic closures. This form of entanglement is

similar to that of Example 1 and § 5.2, allowing us to employ our randomization approach

for inference.

6.3. Methods and results

To analyse the data, we employ the permutation inference procedure of § 4.2 that does not

require estimation of a particular network model, i.e, Step 12. Both the standard approach

and the entanglement-aware approach use exact matching, each using a different set of

covariates.

For the standard individualistic approach, we perform exactmatching on age and sex. For

the entanglement-aware approach we construct additional covariates that capture the com-

munication pro"le of each user in week 2. Speci"cally, for every communication between

units i and j in week 2, we calculate whether the units are of similar age, same_ageij = 1,

andwhether the units are of the same sex,same_sexij = 1. Then, for every unit i, the model

includes four additional variables counting the number of communications between i and

other units, for all four possible subgroups de"ned by (
∑

j same_ageij,
∑

j same_sexij),

where the sum is over all units that i communicated with. These covariates are normalized
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16 P. Toulis, A. Volfovsky and E. M. Airoldi

Table 3. Point estimates and randomization-based con!dence intervals for constant treatment

effects based on a standard propensity score model that ignores treatment entanglement and is

based on an entanglement-aware model

Model H
{0,1}
0 : Yi(0) = Yi(1) H

{1,2}
0 : Yi(1) = Yi(2)

Standard Estimate 0.32% 0.32%

95% con"dence interval [0.22%, 0.43%] [0.18%, 0.48%]

Entanglement Estimate 0.68% 20.21%

95% con"dence interval [0.54%, 0.80%] [20.45%, 0.01%]

as proportions, in percentages, over the total communications of unit i with all other units,

thus forming the communication pro"le of unit i.

To enforce positivity, we eliminate matched groups in which fewer than 5% or more than

95% of the units are treated (Lee et al., 2011); this removes 11% of the data. As mentioned

before, we conduct inference based on the randomization framework of § 4.2 using the sub-

classi"cation estimator as the test statistic. Speci"cally, we test two sharp null hypotheses,

namelyH
{0,1}
0 : Yi(1) = Yi(0) andH

{1,2}
0 : Yi(1) = Yi(2). For each test, we condition on the

units that receive one of the two treatment levels, construct matches and permute the treat-

ment vector within everymatch.We then invert these tests to construct randomization-based

con"dence intervals for a constant treatment effect; see Remark 3. This approach leverages

Theorem 2, which guarantees that the restricted permutation test on Z is equivalent to a

test that marginalizes over the post-treatment network, G+.

As a result, the standard approach may permute treatments between units with poten-

tially very different communication pro"les, whereas the entanglement-aware approach

permutes only between units with identical pro"les. This may be important because the

communication pro"le seems to be a signi"cant factor for user-to-user communication in

Yahoo!Messenger, which could bias the results from the standard model. Importantly, in

settings where the standard model is valid, the entangled model would also be valid since

every randomization within the entanglement-aware model is also valid under the standard

model.

The results are shown in Table 3. For the standard model, we see that the point esti-

mates are positive and very similar for both effects at 0.32%. The randomization-based 95%

con"dence intervals under this model are also similar and range from 0.18% to 0.48%.

This implies a strong effect in adopting Go from communicating with one seed versus

communicating with no one, the so-called Ç0 effect, and the effect is also positive when com-

paring communication with multiple seeds versus communication with one seed, known

as the Ç1 effect. However, the results are substantively and statistically different under the

entanglement-aware model and also suggest strong effect heterogeneity. Speci"cally, the Ç0
effect is stronger under the entanglement model and ranges between 0.54% and 0.80%. On

the other hand, the point estimate for the Ç1 effect is negative, 20.21%, but not statistically

signi"cant. This suggests that ignoring entanglement may result in grouping together highly

dissimilar units, leading to possible bias.

One potential criticism of the nonsigni"cant result in Table 3 is that the randomization-

based con"dence intervals may be conservative. To address this, we investigate the Type II

error of the randomization procedure through a power simulation study calibrated on the

real data. The results of this study are reported in the Supplementary Material and show

that the randomization procedure is high-powered for effects of similar magnitude to those

observed in the real data.
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7. Discussion

This article studies the problem of treatment entanglement in causal inference in the con-

text of network data. This leads to non-individualistic treatment assignment, which has

been largely ignored by standard causal inference. Our work, however, leaves several open

problems.

First, it would be interesting to know theoretically the extent of bias of classical propen-

sity score methodology under non-individualistic, entangled treatments, as well as the bias

reduction achieved by entanglement-aware methods. In § 5.2 we showed empirically that

even misspeci"ed network models can reduce bias relative to standard propensity scores.

Determining the kinds of theoretical conditions that guarantee such reduction is a ques-

tion for future research, including possible sensitivity analysis. Second, as discussed in § 4,

it would be interesting to know how to select appropriate network models. Third, subclas-

si"cation on a multilevel propensity score as in Theorem 1 is never exact, and we did not

address the resulting bias from subclassi"cation error. Finally, there are interesting open

problems concerning randomization tests for weak null hypotheses under entanglement, as

discussed in Remarks 4 and 5.

As a concluding remark, while our focus has been on treatments that occur between two

individuals in a network, in practice we often observe treatments on larger subsets of units.

This scenario is common in "elds such as education and business, where entire subsets of a

school or a sector receive a treatment while being connected to other subsets. Since the fun-

damental building block for such treatment assignment is the underlying network, we believe

that our methodology is general enough to encompass it. In particular, after adjusting the

de"nition of treatment assignment to apply to larger subgraphs, the procedure outlined in

§ 4 could be applied directly. This !exibility allows our methodology to adapt to various

real-world scenarios where treatment occurs within interconnected subsets of a network.
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