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SUMMARY

In many observational studies, the treatment assignment mechanism is not individualistic, as it
allows the probability of treatment of a unit to depend on quantities beyond the unit’s covariates.
In such settings, unit treatments may be entangled in complex ways. In this article, we consider a
particular instance of this problem where the treatments are entangled by a social network among
units. For instance, when studying the effects of peer interaction on a social media platform, the
treatment on a unit depends on the change of the interactions network over time. A similar situation
is encountered in many economic studies, such as those examining the effects of bilateral trade part-
nerships on countries’ economic growth. The challenge in these settings is that individual treatments
depend on a global network that may change in a way that is endogenous and cannot be manip-
ulated experimentally. In this paper, we show that classical propensity score methods that ignore
entanglement may lead to large bias and wrong inference of causal effects. We then propose a solu-
tion that involves calculating propensity scores by marginalizing over the network change. Under
an appropriate ignorability assumption, this leads to unbiased estimates of the treatment effect of
interest. We also develop a randomization-based inference procedure that takes entanglement into
account. Under general conditions on network change, this procedure can deliver valid inference
without explicitly modelling the network. We establish theoretical results for the proposed methods
and illustrate their behaviour via simulation studies based on real-world network data. We also revisit
a large-scale observational dataset on contagion of online user behaviour, showing that ignoring
entanglement may inflate estimates of peer influence.
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study; Peer influence; Propensity score; Randomization inference.
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1. INTRODUCTION

In causal inference, the goal is usually to evaluate the effects of treatments applied indi-
vidually to units (Imbens & Rubin, 2015, Ch. 3). However, when units form networks, the
treatment is typically applied to pairs or groups of connected units and is therefore not
individualistic.

Settings with such non-individualistic entangled treatments are common in many fields.
For example, professional connections affect labour market outcomes (Montgomery, 1991,
1992; Podolny & Baron, 1997; Calvo-Armengol & Jackson, 2004) or knowledge diffusion
and innovation (Topa, 2001; Granovetter, 2005; Kim & Marschke, 2005; Agrawal et al.,
2006 and the 2003 Phd thesis from Aalborg University by M. S. Dahl); centrality in political
networks affects coalition development (Keller, 2014); and online friendships have value in
marketing (Ellison et al., 2007; Manchanda et al., 2015; Hobbs et al., 2016; Hanna et al.,
2017) and affect how peer influence propagates (Aral et al., 2009).

In these settings, treatment entanglement poses new methodological challenges that have
not been addressed in the literature despite increased interest in evaluating treatment effects
on networks. Traditionally, the concern about treatments on networks is interference (Cox,
1958; Rubin, 1974), where a unit’s outcome can depend on other units’ treatments. In
recent years, a rich literature has emerged to deal with interference in statistics (Rosenbaum,
2007; Hudgens & Halloran, 2008; Bowers et al., 2013; Toulis & Kao, 2013; Ogburn et al.,
2014; Aronow & Samii, 2017; Choi, 2017; Eckles et al., 2017; Sussman & Airoldi, 2017;
Basse & Airoldi, 2018; Karwa & Airoldi, 2018; Basse et al., 2019; Jagadeesan et al., 2020;
Puelz et al., 2022; Mathews & Volfovsky, 2023) and econometrics (Manski, 1993; Graham,
2008; Bramoullé et al., 2009; Manski, 2013; Angrist, 2014; Belloni et al., 2022; Vazquez-
Bare, 2023), with a split focus on design and identification, respectively. However, treatment
entanglement may still exist under no interference, and so the two problems are separate.

To illustrate the problem of entanglement, Fig. 1 depicts six users in a hypothetical pro-
fessional network. The units form an empty network G~ at time ¢~, and the network evolves
endogenously to G at time #*. Suppose that the individual treatment on unit i, denoted by
Z;, is the number of new professional connections i makes from ¢~ to ¢+ and is thus a func-
tion of G~ and G™T. Short-term outcomes Y; € R are measured for each i at ™ and may
represent, say, whether i moved to a higher-income job. Suppose that we want to estimate
the causal effect of Z on Y, i.e., the effect of professional networking on job mobility. Owing
to endogeneity, estimation of this causal effect may be confounded with units’ covariates.
For example, in Fig. 1 it would be tempting to associate improved wages with making new
professional connections, but being more sociable confounds making more new connections
and having better job outcomes.

One classical approach to mitigating such endogeneity bias relies on the propensity score
methodology (Rosenbaum & Rubin, 1983, 1984, 2023; Heckman, 1990). When treatment
is binary, the idea is to model the propensity score function, pr(Z; = 1 | X;), and then
compare outcomes of units with similar propensities. However, the classical methodology
tacitly assumes that the treatment is applied individually to each unit i. This approach may
be biased under entanglement because in that setting the individual treatments depend on
the change in the network from G~ to G, which is a population quantity.

In this article, we extend the classical propensity score methodology to settings with
treatment entanglement. The idea is to model the propensity score of unit i by tak-
ing into account information from every other unit j that could connect to i during the
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Fig. 1. (a) The networks before (G~) and after (G*) the presumed intervention. (b) Observed data: X; is the

covariate value for worker i; Z; is the treatment on i, i.e., the number of new connections that unit ;i made in

G™; Y; denotes the outcome of unit i, where ¥; = 1 if unit i’s income increased after the treatment period and
Y; = 0 otherwise.

evolution from G~ to G*. We also develop a nonparametric approach based on randomiza-
tion methodology that, within a class of graphon-like network models (Borgs & Chayes,
2017), delivers valid inference without explicitly modelling the network. We show that
this approach rectifies the classical propensity score method under a certain condition of
network ignorability, and we illustrate its application through examples.

2. PRELIMINARIES

2.1. Definitions and assumptions

Before specializing to networks, we present the general definition of treatment
entanglement.

DEFINITION 1 (ENTANGLED TREATMENTS). Treatments are said to be entangled if the
assignment mechanism is not individualistic so that the probability of treatment assignment
of a unit may depend on the treatment assignments of other units.

Intuitively, Definition 1 describes entanglement as a form of interference between treat-
ments. This definition is broad and encompasses large classes of study designs. For example,
it includes completely randomized designs where the proportion of treated individuals is
fixed a priori. The analysis of completely randomized designs generally accounts for this
dependence (Imbens & Rubin, 2015).

We now specialize the definition to network settings. There are NV units indexed by i. The
units form a pre-treatment network G~ that evolves to the post-treatment network G*. Let
N;(G) denote the neighbourhood of unitiin G € {G—, G} and d;(G) = |N;(G)| the unit’s
degree, i.e., the number of immediate connections unit i has in G.

DEFINITION 2 (NETWORK-ENTANGLED TREATMENTS). Treatments are said to be network-
entangled if for each unit i its treatment Z; is a function of G~ and G*, i.e., Z; = f;(G~,G") €
Z for a known function f;.

This definition aims to cover settings where the treatment is a function of the change in
a network of units. The following are particular examples of f;:

(1) fi(G~,G") =di(GT) — d;(G™), the change in the neighbourhood size of unit i;
() f4(G~,G") ={d;(G") > d;(G™)}, whether the neighbourhood of i grew;
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(i) f(G—,GY) = {Zje V(G dist(i, )} — {ZJ-E V(G-) dist(i,j)}~ where V(G) denotes
the node set of graph G and dist(i, j) is a measure of distance between nodes i and j in
the network, a measure that captures, say, a change in individual closeness centrality.

To highlight the issue of entanglement, specification (i) defines treatment as
Zi=fi(G~,G") = di(G") — di(G7). (1)

This is representative of several real-world applications; see § 2.2. In this specification, there
is treatment entanglement because individual degrees are codependent; for instance, the sum
of degrees of all units in a network needs to be even, and this constraint entangles the units’
treatments. In § 5.2 and § 6 we consider a more general form of entanglement that is common
in network seeding experiments. In such settings, Z; is, not only a function of a change in the
degree of individual units, but also a function of additional characteristics of individuals,
such as whether they were given early access to a particular application. We provide details
of this type of entanglement in those sections.

Throughout, Z = (Z; : i = 1, ..., N) € ZV denotes the population treatment assignment
vector. The potential outcome for unit 7 under treatment Z is denoted by Y;(Z) € R. Each
unit 7 has covariate X; € X, where X C R? and p is fixed.

The above definitions of treatment, such as the change in degree described in (1), gen-
erally lead to a multilevel treatment. We therefore need to extend the stable unit treatment
value assumption, SUTVA (Rubin, 1980), also known as effective treatment in econometrics
(Manski, 2013). Specifically, we assume that the value of Z; affects only the outcome of i
and that there are no hidden versions of the treatment.

Assumption 1 (Multilevel treatment SUTVA). For any population assignment vectors Z
and Z', we have Y;(Z) = Yi(Z") if Z; = Z for every unit i.

With a slight abuse of notation, Assumption 1 allows us to write Y;(Z) as Y;(Z;). Since
Z; takes only integer values by the definition in (1), let Y; = {Y;(—N), ..., Y;(N)} denote all
possible potential outcomes for unit i. The observed outcome for i is denoted by Y; € Y;.

Regarding causal estimands, we consider the following type of average treatment effect:

Tm = E{ Yi(m) — Yi(m — 1)}

Here, the expectation may be either over the sample or over an infinite population. Under
entanglement, this estimand captures the incremental causal effect from adding, or losing, m
new connections in the treatment period over adding, or removing, m — 1 new connections.
With only two levels of treatment, the estimand is the classical average treatment effect.

2.2. Examples

We discuss some examples from the literature that exhibit treatment entanglement. These
examples are used to illustrate our set-up and also to motivate the technical challenges.

Example 1 (Aral et al., 2009). Prior to the treatment of interest, a fraction of individuals
in the population are provided with early access to a product, labelled D; = 1. The treatment
for unit / measures whether that unit is exposed to zero, one or more early adopters of
the product. Thus, G~ and G are graphs that represent exposures to product adoptions.
Assuming for simplicity that G~ is empty, the treatment can be defined as
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Zi = {dy(GT o 1D") > 0} + [{d{(G* o ID") > 1}, )

where 1 is the length-N vector of ones and o denotes elementwise multiplication. Individual
treatments are therefore entangled. For instance, two units that share a common neighbour
that adopts the product are both exposed to the treatment together. We revisit this example
in §6.

Example 2 (Banerjee et al., 2013). A microfinance programme is introduced in some parts
of a networked population, and then the information about this opportunity is diffused
through the network. The goal is to understand peer effects on information diffusion. In this
context, unit 7 is treated if 7 is informed about the programme by a friend. In this case, G~
and G represent the directed interactions between units. This interaction network overlaps
with the social network, but the two networks need not be identical. The definition of the
treatment Z; is the same as in (2), given the new definitions of G~ and G™ as interaction
networks.

Example 3 (Keller, 2014, 2015). These two papers study how different notions of net-
work centrality, such as betweenness and closeness centrality, affect coalition formation.
Considering individual centrality as a treatment leads to a form of probabilistic entan-
glement because the centralities of nearby units are correlated. While these studies do
not include a formal causal analysis, their goal remains the same as in the other two
examples, that is, to understand the effect of an entangled network treatment on individual-
level outcomes.

3. CHALLENGES UNDER TREATMENT ENTANGLEMENT

In our multilevel treatment setting with integer-valued treatments, the propensity score
definition can be generalized to

e(l, X)) =pr(Zi=11X;,G7) (I=-N,...,N). 3)

In standard methodology, conditional on similar propensity scores the treatment is as if
randomly assigned under an appropriate ignorability assumption. This allows valid causal
inference conditional on the propensity score (Rosenbaum & Rubin, 1983).

However, this standard approach ignores treatment entanglement. The subtle issue is that
the probability in (3) implicitly conditions on G, since Z; is a function of both G~ and G™
by (1). Hence, the classical propensity score methodology is actually modelling pr(Z; = [ |
X;,G"*,G7), not pr(Z; =1 | X;, G7) as claimed above. Conditioning on the post-treatment
network and then estimating the propensity scores is incorrect because in the presence of
entanglement the treatment is a function of the network.

One appropriate way to compute the propensity scores in (3) is to marginalize over the
post-treatment network, accounting for uncertainty in G*. This relies on a statement about
the ignorability of treatment, which we formalize as follows.

Assumption 2 (Ignorability under entanglement). Let Y = (Y, ..., Yy), where Y; is the
set of all possible potential outcomes of unit i. Then G™ is conditionally independent of Y
given pre-treatment information X = (X1, ..., Xn) € XV and G~; that is,

GTLY|X,G.
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This assumption is an extension of the standard ignorability assumption of treatment
in settings with no entanglement (Rosenbaum & Rubin, 1983, §1.3). With this assumption
in place, we can correctly calculate the propensity scores and get unbiased estimates of 7,
according to the following theorem.

THEOREM 1. Suppose that Assumption 2 holds. Define the generalized propensity score as

o, i: X) = pr(Zi=1]X,G7) = / Pr(G* | G-, X) du(G), @
fi(G—,GH)=l

where v is a Lebesgue measure on G and pr(G* | G~, X) is the network evolution model.
Let Sp(i; X) = {e(m — 1,i; X), e(m, i; X)}. If the network model is correctly specified and

O<em—1,i;X),e(mi; X) <1
forallme {—N + 1,..., N}, units i and covariates X, then

E{Yi| Zi=m,Sm(i; X)} — E{Yi | Zi =m — 1, 5, (i X)}
= E{Yi(m) — Yi(m — 1) | Spu(i; X)}.

The proof of Theorem 1 is provided in the Supplementary Material. Intuitively, the key
result is that we can use the standard propensity score methodology as usual provided
that we have computed the correct propensity scores in (4). In the literature, such propen-
sity scores can be used in a variety of methods, including matching, subclassification and
inverse weighting (Rosenbaum, 2002; Imbens & Rubin, 2015). Although here we suggest
particular methods, the choice of the appropriate method is separate from the problem of
entanglement.

Remark 1. Standard propensity score-based methods need to be adjusted to accommo-
date the fact that treatment is generally multilevel under entanglement. These problems,
including inverse propensity score weighting approaches, have been partially addressed by
Imbens (2000), Hirano & Imbens (2004), Cattanco (2010), Lopez et al. (2017) and Lee
(2018). Theorem 1 contributes to this literature, showing that to estimate t,, one can use
the classical methodology through the two-dimensional propensity score, S, (i; X).

Remark 2. The choice of network model, namely pr(Gt | X,G"), is crucial but,
ultimately, application-specific. Possible choices include simple rewiring models (Dietz &
Hadeler, 1988), temporal exponential random graph models, which are a generalization of
the ERGM framework of Hanneke & Xing (2007) and Hanneke et al. (2010), and dynamic
latent space models (Sarkar & Moore, 2006; Durante & Dunson, 2014; Sewell & Chen,
2015). When it is reasonable to assume that G~ and G\ G~ are conditionally independent,
one can appeal to the generalizability of latent space models (Hoff et al., 2002); that is, one
can model G~ conditional on unit and dyadic covariates and use the fitted model to compute
the probability of edges in G \ G~. In the next section, we develop a randomization-
based procedure that under certain conditions can deliver valid inference without explicitly
modelling the network.
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4. CONCRETE METHODOLOGY

4.1. Estimation

Theorem 1 implies that modelling the change in the network and then marginalizing
over the treatment definition should allow proper causal estimation when treatments are
entangled. Given a statistical model pr(-) of network evolution, this estimation can be
accomplished via a simple Monte Carlo procedure as follows:

Step 1. Calculate the treatment assignments, Z; = f;(G~, G1).

Step 2. Let Gt | G, X be modelled via pr(- | , G, X). Obtain an estimate 6 of the
model parameters.

Step 3. Use 0 to sample ng) forb=1,..., B, conditional on the observed G™.

Step 4. Use the samples from Step 3 to compute e(/, i; X) using the empirical frequencies:
| B
ey = el i X) = 2 3 (G, Gy = 1. (5)
b=1

Although this procedure relies on a parametric network model, it is also possible to use
nonparametric network models (Airoldi et al., 2013; Wolfe & Olhede, 2013; Borgs & Chayes,
2017) or models based on econometric or game-theoretic considerations (Galeotti et al.,
20006; Jackson, 2010; Chandrasekhar & Lewis, 2011; Graham, 2015).

Given the estimates of propensity scores in (5), point estimation is possible via standard
techniques. One approach would be to use the inverse-propensity weighted estimator,

N N
i I(Z; = Y; I(Zi=m—-1)Y;
f,lyE)W(Z, Y):Z (Zi=m) z_z Zi=m ) P

€im €im—1

This estimator can be unbiased for 7, as long as the propensity scores are consistently esti-
mated. Another option is to use the standard subclassification estimator, which proceeds as
follows:

Step 1. Subclassify units into K classes according to pairs (&;,—1,€;m); that is, units
should be grouped together if the pair of propensity score values are similar. Let NV, denote
the set of units in class k.

Step 2. Obtain estimates of T, within classes,

1 1
T = I(Zi=m)Y; — I(Zi=m—1)Y;
T Yien M Zi=m) 21 D X [(Zi=m—1) L1 l

ieNy ieNy
and combine estimates across classes into the estimator

IVl
BN Y) =) e (©)
k=1
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A subclassification estimator such as (6) is generally more robust than the inverse-
propensity weighted estimator (Imbens & Rubin, 2015, Ch. 17), but it also requires the
specification of a clustering technique in Step 1. In §5 we employ k-means clustering,
but other options are available (Friedman et al., 2001). A comparative study of different
clustering techniques in terms of bias/variance would be interesting, but we leave this for
future work.

While point estimation is straightforward with these standard techniques, statistical infer-
ence is challenging under treatment entanglement. The key technical issue is that treatment
assignment is not individualistic under entanglement. Variance estimation based on match-
ing (Abadie & Imbens, 2006, 2016) or design-based sampling variation (Imbens & Rubin,
2015) cannot be applied because treatments are not independent across units. To overcome
this challenge, we propose to use randomization inference, which we describe next.

4.2. Randomization inference

The key idea in randomization inference is to randomize treatment conditional on covari-
ates and a particular null hypothesis. This approach is justified on the basis that treatment is
as if randomized conditional on covariates in line with Assumption 2. The added benefit is
that inference can be finite-sample valid for certain null hypotheses whenever exact match-
ing on covariates is possible. This corresponds to settings where the propensity score model
is well specified and relatively low-dimensional.

In particular, suppose that we want to test the global null hypothesis of no treatment
effect,

Hy:Y(Z2) =Y (Z) foralli,Z,Z. 7

This hypothesis is, of course, restrictive as it immediately implies that z,,, = 0 for allm > 0.
However, it is useful as a building block for testing local null hypotheses related to T, for
fixed m, which can be used to construct randomization-based confidence intervals for t,.
To test the global null hypothesis, we can apply the classical Fisherian randomization test:

Step 1. Calculate the observed test statistic, 7°% = T'(Z, Y).

Step 2. Sample Gaﬁ) ~pr(- | 8, G~, X) according to the network model forr =1, ..., R,

Step 3. Recalculate the treatment vector Z where Z\"” = f;(G~, G-

Step 4. Calculate the randomization p-value

1 X ,
pval = ;— R[l + ;]I{T(Z(’), Y) > TObS}].

This baseline procedure is valid in finite samples for the global null hypothesis H in (7)
and is feasible if the true model parameters 6 are known. While this setting is limiting,
the procedure can be extended to more general settings where knowing, or estimating, 6
is not necessary, and also to more specialized null hypotheses. We consider both of these
extensions next.

As the first extension, let G~ be empty without loss of generality, and suppose that the
network model for G* follows a graphon specification (Borgs & Chayes, 2017); that is, edges
are sampled independently and for every pair of nodes (i, j),
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Estimating causal effects under network entanglement 9

pr(g; =11X) = w(X;, X)), (®)

where w(-, -) is a fixed, but unknown function. If, in addition, the covariate dimension p is
relatively small, we may apply a simpler version of the above Fisherian randomization test
to test the global null hypothesis via permutations of treatment levels within units having
identical X values. Notably, this procedure is valid without requiring knowledge of w(-,-),
as long as all relevant covariates are observed.

More formally, let Sy denote the symmetric group. For any 7 € Sy, let 7 x denote the
permutation of vector x € R? according to i; w X denotes the covariate matrix after permut-
ing the rows of X according to 7; and 7 G denotes the graph obtained from G by shuffling
the nodes according to 7. Define IT(X) as the stabilizer group of permutations of units that
leave X unchanged; that is, [1(X) = {7 € Sy : 7 X = X}. Then the proposed permutation
test replaces Steps 2 and 3 of the above Fisherian randomization test procedure with the
following:

Step 2. Resample the treatment as Z() = 7" Z, where 7" is a random sample from IT(X).

This results in a conditional Fisherian randomization test, since the randomization test
described by Step 2’ resamples in the restricted space of treatment assignments defined by
I1(X). Similar conditional Fisherian randomization tests have been derived to study a dif-
ferent problem in network causal inference relating to outcome interference (Athey et al.,
2018; Basse et al., 2019).

THEOREM 2. Under the network model described by (8), suppose that the population
treatment vector, Z = f(G7) = (f(G") :i=1,...,N) € ZN, is equivariant such that

f(@ G =xnf(GY) forallw e TI(X),GT.
Then, the permutation test described by Step 2’ is finite-sample valid for H in (7).

The key result in Theorem 2 is that permutation of the treatment levels of units that have
identical X values is valid for testing the global null hypothesis. Notably, validity holds in
finite samples and does not require estimation of the unknown graphon function w(:,-)
of the network model. Moreover, the permutation procedure is simple and can easily be
scaled up to massive datasets, which we put to use in the application of §6. The key con-
dition identified by Theorem 2 is that the entanglement function needs to be equivariant.
The importance of equivariance for permutation tests was highlighted recently by Basse
et al. (2024), and our result can be considered an extension of theirs to the entanglement
setting. Importantly, equivariance is a simple condition to check; in fact, all definitions of
fi in § 2 satisfy equivariance. To see this, observe that (d;(#G) : i = 1,...,N) = n(Gl) =
7{d;(G) : i = 1, ...N}. Consequently, any entanglement function that depends on degrees is
equivariant. We give another example of treatment equivariance by revisiting Example 1.

Example 1 (continued). The treatment in this setting is defined in terms of the degree in
a modification of the observed graph. First, notice that

d(GT o1D") = (di(GT o 1D :i=1,...,N) = (G" 0 1D")1 = diag(G*DI") = G* D,

where diag : R"*" — R” retrieves the diagonal of its square matrix argument. Then, for any
permutation 7 € Sy we have that d(wG' o 1D") = (wG")D = 7(G*D) = 7d(G* o 1D"),
and so equivariance holds. From Theorem 2 we can test treatment effects between various
levels through permutation tests conditional on covariates as described in Step 2" above.
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10 P. TouL1s, A. VOLFOVSKY AND E. M. AIROLDI

As a second extension, suppose that we are interested in testing a local sharp null
hypothesis between two specific treatment levels,

Hy: Yi(m —1) = Yi(m). )

We encounter such local null hypotheses in the mobile app data example of §6. In this
setting, we wish to compare, for instance, the effects of communications between peers. The
local null, as expressed in (9), immediately implies that z,,, = 0, but is not as stringent as the
global null hypothesis in (7). To test the local null hypothesis, we can simply replace Step 1
of the above Fisherian randomization test with the following:

Step 1'. Filter the data to include only units observed at treatment levels m — 1 or m, i.e.,
the set {i : Z; = m — 1, m}. Calculate the test statistic using data from only those units.

Then we employ the permutation test described in Step 2’ above. The validity of this
testing procedure is proved in the Supplementary Material.

Remark 3 (Inference). To perform inference on the local treatment effect t,,,, we could
apply the method of test inversion (Rosenbaum, 2002, Ch. 10) to the randomization pro-
cedures developed in this section. Specifically, if we let pval(u#) denote the p-value from the
randomization test on t,, described by Step 1, we can derive {u : pval(u) > «} as the
(1 — a)-level randomization-based confidence interval for a constant local treatment effect.

Remark 4 (Weak null hypotheses). One additional important extension of the main Fish-
erian randomization test procedure is to test the ‘weak local null’ hypothesis Hy : 7, = 0.
This tests the equality in means between potential outcomes Y (m — 1) and Y (m) rather
than their equality in distribution. To test the weak null we could follow standard techniques
(Chung & Romano, 2013; DiCiccio & Romano, 2017; Wu & Ding, 2021) and apply the per-
mutation test described in Step 1’ with a test statistic that is normalized by a conservative
estimate of its standard error. Such estimates are available for the subclassification estimator
(Imbens & Rubin, 2015, §17.6), though an adjustment would be needed to accommodate
non-individualistic treatments.

Remark 5 (Approximate Fisherian randomization test). A second important extension of
the main Fisherian randomization test deals with settings where a parametric form of the
network model, pr(-), is available, but does not necessarily adhere to the graphon structure
defined in (8). A general approach would then be to use an estimator of 6 in Step 2, resulting
in a procedure known as the approximate Fisherian randomization test. If this estimator
of 0 is consistent, then the resulting approximate Fisherian randomization test can have
the correct level asymptotically, which has been proven for various individualistic treatment
settings (Toulis, 2019; Berrett et al., 2020; Shaikh & Toulis, 2021; Pimentel, 2023). As before,
proving this result under entanglement would need to account for the non-individualistic
nature of treatment assignment. We provide empirical validation of this approach in §5.2,
reserving theoretical validation for future work.

5. NUMERICAL EXAMPLES

5.1. Small multiplicative covariates simulation

Consider again the example in Fig. 1. There are five units, each having a one-dimensional
covariate X; € R. The pre-treatment network G~ has no edges, as might be expected in
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Estimating causal effects under network entanglement 11

Table 1. Propensity scores from two different models: the left panel is based the method-
ology described in § 4 using the true model (10), while the right panel is based on the
misspecified Poisson regression in (11). Units enclosed by dashed lines are subclassified
together as having similar propensities to receive Z; = 1 and Z; = 2, the misspecified
model leads to incorrect subclassification and, consequently, bias in causal inference.

Propensity score for Z; = - - - Propensity score for Z; = - - -
UnitG) O __1__2_ 3 4 ... Unit@ 0 _1___ 2 3 4
1 0.00 10.27 0.73 1 0.00 0.00 ... 1 0.37 +10.37 0.181 0.06 0.02

0.24 10.34 0251 0.12 0.04
0.21 10.33 0.26, 0.13 0.05
0.13'0.26 027} 0.19 0.10

0.02 0.08 0.15 0.20 0.20

0.00 10.24 0.67, 0.09 0.00

________

0.01 _0.06 _0.23 0.42 0.28

0.00 10.24 0.681 0.09 0.00
0.00 10.27 0.73, 0.00 0.00

________

(U I~ OS I ]
(O I SN OS I \S ]

a product adoption study, and the post-treatment network G* = (g;) has a probability
distribution such that the connection g;; between two units 7 and j is independent Bernoulli:

prigy =11G",X) ocexp(XiX; + 1.0). (10)

Our goal is to use the data shown in Fig. 1 to estimate tp = E{Y;(2) — Y;(1)}, i.e., the causal
effect of making two new connections relative to making just one.

The proposed method in §4 requires conditioning on the propensity scores for making
one or two connections. We compare two models for the propensity scores. The first relies on
the true model in (10). The second method follows the classical propensity score approach,
which ignores the network structure and instead fits a Poisson regression model. Based on
the data in Fig. 1, the fitted model is

pr(Zi=1|X) = Mexp(—r)/I! (I=0,1,...), (11

where log ; = 0.45 4+ 0.09.X;. The parameter estimates are rounded to two decimal places.
Table 1 displays the estimated propensity scores from the two aforementioned models and
outlines the resulting subclassification based on these estimates. The scores based on (10) are
obtained by explicitly marginalizing over GT, assuming that the underlying network model
is known. Unsurprisingly, the subclassifications lead to different estimates of the causal
effect: 7o = 0.5 using the true model (10), and 7, = 0 using the classical model (11). In
absolute value the bias is 0.5, which is substantial because the range of estimands is [—1, 1]
as outcomes are binary.

The explanation for this bias is straightforward. The graph G in the data of Fig. 1 is an
unlikely sample from its true distribution implied by (10). Specifically, unit 3 has only one
connection in G. However, from the left panel of Table 1 we get E(Z3) ~ 2.9. As mentioned
earlier, the classical methodology conditions on G' and thus underestimates the propensity
scores for unit 3. Additionally, the unlikely large number of new connections for unit 5,
Zs = 4, influences the Poisson model substantially, leading to the association of higher
covariate X values with a higher number of connections. This contributes to underestimat-
ing the propensity scores of unit 3 and leads to wrong subclassification and biased estimates
of the causal effect.
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12 P. TouLIls, A. VOLFOVSKY AND E. M. AIROLDI

The example of this section highlights an important issue with the nonentangled
approach. The Poisson-based propensity model does not incorporate the constraints
imposed by the network topology, e.g., that the maximum degree of any unit is four. With-
out this, we may mischaracterize the space of possible treatments and underestimate the
true propensities of individuals to select into treatment. Such constraints can potentially be
included in the naive approach, but they clearly complicate computation and do not resolve
the bigger-picture failure to model the entangled dependence between individual treatments.

5.2. Large simulation study

In this simulation study, we demonstrate that standard propensity score models can lead
to severely biased causal inference whenever treatment assignment is not individualistic
due to network entanglement. In contrast, methods that take entanglement into account
perform better, even when they employ a misspecified treatment model.

Our simulation is designed to resemble the real-world application of the following section
and is motivated by network seeding experiments (Kim et al., 2015; Chin et al., 2022).
There are N = 300 units each with covariate X; independent and identically distributed as
Un[0, 1], indicating a latent social attribute. The units communicate with each other, form-
ing a network G where each edge is sampled in an independent and identically distributed
manner as

pr(g; =11 X) = expit{—p — a(X;X)'"? = Buuisl X; — Xjl},

where 1, @, Bmis > 0. As before, G~ has no edges and G is made to be symmetric. We set
u = 2 and a = 4. With this definition, edges form mainly between units with smaller X
values. The parameter fB,,;s controls the level of misspecification when fitting the treatment
model, which we make precise later. Approximately 30% of the units are designated as seeds,
via a label D; = 1, and treatment describes whether someone was a seed and whether com-
munication between seeds and non-seeds happened along G*. The treatment can take three
different levels and is defined as

Z;=2D;+ (1 — D)I{U; < (Gt D); — 3}, (12)

where the U; are independent and identically distributed logistic random variables repre-
senting latent individual characteristics. This is a similar entanglement structure to that of
Example 1 and the application of §6. The entangled treatment has the following intuitive
interpretation:

2 if unit i was a seed;
Z; =41 if unit i was not a seed, but communicated with many seeds;
0 if unit / was not a seed and did not communicate with many seeds.

We simulate outcome data based on pre-treatment covariate information:

Yi(0) = —Beon exp{—Beon (XiXp) 2} + €1, Yi(1) = Yi(0) + 10, Yi(2) = Yi(1) +&,
2 .
where Y; = Z I(Z; = z) Y;(2) is the outcome and ¢;, &; i N(0, 1) are unobserved noise.
z=0
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Estimating causal effects under network entanglement 13

Table 2. Simulation study of § 5.2: N = 300 units are treated according to the entangled

treatment model in (12); each row is calculated as the average over 15 000 samples with fixed

covariates X and G, but with varying D. The three panels show (a) percentage coverage

of the true parameter (t1 = 10) achieved by the subclassification estimator based on the

propensity scores estimated by each method, (b) bias of each method; (¢) root mean square
error of each method.

(a) % Coverage (b) Bias (c) Root mean square error
Beon PBmis Naive Ent Oracle Naive Ent Oracle Naive Ent Oracle
0.00 0.00 94.09 94.73 95.01 0.00  0.00 0.00 0.08 0.08 0.00
0.00 0.10 93.85 94.59 94.92 —0.00 —0.00 0.00 0.08 0.08 0.00
1.00 0.00 76.89 92.83 94.95 —-0.54 -0.25 —-0.06 0.73 0.38 0.07
1.00 0.10 75.18 92.47 94.88 —-0.55 —-0.24 —-0.05 0.75 0.36 0.08
3.00 0.00 71.73 91.77 95.10 -3.72 —-132 -0.18 489 2.10 0.35
3.00 0.10 70.50 92.05 95.22 —-3.87 —132 -0.18 504 209 035

Ent, the entanglement-aware method.

The parameter S.on controls the level of confounding between potential outcomes and
treatment. Our goal is to perform inference on 71 = E{Y;(1) — Y;(0)} = 10.

We employ three different methods of estimating propensity scores, and use those propen-
sity scores as plug-ins for the 10-class subclassification estimator of (6) and for inference on
71. For inference, we use the classical Fisherian randomization test outlined in § 4.2, adjusted
to resample treatments according to the estimated propensity scores. To calculate these
propensity scores for the entanglement-aware method defined below requires marginalizing
over G as prescribed by our main procedure in §4.2. The model structure in (12) implies
that the Z; are conditionally independent given the seed status D;, and so the randomization
test resampling treatment based on the propensity scores is valid.

We report the bias, root mean square error and coverage results for the following propen-
sity score methods.

(1) Naive method: this fits a multinomial model Z ~ X + D using the mult inom package
in R (R Development Core Team, 2024). As an aside, the results in this section remain
unchanged if the naive model omits D.

(i) Entanglement-aware method: this method follows the Monte Carlo approach of §4.2
by fitting the treatment model

pr(g; =11 X) = expit{—p — a(X;X))'/?}.

Whenever Bnis = 0, this corresponds to a correctly specified model. However, the
model is misspecified when B,;s &= 0. This allows us to check the robustness of our
entanglement-aware methodology.

(iii) Oracle method: this uses the true definition of the treatment vector in (12) and
calculates propensity scores assuming that G™ and D are known.

The naive and entanglement-aware methods are fit conditionally on all observable quanti-
ties, captured by X and D. Importantly, neither method has access to the full network G*.

The results are shown in Table 2. First, we see that all methods, including the naive method
that assumes individualistic treatment, achieve the nominal coverage level when there is
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14 P. TouLIls, A. VOLFOVSKY AND E. M. AIROLDI

no confounding, i.e., Bcon = 0. This is true even when the treatment model fitted by the
entanglement method is misspecified, i.e., Bnis &= 0. However, the naive method can under-
cover severely when there is confounding, Bcon = 0. For example, when Bcon = 3, the naive
method has a coverage rate of the true parameter that can be as low as 71%. Moreover,
model misspecification, i.e., Bnis &+ 0, appears to introduce more confounding, resulting in
additional deterioration of the performance of the naive method. On the other hand, the
entanglement-aware method performs better, with a coverage rate that generally exceeds
92% across all settings. Notably, this method does not deteriorate under model misspecifi-
cation, Bnis = 0. Predictably, the oracle method that uses the true propensity scores covers
at the nominal level throughout all settings.

The bias and root mean square error results shown in Table 2(b) and (c) are analogous
to the coverage results. We point out that the bias for the oracle method, e.g., —0.18 for
Becon = 3 and Bnis = 0.1, is due to finite samples. Despite this bias, the oracle method
achieves nominal coverage because it uses the correct randomization distribution of the
estimator based on the true propensity scores.

6. APPLICATION

6.1. Introduction

In this section we revisit Example 1 and analyse data from Aral et al. (2009). These data
describe use of the Yahoo! Go mobile service in a social network of users over time. The key
finding of Aral et al. (2009) is that adjusting for the individual propensity score to adopt the
mobile service can help to distinguish between peer effect and homophily. Our goal here is
different as we focus on estimation of causal effects, and in particular we aim to illustrate
the differences between using a standard propensity score model that ignores the presence
of entanglement and using a model that takes entanglement into account.

6.2. Data and definitions

The dataset consists of a universe of 13.02 million Yahoo! users in the U.S.A. tracked
over the month of October 2007. Up to this point the vast majority of users, 98.3%, had
not used the Go service that had been launched the year before. About 60% of the users
were male with an age range of 18-70 years and an average age of 30. In week 1 of the
month, 115.6 thousand users adopted the Go service, and we refer to these users as seeds, in
the network seeding sense discussed in § 5.2. The units of our analysis are users who are not
seeds and who communicated with someone else, seed or non-seed, during week 2 through
Yahoo! Messenger. There are roughly 3.54 million units in the dataset. For each unit we
have covariates X including the following: age; sex, recorded as binary; country location;
full communication history; and Go activity, i.e., summary page view counts, if they were
Go users.

These communications are recorded as messages between pairs of units. During week 2,
a total of 178 million messages were exchanged over 10.5 million distinct conversations.
The distribution of communications per user is severely right-skewed, with a median of
54 messages and a mean of 234 messages. There is also a user with more than 125000
recorded messages. Additional descriptive statistics and visualization are included in the
Supplementary Material.

The treatment of a unit has three levels, which indicate whether the unit communicated
with 0, 1 or more seeds during week 2. With a slight adjustment to our notation, let G be the
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Week 1 Week 2 Weeks 3-4 Summary statistics
Users 13.02m

(3 L. 3 3 Average age 29.9
NG @ s 5 %male  60.2%
! ‘ Seeds 115.6k

l’_lf— 1 1 Units 3.54m

1
4

Messages 178m

4 Adopters 9.6k

Fig.2. Yahoo! Go example. Week 1: users have potential communication channels marked with dashed edges;

some users, i.e., 2 and 6, adopt the Go mobile app and form the seeds (marked with dots), while the rest of the

users form the units. Week 2: users exchange messages with each other (solid edges); the treatment Z denotes the

number of seeds a unit communicated with, e.g., Z; = 2 and Z4 = 1. Weeks 3 and 4: outcomes Y are measured
on the units and capture whether they adopt Go, e.g., Y4 = 1 (unit 4 adopted Go) whereas ¥Y; = 0.

communication network in week 2, i.e., g;f = 1 means that user i exchanged messages with
user j. As discussed above, this communication network is vast and contains 10.5 million
edges across 3.55 million nodes. Then, for every unit i we define

zl-=1[( > gl.]+.>o)+]1< > g;>1).

Jjeseeds jeseeds

The outcome is binary and indicates whether a unit adopted the Go service in weeks 3
and 4 of October 2007. A total of 9581 units adopted the Go service in weeks 3 and 4,
which we refer to as adopters. We visualize our applied example, along with key summary
statistics, in Fig. 2.

Remark 6. A seed may communicate with units on the basis of similar age or gender, or
other characteristics related to the user browsing interests. Our goal is to estimate the effect
of communication with a peer who adopted Go in week 1, and so entanglement is likely
owing to an underlying social network that can exhibit homophilous patterns of commu-
nication between peers and motifs such as triadic closures. This form of entanglement is
similar to that of Example 1 and §5.2, allowing us to employ our randomization approach
for inference.

6.3. Methods and results

To analyse the data, we employ the permutation inference procedure of §4.2 that does not
require estimation of a particular network model, i.e, Step 1’. Both the standard approach
and the entanglement-aware approach use exact matching, each using a different set of
covariates.

For the standard individualistic approach, we perform exact matching on age and sex. For
the entanglement-aware approach we construct additional covariates that capture the com-
munication profile of each user in week 2. Specifically, for every communication between
units / and j in week 2, we calculate whether the units are of similar age, same_age; = 1,
and whether the units are of the same sex, same_sex;; = 1. Then, for every unit i, the model
includes four additional variables counting the number of communications between i and
other units, for all four possible subgroups defined by (Zj same_age;, Zj same_sex;j),
where the sum is over all units that i communicated with. These covariates are normalized
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Table 3. Point estimates and randomization-based confidence intervals for constant treatment
effects based on a standard propensity score model that ignores treatment entanglement and is
based on an entanglement-aware model

Model H™Y: v,0) = Yi(1) H: v() = v,2)
Standard Estimate 0.32% 0.32%

95% confidence interval [0.22%, 0.43%] [0.18%, 0.48%)]
Entanglement Estimate 0.68% —0.21%

95% confidence interval [0.54%, 0.80%)] [—0.45%, 0.01%)]

as proportions, in percentages, over the total communications of unit i with all other units,
thus forming the communication profile of unit i.

To enforce positivity, we eliminate matched groups in which fewer than 5% or more than
95% of the units are treated (Lee et al., 2011); this removes 11% of the data. As mentioned
before, we conduct inference based on the randomization framework of §4.2 using the sub-
classification estimator as the test statistic. Specifically, we test two sharp null hypotheses,
namely H({)o’l} : Yi(1) = Y;(0) and H({)l’z} : Y;(1) = Y;(2). For each test, we condition on the
units that receive one of the two treatment levels, construct matches and permute the treat-
ment vector within every match. We then invert these tests to construct randomization-based
confidence intervals for a constant treatment effect; see Remark 3. This approach leverages
Theorem 2, which guarantees that the restricted permutation test on Z is equivalent to a
test that marginalizes over the post-treatment network, GT.

As a result, the standard approach may permute treatments between units with poten-
tially very different communication profiles, whereas the entanglement-aware approach
permutes only between units with identical profiles. This may be important because the
communication profile seems to be a significant factor for user-to-user communication in
Yahoo! Messenger, which could bias the results from the standard model. Importantly, in
settings where the standard model is valid, the entangled model would also be valid since
every randomization within the entanglement-aware model is also valid under the standard
model.

The results are shown in Table 3. For the standard model, we see that the point esti-
mates are positive and very similar for both effects at 0.32%. The randomization-based 95%
confidence intervals under this model are also similar and range from 0.18% to 0.48%.
This implies a strong effect in adopting Go from communicating with one seed versus
communicating with no one, the so-called 7 effect, and the effect is also positive when com-
paring communication with multiple seeds versus communication with one seed, known
as the 1| effect. However, the results are substantively and statistically different under the
entanglement-aware model and also suggest strong effect heterogeneity. Specifically, the g
effect is stronger under the entanglement model and ranges between 0.54% and 0.80%. On
the other hand, the point estimate for the t; effect is negative, —0.21%, but not statistically
significant. This suggests that ignoring entanglement may result in grouping together highly
dissimilar units, leading to possible bias.

One potential criticism of the nonsignificant result in Table 3 is that the randomization-
based confidence intervals may be conservative. To address this, we investigate the Type 11
error of the randomization procedure through a power simulation study calibrated on the
real data. The results of this study are reported in the Supplementary Material and show
that the randomization procedure is high-powered for effects of similar magnitude to those
observed in the real data.
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7. DISCUSSION

This article studies the problem of treatment entanglement in causal inference in the con-
text of network data. This leads to non-individualistic treatment assignment, which has
been largely ignored by standard causal inference. Our work, however, leaves several open
problems.

First, it would be interesting to know theoretically the extent of bias of classical propen-
sity score methodology under non-individualistic, entangled treatments, as well as the bias
reduction achieved by entanglement-aware methods. In §5.2 we showed empirically that
even misspecified network models can reduce bias relative to standard propensity scores.
Determining the kinds of theoretical conditions that guarantee such reduction is a ques-
tion for future research, including possible sensitivity analysis. Second, as discussed in §4,
it would be interesting to know how to select appropriate network models. Third, subclas-
sification on a multilevel propensity score as in Theorem 1 is never exact, and we did not
address the resulting bias from subclassification error. Finally, there are interesting open
problems concerning randomization tests for weak null hypotheses under entanglement, as
discussed in Remarks 4 and 5.

As a concluding remark, while our focus has been on treatments that occur between two
individuals in a network, in practice we often observe treatments on larger subsets of units.
This scenario is common in fields such as education and business, where entire subsets of a
school or a sector receive a treatment while being connected to other subsets. Since the fun-
damental building block for such treatment assignment is the underlying network, we believe
that our methodology is general enough to encompass it. In particular, after adjusting the
definition of treatment assignment to apply to larger subgraphs, the procedure outlined in
§4 could be applied directly. This flexibility allows our methodology to adapt to various
real-world scenarios where treatment occurs within interconnected subsets of a network.
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